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Abstract

In this thesis, I designed and built a laser system for the trapping and cooling of 6 Li

atoms. The thesis starts explaining a theoretical background of the necessary laser
frequencies for the realization of a Zeeman Slower and a 3D MOT. Next it describes
the design of the laser system that makes use of a Raman Fiber Amplifier coupled
with a Frequency Doubling Cavity and shows the finalized setup. Finally, the thesis
delves into the topic of Modulation Transfer Spectroscopy which was used to lock the
laser to the D2 line transition of 6Li and shows the spectroscopy setup built for the
laser system.

Thesis Supervisor: Martin W. Zwierlein
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Chapter 1

Introduction

In the course of this thesis a laser system to trap and cool 6Li atoms has been built.

The setup will be part of a new apparatus for the creation of quantum degenerate

fermions with tunable interactions in tailored optical potentials.

This new system is a direct upgrade to the one built by Z. Hadzibabic and M. W.

Zwierlein, which is described in the doctoral thesis [91 and master thesis 1251.

1.1 Motivation

A decade ago, the lab "BEC1" of Wolfgang Ketterle first demonstrated fermionic

superfluidity and phase coherence of a 6Li Fermi gas through the observation of a

vortex lattice in the atomic cloud 1241. Most recently, the same experimental setup

has been used to study solitary wave excitations in order to gain insight into many-

body dynamics of fermions 123, 10].

Fermi gases are an interesting topic of research due to the possibility to discover

new phases of nature that have yet to be theorized. Instead of trying to solve the

system through theory, one can directly observe nature's behavior under different

circumstances. Furthermore, ultracold Fermi gases are a well controlled system that is

well suited to solve condensed matter problems through simulation. The laser system

that is discussed in this thesis is meant to be part of a new laboratory that will study

an even wider range of quantum systems. This lab will be a "reloaded" version of
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BECi. This new lab will initially focus its efforts in homogeneous trap potentials

to effectively simulate the behavior of many interacting fermions in a box and the

different phases that they can reside in. This new experiment will again use 6Li to

generate a Fermi gas, which needs a 671 nm wavelength for all the experimentally

important transitions.

1.2 Properties of our laser system setup

The laser system uses a 1342 nm laser diode that is amplified to 5 W using a Raman

Fiber Amplifier from the company MPB Communications Inc. This beam is then

passed through a frequency doubling cavity from the Italian company LEOSTM that

outputs a 671 nm laser beam with 1.6-1.8 W power. This is more than enough to

generate all the needed frequencies for the system and it is the main property of our

setup that differentiates it from previous systems such as 19, 251.

Another important property is the method used to lock the laser to the D 2 line

transition. We use Modulation Transfer Spectroscopy (or Four-wave mixing) to gen-

erate an error signal that has several advantages compared to other schemes.

There are other small optimizations of which only one is worth mentioning. The

light that goes through the 'Li vapor cell in the spectroscopy setup is offset by

+228MHz in order to have the main locked beam offset -228MHz from the D2 line

transition and minimize the Acousto-Optic Modulators (AOMs) needed in the laser

system to generate all required outputs.

1.3 Outline of this thesis

The purpose of this thesis is to serve future students in the Zwierlein Group. There-

fore, the following chapters are going to explain both the theoretical knowledge needed

to understand the system and the technical specifics of it. This should provide enough

background for any student to fully comprehend this experimental tool.

The chapters are organized as follows:
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Chapter 2 presents the theory behind the trapping and cooling of 6 Li atoms. We

will present the structure of 6 Li and relevant transitions in it.

Chapter 3 shows the actual laser setup that was built. It will describe how each

part and component serves to produce all the desired outputs.

Chapter 4 focuses on the Modulation Transfer Spectroscopy (MTS); first de-

scribing the theory behind this method and then showing the implementation of it in

our setup. It will also focus on the electronic components of the setup.

The Appendix A provides a guide to build an Electro-Optical Modulator as the

one that was used for spectroscopy in this laser system.

17



18



Chapter 2

Understanding laser trapping and

cooling of 6Li atoms

This chapter will present the theoretical background to understand the laser system.

It is divided in three main sections. The first section discusses the properties of 6Li

atoms, their intrinsic constants, and their transitions. The second section explains

the mechanism by which a laser beam exerts a force on an atom and how to apply

this force to slow down atoms in a Zeeman slower. The third section deals with the

problem of trapping and cooling the atoms using a Magneto-Optical Trap (MOT).

Finally, we briefly address the part of the system that will be used for absorption

imaging.

2.1 Properties of 6Li and its structure

Lithium belongs to the family of alkali atoms which are characterized by a single

valence electron and makes them a relatively easy model to do quantum science. For

optical transitions only this valence electron is relevant and all alkali atoms share

a similar level structure where the transition from nSj/ 2 to nP3/2 (D2 line) is most

commonly used for cooling and trapping. Lithium is usually found in mixtures of two

isotopes: 92.5% bosonic 7Li and 7.5% fermionic 6Li [7J. In fact, 6Li is one of the only

two stable fermionic isotopes of alkali atoms, the other one being 4 0K [171.
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The electronic structure of the ground state of Lithium is 1s2 2s1 . This means

that in 6Li the ground state is equal to having the external electron in the orbital

state 2S1/ 2. The first excited states of any alkali atom are split into the fine structure

due to the coupling of the electron's spin (S) and orbital momentum (L) into states

nP/2 and nP3/ 2 . The notation used in these excited states defines the subscript as

the quantum number J associated with the total angular momentum of the electron

J = L + S. The energy differences between each excited state and the ground state

is the reason for the spectral D lines at 671nm. For laser cooling, we use the D2 line

transition that links the ground state with the nP3/2 state. In the case of 6Li n = 2.

Furthermore, there is a hyperfine splitting that affects both the ground and excited

states. This splitting is due to the coupling between the total angular momentum (J)

and the nuclear spin (I). For small magnetic fields, the quantum number F associated

with F = J+ I is a good way to describe each of the split states. For 6Li the nuclear

spin is I = 1 and causes a splitting of 228 MHz in the ground state 191. The states with

highest quantum number F in the ground state (F = 3/2) and excited 2P3 / 2 state

(F' = 5/2) form a "cycling transition" which emulates a two-level system. Figure 2-1

shows the energy level structure of 6 Li with the relevant transitions for laser cooling.

2.2 Slowing atoms

Cold atom experiments start with an atomic beam emanating from an oven and

slowed down through a Zeeman slower [141 to reach a speed that can be trapped

inside a MOT 1151. It depends on the species: for Lithium or Sodium it is necessary,

but other species such as Rubidium do not need to be slowed in order to be trapped.

Lithium has to be heated to around 400'C in order to melt and generate enough

vapor pressure to generate a high-flux atomic beam. In order to understand how

the Zeeman Slower works, it is important to first conceptualize the force that a laser

beam exerts on an atom.

'The D lines correspond to the transition from the ground state to each of the two excited states
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Figure 2-1: Energy level structure for laser cooling of 'Li. Figure adapted from [251.

2.2.1 Laser forces on an atom

The ability to exert forces on atoms and thus manipulate them is one of the principal

tools that a physicist uses to perform experiments in an ultracold atoms lab. By

shining a laser beam on to an atom, it is possible to impart a force in the same

direction of the laser beam. Since the scope of this thesis is only to present enough

knowledge to understand these processes, a full calculation of this force will not be

made. A detailed derivation of this force can be found in 18].

Let us take into account a laser beam with frequency w and momentum hk that

is directed onto an atom, modeled as a two-level system with energy difference hwo.

Here, we can describe the strength of the effect that the laser has in the atom by

the saturation parameter s = 2Q2 / 2, where QR is the Rabi frequency 2 and F the

linewidth of the transition between the ground and excited states 3 . A final important

2 The Rabi frequency is the frequency of oscillation between two atomic states inside a light field.
It is defined as hQR = dij . E, where dj = (iI d j) is the matrix element of the electric dipole
operator between the two states and E is the electric field of the laser beam.

3 This linewidth defines the characteristic time T = 1/F over which an excited state will sponta-
neously emit a photon and decay.
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value is the detuning of the laser 6 = w - wo; positive detunings are called "blue"

and negative detunings are called "red" making allusion to Doppler shifts. With these

concepts in place it is now possible to understand the formulas governing the light

force.

When the laser beam is shining on the atom, the atom is going to absorb a near-

resonant photon and transition into the excited state. In doing so, the atom will

also absorb the momentum that the photon carried and get a kick in the direction

of the laser beam. After a time defined by the inverse linewidth F- 1 this atom

will spontaneously emit another photon and receive another kick; however, this time

the photon has equal probability to be emitted in opposite directions. Over a large

amount of absorption and emission processes, the average change in momentum due

to the spontaneous emission will cancel out. Therefore, the atom is effectively being

pushed in the direction of the laser beam. The effective force will then be given by

the rate of absorbed photons times and the imparted momentum per photon. The

scattering rate depends on the linewidth of the transition, the detuning, and the

saturation parameter:

F = hk 1 = hk- "(2.1)
2 1 + so + (26/F) 2

In the case of 'Li: the natural linewidth is 27 x 6 MHz, the laser intensity in order

to get so = 1 is 2.5 mW/cm 2 , and the recoil velocity vrec = hk/m is about 10 cm/s

191. The saturation intensity sets a natural scale for the required beam intensity.

In general, it is favorable to work with high saturation parameters in order to be

insensitive to power fluctuations and changes.

2.2.2 The Zeeman Slower

In the calculations above, we omitted certain effects that can also affect the detuning

of the laser. One of these effects is the Doppler shift. When the atoms leave the oven,

they are moving at a fast velocity that can be calculated by the formula:
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Vth= 2  (2.2)
m

This formula represents the most probable speed in a thermal distribution corre-

sponding to the temperature T of the oven. In the case of 6Li coming out of the oven

at a temperature of 400'C, this speed is ~ 1270 m/s. In this condition, the frequency

that the atoms "see" will be Doppler-shifted, therefore affecting the detuning of the

laser with the transition. The Doppler shift adds a term -k - i to the detuning 6

used in Equation 2.1. In this case, the Doppler shift corresponds to 27r x 1.8 GHz

between atoms leaving the oven and atoms at rest.

Another possible shift in the detuning is due to the Zeeman Effect. We can

connect the cycling transition of 6Li using a laser beam with o- polarization4 due

to selection rules. These states have such quantum numbers that at any external

magnetic field, the ground state has magnetic moment equal to one Bohr magneton

AB and the excited state equal to 2pB. Therefore the total Zeeman shift of the

transition is -B/h = -1.4 MHz/G [9]. This generates a modifying term to 6 equal

to +B(r)PB/h.

The Zeeman slower is then used to counterbalance the unavoidable Doppler shift

due to the fast atoms, using a tailored magnetic field 1141. This allows the slowing

of the atoms using a laser beam with static frequency by balancing out the Doppler

and Zeeman shifts (hence the name). The total detuning has the form:

6(V', r-) = w - wo - k - &+ B(r)IB/h (2-3)

In the experiment, the Zeeman Slower is built such that the detuning is kept

constant to maximize the constant slowing of the atoms to a speed that can be

trapped using a MOT. A final detail to take into consideration for the experimental

realization of the Zeeman slower is that the atomic beam of 6Li comes out both in the

F = 3/2 and F = 1/2 states of the ground state. It is necessary to send, along the

4o* denotes circularly polarized light where + means clockwise and - counter-clockwise- with
respect to the direction of propagation.
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slower beam that drives the cycling transition, a "repumping" beam detuned + 2 2 8

MHz from the slower beam so that it takes the lower hyperfine state to the upper

state through the repumping transition.

2.3 Trapping atoms in a MOT

With the atoms slowed down, it is possible to trap them using a different array of

the same light forces. In a MOT, there are two force components that allow it to

both spatially trap the atoms and cool them. The damping or cooling term will be

addressed first.

2.3.1 Doppler Cooling

Knowing that a laser beam can exert a force on an atom in the same direction it is

propagating, it is a logical step to think that it is possible to trap atoms in between

two counter-propagating laser beams. However, if the frequency of the laser beams

was exactly that of the cycling transition the forces would effectively cancel out. An

easy way around this dilemma is to have the laser beams red detuned below the

cycling transition frequency. The reasoning is that since atoms are moving at some

speed v, we can exploit the Doppler shift to the laser detuning in order to make one

of the forces stronger than the other one.

In the case of the beam propagating against the direction of the atom, the Doppler

shift will reduce the magnitude of the detuning, hence increasing the magnitude of

the force it imparts. Conversely, the other beam will be shifted furthera way from

the transition reducing the force it generates on the atom. This way, there will be a

force term of the form Fcooiing = -av7 in the direction of the axis that the two beams

propagate in. An actual calculation of the constant a using Equation 2.1 can be

found in 18].
To make a full 3D construction using this technique, we need 3 pairs of counter-

propagating red detuned laser beams in 3 perpendicular axis. However, the force that

the atoms feel is not a spatial confinement, but rather a damping or viscous term.
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The atoms will move in a random walk as if immersed in a viscous liquid which is

why this is usually referred to as an "optical molasses" 17.
Although the atoms will not be trapped, they will cool down due to the damping.

The minimum temperature at which these atoms can be cooled down in this simplified

system is defined by kBTDoppler = (1/2)hF. For 'Li, this temperature is 140pK 191.

2.3.2 Magneto-Optical Trap

In order to generate a spatial confinement we need to add a magnetic field gradient

to the optical molasses. Thereby, we exploit the atom's internal structure to increase

the absorption of light near the center of the trap [15].

For a simple case, let us imagine a 1D-MOT in the z axis and an atom with

J = 0 in the ground state and J = 1 in the excited state. The magnetic field

has the form B, = bz and generates a Zeeman shift of the energy level with value

AZeeman = pmB. Here, m, is a quantum number that can have values {+1,0,-1} in

this simplified system. In a MOT, the polarization of the counter-propagating beams

is very important. The beam propagating in the positive z direction needs to have

polarization .+ while the other beam needs polarization a-. These polarizations

are important because due to the selection rules, .+ polarization can only excite the

ground state to the m. = +1 state and a- only to the m, = -1 state. Figure 2-2

shows the case explained above.

Due to the selection rules of the counter-propagating beams, there will be a force

on the atoms that always points to the center of the trap. This force will have the

form Fconfinement = --#z and it is the spatial confinement term that along the damping

term traps the atoms. A full 3D-MOT will have 3 pairs of counter propagating beams

with o, polarizations in 3 perpendicular axis. The point where they meet will be at

the center of a "spherical quadrupole" magnetic field that can be generated using a

pair of anti-Helmholtz coils. This configuration is shown in Figure 2-3.

The MOT is the first step towards experimentation in ultracold atoms. While it

does not cool down the atoms to degeneracy, it does localize them at a cold enough

temperature and with enough density to use further processes like evaporative cool-
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Figure 2-2: Energy level diagram of an atom in a 1D-MOT. Due to the selection
rules of the polarized counter-propagating beams, there will be a light force pointing
towards the zero crossing of the magnetic field at z = 0. Figure taken from 115].

ing. Similar to the slower process, for the MOT trap to work correctly, we need a

repumping frequency along the red detuned cycling transition one. This frequency

will not be red detuned from its transition, but it is necessary for a working MOT by

keeping all the atoms in the cycling transition.

2.4 Imaging

A final topic that is important for the laser system built for this thesis is the imaging

of the atoms. For this process, we need a mixture of the cycling and repumping

transition frequencies5 . These are not detuned at all from their respective transitions

and can be used to perform many kinds of imaging schemes. The two most widely used

are absorption and fluorescence imaging. This thesis will not present the background

for these schemes, but there are many good sources out there including 1131.

5This will only work in the low magnetic field regime. For high magnetic field imaging, an offset
is needed due to the Zeeman effect where F is no longer a good quantum number.
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Chapter 3

Laser system

This chapter will present how the laser system was built. It starts with an outline

of the different frequencies that need to be generated. Next it will delve into how

we generate a high power 671 nm laser source using a Raman Fiber Amplifier (RFA)

and a frequency doubling cavity. Then, we will explain how to offset the frequency of

the laser beam using Acousto-Optic Modulators (AOMs) and their different possible

configurations. With this knowledge, we explain how the laser system was designed

to give the necessary outputs. Finally, we show the layout of the laser system that

was built.

3.1 Outline of the system

In order to build a laser system that allows for the slowing, trapping, and initial

cooling of 6 Li we need very specific frequency outputs as Chapter 2 suggests. There

are 3 main outputs that we need from the laser system:

1. Slower + Repumper. 1 GHz red detuned light from the cycling transition

between the F = 3/2 ground state to the F = 5/2 excited state. Plus, 1 Ghz

red detuned light from the repumping transition' between the F = 1/2 ground

state to the F = 3/2 excited state (or 228 MHz blue detuned from the Slower

'Refer to Figure 2-1.
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light). The offset of 1Ghz red detuned light is in the magnitude of the typical

Doppler shift for 6Li atoms out of the oven.

2. MOT + Repumper. 20MHz red detuned light from the cycling transition

between the F = 3/2 ground state to the F = 5/2 excited state. Plus, light

exactly resonant with the repumping transition between the F = 1/2 ground

state to the F = 3/2 excited state. The detuned frequency of the MOT signal

generates the damping force that cools the atoms while also spatially trapping

them.

3. Imaging. Resonant light with the cycling transition between the F = 3/2

ground state to the F = 5/2 excited state. Plus, resonant light with the re-

pumping transition between the F = 1/2 ground state to the F = 3/2 excited

state. These frequencies will only work for the low-field imaging.

In order to generate all these outputs, we first need to know how to get enough

laser power at 671 nm. Furthermore, this beam will be divided into three main lines

and offset using Acousto-Optic Modulators (AOMs). The next sections will explain

the steps in the laser system that eventually end up with the desired outputs and

finally show a layout of the laser system that was built.

3.2 Generating a powerful 671 nm source

Since there are not many viable commercial options for a high power 671 nm laser,

we opted to buy a 1342 nm diode laser, amplify it using a Raman fiber amplifier,

and halve its wavelength using a frequency doubling cavity. We will briefly describe

each of these components, how they work, and their important attributes for the

experiment.

3.2.1 1342 nm Master Laser

The diode laser used is a TopticaTM DL Pro laser. This laser has a linewidth below

1MHz which is better than what we need for 'Li. The spectroscopy and locking of
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the laser will be addressed in Chapter 3. However, for this chapter it is important to

know that laser will be locked so as to have a frequency 228 MHz red detuned from

the cycling transition.

The laser is run at a driving current of 110-120 mA in order to have an output

of -30 mW. This is the minimum output required for the Raman fiber amplifier

to saturate. By driving the laser with the minimum current possible we ensure the

maximum lifetime of the diode.

3.2.2 Raman Fiber Amplifier

We use a commercially available Raman fiber amplifier from the company MPB Com-

munications Inc. This amplifier takes in an input of 26.5 mW A 1342 nm (after a

~80% fiber coupling) and gives out a beam of 5 W at the same wavelength through

a fiber. The process by which this amplifier works is Stimulated Raman Scattering

(SRS).

Stimulated Raman Scattering

In this thesis we will only present a simple intuitive model for SRS. For a full calcu-

lation of the results, consult Chapter 4 of [20]. The Raman Fiber Amplifier works

using two input signals: a seed beam (the 1342 nm light in our case) and a high-power

(10 W) pump beam 1100 nm from an Ytterbium Fiber Laser. Through a non-linear

interaction with the fiber medium, the atoms generate a vibrational state that favors

the inelastic scattering of the 1100 nm light into the 1342 nm light by a two photon

process. Since the 1100 nm light is shifted to a higher wavelength, this is called a

Stokes shift 118]. Figure 3-1 shows an energy level diagram of this process. The seed

beam gets amplified by transforming 1100 nm light to 1342 nm light in this second

order process.
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Figure 3-1: Energy level diagram of the Stimulated Raman Scattering process inside
the Raman Fiber Amplifier.

Raman Fiber Amplifier to produce a 671 nm source

Using Raman Fiber Amplifiers (RFAs) in conjunction with a frequency doubling

cavity to generate a high power laser beam in the 550 to 700 nm region was pioneered

by [221. This group originally developed this method to generate a 25 W ( 532 nm

laser beam to use in astrophysics as a star tracking tool.

3.2.3 Frequency Doubling Cavity

The frequency doubling cavity was bought form the Italian company Laser and

Electro-Optic Solutions (LEOS). This cavity is similar to the ones employed by the

group of Gabriele Ferrari 111]. Given an input of 1342 nm light the cavity generates

an output of 671 nm light as desired.

The cavity uses a KNbO 3 non-linear crystal that doubles the frequency of the

incident light by Second Harmonic Generation. It amplifies this effect using a high

finesse bow-tie cavity which ultimately transforms an input of 5W 0 1342nm light

to 1.6-1.8W L 671 nm. This output is more than enough to generate all the desired

outputs with power to spare.
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Figure 3-2: Energy level diagram of the Second Harmonic Generation. Note how the

frequency of the emitted light is twice of that of the absorbed light.

Second Harmonic Generation

In 1961, a group led by Peter Franken at the University of Michigan, Ann Arbor first

demonstrated that light could be converted into a different color though a non-linear

effect 161. In their experiment, they shone a 694 nm laser through a quartz sample

and measured the spectrum of the output. This measurement showed a small amount

of 347 nm light which was famously mistaken by the PRL editor as a speck of dust

and subsequently erased from the published paper.

The full calculations that arrive at the theoretical solution of Second Harmonic

Generation can be found in 13]. However, it can be understood in a simple intuitive

way. If the atoms in the crystal are in their respective ground states. The frequency

gets doubled by a two-photon process where two photons get absorbed so that the

atom gets excited through a virtual state to another and from this final excited state

the atom decays back to the ground state emitting only one photon. Since it absorbed

two photons and emitted only one, this output photon has double the input frequency

to preserve energy conservation. Figure 3-2 shows a diagram of this process.
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Figure 3-3: Schematic of the inside of the frequency doubling cavity.

Locking the cavity

The cavity comes with its own temperature controller for the crystal and PID box to

lock the cavity. Figure 3-3 shows a schematic of the inside of the doubling cavity. One

of the four mirrors in the cavity has a small piezoelectric transducer (PZT) that can

fine tune the cavity until it is resonant. This particular cavity was very difficult to

lock at the beginning. Due to some errors, we had to re-align the whole optical setup

inside the box and replace the optical isolator. We also needed to modify the values

of the attenuators before the polarizing beam splitter cube that generated the signal

for the polarization spectroscopy and with that generated an error signal. Finally we

changed the potentiometer from the Integral gain in the PID box.

3.3 Generating the different frequencies

In this laser system, we only use AOMs to modify the frequencies of the beams.

AOMs allow us to add or substract an offset on the order of magnitude of hundreds

of MHz to any incident laser beam and also separate the part of the beam that got

offset from the one that did not.
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3.3.1 Acousto-Optic Modulation of Light

An AOM consists of a transparent crystal (TeO 2 in the case of this laser system)

which is being vibrated by a RF driven PZT from one side and has damper on the

other. This causes the continuous generation sound waves or phonons that only travel

in one direction. In this laser system, the PZT is driven with home-built drivers at

the specific frequencies that we want to offset the laser. A design for these drivers is

in 1251 and also in 1171.

When a laser beam is sent perpendicular to the direction of the phonons inside

the crystal, there is an interaction between the photons and the phonons. There are

three main possible effects:

1. The photon passes unscattered through the crystal.

2. A phonon is absorbed by the photon receiving both its energy (positive fre-

quency shift) and its momentum (positive spatial shift).

3. A phonon is emitted by the photon losing both some energy (negative frequency

shift) and momentum (negative spatial shift).

Figure 3-4 shows all three of these processes. In reality, even higher order shifts

are present. The efficiency at which the power of the light is distributed between the

possible outputs depends strongly in the incident angle, beam size, and polarization.

This is why we put a telescope before almost every AOM in the laser system. The

normal efficiency for a first order diffraction in a -100 MHz driven AOM is ~85%, for

~200 MHz its ~75%, and for ~300 MHz its -70%. A more comprehensive description

of the way an AOM works is calculated in 1171.

3.3.2 Double-Pass AOM

A Double-Pass AOM means that the diffracted light is retro-reflected back exactly

in the same direction. By doing this, the zeroth order diffraction will not have any

change but loss of power due to the efficiency of the alignment. On the other hand,
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Figure 3-4: Diagram of how an Acousto-Optic Modulator works. The incident light

either passes by normally, absorbs, or emits a phonon. Figure adapted from 1171

the first order diffractions will have double the offset and return in the exact same

direction as they came. The normal way to set a Double-Pass AOM is to put a lens

at a distance equal to its focal length from the center of the AOM. This way all

diffractions can be retro-reflected together in the same mirror. However, this presents

a problem of superimposed beams coming in and out of the AOM. Going in is the

original beam with frequency w; and going out is a mixture of w and the doubly offset

beams of the diffractions. A easy way to separate them is to make use of a Polarizing

Beam Splitter (PBS) and placing a quarter wave-plate before the mirror2 . This way

the out coming light will go in the opposite output of the beam splitter as it will

have the opposite linear polarization as the incoming beam. Figure 3-5 shows a basic

setup for a Double-Pass AOM.

It is important to note that the efficiency of a Double-Pass AOM is calculated as

the square of the efficiency of a single-pass AOM driven at the same frequency.

2 All throughout the Laser system the beams are linearly polarized unless we use quarter wave

plates to make then circularly polarized. In this case, by placing a quarter wave plate right before

a retro-reflecting mirror you ensure that the incoming and out coming beams have opposite linear

polarization.
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Figure 3-5: Double-Pass AOM basic optical setup. The circled numbers mark which

diffraction beam from the AOM it is. It clearly shows the output being a mixture

between two beams, one with the input frequency and one doubly offset. By simply

blocking the zeroth order diffraction beam we would only have the doubly offset beam

output.

3.4 Design of the laser system

In this section, each part of the finished laser system is explained. Having explained

the different ways to offset the frequency of a laser beam, this section provides the

process in which each output is generated without going into the specifics of the setup.

This can be seen as the "topology" of the laser system.

3.4.1 Spectroscopy and Generation of the Main beam

As explained in past sections: 1342 nm laser light comes out of a laser and is amplified

through a Raman Fiber Amplifier (RFA) to then be converted into 671 nm amplified

light in a frequency doubling cavity. After this process generates the main laser beam

of the setup, a little bit of light is taken to do spectroscopy and lock the laser 228

MHZ red detuned from the cycling transition. The rest of the light is divided for the

other three parts of the setup. Figure 3-6 shows a diagram of this scheme. In the

figure, Aw signifies the detuning that the respective laser beam has.
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Figure 3-6: Topology of the initial steps in the Laser system. 1342 nm light is 
amplified and frequency doubled to 671 nm to be used in the Laser system. Some of 
this light is used to lock the laser to the D2 line transition of Lithium offset by -228 
MHz. 

Figure 3-7: Topology of the Slower setup. First offset the whole thing by -772MHz 
and then using a Double-Pass AOM generate a mized signal with the two needed 
outputs and send them to the experiment. 

3.4.2 Slower 

To generate the required outputs, we first use a Double-Pass AOM driven at 386 

MHZ to offset the frequency by -772 MHz. This will give us a beam with a total 

offset of -1 GHz which is what we need for the slower light. However, to generate 

the repumping light we pass the beam through a 114 MHz driven Double-Pass AOM 

without blocking the zeroth order light in order to generate a beam that has both a 

-1 GHz component and a -778 MHz component. \Ve then send this beam through a 

fiber to the experiment. Figure 3-7 shows the topology of this part of the setup. 
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Experiment

Figure 3-8: Topology of the MOT setup. Using Double Pass AOMs, two separate

beams produce the light for the MOT and the MOT Repumper. Then these are

mixed in a PBS to be sent to the experiment.

3.4.3 MOT

For the MOT setup, we start by dividing the light into two beams. One will be offset

by a 104 MHz driven Double-Pass AOM to get -208 MHz; this will generate a signal

-20 MHz from the cycling transition which is red detuned and approximately 31' for

6 Li. The other beam will be offset by +456 MHz through a Double-Pass AOM driven

at 228 MHz to generate a signal at the repumping transition for the MOT Repumper.

Both beams are then mixed in a Polarized Beam Splitter so they can be sent together

through a fiber to the experiment. Figure 3-8 shows the topology of this part of the

setup.

3.4.4 Imaging

The imaging setup is exactly the same as the MOT setup, only this one generates

a beam that is resonant with the cycling transition. However, before sending to the

experiment there is a 1:1 beam splitter to send the signal divided in two: one for

the imaging from the top and one for the imaging from the side. There is also the

possibility to send the high-field imaging signal through both outputs. This is done

here because the eventual setup that will generate these signals will be closer to the
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Figure 3-9: Topology of the Imaging setup. The signals are generated exactly the
same as the MOT setup. However, now there are two outputs for two different imaging
schemes in the experiment: Top and Side. There is also the possibility to send the
high-field imaging signal (prepared somewhere else) through the same outputs.

laser system. It will be easier for complexity purposes to be able to send this signal

along or instead of the low-field imaging. Figure 3-9 shows the topology of this setup.

3.5 Layout of the Laser System

Finally, Figure 3-10 shows the full layout of the laser system. This figure shows where

the main beam is divided towards each part. It is important to mention the amount of

beam blocks in the system in order to properly dump the light that is not being used.

The figure also shows a simplified layout for the frequency doubling cavity where the

1342 nm light is converted to 671 nm through a non-linear crystal in a bow tie cavity.

A photograph of the finalized laser system is shown in Figure 3-11.
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Figure 3-11: Photograph of the laser system. This setup is the same that is displayed 
in diagram form on Figure 3-10. The big black circles that have a BNC connection 
are shutters that allow us to mechanically block the light. 
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Chapter 4

Modulation Transfer Spectroscopy

In this chapter, we will explain how Modulation Transfer Spectroscopy can generate

an error signal to lock our laser. The first section will describe the spectroscopy scheme

and the theory behind Modulatrion Transfer Spectroscopy. The next section will

explain how we implemented this scheme in the experiment and built the spectroscopy

setup of which a layout and a photograph is shown. Finally we will talk about locking

the laser with the error signal we generated.

4.1 Theory

Spectroscopy is the study of the energy transitions of elements and molecules through

the use of light. In its most bare form, it is a technique that looks at the absorption of

light through a medium as a function of its frequency. There are many schemes that

use this basic principle to generate an error signal that can lock a laser to a specific

energy transition. One of these is Modulation Transfer Spectroscopy (MTS).

In this section we will first give an introduction to basic spectroscopic techniques

such as Doppler-Free Spectroscopy. Then we will explain the scheme of MTS.
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4.1.1 Doppler-Free Spectroscopy

As mentioned before, the most common way to do spectroscopy is by shining a laser

beam (light) through an atomic vapor (medium) and measuring the absorption. We

can do this measurement by having the beam hit a photodetector that generates an

electronic signal proportional to the intensity of the laser beam. If we scan the fre-

quency of the laser beam, we should see a depletion in the photodiode signal whenever

the frequency is close to a energy transition in the atom due to the scattering of the

light. However, since the atoms are in a gas, they will have a thermal distribution in

their velocity centered around 0. This velocity distribution will cause a broadening

of the absorption depletion due to the Doppler Shift. In other words, even if the laser

is not at the resonant frequency, it can scatter off a velocity group that is Doppler

shifted closer to the transition frequency. The shape of the depletion will be gaussian

with width kvRMs. The velocity VRMS is defined as lmvMs = ikBT, where m is the

mass of the atoms and T the temperature of the cloud.

In order to solve this issue, we employ the Doppler-Free Spectroscopy (DFS)

scheme 1211. In this scheme we will send two superimposed and counter-propagating

beams through the atom vapor: a "pump" and a "probe". Both beams will have the

same frequency and be scanned together; however, we will only measure the intensity

of the probe. By doing this, we are circumventing the broadened depletion because

the only velocity group that both beams can act on at the same time is the one for

which atoms are at rest. Since both beams act on the atoms at rest at the same time,

the probe beam will have less absorption due to the atoms being saturated by the

pump and leading to peaks exactly at the hyperfine transitions. DFS also generates a

peak for "crossover" frequencies because there is a velocity group for which each beam

is resonant with a different hyperfine transition still leading to the same saturation of

the atoms. Figure 4-1 illustrates the DFS Scheme and the spectroscopy signal that

we get for 6 Li.

Now that we have a way to get the un-broadened signal for the 6Li cycling tran-

sition we need a way to generate an error signal to lock the laser to this.
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Figure 4-1: Doppler-Free Spectroscopy Scheme for 6 Li atoms in the D2 line transition.
Figure taken from [251.

4.1.2 Four-wave mixing

MTS is also referred to as four-wave mixing due to it being a four photon (wave)

process [16, 2]. It works by modulating the pump beam so that it carries two sidebands

at Wc Wm where w, is the carrier frequency of the pump beam and Wm the modulation

frequency. MTS works by effectively transferring the modulation of the pump beam to

the probe beam through a non-linear four photon process (third-order perturbation)

only when the carrier frequency is close to a peak in the DFS spectroscopy. MTS has

been successfully used before to generate an error signal and lock a laser to a specific

spectroscopic line [12, 1].

In this thesis, we will give a brief summary of how MTS produces an error signal

based on the calculations made in 1121 and 1191. As mentioned before, experimentally

we will have the pump beam modulated with sidebands. This modulation can be

mathematically expressed as:
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E = EO sin (wct + A sin wmt)

= Eo _J (A) sin (w, + nwm)t + Z(-1)'Jj(A) sin (w, - nwm)t
.j=0 j=1

EO [JO(A) sin wet + Ji(A) (sin (w, + Wm)t - sin (w, - wm)t) (4.1)

where A is the modulation index and Ja(A) the nth-order Bessel function. In reality

A < 1 so the approximation made in Equation 4.1 its very good. That approximation

means having a strong carrier frequency at w, and sidebands at w, Wn.

When passing through the vapor, the pump and probe beam will have a non-linear

interaction by which some modulation will appear in the unmodulated probe beam.

This is a third-order perturbation theory effect and as such will only be strong at the

resonant transitions. This allows us to create a signal that does not depend at all on

the background absorption signal. MTS effectively generates a signal that favors the

real transitions and "ignores" the crossover peaks due to DFS.

After passing through the vapor and acquiring some of the modulation from the

pump beam, the probe beam is shined on a photodiode. The sidebands that the probe

beam now has will generate a beat signal that will be measured by the photodiode.

This beat signal will have the form:

S(W,) c) J ) 1  [(L- 1 - L-1/ 2 + L1/ 2 - L1 ) cos (wmt + #)
P 2 + in

+ (D1 - D1/2- D-1/ 2 + D_ 1) sin (wt + #)] (4.2)

Here F is the linewidth of the transition, # is a phase difference, and we have the

formulas:

Ln = and D r(6nw) (4.3)
7F2 +(6 - nwm)2 F2 +(6 - nwm)2

46



a) b)
0.6 WPW 06-A4

0.4tosop -n qL wthF 6Mzad 0m=.-7 z a) hw h ud AX n

z z - O=:0.0

-0.4 -0.4 O=
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the regime that makes a good error signal; the one that results for the best locking

signal is A#= 0.6r.

where o5 is the detuning of the laser from the transition. In Equation 4.2, the sine term

represents the quadrature component of the signal and the cosine term the in-phase

component of the signal 1121. By mixing this signal with a wave of frequency om and

varying its phase we can recover the absorption and dispersion components of the

DFS signal by setting the phase to select the quadrature or the in-phase component

respectively 1191. In the end, the best possible error signal will be made by a mixture

of both and not only the quadrature or the in-phase terms. Figure 4-2 shows these

error signals as predicted by the theory.

As mentioned before, we chose MTS because it generates a very good error signal.

A similar scheme to MTS is Frequency Modulation Spectroscopy (FMS) which instead

of having the pump modulated, modulates the probe beam and does the same process

to get an error signal.
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4.2 Implementation

With the theory behind MTS in mind we can finally implement this scheme to gen-

erate an error signal to lock the laser on the cycling transition of 'Li. In this section

we will first explain the spectroscopy setup that was built and then show its layout.

After that we will describe the signal we get as output and how to lock the laser.

4.2.1 Spectroscopy Setup

In Chapter 3, we showed the layout of the laser system which has a small output

for the spectroscopy; this is our input for the spectroscopy setup. Before doing the

spectroscopy, we offset the light by +228MHz using an AOM driven at 228MHz. This

is to have the main beam in the laser system offset by -228MHz as has been mentioned

in previous chapters. After this offset, we divide the beam into the probe and pump

beams using a PBS. We modulate the pump beam using a home-built EOM 1 driven

with a RIGOL DG1022 function generator at 8.507MHz. Next we send both beams

in opposite directions through the 6Li vapor cell and we then shine the probe beam

into a photodiode. The vapor cell is heated up to 310'C to have a 6Li gas at sufficient

pressure in the center of the cell. Figure 4-3 shows the layout of this setup.

It is important to not heat up the vapor cell too much as this will generate the

extremes to be hot enough for the Lithium atoms to reach the windows and coat

them. This would render the cell unusable. We also built an acrylic enclosure around

the cell to minimize the high-temperature effects on the optics. Figure 4-4 shows a

photograph of the spectroscopy setup.

4.2.2 Generating the Error Signal

As explained in the past section, we need to mix the signal from the photodiode

with a signal at the modulation frequency with a phase offset. We use the RIGOL

DG1022 function generator because it has two outputs and it allows to set a phase

difference between them. Therefore, we take the photodiode output and amplify it

'Appendix A contains the instructions to build this EOM.
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Figure 4-3: Layout of the Spectroscopy Setup. Note the different telescopes that in

the setup: the first one is to make the beam smaller and increase the efficiency of the

AOM, the other two are meant to expand the beam while it goes through the 6Li gas

so that the laser interacts with more atoms. The blue-transparent panes in the layout

represent an acrylic enclosure built around the vapor cell so that the heat does not

affect the optics outside of it as much.
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Figure 4-4: Photograph of the Spectroscopy setup. The white box in the center is 
the home-built EOM. 
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Figure 4-5: Measurement of the error signal generated by our setup. It shows in

Yellow the Doppler-Free Spectroscopy signal and in Blue the Modulation Transfer

Spectroscopy error signal. Note how the signal for the cycling transition is bigger

than that of the crossover.

using a Mini-CircuitsTM ZFL-500 amplifier. This signal is then mixed with a 3dBm

( 8.507MHz signal from the function generator in a ZRPD-1- Phase detector. The

output gives us an error signal. Figure 4-5 shows the error signal we got from this

setup as measured in an oscilloscope.

4.3 Locking the laser

The error signal is sent to the Toptica PID 110 which locks the laser. Since the laser is

dependent on another lock (frequency doubling cavity), the spectroscopy lock will fail

if the other one fails. Even though the cavity re-locks very quickly, the spectroscopy

signal will be lost because there is no assurance that when the cavity re-locks, the

laser will be centered again at the cycling transition. However, since the cavity can

be tuned to not unlock very easily this will not be a problem when the experiment is

running.
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Appendix A

Building an Electro-Optic Modulator

In this appendix we will describe how to build the Electro-Optic Modulator (EOM)

that was used to do Modulation Transfer Spectroscopy. We will first explain what

composes an EOM. Then give a list of the materials needed to build the EOM. Finally

we will describe how to test and search for the resonant frequencies of the EOM.

A.1 How does an EOM work?

An EOM modulates a laser beam through a non-linear effect inside a birefringent

crystal that has an oscillating electric field through its main axis. For the effect to be

strong enough we need a very strong electric field. To get this, we use the principle of

tank circuits: If we have an inductance L and a capacitance C in an AC circuit, this

will have a resonant frequency at 27rfres = 1/v LC. At this resonance, the effective

resistance of the circuit is 0 and therefore the current grows asymptotically. This

causes the electric field inside the capacitor to oscillate with an asymptotic maximum

value. Therefore an EOM is a tank circuit where the crystal is in-between two parallel

plates making the capacitance. The values of the sidebands it creates were already

presented in Chapter 4.
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Figure A-1: Design of the home-build EOM at scale 1:1. The output of the BNC is
not specifically right, but illustrates how the EOM works.

A.2 How to build the EOM?

The EOM that was built for this laser system was based on the one described in 112].

The main part we need is an EOM crystal, in this case we use a LiNbO 3 (lithium

niobate) crystal 1" long and square cross-section of side 1/8". We also need a set of

choke inductors (RF inductors) so that we can try many until we get the resonance

we want (In the one that was built we ended up using an L = 22pH). Apart from

that we use a BNC connector, Indium foil, and some raw material: brass, aluminum,

and acrylic. The specific sizes of the materials will be shown in the design. Figure

A-1 shows the design of the home-built EOM.
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Figure A-2: Photograph of the home-build EOM for the Modulation Transfer Spec-

troscopy.

Not very clear in the design is that the Indium foil is placed at the contact of the

EOM crystal and the brass plates to maximize the electrical contact. A photograph

of the built EOM is shown in Figure A-2. It does not show the cover that appears in

Figure 4-4, this was simply milled out of a block of white plastic so that it could sit

on top of the EOM and protect the crystal from dust.

A.3 How to test the resonance of the EOM?

For this, we first need a Spectrum Analyzer that has a Local Oscillator (LO) such as

the RIGOL DSA 815. We connected the LO output of the spectrum analyzer to the

output of a coupler (any coupler will work, just search for a MiniCircuitsTM laying

around). Next, we connected the input to the coupler to the EOM, and the input of

the spectrum analyzer to the CPL output of the coupler. In the Spectrum Analyzer we
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Figure A-3: Photograph of the testing scheme for the resonances of the EOM. There

is a very clear depletion at 8.077 MHz and several more. In this picture, there is

a small but very sharp depletion at 8.507 MHz which is the frequency we ended up

using.

chose the Tracking Generation (TG) option and set the scan to the region of interest.

Alternatively, one could simply use a Network Analyzer if available. In our case,

we wanted a value that was bigger than IF but not too much because that is where

MTS gives good error signals. The screen shows now a line with some depletions that

correspond to resonances. We tested many different choke inductors until we saw a

signal around the desired frequency. It is desired to see a sharp depletion, this means

that the resonance has a big Q-factor which is what defines how strong it is. Figure

A-3 shows a picture of this test taking place. This initial test serves mainly to choose

a choke inductor for the EOM.

After this, we made a more sophisticated test by building an interferometer where
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we passed one of the beams through the EOM and the other one shifted by an AOM.

After recombining both beams we combined them on a photodiode and saw three

peaks on a spectrum analyzer: one due to the beat signal of the carrier frequency and

the shifted one, and the other two by the sidebands. A strong resonance at the EOM

generates a stronger signal for the sidebands. Then we tuned the frequency driving

the EOM and measured the strength of the sidebands with the spectrum analyzer.

This to find the frequencies at which the sidebands were the strongest. This is a

slightly more complicated test but one that gives more reliable data. It was with this

test that we realized there was another very good resonance at 8.507 MHz.

Finally, the ultimate test is actually using the EOM in the spectroscopy setup.

We modified the frequency slightly around the resonances that we had found until we

maximized the error signal generated.
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