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Abstract

In the semiconductor industry where the technology continues to grow in complexity while
also striving to achieve lower manufacturing costs, it is becoming increasingly important to
drive cost savings by screening out defective die upstream. The primary goal of the project
is to build a statistical prediction model to facilitate operational improvements across two
global manufacturing locations. The scope of the project includes one high-volume product
line, an off-line statistical model using historical production data, and experimentation with
machine learning algorithms. The prediction model pilot demonstrates there exists a poten-
tial to improve the wafer sort process using random forest classifier on wafer and die-level
datasets. Yet more development is needed to conclude final memory test defect die-level
predictions are possible. Key findings include the importance of model computational per-
formance in big data problems, necessity of a living model that stays accurate over time
to meet operational needs, and an evaluation methodology based on business requirements.
This project provides a case study for a high-level strategy of assessing big data and advanced
analytics applications to improve semiconductor manufacturing.
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Chapter 1

Introduction

This chapter covers a general overview and context to introduce this project and thesis

content. Section 1.1 covers the semiconductor manufacturing process context and Section

1.2 reviews how this project addresses a main challenge within this process. Section 1.3

previews the project approach and structure of this thesis.

1.1 Project Motivation

In the semiconductor industry where the technology continues to grow in complexity and

Moore's law simultaneously drives decreases in manufacturing costs, it is increasingly im-

portant to identify defective die earlier in the process to recognize significant cost savings

[10]. SanDisk would like to predict defective wafer die before two in-line test steps occur

at their Shanghai assembly facility (SDSS). At the SDSS facility, wafers arrive from the

wafer fabrication facility (fab) and a "cherry pick" wafer sort step identifies wafers that will

meet subsequent stratified performance criteria. Then a costly test process occurs, called

known good die (KGD) testing. Die are binned by KGD test results into different quality

tiers and assembled into final products. After assembly, the final memory test (MT) exposes

additional defects.

The KGD and MT test processes require expensive test machines, long test times, and

are a reactive quality control process. Thus, there exists an opportunity for wafers with a

high proportion of defects to miss KGD testing and be automatically downgraded, saving
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valuable test time. There also exists an opportunity to avoid value-added assembly work for

die destined to fail memory test. Multiple die (two, four, eight, sixteen, etc.) are stacked on

top of each other to create one final package. Die stacking multiplies the cost implications

that each defective die has on the value of the final package.

1.2 Project Statement and Hypothesis

The primary goal of the project is to build a statistical prediction model to facilitate oper-

ational improvements across two global manufacturing locations. A prediction model could

improve the accuracy of wafer and die sorting, resulting in decreased assembly costs. It

could also enable coordination with the wafer fab to implement root cause fixes to further

drive cost savings. The main objective is to experiment with statistical prediction models

to identify key values and correlation between die sort quality data (originating at the wafer

fab) and test result data (KGD and MT that originate at SDSS). A second objective is to

provide recommendations as to how a prediction model can be implemented in production

to increase test yields and decrease operational costs at SDSS and at the wafer fab. Lastly,

a third goal is to use this model as a case study to develop a high-level strategy for applying

big data and advanced analytics techniques to semiconductor manufacturing.

Predicting defective wafer die has several major challenges. The datasets generated at

the wafer fab and assembly facilities are compromised of hundreds of input variables. Mass

production volumes are on the scale of millions of die each day. Thus, more resources are

required to analyze this "big data" problem set. Existing analytical methods are not accurate

enough for predictions since prior quality analyses are usually based on sampling. Another

challenge exists due to the nature of the problem spanning multiple manufacturing locations.

Access to data and coordination between international facilities are longstanding issues. As

a result, SDSS lacks insight into the meaning of the fab's die sort parameter data and the

upcoming, continual changes in processing at the fab. Currently, the KGD test process

applies program-specific tests in place of full insight into and control over the fab die sort

test results.

The project's main hypotheses are to predict a binary outcome of the known good die

12



defect category ("KGD soft bin") and memory test defect category ("test block number" or

"FH soft bin"). The KGD prediction uses the primary upstream fab die sort (DS) test result

data (called SME1). The memory test prediction model uses SME1 data and two additional

upstream data sets as inputs (fab low temperature test result data, SME2, and known good

die test parameter results). Input data sets are explained in more detail in Chapter 5. The

project aims to build two prediction models that can identify die defect categories to an

acceptable accuracy level that would meet business requirements. If the hypothesis can be

proven, then implementation of the prediction model would result in wafers skipping KGD

testing and avoidance of memory test failures. A small yield improvement of the KGD or

MT test would result in significant financial savings given the high production volumes.

1.3 Thesis Overview

The thesis is laid out in seven main chapters. Chapter 2 gives context on the industry, San-

Disk as a company, and high-level overview of the semiconductor manufacturing process. In

Chapter 3, relevant academic and industry publications are analyzed that provide examples

of other machine learning methodologies in semiconductor manufacturing along with back-

ground in yield modeling and big data applications. Chapter 4 explains the manufacturing

flow, starting from the fab to the final testing at the assembly facility, in order to provide

context as to how a prediction model would fit into this process. Chapter 5 provides the

details of the model development process and results of three prediction models. In Chap-

ter 6, recommendations present how to incorporate the prediction model into the current

process. Chapter 7 proposes a strategic analysis of how to assess big data and advanced

analytics opportunities in a semiconductor manufacturing environment. Lastly, Chapter 8

summarizes the main findings and next steps to improve and expand the prediction model.

This thesis also covers analyses and assumptions about the prediction model formulations.

Algorithm experimentation was included in modeling since we assume that different wafer

technologies need different algorithms and tuning to optimize prediction accuracy, reviewed

in Section 3.1 and tested in Section 5.3. Another hypothesis is that the prediction models

require large sample size of defects. Given low defect rate, large data sets are analyzed

13



along with various sampling methods in Section 5.4. Another hypothesis is that the models

need to be updated in an intelligent manner to remain accurate over time, due to constant

wafer fabrication facility process changes. Thus, experimentation with date ranges in the

training and testing data sets are included in Section 5.4. Another area of exploration was

the computational performance of the hardware that could handle this size of data set. R

Studio is utilized in an off-line model on external servers with in-memory processing. Many

other platforms and tools exist; alternative options are detailed in Section 3.2.
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Chapter 2

Background

Chapter 2 covers background on the flash memory industry, SanDisk company history, and

a high level overview of semiconductor manufacturing. Section 2.1 provides a context on

technology development according to Moore's law, the competitive landscape, and industry

growth. Section 2.2 includes basic facts about SanDisk as a company, its line of products,

and current manufacturing locations. Section 2.3 discusses the main process steps for any

semiconductor manufacturer, how to calculate test yields, and failure modes.

2.1 Flash Memory Industry

SanDisk operates in the flash storage solutions market where NAND is the primary technol-

ogy. NAND benefits from a small form factor, high performance write speed, and solid-state

format which enables data retention without a power source (non-volatile). The flash mem-

ory market has been characterized by fast-paced technology developments that decrease the

price per bit [21]. Increased density of memory die per wafer has resulted in the capacity of

each chip each year to outpace Moore's Law (Figure 2-1).

NAND flash memory advantages have resulted in disruption of the storage market as seen

in Figure 2-2 and 2-3. Flash memory has been adopted in a large range of devices, replacing

hard disk drive (HDD) technology. Analysts project that "the rapidly lowering cost and

higher performance of flash will result in a rapid adoption of flash to replace magnetic

drives. Flash together with systems of intelligence will enable the integration of big-data

15



Figure 2-1: Flash memory development has outpaced Moore's Law [6]

Figure 2-2: Flash versus HDD price trends and PC SSD adoption [6]
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Projected $/Terabyte for Flash & HDD 2012-2026

~ 2 2(150

5- 51000

S- $1 Ow0

.

510.000

.C

= ,2000

514,000

Sour.t VwAkbon Sorwr SAN Resonrrh Proci 2015

Figure 2-3: Enterprise flash vs HDD cost projections 2012-2026 [32]

analysis into operational systems, and automate many decisions" [321.
The flash memory space is highly competitive. The main players include SanDisk, Sam-

sung, Toshiba, Micron, Hynix, and Intel. Market share from Q3 2014 and 2015 are shown

in Figure 2-4 [19].

In PricewaterhouseCooper's mobile technologies index, the compound annual growth rate

for NAND flash memory was estnmated to be 35 percent between 2011-2015, measured ini

megabytes per dollar as seen in Figure 2-5. Tfhe slim form factor of the solid state drive

(SSD), which uses NAND as the storage component, will soon be the standard for tablets

and smartphones. With the drop in price, original equipment manufacturers (OEMs) are

turning to SSDs for desktops, laptops, and servers for price-lperformlance advantages [5].

2.2 SanDisk

SanDisk is the worlds largest pure play supplier of flash memory data storage products.

SanDisk was founded in 1988 by Eli Harari, Sanjay Mehrotra and Jack Yuan. Its stock,

17
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Global Market Share in the NAND Flash Sector
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Figure 2-5: Forecasted NAND flash memory market CAGR [5]

SNDK, began publicly trading on NASDAQ in 1995. SanDisk is a US Fortune 500 company.

In the past ten years, over one billion SanDisk memory cards were sold. SanDisk's mission

is "to enrich people's lives through digital storage anytime, anywhere" and the company

has about 8,600 regular employees. Products include flash storage solutions for enterprise

data centers and client, computing platforms (SSDs), removable and embedded flash products

(mobile phones, cameras, automotive, connected home electronics, USB flash drives, DRAM,

digital audio players, and SIM cards). Most products combine NAND flash memory with a

controller and firmware, mostly designed in-house [211.

In 2014, SanDisk had revenues of 6.1B USD with commercial products (OEM's) account-

ing for two thirds and one third from retail products. Net cash in 2014 was 1.9B USD and
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the company spent 0.9B USD on research and development investment that year. In October

2015, SanDisk announced that it will be acquired by Western Digital Corp. in a 19B USD

deal [1].

SanDisk manufacturing facilities are located in China, Japan, and Malaysia. SanDisk

Shanghai (SDSS) opened in 2006 and the facility covers assembly, test, packaging, and

distribution of advanced flash memory products. SanDisk and Toshiba have a joint venture

of the wafer fabrication facility in Yokkaichi, Japan. In 2002, SanDisk and Toshiba moved all

of their NAND flash wafer production to the fabs in Yokkaichi. SanDisk has twenty global

locations and is headquartered in Milpitas, California [23].

2.3 Semiconductor Manufacturing Overview

Semiconductor manufacturing is the process of taking a silicon wafer and adding layers that

are patterned into integrated circuits (IC's). These are diced into individual die and packaged

to be used in digital devices. This complex manufacturing process includes hundreds of steps.

Physical defects and variation that occur during manufacturing cause individual die and

packages to fail to perform as desired. There are different categories of failures that affect

semiconductor manufacturing yields. Parametric failures result from control deviations and

19



are associated with quality losses or functional failures. Area dependent failures occur on

certain areas, such as foreign particles landing on the wafer. Random failures are uncorrelated

and occur spontaneously. Generally, discrete failure probabilities are not Gaussian. They

can be spatial in nature or based in binomial and Poisson statistics. Area dependent failures

such as foreign particles cause different types of issues, such as distorted pattern layers,

mechanical stress within the circuit if trapped between layers, or electrical shorts or opens.

Non-local defects can also exist and are usually spatially correlated so they result in a clear

spatial pattern; these may be caused by process variation [2].

The volume of die that perform as desired divided by the total number of die manufac-

tured at that step is called the yield [7] and is usually reported as a percentage.

Yield = Good%
Total

Yield can be calculated for each manufacturing test step and overall yield is the product

of each of the steps.

YieldTotal = Yield1 * Yield2 * ... YieldN

Assuming that a die will not perform as desired unless it is free of defects, the probability

that a die successfully performs equals the probability that no defects exist on its area.

Larger die area results in higher odds that it can include one or more defects. Wafers with

large printed die have a lower die yield than small die wafers, even if they are developed

by the same fabrication process and have the same defect density. Die yield losses from

mis-processing can also escape detection in-line and during the parametric test. Some kinds

of mis-processing impacts only a portion or die per wafer, for example edge loss due to less

controlled film deposits near the edge of the wafer. A wafer map visualizes die yield by

position on the wafer. As seen in Figure 2-8, an example stacked wafer map displays the

average yield by die position [15].

Integrated circuit design results in a reference of electrical and physical characteristics

of a complex electrical circuit device that uses semiconducting materials. A complete IC

can contain millions of simple devices (resistors, transistors, diodes, capacitors) that work

20
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shop uses the design as an input to create a mask for each layer with geometric patterns.

During wafer fabrication, many layers on each wafer are processed and each area of a single

completed IC is called a die.

The wafers are made from silicon, which are grown from single crystals into silicon ingots.

These ingots are sliced and polished, resulting in individual wafers. The wafer fab then

performs hundreds of processing steps on the wafers. Wafers are oxidized by heating the

wafers to a high temperature in an oxygen rich environment. Film deposition adds a layer of

material on top of the wafer that is either conductive or non-conductive. Photolithography

creates the pattern on the layer by applying photoresist, exposing the mask's circuit pattern,

and developing the photoresist. Etch removes non-patterned surface layer or layers after

photolithography. The photoresist is removed, leaving the patterned film on the wafer. In

implantation, the wafer is doped with active ions to modify the properties of the wafer

material as desired.

Each die on the wafer is probed, tested, and sorted so that bad dies are identified.

Examples of testing include input and output voltages, current, signal timing, operational

logic, and frequency of operation. "Bad" die fall into different failure categories ("binning")

that assign a unique code. Hard bin refers to an overall pass or fail. Soft bin refers to a
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Figure 2-8: High level semiconductor manufacturing process [7]

categorization of failure, defined by test engineering. The yield is calculated at. the end of

this step.

The next main process is assembly. During assembly, wafers are transformed into indi-

vidually packaged IC's. The wafer is cut (singulated) along scribe lines to separate each die.

Each die, or stack of multiple die, is encapsulated in a package and metal connections are

made. Packages can also be called chips or units. At the end assembly and packaging, final

test, occurs to ensure that the package passes electrical and environment requirements and

final yield is calculated. Final test is the measure of the entire package's performance and

meant to simulate extreme conditions of the real world [7].

2.4 Background Summary

SanDisk operates in a highly competitive, rapidly evolving flash memory industry. The

flash memory manufacturing process is complex and capital intensive. SanDisk aims to gain

competitive advantage in this space via technological innovation and streamlined operations.

Chapter 3 will overview new areas of research in applying machine learning and big data to

semiconductor manufacturing at other academic institutions and industry players. The new

analytical capabilities provided by big data platforms, widely utilized in other technology and

internet companies, can enhance current statistical quality control procedures at SanDisk.
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Chapter 3

Literature Review

This chapter covers relevant industry and academic research in the areas of machine learning

approaches in Section 3.1 and big data applications to semiconductor manufacturing in

Section 3.2. Ideas from these references support and inspire the formulation of the prediction

model methodologies discussed in Chapter 5. Section 3.3 summarizes the main takeaways

from the literature review process.

3.1 Machine Learning Approaches to Semiconductor

Manufacturing

A high level overview of the impact of applying machine learning to other manufacturing

improvements is explored by Susto et al., covering virtual metrology, predictive maintenance,

fault detection, run-to-run control, and modeling [26]. Challenges are outlined such as high

dimensionality data, data fragmentation, time series input data, and multi process modeling.

Many of these issues are encountered in our problem, as will be discussed in Chapter 5.

Dimensionality reduction techniques are proposed by Susto et al. (principal components

and correlation analysis, stepwise selection) to address the first challenge. Other ideas are

proposed to help tackle the other challenges (data clustering and supervised aggregative

feature extraction), yet validation and customization is found to still be needed on a case by

case basis [26].
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Figure 3-2: Experimental approach for L model development [14]

A TI/IBM case study by Kupp and Makris argues that studying data, together from

manufacturing and test, flow is necessary to find process variability, since isolated statistical

data analysis misses intra-process and test correlations [14]. The authors find that testing

can account, for up to 50 percent of the overall cost of an integrated circuit. Reducing test,

cost can be addressed by developing algorithms for post- pro duct ion performance and spatial

modeling of sparsely sampled wafer test, results. The paper proposes a modeI- view- cont roller

architectuire for rapid iteration of complex machine learning methods to find optimal solutions

with large datasets. The proposed framework and analysis methodologies are pictured in

Figs. 3-1 and 3-2 [14].
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Figure 3-4: Nested structure for die within wafer and lot [13]

Krueger considers semiconductor yield modeling using generalized linear models, and

provides valuable reference information for detailed approach methodology and data analy-

sis [13]. The main strategy proposed to forecast yield is generalized linear models (GLMs)

using defect metrology data. The research also integrates classification and regression trees

(CART) with GLMs. The approach spans wafer-level and die-level analysis, and finds die-

level predictions to be more accurate than wafer-level data sets, and that these performed

better with larger sample sizes. The research shows that GLM models provide better pre-

dictions than the best historical model (Seeds Yield Model, an existing equation to predict

performance based on defect count data). Krueger uses raw data structured in a similar

manner as our data (described in Section 4.2), as pictured in Figure 3-3. The strategy of

nesting die within wafers and lots as used by Krueger (Figure 3-4) is considered as a potential

next step in our work in Chapter 8 [13].
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Figure 3-6: Data size and model run time experimental study [25]

A methodology for defining the top defect bins to target is outlined by Soenjaya et al.

[25]. The wafer map to defect bin approach (Figure 3-5) shows an example of a wafer that

has 29 dies and four bins. Also pictured are the results from this experimental study's run

time analysis, in Figure 3-6. The impact, of increasing data size (2.5GB after data processing

was complete) is seen to adversely affect run time. This analysis was performed using four

months of STMicroelectronics wafer fabrication data on a Unix server Sunfire with algorithms

implemented in Java [25].

Several publications describe successful experiments using a variety of machine learning

algorithms. Support vector regression is successfully used by Lenz and Barak to improve

virtual metrology [16]. They also note that approximately 50 percent of the time on the

project was invested in data preparation. The authors state that, simple and multiple linear
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regression is not suitable for virtual metrology due to lack of accuracy and robustness. In

their approach, predictive power is evaluated by the coefficient of determination (R) and

accuracy is measured with mean square error (MSE), root-MSE (RMSE) and coefficient of

variation. In terms of addressing outliers, their approach elects to not remove them, since

it is assumed that important characteristics would be removed as well. This research had

access to six months of process and metrology data, and found that only 1.6 percent of

the original data set was suitable for analysis once wafers with missing data were removed.

The authors also use expert input to identify the top six parameters and to decrease input

parameter data set size before modeling. Results show R = .64 and CV(RMSE) = 1 percent,

demonstrating the high predictive power of support vector regression in this problem [16].

Rosa and Vladimirov use another algorithm methodology, support vector machines (SVM)

to improve quality control by early prediction of manufacturing outcomes [20]. In this ap-

proach, SVM with non-linear kernels on a per chip model tends to perform better, but not

well enough to implement in production effectively. The authors did find that applying the

SVM model to wafer-level classification results in the prediction accuracy for low-yield wafers

to be as high as 81 percent. This paper highlights the potential advantages of wafer-level

classification over die-level modeling [20].

Weiss, Dhurandhar, et al. use IBM data to discover that an ensemble method with

boosted trees and linear regression to be the best performing machine learning algorithm

[30]. The authors designate a proxy for microprocessor chip speed as the predicted outcome.

125 wafers (5 lots) are in the data set and data is sampled at 10 percent. Their approach

also fills in missing values with a feature mean. The model data inputs are wafer control

measurements, such as lithographic metrology and electrical measurements. Similar to Lenz

and Barak, 90 percent of the data is missing since it was based on measurements. The analy-

sis finds that independent time-ordered sets are advantageous over randomly sampled wafers

or lots since results change over time and the population is not stationary. The authors

recommend using a large test set that spans a long time frame, representing varying condi-

tions and recent data for the training set. The authors show that the classical linear model

usually performs worse than forests, but the authors hypothesize that in non-stationary en-

vironments, such as fab performance evolving over time, the linear method could win since
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it tends to not over fit the data.- The authors propose averaging the two methods of forests

and linear regression. Similar to the results discussed in Chapter 5, this paper lists the

technical difficulties of predicting time-varying populations and missing data. To address

this challenge, the authors propose incremental updates to the models as new measurements

are recorded. This methodology requires specialized algorithms to add new wafers and keep

older wafers with additional information and knowledge of chip-making to create a new class

of methods to predict chip performance over time [30].

Two other publications explore neural networks as potential algorithms. Wu, Zhang, et

al. demonstrate a fuzzy neural network approach for die yield prediction can achieve better

precision than the Poisson, negative binomial, and neural network models [33]. In Hsu and

Chien, a hybrid data mining approach for pattern extraction from wafer bin maps explores

clustering and neural network models to improve yields at a wafer fab in Taiwan [9]. These

authors focus on spatial statistics to extract patterns associated with manufacturing defects

but note that further research is needed to develop different methodologies to identify specific

patterns [9].

A recent publication by Kang, Cho, et al. demonstrates that wafer map spatial factors

have the ability to predict die-level failures in final test [12]. The model inputs are four

derived variables pertaining to wafer map features. The model predicts two types of failures

using random forest algorithm. The authors demonstrate that variables based on die position

are relatively more important and that prediction performance may decrease over time.

The authors propose that including data from assembly, wafer fab, and test will enrich the

parameter data set. Chapter 8 recommends a similar next step for this analysis since spatial

factors appear to be very important in final test prediction modeling [12].

Another publication by S. Park, C. Park, et al. finds a similar result about the importance

of spatial factors for pattern recognition using feature based die-map clustering [18]. In this

approach, different response variables are tested (A: column fail bit count (FBC), B: column

and row FBC, C: detailed column and row FBC) by three different algorithms, pictured in

Figure 3-7. Fail and Pass Classification Accuracy FCA, PCA) are the designated evaluation

metrics. The authors state that big data analysis is essential for this study and propose

feature extraction from FBC data [18].
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Figure 3-7: Comparison of algorithms and predicted defects [18]

3.2 Big Data Opportunities in Manufacturing

The following section provides references to recent publications exploring big data and its

applications in manufacturing. Some publications are high level strategic architectures and

others are research based, using fab data for empirical studies or simulation.

What is big data'? Big data is the convergence of internet, business, and sensor data

that necessitates a new generation of architectures for analysis. It is significantly larger in

scale than traditional data sets and is usually measured in petabytes. Big data also usually

contains high dimensionality (thousands or millions per element) and a large diversity of data

(semi-structured or unstructured). The data is usually combined across multiple sources,

flows at a rapid rate, and uses adaptive or machine learning-based analytics to handle the

large data set size. As new hardware and software technologies arise to support the growth

of big data, it is expected that opportunities for semiconductor players will be significant

[10].

V. CONCEPTUAL BIG DATA ARCHITECTURE
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Figure 3-8: Big data ecosysten proposal [17]
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Munirathinam and Ramadoss review various big data system architecture elements, such

as Hadoop, NoSQL, and Random Forest, to describe how big data predictive analytics can be

applied to proactive semiconductor equipment maintenance (Figure 3-8) [17]. The authors

describe the potential to move the semiconductor industry from a reactive to a predictive

state in the areas of virtual metrology, predictive maintenance, fault detection, run-to-run

control, and modeling. They posit that these predictive states can prevent unplanned down-

time, extend the useful life of semiconductor equipment, and improve product quality [17].

Wang and Alexander provide a comprehensive overview of various manufacturing fields

and processes that can benefit from big data improvements to design and operations [29].

The authors summarize the four main characteristics of big data as high volume, high ve-

locity (collected, processed, and visualized in real time), high variety (many types of infor-

mation), and high veracity (accurate and comprehensive). They also prescribe the services

required to support a big data environment: cloud infrastructure (storage, compute, vir-

tual machine management), clusters, Hadoop related services/tools, analytics tools (logs,

data mining, events), databases and servers (SQL, NoSQL), massively parallel processing

databases, registries, indexing/search, and security provisions. The authors describe how

big data can be applied across industries since it has applications in quality, time, costs, and

mass-customization. For manufacturing engineering, the authors propose that the largest

impact would be on detecting defects, boosting quality, and improving supply forecasting.

Design and manufacturing opportunities are prevalent in other industries such as electric-

ity, automotive, missile, integrated circuits, semiconductors, additive manufacturing, and

medical devices [29].

An IBM report about big data and analytics for semiconductor manufacturing show

IBM's microelectronics organization successfully integrates a big data platform and custom

applications in their microelectronics organization based on IBM's analytics and manufac-

turing expertise [8]. IBM combines data from the fab (metrology, logistics, test, sensors,

inspection) to predict yield analyses and identify top variables. IBM demonstrates the au-

tomation of data analysis and multivariate analysis of wafer test patterns to detect yield

changes and sensor data in IBM fab to optimize assets and yield control (Figure 3-10) [8].

Chien and Chuang propose a framework for root cause detection of sub-batch processing
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system for semiconductor manufacturing big data analytics [4]. This publication finds that

the primary factor to increase screening efficiency is to leverage the random forest algorithm

in a sub-batch processing model that handles collinearity and dimensionality. This study

validates the approach with a Taiwan fab empirical study and simulations. The authors rec-

ommend to implement these sub-batch processing systems in order to catch a small number

of errors with high accuracy [4].

Tsuda, Inoue, et al. propose a similar strategy to apply big data to advanced semicon-

ductor manufacturing using Panasonic in-line fab data [27]. Their approach incorporates a

big data model with a fab-wide fault detection and classification system to stop equipment

and lots automatically when a fault condition is detected. This data feed extracts equip-

ment parameters and implements virtual metrology along with run-to-run functions that are

aimed to to reduce process variation [27].

3.3 Literature Review Summary

Based on the literature review above, several data refining methodologies are adopted in

the model development discussed in Chapter 5. Similar findings about modeling challenges

are described in Section 3.1 are echoed by this thesis, such as computational limitations

of big data sets [25], technical difficulties of predicting time-varying populations [30], data

preparation accounting for a bulk of model development time [16], and data fragmentation

[26]. In terms of data refinement, methodologies are adapted in Chapter 5 based on the

analysis summarized in Section 3.1, such as outlier values remaining in the input parameter

data sets [16], die-level granularity for modeling [13], selecting the top defect bins for analysis

[25], and experimentation with various machine learning algorithms. Other methodologies

are listed as next steps to enhance the model in Chapter 8, such as including spatial input

factors, nesting the die within wafers, decreasing the input parameter data set size, exploring

wafer-level granularity, using the feature mean to fill in missing data fields, and enriching

the parameter data set with assembly, wafer processing, and more extensive test output data

sets. Section 3.1 reviews other proposals, frameworks, applicable processes, and successful

case studies from other companies to support the big data strategy discussed in Chapter 7.
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Chapter 4

Current Process

Chapter 4 provides an overview of the current state of the manufacturing and test process

along with a description of the data sources utilized in the prediction model. Section 4.1

covers the main steps of the manufacturing process within the wafer fab and assembly facil-

ities that are related to this project's problem statement. Section 4.2 reviews the die sort,

known good die, and memory test data source structures to provide an understanding of the

data used for modeling in Chapter 5 and to highlight potential data challenges.

4.1 Manufacturing Process and Test Flows

The important steps in the current manufacturing process are highlighted in Figure 4-1.

Every die is tested at the wafer fabrication facility through a standard test process that

generates die sort parameters and bins. The wafers are shipped to SDSS and are sorted into

different expected quality tiers based on the die sort data in a process called cherry pick.

Each cherry picked wafer undergoes the KGD test, which vary by customer requirements and

engineering analysis. During assembly, singulated die are attached to substrates and stacked

to create various products (for example, 4 stack or 8 stack die). At the end of assembly,

the final products are tested thoroughly before being released to customers or downstream

processing (for example, solid state drives, SSDs).

There exist additional quality procedures (in-line, statistical process control, and engi-

neering failure analysis) but these will not be addressed in this study.
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Figure 4-1: High level overview of relevant process steps

4.1.1 Wafer Fabrication

Two main data sets are generated at the wafer fabrication facility. The first, is called SME1

(high temperature) and the second is called SME2 (low temperature). If a die fails SME1

then it is not tested in SME2. A die must pass both tests in order to be tested in KGD.

4.1.2 Cherry Pick Wafer Sort

The cherry pick process is controlled by product and test engineering experts. The purpose

of cherry pick wafer sort is to identify wafers with high proportion of prime die that should be

assembled into products that require the highest performance levels. These wafers undergo

a more stringent KGD test program, and subsequent assembly and test processing differs

as well. The cherry pick process controls how wafers are sorted by increasing or decreasing

yield thresholds. These alterations also create levers to incorporate wafer availability and

supply and demand in the market. New criteria are continuously reviewed and tested for

all production lines and initially for new products during qualification stages. Criteria are

statistically analyzed by experts to filter out die that exhibit known failure modes. Criteria

are based on continuous die sort parameter output values. Each cherry pick rule set varies

by product configuration so there is a large quantity of KGD test versions.
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Incoming wafers are stored in a wafer bank on site at SDSS and volumes are planned

weekly, based on demand. Wafers can also be sold direct to some customers. The physical

cherry pick process runs non-stop and typically is completely automated except in some rare

cases. The machines sort wafers from their incoming jar into three assembly lot cassettes

that represent different quality levels. The machines run from lot files downloaded from

networked servers that contain a predetermined wafer sort allocation.

4.1.3 Known Good Die Test

Upon arrival at SDSS the first test procedure, KGD, takes place before assembly processing

begins in order to identify good and bad die according to customer specific requirements.

Before KGD, wafers are prepared to mimic the customer placing the die on the substrate.

This puts stress on the wafers so defective die can be discovered during KGD. There are

hundreds of KGD tester machines that do simultaneous touch downs with two cassettes at

a time. KGD testers generally run around the clock.

KGD failures are downgraded to lower performance products and KGD passes proceed

to be assembled into prime products. A portion of die are skipped if they were already

identified as a failure from the wafer fab die sort parameter testing. These may still be

suitable for lower performance products, as a goal is to avoid wasted die wherever possible.

4.1.4 Assembly

The SDSS assembly process is broken into two main categories: front end (surface mount

technology to wire bonding) and back end (molding to package saw). Inputs to assembly

are the wafers that passed die sort and KGD and incoming materials, such as gold wire

and substrates. First, a surface mount technology step occurs which includes solder paste

mounting of passive components. Then, taping and grinding of the wafer is performed to

protect it during wafer thinning (die preparation). After die preparation, singulation of each

die with a diamond saw occurs and die are glued to the substrate. Wire bonding attaches

gold wires from the wafer to the substrate circuit. Molding encapsulates each device with

mold compound. The products are given ink marks or laser markings, such as the SanDisk
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or customer logo. Lastly the package saw separates each final package.

4.1.5 Memory Test

At the end of processing when the products have been assembled in their final form, several

tests are performed. The tests include a procedure to identify assembly-caused defects. A

package preparation process occurs for certain products to stress each unit. The memory test

verifies memory functionality and the factory high temperature (FH) is the most important

memory test for most products. A low temperature test can also be applied for certain

products. Some products are tested in both temperature levels and needs to pass both tests

to be released to customers. A final test takes place which verifies the total performance

of the product, called the system test. These different test programs, temperatures, and

package preparation processes depend on the product design and customer requirements.

There are hundreds of memory test machines and each machine tests one lot in order to

avoid mixing up the lots. The key goal of the memory test is to reduce test time since the

memory test machines are the main bottleneck in the manufacturing flow, take up significant

space, and are very expensive. Die can end up in nine different hard bins after memory test

and some may be be re-tested due to test program issues or setting errors. Two types of

testers exist (older and newer) and only data from the older testers are included in this

study; products are tested randomly between tester types, so the fact that only data from

the older tester version is included in the model is ignored.

4.2 Description of Data Sources

Test data is stored in one data repository system but requires manual extraction and merging.

The following section describes the data sources involved in building the model. Die sort test

data originates in the machines of the wafer fabrication facility and is processed into smaller

files per lot. These files are encrypted, compressed, and transferred to the server where the

data repository is located. A customized process analyzes the files for the cherry pick process

and loads the data into the repository. Similarly, KGD and memory test data originates in the

test machines in SDSS. These raw files are processed, aggregated, transferred, and uploaded
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to the same data repository.

4.2.1 Die Sort Data

Die sort parameter and die sort bin data exist in different tables within the structure of this

data repository. They must be joined on lot, wafer, die x, die y coordinates as the unique

key value. Die sort bin data contains a binary pass or fail attribute and one soft bin for

each die. Parameter data contains each die sort parameter test name and its value. There

are roughly 600+ die sort parameters in the data sets for this study; the majority are from

SMEl.

The following assumptions are made about the die sort data and model formulation based

on expert input from SDSS and the wafer fabrication process engineers. The wafers originate

at multiple fabrication facilities (within the same site). Fabs are not separated by location

since the assumption at the time was that processes and materials mix between locations so

often that the resulting wafers are interchangeable.

The model ignores wafer spatial location and radial distance and just focuses on the

input die sort parameter data alone. As discussed later in Chapter 8, calculating spatial

indicators could be a promising next step. At this time, there is no access to a comprehensive

reference list of each parameter and its meaning, obsolescence, or thresholds. Thus, logic rules

about parameters are not implemented, such as dependencies between parameters, excluding

irrelevant parameters, or grouping parameters. Lastly, the die are treated as independent

units. A next step could be to create a nested structure where die are nested within wafers

and wafers nested within lots in order to represent these relationships, as described in the

data preparation methodology of Krueger [13].

4.2.2 Known Good Die Data

KGD data results are taken from a separate, live test system and the data is aggregated and

sent to the data repository. During the KGD test program execution, there are hundreds

of potential soft bins. Each die can land in only one soft bin and each test item occurs in

chronological order. This model assumes that any untested bins would pass since once a die
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fails a test item it does not continue the rest of the tests. This optimizes test time and is

based on the assumption that test items are ordered by importance. As discussed in Chapter

8, there is a potential to explore this assumption to analyze soft bin correlations. KGD data

also includes parameters values similar to die sort parameter data. For this study, around

300+ KGD parameters are included.

4.2.3 Memory Test Data

Memory test data is stored in several tables in the data repository. Die-level memory test

results exist with an equivalent failure category to KGD soft bins, called FH soft bin or

MT test block number. For consistency, it will be referred to as FH soft bin. Similar to

KGD soft bins, each die has a binary result. The result is pass/fail and what single FH soft

bin it landed in. As discussed in Chapter 8, the potential to reference continuous values

would enhance the model but is not available at this time. For example, during memory test

program execution, a bad block count accumulates for each die as it moves through each test

item. There exists a cutoff value and if the bad block count exceeds this threshold, the die is

identified as a fail and the die is not tested further in order to optimize test time. The test

item when the fail occurred is identified as the FH soft bin. Thus, FH soft bin is a limited

response variable since it contains little insight into the exact failure mode.

For this study, FH is the memory test step examined. For the memory test prediction

model, specific memory test programs have been selected based on expert input. KGD

programs are not filtered but assumed to be equivalent; this hypothesis could be explored

further as discussed in Chapter 8.
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Chapter 5

Model Development and Results

Chapter 5 summarizes the prediction models and analyzes the accuracy of the prediction

results. Section 5.1 describes the methodologies developed while creating the prediction

model, including data refining and evaluation metrics. Sections 5.2-5.4 cover the wafer-level

KGD, die-level KGD, and die-level memory test prediction results. Section 5.5 summarizes

the main results from the models.

Model development proceeds in three phases. First, a wafer-level proof of concept analysis

predicts KGD failures based on SMEl data. Second, a die-level model predicts KGD failures

based on SME1 data. Third, a die-level model is developed to predict MT fails based on

SME1, SME2, and KGD parameter data. The general development strategy first focuses

on predicting KGD results and then applying the lessons learned to the more complex MT

model.

For each model, a specific technology, memory size (e.g., 64GB, 128GB), test program,

and product are targeted. Collaboration with the relevant experts and data owners resulted

in the model logic and data refining techniques described below.

5.1 Model Preparation

For all models, performance is evaluated with metrics of confusion matrices and receiver

operating characteristics (ROC) curve. Recent historical production data is analyzed. Top

soft bins and expert input determined which soft bins to select. Die-level granularity is
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Input Output
Phase 0 Completed Wafer-level KGD Analysis

Die Sort parameter Known Good Die (KGD) VT
data from wafer fab Down Shift predictions
aggregated by wafer aggregated by wafer

Phase I Completed Die-Level KGD Model

Die Sort parameter Known Good Die (KGD)
data from wafer fab defect predictions (binary
(600+ inputs) for each soft bin)

Phase 2 Open Die-Level MT Model

Die Sort and KGD Memory Test (MT) defect
parameter data predictions (binary for each
(1,000+) FH Soft Bin)

Figure 5-1: Summary of model approach phases

targeted since wafer-level analysis would not be useful for MT improvements. Plane-level

analysis (there can be 1, 2, or 3 planes per die) would be a possible next step but at this

time are assumed to not add as much manufacturing process improvement opportunities as

identifying defective units at the die-level.

5.1.1 Data Refining Approach

The following describes the general methodology for data cleansing used to prepare the

merged data sets of die sort, KGD, and MT test data. R Studio is used but other tools would

be just as suitable, such as Python or a SQL database. Although rare, entire duplicate rows

were removed. Any missing or null values are analyzed to determine if the entire field should

be removed (majority of samples had null values) or just small numbers of samples that had

data inconsistencies (very few samples had missing values for unknown reasons). Parameters

with non-numeric values are excluded. Engineering input determined that outliers should

remain and so the data set is left as is since data anomalies could be indicative of actual

deviations. Samples per test date are plotted to ensure random, adequate samples over time

(for the MT model). Engineering input determined that input parameters should all remain

as is. Lastly, a sanity check of the number of lots (wafer lots, memory test lots), wafers, dies,

defects, and remaining date ranges is performed before saving as a data frame in memory

for processing.

The resulting data set is then filtered to focus on a specific device (technology), test
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program, test step, SME1 date range, MT date range (for MT model), and part number

(for KGD model) in order to compare samples that have the same test procedures and

manufacturing flow. In the memory test data set, samples are removed that were KGD

failures since they would have no MT response variable. In the MT model, samples are

removed that engineering experts identified as not relevant to the analysis. Lastly, any

other fields are removed (besides the response variable) that would not exist at the time a

prediction would be made, such as hard bin.

A defect Pareto is next created to identify the top failure categories (soft bins). Engineer-

ing experts reviewed the top categories and the response variable, KGD or FH soft bin, is

selected. For the MT model, FH soft bins are combined based on expert advice. All samples

but the selected soft bin are updated to pass records. Only samples with the selected fail

mode are designated by a binary "1" and all others (even samples that had a different fail

mode) are designated by a binary "0". This model thus uses a binary classifier; Chapter 8

explores further methodologies to improve this categorization.

Next, the data set is randomly split into training and testing sets, split randomly two-

thirds training and one-third testing. For a sub-analysis described in Section 5.4, the data

set is split into training, testing, and validation sets. The validation set contained samples

from a separate memory test date range to explore the impact of a separate time frame

on the prediction results. The randomness of the split is verified by ensuring that there is

roughly the same distribution between training and test sets of the percentage of failures.

In cases where computational limits are anticipated to be an issue for the training set model

formulation, pass records are randomly sampled (oversampling of the rare defect samples).

This methodology will be described later in Section 5.4. Fewer samples in the training set

results in a higher impact on the probability of overkill such that there are more extreme

fluctuations of prediction accuracy. Experimentation with this data set shows that the

number of pass records needs to be at least five times the number of failures to train a

model that can reach optimal results. Thus, sampling the pass records is found to be a

helpful methodology during initial development phase to speed up computation and still

find a meaningful prediction level. Experimentation shows that at least several hundred fail

samples are needed in the training set to obtain meaningful predictions.
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Figure 5-2: Example confusion matrix

5.1.2 Evaluation Metrics

The main evaluation metrics considered here are confusion matrices and receiver operating

characteristic (ROC) to visualize model performance. Confusion matrices are calculated at

probabilities ranging from 0.05, .1, .2, ... to .9 and manually analyzed to determine the

optimal results.

In this model, there is a binary response variable. "0" indicates pass (negative for defect

condition) and "1" indicates defect (positive for defect condition). In a confusion matrix

generated in the R package SDMTools with confusion.matrix command [28], there are four

values as shown in Figure 5-2. The top left, is a predicted pass and actual pass (true negative,

"specificity"). The top right is a predicted pass and actual fail (false negative, type II error,

0, or "underkill"). The bottom left is a predicted fail and actual pass (false positive, type

I error, a, or "overkill"). The bottom right is a predicted fail and actual fail (true positive,

"sensitivity").

In Figure 5-2, the example confusion matrix shows the testing data set contains 303,000

samples, of which 3,000 are actual fails. Aft-er applying the trained prediction model to the

test set., this confusion matrix is obtaiiied. The prediction results in 299,900 true negatives,

900 underkill, 100 overkill, and 2,100 true negatives. The prediction identifies 2,100 defects

correctly (70 percent) and misses 900 (30 percent). It also labels 100 as defects that are

actual passes.

The confusion matrix in Figure 5-2 also introduces the concept of a threshold. The

threshold is the third parameter input for the SDMTools package's confusion.matrix com-

inand after the testing set. prediction model is complete [28]. Thresholds range from 0 to

1 and conceptually represent a likelihood. The particular results in Figure 5-2 correspond
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Figure 5-3: Example receiver operating characteristic (ROC) in R

to a threshold of 0.8. Threshold determines the sensitivity and specificity. Sensitivity is

defined as the percentage of true positives (correct defect predictions). Sensitivity equals

one minus Type II errors. Specificity is defined as the percentage of true negatives (correct

pass predictions). Type I errors equal one minus the specificity [11]. Thus, alternative con-

fusion matrices result when the threshold is changed. This threshold controls the expected

incorrect predictions, which is a trade-off between false positives and false negatives. At

higher threshold levels, false positives are reduced (defect prediction is more accurate) but

false negatives increase (fewer defects are identified). At lower thresholds, false positives

increase and false negatives decrease.

A receiver operating characteristic (ROC) curve visualizes the trade-off between the false

positive rate (x-axis) and true positive rate (y-axis) at every threshold. The total perfor-

mance of a classifier, summarized across all thresholds, is the area under the ROC curve

(AUC). An ideal ROC curve would fit into the top left, corner of the plot and maximize the

AUC. This scenario represents a high true positive rate and low false positive rate. An ROC

of a random guess would be a straight line from the bottom left, to top right of the plot.

ROC curves are a popular graphic since they simultaneously display both error types and

consider all possible thresholds [11].

Figure 5-3 is an example ROC curve generated with the R package ROCR to compare

model results [24]. A threshold of 0.8 lands in the orange portion of the curve in the
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bottom left corner. At this threshold, false positives are minimized under one percent. As

a trade-off, true positives remain around ten percent. Therefore, false negatives are around

ninety percent. This example calls attention to another prediction modeling challenge of

how to determine the appropriate threshold for future predictions. Namely, what threshold

accurately represents the trade-off between false positives (lost revenue) and true positives

(avoided cost)?

The rates of false false negatives, false positives, and true negatives alone do not provide

the full picture. R squared is another metric that can be calculated with the prediction

results, but does not provide enough insight into the prediction accuracy across thresholds to

be a meaningful evaluation metric. Due to the small percentage of defects in the population,

a metric of solely false positive rate will invariably be very small and misleading. In terms of

incorporating business requirements, one hundred percent false negatives already exist in the

manufacturing process as these are currently not caught in the status quo quality measures.

On the other hand, false positives cannot be accepted since it represents wasted wafers or

die. This waste represents lost revenue as this material would have been assembled into

prime products if the prediction had not falsely flagged the unit as a defect. Given the high

production cost already invested in these units by the time they arrive at assembly, there is

a very low risk tolerance for any false positives.

This paper proposes a false positive ("overkill") to true negatives (correct defect predic-

tions) ratio as an evaluation metric and recommendations are described in Section 6.1. This

"overkill/correct defect ratio" compares the magnitude of false positives to true negatives.

This ratio is a meaningful way to compare different prediction model results and determine

the appropriate threshold value. For example, in Figure 5-2 an "overkill/correct defect ratio"

of 0.048 is displayed (100/2100). If this ratio reaches one (2100 "overkill" and 2100 correct

defect predictions), the prediction model would not make financial sense to implement since

the number of false positives would reach the number of actual correct predictions. An ap-

propriate ratio threshold can be set by the company based on the relative cost trade-offs

between lost revenue of a wasted unit and cost avoidance savings of predicting defects.

For random forest output, a variable importance plot is generated with the R package

RandomForest implementation using the importance command [3] and plotted with the
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Variable Importance from Random Forest Fit

Demographic Attribute

Figure 5-4: Example variable importance plot from random forest output

ggplot2 package [31]. The variable importance plot shows the input variables that the random

forest algorithm identifies as being the most important. in the prediction model based on a

mean decrease in Gini index. In practice, classification error is not sufficient for tree-growing

and two other measures are preferred, Gini index and cross-entropy. The Gini index, G, is

defined as [11]:

K

G = pik ( - Pnk)
k=1

Pink represents the proportion of training observations in the rnth region that are from

the kth class. It is a measure of total variance across K classes. The Gini index becomes

small when all of the Pinks are near zero or one. Gini index is also called a measure of node

purity. A small Gini index implies that a node contains mainly observations from one class.

When building a classification tree, Gini index is usually used to evaluate the split quality

since it is sensitive to node purity [11].

The mean decrease in Gini index is the y-axis on the variable importance plot. In Figure

5-4, each vertical column represents one input parameter from the training data set. The

most "important" paramleters are ordered from left. to right, and feature the highest variable

importance score, expressed relative to the maximum [11].
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Number of Important Parameters versus False Predictions (Random Forest, Wafer-level KGD prediction)
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Figure 5-5: Number of important features vs prediction error in wafer-level random forest
prediction model

5.2 Wafer-level KGD prediction model

Based on the data preparation described in the previous section, a wafer-level prediction

model has been built in Python with random forest classifier. This proof of concept model

proves that machine learning can successfully predict defects. This model also serves as an

example for the die-level methodology, and several approach methodologies are based on

subsequent analysis of the output. The model is based on a previous model built by another

SanDisk team using python sci-kit-learn and pandas libraries. The data set is manually

selected and merged from raw databases. This data set results in accurate predictions yet

the data set is restricted in variability due to manual data extraction limitations; it only

contains around 7,000 total samples in the training set and has a small proportion of failures.

Random forest is identified as the algorithm with the least error after experimentation with

multiple machine learning algorithms. The sklearn.ensemble. RandomForest Classifier default

settings are kept as is except for three input parameters of the number of estimators, number

of jobs, and minimum number of samples per leaf.

An appropriate response variable is selected in order to identify a particular defect mode

of interest. Next, an analysis is performed to identify the number of important parameters.

The first step of this analysis applies random forest to the entire SME1 input data set and

ranks the top features in order. Then, fifty trials re-train the model with 1, 2, ... 50 of

the top input parameters selected to comprise the training data. The results are shown

in Figure 5-5. The x-axis displays the number of important input features present in the
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Top 30 Parameter Importance of Wafer-level KGD prediction
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Figure 5-6: Top thirty important features in the wafer-level random forest prediction model

training data. The y-axis shows the percent of incorrect predictions. Incorrect predictions are

separated into "overkill" (false positives) and "underkill" (false negatives). The percentage

of false predictions are shown and calculated as overkill percent = overkill / population

testing set size and underkill percent = underkill / actual defects in testing set. Overkill

percent is less than 0.15 percent in all trials pictured. Around thirty features, the underkill

percentage begins to plateau. This highlights an opportunity for feature selection in future

model development. Narrowing down the input data set increases model computational

speed without, sacrificing accuracy.

Next, a variable importance score plot is generated as shown in Figure 5-6. Variable

importance plots are described at the end of Section 5.1.2. Figure 5-6 displays the top thirty

input variables from Figure 5-5 and their importance score as calculated by python's random

forest classifier feature importances attribute. The parameter names have been removed from

the plot. As shown by the cumulative percentage line, about 90 percent of the predictions

can be explained by the top thirty input parameters.

It is hypothesized that the provided data set and prior random forest model needs to be

expanded to include more samples to provide accurate predictions. An analysis is performed

to show that, with the addition of more data over time, predictions become more accurate.

The three trials pictured in Figure 5-7 consist of an initial training set and adding one or two

more data sets. ROCI is the first. data set. ROC2 is ROCI plus more data that is sampled
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ROC Curve Comparison of Wafer-level KGD Predictions
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Figure 5-7: ROC curves of three trials of increasing data set size
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Figure 5-8: Effect of increased number of failure samples in training set

from a subsequent time period. ROC3 is ROC2 plus additional data, similarly sampled from

a later time period. The additional data in ROC2 and ROC3 contain both pass and failure

samples. The test set is completely independent and remains the same across the three

trials. The test set is sampled from the most recent time range after the training set data.

The ROC curves in Figure 5-7 show that the predictions improve with each trial.

The wafer-level model results indicate that in future model iterations, a larger data set

with an ample number of failure samples is required in order to represent the complexity of

the real production data set (Figure 5-8).

The wafer-level model surfaces an additional consideration for prediction modeling. Ag-
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gregation to the wafer-level requires that another cutoff threshold needs to be set for wafer

predictions. This threshold is the aggregate percentage of die on the wafer that exhibit the

same defect. For example, if 20 percent of the die present on a single wafer are predicted

to have a specific defect, then the entire wafer should be flagged. This wafer aggregation

threshold would need to be derived through data-driven methods over time, keeping cost

trade-offs in mind as described in the evaluation metrics section above.

5.3 Die-level KGD prediction model

A die-level KGD prediction model is proposed here that follows the methodology from the

wafer-level model, and comparisons are made using different machine learning algorithms.

Based on a completely different data set and data extraction process, a new data cleansing

procedure is performed manually. After data cleansing, the data set for analysis includes 65

wafer lots, 854 wafers, and 484,739 die. The input parameters are only from SME1 and reflect

one day of production data. After filtering on two specific KGD test programs, 170,812 die

remain in the data set. A soft bin pareto shows that the top four defect categories capture

85 percent of failures. These top categories are the focus of the analysis, especially the top

category which represents almost half the defects.

For the die-level KGD model, several machine learning algorithms are applied to test

different methods. Open-source R packages are applied with default arguments in order to

compare out of the box algorithm performance without further tuning. This methodology

aims to optimize future development efforts by identifying the top machine learning algorithm

without fine tuning that would require significant user expertise. It is acknowledged that

algorithm performance would vary with further tuning, ensemble methods, or enhanced data

refining.

Tree-based algorithms perform the best. The best performing algorithms are shown in

Figure 5-9. These are generated using the R packages of randomforest, rpart for classifica-

tion and regression trees (CART), ipred for bagged classification and regression trees, gbm

for gradient boosting trees, MARS for multivariate adaptive regression splines, and cubist.

These results are based on the same training and test data sets. The response variable is a
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Figure 5-9: Comparison of the best algorithms by threshold vs incorrect predictions

Ordinary Least Squares

Neural Networks

f 5 -

E go3 -2-

Generalized Linear Model

80

- - SU .e GLMUdr

to42 - p- -

00 0 2 3 04 r5 6 2 7 2 E 09

Principal Component Regression

P110C

-N _IT U- -o-CR-UnderSoo0

'IZ 3 ; 60 ) 1

Conditional Inference Trees

4 0

00 OSC 02 03 04 05 36 G7 08 C9

Figure 5-10: Comparison of the worst algorithms by threshold vs incorrect predictions

binary indicator if the particular die belongs in the top KGD defect category.

In Figure 5-9 and 5-10, the x-axis is the threshold and y-axis is the number of incorrect

predictions. In random forest., multivariate adaptive regression splines, and cubist, the gen-

eral trend is a steep decline in overkill (false positives) and a gradual increase in underkill

(false negatives). Bagged CART, CART, and gradient boosted machines display a more

consistent quantity of prediction errors across thresholds. These results raise the question of

a flat, prediction error rate across thresholds being preferable since the prediction accuracy

would not be as sensitive to changes in the input, threshold. For example, if the threshold for

the gradient boosted machines model is set to .2 or .8, the prediction performance remains

very similar. Whereas with random forest, the number of overkill is high at, low thresholds

and drops drastically at high thresholds. Yet within a narrow threshold range, random forest

performs the best. of all the algorithms. Thus, there may exist a trade-off between algorithms
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Die-level KGD prediction results per soft bin
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Figure 5-11: Top four KGD soft bin prediction accuracy

that. provide consistent prediction results across thresholds versus providing the best, solution

but at a narrow threshold range. To decrease model implementation complexity, flatter (less

volatile) prediction results would be preferable. More exploration into algorithms that can

provide both consistent and optimal predictions across thresholds would be the best, of both

worlds.

Results that represent the worst performing algorithms are shown in Figure 5-10. These

R packages include ols for ordinary least squares, gln for generalized linear regression, unet

for neural networks, pis for principal component regression, and party for conditional decision

trees. The number of prediction errors on the y-axis for the top three results in Figure 5-

10 reaches 100 and the bottom two results exceed 1000. The scale of incorrect predictions

increases by an order of magnitude on average between the best and worst algorithms.

More exploration of tuning these algorithms could enhance this model's results, discussed in

Section 8.2.1.

The random forest model is the best performer and results in few over and under kill

predictions at thresholds between 0.5 and 0.8. Figure 5-11 displays the results of the random

forest. algorithm on the top four KGD soft bins. Each column represents a different soft bin

(defect type) targeted as the response variable. The size of the column represents actual

numbers of correct fail predictions (green), underkill (blue), and overkill (red). The values
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Figure 5-12: Die-level random forest KGD prediction results

are removed from the y-axis and the correct pass prediction volume is not displayed since

it would dwarf the other categories. When predicting the largest soft bin "A," this model

results in less than one percent of incorrect predictions. "A" describes a specific KGD soft

bin that accounts for the largest proportion of defects. "A", "B", "C", "D" are not in order

of test program items or in numerical order. They are in order of popularity of defects

present, in the data set. As the number of fail samples decrease in the training set, the

proportion of over and under kill predictions increase. This highlights the need for "big

data" without sampling for model training, since the low defect rate limits the number of

fail samples available.

In Figure 5-12, the best results are shown from soft bin "A" prediction using random

forest in the KGD die-level model. The variable importance plot displays that a handful of

input parameters are the most important, and the ROC curve visualizes the high prediction

accuracy. Since this die-level KGD data set represents only one day of production, the next

model considered seeks to draw data across a broad period of time to test the hypothesis

that as time moves forward, predictions will decrease in accuracy.

5.4 Die-level memory test prediction model

The input, data set for the die-level memory test model includes SME1, SME2, and KGD

parameters along with memory test results merged together by die. The date range is a

memory test date between August 30 and October 19, selected in order to gather samples

across one and a half months of production. This is a long enough time period such that
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a cycle of fab changes is likely to have taken place. After data cleansing, there remain 119

memory test lots, 393 wafer lots, and 924,327 die samples.

The step of response variable selection requires more manipulation than the previous two

models, and is described here to inform future research on potential data challenges. The

details of these data issues are unique to this data set but represent some of the potential

pitfalls associated with data of this nature. The top six FH soft bins represent 80 percent

of defects as seen in the other models. Yet these and other memory test FH soft bins

require additional expert input to eliminate several data inconsistencies and select a suitable

response variable. For example, FH soft bin "X" is the largest defect count observed, but

turns out to be assembly-related and had been subsequently moved to another test procedure

(not memory test) sometime after October 19. So for the sake of this analysis, all of the

"X" defect samples are deleted since they are a data anomaly and would not represent useful

predictions. Another top defect "Y" had subsequently been incorporated in upstream checks

at the wafer level, but at the time of the data collection was not screened out yet. These

represented a package-level defect. Based on expert input, these samples are changed to pass

records since it is assumed that these die would have passed the memory test items since

test item "Y" occurs at the end of the memory test flow. An additional data cleansing step

is employed as well to remove input parameters with identifying information, such as wafer

number or die x coordinate. These are assumed to not add value to the model prediction to

drive root cause fixes.

Two FH soft bins are selected in this analysis that are "sister errors" in that they represent

read after programming for even and odd blocks. Combining the two soft bins is verified

in a sub-analysis test described below. As summarized in Figure 5-13, several sub-analyses

are used to verify assumptions and provide insights into the complex data set. These are

discussed in more detail below.

The first check is to verify if the MT test dates are distributed in a way that represents

normal production. Experts confirmed that the test dates are sporadic but a fair represen-

tation and that there were no changes in the test program configurations during that time

period. Further trials show that limiting the training data to a narrow MT test date does not

improve prediction accuracy. It is assumed that the MT test procedure is stable and so no
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Figure 5-13: MT model development assumptions and data insights approach

matter when the packages were tested they were tested the same way. Yet as for the SME1

test date, it is found that there is a slight improvement in prediction accuracy by limiting

the training data to a narrow SME1 test date range. Future analysis could also include a

filter on fab version to improve results; further discussion of this appears in Section 8.2.1.

Another analysis is to determine which input data set (SMEl, SME2, or KGD) has the

most important input parameters. In several trials with the CART algorithm and the two

selected FH soft bins, SME1 is shown to provide the most significant parameters. As seen in

Figure 5-14, KGD has no predictors. SME2 has a minimal number, and SME1 and SME2

have the same predictors as SME1 alone. This analysis narrows down the input data set to

only focus on SME1. It is hypothesized that the KGD parameters may need to be refined.

Alternatively, this trial could be explained by the fact that current quality processes are

actively correcting new defects that correlate between KGD and MT upstream (by updating

KGD test programs).

As indicated above, the main algorithms utilized are CART and random forest. Ran-

dom forest accuracy is much higher but requires more processing power. Computational

performance becomes a limiting factor so additional strategies are developed and used here

to decrease the data set size. Below describes a sampling strategy to decrease the training

set size and still maintain variation across a large time period. The defect rate in the data

set is very small, so there exists an imbalanced proportion of pass to fail samples. To keep

the valuable fail samples in the training set, only the pass records are randomly sampled.

Different ratios of fail to pass records are experimented with. Smaller ratios ensure fast

performance but result in extreme fluctuations of overkill at low probabilities (Figure 5-15).

Larger ratios are more accurate but have slow algorithm performance with random forest.

For development purposes with manual analysis, sampling the training set pass records shows
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Figure 5-14: Comparison of data sets and important parameters using a CART algorithm
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Figure 5-16: Best test. and validation set results from MT random forest model, variable
importance plot and ROC curves

that the model can still provide meaningful predictions. Sampling pass records can still

result, in high prediction accuracy, but the threshold range will be more narrow than the

non-sampled results. As shown in Figure 5-15, the threshold values from 0.0 to 0.2 are

highlighted in yellow on the left. These are for the low fail/pass ratio of 2x. On the right,

a higher ratio of 10x is used and have less pronounced fluctuations at the same threshold

range. The 2x fail/pass ratio scenario can reach the same prediction accuracy levels as the

10x scenario, but would not be reliable at threshold levels below 0.2. Thus, this sampling

strategy is useful for development but if implemented in production, it is recommended the

actual production defect rates be represented in the training set data for the highest accuracy

possible across all threshold values.

After following the above methodology for data refining, the best random forest results

are still inaccurate. In fact, the accuracy for the two FH soft bins is only slightly better

than predicting hard bin outcomes (all FH soft bins combined). As seen in Figure 5-16,

the ROC curve of the test set (middle) and validation set (right) have low predictive power.

The variable importance plot, also displays lower importance values on the y-axis (maximum

of 200) as compared to Figure 5-12 from the KGD prediction (maximum of 800), further

indicating the low predictive power of the input parameters.

Figure 5-17 displays the results from the MT prediction for the test set (top) and valida-

tion set (bottom) at the best possible threshold levels (0.9 and 0.8). The results represent

the two FH soft bins, only SME1 input parameters, and 5x pass/fail sampling ratio in a

training set from 1.5 months of production data. The test set spans the same MT date

range (8/30-10/14) as the training data, whereas the validation set spans a subsequent MT

date range (10/15-10/19). Some values have been removed from Figure 5-17 but percentages
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Test set
real fails X
real pass 254934

Validation set
real fails Y
real pass 141333

MT test set - best prediction results
ors 0.9 threshold

pred 0 1 X1 92.9% uncerkill
0 XO X1 X2 0.08% overkill
1 X2 X3 X3 7.1% correct defects

0.72 Overkill/Correct Defect Ratio

MT validation set - best prediction results
Obs 0.8 threshold

prec 0 1 Y1 98,2% unoerkill
0 YO Y1 Y2 0.03% overkill
1 Y2 Y3 Y3 1.8% correct defects

2.53 Overkill/Correct Defect Ratio

Figure 5-17: Best test and validation set results from MT random forest model, confusion

matrices

show the prediction accuracy level to be much lower than the prior KGD prediction model.

At a 0.9 threshold level, the MT prediction finds only seven percent of defects in the test set.

In the validation set at a 0.8 threshold level, the MT prediction finds less than 2 percent of

defects. For both test and validation sets, as the threshold decreases under 0.8, the number

of false positives exceeds the number of correct, defect predictions. Also shown in Figure

5-16, the validation set versus the test set results highlight a drastic decrease in prediction

accuracy. The impact of just one week of data highlights the importance of refreshing the

model over time, further explored in Section 8.2.2. In summary, the current MT data set

and methodology described above do not constitute a successful proof of concept since the

results are not accurate enough to make business sense to implement.

A last sub-analysis is performed to simulate the application of the MT prediction model

over time. The three trials in Figure 5-18 are from CART algorithm output with the same

training set that contains samples with a MT test date between 10/8-10/14. The testing set

is the same time frame (10/8-10/14), the validation set is from the subsequent week (10/15-

10/19), and the second validation set is from a prior time period (8/30-10/7). Using more

extensive historical data for testing is a methodology adopted from Weiss, Dhurandhar, et

al. [30]. Comparing the three trials, the test set performs the best and both validation sets

decrease in prediction accuracy. At thresholds under 0.7, the number of correct predictions

switches from zero to more false positives than correct, predictions in the test set in Figure
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Testing Validation Validation #2
MT Test Date 10/8-10/14 MT Test Date 10/15-10/19 MT Test Date 8/30-10/7

Figure 5-18: MT predictions validation results using CART algorithm

5-18. The validation sets show a more extreme switch than the testing set. This sub-analysis

supports the findings shown in Figure 5-16, further indicating that more research needs to

be done into keeping a prediction model accurate over time.

5.5 Results Summary

The wafer-level KGD python model (Section 5.2) and the die-level KGD R model (Section

5.3) demonstrate successful proof of concepts in predicting wafer defects. These two KGD

models make progress in the development of evaluation methodologies, yet the models them-

selves are based on limited data sets. The data set and methodology described in Section 5.4

in the die-level memory test R model does not constitute a successful proof of concept. The

existing memory test prediction results are not accurate enough to make business sense to

implement. Chapter 6 continues on the premise that prediction results can be incorporated

into existing screening processes, and provides recommendations how one would implement a

prediction model. Chapter 7 uses this prediction model as a case study for a high level strat-

egy how to apply big data across manufacturing processes. Areas for model improvement to

increase the accuracy of the die-level memory test predictions are described in Section 8.2.
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Chapter 6

Recommendations and

Implementation Plan

This section describes several key findings and recommendations based on the successes

and challenges from the model and its results. The three top findings discussed in Section

6.1 pertain to performance versus accuracy of high dimensional modeling, the importance

of simulating a living model for operations integration, and recommended success metrics

measured in overkill/correct defect predictions cost ratio. Implementation recommendations

include program changes to the wafer cherry pick process, presented in Section 6.2. More

coordination with the wafer fabrication facility would be beneficial to drive root cause fixes,

as discussed in Section 6.3.

6.1 Modeling Recommendations

In the experiments and analyses presented here, performance is a key limiting factor to mod-

eling. Several tactics, described in Section 5.4, are utilized to speed up model computation

time. First, a faster algorithm is applied for running experimental trials with comparative

results. In particular, CART is used in place of random forest and aids in fast iterations

of testing hypotheses for data refinement since results for this purpose do not have to be

accurate, but rather only need to be evaluated side by side. Secondly, random sampling

is used but only for the pass records in the training data set. The training set relies on a
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limited number of rare defect samples and so all of these samples remain in the training

set. Results show that lower ratios of fail to pass records in the training set could result in

optimal results at certain thresholds. Yet at extreme threshold values, incorrect predictions

increase at a much more rapid pace (especially overkill). This intuitively makes sense since a

training set with many defect samples is over-sampled and biased towards identifying failures

in the testing set.

Preliminary results in Section 5.4 show that prediction model accuracy degrades when

applied to future time periods. These initial experiments are only with the die-level memory

test data. The approach includes maintaining the same training set and running different

testing sets. To cut down on variation, all data sets come from the same fab processing

week (the same SME1 week date range) and go through the same data refinement process

described earlier in Section 5.4. The recommendation is to keep separate teams (fab process

engineers, test engineers, and data owners) across locations in close coordination since fab

processing and the cherry pick wafer sort processes are both constantly changing over time.

Secondly, if one is evaluating new modeling techniques or technologies provided by vendors,

one should request that the modeling be simulated over time. This can be performed in the

same manner as described in Section 5.4 by using historical data and only the knowledge

available at the time to re-create a full operations implementation. As described in Chapter

8, further real-life simulations can be expanded by removing failure records that a prediction

model would have captured to see the model's long term impact on operations and anticipate

potential challenges.

A proposal is made here as to how to calculate evaluation metrics that fit business needs

in a straightforward manner. Since overkill percentage is very low given the small defect rate,

it is important to evaluate the model based on the numbers of defects (predicted and actual)

and to generally disregard percentages of prediction errors. In order for a prediction model

to be implemented, an experienced analyst will need to provide the business with prediction

thresholds. A simple implementation would keep the initial threshold the same over time.

A more advanced implementation would update the threshold regularly to re-balance false

positives to true positives according to the cost ratio proposed in Section 5.1.2. Also explored

in Section 5.3, it is recommended to select an algorithm that exhibits a flat prediction error
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rate across thresholds to simplify model implementation and maintenance over time.

In order to set the thresholds and fully evaluate the business impact of a prediction model,

financial inputs and thresholds will need to be set. These financial averages vary by product,

process, and time. The methodology introduced in Section 5.1.2 of a "overkill/correct defect

ratio" requires the estimation of the revenue lost per false positive (overkill) and the cost

savings of predicting a defect (correct defect prediction). Even if these exact values are not

known, one can estimate a comparative ratio. Then, when evaluating a potential prediction

model or algorithm, the input threshold can be narrowed down to a range where this cost

ratio is met. If the cost ratio cannot be satisfied at any threshold, then the model should

not be implemented.

Consider the following example, assume there is a one dollar cost savings in assembly and

testing costs for predicting a defective die, and there is a ten dollar overkill cost to degrading

a valuable die and losing potential revenue. Then one would prefer to only implement a

model at a threshold where the "overkill/correct defect" ratio is less than 0.1. Referring

back to the confusion matrices in Chapter 5, the ratio of 0.048 in Figure 5-2 would meet

this criteria. It follows that a threshold level of 0.8 would be an acceptable input for the

prediction model implementation. In contrast, the confusion matrices in Figure 5-17 result

in ratios of 0.72 and 2.53. These do not meet the 0.1 cost ratio requirement so this prediction

model would not be acceptable. In this example, the threshold level can be set to less than

0.1 in order to further minimize false positives. If the business is risk-averse about lost

revenue, one would select a lower threshold that would decrease false positives (and increase

false negatives).

The proposed methodology to find an acceptable threshold as a model input that makes

business sense to implement and limits overkill is as follows. Xcosts represents the "overkill/correct

defect" ratio based on estimated costs. Assume overkill is more costly than underkill and

there exists a trade-off relationship between overkill and underkill. The purpose of this

methodology is to result in the selection of a threshold that maximizes correct defect pre-

dictions and minimizes underkill within an acceptable overkill proportion.

1. Calculate the prediction model's ratios across all thresholds (Xmodel = overkill/correct

predictions from the test set results).
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2. Find thresholds where Xmodel is less than Xcst,. If no thresholds exist where this

is satisfied, then the prediction model does not make sense to implement as is. If a

threshold range does exist,

3. Select the lowest threshold in the range.

In terms of a strategy for incorporating a new big data platform into existing data sys-

tems, the recommendation is to leverage the new platform as a development and experimen-

tation tool. The existing data repository can implement proven solutions developed on the

new platform. Examples of implementing a proven solution include vendor customizations or

automation on the existing data systems. Thus, the existing data system remains the single,

long-term system of record and production processes remain undisturbed on the existing

system during development projects. Meanwhile, a new big data platform is ideal for ex-

perimentation with new algorithms and would provide new tools to solve existing problems.

Therefore, the combination of the existing and new big data platforms is complementary.

6.2 Cherry Pick program

Cherry pick program changes would require updates to the existing IT and data flow systems.

It is recommended to only incorporate cherry pick changes that have been validated over

time with historical data and meet business needs. The evaluation of business impact could

be calculated using an avoided scrap unit cost model. A visual of where the prediction model

can be incorporated into the existing process is pictured in Figure 6-1 and the current cherry

pick process is described in Section 4.1.2.

For implementation, the prediction model results would need to be calculated real-time

after the fab test data is generated (SME1 and SME2). The prediction results could be

fed into the cherry pick process and make alterations to the wafer map. It is recommended

to have manual configuration and oversight by experts in order to take into account ex-

ternal changes in supply and demand in the market. For example, balancing wafer supply

across multiple product lines or anticipated changes in customer demand. Cross-functional

team coordination is also recommended to collect these diverse sources of information about
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Figure 6-1: Prediction results incorporated into decision-making process
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changes in supply and customer demand across the company. In terms of calculation time,

the prediction results need to compute and update the wafer map file in less than a day to

ensure there is no delay in the cherry pick process.

To implement the KGD prediction model, it is recommended that model results be in-

corporated during the cherry pick process. Wafers that the prediction model identifies as

exceeding the allowable portion of die with defects (yield) would be sorted into a non-prime

(lower quality) product process flow. In the non-prime test process flow, wafers undergo a

less stringent KGD test program. Thus, yield would increase on the overall prime product

KGD test and the company would avoid non-value added testing time on the 24/7 KGD test

machines (stringent test programs need longer testing time).

An example to explain Figure 6-1 and the impact of a prediction model implementation

is described here. Assume that the allowable die yield percent per wafer is set at 95 percent

for prime wafers. If there is a wafer that currently has 96 percent of die categorized "00" (die

sort pass), two percent as "ZZ" (non-prime die defined by cherry pick configuration rules)

and two percent as "11" (die sort failures identified in the fab test results), then this wafer

would continue to KGD testing for prime wafers. Assume two percent of this wafer will fail

KGD testing for a specific defect seen before but not accounted for in the cherry pick rules

yet. With the current process, the KGD testing would result in 94 percent yield. In Figure

6-1, the portion of "AA" would represent 2 percent of the die that were a die sort pass but

a subsequent KGD fail. In retrospect, this wafer should have been downgraded and tested

with a non-prime KGD program where it would have passed the less stringent test criteria.

We cannot retrospectively change the wafer sort but we can use a prediction model to

effectively add foresight of the KGD results to update the cherry pick process. If a real-time

prediction model is trained for this specific defect, then the cherry pick process could be

updated before the KGD test program begins. In this example, the prediction model would

predict the two percent of anticipated KGD failures. The portion of "ZZ" would increase by

two percent and the total wafer yield would be 94 percent. The wafer would not pass the

allowable yield of 95 percent and automatically be downgraded to a non-prime product and

undergo the less stringent KGD test program.

If the prediction yield percent does not decrease below the allowable yield there are still
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Figure 6-2: Mockup of updated wafer map based on prediction model results

benefits to the prediction model. The portion of "ZZ" would increase and thus reduce the

portion of "AA" identified by KGD. This would decrease test time and provide a more

accurate overall yield of the die sort process that can aid other decision-making processes.

Another way to visualize the prediction model implementation changes is shown in Figure

6-2 as a mock up of updates to the wafer mapping file. The wafer mapping file is a structured

data file but can be visualized as a map, shown in Figure 6-2 and also displayed earlier in

Figure 2-7. Structured output froi a prediction model could update the rules in the cherry

pick program. Following the example from Figure 6-1, the cherry pick program updates

would incorporate prediction model results and update values of "00" to "ZZ" for specific

die identified by the prediction model. As seen in Figure 6-2, the red die represent "AA"

(die sort pass but subsequent KGD fails). The white die represent die sort fails, and green

represent both die sort and KGD passes. The wafer on the left is how the wafer map would

appear with the current process after KGD testing finishes. The wafer on the right represents

how the wafer map would appear if the prediction model were implemented. A portion of

the red KGD fails would effectively become white prediction model fails. Manipulating the

input wafer map file would enable the current KGD program process to function as normal.

The KGD test process is a critical production step so keeping this process as is would allow

for a smoother implementation versus an implementation solution that requires a complete

overhaul of the current process.
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The next implementation step would be to apply the memory test prediction results to

update the wafer mapping file. More research can determine if the KGD test parameter

inputs add predictive power to the memory test prediction. If so, then changes to the wafer

mapping file would occur after KGD testing is complete and initiates the computation of

the memory test prediction model. Changes to the manufacturing process would physically

occur during the die attach step of assembly. In this step, the system refers to the wafer

mapping file to determine die placement on each product and die stack. If the die is predicted

to fail memory test, then the die can be placed on a non-prime product or stacked in such a

way that the other die in the stack can compensate so that the overall product performance

still meets customer needs. If more research reveals that KGD test parameter inputs do not

add predictive power to the memory test prediction, then the memory test results can be

incorporated the same way the KGD prediction results are in Figure 6-1. It is recommended

to keep the prediction models on a die-level granularity in order to simplify implementation

for a combined KGD and memory test wafer mapping file update scenario.

6.3 Wafer fab

The output from a prediction model would ideally convey an automatic report of which die

sort parameters are most important in defect prediction back to the wafer fab. Combined

with the wafer fab engineering knowledge, this die sort parameter information can drive root

cause investigations into specific machines, materials, and processes. One concern is that

tweaking one process step within the wafer fab could impact other processes unexpectedly.

Another concern is the cost of these changes. A recommendation for engaging the wafer fab

engineers is to create a summary report that highlights the change in yields between the

regular die sort and prediction model die sort results.

Another recommendation is to organize the prediction model results by failure mode

(program, erase, etc.) to align more with the wafer fab root cause investigation process.

Additionally, aggregating the prediction results at the wafer or lot level (versus die-level)

would provide more meaningful feedback since currently fab analysis exists at the wafer or

lot level. Wafer fab engineers usually investigate wafers or lots by median or average in order
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to determine process engineering changes. Lastly, the prediction model input data should be

separated by fab. Separating input data by fab is a modeling next step described in Section

8.2.1. Calculation of the savings from the wafer fabrication root cause improvements would

require a custom financial model. Implementing fab improvements is challenging but also

anticipated to have greater financial benefits than the avoided cost of assembly defects in

KGD and memory test.
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Chapter 7

Strategy for Applying Big Data and

Advanced Analytics to Semiconductor

Manufacturing

As introduced in Chapter 3, some data-related challenges are longstanding in semiconductor

manufacturing while other opportunities arise due to the advent of big data and new ad-

vanced analytic capabilities. One main roadblock is transitioning from traditional, separated

data stores into a consolidated data warehouse. Semiconductor manufacturing equipment

and information technology systems were not historically designed to facilitate large quan-

tities of real time data that can easily trace and integrate all aspects of and inputs to the

process (data traceability). Thus, root cause analysis is reactive and predictive modeling

has infrastructure upgrade challenges in order to obtain and refine data. With the arrival of

big data methods, domain knowledge that traditionally lies within specialized engineering

teams requires partnership with data scientists. With heavy reliance on data in models such

as predictive modeling, a major challenge is data quality of the expansive data sets that may

have missing values and/or require cleansing or logic to be useful. Lastly, the larger problem

sets face scaling and computing speed issues.

This chapter focuses on a proposed methodology to frame big data challenges as oppor-

tunities. The following sections have a generalized approach for evaluating problem sets and

potential solutions. Section 7.1 describes a decision framework for identifying, categorizing,
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and evaluating major problem sets present in a manufacturing organization. The framework

aims to place problem sets within the best solution architecture of an enhanced platform,

toolset, or a big data ecosystem based on user needs and data structure. Section 7.2 pro-

poses a high level methodology how to assess the company impact of addressing these major

problem sets in terms of financial and customer benefits.

7.1 Framework to Evaluate Applicable Problem Sets

The first step is to map out the existing problem sets across the manufacturing process.

Problem sets are defined as areas for process or quality improvements anywhere in the

manufacturing process. Problem sets can range from broad to specific challenges, such

as wasted time and effort when new products are over-qualified (over-tested) or a specific,

known failure mode like bit line short-circuits. Some problem sets may currently be unknown

unknowns, so the priority is to first focus on the known issues that cause the largest number

of operational issues. Along with the definition of the problem set, a survey of the current

and ideal state are necessary to evaluate each item. Categorizing the location, process, and

impact category is helpful for defining the solution options. Examples of areas to explore to

identify the main problem sets include: initial chip design specifications, fabrication process

data, assembly process data, and solid state drive-level process and testing.

The decision framework pictured in Figure 7-1 is proposed to map a problem set to poten-

tial big data system recommendations. The problem set is the input at the top and decisions

flow to the bottom. Each decision point requires an evaluation by both the domain and data

science experts. The first step is data access to make sure the analysis is feasible at all (Do

we own the data? Do we need to upgrade machinery or information systems to collect the

necessary data?). The second step is data structure. Traditional relational databases cannot

handle unstructured data, such as images, text-heavy, or irregularly formatted information.

For systematic analysis, these problem sets are best addressed with a big data ecosystem.

Semi-structured data may fall into either category depending on expert input. The next

step is evaluating the volume of data taking into account file size and retention. The main

questions to ask for this step are about the dimensionality of the data (are there complex,
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Figure 7-1: Decision framework for evaluating big data ecosystem opportunities

interrelated parameters?), does the analysis require data over long periods of time, and if

the analysis is at mass production scale. If so, this is a fit for a big data ecosystem. The

next step is to evaluate if analytical capabilities are missing in the current state. Advanced

analytics like machine learning, visualization, data mining, or accurate trace-ability of small

quantities (when sampled data will be inadequate) are examples of additional capabilities

that might be considered. If enhanced capabilities are desired, a big data ecosystem or an

enhanced toolset would be options. If capabilities do exist, then the last question is perfor-

mance or computing speed of the current state. If the current state cannot scale or is not

efficient enough to meet operational needs, then an enhanced platform or big data ecosystem

would be options.

After the categorization is complete, the final choice will depend on cost/benefit analysis.

For example, if the only issue is performance then the status quo can be compared to the

enhanced platform or big data ecosystem to determine what options to select. Similarly,

a lack of capabilities could be addressed with a wider toolset or big data ecosystem. An

example of an enhanced platform is a relational database that consolidates all manufacturing

data instead of storing in separate data shares. An example of an enhanced toolset is machine

learning algorithms from R or python. A big data ecosystem might include the above and
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contribute additional capabilities such as image recognition and efficient data storage.

Using the prediction model developed in this thesis as a case study, the following describes

how the problem set maps to system improvement recommendations using the framework

proposed above and pictured in Figure 7-1. In this case, access to the data did exist. Files

were structured in nature. The model was a pilot proof of concept and only experimented

with sampled, refined data sets of less than a million rows. Yet the current state's analyt-

ical tools did not meet the user needs. The existing data repository did not have built-in

capabilities to enable machine learning or customized data refinement. As for performance,

the data extraction speed was adequate for experimentation but not real time operations

due to delayed data transfer. Following the decision framework, this model requires an en-

hanced toolset/platform or a big data ecosystem to enable use on a production scale. The

investment decision depends on the cost benefit analysis of each solution described below.

7.2 Impact Assessment Methodology

After surveying the problem sets and evaluating their current state using the decision frame-

work and expert/user input, the next part of the assessment methodology is to determine cost

and benefit figures. Evaluating the cost of the upgraded or new system could entail working

with a wide variety of groups and exploring many technological solutions. For example,

vendor or internal solutions or enhancements might be considered and compared. The cost

components to consider include but are not limited to: build, test, integrate, maintenance

over time, and data access infrastructure. To measure the benefit of the solution options

would require collaboration with internal teams to estimate the financial payback and other

important company benefits. Some benefits include cost savings per year, time to market

advantages (converted to financial savings if possible), and customer impact (qualitative and

case studies of what-if scenarios if previous customer issues had been averted).

An example visualizing a map of problem sets to opportunities is shown in Figure 7-2.

The potential solution options (platform, toolset) is along the x axis in order of increasing

complexity that matches the decision framework. The y axis features a qualitative estimation

of overall company impact (net benefits), increasing upwards. The bubbles represent each
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problem set. They span multiple solution options but are anticipated to have a higher

customer impact with more robust systems that scale and unlock additional capabilities

over time. In this case study, the memory test prediction model has higher impact to the

company so it is above the KGD prediction model. The memory test prediction model also

slopes upward more steeply since the complexity and data challenges inherent in this problem

set require and would be more effectively addressed with a big data ecosystem rather than

enhancements to the current systems.
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Chapter 8

Conclusion

The research and prediction modeling described in this thesis represent a promising new

direction for SanDisk and other semiconductor companies to apply big data and advanced

analytics to improve their manufacturing operations. As described in Chapter 2, the flash

memory industry is a highly competitive space with technology that improves faster than

Moore's law. Big data applications to semiconductor manufacturing is an open area of in-

dustry and academic research currently and recent publications are described in Chapter

3. The existing high-tech, complex semiconductor manufacturing process, covered in Chap-

ter 4, generates detailed quality data which can be leveraged in a big data environment.

Results from three prediction models in Chapter 5 demonstrate the potential for machine

learning methodologies to unlock new ways to approach and solve traditional semiconductor

manufacturing challenges. Recommendations are proposed in Chapters 6 how to implement

prediction models to improve the current manufacturing and data system processes. These

modeling results serve as a case study in Chapter 7 that is proposed as part of a high-level,

expansive strategy to apply big data and advanced analytics capabilities to drive cost savings

across the manufacturing organization.

Chapter 8 summarizes modeling results, limitations, and next steps to enhance the pre-

diction models described in this thesis. As described in Section 8.1, this pilot analysis

demonstrates that there exists a potential opportunity to improve the KGD wafer sort pro-

cess. Yet the memory test prediction model requires more development in order to achieve

high enough predictive accuracy to merit implementation. In terms of key findings, limita-
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tions have been identified pertaining to the computational performance of high dimensional

modeling and are discussed in Section 8.1. Accuracy of model predictions and speed of com-

putation are trade-offs, especially with big data sets. Section 8.2 describes several areas to

improve the model, including enhancing the data set, validating the model over time, and

refining processes that tie into the prediction model.

8.1 Results and Limitations of Model

The wafer-level KGD prediction python model with random forest classifier is found to be

a successful proof of concept, demonstrating that machine learning can successfully predict

a wafer defect. The development and analysis methodology established has been expanded

and attempts made to apply to die-level memory test modeling. The model is found to be

limited by the provided data set, which is a small, manually selected sample that does not

reflect true production level volumes.

The die-level KGD prediction R model has demonstrated a successful proof of concept

and advances the methodologies established in the successful wafer-level model. Processes

for data extraction, refining, defect selection, and evaluation metrics have been created. Yet

the model is found to be limited by the provided data set of one day of production data.

Initial findings show that tree-based algorithms are the most accurate, though there exist

opportunities to further tune other algorithms to improve performance since only default

settings were utilized.

A die-level memory test prediction R model has been developed following the same

methodologies as the previous models, but have not resulted in a successful proof of concept.

The memory test data spans a longer time period (1.5 months) and includes more parameter

data inputs, and thus required comprehensive refining and analysis. Several sub-analyses

have been performed to provide insights into this complicated data set; new findings and

methodologies to be applied to future models have been proposed. The primary algorithms

utilized here are CART and random forest; neither are accurate enough to predict FH soft

bin failures to satisfy business needs. The model is believed to be limited by data access

issues which are explored further in Section 8.2.
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8.2 Recommendations for Next Steps for Model

Many ideas have been generated to enhance and expand the wafer and die-level prediction

models. Section 8.2.1 describes ideas about how to enhance the data set for the memory test

prediction model to improve accuracy. Section 8.2.2 provides thoughts on how to simulate

the prediction model over time, which is an area of primary concern for production imple-

mentation. In Section 8.2.3, related processes are listed that could be improvement projects

on their own or lend additional insight to the prediction models.

8.2.1 Enhance Model Data Sources and Logic

The first improvement to the memory test data set would be to enhance the granularity

of the response variable. Currently the response variable is binary for the FH soft bin.

A continuous response variable would be expected to greatly improve the accuracy of the

predictions. At the time of this model, a continuous response variable did not exist in the

data set. Yet with further alterations to the data feeds, a better response variable may be

obtained. One idea is to make the response variable the number of bad blocks and addresses.

An interim step would be to simulate continuous data in order to demonstrate the potential

accuracy improvement over the current binary response variable. This synthetic analysis

could be an immediate next step to make the case for investing in an enhancement to the

current data feed.

A second next step would be to enhance the model logic. The current model does not

include spatial inputs, such as die location at center or edge of wafer. Secondly, another

enhancement would be to aggregate the die by lot and wafer in the input data to show the

relationship between these groupings. Plane level was not explored in this model, and is

another avenue to obtain further data granularity. Lastly, separate analysis by fabrication

facility and KGD test program could be considered. In the existing memory test analysis

all test results from multiple fabs were combined together and all KGD test programs were

combined and assumed to be equivalent. These assumptions are potential flaws in the model

logic, and experimentation could explore if these entities can be combined or should be kept

separate.
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Another future step would be to tune the algorithms and apply ensemble methods. For

example, one could use random forest to narrow down to the top input parameters (perhaps

20 or 30) and then use logistic regression with the vastly decreased data set. The random

forest algorithm can be further tuned itself, especially with respect to the number of trees,

minimum observations, and depth.

Another important enhancement to the prediction model would be to increase the sources

of input parameters. Currently assembly factors were not included. Yet it is possible that

assembly processing may play a role in memory performance and defects. Although there

exists a separate final test for assembly-caused errors, including assembly data would test

this hypothesis. Last but not least, adding fab inline data would be expected to greatly

improve prediction accuracy. This data is currently unavailable for analysis.

8.2.2 Simulation of Operational Model over Time

As discussed in Section 6.1, it is important to further validate the process of intelligently

keeping the model accurate over time before making changes in production. The model is

likely to need to evolve over time since the process is constantly changing as is. Indeed,

the model could trigger root cause fixes at the fab based on the model output. Depending

on whether or not it is financially and technically feasible to address specific root causes

at the fabrication facility, the expected implementation fixes may occur at the fab, or may

create new cherry pick wafer sort improvements. Either way, the prediction model will have

to chase a moving target and will need a mechanism to automatically re-train itself. One

proposal would be to start with a simple moving time period to cut off the training data

set as a baseline, and experiment with Bayesian fusion methods that naturally updates and

removes stale training data [34].

Another important aspect of the implementation of a continuously re-trained prediction

model is that removing predicted failures from the population means that fewer eventual

product failures are available to re-train the model with. An expected downside of im-

plementing a prediction model and die-selection decision procedures is that over time the

training data would become outdated and could result in unnecessary overkill. Without

new training data containing failure samples to re-train the model, there would not exist
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a method to verify the prediction accuracy as time passed. One strategy to address this

challenge would be to create a mechanism to allow predicted die failures to continue through

normal processing. These expected failures can be used to verify that the model remains

accurate over time, but can be allowed in sufficiently small volumes to minimize lost revenue.

Sensitivity analysis and simulation can be performed to test the impact and cost implications

of this testing of the boundary conditions.

Due to the high volume of each product and number of distinct product lines, an im-

plementation of prediction models for all products would require robust automation and an

intuitive monitoring interface. All processes involved from data retrieval, re-training of the

model, updating thresholds, and feedback reports to the fab and cherry pick process would

need to process large amounts of data continuously to keep up with operational needs. It

would be expected that monitoring processes and analysts would oversee an interface that

alerts on irregularities in the prediction model results, similar to the statistical process con-

trol procedures already in place on the manufacturing line.

8.2.3 Optimize Related Sub-processes

In this complex manufacturing process there are several adjunct areas that offer opportunities

for further exploration and process improvements. The processes described below are areas

for deeper analysis that could provide cost savings to the company on their own or support

the results of the prediction model.

The KGD and memory test programs are optimized for speed to decrease expensive fixed

capital investments of test equipment. In general, once a die is determined to reach the

failure threshold during its test program the testing procedure terminates. One area for

further exploration would be to run a full engineering test program that does not terminate

when the failure threshold is reached in order to gain insight to correlating multiple failure

modes (soft bins). This would be valuable for both KGD and memory test. Additionally,

memory test programming does not necessarily align with the die sort or KGD test programs.

A full engineering test program analysis could aid future correlation studies of the entire test

flow results between die sort, KGD, and memory test.

A related area of cost savings would be to simulate the impact of reducing test steps in
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KGD or memory test or sampling. Currently all die and products are tested. There would

be time and cost savings if a prediction model identified die that are expected to pass or fail

and then the test program itself could reduce the applicable test steps. If the expected pass

and fails are separated, the remaining die could be randomly sampled for specific tests for

cost savings from fixed asset reduction.

The concept of identifying high performing die has additional financial benefits. This

project focused on predicted die that would not perform as expected. On the other hand,

identifying die that could perform even better than expected and pass more stringent test

programs would positively impact revenue. Currently these die may be hidden among the

production data but there exists no signal to identify their existence. Thus, design of ex-

periments or a sampling strategy with a separate test flow would need to be implemented

to purposely test these predicted failures on the boundary condition. This is related to the

ideas set forth in Section 8.2.2 to maintain a living model over time, but taking a step further

to recognize the financial benefits of predicting unexpected high performing die.

The methodologies identified in this project for predicting wafer defects can also be

expanded to upstream and downstream manufacturing steps. A similar methodology can

be applied to assembly errors, which would incorporate additional sets of data inputs, such

as the materials provided by suppliers, machines, environment metrics, human labor, and

in line processing data. An example of the prediction model response variable would be die

cracks. Another area to expand the prediction model would be to the downstream process of

solid state drive (SSD) manufacturing. Aligning all upstream data to predicted SSD quality

results would drive cost savings and coordination between facilities.
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