
b_verify: Scalable Non-Equivocation for Verifiable
Management of Data

by

Henry Aspegren

B.S., Massachusetts Institute of Technology (2017)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2018

c○ Henry Aspegren, MMXVIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute
publicly paper and electronic copies of this thesis document in whole or in

part in any medium now known or hereafter created.

Author .
Department of Electrical Engineering and Computer Science

September 1, 2018

Certified by .
Neha Narula

Director of Digital Currency Initiative at the Media Lab
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Masters of Engineering Thesis Committee

b_verify: Scalable Non-Equivocation for Verifiable Management of

Data

by

Henry Aspegren

Submitted to the Department of Electrical Engineering and Computer Science
on September 1, 2018, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract
Equivocation allows attackers to present inconsistent data to users. This is not just

a problem for Internet applications: the global economy relies heavily on verifiable and
transferable records of property, liens, and financial securities. Equivocation involving such
records has been central to multi-billion-dollar commodities frauds and systemic collapses
in asset-backed securities markets. In this work we present b_verify, a new protocol for
scalable and efficient non-equivocation using Bitcoin. b_verify provides the abstraction
of multiple independent logs of statements in which each log is controlled by a cryptographic
keypair and makes equivocating about the log as hard as double spending Bitcoin. Clients in
b_verify can add a statement to multiple logs atomically, even if clients do not trust each
other. This abstraction can be used to build applications without requiring a central trusted
party. b_verify can implement a publicly verifiable registry and, under the assumption
that no participant can double spend Bitcoin, guarantees the security of the registry. Unlike
prior work, b_verify can scale to one million application logs and commit 1,112 new
log statements per second. b_verify accomplishes this by using an untrusted server
to commit one hundred thousand new log statements with a single Bitcoin transaction
which dramatically reduces the cost per statement. Users in b_verify maintain proofs of
non-equivocation which are comparable in size to a Bitcoin SPV proof and require them to
download only kilobytes of data per day. We implemented a prototype of b_verify in
Java to demonstrate its ability to scale. We then built a registry application proof-of-concept
for tradeable commodity receipts on top of our prototype. The client application runs on a
mobile phone and can scale to one million users and ten million receipts.

Thesis Supervisor: Neha Narula
Title: Director of Digital Currency Initiative at the Media Lab

2

Acknowledgments

This research is the product of over a year and a half of work that has involved many

different people and organizations. I was introduced to the Digital Currency Initiative

(DCI) at the MIT Media Lab by Mark Weber in January of 2017. Mark showed me how

damaging weak property rights and exclusionary institutions are and got me thinking about

how technology might be able to help. I thank Mark for motivating much of this work and

for being a fantastic research partner. I would like to thank Neha Narula for advising me

and leading me through the wilderness of applied cryptography and distributed systems.

This thesis would not have been possible without her. In particular I would like to thank

her for shepherding this work along a fairly unconventional path. I would also like to thank

the Inter-American Development Bank (IADB) for providing funding for my research and

contributing domain expertise. I hope that the IADB can use b_verify to create more

inclusive economies. Avery Lamp, Christina Lee and Binh Le contributed to this research

as UROPs by helping to create a mock b_verify application. It was a pleasure to work

with this exciting and fun group. Alin Tomescu, Natalie Gil, and Mykola Yerin provided

thoughtful discussion that I drew on over the course of this research.

Working at the DCI has been a pleasure and I would like to thank Tadge Dryja, Robleh

Ali, James Lovejoy, and Alin Dragos for being fantastic colleagues. I hope the DCI continues

to help this field reach its full potential. I also hope that the 3pm union tea breaks and long

debates about cryptocurrencies and politics will continue. Finally I would like to thank my

friends, my parents Lucy and Lindsay, and my siblings Audrey and Charles for helping me

through a challenging year. Research is hard but rewarding, and it is the people around you

that make it worthwhile. Thank you.

3

Contents

1 Introduction 11

1.1 Motivation . 11

1.2 b_verify . 12

1.3 Systems That b_verify Can Improve 13

1.4 Overview . 14

2 Background 16

2.1 Bitcoin . 16

2.2 Catena . 17

2.3 Authenticated Data Structures . 18

3 Design 19

3.1 System Model . 20

3.2 Threat Model . 20

3.3 Example . 21

3.4 Building b_verify From Catena . 21

3.5 API . 22

3.6 Tracking Client Logs . 24

3.7 Appending Statements to a Log . 26

3.8 Proof of Non-Equivocation . 27

3.9 Server Misbehavior . 29

3.10 Handling Bitcoin Re-organizations . 29

3.11 Security Argument (Sketch) . 30

4

3.12 Cost . 31

3.13 Fault Tolerance . 31

3.14 Privacy and Legal Risks . 31

4 Publicly Verifiable Registries 33

4.1 Definition . 33

4.2 Model and API . 34

4.3 Design . 34

4.4 Improving BlockCerts Using a Public Registry 36

5 Building New Kinds of Registries With b_verify 38

5.1 Commodity Receipts . 38

5.2 Application Design . 39

5.2.1 Application Operations and Implementation 41

5.3 Analysis . 42

6 Implementation 44

6.1 Commitment Server . 44

6.2 Warehouse Receipt Application . 45

7 Evaluation 46

7.1 Goals and Methodology . 46

7.1.1 Test Setup . 47

7.2 Proof Size . 47

7.2.1 Theoretical Analysis . 47

7.2.2 Empirical Measurement . 48

7.3 Performance of the Commitment Server 49

7.4 Evaluating Public Registries Built With b_verify 51

7.5 The Commodity Receipt Application . 52

7.5.1 Size of Proofs . 53

7.5.2 Latency . 54

5

8 Related Work 56

9 Conclusion 58

9.1 Future Work . 58

9.2 Recap . 59

6

List of Figures

1-1 Overview of b_verify. 12

3-1 Logs of statements for b_verify clients Alice, Bob and Carol. Each

client’s log is identified by his or her public key (𝑃𝐾) and can only be

updated with knowledge of the private key. Log are statements (𝑆) are

ordered and must be signed (𝜎) by the client. b_verify commits these

log statements to Bitcoin, which is shown at the top. In this case the client

logs begin at Bitcoin block 𝑖. b_verify prevents clients from modifying

each other’s logs and makes equivocating about the log statements as hard

as double spending Bitcoin. 19

3-2 Tracking logs using the commitment server. The server stores the last signed

statement in each log using a Merkle Prefix Trie. The trie changes over time

as new statements are added to the logs. These modifications are shown in

bold. The different versions of this trie completely track client logs and the

changing roots, 𝑅1, 𝑅2 and 𝑅3 are witnessed to Bitcoin. 25

3-3 The proof returned when calling MultiAppend to add a statement 𝑆 to the

logs for Alice (public key 10...) and Bob (public key 01...). The statement

is added to both logs atomically. The proof demonstrates this by including

Merkle paths showing that the statement has been added to the respective logs. 26

7

3-4 The complete proof of Non-Equivocation for Carol’s Log. The top portion

can be downloaded directly from Bitcoin using Catena. The bottom portion

is downloaded initially from the commitment server and consists of Merkle

paths. Hash values are represented by triangles. Only the portions in the

dark borders are sent by the client directly. Repeated hash values can be

inferred when checking the proof. Once Carol has this proof she can share

it on a client-to-client basis. 28

4-1 Overview of the design of a registry using b_verify. The registry stores

key/value maps using b_verify logs. The setup for a single key K is

shown along used by the method Get(K) to verify the value of the key. . . . 35

5-1 Overview of the design of the commodity receipt application. The appli-

cation uses a b_verify public registry to store verification objects as

shown in the top panel. The application uses additional authenticated data

structures to store the data and implement the operations as shown in the

bottom panel. In the bottom left panel Alice is issued a receipt, R, by the

Warehouse. In the bottom center panel Alice transfers a receipt, R to Bob.

Finally in the bottom right panel Alice uses a receipt, R, as collateral for

a loan, L, from the Bank. The changes to the data structures are shown,

with addition represented by a red solid line and removal represented by

a red dashed line. The lines also represent Merkle proofs of how the data

structure is changed. 40

7-1 Average size of the data that must be downloaded by each client in terms of

the number of new log statements. The average size of a full Merkle path in

the Merkle Prefix Trie is provided for comparison purposes. 49

7-2 Size of the Get proof for the verification object in the warehouse receipt

application. Transferred, issued and loaned correspond to the verification

object after the respective operation. 53

8

List of Tables

3.1 b_verify API. The first group of methods are similar to the API of

Catena but are implemented for multiple logs efficiently. The method

GetProofUpdates represents the additional data that clients in b_verify

must download relative to Catena. MultiAppend is a new method to support

applications by allowing clients to make atomic statements across multiple

logs. 23

7.1 The approximate size of the proof and the amount of data a client must

download per day for a log in b_verify to support a given number of

updates per hour. This assumes that the server makes exactly one Bitcoin

transaction per hour to commit the updates and uses 32 byte cryptographic

hashes (e.g SHA-256). This does not include the portion of the proof that is

downloaded from Bitcoin SPV. 48

7.2 Micro benchmarks of the commitment server. The first group of operations

are the steps to commit a new log statement and the next two groups are

generations of proofs, which are there own operations. 50

7.3 Simulation of commitment server facing heavy load. In these simulations

large number of clients request operations on the server simultaneously.

The test measures the amount of time required to respond to client requests,

and the average throughput of the commitment server in performing these

operations. 51

9

7.4 Breakdown of the size of the Get proof for the verification object of re-

ceipts in the application. Transferred, issued and loaned correspond to the

verification object after the respective action has occurred. 52

7.5 Latency measurements from the warehouse receipt application. These

measurements were collected using Bitcoin’s Testnet and block generation

time represents the time from when the operation was requested until the

next block is generated by the network. 54

10

Chapter 1

Introduction

1.1 Motivation

Sound protocols for managing public data are critical to building secure systems. How-

ever designing these protocols is hard because of the problem of equivocation. Equivocation

is the deliberate presentation of inconsistent data by a participant within a system. For

example, in a public key infrastructure a certificate authority can equivocate by signing

multiple certificates containing different public keys for the same user. An attacker can

exploit this to impersonate the user without detection or to perform a Man-In-The-Middle

attack [1, 2].

Inconsistent or omitted data is a significant threat to users. In a domain name system

equivocation allows an attacker to direct Internet requests to his own machine [3]. Equivoca-

tion of tor directory servers can tenancies users [4], and in bittorrent, equivocation of the

trackers can be used to control what a user downloads and from which peer [5]. Equivocation

of cloud storage systems can cause applications to display incorrect information to users [6].

Equivocation is also a problem in our economic systems, where it can result in fraud and

creates systemic risks. Omission of data led to billions of dollars of fraudulent lending in

the commodities markets [7]. In asset-backed securities markets, a lack of transparency and

consistency can create structural risks for the entire financial system [8].

Many systems rely on the users to detect equivocation after it has happened [9–11].

However this is not ideal because it may not stop an attack in time and places more burdens

11

on users. Recent work has proposed using Bitcoin or other public ledgers to prevent

equivocation [12–14]. This approach is attractive because Bitcoin has proven to be reliable

and resistant to attack [15]. Furthermore Bitcoin relies on a network of computers with

no central trusted party. Unfortunately the current systems for using Bitcoin as a trusted

party are expensive, hard to use for building applications, and do not scale. For example

if a thousand applications were to use Catena, a Bitcoin witnessing scheme, they would

collectively consume almost half of the entire Bitcoin network’s transaction capacity [12].

Furthermore building efficient applications is challenging. For example Blockstack, a

decentralized domain name system based on the non-equivocation provided by Bitcoin,

requires users to download and replay large amounts of data to resolve a domain name

query [16].

1.2 b_verify

Public
Registries built
with b_verify

CONIKS
Identity
Providers

Verena Hash
Servers

BlockCerts
Issuers

b_verify
commitment server

Applications Which Require Non-Equivocation

Bitcoin Blockchain

A single b_verify commitment server
makes equivocation for each of these
applications as hard as double
spending Bitcoin

#1#1

#3

#2#2

#3’ #4’

#4

Light Clients

Figure 1-1: Overview of b_verify.

We have created a new protocol called b_verify for scalable non-equivocation using

Bitcoin. b_verify provides the abstraction of multiple independent logs of statements.

Log statements in b_verify can be arbitrary bytes. Each log in b_verify is controlled

12

by a cryptographic public key and equivocation is as hard as double spending Bitcoin.

b_verify allows users to add statements to multiple logs atomically, even if the logs

are controlled by users who do not trust each other. b_verify allows users to verify the

content and non-equivocation and of a log. However b_verify does not perform any

other verification of log statement data. This must be done by the applications that use

b_verify. In this thesis we show how this protocol can support a number of different

applications without requiring a central party that is trusted by all participants.

b_verify scales by using an untrusted server to commit many new log statements

using a single Bitcoin transaction. Batching increases overall throughput and lowers cost

by amortizing Bitcoin transaction fees. One consequence is that users in b_verify must

now download additional data from the server to prove they have not equivocated. This

architecture requires careful design to avoid overwhelming the network bandwidth of the

server. In b_verify the proof for a new log statement is logarithmic in the total number

of application logs. These proofs are downloaded from the server in the form of concise

updates. A single b_verify server can provide non-equivocation to millions of application

logs.

b_verify can be used to directly build publicly verifiable registries. A registry is a

key/value store in which each key can only be modified by a specific set of users. A publicly

verifiable registry is a registry in which the value of a key can be verified by anyone. Under

the assumption that no participant can double spend Bitcoin, b_verify guarantees the

consistency and security of the registry. For demonstration and testing, we have developed

a registry application for tradeable commodity receipts that uses b_verify. This use-

case was informed by consultation with the Inter-American Development Bank and the

Government of Mexico. We implemented an initial proof-of-concept application that can

run on a mobile phone and scale to millions of users and tens of millions of receipts.

1.3 Systems That b_verify Can Improve

b_verify can be used directly by systems that require non-equivocation. For example

b_verify can be used to prevent equivocation of the identity providers in CONIKS, a

13

public key infrastructure [9]. CONIKS currently relies on identity providers to audit each

other in order to detect equivocation. b_verify instead use Bitcoin to efficiently prevent

all of these providers from equivocating.

b_verify can be used to improve secure data management systems. b_verify could

remove the need for a trusted party in Verena, an end-to-end data management system for

building web applications [17]. b_verify can also be used to implement any number of

tamper evident log described by Crosby without requiring the users to always be online [18].

Similarly b_verify could be used to ensure that any number of consistency servers in

SUNDR, a system for untrusted data management, do not equivocate [11]. This would

prevent malicious users from colluding with the consistency server to present inconsistent

versions of data. Finally b_verify could be used to improve the security of systems for

creating publicly verifiable digital credentials. This will be discussed explicitly in Section

4.4.

b_verify however cannot determine the correctness of the data in log statements

directly. b_verify only guarantees that all parties will agree on the contents and non-

equivocation of the log. Applications using b_verify must have other mechanisms to

ensure that log data is correct.

1.4 Overview

The contributions of this thesis are the following:

1. An open-source protocol for scalable, low-cost and efficient non-equivocation using

Bitcoin.

2. An API for building applications without a trusted party.

3. A design for publicly verifiable registries on b_verify.

4. An example application to demonstrate the aforementioned properties.

5. An evaluation showing a single b_verify server can scale to a million logs, process

over a thousand log statements per second while only requiring clients to download

14

kilobytes of data per day.

This thesis is structured as follows: we review the background necessary to understand

b_verify in Chapter 2. We describe the design of the core protocol in Chapter 3. Chapter

4 shows how b_verify can be used to implement a publicly verifiable registries. We

present an example public registry application for commodity receipts in Chapter 5 and

show how b_verify improves its security. We discuss our prototype implementation in

Java in Chapter 6 and evaluate b_verify in Chapter 7. Finally we review related systems

in Chapter 8 and discuss future work in Chapter 9.

15

Chapter 2

Background

This section consists of a short overview of Bitcoin, Catena and authenticated data

structures that is necessary to understand the design and motivation of b_verify.

2.1 Bitcoin

Bitcoin is a network of peers that run a software protocol to maintain a ledger of

ownership for a digital currency [19]. The ledger consists of many individual transactions

that transfer ownership of the currency. These transactions are grouped into blocks. Each

block consists of a Merkle tree of transactions and an eighty byte block header. The block

headers each contain the Merkle root and the hash of the previous header, forming a hash

chain. The combination of both the blocks and the headers is commonly referred to as the

blockchain. Peers in Bitcoin follow the valid chain with the largest proof-of-work. This

chain constitutes the canonical ledger of ownership for the currency. In Bitcoin, a subset

of peers called miners compete to solve a hash-puzzle which entitles them to add a block

to the chain. These peers are encouraged by a reward system to add valid blocks to the

canonical chain. The original Bitcoin whitepaper argues that as long as the majority of the

computational power of the network is controlled by rational actors then the canonical chain

will always grow the fastest [19]. This is critical for the security of the currency.

An interesting property of Bitcoin is that it is permission-less which means that any new

peer can join the system and participate. To participate in Bitcoin, a peer must download

16

and verify the entire Bitcoin blockchain, which is over 180 gigabytes as of August 1, 2018.

However Bitcoin provides support for Simple Payment Verification, a process by which a

peer can determine if a transaction has been included by downloading and verifying only the

block headers and a Merkle inclusion proof. Under this security model, the user assumes

the miners of Bitcoin will only produce valid blocks that do not contain double spends. In

exchange for this weaker assumption, the user does not verify every transaction or download

large amounts of data. The Bitcoin protocol has proven resistant to censorship and attack:

Bitcoin consistently functions at Internet scale despite constant attack [15].

2.2 Catena

Catena is a protocol for an untrusted server to maintain a log of statements [12]. A

Catena server is forced to commit to its log using Bitcoin. This is done by constructing a

sequence of Bitcoin transactions with two outputs: a pay to the hash of a public key and an

OP_RETURN. The OP_RETURN opcode is an unspendable output used to embed up to 80

bytes of data in Bitcoin without polluting the pool of unspent outputs. The statements in the

log are stored in the OP_RETURN outputs. To append a new statement to the log, the server

signs and broadcasts a Bitcoin transaction spending the previous transaction’s pay to public

key hash output and includes the new statement in the OP_RETURN.

By using Bitcoin to commit the log statements, Catena makes it very hard for the

server to equivocate about its log. To create remove, change or re-order log statements

the server must create and successfully include different Bitcoin transactions that spend

the same input. This implies that the server must double spend Bitcoin, which the Bitcoin

protocol is designed to prevent. Catena clients can download and verify a Catena server’s log

using Bitcoin’s Simple Payment Verification. This requires the Catena client to download

only the Bitcoin headers, the log transactions and Merkle paths proving inclusion of those

transactions. If the server cannot double spend Bitcoin, then this constitutes a proof of

non-equivocation. This proof is small enough that it can be downloaded and verified on a

mobile device.

However Catena can be impractical to use because it is slow, expensive and does not

17

scale. To use Catena, the application must set up and fund a Catena server. To add a

new statement to the log, Catena must spend a Bitcoin transaction. Since each Catena

statement requires a Bitcoin transaction, the number of applications Catena can support

is limited. Furthermore getting a transaction included quickly in Bitcoin can require a

considerable fee. In January 2018, the average fee for inclusion in the next block was almost

forty dollars [20]. High fees translate to increased latency and higher operation costs for

applications using Catena. The more applications using Catena, the worse this problem will

become. b_verify attempts to address many of these limitations.

2.3 Authenticated Data Structures

Authenticated data structures are a class of techniques in which a large data set is

concisely and completely summarized by a small verification object. The verification object

can then be used to prove properties about the underlying data. For example given the

verification object for an authenticated set, one can prove membership of an element in that

set using a short proof. Authenticated data structures decouple the storage of the data from

its integrity. We refer the reader to Martel [21] for a description of the standard model and to

Tamassia [22] for an overview. Papamanthou [23] and Li [24] provide instructive examples

for how authenticated data structures can support membership queries and aggregations on

larger data sets.

The commitment server in b_verify uses an authenticated data structure similar to a

sparse Merkle tree [25]. Authenticated data structures are also relevant becuase they can

be leverage by applications to allow b_verify to secure larger data sets. This is done by

using b_verify to store verification objects so that storage of data can be outsourced. The

commodity receipt application we develop with b_verify, discussed in Chapter 5, will

demonstrate how this can be done.

18

Chapter 3

Design

S_Alice, 3
ṓ_Alice, 3

S_Alice, 2
ṓ_Alice, 2

S_Alice, 1
ṓ_Alice, 1

S_Alice, 4
ṓ_Alice, 4

S_Bob, 2
ṓ_Bob, 2

S_Bob, 1
ṓ_Bob, 1

S_Bob, 3
ṓ_Bob, 3

S_Carol, 2
ṓ_Carol, 2

S_Carol, 1
ṓ_Carol, 1

S_Carol, 3
ṓ_Carol, 3

S_Carol, 5
ṓ_Carol, 5

S_Carol, 4
ṓ_Carol, 4

S_Carol, 6
ṓ_Carol, 6

S_Carol, 7
ṓ_Carol, 7

Alice’s Log
Controlled By:
PKAlice

Bob’s Log
Controlled By:
PKBob

Carol’s Log
Controlled By:
PKCarol

i i+1 i+2 i+3 i+4 i+5 i+6Bitcoin
Blockchain

Figure 3-1: Logs of statements for b_verify clients Alice, Bob and Carol. Each client’s
log is identified by his or her public key (𝑃𝐾) and can only be updated with knowledge of
the private key. Log are statements (𝑆) are ordered and must be signed (𝜎) by the client.
b_verify commits these log statements to Bitcoin, which is shown at the top. In this case
the client logs begin at Bitcoin block 𝑖. b_verify prevents clients from modifying each
other’s logs and makes equivocating about the log statements as hard as double spending
Bitcoin.

19

3.1 System Model

In b_verify there are many clients, a single commitment server and Bitcoin. Each

client produces a log of statements. We assume that there is a public key infrastructure

such that clients can be identified by public keys. The goal of b_verify is to ensure

consistency: all clients must read the same sequence of statements for each log. b_verify

does this by witnessing the logs to Bitcoin. This is done efficiently through the use of a

commitment server. To simplify the explanation we will model each log as controlled by a

single client with a public/private key pair. 1 Additionally we describe the design in the case

of a single commitment server. The protocol is not limited to a single server. In practice

there could be several commitment servers operated by different parties and clients can

chose which server to use.

b_verify supports many kinds of clients, including light clients which run on devices

with intermittent network connections and limited storage capacity such as mobile phones.

However the commitment server is assumed to have significant storage capacity, compu-

tational resources, and network bandwidth. Finally both the clients and the commitment

server are assumed to be able to access the Bitcoin network.

3.2 Threat Model

Clients in b_verify may attempt to modify each other’s logs. A client may also

attempt to equivocate about his own log by presenting a different sequence of statements.

Clients in b_verify can collude with each other or with the commitment server. However

all clients are assumed to have the correct b_verify software and to trust the operating

system on which this software is running. Other techniques, such as code signing can be

used to securely distribute source code [26].

The commitment server is not trusted by the clients and can attempt to arbitrarily modify

the data it stores. However we assume that the commitment server is always available to

clients and that all participants can access Bitcoin. Participants communicate over unsecured

1b_verify also supports logs that are controlled by multiple clients but this is omitted to keep the
explanation clear.

20

Internet connections. However we assume that no participant can collide hash functions or

forge digital signatures. Additionally we make the stronger assumption that no participant

can successfully execute a double-spend attack against Bitcoin. All log data in b_verify

is assumed to be public.

3.3 Example

To make b_verify concrete consider a distributed system for monitoring pollution. In

this system a network of volunteers operate sensors and report measurements of pollution.

We assume that there is some way of identifying volunteers using public keys and we assume

that these volunteers report measurements independently of each other. The goal of the

system is to ensure that all users see the same readings. However users do not want to rely

on a trusted third party to report the sensitive pollution data. The system can use b_verify

to store the measurements by having each volunteer log the readings using a b_verify

client. b_verify ensures the consistency and integrity of the logs. Using b_verify the

measurements cannot be retroactively modified, even by the volunteer who created them.

3.4 Building b_verify From Catena

b_verify is best introduced by starting with Catena and trying to use it to for non-

equivocation in a large application. As an example consider using Catena for the monitoring

application. Each volunteer could run a Catena server to record measurements. This is

desirable because it makes tampering with the log measurements as hard as double spending

Bitcoin. Unfortunately it would also require one chain of Bitcoin transactions per volunteer.

This is inefficient, expensive and limits the number of volunteers that the system can support.

b_verify can be thought of as a new protocol that replaces Catena to support applications

of this type more efficiently without introducing additional trust assumptions.

In b_verify a single server, called the commitment server, is used to manage many

independent client logs using a single chain of Bitcoin transactions. The commitment

server stores the client logs in an authenticated data structure and runs a Catena server to

21

witness the data structure’s changing roots to Bitcoin. This commits to the history of client

logs. Clients in b_verify use a Catena client to download the roots and verify that the

commitment server has not equivocated. The authenticated data structure allows the server

to construct cryptographic proofs about the contents of each client’s log. The correctness of

these proofs can be evaluated by the clients using the witnessed roots.

This design allows clients to create logs, add statements to logs and efficiently verify the

non-equivocation of a log without trusting each other or the server. The primary benefit of

this architecture is that now the commitment sever can update many logs in a single Bitcoin

transaction, dramatically reducing the cost of each statement and increasing the scalability

of the system. For example if the monitoring application uses b_verify, then hundreds

of thousands of volunteers can run send measurements to the server to be committed as a

batch for the cost of one Bitcoin transaction.

This design has an interesting consequence. Clients can download a proof of non-

equivocation for the roots from Bitcoin using Catena. However to prove the contents

and non-equivocation of a client’s log requires additional work. Clients in b_verify

must periodically download this data from the server. In the context of the monitoring

application this means that volunteers must download data form the server to verify that a

new measurement has been recorded and to prove they have not equivocated. We will show

how b_verify’s choice of data structures minimizes the amount of data that needs to be

downloaded by clients and keeps the proof of non-equivocation for a client’s log small.

3.5 API

b_verify provides the abstraction of many logs of statements that are each controlled

by a single client as shown in Figure 3-1. 2 Each client maintains a proof of the contents

and non-equivocation of her log. b_verify’s API consists of four methods: CreateLog,

AppendStmt, VerifyStmt and GetUpdates. These methods are described in Table 3.1.

Clients can create logs on demand by calling CreateLog on the commitment server with

their public key. In the example monitoring application, a volunteer can call this method

2Logs controlled by multiple clients can be implemented using multisig schemes.

22

Function Explanation
S.CreateLog(pk, s, sig) → proof Invoked by a client with public key pk

on the commitment server to initialize a
new log. The client includes an initial
statement s and a signature over the state-
ment sig. The commitment server returns
a proof that the log has been created

S.AppendStmt(pk, s, sig) → proof Invoked by a client with public key pk on
the commitment server to append a new
statement s to the end of its log. The client
includes sig, its signature over the mes-
sage. The server returns a proof that the
update has been applied to the client.

C.VerifyStmt(pk, s, i, proof) →
proof

This method is invoked on the client to
verify that the client with public key pk has
the statement s in the ith entry of its log.
Returns true if the statement was made and
false otherwise. Must be invoked in the
order 𝑖 = 0, 1, 2, ...

S.GetProofUpdates(pk) →
proof_updates

Invoked by a client with public key pk to
get proof_updates needed to update the
proof of non-equivocation proof for her
log. Clients must call this method on the
server to update their proofs after the com-
mitment server has committed new up-
dates

S.MultiAppend({pk, pk’, ..., s,
{sig, sig’, ...}) → proof

Invoked by a group of clients with public
keys pk, pk’, ... to atomically add the state-
ment s, to the end of their respective logs.
All of the clients must include signatures
for this statement. The server returns a
proof that the statement has been added to
all of the logs.

Table 3.1: b_verify API. The first group of methods are similar to the API of Catena but
are implemented for multiple logs efficiently. The method GetProofUpdates represents the
additional data that clients in b_verify must download relative to Catena. MultiAppend
is a new method to support applications by allowing clients to make atomic statements
across multiple logs.

to initialize a new log to record measurements. Once the log has been created, new state-

ments can be added to the log as needed using the AppendStmt method. Volunteers call

use this method to record new measurements. Volunteers can record new measurements

23

independently of one another.

Because clients do not trust the commitment server or one another, these methods return

a proof that can be checked by the client using the VerifyStmt method to ensure that a

log has been created or a statement has been added. This allows the client to maintain a

proof of the contents and non-equivocation of his log. Furthermore these proofs are publicly

verifiable which means that the correctness of the proof can be evaluated by any client.

b_verify keeps these proofs small so that they can be easily shared with other clients.

b_verify’s batching requires clients to periodically download additional data from

the server. This is done using the GetProofUpdates method. Clients call this method after

the server has committed new updates. Note that this does not require clients to always be

online. Clients can invoke this method whenever they come online without affecting the

security of their log.

In b_verify it is possible to atomically append a new statement to multiple logs with

the MultiAppend method. 3 Critically this method does not require any additional trust

assumptions. This method can be used for interaction between multiple logs that are part of

the same application or between different applications entirely. For example in a rewards

systems, two vendors tracking balances using two b_verify clients may agree to credit

one account if and only if another account is debited. This could be implemented atomically

using MultiAppend to add a statement to both logs. We will demonstrate the utility this

type of interaction in building applications in Chapter 5.

3.6 Tracking Client Logs

The server tracks the client logs using a Merkle Prefix Trie. This authenticated data

structure is a binary prefix trie which commits to a mapping from keys to values. Each client

log in b_verify has an entry in the map with the key of the hash of the log owner’s public

key and the value of the current signed last statement in their log as shown in Figure 3-2.

The leaves in the trie are the (key, value) pairs and each pair is stored at a location

3This method strictly subsumes the AppendStmt method, but is presented separately to simplify explana-
tion of the API.

24

R1 R2 R3

Merkle Prefix Trie
Stored on
Commitment
Server Path to

Alice’s
log

Current Tail of Alice’s
Log (Signed
Statement #1)

New Statement in
Alice’s log (Signed
Statement #2)

Changing root is
witnessed to Bitcoin
Using Catena

OP_RETURN R1 OP_RETURN R2 OP_RETURN R3

S_Alice, 1
ṓ_Alice, 1

S_Bob, 1
ṓ_Bob, 1

S_Carol, 1
ṓ_Carol, 1

S_Alice, 1
ṓ_Alice, 1

S_Bob, 1
ṓ_Bob, 1

S_Carol, 2
ṓ_Carol, 2

S_Alice, 2
ṓ_Alice, 2

S_Bob, 2
ṓ_Bob, 2

S_Carol, 2
ṓ_Carol, 2

Figure 3-2: Tracking logs using the commitment server. The server stores the last signed
statement in each log using a Merkle Prefix Trie. The trie changes over time as new
statements are added to the logs. These modifications are shown in bold. The different
versions of this trie completely track client logs and the changing roots, 𝑅1, 𝑅2 and 𝑅3 are
witnessed to Bitcoin.

determined by interpreting the key as a path in the trie. To commit to the mappings the

leaves are recursively hashed to produce a single root hash value. To prove membership or

non-membership of a (key, value) pair, one can provide a path from the leaf to the root with

the hash values for all nodes on the co-path. The proof is checked by re-hashing the nodes

on the path and checking if the result matches the root hash. This allows clients to verify the

statement at the end of a client’s log.

This data structure changes over time as clients add statements to their logs. The versions

of this trie can be used to prove the entire history of each log. We chose this data structure

because membership proofs are small and, we can we can store the versions of the tree

efficiently. Using a Merkle Prefix Tire with 𝑁 entries, the size of a membership proof for a

single entry is a random variable with expectation 𝑂(log(𝑁)). Crucially for b_verify,

when only a few mappings in this data structure are changed, most of the co-path nodes

in the proof for each entry do not change. For example if a single mapping is updated,

𝑂(log(𝑁)) hashes in the data structure change (in expectation), but only one co-path node

25

in the proof for any given (key, value) mapping changes. If there are updates to 𝑈 mappings,

then updating each proof requires transmitting 𝑂(log 𝑈) hashes in expectation. If 𝑁 = 𝜔(𝑈)

then transmitting updates to clients is asymptotically more efficient than re-transmitting the

entire path.

This allows the server to store the changing versions of the data structure efficiently. Fur-

thermore the server can send a client new membership proofs efficiently by only transmitting

the parts of the proof that have changed from the previous version.

3.7 Appending Statements to a Log

A
#2

A
#1 S

B
#1 S

1

1

0

0

1 0

Proof Contains Paths Showing Statement Added to Both LogsLogical View

S_Alice, 3
S_Bob, 2

ṓ_Alice, 3
ṓ_Bob, 2

S_Alice, 3
S_Bob, 2

ṓ_Alice, 3
ṓ_Bob, 2

Alice’s
Log

Bob’s
Log

Figure 3-3: The proof returned when calling MultiAppend to add a statement 𝑆 to the
logs for Alice (public key 10...) and Bob (public key 01...). The statement is added to both
logs atomically. The proof demonstrates this by including Merkle paths showing that the
statement has been added to the respective logs.

When a client wants to add a new statement to the end of his log he invokes the

AppendStmt method on the commitment server and provides the new signed statement.

The commitment server checks the signature and then updates the log entry in the Merkle

Prefix Trie to contain the new signed statement and re-calculates the root hash of the Merkle

Prefix Trie.

26

Since the server is not trusted by the client, the server returns a proof that the log

statement has been committed. This proof consists of the path in the Merkle Prefix Trie to

the new statement along with a new root. The procedure for MultiAppend is similar, but

the proof includes one path for each log, showing that the new signed statement has been

added. An example is given in Figure 3-3. Clients are protected from partial application

because the message they sign references all of the logs which must add the statement. The

statement is only considered valid if it is included in all of the logs.

Using the membership proofs the client can verify the contents of the log over time.

However there is a significant problem: to check these proof clients must have the correct

root values. A malicious server could potentially present a different history of root values to

clients to allow clients to equivocate about their logs. For example a volunteer could collude

with the server by singing a different pollution measurement and retroactively inserting this

measurement into his log.

b_verify prevents this by witnessing the roots of the Merkle Prefix Trie to Bitcoin

with Catena. Once a root has been witnessed it cannot be modified and all clients will see

the same roots. Clients do not consider a log statement to be committed until they have

both a Merkle proof to the issued statement and an SPV proof that root has been witnessed

in Bitcoin. The server may batch many new log statements into a single commitment for

increased throughput and to amortize Bitcoin transaction costs. Batching also reduces the

total number of hashes that must be re-calculated by the commitment server to update the

Merkle Prefix Trie.

3.8 Proof of Non-Equivocation

The proof of non-equivocation consists of the witnessed roots in Bitcoin and membership

proofs in the Merkle Prefix Trie for the log statements. Consider the example shown in

Figure 3-4 for Carol’s log. Her log contains two statements 𝑆𝐶𝑎𝑟𝑜𝑙,1 and 𝑆𝐶𝑎𝑟𝑜𝑙,2, and the

commitment server has witnessed three roots 𝑅1, 𝑅2 and 𝑅3 in Bitcoin. The witnesses in

Bitcoin can be considered a proof that the commitment server has not equivocated. This

proof can be downloaded from Bitcoin SPV.

27

1

1 0

0

S_Carol, 1
ṓ_Carol, 1

1

1 0

0 1

1 0

0

Witnessed
Roots
Downloaded
From Bitcoin

Merkle
Paths To
Carol’s Log
Statements

Proof of Non-Equivocation for Carol’s Log

OP_RETURN R1 OP_RETURN R2 OP_RETURN R3

S_Carol, 2
ṓ_Carol, 2

S_Carol, 1
ṓ_Carol, 1

R1 R2 R3

Figure 3-4: The complete proof of Non-Equivocation for Carol’s Log. The top portion can be
downloaded directly from Bitcoin using Catena. The bottom portion is downloaded initially
from the commitment server and consists of Merkle paths. Hash values are represented by
triangles. Only the portions in the dark borders are sent by the client directly. Repeated hash
values can be inferred when checking the proof. Once Carol has this proof she can share it
on a client-to-client basis.

Showing that Carol has not equivocated about her log requires an additional proof consist-

ing of the Merkle paths from 𝑅1 and 𝑅2 to her first signed log statement (𝑆𝐶𝑎𝑟𝑜𝑙,1, 𝜎𝐶𝑎𝑟𝑜𝑙,1)

and from 𝑅3 to her second signed log statement (𝑆𝐶𝑎𝑟𝑜𝑙,2, 𝜎𝐶𝑎𝑟𝑜𝑙,2). Note that her log did not

change when the server witnessed 𝑅2, but her proof includes a path to this witness showing

that no new statement was issued. This can be thought of as a non-inclusion proof and is a

necessary consequence of managing multiple logs on the server. If the client did not include

this proof, then it would be possible for the client to equivocate by omitting entries in its log.

When the server witnesses a new commitment, clients whose logs have not changed still

download a proof from the commitment server using the GetProofUpdates method.

The Merkle paths in the proof may contain many of the same co-path hashes, as shown

in the Figure 3-4. This has two implications for b_verify. First it allows b_verify to

reduce the size of the proofs by avoiding transmitting the same co-path pre-image multiple

times. Proofs contain each pre-image exactly once and clients simply infer the pre-images

28

for co-path nodes that have not changed. The second implication is that clients can more

efficiently request proof updates from the server by transmitting only of the nodes on the

client’s Merkle path that have changed rather than the full path. This reduces the bandwidth

requirements of the system.

3.9 Server Misbehavior

If the commitment server equivocates then there exist two signed transactions spending

from the same output with two different statements. This is a non-repudiable proof that the

server has equivocated. A similar proof exists if a client equivocates about his log, but for

this to occur both the commitment server and the client must collude.

The commitment server can replay a previously signed statement in a client’s log,

partially apply an update to multiple logs or simply commit arbitrary data. If the server

partially applies an update a non-repudiable proof of this behavior exists. This proof consists

of the Merkle path to the partially applied update. We leave detecting and resolving replay

attacks up to the clients. One useful approach will be discussed in Chapter 4. However if the

server commits arbitrary data, it will not be able to return any valid proofs when clients call

GetProofUpdates. In this case the misbehavior of the server can be shown interactively.

3.10 Handling Bitcoin Re-organizations

In Bitcoin the canonical blockchain may change in a so called reorganization that

removes blocks from the chain. This can be caused by network latency between miners

or because of a buggy or malicious miners. During a re-organization, the commitment

server needs to re-broadcast the Bitcoin witness transactions. The Bitcoin peer network

does this automatically by dumping these transaction back into the pool of unconfirmed

transactions whenever a re-organization is detected. However a malicious client could

still broadcast other transactions containing different log statements. The Bitcoin protocol

makes the likelihood of a transaction being removed from the canonical chain decrease with

each additional block (these additional blocks are often called confirmations). To guard

29

against this clients in b_verify may wait for several blocks before accepting a new root

as committed.

3.11 Security Argument (Sketch)

For the commitment server to equivocate, it would need to create a different chain of

transactions and successfully include this chain in Bitcoin. This requires executing a double

spend attack in Bitcoin which is prohibited by assumption. The full argument and security

analysis is presented in other work [12].

We now show that non-equivocation of the commitment server implies non-equivocation

of each client’s log. For a client to equivocate about his log he would need to produce valid

proof from the same witnessed roots to a different sequence of statements. This requires

producing Merkle proofs from the same root hash to two different statements which requires

finding a collision in a cryptographic hash function. This is prohibited by assumption. Also

note that each client can only produce new statements for his log. This is because all log

statements are signed, which requires knowledge of a private key. For the server or some

other client to produce a new statement would require them to forge a digital signature

which is prohibited by assumption.

The commitment server cannot equivocate or forge log entry proofs, but it can arbitrarily

modify the data it stores. This is discussed in Section 3.9 and can be detected and proven.

Other steps can be taken by an application to prevent replay attacks. These will be discussed

in Chapter 5. The commitment server can however simply chose not to apply updates or to

go offline. This could allow it to censor client applications. In practice we expect these risks

to be mitigated by a desire to protect the reputation of the party operating the commitment

server. If participants are unhappy, they can also chose to start running a new commitment

server.

30

3.12 Cost

The server must pay high fees to get its transactions included in the next Bitcoin block.

On August 1st, 2018 this feed would be several dollars. If the demand for Bitcoin transactions

or the price of Bitcoin increases then these transactions will become more expensive in

dollar terms. However note that in b_verify, a batch of many statements is committed

with a single Bitcoin transaction so the cost is amortized. Therefore in b_verify most log

statements will cost only thousandths of a cent. This is a small price to pay for removing

the need for a trusted party. In practice we expect the server operator to fund the Bitcoin

transactions or to charge the clients for new statements.

3.13 Fault Tolerance

If the commitment server goes offline, clients will not be able to commit new log

statements. However if clients have fresh proofs, these proofs are still valid and can continue

to be used. If the server has produced a new commitment, but has not yet provided proofs

then clients may only have stale proofs. Resolving this situation is more challenging. If

the server has become permanently unavailable then the clients can come together and pool

their logs to create valid proofs by reconstructing the Merkle Prefix Trie stored on the server.

Unfortunately if a client simply chooses to not participate then reconstructing the proofs

becomes computationally impossible. Improving the fault tolerance of b_verify is left to

future work.

3.14 Privacy and Legal Risks

Privacy was not a design goal for b_verify. The protocol does not provide any

guarantees about the privacy of the data and applications must use other techniques if

privacy is a concern. However b_verify does provide a form of weak privacy. Clients

in b_verify only need to reveal a hash of the log statements to the server rather than the

actual log statement. Therefore the operator of the server does not necessarily know the

31

contents of logs he stores. This is an acceptable level of privacy for many applications and

may reduce the legal risks associated with operating a commitment server.

32

Chapter 4

Publicly Verifiable Registries

4.1 Definition

A registry is a key/value map in which each entry is controlled by a specific set of users.

For example a public key infrastructure is a public registry mapping plain-text identifiers

(e.g. Google.com) to cryptographic public keys (e.g. 559436F4F4416C7AB8D21...) in

which the public key for a user can only be modified by a designated certificate authority.

Registries process updates to entries and perform look-ups. It is critical that the registry is

consistent for all users.

Many critical systems can be modeled as registries. For example the hash server in

Verena [17], a system that allows web clients to verify the correctness of queries and

computations on data, [17] can be viewed as registry of verification objects. Similarly tor

directory servers can be viewed as registries of tor nodes.

Building a registry without a trusted party is difficult and requires solving multiple

challenging problems. The registry must prevent equivocation while supporting efficient

look-ups that allow a user to determine the value of a key in the registry. Users should be able

to verify if the value is correct. A publicly verifiable registry is one in which this verification

can be performed by anyone. Ideally even light clients with intermittent connections and

limited resources should be able to look up and verify the value for a key in the registry.

This is often not the case: for example replaying a Blockstack log to determine a name

mapping cannot be done on a mobile device because it requires downloading Gigabytes

33

of data. Finally public registries must support updates to the value of a key, and ideally

allow users to update multiple keys simultaneously. The registry must ensure that only the

appropriate user(s) can update the value of a given key.

In this section we show how b_verify can be used to build a publicly verifiable

registry with these properties. Registries built with b_verify support updates to multiple

entries and allows light clients to verify lookups. b_verify’s model of a public registry

could be applied to any of the applications discussed previously and can also build new

kinds of registries. The application described in Chapter 5 will serve as an example.

4.2 Model and API

We model a registry as a map from keys to values. Each entry in the map is controlled

by a set of cryptographic public keys. The registry is a pair of methods: Put, Get. The Put

method is used to update the values of one or more keys, and requires signatures from the

public keys that control the modified entries. The Get method returns the value for a key and

checks that this value is correct. Behind the scenes Put and Get create and evaluate proofs

using b_verify. Note that in a registry users do not necessarily care about intermediate

states. We assume that users only require the registry to not equivocate and to ensure that

Get always returns the result of the latest Put.

4.3 Design

b_verify can store each entry in the registry as its own log controlled by a set of

cryptographic public keys. We assume that clients have some scheme for determining which

log stores a given key and determining the public keys which must sign updates. This could

be calculated dynamically, distributed as part of the source code of an application or be

part of the client PKI. The log contains a history of the values for the entry, with the last

statement in the log holding the current value.

A Put is implemented by adding a statement containing the new value to the log. Puts

to multiple keys can be implemented atomically using the MultiAppend method. The Get

34

Server Witness
Transactions

Implementation of the Entry for Key K in the Registry

Log Statements contain a
history of the values for the
key and the TXID of the
Previous Server Witness
Transaction

TXID: 1af...

OP_RETURN Ri

TXID: 962...

OP_RETURN Ri+1

TXID: ccd...

OP_RETURN Ri+2

Tx:
TXID: f02..

OP_RETURN Ri+3

Value V’’
{ṓ_Owners}
TXID: 962...

Value V’’
{ṓ_Owners}
TXID: 962...

Value V’
{ṓ_Owners’’}
TXID: 1af...

Value V
{ṓ_Owners}
TXID: 002..

Value V’’
{ṓ_Owners’’’}
TXID: 962...

The current value for key K is V’’
(the last statement in the log)

Log for key K, controlled by
the set of public keys
owners

Proof Used by Get(K)

Merkle Paths from the
creation of the last log
statement onwards

Including the TXID
fixes location of a
statement and
prevents it from
being replayed

Current Value V’’

Figure 4-1: Overview of the design of a registry using b_verify. The registry stores
key/value maps using b_verify logs. The setup for a single key K is shown along used
by the method Get(K) to verify the value of the key.

method should return the value stored in the last statement in the log. The proofs for these

operations are based on log proofs in b_verify.

Using b_verify guarantees the consistency of the log and ensures that only statements

signed by the correct public keys can be added. There is still a potential problem: a malicious

server might attempt to replay a previously signed log statement. b_verify lets client

decide how best to prevent replay attacks. The simplest way would be to have clients number

their log statements. If clients expect to mostly read entire logs this works just fine. However

for clients in a public registry this is not optimal because clients only care about the last

statement in the log. Clients do not want to replay the entire log just to determine the last

statement.

Our design solves this problem by including the Bitcoin transaction id of the prior server

commitment in the log statements. This fixes the location of the statements without requiring

the client to replay the log. We implement Get by checking a proof of the last log statement

as shown in Figure 4-1. This proof has two components: first a proof that the commitment

server has not equivocated, as described in Section 3.4, and second a proof that a specific

35

statement is located at the end of a client’s log. This second proof is just the last portion of

the log proof as described in Section 3.8.

4.4 Improving BlockCerts Using a Public Registry

BlockCerts is an emerging standard for creating, issuing and verifying digital credentials

[27]. For example BlockCerts has been used to issue degrees to MIT students [28]. The

goal of BlockCerts is to reduce the trust required in credential issuers and to improve the

verifiability of digital credentials by using a public ledger. BlockCerts has many different

implementations that use various public ledgers. The hope is that using public ledgers can

improve trust in the records. One encouraging example is that a Chinese court recently

accepted this method to legally determine the creation time of a document [29].

However one potential problem for BlockCerts is revoking credentials. Currently

BlockCerts is investigating how this could be done and has a current proposal using Ethereum

[30]. This would require light clients to download the Ethereum block headers which as

of August 1st, 2018 are 3 GB. We show how BlockCerts could alternatively implement

revocable credentials using a publicly verifiable registry with b_verify. This only requires

light clients to download about 40 MB of data. In this design each BlockCerts issuer has an

entry in the registry. The value of an issuer’s entry is the set of all currently valid credentials
1. This set will grow or shrink as new credentials are issued or revoked. To prove that a

credential is authentic, a client would keep a changing proof that a credential is in this set

by using the Get method of the public registry.

This scheme has a number of nice properties. The issuer cannot equivocate about which

credentials have been issued or revoked. Verification of a credential can be done efficiently

using the Get method. The b_verify log also contains a timestamped history, which can

be used to prove when a credential was issued or revoked. Furthermore this allows a single

b_verify commitment server to support many BlockCerts issuers, lowering the cost of

issuing and revoking credentials. The fundamental trade-off in this design is that now clients

1More precisely it would contain the verification object for the set of credentials, for example the root of a
Merkle tree of certificates.

36

must periodically update the proof for their credential. Other systems may not provide an

easy way to do this securely. For example determining a certificate has been revoked using

b_verify is better than using a URL because it does not depend on the integrity of an

external website.

37

Chapter 5

Building New Kinds of Registries With

b_verify

b_verify can be used by applications which require operations involving multiple

users such as the transfer of a digital asset. To demonstrate this we have developed an

application for issuing, redeeming and trading commodity receipts. This application does

not require users to trust each other or rely on a central trusted party. Our design solves

several technically interesting problems that exist in current systems for managing receipts

used in the developing world. The problem choice and design was informed by collaboration

with the Inter-American Development Bank and the Government of Mexico.

5.1 Commodity Receipts

Commodity receipts, also known as warehouse receipts, are used around the world to

track ownership of physical commodities such as agricultural products. For example in

many countries a farmer drops his produce off at a warehouse and is issued a warehouse

receipt. This receipt entitles the bearer to remove the goods from the warehouse. Commodity

receipts are frequently traded on international secondary markets and are used as collateral

for loans. These records are an important part of global supply chains and tracks billions of

dollars worth of goods [31–33]. Despite their importance, commodity receipts are usually

tracked using paper documents or in a centrally managed database. Unfortunately this often

38

lacks transparent and has led to fraud. Receipt and loan records can be manipulated by

insiders with high level access. In one such incident, a warehouse in China was able to issue

multiple loans backed by the same collateral [7]. The crucial technical problem that enabled

this fraud was that the warehouse could present different sets of receipts and loans without

detection.

Overall warehouse receipts have several interesting challenges that are difficult to resolve

with traditional approaches.

1. The integrity and security of the data is critical: all participants must see the same

records and it should be difficult to tamper with these records.

2. Participants do not trust each other and it is difficult to find a mutually trusted third

party. 1

3. Participants frequently collude or equivocate.

We have designed an application for commodity receipts that addresses these problems by

using b_verify to secure receipt and loan data. While the design is specific to this use

case, the attributes that make warehouse receipts interesting generalize to other assets.

5.2 Application Design

The warehouse receipt application we have developed allows users to securely issue,

redeem, and transfer receipts. The application also allows a bank to issue loans that use the

receipt as collateral. Anyone can join and participate by downloading the mobile or desktop

versions of the application and anyone can verify the ownership and integrity of a receipt.

We assume that a public key infrastructure exists so that participants can be identified by

public keys. The receipts in the application are JSON objects that contain details about the

type of good, the quantity, the quality, etc. The application supports warehouses around

the world that store goods and issue receipts to depositors - the farmers, traders and small

businesses interested in the goods. There are also banks that seek to verify the ownership of

receipts and create loans against them.
1This is particularly true in the developing world, which suffers from a lack of quality institutions [34].

39

A
lic

e
+

W
ar

eh
ou

se

b_
ve

rif
y

re
gi

st
ry

K

E
Y

: 0
x1

23

VO

R

VO

B
ob

 +
 W

ar
eh

ou
se

b_
ve

rif
y

re
gi

st
ry

 K
E

y:

ab
c1

23

VO’

R

VO

VO’

R L

A
lic

e
+

B
an

k
B

_v
er

ify
 re

gi
st

ry
 K

E
Y

:
da

a7
89

VO’’

A
lic

e
+

W
ar

eh
ou

se

b_
ve

rif
y

re
gi

st
ry

K

E
Y

: 0
x1

23

A
lic

e
+

W
ar

eh
ou

se

b_
ve

rif
y

re
gi

st
ry

K

E
Y

: 0
x1

23

B
ob

 +
 W

ar
eh

ou
se

b_
ve

rif
y

re
gi

st
ry

 K
E

y:

ab
c1

23

b_verify Registry

0x123 → VO

abc123 → VO’

da789 → VO’’

Alice+Warehouse

Bob+Warehouse

Alice+Bank

Controlled By Key Value

Operations and Data Structures in Commodity Receipt Application

Figure 5-1: Overview of the design of the commodity receipt application. The application
uses a b_verify public registry to store verification objects as shown in the top panel. The
application uses additional authenticated data structures to store the data and implement the
operations as shown in the bottom panel. In the bottom left panel Alice is issued a receipt,
R, by the Warehouse. In the bottom center panel Alice transfers a receipt, R to Bob. Finally
in the bottom right panel Alice uses a receipt, R, as collateral for a loan, L, from the Bank.
The changes to the data structures are shown, with addition represented by a red solid line
and removal represented by a red dashed line. The lines also represent Merkle proofs of
how the data structure is changed.

The overview of our design is shown in Figure 5-1. Receipt ownership is tracked by the

application using authenticated data structures. As discussed in Section 2.3, an authenticated

data structure commits to a set of data with a concise verification object. It is possible to

construct short proofs about the data that can be checked using the verification object. Each

𝑤𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒 × 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑜𝑟 and 𝑏𝑎𝑛𝑘 × 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑜𝑟 is mapped to an authenticated set, a Merkle

Prefix Trie, holding receipts or loans respectively.

The verification objects for these sets are stored in a b_verify public registry. This

allows the verification objects to be retrieved or updated using b_verify’s Put/Get

interface. Restrictions on transferring and loaning receipts are enforced through shared

ownership of the entries in the registry. Updating the value in the registry requires the

depositor and the bank (or respectively the depositor and the warehouse) to sign a new value.

40

Critically for this application, b_verify supports atomic updates to multiple keys in the

registry which will be used to implement transfer operations.

5.2.1 Application Operations and Implementation

Issuing Receipts: to issue a receipt, the warehouse employee types in the details on his

laptop. Once the details are entered, the receipt is sent to the depositor’s application, which

is running on a mobile device. If the depositor approves, both the warehouse and depositor

add the hash of the receipt to the authenticated set and compute the new verification object

independently. The applications exchange signatures for the new verification object value.

The warehouse submits the signed value by using a Put request for the registry on the

commitment server. The commitment server then updates the verification object in the

registry and returns the proof to the warehouse, who shares it with the client. At this point

both parties have a proof that the receipt was issued and that the depositor currently owns it.

Transferring Receipts: the transfer of a receipt involves three parties: the current

owner who is sending the receipt, the new owner who is receiving the receipt, and the

warehouse that has issued the receipt. During a transfer the receipt is moved from the

sender’s authenticated set to the recipient’s authenticated set. Since the current owner and

new owner do not have each other’s data, they use verification objects to construct proofs

about how the data will be updated. To perform the transfer, the sender must provide a proof

showing that he has changed his account by removing the receipt and the recipient must

provide a proof he has changed his account by adding the receipt. All parties check these

proofs and then update two verification objects simultaneously with a Put request on the

commitment server.

Loaning Against Receipts: to loan against a receipt, the receipt is moved from the

depositor’s account at the warehouse to the bank’s account at the warehouse and the bank

adds a record of the loan to the depositor’s account at the bank. This involves changing

the verification objects for three data structures simultaneously and the bank, depositor and

warehouse exchange proofs showing the data structures were updated correctly. All parties

then sign updated verification objects and submit a Put request to the commitment server.

41

Once the update has been applied the bank has control of the receipt and the client has a

record of the loan agreement. It is not possible for the client to retroactively hide the record

of the loan once it has been created.

5.3 Analysis

By using b_verify, only the owners of a key in the registry can modify its value and

Get will return the same value to all clients. We show how our design uses this primitive to

mitigate potential attacks.

A devious depositor could try to issue himself receipts or a nefarious warehouse could

try to modify a previously issued receipt, for example by reducing the amount. Both of these

actions would require updating the verification object in the registry. Our design prevents

this because the warehouse and the depositor share control the entry in the registry and

therefore both must cryptographically sign new values.

Users in the application must be able to determine who owns a receipt. In Bitcoin, each

peer must replay every transaction to determine the validity of a new transaction. Our design

tackles this problem a different way by requiring the warehouse to approve the result of

every transfer of receipt. It is up to the warehouse to do this correctly. From the perspective

of users, as long as the receipt is in the registry and signed by the required parties it is valid.

The benefit of this choice is that unlike Bitcoin, users in our application no longer need to

replay entire logs to determine who owns a receipt.

Another problem is that a depositor could attempt to transfer the receipt to two different

parties simultaneously by signing multiple new verification objects (a double spend in

crpytocurrency terminology). Our design prevents a client from successfully doing so by

guaranteeing the consistency of the registry. Because the registry contains the verification

objects, all clients will see the same set of ownership records.

This design does have some limitations. Both depositors must sign to transfer a receipt.

This requires both depositors to be online when a transfer occurs. This is inconvenient. By

requiring the warehouse to also sign we open up the possibility that the warehouse could

extort or censor depositors. However we believe that for a receipt, which has a clear real

42

world dependency on the issuing warehouse, this is an acceptable risk.

43

Chapter 6

Implementation

To evaluate b_verify, we implemented a prototype of the commitment server and

client. We then implemented a proof-of-concept for the warehouse receipt application that

uses this prototype. All codes are open source. 1

6.1 Commitment Server

We implemented a commitment server along with its core data structures in 3,033

lines of Java, excluding serialization code for messages and proofs. The Merkle Prefix

Trie implementation uses SHA-256 for the cryptographic hash function. The prototype

uses ECDSA for digital signatures on the scep256k1 curve. The witnessing for server

commitments is provided as a separate library with a modified version of Catena as the

default choice. However the server can optionally use other witnessing schemes for different

or multiple public blockchains interchangeably. The prototype server API is exposed through

Java Remote Method Invocation [35]. All proofs and update messages are serialized using

code programmatically generated by Google Protobufs [36]. Google Protobuf provides

small serializations that can be sent and received in multiple languages without having to

write serialization code manually.

1www.github.com/b-verify

44

6.2 Warehouse Receipt Application

The warehouse receipt application is implemented as a desktop client written in Java

and as a mobile client written in Android Java. The desktop client is 3,238 lines of Java, but

this includes the code required for the user interface. The android client is 35,362 lines of

Java, but nearly all of this code is from the android Bitcoin wallet used as a base.

The application stores the underlying data and maintains proofs for verification objects.

The application also keeps the private keys for the user which are necessary to sign updates

to data. All of this is hidden by the application from the user. The desktop and mobile

clients use Catnea/BitcoinJ [37] and an open source android Bitcoin wallet [38] respectively

to communicate with Bitcoin and obtain the Bitcoin commitments over SPV. Android Java

does not currently support Java RMI so the commitment server for this application was

modified to use gRPC [39]. gRPC is an RPC framework built on top of Google Protobuf

which provides convenient inter-operability between languages. In our deployment some

clients were behind NATs, and as a result not all clients were able to connect to each other

directly over IP. As a practical solution, the commitment server was modified by adding an

additional API endpoint to forward application messages between clients. The commitment

server for this application can optionally be configured to keep a back up of all of the

underlying data. The cost of using this option is that doing so requires transmitting all

application data to the server. Since clients can transmit data on a client-to-client basis it is

not strictly necessary. However doing so enables the server to provide the data to clients

whenever all the clients currently storing the data are off-line. Note that this does not affect

the security of the system since clients already assume an unreliable network and do not trut

the server.

45

Chapter 7

Evaluation

7.1 Goals and Methodology

In this section we seek to test the following hypothesis: b_verify can scale to many

client logs and be used to build practical publicly verifiable registries. To evaluate our

hypothesis we need to test the following:

1. Log proofs are small enough to be downloaded and verified on a mobile device.

2. Clients only need to download small amounts of data per day.

3. The commitment server can handle heavy client load.

4. The registry can provide an acceptable experience for users.

To answer the first two questions we analyze how log proof size and the amount of data

clients must download per day scales theoretically in terms of the number of client logs and

the number of updates. We then measure the actual sizes for a system with one million client

logs using our prototype. To determine if the commitment sever can handle a large system

we use microbenchmarks of the limiting code paths to identify the current performance

bottlenecks. We then use simulations to measure the performance of the system under heavy

client load. Finally to evaluate b_verify’s ability to build a practical registry we analyze

the theoretical size of the proof for an entry. We then measure actual sizes and evaluate the

46

user experience for our prototype for the commodity receipt application with 106 different

users and 107 different receipts and loans.

7.1.1 Test Setup

The test machine is an AMD Ryzen 7 1700 Eight-Core Processor with 31 gigabytes

of RAM running Ubuntu 18.04. All micro benchmarks and simulations were done with a

commitment server running on the test machine. Micro benchmarks are based on the single

shot times for an operation to complete from a cold start over 100 trials as measured by the

Java Micro Benchmarking Harness [40]. As a result micro benchmarks likely understate

performance in a real system. For simulations, mock clients were created using 500 Java

threads running on the commitment server concurrently with the server application. These

threads simultaneously requested thousands of operations through the server API to create

heavy load and contention for resources on the server.

7.2 Proof Size

7.2.1 Theoretical Analysis

The size of the proof for a log depends on several factors. Let 𝑁 be the total number

of client logs, and let 𝑆 be the number of server Bitcoin transactions and 𝑈 be the number

of new log statements in each server commitment. The size of the log proof up to constant

factors is described by the following equation:

log(𝑁) + 𝑆 × log(𝑈)

The first term in the sum is the length of the path to the first log statement in the initial

Merkle Prefix Trie. The second term in the sum is the amount of information required to

update this path in the subsequent versions of the MPT. As discussed in 3.6, this requires

sending data logarithmic in the number of leafs changed in the Merkle Prefix Trie, which is

log(𝑈). In b_verify, the server makes at most one transaction per Bitcoin block, so 𝑆

grows with time at a rate comparable to the Bitcoin headers. Therefore over time the proof

47

Updates Data Downloaded Per Day Proof Size (One Month) Proof Size (One Year)
103 5 KB 159 KB 1.91 MB
104 7 KB 212 KB 2.56 MB
105 8.8 KB 265 KB 3.18 MB
106 10.6 KB 318 KB 3.82 MB

Table 7.1: The approximate size of the proof and the amount of data a client must download
per day for a log in b_verify to support a given number of updates per hour. This assumes
that the server makes exactly one Bitcoin transaction per hour to commit the updates and
uses 32 byte cryptographic hashes (e.g SHA-256). This does not include the portion of the
proof that is downloaded from Bitcoin SPV.

is dominated by the second term in the formula. As long as log(𝑈) is small then the entire

proof is comparable in size to a Bitcoin SPV proof, and thus we expect it to be verifiable on

a cell phone.

The amount of data that clients need to download per day is determined by the rate at

which the server includes Bitcoin transactions in new blocks. However there are only about

144 Bitcoin blocks per day, so the amount of data that a client must download per day scales

with the logarithm of the number of updates. As long as log(𝑈) is small this is reasonable

for a mobile phone client.

To make this analysis concrete we have calculated the approximate sizes for the proofs

and the amount of data that clients must download per day in terms of the number of updates

the server can support per hour. The results are given in Table 7.1

7.2.2 Empirical Measurement

To corroborate our theoretical analysis we measured the data a client must download per

server commitment in our prototype with one million total client log and varying numbers

of updates. The results are shown in Figure 7-1. As expected, the amount of data the client

must download scales as the logarithm of the number of updates.

48

Figure 7-1: Average size of the data that must be downloaded by each client in terms of the
number of new log statements. The average size of a full Merkle path in the Merkle Prefix
Trie is provided for comparison purposes.

7.3 Performance of the Commitment Server

In b_verify the commitment server must be able to handle many concurrent requests

to commit new log statements and to produce proofs. The commitment server must do

this quickly to avoid becoming a bottleneck on the entire system. We first evaluate the

commitment server throughput via micro benchmarks of the code paths on the server to

determine the limiting operation and then use simulations of a server under heavy client

load to get a measurement of throughput under realistic circumstances.

To commit a new log statement, the server must determine the owner(s) of the log, verify

that the statement has been signed by the required parties (which involves multiple signature

checks if the log is controlled by more than one owner). If the statement is signed then the

commitment server updates the log entry in the Merkle Prefix Trie and schedules it to be

49

Operation Time (Milliseconds) Std
Check Two Signatures 4.730 0.587

Single MPT Update 0.026 0.010
Batch Commitment 12.205 4.142

Proof Updates Generation 0.528 0.447
Full Proof Generation 2.382 4.053

Table 7.2: Micro benchmarks of the commitment server. The first group of operations are
the steps to commit a new log statement and the next two groups are generations of proofs,
which are there own operations.

committed. To commit, the server must re-calculate the hashes that have changed in the

Merkle Prefix Trie. Since updates are typically committed as a batch, the commitment micro

benchmark is the time required to add statements to 1% of the logs in a system with 106

total client logs. In the micro benchmark, committing this batch requires re-calculation of

12, 312 of the 2, 885, 976 total SHA-256 hashes in the Merkle Prefix Trie.

The server also needs to generate two types of proofs: complete proofs of non-equivocation

for a log and periodic proof updates. For proof updates we select a log at random and then

add statements to 1% of the other logs. The micro benchmark for generating proof updates is

the time required to calculate and send the proof updates for the selected log. To benchmark

the time to generate complete log proofs we select a log at random and then add statements

to 10% of the remaining logs in 10 batches of equal size. The resulting micro benchmark is

the time required to calculate the entire proof of non-equivocation for the selected log.

The micro benchmarks results are given in Table 7.2. These results indicate that the

critical path for committing a new log statement is dominated by signature verification and

re-calculation of the Merkle root to be witnessed in Bitcoin. From these benchmarks we can

see that proof generation is relatively fast and can be done in milliseconds. Observe that

checking signatures and generating proofs can be done parallel. The current implementation

parallelizes both of these operations to get higher overall throughput.

To measure server throughput under heavy load we use simulations. First we simulate

lots of requests to commit new log statements and measure overall throughput. In this

simulation mock clients commit 105 new log statements. We measure the time required for

the server to verify the request, perform and commit the new statements and create proofs

50

Simulation Time (Seconds) Average Throughput
(Operations/Second)

Commit New Log Statements 97 1,112
Generate Non-Equivocation
Proofs for Logs

56 17,770

Table 7.3: Simulation of commitment server facing heavy load. In these simulations large
number of clients request operations on the server simultaneously. The test measures the
amount of time required to respond to client requests, and the average throughput of the
commitment server in performing these operations.

for the clients. In the second simulation we simulate lots of clients requesting proofs from

servers. In this simulation we update 10% of the logs in 10 batches of equal size. After

committing the new statements mock clients request a proof for each of the logs stored on

the server, requiring the sever to generate 106 proofs in total.

The results of the simulations are shown in Table 7.3. The throughput of committing

new log statements in the simulation is higher than the micro benchmark would suggest,

because signature verification is parallelized. However the throughput of proof generation

is slower than the single threaded micro benchmark. This is probably due to contention

for resources and locks. Overall the simulation results indicate that the server can process

thousands of new log statements and create tens of thousands of proofs per second while

under load and contention for resources.

7.4 Evaluating Public Registries Built With b_verify

In a registry, the most important operation is Get. As discussed in Chapter 4, we have

optimized our design to make the proof for a lookup as small as possible. Let 𝑁 be the total

number of entries in the registry and let 𝑆 be the total number of Bitcoin transactions by

the server. Consider a single entry in the registry. Let 𝑆𝑜𝑙𝑑 be the number of server Bitcoin

transactions before the last update to the registry entry and 𝑆𝑛𝑒𝑤 be the number of updates

after such that 𝑆 = 𝑆𝑜𝑙𝑑 + 𝑆𝑛𝑒𝑤. Let 𝑈 be the number of changes to the registry committed

in each server transaction. The size of the proof for the entry in the registry is given by the

following formula:

51

Measurement Issued Transferred Loaned
Number of Verification Objects Changed 1 2 3

Number of Logs Modified 1 2 3
Number of Signatures Required 2 3 3

Size of Statement (bytes) 219 366 440
Size of Signatures (bytes) 141 213 213

Merkle Proof for Statement (bytes) 994 1774 2598

Table 7.4: Breakdown of the size of the Get proof for the verification object of receipts in
the application. Transferred, issued and loaned correspond to the verification object after
the respective action has occurred.

𝑆𝑜𝑙𝑑 + log(𝑁) + 𝑆𝑛𝑒𝑤 × log(𝑈)

The first term in this formula is the cost of verifying the initial server witnesses. The

second term is the path to the last statement in the log. Finally the last term is the additional

proof that the statement is at the end of the log. Observe that if 𝑆𝑛𝑒𝑤 << 𝑆𝑜𝑙𝑑, this is much

smaller than the proof for the entire log of statements. Furthermore clients can periodically

re-insert the entry in the registry to reset 𝑆𝑛𝑒𝑤 to zero. In this case the size of the proof is:

𝑆 + log(𝑁)

Furthermore once the client has obtained the root witnesses and verified non-equivocation

of the server, each look up requires a proof of only log(𝑁). This indicates that b_verify

is particularly amenable to creating public registries.

7.5 The Commodity Receipt Application

To show that b_verify is practical we evaluate the commodity receipt application

using our prototype.

52

Figure 7-2: Size of the Get proof for the verification object in the warehouse receipt
application. Transferred, issued and loaned correspond to the verification object after the
respective operation.

7.5.1 Size of Proofs

Recall that in this application, verifying ownership of a receipt requires a Get operation

on the public registry to retrieve the verification object. 1 We measure the size of the proof

needed for this Get using our prototype.

The proof sizes for this operation are shown in Figure 7-2 and a breakdown is given in

Table 7.4. As shown in the figure, the proof becomes larger with time and the slope of this

line is log(𝑈) where 𝑈 is the total number of updates. Note that the proof for the transferred

receipt’s verification object in Figure 7-2 is larger than for an issued receipt’s verification

1Note that proving ownership of a specific receipt requires an additional proof using the verification object,
but we do not include this in our analysis because the size of this proof is determined by the authenticated data
structure and not the design of b_verify.

53

Operation Description Time
Initial Application Starting Time 10-20 minutes

Verify Ownership of a Receipt (Read) block generation time + 5 milliseconds
Changing Ownership of a Receipt (Write) block generation time + 8 milliseconds

Table 7.5: Latency measurements from the warehouse receipt application. These measure-
ments were collected using Bitcoin’s Testnet and block generation time represents the time
from when the operation was requested until the next block is generated by the network.

object. This is because to transfer a receipt, a statement must be added to two logs, one to

the sender’s log and one to the recipient’s log whereas to issue a receipt a statement only

needs to be added to a single log. In general b_verify allows for the same statement to

be simultaneously added to as many logs as desired, but adding the same statement to more

logs will increase the size of the proof for that statement.

7.5.2 Latency

Latency is an important concern in building a real-time user facing application. The

latency of the warehouse receipt application was measured and the results are given in Table

7.5. When a user starts the application for the first time the application must obtain the

server commitments from Bitcoin. This requires downloading the chain of Bitcoin block

headers, the transactions witnessing the commitments, and Merkle proofs showing that

these transactions were included. To verify the server commitments the client must check

the work done on the headers and check the inclusion proofs. As of August 1st, 2018 this

involves downloading 40 MB worth of data and computing around six hundred thousand

SHA-256 hashes. After downloading and verifying this data, everything except for the

server transactions and the last few headers may be discarded. From here on the application

only needs to verify new server transactions which can be done incrementally.

The read latency experienced by users in the commodity receipt application is determined

by the time required to check that a verification object is correct. This involves sending the

verification object along with the proof over the network. The client must then check the

proof using the server commitments obtained from Bitcoin. Checking the proof requires

verifying several signatures and calculating dozens of SHA-256 hashes. This can be done

54

quickly. Once a client has the correct verification object, the time to actually check a specific

receipt depends on the underlying authenticated data structure. In our experience read

latency in the application was small enough to avoid impacting user experience.

The update latency in the commodity receipt application is the time required to issue,

transfer, loan or redeem receipts. This is primarily determined by the time the commitment

server must spend waiting for a new Bitcoin transaction to be included. In Bitcoin, blocks

are mined probabilistically with a target average of one block per ten minutes. Therefore

the write latency of the application is considerable. Our approach to prevent this latency

from impacting user experience was have the application display the results of unconfirmed

transactions, but graphically mark this information as still tentative to inform the user.

55

Chapter 8

Related Work

The most comparable system to b_verify is Catena [12]. As previously discussed

b_verify improves on Catena by increasing throughput and lowering costs for clients. The

overhead of b_verify relative to Catena is the additional data that must be downloaded

to prove non-equivocation of a log. For a b_verify system with one million logs this

amounts to only kilobytes of extra data per day. b_verify also provides a richer API than

Catena that supports issuing statements atomically to multiple logs.

Previous work has used public ledgers for security. There are several protocols that use

Bitcoin for timestamping [41–44]. However these protocols only allow users to check that a

statement was made at specific time not whether they have equivocated. BlockCerts uses

Bitcoin for creating digital credentials. b_verify could be used as a revocation scheme to

determine if credentials have been revoked [27]. b_verify could be used to address this

problem. Colored coins, a protocol for tracking assets using Bitcoin, does rely on Bitcoin to

prevent equivocation [45]. However unlike b_verify requires one Bitcoin transaction per

transfer operation. Blockstack is a domain name system that uses Bitcoin [16]. Blockstack

depends on Bitcoin to prevent equivocation, but requires one Bitcoin transaction per domain

transfer. Blockstack could also use b_verify to reduce the number of Bitcoin transactions.

b_verify can provide the same system as EthIKS, a protocol using Ethereum to audit a

CONIKS log [13], but support light clients.

Previous work has used authenticated data structures to produce a verifiable log [18].

However this work does not leverage Bitcoin, and relies on other methods for preventing

56

equivocation. b_verify complements this research by making it possible to prevent

equivocation using Bitcoin. Verena [17] and SUNDR [11] both leverage authenticated

data structures to build higher level applications. However these systems rely on trusted

servers to prevent equivocation. b_verify could be used to remove this dependency.

b_verify is similar to CONIKS, a system for an auditable public key infrastructure [9].

However CONIKS if for a specific application and uses auditors rather than Bitcoin to

resolve problems related to equivocation.

57

Chapter 9

Conclusion

9.1 Future Work

There are many aspects of the design, implementation and practicality of b_verify

that can be improved. One problem with b_verify is that a malicious Bitcoin peer can

simply hide new witness transactions from a light client. This could allow the client to

erroneously accept an old value. Future work could examine how to improve freshness.

One possible scheme is to have the commitment server broadcast witness transactions at

predefined block heights. Thus the client knows which blocks should contain new witnesses

and the software can alert the user if it did not receive a transaction from the Bitcoin peer

network. However additional work is required to deal with re-organizations. Another weak

point in b_verify’s design is fault tolerance. Future work could investigate improving

fault tolerance by distributing b_verify’s commitment server or use multiple different

commitment servers.

The current implementation uses BitcoinJ which has not been optimized for b_verify.

Future work could reduce the latency of b_verify by optimizing its interaction with

Bitcoin. One barrier to using b_verify to prevent equivocation in existing applications

is the difficulty of integrating it. Future work could implement b_verify as a part of

commonly used frameworks or libraries. For example, b_verify could be implemented

as an in-browser web extension that is extensible and shared between applications. Doing

this would also amortize the overhead of using b_verify across many applications.

58

Currently b_verify has only been deployed on Bitcoin. We selected Bitcoin because

it is the oldest and in our opinion the most secure cryptocurrency. Additionally Bitcoin’s

SPV can be run on a mobile phone, allowing us to support light clients. b_verify however

could be adapted to other distributed ledgers. This would make the system more flexible

and allow it to exploit the different properties of these ledgers.

As we have shown, efficient non-equivocation can be used to build applications that

do not require a central trusted party. Our commodity receipt application is just one

example. Future work needs to be done to explore what other applications can be built with

b_verify.

9.2 Recap

Many different systems require non-equivocation for security. b_verify makes it easy

and inexpensive for applications to prevent equivocation by using Bitcoin. By solving this

hard problem, b_verify enables new applications which do not require a central trusted

party. Our design makes it easy to build these applications by providing an extensible API.

b_verify contributes to a growing body of research into how distributed public ledgers

can be used. In this thesis we have shown how b_verify can provide a base protocol for

building new applications and can be used to improve the security of existing systems for

managing public data. We hope that b_verify and its ideas can be used to build more

inclusive, transparent and decentralized systems.

59

Bibliography

[1] N. Leavitt, “Internet security under attack: The undermining of digital certificates,”
Computer, vol. 44, no. 12, pp. 17–20, 2011.

[2] “Fake turkish site certs create threat of bo-
gus google sites.” https://www.cnet.com/news/
fake-turkish-site-certs-create-threat-of-bogus-google-sites/.
Accessed: 2018-07-02.

[3] A. Loibl and J. Naab, “Namecoin,” namecoin. info, 2014.

[4] K. Bauer, D. McCoy, D. Grunwald, T. Kohno, and D. Sicker, “Low-resource routing
attacks against tor,” in Proceedings of the 2007 ACM workshop on Privacy in electronic
society, pp. 11–20, ACM, 2007.

[5] J. K. So, Defending against Malicious Behaviors in BitTorrent Systems. PhD thesis,
North Carolina State University, 2012.

[6] C. Cachin, I. Keidar, and A. Shraer, “Trusting the cloud,” Acm Sigact News, vol. 40,
no. 2, pp. 81–86, 2009.

[7] M. Bulletin, “After port fraud, china’s vast warehouse sector under scrutiny,” Jun 2014.

[8] J. Crotty, “Structural causes of the global financial crisis: a critical assessment of
the ‘new financial architecture’,” Cambridge journal of economics, vol. 33, no. 4,
pp. 563–580, 2009.

[9] M. S. Melara, A. Blankstein, J. Bonneau, E. W. Felten, and M. J. Freedman, “Coniks:
Bringing key transparency to end users.,” in USENIX Security Symposium, vol. 2015,
pp. 383–398, 2015.

[10] M. D. Ryan, “Enhanced certificate transparency and end-to-end encrypted mail.,” in
NDSS, 2014.

[11] J. Li, M. N. Krohn, D. Mazieres, and D. E. Shasha, “Secure untrusted data repository
(sundr).,” in OSDI, vol. 4, pp. 9–9, 2004.

[12] A. Tomescu and S. Devadas, “Catena: Efficient non-equivocation via bitcoin,” in
Security and Privacy (SP), 2017 IEEE Symposium on, pp. 393–409, IEEE, 2017.

60

[13] J. Bonneau, “Ethiks: Using ethereum to audit a coniks key transparency log,” in
International Conference on Financial Cryptography and Data Security, pp. 95–105,
Springer, 2016.

[14] “Keybase.” https://keybase.io/. Accessed 2018-07-08.

[15] M. Vasek, M. Thornton, and T. Moore, “Empirical analysis of denial-of-service attacks
in the bitcoin ecosystem,” in International Conference on Financial Cryptography and
Data Security, pp. 57–71, Springer, 2014.

[16] M. Ali, J. C. Nelson, R. Shea, and M. J. Freedman, “Blockstack: A global naming and
storage system secured by blockchains.,” in USENIX Annual Technical Conference,
pp. 181–194, 2016.

[17] N. Karapanos, A. Filios, R. A. Popa, and S. Capkun, “Verena: End-to-end integrity
protection for web applications,” in Security and Privacy (SP), 2016 IEEE Symposium
on, pp. 895–913, IEEE, 2016.

[18] S. A. Crosby and D. S. Wallach, “Efficient data structures for tamper-evident logging.,”
in USENIX Security Symposium, pp. 317–334, 2009.

[19] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2009.

[20] “Bitcoin transaction fees.” https://bitcoinfees.info/. Accessed: 2018-07-
08.

[21] C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong, and S. G. Stubblebine,
“A general model for authenticated data structures,” Algorithmica, vol. 39, no. 1,
pp. 21–41, 2004.

[22] R. Tamassia, “Authenticated data structures,” in European Symposium on Algorithms,
pp. 2–5, Springer, 2003.

[23] C. Papamanthou, R. Tamassia, and N. Triandopoulos, “Authenticated hash tables,” in
Proceedings of the 15th ACM conference on Computer and communications security,
pp. 437–448, ACM, 2008.

[24] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin, “Authenticated index structures
for aggregation queries,” ACM Transactions on Information and System Security
(TISSEC), vol. 13, no. 4, p. 32, 2010.

[25] R. Dahlberg, T. Pulls, and R. Peeters, “Efficient sparse merkle trees,” in Nordic
Conference on Secure IT Systems, pp. 199–215, Springer, 2016.

[26] A. D. Rubin, “Secure distribution of electronic documents in a hostile environment,”
Computer Communications, vol. 18, no. 6, pp. 429–434, 1995.

[27] “Blockcerts.” https://www.blockcerts.org/. Accessed 2018-07-08.

61

[28] E. Durant, “Digital diploma debuts at mit.” http://news.mit.edu/2017/
mit-debuts-secure-digital-diploma-using-bitcoin-blockchain-technology-1017.
Accessed 2018-08-01.

[29] W. Zhao, “Blockchain can legally authenticate evidence, chinese judge rules,” Coin
Desk, July 2018.

[30] “Verifiable credentials data model.” https://w3c.github.io/
vc-data-model/. Accessed 2018-08-02.

[31] G. Onumah, “Improving access to rural finance through regulated warehouse receipt
systems in africa,” in United States Agency for International Development–World
council of credit unions conference on paving the way forward for rural finance: an
international conference on best practices. Washington, DC, June, pp. 2–4, 2003.

[32] W. Bank, “How warehouse receipts can improve lives.” https://www.ifc.org/
wps/wcm/connect/news_ext_content/ifc_external_corporate_
site/news+and+events/news/how+warehouse+receipts+can+
improve+lives. Accessed 2018-07-11.

[33] W. Bank, “Project appraisal document on a proposed loan in the amount of usd 120 mil-
lion to the united mexican states for the grain storage and information for agricultural
competitiveness project.” http://documents.worldbank.org/curated/
en/263681490714537272/text/Mexico-PAD-main-03072017.txt,
March 2017. Accessed 2018-07-11.

[34] D. Rodrik, A. Subramanian, and F. Trebbi, “Institutions rule: the primacy of institutions
over geography and integration in economic development,” Journal of economic
growth, vol. 9, no. 2, pp. 131–165, 2004.

[35] E. Pitt and K. McNiff, Java. rmi: The Remote Method Invocation Guide. Addison-
Wesley Longman Publishing Co., Inc., 2001.

[36] “Google protobuf.” https://github.com/google/protobuf. Accessed:
2018-06-30.

[37] “Bitcoinj: Java bitcoin library.” https://bitcoinj.github.io/. Accessed:
2018-06-30.

[38] “Bitcoin wallet for android.” https://github.com/bitcoin-wallet/
bitcoin-wallet. Accessed: 2018-06-30.

[39] “Google rpc.” https://grpc.io/. Accessed: 2018-06-30.

[40] A. Shipilev, “Openjdk jmh project,” URL https://web. archive.
org/web/20160119005244/http://openjdk. java. net/projects/code-tools/jmh, 2016.

[41] P. Todd, “Opentimestamps: Scalable, trust-minimized, distributed
timestamping with bitcoin.” https://petertodd.org/2016/
opentimestamps-announcement, 2016. Accessed: 2018-06-30.

62

[42] “Entrust the blockchain to notarize proof of ownership of any digital creation.” https:
//stampd.io/. Accessed 2018-07-11.

[43] “Bitcoin notary.” https://notary.bitcoin.com/. Accessed 2018-07-11.

[44] “Proof of existence.” https://poex.io/. Accessed 2018-07-11.

[45] M. Rosenfeld, “Overview of colored coins,” White paper, bitcoil. co. il, p. 41, 2012.

63

