

1 Review

Context-Aware Diagnostics Specificity (CADS) for SARS CoV-2: A Review of Sensors and Detectors

4 Yifan Tang¹, Cicero C. Pola², Carmen Gomes², Daniel Jenkins³, Evangelyn Alocilja⁴, Delphine

Dean⁵, Tzuen-Rong (Jeremy) Tzen⁶, Shoumen Palit Austin Datta^{7,8,9}, Diana C. Vanegas¹, Eric S.
 McLamore^{10*}

- ¹ Biosystems Engineering, Department of Environmental Engineering and Earth Sciences, Clemson
 University, Clemson, SC 29631, USA
- ² Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
- 10 ³ Molecular Biosciences & BioEngineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
- 11 ⁴ Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
- 12 ⁵ Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
- 13 ⁶ Biological Sciences, Clemson University, USA
- ⁷ MIT Auto-ID Labs, Department of Mechanical Engineering, Massachusetts Institute of Technology,
 Room 35-206, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- ⁸ MDPnP Interoperability and Cybersecurity Labs, Biomedical Engineering Program,
 Department of Anesthesiology, Massachusetts General Hospital, Harvard Medical School,
 65 Landsdowne Street, Suite 232, Cambridge, MA 02139, USA
- ⁹ NSF Center for Robots and Sensors for Human Well-Being (RoSeHuB), Collaborative Robotics Lab, School of Engineering Technology, Purdue University, 193 Knoy Hall, West Lafayette, IN 47907, USA
- 21 ¹⁰ Department of Agricultural Sciences, Clemson University, Clemson, SC 29634, USA
- 22 *Corresponding author Eric S. McLamore: emclamo@clemson.edu; +1-864-656-3250
- 23 Received: date; Accepted: date; Published: date

24 Abstract: Engineering a medical device as a low-cost, non-invasive diagnostic tool for surveillance 25 of transmission and infection in humans, and animals, is not only critical in a pandemic but also a 26 routine public health necessity. If the pharmacokinetics and pharmacodynamics of binding target 27 proteins with specificity in vitro (device-based diagnostics) provide clues to therapeutic applications 28 (in vivo) then we may have also laid the foundation for potential use in prevention. In this review, 29 we establish a first-principles classification strategy for categorizing devices based on the nature of 30 molecular interactions between targets and sensor recognition elements. In principle, it is applicable 31 to any infectious agent or physiological dysfunction where one or more target molecules have been 32 identified and the specificity of the interaction is documented. Using this approach, we focus on 33 detection of SARS-CoV-2 virus. We summarize an analysis of devices that have been granted 34 emergency use authorization (EUA from the US FDA) as well as those under development in 35 research labs. Connected-devices may enable the underserved population to access at least some 36 facet of public health service using smartphone-based non-invasive rapid detection of infectious 37 agents (the approach for humans may be extended to animals and plants to embrace the OneHealth

38 perspective).

39 Keywords: SARS-CoV-2; COVID-19; coronavirus, multiplexing, biosensor, mobile diagnostics

40 1. SARS-CoV-2

SARS-CoV-2 is a coronavirus virion (also known as a virus particle) that infects host cells
through nonlytic exocytosis ¹. The capsid serves as a protein shell and is composed of structural
proteins including spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins, all of which

serve as an envelope encasing the single-stranded RNA genome, non-structural proteins (Nsp) and
 viral peptides ². SARS-CoV-2 contains two large open reading frames (ORF): ORF1a and ORF1b ³.

46 ORF1ab is the largest gene and contains overlapping ORF that encode polyproteins PP1ab and PP1a

47 which yield NsP 1 through 16. Nsp play an important role in viral RNA replication, transcription and

48 are critical for maintaining genome integrity 4.

The first step of SARS-CoV-2 infection is binding between S protein and host receptors, namely angiotensin converting enzyme 2 (ACE2). S protein receptor binding domain (RBD) makes first contact with ACE2 ⁵. Subunit S1 is the surface-accessible portion adjacent to the RBD and is critical for recognition. Subsequent fusion of the viral envelope with the cell membrane is facilitated by exposure of the fusion loop in the S2 subunit, facilitating delivery of viral +ssRNA (positive sense) inside the host cell.

55 Rapid diagnosis of infection is critical to controlling disease outbreak 6. Ideally, diagnostic tools 56 should be non-invasive and low cost, while providing rapid results that have clinical relevance (e.g., 57 determination of infectivity). Although we would like to have all of these features in a single device, 58 currently a suite of tools must be used to deliver a meaningful outcome. The interactions between 59 viral target(s) and unique receptors used in diagnostic devices vary significantly, depending on the 60 specific target and specificity of the target. Further, the type of transduction, data acquisition 61 approach, and data analysis (post hoc) are not common among different devices 7. There are a myriad 62 of different approaches and each diagnostic tool may generate unique output. The unequal 63 characterization and significance of the data influences the value of these test results in the decision-64 making process.

65 A number of reviews and short communications have been published for cataloguing SARS-66 CoV-2 detection tools 8,9,18,10-17. These reviews serve to index critical state-of-the-art knowledge in virus 67 detection and are crucial for sensor development labs, but in many ways the actionable information 68 is lacking for making the connection with diagnostic outcome(s). Beyond catalogues of what has been 69 done, there is a critical need for classification systems which view technology development at the 70 systems scale. Here, we review current SARS-CoV-2 detection devices based on specificity of the 71 molecular interaction(s) between viral target and sensor recognition structure, and we discuss 72 application of devices for diagnostic applications. These aspects are combined to create, at least in 73 principle, a context-aware design emphasizing the specificity of detection targets. The resulting 74 tool(s) and practical outcomes are expected to reflect the context-aware diagnostic specificity (CADS).

In section 2, we develop a simple classification system for organizing devices based on detection of either lysed virion (Type I), or intact virion particle (Type II). Using this binary classification system, we summarize the current state of the art in detection of intact SARS-CoV-2 virus, including devices that have been granted emergency use authorization (section 3). In section 4, we analyze diagnostic devices currently under development using the CADS logic. We conclude in section 5 by introducing challenges and opportunities related to CADS.

81 2. Classifying SARS-CoV-2 detection tools based on nature of molecular recognition specificity

82 The most common SARS-CoV-2 structural targets for diagnostic devices are structural proteins 83 (S protein, N protein), or genomic RNA (see section 4). Clinically, the large amount of S protein in 84 serum makes it an important target for serological detection 5, but testing depends on invasive 85 sampling which may not be appropriate for some cases (e.g., frequent testing of children in schools). 86 N protein is often targeted for detection assays and vaccines ^{19,20}, but has shown non-specific binding 87 to non-target DNA via electrostatic interactions ²¹. Datta et al ²² recently reviewed various binding 88 strategies and provided other examples of potential targets for detection beyond S protein, N protein 89 and genomic RNA.

90 Fig 1 shows our proposed classification scheme and is based on type of molecular recognition 91 scheme. Type I includes devices that detect targets released after lysing of the capsid envelope. For 92 example, antigens associated with structural proteins (S, E, M, N proteins), non-structural proteins 93 (Nsp), genomic RNA, or in rare cases viral peptides are all Type I devices. Viral accessory proteins, 94 whose function(s) are not yet elucidated, may be a possible target for Type I devices but have not 95 been published. Type II devices detect extra-capsid targets on intact SARS-CoV-2 virion particles. 96 These devices target at least one of the three structural proteins (S, M, E proteins), but may include 97 other molecules (such as glycans). The most common target is S protein, due to lack of physical access 98 to E and M proteins without disrupting the particle. This simple classification system is intuitive, but 99 it is important to quickly assess the nature of SARS-CoV-2 testing when considering testing outcomes 100 (see section 4 for discussion).

101

Type I: Intra-capsid detection schemes

Type II: Extra-capsid detection schemes

102Figure 1. Classification of SARS-CoV-2 detection tools based on type of molecular interaction. a) Type103I requires lysing of the capsid followed by subsequent detection. Cartoon shows RNA in yellow104wrapped around the N protein in pink. b) Type II: Detecting intact SARS-CoV-2 virion particles relies105on molecular targeting of exposed targets such as spike protein (S). Structures courtesy of Amaro and106Mulholland ²³ and image repository at www.covid.molssi.org. Non-structural proteins (Nsp) such as107RNA-dependent RNA polymerase (RdRp) are not shown.

108 Diagnostic tools have been further organized into subcategories based on the recognition 109 element used for detection (transduction schemes are not considered). Most recognition elements 110 discussed here has been analyzed for potential use in SARS-CoV-2 detection and, when available, 111 published references for use cases in COVID-19 diagnostics or research are highlighted. For 112 recognition structures that have not yet been applied for SARS-CoV-2 detection (e.g., lectins), 113 structural and binding features are discussed based on detection of other coronaviruses (see Table 3 114 and supplemental section). The following sections introduce each subcategory, and examples of FDA 115 approved devices (section 3) and research devices (section 4) are reviewed in subsequent sections.

- 116 The subsections are summarized in **Table 1** as a reference.
- 117 Type I detection

118 Type I detection schemes require a lysis step (often thermal or chemical) to release viral RNA or 119 target protein(s). Four subcategories are discussed below, and are based on viable recognition 120 structures that have been tested. Specific examples for coronaviruses are discussed in section 4.

- 121 <u>Type Ia detection (oligo binding in lysate)</u>: This scheme utilizes oligonucleotides as the recognition
- 122 element. The most common molecular targets for polymerase chain reaction (PCR) or loop-
- 123 mediated isothermal amplification (LAMP) primers (denoted as Type Ia in Table 3) are the E, N, S
- 124 and Nsp genes via RT-PCR¹⁷. Berber et al review the molecular tools for COVID-19 diagnostics and

- 126 acids, ribozymes, aptamers, and RNAi silencing approaches ²⁴. For detection of viral RNA, reverse
- 127 transcriptase (RT) amplification is common for detection of stable reporters in most cases.
- 128 Fluorescence is the transduction system of choice for nearly all of these systems, which requires a
- 129 label to be inserted during synthesis. The conserved portions of the S2 subunit (responsible for
- 130 fusion machinery, fusion peptide) are likely targets for aptamer binding (particular sub-segments
- 131 are of particular interest). A number of reviews have been published analyzing the current state of 132
- the art for PCR primers targeting SARS-CoV-2, including establishment of reference sequences ^{25–30}. 133
- The gene-based detection techniques own high specificity and sensitivity, which are reliable
- 134 method for authority document.
- 135 Type Ib detection (aptamer binding in lysate): Single stranded (ss) DNA aptamers (Type Ib in Table
- 136 1) have been developed for binding SARS-CoV-2 targets in lysate ³¹. These dynamic single stranded
- 137 oligonucleotides bind via tertiary structures (e.g., hairpin loop, G-quadruplex, etc.). Type Ib schemes 138
- may use numerous forms of transduction for detection of binding (fluorescence, surface plasmon 139 resonance, electrochemical, magnetic), and in some cases more than one transduction scheme is used
- 140 for a single assay.
- 141 Type Ic detection (Ab binding in lysate): Antibodies (Ab) are used as the biorecognition structure for
- 142 selective target binding in lysate, commonly focusing on N and S proteins. These devices have been
- 143 used for development of LFA (lateral flow assay) and ELISA (enzyme-linked immunosorbent assay)
- 144 assays for SARS-CoV³¹ and are currently being used for SARS-CoV-2 as well (see section 3). However,
- 145 specificity of the antigen-Ab interaction may change for mutant viruses ³².
- 146 Type Id detection (lectin binding in lysate): Type Id schemes are lectin binding assays and have been
- 147 used for analysis of viral lysate from herpes simplex virus ³³, Ebola ³⁴, HIV ³⁵ and coronaviruses such
- 148 as influenza A³⁶ and SARS-CoV ³⁷.
- 149 Type II detection
- 150 Biorecognition structures which are relevant for Type II devices include aptamers, peptides, 151 lectins, antibodies, and membrane receptors. The most common exposed target on intact virion 152 particles is S protein (RBD, subunit S1). Similar to HIV, SARS-CoV-2 S protein uses a N-glycan coat 153 on S protein ³⁸ to escape immune recognition. For Type II assays, it remains to be investigated if 154 inclusion of endo-b-N-acetylglucosaminidase (ENGase) ³⁹ is necessary to expose the binding site of S 155 protein by partially removing the N-glycan coat. Each sub-category of Type II schemes are discussed 156
- below, specific examples are discussed in section 4.
- 157 Type IIa detection (aptamer detection of intact virus): Aptasensors may be developed for targeting 158 any exposed structure on the virus particle (e.g., glycan coat, S protein, fusion peptides). The most 159 common types of transduction used in aptasensing of this type are impedimetric, surface plasmon 160 resonance (SPR), and FRET pairing ⁴⁰. Numerous DNA aptamers ⁴¹ are under development for 161 binding S1 epitopes as shown in section 4 and the supplemental section. There are several peptide 162 targets identified on SARS-CoV ⁴²⁻⁴⁶ that could be viable targets, but this has not been confirmed.
- 163 Type IIb detection (Ab detection of intact virus): Type IIb devices utilize Ab as the recognition agent. 164 The use of neutralizing antibodies (nAbs) as immobile targets in biosensors is limited to detection of 165 specific virus strains. Antigenic drift and protein stability are the main problems for clinical 166 application of Type II immunosensors. Recent studies show that most monoclonal antibodies to 167 SARS-CoV do not bind SARS-CoV-2 47. Nevertheless, mouse antiserum raised against SARS-CoV 168 protein has been shown to cross-neutralize SARS-CoV-2 pseudo virus, indicating the possibility for 169 overlapping neutralizing epitopes between SARS-CoV and SARS-CoV-2⁴⁸. Certainly, epitopes may 170 be shared but that introduces doubt in terms of specificity. Accumulating evidence indicates 171 significant disparity between dissociation constants likely due to non-conserved epitopes and post-172 translational modifications (N-glycosylation site at amino acid residue 370 on SARS-CoV) 49.

173 Generally sensing platforms are validated with one SARS-CoV-2 strain and do not account for 174 mutations 50,51.

175 Type IIc detection (lectin binding of intact virus): These devices are based on interactions between 176 lectins (the biorecognition element) ⁵² and saccharide targets and lectin carbohydrate recognition 177 domains (CRD) ⁵³. The clearest application is targeting of the glycan shield on SARS-CoV-2, which is 178 based on binding of N-linked glycan epitopes by CRD, a concept which has been studied for Ebola 179 ⁵⁴, SARS-CoV ⁵⁵, and other coronaviruses ^{56,57}. Lectin arrays target specific patterns of glycan based on 180 the pattern recognition receptor (PRR) system. PRR are the first line of innate immune response 181 proteins that respond to pathogen-associated molecular patterns (PAMP) and damage-associated 182 molecular patterns (DAMP) in animals. These include membrane-associated PRR such as Toll-like 183 receptors (TRL) which sense pathogen-associated and danger-associated molecular patterns 184 extracellularly or in endosomes. Specific detection of DAMPs can lead to cell viability detection due 185 to PRRs that bind dying cells based on changes in glycosylation patterns on the cell surface. It is 186 unknown which features of the PAMP/DAMP system may be replicated for SARS-CoV-2 detection.

- 187 Type IId detection (membrane receptor binding of intact virus): The last subcategory of devices is 188 based on the interaction between membrane proteins and the intact virion particle. Human 189 angiotensin converting enzyme II (ACE2) is the candidate host membrane receptor biosensor. 190 ACE2 mediates entry of severe acute respiratory syndrome coronaviruses (including SARS-CoV, 191 MERS-CoV, and SARS-CoV-2) into humans as well as other animals 58-61. The encouragement for 192 ACE-2 in Type IId design is due to the fact that such a sensor system may act as a "platform" for a 193 family of zoonotic viruses agnostic of the mutations a specific virus evolves. For example, sensor 194 systems using the protein ACE2 as the binding target may identify MERS, SARS and SARS-CoV-2 195 viruses because the virus family still, (in an evolutionary sense) uses human ACE (hACE2) as the 196 cellular receptor to invade human cells irrespective of the variants over decades. Though ACE2-based 197 sensing could be prone to false-positive results when screening for a specific viral strain, these 198 "generic" results will still be useful given the virulence and mutation potential of the family of viruses 199
- that use hACE2-mediated infection. Type IId devices may utilize various types of transduction.
- 200
- Table 1. Classification scheme for SARS-CoV-2 detection schemes organized devices by nature of 201 molecular binding event. We review seven classes of devices that are organized based on detection of 202 either lysate soup (Type I) or intact virion particle (Type II).

	Туре	Recognition type	General Strengths	General Weaknesses
Intra-capsid detection	Ia	Oligo.	Best LOD of any tool (0.1 aM is common); multiplexing, highest sensitivity and specificity of any test	Potential for false positive/false negative; requires a label for detection
	Ib	Aptamer	Long shelf life; wide range of targets; customizable features; LOD comparable to antibody	Unknown affinity/avidity for target; modeling required for determination of 2D/3D structure; unknown specificity in complex mixtures
	Ic	Antibody	Well documented results; established protocols commercially available materials; clinically relevant LOD	Short shelf life; potential for false negative; turnaround time of approximately 72 hours

		Id	Lectin	Easily accessible; well established and proven screening array technologies, vast library of glycobiology information regarding binding affinity/avidity in various biological media	Non-specific binding; poor LOD; requires a label for detection
	Extra-capsid detection	IIa	Aptamer	Long shelf life; wide range of targets; customizable features; LOD comparable to antibody	Unknown affinity/avidity for target (for new aptamers); modeling required for determination of 2D/3D structure; effect of tethering to sensor surface unknown
		IIb	Antibody	Rapidly accessible to many labs for developing tools; known immobilization schemes; status quo acceptance; clinically relevant LOD	Short shelf life; potential for false negative; binding kinetics affected by surface protein mutation
		IIc	Lectin	Easily accessible; well documented binding chemistry; known affinity/avidity	Non-specific binding; poor LOD
		IId	Membrane receptor protein(s)	Binding may not be affected by mutation for some receptors (hACE-2)	Short shelf life for recombinant proteins; receptors bind most respiratory viruses (low specificity); stability of artificial (recombinant) membrane proteins unknown

203 Oligo.= oligonucleotides;

204 *hACE-2= Human angiotensin converting enzyme-2.*

205

206 Although not reviewed here, serological analyses are rooted in analysis of post-infection 207 biomarkers via antibody screens using tools such as ELISA or other protein detection methods. The 208 distinction between the two classifications here is that serological assays are neither detecting lysate 209 nor intact virion particles. Rather, a serological test is detecting the presence of Ab (typically 210 immunoglobulin G) that are present in fluids as a result of immune response. For example, antibody-211 based NanoLuc luciferase immunoprecipitation assays in HEK293 cells have been developed for 212 serological detection of N and S protein ⁶². Rosadas et al ⁶³ note in a critical review that serological 213 assays developed using antibodies to N protein (anti-NP) may be flawed due to an inability to 214 determine neutralizing and potentially protective antibodies, among other problems.

In the next section, we review the approved Type I and Type II devices under the FDA emergency use authorization.

217 3. FDA approved devices under the Emergency Use Authorization (EUA)

Recent reviews have catalogued the list of FDA approved devices under the Emergency Use Authorization (EUA) ⁶⁴, which uses a 3-tier system: EUA under the Clinical Laboratory Improvement Amendments for high complexity tests (designation H), moderate complexity tests (designation M)

221 and patient care settings operating under a CLIA (Clinical Laboratory Improvement Amendment)

222 Certificate of Waiver (designation W). Static reviews of EUA devices devalue over time as the EUA
 223 and subsequent authorizations are dynamic processes that are subject to approval, re-approval, and
 224 various other factors.

225 In Table 2, we summarize the status of the EUA devices as of the date of this review, and we 226 augment the table by providing analysis of the potential strengths and weaknesses as well as a 227 denotation of which type of detection was used. To date, there are seven Type Ia devices (primers for 228 lysate), six Type Ic devices (Ab for lysate antigens), and two serological tests under designation W; 229 serology devices are shown in the supplemental section (no devices for direct detection). At the time 230 of writing this review, each of the EUA tests other than the Lucira home testing kit have approval for 231 use in laboratories certified under designation H, M and W; while the Lucira home test only has 232 approval for designation W at the time of this review.

233 All of the Type I devices employ primers for PCR- or LAMP-based detection, commonly called 234 "molecular tests". The other devices in Table 2 are commonly called antigen tests, which to date have 235 been developed for targeting antigens in lysate. One of the common disadvantages of Type Ic tests 236 (antibody-based) is the high rate of false positives from bacterial infection or other viruses. Each of 237 the devices in Table 2 uses a unique control strategy to account for this problem, and the long-term 238 success of each approach is to be determined. The most useful antigen tests are multiplexing tools 239 that detect other bacterial and viral infections, such as the Sofia LFA. All EUA antigen tests have 240 disclaimers stating that positive results do not rule out a bacterial infection or co-infection with other 241 viruses, indicating that secondary validation or other multiplex approaches are highly needed.

242 All EUA tests to date, with the exception of Cue (Type Ia) and Ellume (Type Ic) require a 243 prescription. This is a major problem that severely restricts access for vulnerable communities 244 (particularly in the present pandemic, where many people are no longer working due to lockdowns 245 and general economic downturn). Further exacerbating this problem, multiple EUA tests report a 246 narrow window for accurate detection (15-30 min), which could be problematic if used as a home test 247 kit or outside of a clinical setting. In addition to access and potential for operator error, every test in 248 the EUA is a disposable device (some even require the user to dispose of the battery) which is a fatal 249 flaw when considering the scale of the public health crisis and the landfill problems that would 250 emerge from disposing of tens of millions of batteries. As a first generation, these devices represent 251 a useful step toward progress, but many could be authorized as quantitative devices with minor 252 engineering modifications. When combined with features such as low cost and rapid turnaround 253 time, quantitative detection is critical for future detection systems which provide enhanced value 254 (e.g., stage of infection, active shedding status, etc).

255 Dinnes et al 65 reviewed commercially available antigen tests, PCR tests, and one at home test kit 256 developed in 2020. The study analyzed over 3,100 samples (approximately 55% were positive). The 257 sensitivity and selectivity of Type Ia (PCR) was highest, followed by home test kits and then antigen 258 tests (LFA). Only two home test kits were analyzed, and the results were highly variable, thus more 259 analysis is needed to confirm if home test kits are more accurate than antigen tests. Antigen test kits 260 such as the SD STANDARD Q COVID-19 SD-Biosensor kit have been independently analyzed in 261 other studies. Cerutti et al ⁶⁶ report no false positives but the test kit had a high false negative rate. 262 Hirotsu et al 67 compared a chemiluminescence enzyme immunoassay (CLEIA) antigen test kit 263 (LUMIPULSE) with quantitative RT-PCR for viral load with 313 samples taken by NP swab. 264 According to this analysis, the antigen level was accurate (100%) when the sample contained >100 265 viral copies but was only 85% accurate when the sample contained \leq 10 viral copies. This result, 266 among others, shows that the relatively low sensitivity of antigen testing may be problematic 267 depending on the progression of infection.

- 268 Table 2. Critical review of FDA Emergency Use Authorization (EUA) *in vitro* POC devices (category
- 269 "W") approved at the time of this review. Strengths and weaknesses should be framed around our
- 270 idea for rapid, quantitative data that can be de-identified, sent to a cloud database, and then made

available to public health databases within 24 hours. All tests other than Cue (Type Ia) and Ellume (Type Ic) require a prescription. All tests are qualitative and utilize internal controls.

Name of test (Entity)	Туре	RTA (target)	Sample	Strengths	Weaknesses
Lucira COVID-19 All-In-One Test Kit	Ia	RT-LAMP assay with colorimetric transduction based on pH-sensitive halochromic agents (N gene)	NP swab	30 min turnaround; 14 years and older; digital readout	Specialty equipment required; entire device is disposable; ability to detect in presence of other viruses unclear
BioFire Respiratory Panel 2.1-EZ	Ia	Nested multiplex PCR (S gene; M gene)	NP and nasal swab	multiplex detection (16 different viruses and 4 bacteria); 6 years and older; 45 min turnaround	requires trained specialist to conduct test
Xpert Xpress SARS-CoV- 2/Flu/RSV	Ia	RT-PCR (E gene; N2 gene)	NP swab, nasal swab, nasal wash/ aspirate	Multiplex detection (CoV-2, inf. A, inf. B, RSV); 6 years and older; 30 min turnaround	no discrimination between N2 and E gene; requires trained specialist to conduct test
Mesa Biotech Accula SARS-Cov-2 Test	Ia	RT amplification with LFA (N gene)	NP and nasal swab	Partial automation, for patients 5 years and older; 30 min turnaround	No discrimination between SARS-CoV; requires specialty equipment; visual readout (no digital data)
Cobas SARS- CoV-2 & Influenza A/B Nucleic Acid	Ia	RT-PCR (ORF1a/b Nsp; N gene)	NP and nasal swab (self- collected)	Multiplex detection (CoV-2, inf. A inf. B); internal controls; partial automation; digital readout; 20 min turnaround	No differentiation between CoV; health supervisor and specialty equipment required
Abbott ID NOW COVID-19	Ia	Molecular RT, Isothermal amplification (target not identified)	NP, nasal, throat swabs	Partial automation; digital readout; 13 min turnaround	No differentiation between CoV; health supervisor, specialty equipment and trained personnel required
Cue COVID- 19 Test	Ia	Isothermal RT-PCR	Nasal swab	Partial automated; RNase P control; partial automation;	Requires iPhone 8+; no differentiation CoV; direct visual readout:

(smartphone)		(N gene)		no prescription required; 25 min turnaround	specialty equipment required
Ellume COVID-19 Home Test	Ic	LFA (N protein antigen)	Nasal swab	Smartphone based test; authorized for children 2 years and older; 15 min; no prescription required	No differentiation between SARS-CoV and SARS-CoV-2; analyzer and battery must be discarded after use
CareStart COVID-19 Antigen test	Ic	Immuno- chromatographic LFA (N protein antigen)	NP swab	Partial automation; 6 years or older; 10 min turnaround	No differentiation for CoV; direct visual readout has 5 min window
LumiraDx SARS-CoV-2 Ag	Ic	Microfluidic turn-on fluorescent immunoassay (N protein antigen)	NP swab	Partial automation; 5 years and older; digital readout; 12 min turnaround	No differentiation between CoV;health supervisor required; direct visual readout; specialty equipment
Siemens BinaxNOW COVID-19 Ag Card Home Test	Ic	LFA immuno- chromatographic assay (N protein antigen)	Nasal swab	Simple one-step test; 15 years or older; 30 min turnaround	Requires iPhone IOS 11 or Android V8; Qualitative; must be performed with the supervision of a telehealth proctor
Sofia 2 Flu + SARS Antigen FIA	Ic	Multiplexing LFA, turn-on fluorescent immunoassay (N protein antigen)	NP and nasal swab	Multiplex detection (CoV-2, inf. A, inf. B); partial automation; 6 years and older; 15 min turnaround; digital readout	No differentiation between CoV; health supervisor and specialty equipment required
BD Veritor System for Rapid Detection of SARS-CoV-2	Ic	Immuno- chromatographic LFA (N protein antigen)	Nasal swab	Point of care testing with proven instrument; partial automation; digital readout; simple one-step test; 15 min turnaround	Health supervisor and specialty equipment required

- 273 *RTA= Recognition-Transduction-Acquisition scheme.*
- 274 NP swab = Naso-pharyngeal swab.
- 275 *LFA= Lateral flow assay.*
- inf. A= influenza A.
- 277 inf. B= influenza B.
- 278 *RSV= respiratory syncytial virus.*
- 279 Se*= Serological test (neither Type I nor Type II).

280 4. SARS-CoV-2 detection schemes under development

281 **Table 3** shows the tools published to date that are under development using Type I detection.

282 <u>Type Ia detection (oligo binding in lysate)</u>: The primary SARS-CoV-2 targets for Type Ia assays

were N gene or Nsp12 (RdRp), but detection of E gene and crRNA have also been demonstrated.

- For MERS-CoV, detection assays have been developed for targeting the RLKGG cleavage site and N
- gene. RTA schemes for Type Ia (oligo-binding) were diverse, including DNA hybridization with either SPR or colorimetric transduction. Other devices were based on RT-LAMP assays, CRISPR-
- 287 Cas systems, or luciferase systems based on papain-like protease (PLpro) activity. The most
- common sample was NP swab, but testing to date also included plasma samples, throat swabs, and
- sputum. HEK293T cells and Ersatz solutions (multigene mixtures in buffer) were also tested but
- 290 have low clinical relevance. The LOD for Type Ia devices published to date ranges from 100 fM
- 291 (RdRp gene) to 220 fM (Nsp12), or from 1 to 2 copy/µL for PCR and CRISPR based tools.
- 292 <u>Type Ib detection (aptamer binding in lysate)</u>: Type Ib tools (apta-detectors) have been developed for
- 293 targeting either N protein or Nsp12 and tested in samples derived from human serum, sputum, urine
- and NP swabs (see supplemental section for sequences and K_D values for all aptamers in this review).
- 295 RTA schemes include aptamer-based sandwich assays (nAu reporter), turn-on fluorescent systems
- with splint-based RNA detection, electro-chemiluminescent devices (labeled-DNA aptamer tetrahedrons), and naked eye quantum dot (QD) chip systems. The LOD of these emerging devices
- ranges from 0.1 pg/mL (QD chip in buffer) to 10ng/mL (ELISA and LFA). Response time was between
- 299 15 and 120 min, a range which is applicable to high throughput screening if clinical specificity
- 300 thresholds are met. Chen et al ⁶⁸ suggest that aptamers targeting N protein require two stem loops,
- but the study did not investigate a wide range of secondary structures so the results are inconclusive.
- 302 Generalizations about secondary structure aside, there is a need to understand the effect(s) of 303 electrostatic interactions on aptamer binding. SARS-CoV-2 is negatively charged at physiological pH
- electrostatic interactions on aptamer binding. SARS-CoV-2 is negatively charged at physiological pH
 isoelectric potential of S, E, and M proteins are 6.2, 8.6, and 9.5, respectively ⁷⁰. Electrochemical
- 304 ⁶⁹. Isoelectric potential of S, E, and M proteins are 6.2, 8.6, and 9.5, respectively ⁷⁰. Electrochemical
 305 biosensors are particularly sensitive to Debye shielding and zwitterionic storm at the electrode
- 306 surface.

307 <u>Type Ic detection (Ab binding in lysate)</u>: Type Ic tools (Ab-based detection) have been developed for
 308 N protein but a few devices have also been developed for targeting S1 subunit in lysate. Monoclonal
 309 antibodies (MAb) and polyclonal antibodies have each been used with varying degree of success, but

- 310 one of the more promising approaches is the monobodies developed through phage display by
- 311 Kondo 71, which may also have therapeutic potential based on S1 RBD-ACE1 binding assays. When
- 312 applied in ELISA assays the performance was poor relative to other Type Ic devices, it remains to be
- 313 seen if this approach has value in rapid detection. Beyond ELISA and RT-PCR, FET and fluoresce
- 314 were also shown to viable, although the clinical performance remains to be proven. Compared to
- 315 other Type I devices, Ab-based tools had a poor LOD and a similar response time (30 to 120 min) in
- 316 nasal swab, NP swab, saliva, and urine. A label-free FET device targeting SARS-CoV (N protein) 317 using Ab-mimic proteins functionalized on In₂O₃ nanowires ⁷² may have promise for application in
- 318 SARS-CoV-2 but has not been shown thus far.
- 319 <u>Type Id detection (lectin binding in lysate)</u>: To date, no Type Id tools (lectin sensors) have been 320 demonstrated for detection of capsid lysate from SARS-CoV-2. However, there are numerous targets 321 that can be explored in viral lysate, a review of lectins from non-mammalian sources provides details 322 ⁷³, including mannose-binding lectins (MBL), Ca²⁺-dependent lectins (C-type), N-acetyl-glucosamine-323 binding lectins (N-type), fucose-binding lectins, and the super-family of I-type lectins 324 (immunoglobulins excluding Ab and T cells). Use of lectins as biorecognition elements for analysis 325 of viral lysate in other systems ^{33–37} provides confidence that the tool could be useful if rigorously
- 326 tested and combined with other tools.

327 328 Table 3: Summary of tools developed for SARS-CoV-2 detection based on Type I detection (lysed capsid) and Type II (intact capsid) targets. See supplemental section for SARS-CoV and MERS

329

capsid) and Type II (intact capsid) targets. See supplemental section for SARS-CoV and detection.

Type	SARS-CoV-2 Target(s)	RTA	Sample(s) Tested	LOD	t95 [min]	Reference
	RdRp (Nsp12)	Hybridization: LSPR combined with plasmonic photothermal effect	Multigene mixtures (ersatz)	220 fM	60	Qiu ⁷⁴
ve Ia	S, N genes	Isothermal rolling circle amplification (RCA) for rapid detection of SARS-CoV-2	NP swab	1 copy/ μL	120	Chaibun ⁷⁵
Typ	E, N genes	RT-LAMP on LFA based on CRISPR-Cas12 detection	NP swab	1 copy/ μL	40	Broughton ⁷⁶
	ORF1ab, N genes	Reverse transcription LAMP	NP swab	12 copies/ reaction	60	Zhu 77
	4,500 crRNA	CRISPR-Cas13a (CARMEN- Cas13)	Plasma, NP, throat swabs	NR	120	Ackerman 78
	ORF1ab, N gene	RT-PCR CRISPR-Cas12a fluorescent reporter assay	NP swab	2 copies/ μL	50	Huang 79
	N protein	DNA aptamer-based sandwich assay; nAu reporter for ELISA and LFA	Diluted serum	10 ng/mL	120	Chen 68
	N protein	DNA aptamer-invertase magnetic bead assay on commercial glucometer (upon binding, antisense strand is displaced and activates invertase).	saliva	4.4 pM	NR	Singh ⁸⁰
Type Ib	N protein, S protein (S1)	Aptamer-assisted proximity ligation assay with qPCR (fluorescence)	Human serum	31 pg/mL	120	Liu ⁸¹
	N protein	Sandwiched aptamers in ELISA assay with Au label	Sputum, urine, serum	1 ng/mL	15	Zhang ⁸²
	RdRp (Nsp12)	DNA aptamer reporter (turn on) for sensitive splint-based RNA detection (SENSR) using T7 promoter system	NP swab	14 pg/mL	60	Woo ⁸³
	RdRp (Nsp12)	Electro-chemiluminescence based on labeled-DNA tetrahedrons	Human serum	0.4 pg/mL	60	Fan ⁸⁴
Type Ic	S protein (S1 RBD) Monobodies (TRAP display with BLI) for sandwich ELISA assay and RT-PCR		Nasal swab	76.5 ng/mL	120	Kondo 71

N protein	Dual-labeled magnetic nanobeads for immunomagnetic signal amplification	Serum	230 pg/mL (whole serum) 100 pg/mL (dilute serum)	60	Li ⁸⁵
S protein (S1 RBD); N protein	E-chem ELISA, PAb labeled with alkaline phosphatase on magnetic beads	Saliva, NP swab	19 ng/mL (S1); 8 ng/mL (N)	30	Fabiani ⁸⁶
N protein	Fluorescence immuno- chromatographic assay	Urine, NP swab	NR	10	Diao ⁸⁷

- 330 RTA= Recognition-Transduction-Acquisition scheme.
- 331 *t*₉₅= *Response time*.
- 332 LFA= Lateral flow assay.
- 333 ELISA= Enzyme linked immunosorbent assay.
- 334 *E-chem= Electrochemical assay (cyclic voltammetry).*
- *FET= Field effect transistor.*
- 336 NP= Nasopharyngeal swab.
- 337 SERS= Surface-enhanced Raman spectroscopy;
- 338 TRAP= Transcription-translation coupled with association of PuL;
- 339 BLI= Bio-layer interferometry;
- 340 MAb= Monoclonal antibody;
- 341 *PAb= Polyclonal antibody.*
- 342 NR=Not reported.
- 343

344 Table 4 shows the tools published to date that are under development using Type II detection345 (no EUA or CLIA authorization).

346 Type IIa detection (aptamer sensors for intact virus): Only a few Type IIa tools (apta-sensors) have 347 been developed, and all devices targeted S protein (S1 subunit) and were tested in either buffer or 348 diluted saliva (see supplemental section for sequences and KD values for aptamers). RTA schemes 349 include FET devices on silica thin films, thiolated aptamers on gold-sputtered polystyrene film 350 electrodes with voltametric transduction, and a cascade based on invertase following aptamer 351 displacement (amperometric glucometer for acquisition). Two of the devices employed the same 352 aptamer (developed by Song et al ⁴¹), which was a 51-nt with three hairpins (two hairpins joined on 353 the dista5' arm), and the other device used a 51-nt triple hairpin structure with a 15-nt antisense 354 strand on the 3' arm developed by Singh et al 80. The LOD of these Type II aptasensors was 1 to 6 pM 355 with response times of 30 to 60 minutes. Only two aptamers have been tested to date. Devi and 356 Chaitanya⁸⁸ designed a number of S protein peptide aptamers *in silico* aptamers but these have not 357 yet been tested for detection. Although more testing is required, the 26-nt DNA aptamer targeting S 358 protein RBD by Sun et al ⁸⁹ may be an interesting candidate for testing (KD=0.13 nM; no error 359 reported). For electrochemical devices in body fluids such as saliva, regulation of ion concentration 360 in the test medium may prove to be one of the most critical steps as it can influence signal-to-noise 361 ratio (see Table S1 in supplemental section).

- 362 <u>Type IIb detection (Ab detection of intact virus)</u>: Limited Type IIb devices have been developed to
- 363 date, but a few devices targeting S protein RBD have shown results consistent with other devices.
- 364 RTA schemes were either based on graphene FET or nAu-based SERS in either buffer or NP swab
- 365 samples. Detection time was from 30 min to over 3 hours with LOD as low as 4 fM.
- 366 <u>Type IIc detection (lectin binding of intact virus)</u>: To date, no Type IIc tools (lectin sensors) have been
- 367 demonstrated for detection of glycan-shields on S protein but we include the category here due to

- 368 the potential for improving assays by including a control that targets the S protein glycan shield.
- 369 Datta et al ²² articulate the importance of this interaction as a positive control using C-type and I-type
- 370 lectins. This concept was also proposed by Rahimi in mapping SARS-CoV-2 targets to various lectins
- ⁹⁰. Beyond targeting sugar residues such as glycan with C-type and I-type lectins (positive control),
 Datta et al ²² also describe a negative control system for other microorganisms common to respiratory
- Datta et al ²² also describe a negative control system for other microorganisms common to respiratory
 samples of interest. While no Type IIc sensors have been developed, yet, many studies have
- 374 investigated the role of lectins in reversible binding of sugar residues on the surface of coronaviruses,
- including MERS ^{91,92}, SARS-CoV ^{93,94}, and SARS-CoV-2 ⁹⁵⁻⁹⁸. Currently, lectins are being explored for
- 376 use as antivirals targeting extra-capsid structures such as the glycan shield ^{99–102}.
- 377 <u>Type IId detection (membrane receptor binding of intact virus)</u>: There are few examples of the last
- 378 tool category, Type IId detection, involves use of membrane receptors (e.g., ACE-2 and engineered
- 379 membrane proteins) for binding intact virion particles. Chang et al ¹⁰³ developed a sensor for S protein
- 380 detection using human ACE-2 adsorbed on gold electrodes for SARS-CoV but to date no ACE-2
- 381 biosensors have been reported for SARS-CoV-2. Guo developed an assay for detecting SARS-CoV-2
- 382 S protein based on recombinant mammalian (Vero) cells with exposed human chimeric Ant-spike S1
- antibody and an electrochemical readout. However, to date Type IId devices have not been used as
- a positive control in multiplex assays, an idea which may improve rapid screening tools if the
- 385 materials are optimized ²².
- Table 4. Summary of tools developed for SARS-CoV-2 detection based on Type II detection (intact capsid). See supplemental section for Type II biosensors developed for SARS-CoV and MERS.

Type	Target	RTA	Sample(s) Tested	LOD	t95 [min]	Reference
	S protein (S1)	DNA aptamer on silicon thin film FET	PBS buffer	1 pM (1nM upper)	NR	Farrow ¹⁰⁴
Type IIa	S protein	DNA aptamer-invertase magnetic bead assay on commercial glucometer (upon binding, antisense strand is displaced and activates invertase).	saliva	5.8 pM	30	Singh ⁸⁰
	S protein (S1)	Thiolated DNA aptamer on gold-sputtered polystyrene film electrodes	Diluted saliva (10%)	1.3 pM	60	Zakashansky ¹⁰⁵
Type IIb	SARS-CoV-2 S protein	Anti-S Protein on graphene FET	NP swab	16 PFU/ mL (media); 242 copies/mL (clinical)	240	Seo ⁵⁰
	SARS-CoV-2 S protein	Monoclonal anti-S coated nano-Au SERS	Buffer	4.2 fM	30	Ahmadivand

Type IIc	NA	NA	NA	NA	NA	NA
Type IId	SARS-CoV-2 S protein (S1 subunit)	Recombinant mammalian (Vero) cells with exposed human chimeric receptor	Buffer	1 fg/mL	180	Guo

- 388 RTA= Recognition-Transduction-Acquisition scheme;
- 389 t95= Response time;
- 390 LFA= Lateral flow assay;
- 391 ELISA= enzyme linked immunosorbent assay;
- 392 *E-chem= Electrochemical assay (cyclic voltammetry)*
- 393 *FET= Field effect transistor;*
- 394 *NP= Nasopharyngeal swab;*
- 395 SERS= surface-enhanced Raman spectroscopy.
- 396 NA=not available;
- 397 NR=not reported.
- 398

399 Numerous papers have suggested various other design strategies for SARS-CoV-2 detection, 400 including thio-NAD cycling 107, micropillar PDMS platforms with CRISPR detection 108, and 401 nanoparticle bioassays ²², for example. However, to date the devices in Table 3-4 are the only 402 published biosensors at the time of this review, and the published literature is lacking in terms of 403 rigorous clinical testing of these emerging tools. Further, the published devices do not show 404 comprehensive and rigorous controls required to determine clinical relevance of the device.

405

5. Challenges and Opportunities in Type II SARS-CoV-2 diagnostics

406 There are numerous challenges to development of Type II diagnostic tools. Below we briefly 407 summarize major issues related to first-principles engineering and systems-level considerations. In a 408 follow up review, our team will discuss additional challenges and opportunities for CADS in detail.

409 First-principles engineering (RTA)

410 Fundamental research in diagnostic tools requires analysis through the lens of first principles. 411 This fundamental approach is critical to avoid catastrophic mistakes at the clinical stage. Engineering 412 first principles are based on the RTA triad, which includes molecular recognition, signal transduction 413 and acquisition 7,109. The nature of molecular interactions between viral targets and sensor 414 nanostructures is the most granular level of analysis, and this is intimately coupled with transduction 415 events that may include energetic changes of electrons or photons. To date, Type II devices have 416 focused on recognition of S1 protein based on DNA aptamers, immuno-specific affinity, stratified 417 biomolecule cascades, and whole cell biosensor systems. While each of these represent a proof-of-418 concept demonstration, rigorous control studies are needed to understand sample matrix effects 419 before any success can be translated to clinical testing. High throughput technologies (e.g., surface 420 plasmon resonance, biolayer interferometry) may offer validation of binding affinity in complex 421 mixtures. In addition, fundamental studies to show that biomaterials are stable under testing 422 conditions are necessary. Incorrect biomaterial arrangement and architecture are known to cause 423 catastrophic failure if the structure becomes unstable during testing ^{110,111}. In addition to detailed 424 studies of molecular recognition and material stability, there is limited data on the use of 425 nanomaterials for enhanced transduction and material biocompatibility.

426 Systems-level considerations 427 There are many challenges to digitizing public health care at a large scale ¹¹². The specific design 428 choices for selecting hardware, data curation methods, and analysis are critical to the outcome, and 429 thus the value, of the detection tool 7,109. Connected devices may enable the underserved population 430 to access at least some facet of public health service using smartphone-based non-invasive rapid 431 detection of infectious agents. Budd et al ¹¹³ reviewed current digital technologies available for 432 surveillance, identification, tracing and evaluation of COVID-19 in 2020, focusing on legal, ethical, 433 data privacy, organizational and workforce barriers. Although beyond the scope of this review, in a 434 follow up review our team will discuss critical gaps in the discussion, including: i) analytical versus 435 clinical performance, ii) data connectivity, iii) multiplexing and data fusion, iv) distinguishing 436 infective vs. non-infective SARS-CoV-2, and v) testing access and equity.

437 Supplementary Materials

438 Supplemental material are included.

439 Author contributions

440 Conceptualization, E.S.M., S.P.A.D.; Methodology, Y.T., C.G., D.V. and E.S.M.; Formal Analysis,

Y.T. and E.S.M.; Data Curation, E.S.M.; Writing – Original Draft Preparation, E.S.M. and S.P.A.D.;
Writing – Y.T., C.G., E.A., D.D., T.-R. T., S.P.A.D., D.C.V., E.S.M.; Review & Editing, E.S.M., S.P.A.D.,

- Writing Y.T., C.G., E.A., D.D., T.-R. T., S.P.A.D., D.C.V., E.S.M.; Review & Editing, E.S.M., S.P.A.D.,
 and D.V.; Visualization, E.S.M.; Supervision, E.S.M.; Funding Acquisition, C.G., D.J., S.P.A.D., D.C.V.,
- 444 E.S.M.
- 444 E.S.M

445 Funding

The authors acknowledge funding from the National Institute On Alcohol Abuse And Alcoholism of the
National Institutes of Health under Award Number U01AA029328. A pre-print/part of this work can be found
in the MIT DSpace library at: https://dspace.mit.edu/handle/1721.1/123983.

449 **Conflict of interest**

450 The authors declare no conflicts of interest.

451 References

- 452 (1) Yuki, K.; Fujiogi, M.; Koutsogiannaki, S. COVID-19 Pathophysiology: A Review. *Clin. Immunol.* 2020,
 453 215, 108427. https://doi.org/10.1016/j.clim.2020.108427.
- 454 (2) Datta, S. P. A. SARS-CoV-2 and COVID-19: Current Topics.
- 455 (3) V'kovski, P.; Kratzel, A.; Steiner, S.; Stalder, H.; Thiel, V. Coronavirus Biology and Replication:
 456 Implications for SARS-CoV-2. *Nat. Rev. Microbiol.* 2020. https://doi.org/10.1038/s41579-020-00468-6.
- 457 (4) Zhou, Y.; Hou, Y.; Shen, J.; Huang, Y.; Martin, W.; Cheng, F. Network-Based Drug Repurposing for
 458 Novel Coronavirus 2019-NCoV/SARS-CoV-2. *Cell Discov.* 2020, 6 (1), 14. https://doi.org/10.1038/s41421459 020-0153-3.
- 460 (5) Herrera, N. G.; Morano, N. C.; Celikgil, A.; Georgiev, G. I.; Malonis, R. J.; Lee, J. H.; Tong, K.;
 461 Vergnolle, O.; Massimi, A. B.; Yen, L. Y.; et al. Characterization of the SARS-CoV-2 S Protein:
 462 Biophysical, Biochemical, Structural, and Antigenic Analysis. *Cite This ACS Omega* 2021, *6*, 102.
- 463 https://doi.org/10.1021/acsomega.0c03512.
- 464 (6) Tang, Y. W.; Schmitz, J. E.; Persing, D. H.; Stratton, C. W. Laboratory Diagnosis of COVID-19: Current
- 465 Issues and Challenges. *Journal of Clinical Microbiology*. American Society for Microbiology June 1, 2020.
 466 https://doi.org/10.1128/JCM.00512-20.
- 467 (7) McLamore, E. S.; Datta, S. P. A.; Morgan, V.; Cavallaro, N.; Kiker, G.; Jenkins, D. M.; Rong, Y.; Gomes,
- 468 C.; Claussen, J.; Vanegas, D.; et al. SNAPS: Sensor Analytics Point Solutions for Detection and Decision
 469 Support Systems. *Sensors (Switzerland)*. 2019. https://doi.org/10.3390/s19224935.

470	(8)	Orooji, Y.; Sohrabi, H.; Hemmat, N.; Oroojalian, F.; Baradaran, B.; Mokhtarzadeh, A.; Mohaghegh, M.;
471		Karimi-Maleh, H. An Overview on SARS-CoV-2 (COVID-19) and Other Human Coronaviruses and
472		Their Detection Capability via Amplification Assay, Chemical Sensing, Biosensing, Immunosensing,
473		and Clinical Assays. Nano-Micro Lett. 2020, 13 (1), 18. https://doi.org/10.1007/s40820-020-00533-y.
474	(9)	Torabi, R.; Ranjbar, R.; Halaji, M.; Heiat, M. Aptamers, the Bivalent Agents as Probes and Therapies for
475		Coronavirus Infections: A Systematic Review. Mol. Cell. Probes 2020, 53, 101636.
476		https://doi.org/https://doi.org/10.1016/j.mcp.2020.101636.
477	(10)	Böger, B.; Fachi, M. M.; Vilhena, R. O.; Cobre, A. F.; Tonin, F. S.; Pontarolo, R. Systematic Review with
478		Meta-Analysis of the Accuracy of Diagnostic Tests for COVID-19. Am. J. Infect. Control 2021, 49 (1), 21-
479		29. https://doi.org/10.1016/j.ajic.2020.07.011.
480	(11)	Lieberman, J. A.; Pepper, G.; Naccache, S. N.; Huang, ML.; Jerome, K. R.; Greninger, A. L.
481		Comparison of Commercially Available and Laboratory-Developed Assays for In
482		Vitro Detection of SARS-CoV-2 in Clinical Laboratories. J. Clin. Microbiol. 2020, 58 (8),
483		e00821-20. https://doi.org/10.1128/JCM.00821-20.
484	(12)	Kubina, R.; Dziedzic, A. Molecular and Serological Tests for COVID-19. A Comparative Review of
485		SARS-CoV-2 Coronavirus Laboratory and Point-of-Care Diagnostics. Diagnostics 2020, 10 (6).
486		https://doi.org/10.3390/diagnostics10060434.
487	(13)	Bai, Y. X.; Xu, Y. H.; Wang, X.; Sun, C.; Guo, Y.; Qiu, S.; Ma, K. W. Advances in SARS-CoV-2: A
488		Systematic Review; 2020; Vol. 24. https://doi.org/10.26355/eurrev_202009_22873.
489	(14)	Zou, X.; Wu, J.; Gu, J.; Shen, L.; Mao, L. Application of Aptamers in Virus Detection and Antiviral
490		Therapy. Front. Microbiol. 2019, 10. https://doi.org/10.3389/fmicb.2019.01462.
491	(15)	Taha, B. A.; Al Mashhadany, Y.; Hafiz Mokhtar, M. H.; Dzulkefly Bin Zan, M. S.; Arsad, N. An
492		Analysis Review of Detection Coronavirus Disease 2019 (COVID-19) Based on Biosensor Application.
493		Sensors . 2020. https://doi.org/10.3390/s20236764.
494	(16)	Zheng, X. T.; Tan, Y. N. Recent Development of Nucleic Acid Nanosensors to Detect Sequence-Specific
495		Binding Interactions: From Metal Ions, Small Molecules to Proteins and Pathogens. Sensors Int. 2020.
496		https://doi.org/10.1016/j.sintl.2020.100034.
497	(17)	van Kasteren, P. B.; van der Veer, B.; van den Brink, S.; Wijsman, L.; de Jonge, J.; van den Brandt, A.;
498		Molenkamp, R.; Reusken, C. B. E. M.; Meijer, A. Comparison of Seven Commercial RT-PCR Diagnostic
499		Kits for COVID-19. J. Clin. Virol. 2020, 128, 104412.
500		https://doi.org/https://doi.org/10.1016/j.jcv.2020.104412.
501	(18)	Chan, J. FW.; Yip, C. CY.; To, K. KW.; Tang, T. HC.; Wong, S. CY.; Leung, KH.; Fung, A. YF.;
502		Ng, A. CK.; Zou, Z.; Tsoi, HW.; et al. Improved Molecular Diagnosis of COVID-19 by the Novel,
503		Highly Sensitive and Specific COVID-19-RdRp/Hel Real-Time Reverse Transcription-PCR Assay
504		Validated In Vitro and with Clinical Specimens. J. Clin. Microbiol. 2020, 58 (5),
505		e00310-20. https://doi.org/10.1128/JCM.00310-20.
506	(19)	Liu, S. J.; Leng, C. H.; Lien, S. P.; Chi, H. Y.; Huang, C. Y.; Lin, C. L.; Lian, W. C.; Chen, C. J.; Hsieh, S.
507		L.; Chong, P. Immunological Characterizations of the Nucleocapsid Protein Based SARS Vaccine
508		Candidates. Vaccine 2006, 24 (16), 3100-3108. https://doi.org/10.1016/j.vaccine.2006.01.058.
509	(20)	Leung, D. T. M.; Chi Hang, T. F.; Chun Hung, M.; Sheung Chan, P. K.; Cheung, J. L. K.; Niu, H.; Tam, J.
510		S. L.; Lim, P. L. Antibody Response of Patients with Severe Acute Respiratory Syndrome (SARS)
511		Targets the Viral Nucleocapsid. J. Infect. Dis. 2004, 190 (2), 379–386. https://doi.org/10.1086/422040.
512	(21)	Zeng, W.; Liu, G.; Ma, H.; Zhao, D.; Yang, Y.; Liu, M.; Mohammed, A.; Zhao, C.; Yang, Y.; Xie, J.; et al.

513		Biochemical Characterization of SARS-CoV-2 Nucleocapsid Protein. Biochem. Biophys. Res. Commun.
514		2020, 527 (3), 618–623. https://doi.org/10.1016/j.bbrc.2020.04.136.
515	(22)	Datta, S. P. A.; Newell, B.; Lamb, J.; Tang, Y.; Schoettker, P.; Santucci, C.; Gräfin Pachta, T.; Joshi, S.;
516		Geman, O.; Vanegas, D. C.; et al. Aptamers for Detection and Diagnostics (ADD) Is a Proposed Mobile
517		App Acquiring Optical Data from Conjugated Quantum Nanodots to Identify Molecules Indicating
518		Presence of SARS-CoV-2 Virus: Why Public Health and Healthcare Need Smartphone Sensors as a
519		Plat. ChemRxiv 2021. https://doi.org/10.26434/chemrxiv.13102877.
520	(23)	Amaro, R. E.; Mulholland, A. J. A Community Letter Regarding Sharing Biomolecular Simulation Data
521		for COVID-19. J. Chem. Inf. Model. 2020, 60 (6), 2653–2656. https://doi.org/10.1021/acs.jcim.0c00319.
522	(24)	Berber, B.; Aydin, C.; Kocabas, • Fatih; Guney-Esken, G.; Kaan Yilancioglu, •; Karadag-Alpaslan, M.;
523		Mehmet Caliseki, •; Yuce, M.; Demir, S.; Tastan, C. Gene Editing and RNAi Approaches for COVID-19
524		Diagnostics and Therapeutics. Gene Ther. 2020, 3, 270–273. https://doi.org/10.1038/s41434-020-00209-7.
525	(25)	Vogels, C. B. F.; Brito, A. F.; Wyllie, A. L.; Fauver, J. R.; Ott, I. M.; Kalinich, C. C.; Petrone, M. E.;
526		Casanovas-Massana, A.; Catherine Muenker, M.; Moore, A. J.; et al. Analytical Sensitivity and
527		Efficiency Comparisons of SARS-CoV-2 RT-QPCR Primer-Probe Sets. Nat. Microbiol. 2020, 5 (10),
528		1299–1305. https://doi.org/10.1038/s41564-020-0761-6.
529	(26)	Pfefferle, S.; Reucher, S.; Nörz, D.; Lütgehetmann, M. Evaluation of a Quantitative RT-PCR Assay for
530		the Detection of the Emerging Coronavirus SARS-CoV-2 Using a High Throughput System.
531		Eurosurveillance 2020, 25 (9). https://doi.org/10.2807/1560-7917.ES.2020.25.9.2000152.
532	(27)	Itokawa, K.; Sekizuka, T.; Hashino, M.; Tanaka, R.; Kuroda, M. Disentangling Primer Interactions
533		Improves SARS-CoV-2 Genome Sequencing by Multiplex Tiling PCR. PLoS One 2020, 15 (9), e0239403-
534		e0239403. https://doi.org/10.1371/journal.pone.0239403.
535	(28)	Peccia, J.; Zulli, A.; Brackney, D. E.; Grubaugh, N. D.; Kaplan, E. H.; Casanovas-Massana, A.; Ko, A. I.;
536		Malik, A. A.; Wang, D.; Wang, M.; et al. Measurement of SARS-CoV-2 RNA in Wastewater Tracks
537		Community Infection Dynamics. Nat. Biotechnol. 2020, 38 (10), 1164–1167.
538		https://doi.org/10.1038/s41587-020-0684-z.
539	(29)	Wang, C.; Liu, Z.; Chen, Z.; Huang, X.; Xu, M.; He, T.; Zhang, Z. The Establishment of Reference
540		Sequence for SARS-CoV-2 and Variation Analysis. J. Med. Virol. 2020, 92 (6).
541		https://doi.org/10.1002/jmv.25762.
542	(30)	Forster, P.; Forster, L.; Renfrew, C.; Forster, M. Phylogenetic Network Analysis of SARS-CoV-2
543		Genomes. Proc. Natl. Acad. Sci. 2020, 117 (17), 9241. https://doi.org/10.1073/pnas.2004999117.
544	(31)	Cho, SJ.; Woo, HM.; Kim, KS.; Oh, JW.; Jeong, YJ. Novel System for Detecting SARS Coronavirus
545		Nucleocapsid Protein Using an SsDNA Aptamer. J. Biosci. Bioeng. 2011, 112 (6).
546		https://doi.org/10.1016/j.jbiosc.2011.08.014.
547	(32)	Kirsch, J.; Siltanen, C.; Zhou, Q.; Revzin, A.; Simonian, A. Biosensor Technology: Recent Advances in
548		Threat Agent Detection and Medicine. Chem. Soc. Rev. 2013, 42 (22). https://doi.org/10.1039/c3cs60141b.
549	(33)	Olofsson, S.; Jeansson, S.; Lycke, E. Unusual Lectin-Binding Properties of a Herpes Simplex Virus Type
550		1-Specific Glycoprotein. J. Virol. 1981, 38 (2), 564–570. https://doi.org/10.1128/JVI.38.2.564-570.1981.
551	(34)	Brudner, M.; Karpel, M.; Lear, C.; Chen, L.; Yantosca, L. M.; Scully, C.; Sarraju, A.; Sokolovska, A.;
552		Zariffard, M. R.; Eisen, D. P.; et al. Lectin-Dependent Enhancement of Ebola Virus Infection via Soluble
553		and Transmembrane C-Type Lectin Receptors. PLoS One 2013, 8 (4), e60838–e60838.
554		https://doi.org/10.1371/journal.pone.0060838.
555	(35)	Jan, M.; Upadhyay, C.; Hioe, C. E. HIV-1 Envelope Glycan Composition as a Key Determinant of

556		Efficient Virus Transmission via DC-SIGN and Resistance to Inhibitory Lectins. iScience 2019, 21, 413-
557		427. https://doi.org/10.1016/j.isci.2019.10.030.
558	(36)	Hiono, T.; Matsuda, A.; Wagatsuma, T.; Okamatsu, M.; Sakoda, Y.; Kuno, A. Lectin Microarray
559		Analyses Reveal Host Cell-Specific Glycan Profiles of the Hemagglutinins of Influenza A Viruses.
560		Virology 2019 , 527, 132–140. https://doi.org/https://doi.org/10.1016/j.virol.2018.11.010.
561	(37)	Keyaerts, E.; Vijgen, L.; Pannecouque, C.; Van Damme, E.; Peumans, W.; Egberink, H.; Balzarini, J.;
562		Van Ranst, M. Plant Lectins Are Potent Inhibitors of Coronaviruses by Interfering with Two Targets in
563		the Viral Replication Cycle. Antiviral Res. 2007, 75 (3), 179–187.
564		https://doi.org/10.1016/j.antiviral.2007.03.003.
565	(38)	Casalino, L.; Gaieb, Z.; Goldsmith, J. A.; Hjorth, C. K.; Dommer, A. C.; Harbison, A. M.; Fogarty, C. A.;
566		Barros, E. P.; Taylor, B. C.; McLellan, J. S.; et al. Beyond Shielding: The Roles of Glycans in the SARS-
567		CoV-2 Spike Protein. ACS Cent. Sci. 2020, 6 (10), 1722–1734. https://doi.org/10.1021/acscentsci.0c01056.
568	(39)	Fairbanks, A. J. The ENGases: Versatile Biocatalysts for the Production of Homogeneous N-Linked
569		Glycopeptides and Glycoproteins. Chem. Soc. Rev. 2017, 46 (16), 5128–5146.
570		https://doi.org/10.1039/C6CS00897F.
571	(40)	McLamore, E. S.; Alocilja, E.; Gomes, C.; Gunasekaran, S.; Jenkins, D.; Datta, S. P. A.; Li, Y.; Mao, Y.
572		(Jessie); Nugen, S. R.; Reyes-De-Corcuera, J. I.; et al. FEAST of Biosensors: Food, Environmental and
573		Agricultural Sensing Technologies (FEAST) in North America. Biosens. Bioelectron. 2021, 178, 113011.
574		https://doi.org/https://doi.org/10.1016/j.bios.2021.113011.
575	(41)	Song, Y.; Song, J.; Wei, X.; Huang, M.; Sun, M.; Zhu, L.; Lin, B.; Shen, H.; Zhu, Z.; Yang, C. Discovery of
576		Aptamers Targeting the Receptor-Binding Domain of the SARS-CoV-2 Spike Glycoprotein. Anal. Chem.
577		2020 , 92 (14), 9895–9900. https://doi.org/10.1021/acs.analchem.0c01394.
578	(42)	Walls, A. C.; Park, YJ.; Tortorici, M. A.; Wall, A.; McGuire, A. T.; Veesler, D. Structure, Function, and
579		Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 2020, 181 (2), 281-292.e6.
580		https://doi.org/https://doi.org/10.1016/j.cell.2020.02.058.
581	(43)	Yuan, Y.; Cao, D.; Zhang, Y.; Ma, J.; Qi, J.; Wang, Q.; Lu, G.; Wu, Y.; Yan, J.; Shi, Y.; et al. Cryo-EM
582		Structures of MERS-CoV and SARS-CoV Spike Glycoproteins Reveal the Dynamic Receptor Binding
583		Domains. Nat. Commun. 2017, 8 (1), 15092. https://doi.org/10.1038/ncomms15092.
584	(44)	Song, W.; Gui, M.; Wang, X.; Xiang, Y. Cryo-EM Structure of the SARS Coronavirus Spike
585		Glycoprotein in Complex with Its Host Cell Receptor ACE2. PLOS Pathog. 2018, 14 (8).
586		https://doi.org/10.1371/journal.ppat.1007236.
587	(45)	Hoffmann, M.; Kleine-Weber, H.; Pöhlmann, S. A Multibasic Cleavage Site in the Spike Protein of
588		SARS-CoV-2 Is Essential for Infection of Human Lung Cells. Mol. Cell 2020, 78 (4), 779-784.e5.
589		https://doi.org/https://doi.org/10.1016/j.molcel.2020.04.022.
590	(46)	Weisshoff, H.; Krylova, O.; Nikolenko, H.; Düngen, HD.; Dallmann, A.; Becker, S.; Göttel, P.; Müller,
591		J.; Haberland, A. Aptamer BC 007 - Efficient Binder of Spreading-Crucial SARS-CoV-2 Proteins.
592		Heliyon 2020, 6 (11), e05421. https://doi.org/https://doi.org/10.1016/j.heliyon.2020.e05421.
593	(47)	Wang, C.; Li, W.; Drabek, D.; Okba, N. M. A.; van Haperen, R.; Osterhaus, A. D. M. E.; van Kuppeveld,
594		F. J. M.; Haagmans, B. L.; Grosveld, F.; Bosch, BJ. A Human Monoclonal Antibody Blocking SARS-
595		CoV-2 Infection. Nat. Commun. 2020, 11 (1). https://doi.org/10.1038/s41467-020-16256-y.
596	(48)	Tai, W.; He, L.; Zhang, X.; Pu, J.; Voronin, D.; Jiang, S.; Zhou, Y.; Du, L. Characterization of the
597		Receptor-Binding Domain (RBD) of 2019 Novel Coronavirus: Implication for Development of RBD
598		Protein as a Viral Attachment Inhibitor and Vaccine. Cell. Mol. Immunol. 2020, 17 (6).

599		https://doi.org/10.1038/s41423-020-0400-4.
600	(49)	Yuan, M.; Wu, N. C.; Zhu, X.; Lee, CC. D.; So, R. T. Y.; Lv, H.; Mok, C. K. P.; Wilson, I. A. A Highly
601		Conserved Cryptic Epitope in the Receptor Binding Domains of SARS-CoV-2 and SARS-CoV. Science
602		(80). 2020 , 368 (6491), 630. https://doi.org/10.1126/science.abb7269.
603	(50)	Seo, G.; Lee, G.; Kim, M. J.; Baek, SH.; Choi, M.; Ku, K. B.; Lee, CS.; Jun, S.; Park, D.; Kim, H. G.; et al.
604		Rapid Detection of COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyngeal Swab
605		Specimens Using Field-Effect Transistor-Based Biosensor. ACS Nano 2020, 14 (4).
606		https://doi.org/10.1021/acsnano.0c02823.
607	(51)	Torrente-Rodríguez, R. M.; Lukas, H.; Tu, J.; Min, J.; Yang, Y.; Xu, C.; Rossiter, H. B.; Gao, W. SARS-
608		CoV-2 RapidPlex: A Graphene-Based Multiplexed Telemedicine Platform for Rapid and Low-Cost
609		COVID-19 Diagnosis and Monitoring. <i>Matter</i> 2020 , 3 (6). https://doi.org/10.1016/j.matt.2020.09.027.
610	(52)	Vanegas, D. C. D. C.; Gomes, C. L. C. L.; Cavallaro, N. D. N. D.; McLamore, E. S. E. S.; Giraldo-Escobar,
611	()	D.; McLamore, E. S. E. S. Emerging Biorecognition and Transduction Schemes for Rapid Detection of
612		Pathogenic Bacteria in Food. Compr. Rev. Food Sci. Food Saf. 2017, in press (6), 1–18.
613		https://doi.org/10.1111/1541-4337.12294.
614	(53)	Giacobassi, C. A.; Oliveira, D. A.; Pola, C. C.; Xiang, D.; Tang, Y.; Datta, S. P. A.; McLamore, E. S.;
615		Gomes, C. Sense-Analyze-Respond-Actuate (SARA) Paradigm: Proof of Concept System Spanning
616		Nanoscale and Macroscale Actuation for Detection of Escherichia Coli in Water. Actuators 2020 , in
617		press.
618	(54)	, Francica, J. R.; Varela-Rohena, A.; Medvec, A.; Plesa, G.; Riley, J. L.; Bates, P. Steric Shielding of Surface
619		Epitopes and Impaired Immune Recognition Induced by the Ebola Virus Glycoprotein. <i>PLoS Pathog</i> .
620		2010 , 6 (9). https://doi.org/10.1371/journal.ppat.1001098.
621	(55)	Dommett, R. M.; Klein, N.; Turner, M. W. Mannose-Binding Lectin in Innate Immunity: Past, Present
622		and Future. <i>Tissue Antigens</i> 2006 , 68 (3), 193–209. https://doi.org/https://doi.org/10.1111/j.1399-
623		0039.2006.00649.x.
624	(56)	Farsang, A.; Bódi, I.; Fölker, O.; Minkó, K.; Benyeda, Z.; Bálint, Á.; Oláh, I. Avian Coronavirus Infection
625		Induces Mannose-Binding Lectin Production in Dendritic Cell Precursors of Chicken Lymphoid
626		Organs. Acta Vet. Hung. 2019, 67 (2). https://doi.org/10.1556/004.2019.020.
627	(57)	Kjærup, R. M.; Dalgaard, T. S.; Norup, L. R.; Bergman, IM.; Sørensen, P.; Juul-Madsen, H. R.
628		Adjuvant Effects of Mannose-Binding Lectin Ligands on the Immune Response to Infectious Bronchitis
629		Vaccine in Chickens with High or Low Serum Mannose-Binding Lectin Concentrations. <i>Immunobiology</i>
630		2014 , 219 (4), 263–274. https://doi.org/https://doi.org/10.1016/j.imbio.2013.10.013.
631	(58)	Xu, L.; Zhang, Y.; Liu, Y.; Chen, Z.; Deng, H.; Ma, Z.; Wang, H.; Hu, Z.; Deng, F. Angiotensin-
632		Converting Enzyme 2 (ACE2) from Raccoon Dog Can Serve as an Efficient Receptor for the Spike
633		Protein of Severe Acute Respiratory Syndrome Coronavirus. J. Gen. Virol. 2009, 90 (11), 2695–2703.
634		https://doi.org/10.1099/vir.0.013490-0.
635	(59)	Lv, Y.; Li, Y.; Yi, Y.; Zhang, L.; Shi, Q.; Yang, J. A Genomic Survey of Angiotensin-Converting Enzymes
636		Provides Novel Insights into Their Molecular Evolution in Vertebrates. <i>Molecules</i> 2018 , 23 (11), 2923.
637		https://doi.org/10.3390/molecules23112923.
638	(60)	Xiao, H.; Nie, XT.; Ji, XX.; Yan, S.; Zhu, B.; Zhang, YS. Establishing Prokaryotic Expression System
639		of Angiotensin-Converting Enzyme 2 (ACE2) Gene in Pigs. <i>bioRxiv</i> 2020 , 2020.03.12.988634.
640		https://doi.org/10.1101/2020.03.12.988634.
641	(61)	Yuan, M.; Wu, N. C.; Zhu, X.; Lee, CC. D.; So, R. T. Y.; Lv, H.; Mok, C. K. P.; Wilson, I. A. A Highly

642		Conserved Cryptic Epitope in the Receptor-Binding Domains of SARS-CoV-2 and SARS-CoV. Science
643		(80). 2020 , 368 (6491), 630–633. https://doi.org/10.1126/science.abb7269.
644	(62)	Haljasmägi, L.; Remm, A.; Rumm, A. P.; Krassohhina, E.; Sein, H.; Tamm, A.; Kisand, K.; Peterson, P.
645		LIPS Method for the Detection of SARS-CoV-2 Antibodies to Spike and Nucleocapsid Proteins. Eur. J.
646		Immunol. 2020, 50 (8), 1234–1236. https://doi.org/https://doi.org/10.1002/eji.202048715.
647	(63)	Rosadas, C.; Randell, P.; Khan, M.; McClure, M. O.; Tedder, R. S. Testing for Responses to the Wrong
648		SARS-CoV-2 Antigen? Lancet 2020, 396 (10252), e23. https://doi.org/10.1016/S0140-6736(20)31830-4.
649	(64)	Ravi, N.; Cortade, D. L.; Ng, E.; Wang, S. X. Diagnostics for SARS-CoV-2 Detection: A Comprehensive
650		Review of the FDA-EUA COVID-19 Testing Landscape. Biosens. Bioelectron. 2020, 165, 112454.
651		https://doi.org/https://doi.org/10.1016/j.bios.2020.112454.
652	(65)	Dinnes, J.; Deeks, J. J.; Adriano, A.; Berhane, S.; Davenport, C.; Dittrich, S.; Emperador, D.; Takwoingi,
653		Y.; Cunningham, J.; Beese, S.; et al. Rapid, Point-of-Care Antigen and Molecular-Based Tests for
654		Diagnosis of SARS-CoV-2 Infection. Cochrane Database Syst. Rev. 2020, No. 8.
655		https://doi.org/10.1002/14651858.CD013705.
656	(66)	Cerutti, F.; Burdino, E.; Milia, M. G.; Allice, T.; Gregori, G.; Bruzzone, B.; Ghisetti, V. Urgent Need of
657		Rapid Tests for SARS CoV-2 Antigen Detection: Evaluation of the SD-Biosensor Antigen Test for
658		SARS-CoV-2. J. Clin. Virol. 2020, 132, 104654. https://doi.org/https://doi.org/10.1016/j.jcv.2020.104654.
659	(67)	Hirotsu, Y.; Maejima, M.; Shibusawa, M.; Nagakubo, Y.; Hosaka, K.; Amemiya, K.; Sueki, H.;
660		Hayakawa, M.; Mochizuki, H.; Tsutsui, T.; et al. Comparison of Automated SARS-CoV-2 Antigen Test
661		for COVID-19 Infection with Quantitative RT-PCR Using 313 Nasopharyngeal Swabs, Including from
662		Seven Serially Followed Patients. Int. J. Infect. Dis. 2020, 99, 397-402.
663		https://doi.org/https://doi.org/10.1016/j.ijid.2020.08.029.
664	(68)	Chen, Z.; Wu, Q.; Chen, J.; Ni, X.; Dai, J. A DNA Aptamer Based Method for Detection of SARS-CoV-2
665		Nucleocapsid Protein. Virol. Sin. 2020, 35 (3), 351–354. https://doi.org/10.1007/s12250-020-00236-z.
666	(69)	Joonaki, E.; Hassanpouryouzband, A.; Heldt, C. L.; Areo, O. Surface Chemistry Can Unlock Drivers of
667		Surface Stability of SARS-CoV-2 in a Variety of Environmental Conditions. Chem 2020, 6, 2135–2146.
668		https://doi.org/10.1016/j.chempr.2020.08.001.
669	(70)	Scheller, C.; Krebs, F.; Minkner, R.; Astner, I.; Gil-Moles, M.; Wätzig, H. Physicochemical Properties of
670		SARS-CoV-2 for Drug Targeting, Virus Inactivation and Attenuation, Vaccine Formulation and Quality
671		Control. Electrophoresis 2020, 41 (13–14), 1137–1151.
672		https://doi.org/https://doi.org/10.1002/elps.202000121.
673	(71)	Kondo, T.; Iwatani, Y.; Matsuoka, K.; Fujino, T.; Umemoto, S.; Yokomaku, Y.; Ishizaki, K.; Kito, S.;
674		Sezaki, T.; Hayashi, G.; et al. Antibody-like Proteins That Capture and Neutralize SARS-CoV-2. Sci.
675		<i>Adv.</i> 2020 , <i>6</i> (42), eabd3916. https://doi.org/10.1126/sciadv.abd3916.
676	(72)	Ishikawa, F. N.; Chang, HK.; Curreli, M.; Liao, HI.; Olson, C. A.; Chen, PC.; Zhang, R.; Roberts, R.
677		W.; Sun, R.; Cote, R. J.; et al. Label-Free, Electrical Detection of the SARS Virus N-Protein with
678		Nanowire Biosensors Utilizing Antibody Mimics as Capture Probes. ACS Nano 2009, 3 (5), 1219–1224.
679		https://doi.org/10.1021/nn900086c.
680	(73)	Nascimento da Silva, L. C.; Mendonça, J. S. P.; de Oliveira, W. F.; Batista, K. L. R.; Zagmignan, A.;
681		Viana, I. F. T.; dos Santos Correia, M. T. Exploring Lectin–Glycan Interactions to Combat COVID-19:
682		Lessons Acquired from Other Enveloped Viruses. Glycobiology 2020.
683		https://doi.org/10.1093/glycob/cwaa099.
684	(74)	Qiu, G.; Gai, Z.; Tao, Y.; Schmitt, J.; Kullak-Ublick, G. A.; Wang, J. Dual-Functional Plasmonic

685		Photothermal Biosensors for Highly Accurate Severe Acute Respiratory Syndrome Coronavirus 2
686		Detection. ACS Nano 2020, 14 (5), 5268-5277. https://doi.org/10.1021/acsnano.0c02439.
687	(75)	Chaibun, T.; Puenpa, J.; Ngamdee, T.; Boonapatcharoen, N.; Athamanolap, P.; O'Mullane, A. P.;
688		Vongpunsawad, S.; Poovorawan, Y.; Lee, S. Y.; Lertanantawong, B. Rapid Electrochemical Detection of
689		Coronavirus SARS-CoV-2. Nat. Commun. 2021, 12 (1), 1–10. https://doi.org/10.1038/s41467-021-21121-7.
690	(76)	Broughton, J. P.; Deng, X.; Yu, G.; Fasching, C. L.; Servellita, V.; Singh, J.; Miao, X.; Streithorst, J. A.;
691		Granados, A.; Sotomayor-Gonzalez, A.; et al. CRISPR-Cas12-Based Detection of SARS-CoV-2. Nat.
692		Biotechnol. 2020, 38 (7), 870–874. https://doi.org/10.1038/s41587-020-0513-4.
693	(77)	Zhu, X.; Wang, X.; Han, L.; Chen, T.; Wang, L.; Li, H.; Li, S.; He, L.; Fu, X.; Chen, S.; et al. Reverse
694		Transcription Loop-Mediated Isothermal Amplification Combined with Nanoparticles-Based
695		Biosensor for Diagnosis of COVID-19. medRxiv. 2020. https://doi.org/10.1101/2020.03.17.20037796.
696	(78)	Ackerman, C. M.; Myhrvold, C.; Thakku, S. G.; Freije, C. A.; Metsky, H. C.; Yang, D. K.; Ye, S. H.;
697		Boehm, C. K.; Kosoko-Thoroddsen, TS. F.; Kehe, J.; et al. Massively Multiplexed Nucleic Acid
698		Detection with Cas13. Nature 2020, 582 (7811), 277–282. https://doi.org/10.1038/s41586-020-2279-8.
699	(79)	Huang, Z.; Tian, D.; Liu, Y.; Lin, Z.; Lyon, C. J.; Lai, W.; Fusco, D.; Drouin, A.; Yin, X.; Hu, T.; et al.
700		Ultra-Sensitive and High-Throughput CRISPR-p Owered COVID-19 Diagnosis. Biosens. Bioelectron.
701		2020, 164, 112316. https://doi.org/https://doi.org/10.1016/j.bios.2020.112316.
702	(80)	Singh, N. K.; Ray, P.; Carlin, A. F.; Magallanes, C.; Morgan, S. C.; Laurent, L. C.; Aronoff-Spencer, E. S.;
703		Hall, D. A. Hitting the Diagnostic Sweet Spot: Point-of-Care SARS-CoV-2 Salivary Antigen Testing
704		with an off-the-Shelf Glucometer. medRxiv. 2020. https://doi.org/10.1101/2020.09.24.20200394.
705	(81)	Liu, R.; He, L.; Hu, Y.; Luo, Z.; Zhang, J. A Serological Aptamer-Assisted Proximity Ligation Assay for
706		COVID-19 Diagnosis and Seeking Neutralizing Aptamers. Chem. Sci. 2020, 11, 12157–12164.
707		https://doi.org/10.1039/d0sc03920a.
708	(82)	Zhang, L.; Fang, X.; Liu, X.; Ou, H.; Zhang, H.; Wang, J.; Li, Q.; Cheng, H.; Zhang, W.; Luo, Z.
709		Discovery of Sandwich Type COVID-19 Nucleocapsid Protein DNA Aptamers. Chem. Commun. 2020,
710		56 (70), 10235–10238. https://doi.org/10.1039/D0CC03993D.
711	(83)	Woo, C. H.; Jang, S.; Shin, G.; Jung, G. Y.; Lee, J. W. Sensitive Fluorescence Detection of SARS-CoV-2
712		RNA in Clinical Samples via One-Pot Isothermal Ligation and Transcription. Nat. Biomed. Eng. 2020, 4
713		(12), 1168–1179. https://doi.org/10.1038/s41551-020-00617-5.
714	(84)	Fan, Z.; Yao, B.; Ding, Y.; Zhao, J.; Xie, M.; Zhang, K. Entropy-Driven Amplified
715		Electrochemiluminescence Biosensor for RdRp Gene of SARS-CoV-2 Detection with Self-Assembled
716		DNA Tetrahedron Scaffolds. Biosens. Bioelectron. 2021, 178, 113015.
717		https://doi.org/https://doi.org/10.1016/j.bios.2021.113015.
718	(85)	Li, J.; Lillehoj, P. B. Microfluidic Magneto Immunosensor for Rapid, High Sensitivity Measurements of
719		SARS-CoV-2 Nucleocapsid Protein in Serum. ACS Sensors 2021, acssensors.0c02561.
720		https://doi.org/10.1021/acssensors.0c02561.
721	(86)	Fabiani, L.; Saroglia, M.; Galatà, G.; De Santis, R.; Fillo, S.; Luca, V.; Faggioni, G.; D'Amore, N.;
722		Regalbuto, E.; Salvatori, P.; et al. Magnetic Beads Combined with Carbon Black-Based Screen-Printed
723		Electrodes for COVID-19: A Reliable and Miniaturized Electrochemical Immunosensor for SARS-CoV-
724		2 Detection in Saliva. Biosens. Bioelectron. 2021, 171, 112686.
725		https://doi.org/https://doi.org/10.1016/j.bios.2020.112686.
726	(87)	Diao, B.; Wen, K.; Chen, J.; Liu, Y.; Yuan, Z.; Han, C.; Chen, J.; Pan, Y.; Chen, L.; Dan, Y.; et al.
727		Diagnosis of Acute Respiratory Syndrome Coronavirus 2 Infection by Detection of Nucleocapsid

728		Protein. medRxiv 2020, 2020.03.07.20032524. https://doi.org/10.1101/2020.03.07.20032524.
729	(88)	Devi, A.; Chaitanya, N. S. N. Designing of Peptide Aptamer Targeting the Receptor-Binding Domain of
730		Spike Protein of SARS-CoV-2: An in Silico Study. Mol. Divers. 2021. https://doi.org/10.1007/s11030-020-
731		10171-6.
732	(89)	Sun, M.; Liu, S.; Wei, X.; Wan, S.; Huang, M.; Song, T.; Lu, Y.; Weng, X.; Lin, Z.; Chen, H.; et al.
733		Aptamer Blocking Strategy Inhibits SARS-CoV-2 Virus Infection. Angew. Chemie Int. Ed. 2021, n/a (n/a).
734		https://doi.org/https://doi.org/10.1002/anie.202100225.
735	(90)	Rahimi, N. C-Type Lectin CD209L/L-SIGN and CD209/DC-SIGN: Cell Adhesion Molecules Turned to
736		Pathogen Recognition Receptors. <i>Biology</i> . 2021. https://doi.org/10.3390/biology10010001.
737	(91)	Zhao, X.; Chu, H.; Wong, B. HY.; Chiu, M. C.; Wang, D.; Li, C.; Liu, X.; Yang, D.; Poon, V. KM.; Cai,
738		J.; et al. Activation of C-Type Lectin Receptor and (RIG)-I-Like Receptors Contributes to
739		Proinflammatory Response in Middle East Respiratory Syndrome Coronavirus-Infected Macrophages.
740		J. Infect. Dis. 2020, 221 (4), 647–659. https://doi.org/10.1093/infdis/jiz483.
741	(92)	Koch, B.; Schult-Dietrich, P.; Büttner, S.; Dilmaghani, B.; Lohmann, D.; Baer, P. C.; Dietrich, U.; Geiger,
742		H. Lectin Affinity Plasmapheresis for Middle East Respiratory Syndrome-Coronavirus and Marburg
743		Virus Glycoprotein Elimination. Blood Purif. 2018, 46 (2), 126–133. https://doi.org/10.1159/000487224.
744	(93)	Wang, D.; Lu, J. Glycan Arrays Lead to the Discovery of Autoimmunogenic Activity of SARS-CoV.
745		Physiol. Genomics 2004, 18 (2), 245–248. https://doi.org/10.1152/physiolgenomics.00102.2004.
746	(94)	Zhang, H.; Zhou, G.; Zhi, L.; Yang, H.; Zhai, Y.; Dong, X.; Zhang, X.; Gao, X.; Zhu, Y.; He, F.
747		Association between Mannose-Binding Lectin Gene Polymorphisms and Susceptibility to Severe Acute
748		Respiratory Syndrome Coronavirus Infection. J. Infect. Dis. 2005, 192 (8), 1355-1361.
749		https://doi.org/10.1086/491479.
750	(95)	Malaquias, M. A. S.; Gadotti, A. C.; Motta-Junior, J. da S.; Martins, A. P. C.; Azevedo, M. L. V.;
751		Benevides, A. P. K.; Cézar-Neto, P.; Panini do Carmo, L. A.; Zeni, R. C.; Raboni, S. M.; et al. The Role of
752		the Lectin Pathway of the Complement System in SARS-CoV-2 Lung Injury. Transl. Res. 2020.
753		https://doi.org/https://doi.org/10.1016/j.trsl.2020.11.008.
754	(96)	Decker, J. S.; Menacho-Melgar, R.; Lynch, M. D. Low-Cost, Large-Scale Production of the Anti-Viral
755		Lectin Griffithsin . Frontiers in Bioengineering and Biotechnology . 2020, p 1020.
756	(97)	Kim, CH. SARS-CoV-2 Evolutionary Adaptation toward Host Entry and Recognition of Receptor O-
757		Acetyl Sialylation in Virus-Host Interaction. International Journal of Molecular Sciences . 2020.
758		https://doi.org/10.3390/ijms21124549.
759	(98)	Uslupehlivan, M.; Şener, E. Glycoinformatics Approach for Identifying Target Positions to Inhibit
760		Initial Binding of SARS-CoV-2 S1 Protein to the Host Cell. bioRxiv 2020, 2020.03.25.007898.
761		https://doi.org/10.1101/2020.03.25.007898.
762	(99)	Sohrab, S. S.; Suhail, M.; Kamal, M. A.; Ahmad, F.; Azhar, E. I. The Emergence of Human Pathogenic
763		Coronaviruses: Lectins as Antivirals for SARS-CoV-2. Curr. Pharm. Des. 2020.
764		https://doi.org/10.2174/1381612826666200821120409.
765	(100)	Lenza, M. P.; Oyenarte, I.; Diercks, T.; Quintana, J. I.; Gimeno, A.; Coelho, H.; Diniz, A.; Peccati, F.;
766		Delgado, S.; Bosch, A.; et al. Structural Characterization of N-Linked Glycans in the Receptor Binding
767		Domain of the SARS-CoV-2 Spike Protein and Their Interactions with Human Lectins. Angew. Chemie
768		Int. Ed. 2020, 59 (52), 23763–23771. https://doi.org/https://doi.org/10.1002/anie.202011015.
769	(101)	Lokhande, K. B.; Apte, G. R.; Shrivastava, A.; Singh, A.; Pal, J. K.; Swamy, K. V.; Gupta, R. K. Sensing
770		the Interactions between Carbohydrate-Binding Agents and N-Linked Glycans of SARS-CoV-2 Spike

771		Glycoprotein Using Molecular Docking and Simulation Studies. J. Biomol. Struct. Dyn. 2020, 1–19.
772		https://doi.org/10.1080/07391102.2020.1851303.
773	(102)	Pandey, L. M. Design of Engineered Surfaces for Prospective Detection of SARS-CoV-2 Using Quartz
774		Crystal Microbalance-Based Techniques. Expert Rev. Proteomics 2020, 17 (6), 425–432.
775		https://doi.org/10.1080/14789450.2020.1794831.
776	(103)	Chang, W.; Sung, P.; Chu, C.; Shih, C.; Lin, Y. Phase Detection of the Two-Port FPW Sensor for
777		Biosensing. IEEE Sens. J. 2008, 8 (5), 501–507. https://doi.org/10.1109/JSEN.2008.918728.
778	(104)	Farrow, T.; Laumier, S.; Hall, S.; Sandall, I.; Zalinge, H. van. Feasibility of a Silicon Thin Film
779		Transistor-Based Aptamer Sensor for COVID-19 Detection. IEEE Sens. J. 2021.
780		https://doi.org/10.21203/rs.3.rs-74726/v2.
781	(105)	Zakashansky, J. A.; Imamura, A. H.; Salgado, D. F.; Romero Mercieca, H. C.; Aguas, R. F. L.; Lao, A.
782		M.; Pariser, J.; Arroyo-Currás, N.; Khine, M. Detection of the SARS-CoV-2 Spike Protein in Saliva with
783		Shrinky-Dink© Electrodes. <i>medRxiv</i> 2020 , 2020.11.14.20231811.
784		https://doi.org/10.1101/2020.11.14.20231811.
785	(106)	Ahmadivand, A.; Gerislioglu, B.; Ramezani, Z.; Kaushik, A.; Manickam, P.; Ghoreishi, S. A.
786		Femtomolar-Level Detection of Sars-Cov-2 Spike Proteins Using Toroidal Plasmonic Metasensors.
787		arXiv. 2020.
788	(107)	Kyosei, Y.; Namba, M.; Yamura, S.; Takeuchi, R.; Aoki, N.; Nakaishi, K.; Watabe, S.; Ito, E. Proposal of
789		De Novo Antigen Test for COVID-19: Ultrasensitive Detection of Spike Proteins of SARS-CoV-2.
790		Diagnostics . 2020. https://doi.org/10.3390/diagnostics10080594.
791	(108)	Hass, K. N.; Bao, M.; He, Q.; Liu, L.; He, J.; Park, M.; Qin, P.; Du, K. Integrated Micropillar
792		Polydimethylsiloxane Accurate CRISPR Detection System for Viral DNA Sensing. ACS Omega 2020, 5
793		(42), 27433–27441. https://doi.org/10.1021/acsomega.0c03917.
794	(109)	Morgan, V.; Casso-Hartmann, L.; Bahamon-Pinzon, D.; McCourt, K.; Hjort, R. G.; Bahramzadeh, S.;
795		Velez-Torres, I.; McLamore, E.; Gomes, C.; Alocilja, E. C.; et al. Sensor-as-a-Service: Convergence of
796		Sensor Analytic Point Solutions (SNAPS) and Pay-a-Penny-per-Use (PAPPU) Paradigm as a Catalyst
797		for Democratization of Healthcare in Underserved Communities. Diagnostics. 2020.
798		https://doi.org/10.3390/diagnostics10010022.
799	(110)	Vanegas, D. C.; Clark, G.; Cannon, A. E.; Roux, S.; Chaturvedi, P.; McLamore, E. S. A Self-Referencing
800		Biosensor for Real-Time Monitoring of Physiological ATP Transport in Plant Systems. Biosens.
801		Bioelectron. 2015, 74, 37-44. https://doi.org/10.1016/j.bios.2015.05.027.
802	(111)	Vanegas, D. C.; Taguchi, M.; Chaturvedi, P.; Burrs, S.; Tan, M.; Yamaguchi, H.; McLamore, E. S. A
803		Comparative Study of Carbon-Platinum Hybrid Nanostructure Architecture for Amperometric
804		Biosensing. Analyst 2014, 139 (3), 660–667. https://doi.org/10.1039/c3an01718d.
805	(112)	Datta, S. P. A.; Saleem, T. J.; Barati, M.; López, M. V. L.; Furgala, ML.; Vanegas, D. C.; Santucci, G.;
806		Khargonekar, P. P.; McLamore, E. S. Data, Analytics and Interoperability Between Systems (IoT) Is
807		Incongruous with the Economics of Technology. In Big Data Analytics for Internet of Things; John Wiley
808		& Sons, Inc.: Hoboken, NJ, USA, 2021; pp 7–88. https://doi.org/10.1002/9781119740780.ch2.
809	(113)	Budd, J.; Miller, B. S.; Manning, E. M.; Lampos, V.; Zhuang, M.; Edelstein, M.; Rees, G.; Emery, V. C.;
810		Stevens, M. M.; Keegan, N.; et al. Digital Technologies in the Public-Health Response to COVID-19.
811		Nat. Med. 2020, 26 (8), 1183–1192. https://doi.org/10.1038/s41591-020-1011-4.
812		