
An Immersed Interface Method for Incompressible Flow with
Moving Boundaries and High Order Time Integration

by

James Gabbard

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Master of Science in Mechanical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2020

c○ Massachusetts Institute of Technology 2020. All rights reserved.

Author .
Department of Mechanical Engineering

January 15, 2020

Certified by. .
Wim van Rees

Assistant Professor
Thesis Supervisor

Accepted by .
Nicolas Hadjiconstantinou

Chairman, Department Committee on Graduate Theses

2

An Immersed Interface Method for Incompressible Flow with Moving
Boundaries and High Order Time Integration

by
James Gabbard

Submitted to the Department of Mechanical Engineering
on January 15, 2020, in partial fulfillment of the

requirements for the degree of
Master of Science in Mechanical Engineering

Abstract
In this work we present a novel Immersed Interface Method (IIM) for simulating two dimensional
incompressible flows involving moving rigid bodies immersed in an unbounded fluid domain. To do
so, we solve the Navier-Stokes equations in vorticity-stream function form, using a second order IIM
spatial discretization that allows for the use of high order explicit Runge-Kutta time integration.

We begin by reviewing existing work on the immersed interface method, and developing novel
algorithms for stencil calculation, geometry processing, and integration over irregular domains. We
then introduce a stable IIM discretization of the advection-diffusion equation, and describe an im-
proved version of the IIM Poisson solver developed by Gillis [9]. We review vorticity-based formulas
for calculating the local tractions and global forces acting on an immersed body, and present a novel
extension of the control-volume force calculation methods developed by Noca [16]. This first section
culminates in the presentation of an IIM Navier Stokes solver for problems on stationary domains,
which is shown to have second-order spatial accuracy and third-order temporal accuracy.

The second portion of this work develops a general IIM framework for discretizing PDEs on
moving domains. We focus on schemes that are compatible with explicit high-order Runge-Kutta
methods, and demonstrate that our method introduces a mixed spatial-temporal error term not seen
in stationary IIM discretizations. We also consider CFL-like restrictions that limit the maximum
time step used in problems with moving domains, and develop geometric criteria to ensure that
these restrictions are met. Using these new methods, we extend our existing IIM Navier Stokes
solver to allow for moving boundaries, and verify that the method retains its second-order spatial
and third order temporal accuracy. Finally, we demonstrate the applicability of the algorithm to
complex two-dimensional flow problems by calculating the time-dependent lift, thrust, and moment
coefficients of a flapping airfoil.

Thesis Supervisor: Wim van Rees
Title: Assistant Professor

3

4

Contents

1 Introduction 7

2 The Immersed Interface Method 9
2.1 Explicit Jump IIM . 9

2.1.1 Generalized Taylor Series . 9
2.1.2 Jump-Corrected Finite Differences . 10
2.1.3 A One-dimensional Example: The Diffusion Equation 11
2.1.4 Implementation . 13

2.2 Simplifying Jump Corrections with Interpolating Polynomials 13
2.3 Extending the IIM to Two Dimensions . 15

2.3.1 Jump Corrections in Two Dimensions . 16
2.3.2 Revisiting the Diffusion Equation in Two Dimensions 17

2.4 Geometry Processing for IIM . 18
2.4.1 Efficiently Identifying Control Points . 19
2.4.2 Integration over an Irregular Boundary . 20
2.4.3 Integration over an Irregular Domain . 21

3 IIM for Transport Problems 25
3.1 The Advection Diffusion Equation . 25
3.2 Free-Space Discretization . 26

3.2.1 Stability of Finite Difference Advection Schemes 26
3.2.2 Stability of Diffusion Schemes . 28
3.2.3 Stability of Advection Diffusion Schemes . 29

3.3 Boundary Conditions . 30
3.3.1 Diffusion Problems . 30
3.3.2 Advection Diffusion Part 1 . 31
3.3.3 Advection Problems . 33
3.3.4 Advection Diffusion Part 2 . 35

4 IIM for the Navier Stokes Equations 39
4.1 Kinematics of Vorticity . 39

4.1.1 Kinematics on an Simply-Connected Domain 39
4.1.2 Kinematics on a Multiply-Connected Domain 40
4.1.3 Discretized Kinematics . 41
4.1.4 Solving the Discrete Stream Function System 42
4.1.5 Immersed Interface Curl Operator . 43

4.2 Vorticity Boundary Conditions . 43
4.2.1 Candidate Boundary Conditions . 43
4.2.2 IIM Boundary Condition . 44

5

5 Force Calculation 47
5.1 Traction an a Material Surface . 47
5.2 Integrated Pressure Forces . 48
5.3 Local Pressure Forces . 49
5.4 Global Forces: CV Analysis . 50
5.5 Calculating Vorticity Flux . 51

6 Numerical Results: Navier Stokes with Stationary Boundaries 55
6.1 An IIM Navier Stokes Solver . 55
6.2 Problem Setup: Impulsively Started Cylinder . 56

6.2.1 Handling Impulsive Starts . 57
6.2.2 Re = 550: Temporal Convergence . 57
6.2.3 Re = 550: Spatial Convergence of Global Loads 58
6.2.4 Re = 550: Local Loads . 60
6.2.5 Higher Reynolds Number (Re = 3000) . 61

6.3 Impulsively Rotated Cylinder . 61

7 IIM with Moving Boundaries 65
7.1 First-Order Time Integration . 65

7.1.1 Restrictions on Time Stepping . 67
7.1.2 Numerical Results . 68

7.2 Higher Order Integration Methods . 69
7.2.1 Explicit Higher Order Runge-Kutta Methods 69

7.3 Coupling of Spatial and Temporal Error . 71
7.3.1 Numerical Results . 73

8 Numerical Results: Navier Stokes with Moving Boundaries 77
8.1 A Moving Boundary Navier Stokes Solver . 77
8.2 Impulsively Started Cylinder . 78

8.2.1 Re = 550: Spatial Convergence . 78
8.2.2 Re = 550: Temporal Convergence . 79
8.2.3 Re = 550: Local Forces . 80
8.2.4 Higher Reynolds Number (Re = 3000) . 80

8.3 Flapping Ellipse . 80
8.3.1 Results . 81

9 Conclusions 87

A IIM Stencil Calculations 91
A.1 Interpolation and Extrapolation on a Regular Grid 91
A.2 Jump Corrections with Dirichlet Condition. 92
A.3 Jump Corrections without a Boundary Condition. 92
A.4 Wall derivatives . 92

B Control Volume Formulation for Moments 95

C Analytical Solution for an Impulsively Rotated Cylinder 99

6

Chapter 1

Introduction

The natural world contains abundant examples of living creatures that propel themselves through
an incompressible fluid, be it birds in the sky or fish that traverse the open ocean. There are
strong economic incentives for human beings to do the same, and we have been successful so far in
developing commercial aircraft, ships and submarines. However, there remains a fundamental gap
between animal propulsion strategies and human propulsion strategies. While the creatures around
us move with great agility via complex deformations of their bodies, man-made vehicles remain
largely static, and are propelled by the rotary motion of propellers or the acceleration of fluid in a
jet engine.

The study of biological propulsion strategies is an attempt to bridge this fundamental gap. By
studying the locomotion patterns of natural creatures, we too can learn the lessons taught to them
by millions of years of evolutionary time, and use this knowledge to improve the efficiency of our
own propulsion systems. Computational fluid dynamics is an essential part of this pursuit, since
experimental work with living creatures is difficult, expensive, and at times ethically dubious. Given
an accurate measurement of an animal, computational methods allow us to reconstruct the flow field
around that animal with great accuracy.

Unfortunately, there are a variety of factors that make biological propulsion difficult to simulate.
While many problems in aerodynamics can be adequately described in a steady or time-averaged
way, traditional swimming and flapping motions are inherently unsteady problems. Compounding
this, many of the most effective methods in CFD require the use of a mesh that conforms to the
fluid domain, leading to an unacceptably high mesh-generation cost for problems involving deforming
geometries. Many creatures inhabit a fluid domain that is effectively unbounded, a fact that must
be handled correctly to accurately capture the fluid dynamics at play.

Vortex methods provide an effective answer to many of these issues, and there are a wealth of
recent papers that successfully simulate biological flows by tracking the vorticity field. The vorticity-
velocity form of the Navier-Stokes equations naturally handles unbounded domains, and for many
biologically-inspired flows the vorticity field is effectively localized on the object’s surface and in key
vortex structures in its wake. The use of vortex-particle methods, which reformulate these equations
in a Lagrangian way, allows for efficient advection strategies with relaxed stability criteria compared
to traditional Eulerian formulations.

Vortex methods alone do not provide a clear path forward for the simulation of deforming ge-
ometries. To avoid the use of body-fitted grids, we focus on immersed methods, which operate on
a regular grid that need not be coincident with solid boundaries. There are a whole zoo of these
methods, including penalization methods, immersed boundary methods, the ghost fluid method,
cut-cell methods, and the immersed interface method (IIM). Among these, there is no single method
which is clearly superior; all represent a trade off between simplicity, accuracy, and computational
efficiency.

The starting point for the material presented here is the work of Yves Marichal [15] and Thomas
Gillis [10], which merges a re-meshed vortex-particle method with an IIM boundary treatment to
simulate flow past stationary bluff bodies in two and three dimensions. In this thesis we extend these

7

immersed interface methods to flow problems with moving boundaries, a significant step towards
fluid-structure interaction and other biological propulsion problems. To achieve this, we replace
the vortex-particle method with a finite difference based transport scheme, and develop improved
algorithms for IIM stencil calculations, IIM-based geometry processing, integration over irregular
domains, and force calculation in incompressible flow problems. The presentation of this material
proceeds as follows:

∙ Chapter 2 begins with a traditional presentation of the Explicit Jump Immersed Interface
Method (EJIIM), and offers some conceptual simplifications that lead to more efficient stencil
computation. We then present a novel algorithm for efficient geometry processing, and discuss
techniques for accurate integration over irregular domains.

∙ Chapter 3 presents a Von Neumann stability analysis of several finite difference discretizations
of the advection diffusion equation. We then present a novel immersed interface boundary
treatment, and demonstrate that the resulting discretization is stable over a broad range of
Péclet numbers.

∙ Chapter 4 improves an existing IIM Poisson solver developed by Gillis in [9]. We then
motivate and describe the local vorticity boundary condition used successfully in [10] and in
the remainder of this thesis.

∙ Chapter 5 is intended as convenient, self-contained reference for calculating global and local
forces from the vorticity-velocity formulation of the Navier-Stokes equations. We also present
a novel control volume formulation for calculating aerodynamic moments.

∙ Chapter 6 presents an IIM Navier Stokes solver built from material presented in the previous
four chapters. The convergence of this solver is measured, and the resulting numerical solutions
are compared with computational reference data from other authors.

∙ Chapter 7 develops a novel method for handling moving bodies with the immersed interface
method, allowing for explicit high-order time integration.

∙ Chapter 8 demonstrates the validity of an IIM Navier Stokes solver for moving bodies. We
verify the spatial and temporal convergence properties of the solver, and compare the resulting
numerical results to existing reference data. Finally, we conclude by using this solver to
simulate a flapping airfoil, a flow problem that is relevant to biological propulsion.

In this thesis, no attempt is made to achieve complete mathematical rigour. We will frequently
motivate our discretizations with heuristics, and arrive at results via quick arguments instead of
watertight proofs. It is exceedingly difficult to find a stability proof for a fully-discrete Navier stokes
solver on a multidimensional irregular domain, and we will not attempt proofs of this sort here.
Instead, we demonstrate the stability and convergence of our solvers through extensive numerical
experimentation, in hopes that the efficiency and accuracy of the algorithms presented here will
make up for the lack of absolute rigour in their presentation.

8

Chapter 2

The Immersed Interface Method

The Explicit Jump Immersed Interface Method (EJIIM), introduced by Wiegmann and Bube in
[25], is a method of correcting finite difference schemes to account for jump discontinuities in the
solution to a PDE. The method has been successful in treating a wide range of problems, especially
those in which the magnitude of the jump discontinuity can be derived from the governing PDE.
As an example, the Young-Laplace equation states that the pressure jump across a curved fluid
interface is given by [𝑝] = 2𝛾𝐻, where 𝛾 is a surface tension parameter and 𝐻 is the mean curvature
of the interface. In an immersed interface method, this knowledge can be used to more accurately
discretize fluid-fluid interfaces that do not align with the computational grid.

The EJIIM can also been extended problems involving irregular geometries immersed in a Carte-
sian grid, by treating the domain boundary as a jump discontinuity. This is the scenario considered
in this thesis, where the Navier-Stokes equations in vorticity-velocity form are solved in the vicinity
of an irregularly shaped object immersed in a Cartesian grid. This particular application of the
EJIIM has been explored several times over the last 15 years [14, 15, 10], and produces solutions
that maintain second-order or higher convergence properties at the fluid-solid boundary.

In this chapter, we revisit the traditional presentation of the one-dimensional EJIIM, and demon-
strate that it can be simplified considerably when applied to the problem of irregular domains. We
then develop some notation for multidimensional immersed interface problems, and use it to dis-
cretize a model two-dimensional PDE. Finally, we describe an efficient algorithm for processing
implicitly defined geometries, and conclude with a novel treatment of integration using immersed-
interface methods.

2.1 Explicit Jump IIM

2.1.1 Generalized Taylor Series

Traditional finite difference methods fail on discontinuous functions because the Taylor series ap-
proximations they are built on are only valid for functions with suitable smoothness properties. To
extend finite difference methods to discontinuous problems, the authors of [25] propose a modified
Taylor series which correctly approximates functions with jump discontinuities, provided that the
jumps in the function and its derivatives are of known magnitude. Consider a function 𝑓 : R → R
that is smooth except at a point 𝑥𝛼, where there is a jump singularity in f and its derivatives 𝑓 (𝑘).
Let [𝑓 (𝑘)] denote the magnitude of the jump in the 𝑘𝑡ℎ derivative of 𝑓 , so that

[𝑓 (𝑘)] = lim
𝑥→𝑥+

𝛼

𝑓 (𝑘) − lim
𝑥→𝑥−

𝛼

𝑓 (𝑘) = (𝑓 (𝑘))+ − (𝑓 (𝑘))−. (2.1)

9

Teh function 𝑓 can be expanded about 𝑥 < 𝑥𝛼 using a generalized Taylor series that accounts for
the discontinuity:

𝑓(𝑥+ ℎ) =

𝑛∑︁
𝑘=0

ℎ𝑘

𝑘!
𝑓 (𝑘)(𝑥) + 𝐽𝛼 +𝑂(ℎ𝑛+1),

𝐽𝛼 =

𝑛∑︁
𝑘=0

(ℎ+)𝑘

𝑘!
[𝑓 (𝑘)].

(2.2)

Here ℎ+ = (𝑥+ ℎ) − 𝑥𝛼 is the distance from the singularity to the evaluation point (ℎ+ > 0). The
first half of (2.2) is a standard Taylor expansion of 𝑓 about 𝑥; the second is a “jump correction" that
must be added whenever the Taylor expansion crosses the discontinuity. For points 𝑥 > 𝑥𝛼, we use
a similar expansion:

𝑓(𝑥− ℎ) =

𝑛∑︁
𝑘=0

(−1)𝑘
ℎ𝑘

𝑘!
𝑓 (𝑘)(𝑥) − 𝐽𝛼 +𝑂(ℎ𝑛+1),

𝐽𝛼 =

𝑛∑︁
𝑘=0

(−1)𝑘
(ℎ−)𝑘

𝑘!
[𝑓 (𝑘)].

(2.3)

Here ℎ− = 𝑥𝛼 − (𝑥− ℎ) is the distance from the evaluation point to the singularity (ℎ− > 0). Both
of these expansions are illustrated in Figure 2-1

Figure 2-1: Setup for Equation 2.2 (left) and for Equation 2.3 (right).

A formal derivation of (2.2) and (2.3) is given in [25], but they can be motivated quite simply.
Consider a function which is equal to 𝑓(𝑥) for 𝑥 < 𝑥𝛼 and equal to 𝑔(𝑥) for 𝑥 > 𝑥𝛼. The jump
correction 𝐽 is simply a Taylor expansion of (𝑔 − 𝑓)(𝑥) about the point 𝑥𝛼, which is added to a
Taylor approximation of 𝑓(𝑥) whenever we would like to approximate 𝑔(𝑥) instead.

2.1.2 Jump-Corrected Finite Differences
In the EJIIM, the generalized Taylor series developed above are used to construct jump-corrected
finite difference schemes. To begin this process, define a uniform grid spacing ℎ and a origin 𝑥0 ∈ R,
and for 𝑖 ∈ Z let 𝑥𝑖 = 𝑥0 + 𝑖ℎ. Consider a smooth function 𝑓(𝑥), which is regularly sampled to give
values 𝑓𝑖 = 𝑓(𝑥𝑖). We can approximate the second derivative of 𝑓 using the standard second-order
centered finite difference stencil 𝑓 (2)0 = (𝑓−1−2𝑓0 +𝑓1)/ℎ2 +𝒪

(︀
ℎ2
)︀
, which can be derived by writing

𝑓1 and 𝑓−1 as a Taylor expansion about 𝑓0:

𝑓−1 = 𝑓0 − ℎ𝑓
(1)
0 + ℎ2𝑓

(2)
0 /2 − ℎ3𝑓

(3)
0 /6 + 𝒪

(︀
ℎ4
)︀
;

𝑓1 = 𝑓0 + ℎ𝑓
(1)
0 + ℎ2𝑓

(2)
0 /2 + ℎ3𝑓

(3)
0 /6 + 𝒪

(︀
ℎ4
)︀
.

Summing the two expansions and subtracting 2𝑓0 gives the expected result, which is valid so long
as 𝑓 ∈ 𝐶4[𝑥−1, 𝑥1]. If 𝑓 has a jump discontinuity at 𝑥𝛼 ∈ (𝑥0, 𝑥1), then we lose the second-order
accuracy of the approximation. To regain this accuracy, we must re-expand 𝑓1 using the generalized
Taylor series

𝑓1 = 𝑓0 + ℎ𝑓
(1)
0 + ℎ2𝑓

(2)
0 /2 + ℎ3𝑓

(3)
0 /6 + 𝐽𝛼 + 𝒪

(︀
ℎ4
)︀
,

10

with 𝐽𝛼 defined as in (2.2) and ℎ+ = 𝑥1 − 𝑥𝛼. Adding in an expansion of 𝑓−1 and subtracting 2𝑓0
gives the modified finite difference stencil

𝑓 (2)(𝑥0) =
1

ℎ2
[𝑓−1 − 2𝑓0 + (𝑓1 − 𝐽𝛼)] + 𝒪

(︀
ℎ2
)︀
,

𝐽𝛼 =

3∑︁
𝑘=0

(ℎ+)𝑘

𝑘!
[𝑓 (𝑘)].

(2.4)

For a discontinuity at 𝑥𝛼 ∈ (𝑥−1, 𝑥0), we can carry out the same procedure to obtain

𝑓 (2)(𝑥0) =
1

ℎ2
[(𝑓−1 + 𝐽𝛼) − 2𝑓0 + 𝑓1] + 𝒪

(︀
ℎ2
)︀
,

𝐽𝛼 =

3∑︁
𝑘=0

(−1)𝑘
(ℎ−)𝑘

𝑘!
[𝑓 (𝑘)],

(2.5)

with ℎ− = 𝑥𝛼 − 𝑥−1.

2.1.3 A One-dimensional Example: The Diffusion Equation

To illustrate the concepts presented above, consider an initial-boundary value problem (IBVP) for
the diffusion equation on the interval Ω = [𝑥𝛼, 𝑥𝛽], with Dirichlet boundary conditions:

𝜕𝑓

𝜕𝑡
= 𝜈

𝜕2𝑓

𝜕𝑥2
,

𝑓(𝑥, 0) = 𝑓0(𝑥),

𝑓(𝑥𝛼, 𝑡) = 𝑔(𝑡),

𝑓(𝑥𝛽 , 𝑡) = ℎ(𝑡).

(2.6)

To approximate the solution to this IBVP, we use the method of lines, in which the system is
discretized spatially and the resulting system of ODEs is integrated with a standard numerical
integrator. We choose 𝑁 +1 points 𝑥𝑖 ∈ [0, 1] separated by a constant grid spacing ℎ = 1/𝑁 , so that
𝑥𝑖 = 𝑖ℎ. For simplicity, we can assume that 𝑥−1 < 𝑥𝛼 < 𝑥0 and 𝑥𝑁 < 𝑥𝛽 < 𝑥𝑁+1, so that the entire
problem domain is contained within [𝑥−1, 𝑥𝑁+1]. Let 𝑓𝑖(𝑡) be the value of the numerical solution
at point 𝑥𝑖, with initial value 𝑓𝑖(0) = 𝑓0(𝑥𝑖). Similarly, let 𝑓𝛼 and 𝑓𝛽 be the numerical solution at
𝑥𝛼 and 𝑥𝛽 . The given boundary conditions require that 𝑓𝛼(𝑡) = 𝑔(𝑡) and that 𝑓𝛽(𝑡) = ℎ(𝑡). Since
𝑓−1(𝑡) and 𝑓𝑁+1(𝑡) are not in the problem domain, we assume that 𝑓−1(𝑡) = 𝑓𝑁+1(𝑡) = 0. This
setup is shown in Figure 2-2.
For 1 < 𝑖 < 𝑁 − 1, we approximate (2.6) with the second-order finite difference stencil

d𝑓𝑖
d𝑡

=
𝜈

ℎ2
(𝑓𝑖−1 − 2𝑓𝑖 + 𝑓𝑖+1). (2.7)

This approximation breaks down at the boundary points 𝑥0 and 𝑥𝑁 , because it requires values of
𝑓 that lie outside of the interval [𝑥𝛼, 𝑥𝛽]. To remedy this, we consider approximating the second
derivative of a function

𝑓(𝑥) =

{︃
0, 𝑥 /∈ [𝑥𝛼, 𝑥𝛽]

𝑓(𝑥), 𝑥 ∈ [𝑥𝛼, 𝑥𝛽]
. (2.8)

This function has jump discontinuities at 𝑥𝛼 and 𝑥𝛽 , and can be expanded using the EJIIM. At
𝑥𝛼, the value of any jump [𝑓 (𝑘)] is equal to the function value 𝑓 (𝑘)(𝑥𝛼). The Dirichlet boundary
condition specifies a value for 𝑓 (0)(𝑥𝛼), but for 𝑘 > 0 the jumps must be interpolated using existing
values of 𝑓 that lie on the problem domain. Using methods described in [15], we can construct a set

11

Figure 2-2: The model diffusion problem, discretized on a regular grid with irregular boundaries.

of interpolation coefficients 𝑆𝑘,𝑖 so that

𝑓 (𝑘)(𝑥𝛼) = 𝑆𝑘,𝛼𝑓(𝑥𝛼) +

3∑︁
𝑖=1

𝑆𝑘,𝑖𝑓𝑖 + 𝒪
(︀
ℎ4−𝑘

)︀
for all 𝑓 ∈ 𝐶4[𝑥𝛼, 𝑥𝛽]. (2.9)

These coefficients vary with the irregular spacing ℎ− = 𝑥𝛼 − 𝑥−1, and the point 𝑥0 is omitted from
the calculation to prevent the interpolation from becoming ill conditioned when 𝑥0 − 𝑥𝛼 is small.
Applying (2.5) with 𝑓−1 = 0, we obtain

d

d𝑡
𝑓0(𝑡) =

𝜈

ℎ2
(𝐽𝛼 − 2𝑓0 + 𝑓1),

𝐽𝛼 =

3∑︁
𝑘=0

(−1)𝑘
(ℎ−)𝑘

𝑘!
𝑓 (𝑘)(𝑥𝛼)

= 𝑓𝛼 +

3∑︁
𝑘=1

(ℎ−)𝑘

𝑘!

(︃
𝑆𝑘,𝛼𝑓𝛼 +

3∑︁
𝑖=1

𝑆𝑘,𝑖𝑓𝑖

)︃ (2.10)

A similar procedure can be conducted at 𝑥𝛽 , using a new set of coefficients 𝑆𝑘,𝑖 which depend on
the spacing ℎ+ = 𝑥𝑁+1 − 𝑥𝛽 . Applying (2.4) with 𝑓𝑁+1 = 0, we obtain

d

d𝑡
𝑓𝑁 (𝑡) =

𝜈

ℎ2
(𝑓𝑁−1 − 2𝑓𝑁 + 𝐽𝛽),

𝐽𝛽 =

3∑︁
𝑘=0

(ℎ+)𝑘

𝑘!
𝑓 (𝑘)(𝑥𝛽)

= 𝑓𝛽 +

3∑︁
𝑘=1

(ℎ+)𝑘

𝑘!

(︃
𝑆𝑘,𝛽𝑓𝛽 +

3∑︁
𝑖=1

𝑆𝑘,𝑖𝑓𝑁−𝑖

)︃ (2.11)

This completes the second order spatial discretization of the original IBVP, and provides a linear
system of ODEs for the unknown functions 𝑓𝑖(𝑡) which can be integrated to find an approximate
solution to the continuous problem.

12

2.1.4 Implementation

The immersed interface method outlined above uses modified stencils only at the boundary-adjacent
points 𝑥0 and 𝑥𝑁 . Consequently, we can implement this immersed interface method as a small
modification to an existing finite-difference scheme. There are two main strategies we could use to
make this modification. Both begin by pre-computing and storing the stencil coefficients 𝑆𝑘,𝑖, and
in both the time derivatives 𝑓 ′0 through 𝑓 ′𝑁 are computed with the regular stencil (2.7) at each time
step. To account for the irregular boundaries, we choose one of the following:

∙ Before computing 𝑓 ′0 and 𝑓 ′𝑁 , we set 𝑓−1 = 𝑓𝑁+1 = 0. Afterwards, we compute the jump
corrections 𝜈𝐽𝛼/ℎ2 and 𝜈𝐽𝛽/ℎ2, and add these corrections to 𝑓 ′0 and 𝑓 ′𝑁 respectively.

∙ Alternatively, we begin each time step by computing the jump corrections, then set 𝑓−1 = 𝐽𝛼
and 𝑓𝑁+1 = 𝐽𝛽 . When we compute 𝑓 ′0 and 𝑓 ′𝑁 with regular finite difference stencils, the jump
corrections are automatically included.

We will refer to these as the post-correction and pre-correction schemes, respectively. In one di-
mension both procedures are equivalent. In higher dimensions the two approaches produce different
discretizations, and we will choose to use one or the other depending on the type of problem at hand.
The key takeaway from this example is that immersed interface methods operate in tandem with
an existing finite difference scheme, and consume only a small amount of additional computational
resources.

2.2 Simplifying Jump Corrections with Interpolating Polyno-
mials

Before moving to higher-dimensional problems, we will take some time to streamline the computation
of jump corrections. In a series of papers beginning in 2011 [4, 6, 3, 5], Brehm and Fasel simplify
(2.10) and (2.11) by noting that both the finite difference stencil and jump corrections are calculated
using a linear combination of the the solution values 𝑓𝑖. This allows the two to be combined into a
single irregular finite difference stencil with coefficients 𝐶𝑖, so that (2.10) becomes

d

d𝑡
𝑓(𝑥0, 𝑡) =

𝜈

ℎ2

(︃
𝐶𝛼𝑓𝛼 +

3∑︁
𝑖=0

𝐶𝑖𝑓𝑖

)︃
+ 𝒪

(︀
ℎ2
)︀
. (2.12)

This stencil contains five distinct evaluations of 𝑓 , even though only four are required to obtain a
second order approximation. Consequently, the authors are able to derive a system of four linear
equations which the five 𝐶𝑖 must satisfy to maintain 𝒪

(︀
ℎ2
)︀

accuracy. Solving these equations yields
a one-parameter family of stencils 𝐶𝑖(𝛾) that all provide the same formal order of accuracy. The
authors then attempt to optimize over 𝛾 to obtain a stencil with improved stability properties, and
provide some heuristics for choosing optimal 𝛾 in more complex settings. This approach eliminates
the unnecessary complexity of 𝑆𝑘,𝑖 coefficients, and dispenses with the need to invoke the EJIIM
when deriving a spatial discretization. However, it also loses the convenient idea of small addi-
tive corrections to a standard discretization, opting instead to fundamentally alter the calculations
performed at the boundary points.

In this thesis we will take an intermediate stance, and continue to use the language of jump
corrections while moving away from the EJIIM and the calculation of the 𝑓 (𝑘) through 𝑆𝑘,𝑖 stencils.
To do so, we revisit the definition of the jump corrections 𝐽𝛼, reproduced here for convenience:

𝑓(𝑥+ ℎ) =

𝑛∑︁
𝑘=0

ℎ𝑘

𝑘!
𝑓 (𝑘)(𝑥) + 𝐽𝛼

𝐽𝛼 =

𝑛∑︁
𝑘=0

(ℎ+)𝑘

𝑘!
[𝑓 (𝑘)] + 𝒪

(︀
ℎ𝑛+1

)︀
.

13

Assume now that a single Dirichlet boundary condition 𝑓𝛼 is given at 𝑥𝛼, and that the function 𝑓 is
identically zero for 𝑥 > 𝑥𝛼. If we know the solution values 𝑓𝑖 at several points 𝑥𝑖 near the boundary,
then we can construct a polynomial of degree 𝑛 which interpolates 𝑓 at 𝑥𝛼 and 𝑛 of its neighbors
𝑥𝑖 (Figure 2-3). If 𝑓 is at least 𝑛 + 1 times differentiable, then this polynomial is guaranteed to
approximate 𝑓 and its derivatives, in that

𝑓 (𝑘)(𝑥) − 𝑝(𝑘)𝑛 (𝑥) ∼ 𝒪
(︀
ℎ𝑛+1−𝑘

)︀
for all 0 ≤ 𝑘 ≤ 𝑛. (2.13)

If we replace 𝑓 with 𝑝𝑛 when calculating 𝐽𝛼, we find that

𝐽𝛼 =

𝑛∑︁
𝑘=0

(ℎ+)𝑘

𝑘!

(︁
𝑝(𝑘)𝑛 (𝑥𝛼) + 𝒪

(︀
ℎ𝑛+1−𝑘

)︀)︁
=

𝑛∑︁
𝑘=0

(ℎ+)𝑘

𝑘!
𝑝(𝑘)𝑛 (𝑥𝛼) + 𝒪

(︀
ℎ𝑛+1

)︀
. (2.14)

The polynomial 𝑝𝑛 is defined on all of R, and is exactly equal to its (𝑛+ 1) term Taylor expansion
about any point 𝑥0:

𝑝𝑛(𝑥) =

𝑛∑︁
𝑘=0

(𝑥− 𝑥0)𝑘

𝑘!
𝑝(𝑘)𝑛 (𝑥0). (2.15)

Combining (2.14) and (2.15), the jump correction can be written succinctly as

𝐽𝛼 = 𝑝𝑛(𝑥−1) + 𝒪
(︀
ℎ𝑛+1

)︀
,

demonstrating that 𝐽𝛼 is approximated to order ℎ𝑛+1 by the value of a degree 𝑛 interpolating
polynomial. This offers a very simple interpretation of the immersed interface method: whenever
a finite difference stencil requires a value outside of the domain, we reconstruct this value using a
polynomial extrapolation from inside the domain.

Figure 2-3: Fourth order jump correction calculated using polynomial extrapolation.

The polynomial 𝑝𝑛(𝑥) does not need to be constructed explicitly. Because we are only interested
in the single value 𝑝𝑛(𝑥−1), we can construct an interpolation stencil to compute only this value. For
convenience, define an index set ℐ = {𝛼, 1, 2, ...𝑛} so that {𝑥𝑖}𝑖∈ℐ includes the intersection point,
excludes its immediate neighbor in the domain, and includes the next 𝑛 points on that grid line
(Figure 2-3). We seek an 𝑛+ 1 point stencil 𝑠𝑖 satisfying

𝐽𝛼 =

𝑛∑︁
𝑖∈ℐ

𝑠𝑖𝑓𝑖. (2.16)

14

One easy way to construct 𝑠𝑖 is with a basis of Lagrange interpolating polynomials ℓ𝑖, which are
a set of 𝑛-th degree polynomials satisfying ℓ𝑖(𝑥𝑗) = 𝛿𝑖𝑗 . Then 𝑝𝑛(𝑥) =

∑︀
𝑖 𝑓𝑖ℓ𝑖(𝑥) and 𝑝𝑛(𝑥−1) =∑︀

𝑖∈ℐ 𝑓𝑖ℓ𝑖(𝑥−1). Using the Lagrange interpolation formula, we can write

𝑠𝑗 = ℓ𝑗(𝑥−1) =
∏︁
�̸�=𝑗

(𝑥−1 − 𝑥𝑖)

(𝑥𝑗 − 𝑥𝑖)
. (2.17)

Alternatively, we can formulate a small linear system that determines 𝑠𝑖. Let 𝑝𝑘(𝑥) be a polynomial of
degree less than or equal to 𝑛. Since any such polynomial is exactly equal to the degree 𝑛 polynomial
taking the same values on {𝑥𝑖}𝑖∈ℐ , our coefficients must satisfy 𝑝𝑘(𝑥−1) =

∑︀
𝑖∈ℐ 𝑠𝑖𝑝𝑘(𝑥𝑖). Choosing

𝑛 + 1 such polynomials 𝑃𝑖, all linearly independent, we can form at a system of (𝑛 + 1) linear
equations in (𝑛+ 1) unknowns: ∑︁

𝑗

𝑃𝑖(𝑥𝑗)𝑠𝑗 = 𝑃𝑖(𝑥−1). (2.18)

Because the only free parameter in the set {𝑥𝑖}𝑖∈ℐ is the non-dimensional intersection distance
𝜓 = (𝑥0 − 𝑥𝛼)/ℎ, our stencil 𝑠𝑖 can generally be expressed as a function of 𝜓. As an example,
consider the fourth-order jump correction shown in Figure 2-3; by choosing the set of monomials
𝑃𝑘 = (𝑥− 𝑥𝛼)𝑘/ℎ𝑘, the linear system (2.18) can be reduced to⎡⎢⎢⎣

1 1 1 1
0 (1 + 𝜓) (2 + 𝜓) (3 + 𝜓)
0 (1 + 𝜓)2 (2 + 𝜓)2 (3 + 𝜓)2

0 (1 + 𝜓)3 (2 + 𝜓)3 (3 + 𝜓)3

⎤⎥⎥⎦
⎡⎢⎢⎣
𝑠𝛼
𝑠1
𝑠2
𝑠3

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1

𝜓 − 1
(𝜓 − 1)2

(𝜓 − 1)3

⎤⎥⎥⎦ . (2.19)

This method generalizes well to Neumann boundary conditions, and is the method of choice for all
of the stencil calculations in this thesis. In practice, the cost of stencil computation is vanishingly
small compared to other finite difference operations, so any convenient interpolation method will
perform acceptably well.

The shift from 𝑆𝑘,𝑖 stencils to direct polynomial interpolation reduces computational overhead,
emphasizes the equivalence between jump corrections and extrapolated function values, and more
clearly exposes the continuous polynomial approximation that underlies the discrete finite-difference
stencil. With this tool at our disposal, we are fully prepared to move from one-dimensional problems
to irregular domains in two dimensions.

2.3 Extending the IIM to Two Dimensions

The immersed interface method extends well to multidimensional operators that do not involve mixed
derivatives, like the gradient and the Laplacian. Let Ω be an irregular two-dimensional domain, and
let the 𝒢 be the set containing all the nodes of a uniform Cartesian grid. To discuss the discretiza-
tion of multidimensional immersed interface schemes, we define some convenient terminology and
notation:

∙ Control points (denoted by 𝒞) are intersections between the Cartesian grid and the immersed
boundary 𝜕Ω. In two dimensions, these can be subdivided into two disjoint sets 𝒞𝑥 and 𝒞𝑦,
which consist of intersections involving grid lines parallel to the 𝑥 and 𝑦 axes, respectively.

∙ Affected points (denoted by 𝒜) are regular grid points that are adjacent to a control point.
These can be subdivided into two disjoint sets 𝐴+ and 𝒜−, which represent points that are
inside and outside Ω, respectively.

∙ Interpolation points (denoted by ℐ𝑛) are points that can be used to interpolate the value
of a function at the control points 𝒞. This set varies with the order of the immersed interface
operation.

15

The spaces 𝒞 and 𝒜 are shown in Figure 2-4. There are a natural maps 𝐴+ : 𝒞 → 𝒜+ and
𝐴− : 𝒞 → 𝒜− which link each control point to the affected points that lie adjacent to it. These
mappings are not injective: any affected point can be adjacent to multiple control points, and it is
quite common for an affected point to have two or even three such neighbors.

Figure 2-4: A typical 2D IIM discretization, including the control points 𝒞𝑥 (+) and 𝒞𝑦 (x) and the
affected points 𝒜+ (�) and 𝒜− (∘).

In general, an intersection wiht 𝜕Ω can occur in any orientation and along any coordinate line. To
avoid a confusing set of direction and sign conventions, all immersed interface operations associated
with the control point x𝑐 ∈ 𝒞 are considered in a local coordinate system (𝜉, 𝜂), where 𝜉 is the
intersection direction and 𝜂 is the transverse direction. This system is characterized by unit vectors
𝜉 and 𝜂, which are chosen so that the inward facing normal vector n̂ = [𝑛𝜉, 𝑛𝜂] has non-negative
components. Note that this system may not be right-handed. We will define a local origin x0,0 =

𝐴+(x𝑐), and relabel the nearby grid points so that x𝑎,𝑏 = x0,0 + 𝑎ℎ𝜉 + 𝑏ℎ𝜂 whenever local stencils
are discussed. Analogously, we relabel the local function values 𝑓𝑎,𝑏 = 𝑓(x𝑎,𝑏). These conventions
are illustrated in Figure 2-5.

2.3.1 Jump Corrections in Two Dimensions

As an example of higher-dimensional IIM, we consider discretizing the Laplacian operator at the
point x0,0 ∈ 𝒜+ shown in Figure 2-5. Working in the local (𝜉, 𝜂) coordinate system, we can write

∇2𝑓 =
𝜕2𝑓

𝜕𝑥2
+
𝜕2𝑓

𝜕𝑦2
=
𝜕2𝑓

𝜕𝜉2
+
𝜕2𝑓

𝜕𝜂2
.

This simple conversion comes from the fact that the Laplacian is invariant under sign changes
𝑥 → −𝑥 and 𝑦 → −𝑦, as well as the excange 𝑥 ↔ 𝑦. Using the standard second-order centered
stencil, we are free to write

𝜕2𝑓

𝜕𝜂2
=

1

ℎ2
(𝑓0,−1 − 2𝑓0,0 + 𝑓0,1) + 𝒪

(︀
ℎ2
)︀
.

16

Figure 2-5: Standardized reference frame for multidimensional immersed interface problems.

In the 𝜉 direction, we lack a function value 𝑓−1,0, and cannot make the same standard approximation.
Instead we treat the computation of 𝜕2𝑓/𝜕𝜉2 as its own one-dimensional immersed interface problem
on the grid line x𝑖,0 (Figure 2-5). After calculating the non-dimensional intersection distance 𝜓 =
|x0,0 − x𝑐|/ℎ, we solve the linear system (2.19) to obtain stencil coefficients 𝑠𝜉,𝑖. We can then write

𝜕2𝑓

𝜕𝜉2
=

1

ℎ2
(𝐽𝛼 − 2𝑓0,0 + 𝑓0,1) + 𝒪

(︀
ℎ2
)︀
, with 𝐽𝛼 =

∑︁
𝑖∈ℐ

𝑠𝜉,𝑖𝑓𝑖,0.

This completes the IIM discretization of the Laplacian for any affected point that is adjacent to only
one control point. In two or more dimensions, we must also consider affected points that are adjacent
to multiple control points. Luckily, a little bit of geometric reasoning shows that the one-dimensional
finite difference stencils which require jump corrections are in one-to-one correspondence with the
control points. Instead of looping over 𝒜+ and seeking corrections from neighboring control points,
it is sufficient to loop over every x𝑐 ∈ 𝒞 and correct only the local 𝜉-direction finite difference at
𝐴+(𝑥𝑐). This is extremely convenient for implementation: a list of intersection points is equivalent
to a list of corrections which must be made to the standard finite difference scheme.

2.3.2 Revisiting the Diffusion Equation in Two Dimensions

Here we consider the discretization of a model PDE with the immersed interface method, now in
two dimensions. Consider an irregular region Ω ∈ R2 with boundary 𝜕Ω. A well-posed IBVP for
the diffusion equation on this domain is

𝜕𝑓

𝜕𝑡
= 𝜈

(︂
𝜕2𝑓

𝜕𝑥2
+
𝜕2𝑓

𝜕𝑥2

)︂
,

𝑓(x, 0) = 𝑓0(x) for x ∈ Ω,

𝑓(x, 𝑡) = 𝑔(x, 𝑡) for x ∈ 𝜕Ω.

(2.20)

We once again use the method of lines to approximate this continuous problem with a system of
ODEs. Consider a regular grid of points x𝑖,𝑗 with uniform grid spacing ℎ, and let 𝑓𝑖,𝑗(𝑡) be the value
of the numerical solution at point x𝑖,𝑗 . We use the initial conditions 𝑓𝑖,𝑗(0) = 𝑓0(x𝑖,𝑗) for points in
Ω, and 𝑓𝑖,𝑗(0) = 0 otherwise.

The calculation begins by determining the set of control points 𝒞. An efficient way to do this
is described in section 2.4.1, but for now this step will be taken for granted. At each control point
x𝑐 ∈ 𝒞, we record the associated affected points 𝐴+(x𝑐) and 𝐴−(x𝑐), the local coordinate vectors
𝜉, 𝜂, and the non-dimensional intersection distance 𝜓, which can be used to construct the the jump
stencil 𝑠𝜉,𝑖(𝜓).

Once this is done, we begin the time-marching procedure. At each time step, we set 𝑓𝑖,𝑗(𝑡) = 0

17

for every x𝑖,𝑗 /∈ Ω, and update the Dirichlet boundary condition 𝑔(x𝑐, 𝑡) at each x𝑐 ∈ 𝒞. Time
derivatives 𝑓 ′𝑖,𝑗 for all x𝑖,𝑗 ∈ Ω are calculated using the standard five-point stencil

d

d𝑡
𝑓𝑖,𝑗 =

𝜈

ℎ2
(𝑓𝑖+1,𝑗 + 𝑓𝑖−1,𝑗 + 𝑓𝑖,𝑗+1 + 𝑓𝑖,𝑗−1 − 4𝑓𝑖,𝑗).

We then revisit each x𝑐 ∈ 𝒞, taking advantage of the one-to-one correspondence between intersection
points and necessary jump corrections. Each jump correction is calculated using

𝐽𝛼(x𝑐) = 𝑠𝜉,𝛼𝑔(x, 𝑡) +

3∑︁
𝑖=1

𝑠𝜉,𝑖𝑓𝜉,𝑖, (2.21)

and at the associated point x𝑖,𝑗 = 𝐴+(x𝑐) we make the additive correction

d

d𝑡
𝑓𝑖,𝑗 →

d

d𝑡
𝑓𝑖,𝑗 +

𝜈

ℎ2
𝐽𝛼(x𝑐).

This completes the spatial discretization of the problem, giving a set of linear ODEs that can
integrated to approximate the solution of (2.20).

The above is a straightforward generalization of the one-dimensional post-correction scheme to
two-dimensions. The analogous pre-correction scheme introduces one additional complexity. One
can imagine modifying the procedure presented above so that at each point 𝑥𝑐 ∈ 𝒞, the associated
jump correction 𝐽𝛼 is computed at the beginning of each time step and immediately stored with the
affected point 𝐴−(𝑥𝑐). If this is possible, then the jump corrections will be automatically included
when the regular five-point finite difference stencil is applied. However, the map 𝐴− : 𝒞 → 𝒜− is
not injective, so that each point in 𝒜− may receive corrections from multiple control points.

Since the jump corrections are all 𝑛-th order polynomial extrapolations of the same function, we
expect that they differ only by an 𝒪

(︀
ℎ𝑛+1

)︀
error term. Thus we will preserve the formal accuracy of

the finite difference scheme if we assign to each affected point the average value of all the corrections
it receives. In theory, we could attempt to choose a value which minimizes truncation error, or
maximizes a local stability criterion. However, for all of the problems in this thesis a simple average
is sufficient. This method of extending a function by computing and storing immersed interface
jump corrections is simple and convenient, and we will later use it to correct third order advection
stencils and develop high-order time integration for problems on moving domains.

2.4 Geometry Processing for IIM

One immediate obstacle to the implementation of a multidimensional immersed interface method
is the representation of complex geometry. In this thesis, all objects are represented by a signed-
distance function (SDF), which returns the minimum distance between a point and the boundary of
the object. The sign of the function is positive outside of the object and negative inside, allowing
us to quickly determine whether a given point lies inside or outside the object. In general there is
no obstacle to using a more general level set representation, but the SDF does reduce the need for
some normalization operations.

The use of an implicit representation does not limit the applicability of the immersed interface
methods. In [23], Upretti provides methods for efficiently generating implicit, algebraic representa-
tions of rational curves and surfaces, as well determining algebraically the parameter value of any
query point on these surfaces. This opens the IIM to efficient geometry processing of a very wide
class of shapes, including those typically produced by CAD packages. Although we do not use these
tools here, this section will explore algorithms for identifying control points and calculating integrals
which rely on an implicit representation of the immersed geometry.

18

2.4.1 Efficiently Identifying Control Points

In the immersed interface method, geometry is represented entirely by the intersections between
a boundary curve and the lines of a Cartesian grid, as well as normal vector to the boundary at
these intersections. Below we present a local algorithm which determines these intersections with
𝒪
(︀
ℎ4
)︀

accuracy and normal vectors with 𝒪
(︀
ℎ3
)︀

accuracy, using only signed distance function values
available at the grid points.

We begin our search for intersections by evaluating the signed distance function 𝜑 at each point
x𝑖,𝑗 ∈ 𝒢. We then enter a loop over all points in the domain, checking for points x𝑖,𝑗 that satisfy
0 ≤ 𝜑(x𝑖,𝑗) ≤ ℎ. If this is true, we loop over the neighbors of x𝑖,𝑗 , denoted by 𝒩 (x𝑖,𝑗), in search of
a point x𝑘,𝑙 satisfying 𝜑(x𝑘,𝑙) < 0. Every such point corresponds to an intersection; by continuity
of 𝜑, there is a point x𝑐 on the grid-line connecting x𝑖,𝑗 and x𝑘,𝑙 for which 𝜑(x𝑐) = 0. This point is
a member of 𝒞 satisfying 𝐴+(x𝑐) = x𝑖,𝑗 and 𝐴−(x𝑐) = x𝑘,𝑙.

Having determined the existence of an intersection, we must locate it precisely. To do so, define a
local coordinate vector 𝜉𝑐 = x𝑖,𝑗−x𝑘,𝑙, which lies along the grid-line in question. The one-dimensional
function 𝜑𝜉(𝑧) = 𝜑(x𝑖,𝑗 + 𝑧𝜉𝑐) will have a zero at the intersection point, allowing us to locate x𝑐

by determining the roots of 𝜑𝜉. To avoid any additional evaluations of 𝜑, we will instead find the
roots of a polynomial which interpolates 𝜑𝜉. We begin by collecting the values 𝜑𝑚 = 𝜑(x𝑖,𝑗 +𝑚𝜉𝑐)
for −2 ≤ 𝑚 ≤ 1, as shown in Figure 2-6. As a first approximation, we find the root of a linear
interpolating polynomial passing through (−ℎ, 𝜓−1) and (0, 𝜓0), giving 𝑧0 = −𝜑0ℎ/(𝜑0−𝜑−1). This
approach is only second order accurate, but serves as a useful starting point for a higher order
method.

Figure 2-6: Notation for the local intersection algorithm.

To locate x𝑐 with fourth order accuracy we construct a cubic polynomial 𝑝3(𝑧) which interpolates
𝜑𝜉 at the four points (𝑚ℎ, 𝜑𝑚), −2 ≤ 𝑚 ≤ 1. One root (𝑧1) can be found using Newton’s method
with 𝑧0 as an initial guess, and it is likely to lie in [−ℎ, 0]. If it does not, we extract a quadratic

19

factor from 𝑝3 using this root:

𝑝3(𝑧) = 𝑎3𝑧
3 + 𝑎2𝑧

2 + 𝑎1𝑧 + 𝑎0 and 𝑝3(𝑟) = 0 implies that

𝑝(𝑥) = (𝑧 − 𝑟)(𝑏2𝑧
2 + 𝑏1𝑧 + 𝑏0), with⎧⎪⎨⎪⎩

𝑏2 = 𝑎3,

𝑏1 = 𝑎2 + 𝑟𝑏2,

𝑏0 = 𝑎1 + 𝑟𝑏1.

The remaining two roots of 𝑝3 can then be found with the quadratic formula,

𝑧2, 𝑧3 =
−𝑏1 ±

√︀
𝑏21 − 4𝑏0𝑏2

2𝑏0
.

One of these roots will lie in [−ℎ, 0]; call it 𝑧ℐ . We now record the following information:

𝜓 = −𝑧ℐ/ℎ+ 𝒪
(︀
ℎ3
)︀
, x𝑐 = x𝑖,𝑗 − ℎ𝜓𝜉𝑐 + 𝒪

(︀
ℎ4
)︀
,

𝜕𝜑

𝜕𝜉
(x𝑐) = 𝑝′(𝑧ℐ) + 𝒪

(︀
ℎ3
)︀
,

𝜕2𝜑

𝜕𝜉2
(x𝑐) = 𝑝′′(𝑧ℐ) + 𝒪

(︀
ℎ2
)︀
.

Our only remaining task is to compute the normal vector n̂ = ∇𝜑(x𝑐). To do so, we must take a
derivative of 𝜑 along the 𝜂 direction.Since the sign of 𝜂 is not yet known, we select an arbitrary unit
vector 𝜂 satisfying 𝜂 ·𝜉 = 0. As shown in Figure 2-6, there are no points x ∈ 𝒢 with x = x𝑐+𝑧𝜂, so we
cannot directly apply a finite difference stencil. We must first interpolate the values 𝜑𝜂,𝑘 = 𝜑(x𝑐+𝑘𝜂)
for −2 ≤ 𝑘 ≤ 1, using a fourth-order interpolation stencil tailored to the intersection distance 𝜓.
With these values available, we calculate

𝜕𝜑

𝜕𝜂
(x𝑐) =

1

6ℎ
(2𝜑𝜂,1 + 3𝜑𝜂,0 − 6𝜑𝜂,−1 + 𝜑𝜂,−2) + 𝒪

(︀
ℎ3
)︀
, and

𝜕2𝜑

𝜕𝜂2
(x𝑐) =

1

ℎ2
(𝜑𝜂,1 − 2𝜑𝜂,0 + 𝜑𝜂,−1) + 𝒪

(︀
ℎ2
)︀
.

The normal vector is now known to third order, since,

n̂ =

(︂
𝜕𝜑

𝜕𝜉
𝜉 +

𝜕𝜑

𝜕𝜂
𝜂

)︂
,

and the sign of the 𝜂 coordinate can be reversed if it was initially selected incorrectly. We also have
a second order estimate of the boundary curvature 𝜅, since

𝜅 = ∇2𝜑 =
𝜕2𝜑

𝜕𝜉2
+
𝜕2𝜑

𝜕𝜂2

for a signed distance function 𝜑. Although we have no direct use for kappa at the moment, the
quantity dimensionless quantity 𝜅ℎ will be useful for problems involving moving domains. This
completes our characterization of the boundary at x𝑐, and returns us to our original loop over
the neighbors of x𝑖,𝑗 . Taken all together, this procedure allows for the location of all grid line
intersections relevant to the immerse interface method, in a way that requires only a single global
evaluation of the signed distance function 𝜑.

2.4.2 Integration over an Irregular Boundary
In incompressible flow problems, the total force and moment acting on an immersed solid body can
be determined by integrating the local traction vector of the body’s surface. With an immersed
interface method, this surface may not coincide with the regular grid, and special approximations
are necessary to produce an integral accurate to better than first order. This problem is considered

20

by Gillis’ doctoral thesis [10], which builds on the work of Smereka [21]. Although we don’t provide
a complete treatment here, an abridged version is useful to motivate the treatment of integrals over
irregular domains given in the next section.

Let 𝑆 be the boundary of a two-dimensional region defined by the signed distance function 𝜑.
Given the set of intersection 𝒞 between 𝑆 and a regular Cartesian grid x𝑖,𝑗 ∈ 𝒢, the objective is to
find a set of lengths ℓ(x𝑐) so that∮︁

𝑆

𝑓 d𝑠 =
∑︁
x𝑐∈𝒞

ℓ(x𝑐)𝑓(x𝑐) + 𝒪(ℎ𝑛),

where 𝑛 is the order of the method. Smereka solves a very similar problem associated with level
set methods, where the support of a smooth function 𝑓 is the entire Cartesian grid, and we wish to
make the approximation∮︁

𝑆

𝑓 d𝑠 =

∫︁
R2

𝛿(𝜑(x))𝑓(x) d𝐴 =
∑︁

x𝑖,𝑗∈𝒜
𝛿(x𝑖,𝑗)𝑓(x𝑖,𝑗) + 𝒪(ℎ𝑛).

Here 𝛿(x) is the Dirac delta function, and 𝛿𝑖,𝑗 is its discrete counterpart. Smereka provides second-
and fourth-order methods for computing the weights 𝛿𝑖,𝑗 using the values of a level set 𝜑𝑖,𝑗 . Much like
a multidimensional immersed interface operation, the second-order method uses weights that contain
additive contributions from each control point adjacent to a given affected point. Consequently, we
can construct the set of weights 𝛿(x𝑖,𝑗) by considering every x𝑐 ∈ 𝒞, each of which corresponds to
an additive contribution of 𝛿+𝑐 to the point 𝐴+(x𝑐) and 𝛿−𝑐 to the point 𝐴−(x𝑐). Gillis’ insight was
to pull these contributions back to the control points, so that ℓ(x𝑐) = 𝛿+𝑐 + 𝛿−𝑐 and∮︁

𝑆

𝑓 d𝑠 =
∑︁
x𝑐∈𝒞

[︀
𝛿+𝑐 + 𝛿−𝑐

]︀
𝑓(x𝑐) + 𝒪(ℎ𝑛). (2.22)

This is shown experimentally to be second order accurate. The computation of 𝛿+ and 𝛿− is
nontrivial, and we leave the details to [10].

2.4.3 Integration over an Irregular Domain

To build on the work described in the previous section, we describe here a method for evaluating
integrals over an irregular region Ω ∈ R2 that is immersed in a Cartesian grid with uniform grid
spacing ℎ. Let 𝑓(𝑥) be a scalar function on Ω, and 𝑓𝑖,𝑗 be its value at the grid point x𝑖,𝑗 . Naively,
one can integrate 𝑓 approximately using∫︁

Ω

𝑓(𝑥) d𝑥 ≈ ℎ2
∑︁

x𝑖,𝑗∈Ω

𝑓(x𝑖,𝑗).

This approach is only first order accurate. To see this, note that an 𝑛-dimensional domain has an
(𝑛−1)-dimensional boundary, meaning that the set of affected points 𝒜 contains 𝒪

(︀
ℎ−(𝑛−1)

)︀
points.

The error committed at of each of these points point is an arbitrary fraction of the local volume
element, which has magnitude 𝒪(ℎ𝑛); summing up 𝒪

(︀
ℎ−(𝑛−1)

)︀
of these errors leads to an overall

𝒪(ℎ) error in the integral.
Just as an approximation of the delta function led to second-order IIM surface integrals, an

approximation of the Heaviside function allows for second-order IIM domain integrals. Consider a
function 𝑓 : R2 → R, and a domain Ω defined implicitly by the signed distance function 𝜑, so that
𝑥 ∈ Ω iff 𝜑(𝑥) ≥ 0. We can write∫︁

Ω

𝑓(𝑥) d𝑥 =

∫︁
R2

𝑓(𝑥)𝐻(𝜑(𝑥)) d𝑥 , (2.23)

21

where 𝐻(𝑥) is the one-dimensional Heaviside function

𝐻(𝑥) =

{︃
0, 𝑥 < 0

1, 𝑥 ≥ 0.

To approximate (2.23), we immerse the domain Ω in a regular Cartesian grid 𝒢 with grid spacing ℎ,
and seek a discrete Heaviside function �̃�𝑖,𝑗 constructed to satisfy∫︁

R2

𝑓(𝑥)𝐻(𝜑(𝑥)) d𝑥 = ℎ2
∑︁

x𝑖,𝑗∈𝒢
𝑓(x𝑖,𝑗)�̃�𝑖,𝑗 + 𝒪

(︀
ℎ2
)︀
.

One such discrete Heaviside function is derived by Tower in [22]. To calculate the weights �̃�𝑖,𝑗 used
in Tower’s Heaviside function, we consider the unit ramp function

𝐼(𝑥) =

∫︁ 𝑥

−∞
𝐻(𝑢) d𝑢 =

{︃
0, 𝑥 < 0

𝑥, 0 ≤ 𝑥.

Applying the ramp function to 𝜑(𝑥) and differentiating, we find that

∇𝐼(𝜑) = 𝐻(𝜑)∇𝜑, so that ∇𝐼(𝜑) ·∇𝜑 = 𝐻(𝜑).

To discretize this relationship, define the discrete gradient operator ∇ℎ to be the gradient operator
discretized using a centered finite difference stencils, so that

∇ℎ𝑓𝑖,𝑗 =
1

2ℎ
(𝑓𝑖+1,𝑗 − 𝑓𝑖−1,𝑗)ê𝑥 +

1

2ℎ
(𝑓𝑖,𝑗+1 − 𝑓𝑖,𝑗−1)ê𝑦.

Tower’s second-order Heaviside function is given by

�̃�𝑖,𝑗 = ∇ℎ𝐼(𝜑𝑖,𝑗) ·∇ℎ𝜑𝑖,𝑗 .

Let x𝑖,𝑗 be a point with a set of neighbors 𝒩 (x𝑖,𝑗) that is entirely inside or entirely outside of Ω.
Then then to second order the evaluation of �̃�𝑖,𝑗 can be simplified to

�̃�𝑖,𝑗 =

{︃
0, 𝒩 (x𝑖,𝑗) ⊂ Ω

1, 𝒩 (x𝑖,𝑗) ⊂ R2 ∖ Ω.

Thus to second order, �̃� = 𝐻(𝜑) for all points x𝑖,𝑗 /∈ 𝒜. It’s convenient to define the function
𝛿𝐻𝑖,𝑗 = �̃�𝑖,𝑗 −𝐻(𝜑𝑖,𝑗), which is nonzero only on 𝒜; then,∫︁

Ω

𝑓(𝑥) d𝑥 = ℎ2
∑︁

x𝑖,𝑗∈𝒢
𝑓𝑖,𝑗𝐻(𝜑𝑖,𝑗) + ℎ2

∑︁
x𝑖,𝑗∈𝒜

𝑓𝑖,𝑗𝛿𝐻𝑖,𝑗 + 𝒪
(︀
ℎ2
)︀

(2.24)

The first sum is the naive, first order discretization of the integral, while the second sum is restricted
to the boundary and acts as a higher-order correction. The evaluation of 𝛿𝐻 can be cast neatly
into our local immersed interface language: we see that the inner product ∇ℎ𝐼(𝜑) ·∇ℎ𝜑 breaks into
an additive contribution from each spatial direction, and that every contribution to 𝛿𝐻 is tied to a
point x𝑐 ∈ 𝒞.

22

Figure 2-7: Nomenclature for constructing �̃�𝑖,𝑗 .

Figure 2-7 illustrates the notation needed to describe this calculation. Consider a control point
x𝑐 ∈ 𝒞 and the associated points 𝑥−1 = 𝐴−(x𝑐) and 𝑥0 = 𝐴+(x𝑐) which lie adjacent to x𝑐 on the
local 𝜉 axis. Conveniently the inner product ∇ℎ𝐼(𝜑) ·∇ℎ𝜑 is invariant under the exchange 𝑥 ↔ 𝑦
and the transformations 𝑥→ −𝑥 or 𝑦 → −𝑦, so that we can confidently neglect changes in the sign
or orientation of the local coordinate system. The contribution from x𝑐 to 𝛿𝐻(𝑥−1) is

𝛿𝐻−
𝑐 =

(︂
𝐼(𝜑0) − 𝐼(𝜑−2)

2ℎ

)︂(︂
𝜑0 − 𝜑−2

2ℎ

)︂
=
𝜑0(𝜑0 − 𝜑−2)

4ℎ2
.

To calculate the contribution to 𝛿𝐻(𝑥0), we use the approximation 𝐻(𝑥0) = 1 ≈ |∇ℎ𝜑|2 and the
identity 𝐼(𝑥) − 𝑥 = 𝐼(−𝑥) to write

�̃� −𝐻 = ∇ℎ𝐼(𝜑) ·∇ℎ𝜑−∇ℎ𝜑 ·∇ℎ𝜑

= ∇ℎ[𝐼(𝜑) − 𝜑] ·∇ℎ𝜑

= ∇ℎ𝐼(−𝜑) ·∇ℎ𝜑.

From the last identity, we see that

𝛿𝐻+
𝑐 =

(︂
𝐼(−𝜑1) − 𝐼(−𝜑−1)

2ℎ

)︂(︂
𝜑1 − 𝜑−1

2ℎ

)︂
=
𝜑−1(𝜑1 − 𝜑−1)

4ℎ2
.

This leaves only one missing piece in (2.24). While 𝑓(𝑥0) is well-defined, the value 𝑓(𝑥−1) is outside
of the domain, so we cannot truly form the sum

∑︀
x𝑖,𝑗∈𝒜 𝑓𝑖,𝑗𝛿𝐻𝑖,𝑗 . Instead we replace 𝑓(𝑥−1) with

a jump correction, and write∫︁
Ω

𝑓(𝑥) d𝑥 = ℎ2
∑︁

x𝑖,𝑗∈Ω

𝑓𝑖,𝑗 + ℎ2
∑︁
x𝑐∈𝒞

[︀
𝛿𝐻+

𝑐 𝑓(𝐴+(x𝑐)) + 𝛿𝐻−
𝑐 𝐽𝛼(x𝑐)

]︀
+ 𝒪

(︀
ℎ2
)︀
. (2.25)

A quick analysis shows that we need only first order accuracy in evaluating 𝑓(𝐴+(x𝑐)) and 𝐽𝛼 to
maintain global second order accuracy. We are then free to pull 𝛿𝐻 back to the control points, and
write ∫︁

Ω

𝑓(𝑥) d𝑥 = ℎ2
∑︁

x𝑖,𝑗∈Ω

𝑓𝑖,𝑗 + ℎ2
∑︁
x𝑐∈𝒞

(︀
𝛿𝐻+

𝑐 + 𝛿𝐻−
𝑐

)︀
𝑓(x𝑐) + 𝒪

(︀
ℎ2
)︀
. (2.26)

The discrete integral (2.25) can be used without boundary data, or when only a Neumann boundary
condition is available. The form given (2.26) is restricted to problems with Dirichlet conditions, but
is more conveniently implemented. In this thesis we choose to evaluate all of our domain integrals
with (2.25), since we generally have an accurate jump correction left over from other immersed

23

interface operations. Although this method has been developed in two dimensions, its extension to
𝑁 dimensions is clear, and the signed distance function 𝜑 can easily be replaced with an arbitrary
level set by inserting the normalizing factors of |∇𝜑| which have been neglected here.

24

Chapter 3

IIM for Transport Problems

3.1 The Advection Diffusion Equation

Consider an incompressible fluid confined to a domain Ω ∈ R2, moving with velocity u(x, 𝑡). Let
𝑓(x, 𝑡) be the concentration of a scalar quantity that is advected by the flow, and also diffuses
through the fluid with a constant diffusivity 𝜈. These two processes give rise to a flux of the scalar
quantity that can be described by the vector

q = u𝑓 + 𝜈∇𝑓,

so that a conservation law for 𝑓 of the form 𝜕𝑡𝑓 + ∇ · q = 0 yields the advection diffusion equation

𝜕𝑓

𝜕𝑡
+ (u ·∇)𝑓 = 𝜈∇2𝑓. (3.1)

To non-dimensionalize this relation, we introduce a reference length 𝐿, velocity 𝑈 , and scalar con-
centration 𝐹 . Define the re-scaled variables

𝑓 = 𝑓*𝐹, u = u*𝑈, x = x*𝐿, 𝑡 = 𝑡*
𝐿

𝑈
;

after making substitutions and dropping the stars, (3.1) becomes

𝜕𝑓

𝜕𝑡
+ (u ·∇)𝑓 =

1

Pe
∇2𝑓, (3.2)

where Pe is the Péclet number,

Pe =
𝐿𝑈

𝜈
. (3.3)

This quantity characterizes the relative magnitude of the convective and diffusive fluxes, and is
analogous to the Reynolds number in fluid flow. The advection equation and diffusion equation can
be used to simplify processes with extreme Péclet numbers:

𝜕𝑓

𝜕𝑡
+ (u ·∇)𝑓 = 𝜈∇2𝑓 →

⎧⎪⎨⎪⎩
𝜕𝑓

𝜕𝑡
+ (u ·∇)𝑓 = 0, Pe ≫ 1;

𝜕𝑓

𝜕𝑡
= 𝜈∇2𝑓, Pe ≪ 1.

The diffusive limit is relatively well behaved. However, the advective limit changes the order of
the PDE, leading to a singular perturbation. Physically, this indicates that solutions to (3.1) with
Pe ≫ 1 form thin boundary layers, which can trigger instabilities in some numerical methods. This
chapter first examines the stability of free-space advection diffusion discretizations, and then develops
a novel immersed interface method for imposing boundary conditions in a stable and accurate way.

25

3.2 Free-Space Discretization

3.2.1 Stability of Finite Difference Advection Schemes

Any immersed interface discretization must begin with a stable finite difference scheme. This section
reviews results on the stability of explicit Runge-Kutta schemes and Von-Neumann stability analysis
for one-dimensional finite difference schemes on infinite domains. These tools are then applied to a
method-of-lines discretizations of the advection equation, using common first-, second-, and third-
order finite differences.

Consider a simple initial-value problem for an unknown function 𝑢(𝑡) : R → R𝑛,

d𝑢

d𝑡
= 𝐴𝑢 with 𝑢(0) = 𝑢0, (3.4)

where 𝐴 : R𝑛 → R𝑛 is a linear map. The solution of this equation is 𝑢(𝑡) = exp(𝑡𝐴)𝑢0, where
exp(𝑀) is defined by the power series

exp(𝐴𝑡) = 𝐼 +𝑀 +
1

2
𝑀2 + ... =

∞∑︁
𝑛=0

1

𝑛!
𝑀𝑛. (3.5)

A typical Runge-Kutta integration scheme approximates the evolution of 𝑢 by truncating the above
power series. For an 𝑁 -th order Runge-Kutta scheme,

𝑢(𝑡+ 𝜏) = exp(𝜏𝐴)𝑢(𝑡) =

(︃
𝑁∑︁

𝑛=0

1

𝑛!
𝜏𝑛𝐴𝑛

)︃
𝑢(𝑡) + 𝒪

(︀
𝜏𝑁+1

)︀
. (3.6)

In general, we would like to know that any error introduced during numerical integration does not
grow as time progresses. If 𝐴 admits a full basis of eigenvectors, then any small perturbation can
be broken into components that are also eigenvectors of 𝐴, and it is sufficient to study the behavior
of these components. Let 𝑢 be an eigenvector of 𝐴 with eigenvalue 𝜆 ∈ C, so that

d𝑢

d𝑡
= 𝜆𝑢 with 𝑢(0) = 𝑢0. (3.7)

If 𝜆 has negative real part, then the exact solution will decay with time. This is not necessarily true
for the approximate solution, which satisfies

𝑢(𝑡+ 𝑘𝜏) =

(︂
1 + 𝜏𝜆+ ...+

𝜏𝑁𝜆𝑁

𝑁 !

)︂𝑘

𝑢0. (3.8)

If the approximate solution is to decay in time, then the stability polynomial

𝑃𝑁 (𝜏𝜆) =
(︀
1 + 𝜏𝜆+ ...+ 𝜏𝑁𝜆𝑁/𝑁 !

)︀
must have a magnitude less than unity. This defines the stability region for an 𝑁 -th order Runge-
Kutta scheme, ⃒⃒⃒⃒

⃒
𝑁∑︁

𝑛=0

(𝜏𝜆)𝑛

𝑛!

⃒⃒⃒⃒
⃒ ≤ 1. (3.9)

To apply this analysis to a finite difference scheme, we must be able to find eigenvalues and eigen-
vectors of finite difference operators. Consider a infinite one-dimensional domain Ω = R, and a
uniformly separated set of points 𝑥𝑛 = ℎ𝑛 for 𝑛 ∈ Z. Any real-valued function 𝐹 : Ω → R can
be approximated on this grid the values 𝑓𝑛 = 𝐹 (𝑥𝑛). A finite difference scheme uses a linear com-
bination of values 𝑓𝑖 to approximate derivatives of the original function 𝐹 . The finite differences

26

considered in this thesis are

d𝐹

d𝑥

⃒⃒⃒⃒
𝑥0

=
1

ℎ
(𝑓1 − 𝑓0) + 𝒪(ℎ) [1D]: First-order downwind

=
1

ℎ
(𝑓0 − 𝑓−1) + 𝒪(ℎ) [1U]: First-order upwind

=
1

2ℎ
(𝑓1 − 𝑓−1) + 𝒪(ℎ) [2C]: Second-order centered

=
1

2ℎ
(−3𝑓0 + 4𝑓1 − 𝑓2) + 𝒪

(︀
ℎ2
)︀

[2D]: Second-order downwind

=
1

2ℎ
(𝑓−2 − 4𝑓−1 + 3𝑓0) + 𝒪

(︀
ℎ2
)︀

[2U]: Second-order upwind

=
1

6ℎ
(−2𝑓−1 − 3𝑓0 + 6𝑓1 − 𝑓2) + 𝒪

(︀
ℎ3
)︀

[3D]: Third-order downwind

=
1

6ℎ
(𝑓−2 − 6𝑓−1 + 3𝑓0 + 2𝑓1) + 𝒪

(︀
ℎ3
)︀

[3U]: Third-order upwind

Although notated for 𝑥0, these approximations are valid if the indices are shifted by an arbitrary
integer. Each finite difference scheme can be seen as a linear operator acting on the vector of values
𝑓𝑖, which returns another vector 𝑓 ′𝑖 that approximates the exact derivative 𝐹 ′(𝑥). In this framework,
it is convenient to decompose each finite difference into a linear combination of translation operators
𝑇𝑚, which satisfy

(𝑇𝑚𝑓)𝑛 = 𝑓𝑚+𝑛. (3.10)

The eigenfunctions of each translation operator are the complex exponential functions 𝑓(𝑛) = 𝑒𝑖𝑛𝑘ℎ,
which satisfy

𝑇𝑚𝑒
𝑖𝑛𝑘ℎ = 𝑒𝑖𝑚𝑘ℎ𝑒𝑖𝑛𝑘ℎ. (3.11)

The exponential 𝑓(𝑛) = 𝑒𝑖𝑛𝑘ℎ is traditional for a Von-Neumann stability analysis, and represents the
oscillatory function 𝐹 (𝑥) = 𝑒𝑖𝑘𝑥 restricted to the grid. Because of aliasing effects, only functions for
which 𝑘ℎ ∈ [0, 𝜋) are linearly independent. The eigenfunctions of finite difference approximations
are also exponential functions, and can be extracted from the discretization in a straightforward
way. As an example, consider the second-order upwind operator [2𝑈] = (𝑇−2 − 4𝑇−1 + 3𝑇0)/2ℎ,
which has eigenvalues of the form

[2U]𝑒𝑖𝑛𝑘ℎ =
1

2ℎ
(𝑒−2𝑖𝑘ℎ − 4𝑒−𝑖𝑘ℎ + 3)𝑒𝑖𝑛𝑘ℎ.

For convenience, let 𝑧 = 𝑒𝑖𝑘ℎ, so that 𝑧 ranges over the uppers half of the unit circle. Then the
spectra of the finite difference operators defined above are

[1D] : 𝜆(𝑧) =
1

ℎ
(𝑧 − 1)

[1U] : 𝜆(𝑧) =
1

ℎ
(1 − 𝑧−1)

[2C] : 𝜆(𝑧) =
1

2ℎ
(𝑧 − 𝑧−1)

[2D] : 𝜆(𝑧) =
1

2ℎ
(−3 + 𝑧 − 𝑧2)

[2U] : 𝜆(𝑧) =
1

2ℎ
(𝑧−2 − 4𝑧−1 + 3)

[3D] : 𝜆(𝑧) =
1

6ℎ
(−2𝑧−1 − 3 + 6𝑧 − 𝑧2)

[3U] : 𝜆(𝑧) =
1

6ℎ
(𝑧−2 − 6𝑧−1 + 3 + 2𝑧).

To evaluate the stability of a particular discretization of the advection problem, we discretize the

27

operator −𝑢 d
d𝑥 using a finite difference scheme, and check that for all 𝑧 ∈ [0, 𝜋), the stability

polynomial 𝑃𝑁 (𝜏𝜆(𝑧)) has magnitude less than one. For advection discretizations using any of the
finite differences listed above, 𝜏𝜆(𝑧) is proportional to the Courant number

𝐶 =
𝑢𝜏

ℎ
, (3.12)

which is the only non-dimensional combination of numerical parameters affecting the stability of
the advection schemes discussed here. In general, any advection scheme that uses explicit time
integration has a critical Courant number above which it is unstable. We can determine this critical
Courant number numerically, by performing a bisection search to find the lowest value positive of 𝐶
for which

max
𝑧

|𝑃𝑁 (−ℎ𝐶𝜆(𝑧))| > 1.

The results of this analysis for all of the finite difference operators considered so far are given in the
table below; an "X" indicates unconditional instability.

RK1 RK2 RK3

1U 1 1 1.25
2C X X 1.75
2U X 0.50 0.62
3U X 0.88 1.62

This table does not include any of the downwind differences; these are all unconditionally unstable
for any Runge-Kutta scheme. The higher order upwind differences require at least RK2 to maintain
stability, while the second-order centered scheme performs well only for RK3.

In this thesis, we focus on the [3U] scheme. First order advection schemes provide insufficient
accuracy for fluid simulations, and second order schemes have a leading truncation error that pro-
duces dispersive phenomena. The third order upwind scheme, however, has a leading truncation
error proportional to 𝑓 (4)(𝑥), which introduces a hyper-diffusive effect that tends to smooth out
high wavenumber error modes. This scheme also enjoys the least restrictive CFL constraint for RK2
integration, and is competitive with [2C] when integrated with RK3.

3.2.2 Stability of Diffusion Schemes

For diffusion processes, we use the standard centered stencil

d2𝐹

d𝑥2

⃒⃒⃒⃒
𝑥0

=
1

ℎ2
(𝑓−1 − 2𝑓0 + 𝑓1) + 𝒪

(︀
ℎ2
)︀

which we will call [DF]. This finite difference operator has eigenvalues

𝜆(𝑧) =
1

ℎ2
(𝑧−1 − 2 + 𝑧).

Since 𝑧 lies on the unit circle, 𝑧 and 𝑧−1 are conjugate, so that 𝜆(𝑧) is real and satisfies 𝜆(𝑧) ∈ [−4, 0].
Applying this to the full diffusion operator 𝜈 d2

d𝑥2 , we find that 𝜏𝜆(𝑧) is proportional to the Fourier
number

𝑟 =
𝜈𝜏

ℎ2
.

In one dimension the maximum allowable Fourier number is 0.5 for RK1 or RK2 time stepping,
and approximately 0.62 for RK3. This is a significantly stricter stability requirement than the CFL
condition, since 𝜏 must scale with ℎ2 as the spatial discretization is refined.

28

3.2.3 Stability of Advection Diffusion Schemes
Stability behavior becomes more complex for the full advection-diffusion equation. We limit our
discussion to the [3U] advection scheme in combination with the standard diffusion stencil discussed
above. Because both the advection and diffusion terms are linear, the eigenvalues of our discretization
are simply the sum of the eigenvalues for each individual operator:

𝜆(𝑧) = −𝑢𝜆[3U](𝑧) + 𝜈𝜆[DF](𝑧). (3.13)

These spectra now depend on both the Courant number 𝐶 and Fourier number 𝑟, which can be varied
independently by changing the parameters 𝜈. Using the same brute force method as in section 3.2.1,
we can determine a region in the (𝐶, 𝑟) for which our discretization is stable; this region is shown in
Figure 3-1a.

(a) One-dimensional stability Region. (b) Two-dimensional Stability Region

Figure 3-1: Stability region in the (𝐶, 𝑟) plane for the one and two-dimensional advection-diffusion
discretization considered here.

To analyze this finite difference discretization in two dimensions, we must consider a grid indexed
by two integers 𝑛 and 𝑚, and consider complex exponentials of the form 𝑒𝑖ℎ(𝑛𝑘𝑥+𝑚𝑘𝑦). If our velocity
field u = [𝑢𝑥, 𝑢𝑦] does not vary in space, then we still perform a Von-Neumann stability analysis.
However, we must now consider two wave numbers 𝑘𝑥 and 𝑘𝑦, as well as two Courant numbers
𝐶𝑥 = 𝑢𝑥𝜏/ℎ and 𝐶𝑦 = 𝑢𝑦𝜏/ℎ. Let 𝑧𝑥 = 𝑒𝑖𝑘𝑥ℎ and 𝑧𝑦 = 𝑒𝑖𝑘𝑦ℎ, so that the eigenvalues of of our
two-dimensional advection diffusion discretization take the form

𝜆(𝑧𝑥, 𝑧𝑦) = −𝑢𝑥𝜆[3U](𝑧𝑥) − 𝑢𝑦𝜆[3U](𝑧𝑦) + 𝜈(𝜆[DF](𝑧𝑥) + 𝜆[DF](𝑧𝑦)) (3.14)

Given the values for 𝐶𝑥, 𝐶𝑦, and 𝑟, our finite difference scheme will be stable with an 𝑁 -th order
Runge Kutta scheme if

max
𝑧𝑥,𝑧𝑦

⃒⃒
𝑃𝑁 (−ℎ𝐶𝑥𝜆[3U](𝑧𝑥) − ℎ𝐶𝑦𝜆[3U](𝑧𝑦) + ℎ2𝑟(𝜆[DF](𝑧𝑥) + 𝜆[DF](𝑧𝑦)))

⃒⃒
≤ 1.

Some numerical experimentation indicates that this stability criteria depends on 𝐶𝑥 and 𝐶𝑦 through
their sum only, motivating the definition of a two-dimensional Courant number 𝐶2𝐷 = 𝐶𝑥 + 𝐶𝑦.
Figure 3-1b shows the stability region of our two-dimensional advection diffusion equation in the
(𝐶2𝐷, 𝑟) plane, for 𝑢𝑥, 𝑢𝑦 > 0. The behavior is very similar (though not identical) to the one-
dimensional case with a re-scaled Fourier number.

If the velocity field u is not constant, then the Von-Neumann stability analysis performed above
is no longer strictly applicable. However, it is well established that we can still achieve a stable
discretization if at every point the local Courant number 𝐶2𝐷(x) lies in the stability region associated
with the constant coefficient problem. We must also ensure that our upwind stencil remains locally

29

upwind at each point in the flow. To do this, we calculate 𝜕𝑥𝑓 using [3U] when the local velocity
component 𝑢𝑥 is positive, and using [3D] when 𝑢𝑥 ≤ 0. The procedure for 𝜕𝑦𝑓 is identical.

3.3 Boundary Conditions

3.3.1 Diffusion Problems
A successful immersed interface discretization of the diffusion equation with Dirichlet or Neumann
boundary conditions was developed by Marichal in [15]. The Dirichlet case was already described in
Chapter 2, and a stability analysis performed by Marichal indicates that this scheme has a critical
Fourier number that is only slightly below the free-space scheme. No subtlety is needed to enforce
a Dirichlet boundary conditions for this problem; a BC is required on every surface for both the
continuous problem and the numerical problem, and all jump corrections can safely be calculated
from the given BC. Neumann problems are also treated in [15], but they won’t be discussed here.

To confirm the convergence behavior reported by Marichal, we set up a model IBVP for the
advection diffusion equation with known analytical solution. For simplicity, the velocity field u
and diffusivity 𝜈 are both assumed to be constant in space. Following Marichal [15], we consider a
Gaussian distribution with height 𝑔0, standard deviation 𝜎, and moving center x𝑔(𝑡) = x𝑔(0) + u𝑡,
which has an analytical expression

𝑔(x, 𝑡) = 𝑔0
𝜎2

(𝜎2 + 4𝜈𝑡)
exp

[︃
−|x− x𝑔(𝑡)|2

(𝜎2 + 4𝜈𝑡)

]︃
(3.15)

and satisfies the advection-diffusion equation on an unbounded domain. For our numerical problem,
let the computational domain Ω𝑐 be the unit square [0, 1] × [0, 1], and let the problem domain Ω be
equal to Ω𝑐 a minus circular region with center x𝑐 and radius 𝑅. We can preserve the above solution
by constructing an IBVP with (3.15) as an initial condition and Dirichlet boundary condition,

𝜕𝑓

𝜕𝑡
= −(u ·∇)𝑓 + 𝜈∇2𝑓,

𝑓(x, 𝑡0) = 𝑔(x, 𝑡0) for x ∈ Ω,

𝑓(s, 𝑡) = 𝑔(s, 𝑡) for s ∈ 𝜕Ω.

(3.16)

By construction, this IBVP is well-behaved at large Péclet numbers, since the analytical solution
(3.15) contains no boundary layers. The continuous system (3.16) is discretized using the immersed
interface method described above, and the resulting system of ODEs is integrated over the interval
𝑡 ∈ [0, 𝑇] using an explicit Runge-Kutta method. To measure the spatial convergence of the solver,
an extremely small time-step is chosen, so that the dominant error in the numerical solution comes
from the spatial discretization. We approximate the continuous 𝐿2 and 𝐿∞ error norms

𝜖2(𝑇) =
1

𝑔0

√︃
1

𝐴

∫︁
Ω

[𝑓(x, 𝑇) − 𝑔(x, 𝑡)]
2

d𝐴

𝜖∞(𝑇) =
1

𝑔0
max
x∈Ω

|𝑓(x, 𝑇) − 𝑔(x, 𝑇)|

by their discrete analogs

𝜖2(𝑇) =
1

𝑔0

√︃
1

𝐴

∑︁
𝑖,𝑗

ℎ2[𝑓𝑖,𝑗(𝑇) − 𝑔(x𝑖,𝑗 , 𝑇)]
2
, (3.17)

𝜖∞(𝑇) =
1

𝑔0
max
𝑖,𝑗

|𝑓𝑖,𝑗(𝑇) − 𝑔(x𝑖,𝑗 , 𝑇)|, (3.18)

where 𝐴 is the unit area of Ω𝑐 and the sum and max are over all points x𝑖,𝑗 ∈ Ω.

30

Letting u = 0 in the IBVP described above, we recover the diffusion equation considered by
Marichal. After selecting parameters

𝑥𝑐 = 0.513, 𝑥𝑔 = 0.4, 𝑟 = 0.123, 𝜈 = 0.01,
𝑦𝑐 = 0.537, 𝑦𝑔 = 0.4, 𝑔0 = 1.0, 𝜎 = 0.6,

and spatial resolutions ℎ = 1/32, /1/64, /1/128, 1/256, and 1/512, the resulting immersed interface
discretizations are integrated from time 𝑡 = 0 to 𝑇 = 0.1 with time step 𝜏 = 10−5. Figure 3-2 shows
the variation of the resulting 𝐿2 and 𝐿∞ error with the grid spacing ℎ; as expected, the method is
second order in both.

Figure 3-2: Second Order Convergence for purely diffusive process.

Having achieved a satisfactory method of handling boundary conditions for the diffusion equation,
we will continue to use this method whenever we calculate the diffusive term in the advection-
diffusion equation.

3.3.2 Advection Diffusion Part 1

We now turn to boundary conditions for the advection term in the advection-diffusion equation.
The third-order advection scheme discussed in section 3.2.3 produces a stencil that extends to two
neighboring points in the upwind direction. Consequently, we must consider immersed interface
corrections for points in 𝒜+ and for points with neighbors in 𝒜+. This issue exists for any standard
finite difference discretization of order higher than two, and has been addressed in various ways by
other authors. For example, Linnick and Fasel [14] avoid this issue in their fourth-order diffusion
scheme by using compact finite differences. Here we adopt the following strategy:

∙ For points adjacent to the boundary, the simplest way to handle this issue is to revert to second-
order central differencing. The primary reason for the use of a third-order advection scheme
was free-space stability; if a second order boundary treatment leads to a stable advection
diffusion scheme, than we have accomplished our original goal.

∙ To account for points adjacent to 𝒜+, the immersed interface corrections are stored in 𝒜−

before calculating the advection term. This ensures that any point which is not in 𝒜+ but
requires corrections will receive them.

To implement this discretization in an advection-diffusion solver, we must take the following steps:

31

∙ Loop over all x𝑐 ∈ 𝒞, and calculate a third order jump correction using the given Dirichlet
boundary condition. This correction is stored in 𝐴+(x𝑐); if there multiple candidates for the
value of 𝐴+(x𝑐), the average value is used.

∙ Calculate the advection term using a third-order upwind finite difference stencil.

∙ Loop over all x𝑐 ∈ 𝒞 again. At each point, recalculate 𝑢𝜉𝜕𝜉𝑓 using a third-order upwind differ-
ence, remove this contribution from (u ·∇)𝑓 at 𝐴+(x𝑐), and replace it with 𝑢𝜉𝜕𝜉𝑓 calculated
using a second-order centered stencil.

∙ Zero all of the points in 𝒜−, and calculate the diffusion term as described in section 3.3.1.

To test this strategy, we return to the numerical setup established in the previous section. This time
the chosen geometric parameters are

𝑥𝑐 = 0.417, 𝑦𝑐 = 0.409, 𝑟 = 0.123,

along with solution parameters

𝑢𝑥 = 0.8, 𝑥𝑔 = 0.3, 𝑔0 = 1.0,
𝑢𝑦 = 0.4, 𝑦𝑔 = 0.3, 𝜎 = 0.5,

so that the free-stream velocity u is nonzero. To explore a range of Péclet numbers, the diffusivity
is chosen from the set

𝜈 ∈ {2 × 10−3, 4 × 10−4, 1 × 10−4, 4 × 10−5, 1 × 10−5},

which correspond to Péclet numbers

Pe ∈ {110, 550, 2200, 5500, 11000}.

Figure 3-3 shows the resulting convergence behavior. At lower Pe, the numerical solution appears
to converge to the analytical solution with normal power-law behavior. However, at higher Pe the
numerical solution fails to convergence at all, due to a numerical instability. This lack of stability

(a) 𝐿2 Error. (b) 𝐿∞ Error.

Figure 3-3: Instability leads to a lack of convergence at high Pe for a naive IIM advection-diffusion
discretization.

makes sense for the high Pe limit, which allows for the formation of increasingly thin boundary
layers. At low resolutions, the hyper-diffusive error term in the [3U] stencil helps to damp out high-
frequency modes associated with instability. As the grid is refined, the magnitude of this numerical

32

diffusion decreases, and we reach a resolution that is neither coarse enough to damp the instability
nor fine enough to resolve the boundary layer. At this point, instability creeps in.

Although this failure is logical, it certainly isn’t desirable. We would like a robust transport
scheme that fails gracefully during under-resolved simulations, providing an answer that is at least
qualitatively correct instead of a numerical blow-up. We would also like to see smooth convergence
behavior as we sweep from a heavily under-resolved test case to a well-resolved test case, instead of
encountering a middle region where there is no convergence at all. With this in mind, we continue
our search for an IIM discretization that remains stable at arbitrarily high Pe.

3.3.3 Advection Problems

To understand the advection-diffusion equation at high Péclet numbers, we take inspiration from
the advection equation

𝜕𝑓

𝜕𝑡
+ (u ·∇)𝑓 = 0. (3.19)

For (3.19), as well as for any hyperbolic system, imposing boundary conditions everywhere on the
domain boundary can lead to an ill-posed IBVP. An easy way to see this is to move to a Lagrangian
formulation of the same problem, using the method of characteristics. Let 𝜎(𝑡) be the path of a fluid
particle, which satisfies

d𝜎

d𝑡
= u(𝜎, 𝑡). (3.20)

Then the scalar concentration 𝑓(𝜎(𝑡)) in this fluid particle satisfies

d

d𝑡
𝑓(𝜎(𝑡)) =

𝜕𝑓

𝜕𝑡
+

d𝜎

d𝑡
·∇𝑓 = 0, (3.21)

so that the value of particle’s scalar concentration is constant in time. Each particle entering the
domain must receive a value, which is determined at the time of entry by the imposed boundary
condition. Each particle leaving the domain brings its predetermined value back to the boundary,
where it may or may not agree with the boundary condition that is imposed there. To avoid conflicts,
we can define the inlet region ℐ(𝑡) to be the set of boundary points for which u(x, 𝑡) · n̂ > 0, where
n̂ is a normal vector pointing into the fluid domain. All particles must enter the domain through
the inlet, and cannot return to the inlet on their way out of the domain. We can now construct the
well-posed problem

𝜕𝑓

𝜕𝑡
+ (u ·∇)𝑓 = 0

𝑓(x, 0) = 𝑓0(x)

𝑓(x, 𝑡) = 𝑓(x, 𝑡) for x ∈ ℐ(𝑡).

This offers some inspiration for the advection diffusion equation: if the advection term is calculated
using a boundary condition only on the inlet, improved convergence properties could follow.

To explore this idea further, we consider imposing numerical boundary conditions on a one-
dimensional problem. Consider a one-dimensional discretization of the advection equation on Ω =
[0, 1], with constant wave speed 𝑢 > 0. Let the domain be represented by 𝑁 + 1 equally spaced
points 𝑥𝑖 = 𝑖/𝑁 , and let 𝑓𝑖 be the value of the approximate solution at 𝑥𝑖. Fluid enters the domain
at 𝑥0, and leaves the domain at 𝑥𝑁 , so that a suitable boundary condition is to fix the value of
𝑓0. The value of 𝑓𝑁 must remain as an unknown, since no boundary condition is given; placing an
artificial Dirichlet or Neumann condition here would over-determine the continuous problem.

Having established what we can and cannot do in one-dimension, we move on to a two-dimensional
advection problem that behaves like a collection of one-dimensional problems. Consider the two-
dimensional advection equation with constant velocity u = [𝑢𝑥, 𝑢𝑦] = [1, 1]. Any function of the
form

𝑓(x, 𝑡) = 𝑔(𝑥− 𝑢𝑥𝑡) (3.22)

33

will satisfy this advection equation on an unbounded domain. Although the velocity field does not
align with the grid lines, making the physical problem inherently two-dimensional, the solution (3.22)
purposely has no 𝑦-dependence.

For a finite domain Ω, we can impose (3.22) as an initial condition and as a boundary condition,
so that the IVBP

𝜕𝑓

𝜕𝑡
+ (u ·∇)𝑓 = 0 for x ∈ Ω

𝑓(x, 0) = 𝑓(x, 0) for x ∈ Ω

𝑓(x, 𝑡) = 𝑓(s, 𝑡) for s ∈ ℐ

has 𝑓(x, 𝑡) as its unique solution. For concreteness, let the problem domain be the square (𝑥, 𝑦) ∈
[0, 1] × [0, 1] with a circular region removed. We introduce the angular coordinate 𝜃 to talk about
regions on the boundary of the circle, with 𝜃 = 0 representing the point on the circle with the maximal
𝑥 coordinate. With this convention, the inlet for the continuous problem is ℐ = [−𝜋/4, 3𝜋/4].

Figure 3-4: An illustration of the continuous problem presented here, along with the two quasi-one-
dimensional discretizations it produces. The red overlay illustrates the decoupled one-dimensional
advection problems, and the heavy dashed lines indicates locations where a boundary condition must
be enforced to ensure stability or well-posedness.

If this IBVP is discretized spatially with a regular grid, centered second-order finite differences,
and a standard IIM boundary treatment, then the two-dimensional discretization is reduced to a
series of one-dimensional advection problems coupled only by truncation error. To show this, we
apply the spatial operators to the exact solution 𝑓𝑖,𝑗 :

d

d𝑡
𝑓𝑖,𝑗 =

𝑢𝑥
2ℎ

(𝑓𝑖+1,𝑗 − 𝑓𝑖−1,𝑗) +
𝑢𝑦
2ℎ

(𝑓𝑖,𝑗+1 − 𝑓𝑖,𝑗−1)

=
𝑢𝑥
2ℎ

[𝑔(𝑥𝑖+1 − 𝑢𝑥𝑡) − 𝑔(𝑥𝑖−1 − 𝑢𝑥𝑡)] +
𝑢𝑦
2ℎ

[𝑔(𝑥𝑖 − 𝑢𝑥𝑡) − 𝑔(𝑥𝑖 − 𝑢𝑥𝑡)] + 𝒪
(︀
ℎ2
)︀

=
𝑢𝑥
2ℎ

[𝑔(𝑥𝑖+1 − 𝑢𝑥𝑡) − 𝑔(𝑥𝑖−1 − 𝑢𝑥𝑡)] + 𝒪
(︀
ℎ2
)︀
.

Thus the 𝑥-direction contribution to each time derivative is 𝒪(1), while the 𝑦-direction contribution
is at most 𝒪

(︀
ℎ2
)︀
. If we neglect the contribution from the 𝑦-direction, we see that the dynamics at

each point depend only on that point’s left and right neighbors, so that each 𝑥-gridline is completely
decoupled from the others.

We know that, in order to be well-posed, each one-dimensional advection problem will need a
boundary condition on its inflow, and cannot have a boundary condition on its outflow. This suggests

34

that our discretization will be well-behaved if we impose a boundary condition on the numerical inlet
ℐ𝑥 = [−𝜋/2, 𝜋/2]. We can also repeat the above exercise with a new quasi-one-dimensional solution
of the form

𝑓(x, 𝑡) = ℎ(𝑦 − 𝑢𝑦𝑡), (3.23)

leading to a system of decoupled 𝑦-gridlines that require a numerical inlet ℐ𝑦 = [0, 𝜋]. Neither ℐ𝑥 or
ℐ𝑦 coincides with ℐ for the continuous problem, so it seems highly unlikely that enforcing boundary
conditions only on ℐ will lead to a stable discretization. For a pure advection problem, we are stuck:
there is no boundary condition provided on ℐ𝑥 ∖ ℐ or ℐ𝑦 ∖ ℐ, even though we require a BC on these
regions for stability.

3.3.4 Advection Diffusion Part 2
If we return to the advection diffusion equation, where a BC is prescribed on all boundaries, then we
can make headway on the conundrum presented in the previous section. One simple way to discretize
both the 𝑥-gridline and 𝑦-gridline problems simultaneously is to impose a boundary condition only
at 𝑥-intersections that lie in ℐ𝑥 and at 𝑦-intersections that lie in ℐ𝑦. In the local frame of each control
point, we impose a boundary condition only when 𝑢𝜉 > 0. Thus we use a boundary condition only
when x𝑐 acts as an inlet for the local 𝜉-direction advection term, and choose to use a one-sided stencil
when x𝑐 acts as an outlet. Incorporating this idea into the previously proposed advection-diffusion
scheme, we obtain the following procedure:

∙ Loop over all x𝑐 ∈ 𝒞, and calculate a third order jump correction using the given Dirichlet
boundary condition. This correction is stored in 𝐴+(x𝑐); if there multiple candidates for the
value of 𝐴+(x𝑐), the average value is used.

∙ Calculate the advection term using a third-order upwind finite difference stencil.

∙ Loop over all x𝑐 ∈ 𝒞 again. At each point, recalculate 𝑢𝜉𝜕𝜉𝑓 using a third-order upwind
difference, remove this contribution from (u ·∇)𝑓 at 𝐴+(x𝑐). Then:

– If 𝑢𝜉 > 0, recalculate 𝑢𝜉𝜕𝜉 with a centered second-order stencil.
– If 𝑢𝜉 < 0, recalculate 𝑢𝜉𝜕𝜉 with a one-sided second-order stencil.

This new value of 𝑢𝜉𝜕𝜉 is added back to (u ·∇)𝑓 at 𝐴+(x𝑐).

∙ Zero all of the points in 𝒜−, and calculate the diffusion term as described in section 3.3.1.

To test the stability of this discretization, we return to the test problem from section 3.3.1. As a
challenge to our scheme, consider the advection diffusion equation with a diffusivity that is nonzero,
but smaller than machine epsilon. The resulting IBVP is still parabolic, and requires a boundary
condition on all surfaces; however, the numerical value of diffusion term is so small that it can
effectively be neglected allowing us to set 𝜈 = 0 in our discretization. Rerunning the established
convergence test, we find that the numerical solution converges to the exact solution without any
stability issues (Figure 3-5), even though the Péclet number in our numerical solver is effectively
infinite. Although the boundary treatment is second order, the resulting solutions are 𝒪

(︀
ℎ3
)︀

accurate
in both the 𝐿2 and 𝐿∞ error norms.

To confirm that this discretization is still valid at moderate Pe, the same test case is repeated
using diffusivities

𝜈 ∈ {2 × 10−3, 4 × 10−4, 1 × 10−4, 4 × 10−5, 1 × 10−5},

which correspond to Péclet numbers

Pe ∈ {110, 550, 2200, 5500, 11000}.

Figure 3-6 shows the resulting convergence behavior, which varies with both Péclet number and
resolution. For each choice of Pe, spatial convergence is initially dominated by the third order

35

Figure 3-5: Third Order Convergence of an advection-diffusion process with vanishing diffusivity.

advection term, transitioning to second order past a critical resolution. This critical resolution is
finer at higher Pe. Having verified that this advection-diffusion discretization is stable and between
second and third order accurate over a broad range of Péclet numbers, we will continue to use it as
the default transport scheme throughout the rest of this thesis.

36

(a) 𝐿2 Error.

(b) 𝐿∞ Error.

Figure 3-6: Mixed second and third order spatial convergence for an advection-diffusion discretization
over a wide range of Péclet numbers.

37

38

Chapter 4

IIM for the Navier Stokes Equations

In vorticity-velocity form, the Navier-Stokes equations for an unbounded two-dimensional domain
are

𝜕𝜔

𝜕𝑡
+ u ·∇𝜔 = 𝜈∇2𝜔, (4.1)

∇∧ u = 𝜔, (4.2)

along with the incompressibility constraint ∇ ·u = 0. Having developed immersed interface tools to
solve (4.1) in the previous section, we turn our eye to the reconstruction of a divergence-free velocity
field u satisfying (4.2). With the introduction of an immersed body, we must also consider boundary
conditions on (4.1) and (4.2) which ensure that the no-slip and no-through-flow boundary conditions
are satisfied at the body surface. This section reviews the immersed interface tools that have been
developed for both of these problems, completing the theory necessary to successfully discretize the
Navier stokes equations.

4.1 Kinematics of Vorticity

4.1.1 Kinematics on an Simply-Connected Domain

Vortex methods track the evolution of a velocity field through the vorticity field 𝜔 = ∇ ∧ u. Con-
sequently, an essential part of vortex methods is the reconstruction of a velocity field given only its
associated vorticity field. This can be done in a variety of ways. One option is to take the curl of
(4.2), which gives a vector Poisson equation relating the two fields:

∇2u = −∇ ∧ 𝜔. (4.3)

We can also describe the the solenoidal field u through a stream function 𝜓, so that the velocity
field u = ∇∧𝜓 is automatically divergence free. If the stream function satisfies the vector Poisson
equation

∇2𝜓 = −𝜔, (4.4)

then the resulting velocity field will also satisfy (4.3).
This approach is particularly efficient in two dimensions, where both the vorticity and the stream

function become scalar fields. We define a two-dimensional stream function 𝜓 that determines the
velocity field through

𝑢𝑥 = 𝜕𝑦𝜓 and 𝑢𝑦 = −𝜕𝑥𝜓. (4.5)

Note that 𝜓 is not unique; for any constant 𝑐, 𝜓 and 𝜓+ 𝑐 determine the same velocity field. In two
dimensions, this stream function must obey the scalar Poisson equation ∇2𝜓 = −𝜔. To determine

39

boundary conditions which 𝜓 must satisfy, we transfer (4.5) to the domain boundaries, giving

u𝑏 · n̂ = 𝜕𝑠𝜓 and u𝑏 · ŝ = −𝜕𝑛𝜓.

If we wish to enforce the no-through-flow condition on the domain boundary, we must enforce
𝜕𝑠𝜓 = u𝑏 · n̂. This is traditionally integrated over the boundary to give a Dirichlet boundary
condition 𝜓 = 𝜓𝑏 + 𝜓, where 𝜓 is an arbitrary constant. In a simply connected domain Ω, the
non-uniqueness of 𝜓 implies that the choice of 𝜓 will not affect the resulting velocity field, so we are
free to set 𝜓 = 0. Collecting the previous results gives an elliptic boundary value problem for the
stream function,

−∇2𝜓 = 𝜔

𝜓 = 𝜓𝑏 on 𝜕Ω.
(4.6)

4.1.2 Kinematics on a Multiply-Connected Domain

In a multiply-connected domain, the ambiguity in the Dirichlet boundary condition is no longer
negligible. Consider a collection of 𝑁 objects immersed in an unbounded fluid domain, each occu-
pying a connected region Ω𝑖 ∈ R2 . We can integrate the condition 𝜕𝑠𝜓 = u𝑏 · n̂ around each object
boundary 𝜕Ω𝑖, giving one arbitrary constant 𝜓𝑖 for each object. Similarly, the far-field boundary
condition

lim
|𝑥|→∞

∇∧ 𝜓 = u∞

provides an additional scalar degree of freedom, since it is unaffected by the addition of a global
constant 𝜓 → 𝜓 + 𝜓∞. The non-uniqueness of 𝜓 can absorb this global constant, but we are left
with 𝑁 undetermined constants 𝜓𝑖. To choose one particular flow from this 𝑁 -dimensional space
of possible solutions, we must provide 𝑁 additional constraints on 𝜓 by prescribing the circulation
around the boundary of each object: ∮︁

𝜕Ω𝑖

u · ds = Γ𝑖.

With these circulation constraints, we form the complete reconstruction problem for the stream
function in an two-dimensional, unbounded, multiply-connected domain:

∇2𝜓 = −𝜔
lim

|𝑥|→∞
∇∧ 𝜓 = u∞

𝜓 = 𝜓𝑏,𝑖 + 𝜓𝑖 on 𝜕Ω𝑖∮︁
𝜕Ω𝑖

u · ds = Γ𝑖.

(4.7)

One effective strategy for solving the Poisson equation on an unbounded domain is to use Green’s
functions, which typically guarantee that |∇ ∧ 𝜓| → 0 as |x| → ∞. If the non-homogeneous boundary
condition u = u∞ is prescribed, then it is convenient to make the decomposition 𝜓 = 𝜓+𝜓∞, where
𝜓∞ is a free-stream stream function satisfying ∇∧ 𝜓∞ = u∞ and 𝜓 is a perturbation satisfying

∇2𝜓 = −𝜔
lim

|𝑥|→∞
∇∧ 𝜓 = 0

𝜓 = 𝜓𝑏,𝑖 + 𝜓𝑖 on 𝜕Ω∮︁
𝜕Ω

u · ds = Γ𝑏.

(4.8)

Here 𝜓𝑏,𝑖 = 𝜓𝑏,𝑖 − 𝜓∞. For the rest of this thesis, we consider only a single obstacle, so that we can
drop the subscript and simply write 𝜓 = 𝜓𝑏 + 𝜓 on 𝜕Ω.

40

4.1.3 Discretized Kinematics

In this thesis, (4.8) is solved using a small modification of the iterative immersed interface algorithm
proposed by Gillis in [9] and in [10]. The rest of this section describes this modification, and assumes
some familiarity with this prior work. To discuss the spatial discretization of (4.8), we adopt the
notation for multidimensional IIM problems developed in Chapter 2, and define the following vector
spaces:

∙ 𝑉𝑎 - the space of functions defined on 𝒜 (the affected points);

∙ 𝑉𝑖 - the space of functions defined on ℐ𝑛 (the interpolation points);

∙ 𝑉𝑐 - the space of functions defined on 𝒞 (the control points);

∙ 𝑉𝐺 - the space of functions defined on 𝒢 (the entire Cartesian grid).

We then introduce linear operators to connect the spaces 𝒜 and ℐ𝑛 to the larger Cartesian grid 𝒢:

∙ 𝐸𝑎 : 𝑉𝑎 → 𝑉𝐺 places a vector of values defined on 𝒜 into their global position within 𝒢;

∙ 𝐸𝑖 : 𝑉𝑖 → 𝑉𝐺 places a vector of values defined on ℐ𝑛 into their global position within 𝒢.

It’s helpful to note that 𝐸𝑎 and 𝐸𝑖 are orthonormal, so that 𝐸𝑇
𝑎 𝐸𝑎 = 𝐼 ∈ 𝑉𝐺 and 𝐸𝑇

𝑖 𝐸𝑖 = 𝐼 ∈
𝑉𝐺. Thus the transpose of each takes a field defined on the Cartesian grid and restricts it to the
interpolation points or the affected points. To finish off the set, we define operators representing a
discretization of the immersed interface method and the free-space Poisson solver.

∙ 𝐶 : 𝑉𝑖×𝑉𝑐 → 𝑉𝑎 calculates IIM jump corrections based on function values at the interpolation
points and a boundary condition at the control points. When convenient, we’ll split 𝐶 into
two linear operators 𝐴 : 𝑉𝑖 → 𝑉𝑎 and 𝐵 : 𝑉𝑐 → 𝑉𝑎, so that 𝐶(𝑥𝑖, 𝑥𝑐) = 𝐴𝑥𝑖 + 𝐵𝑥𝑐 for 𝑥𝑖 ∈ 𝑉𝑖
and 𝑥𝑐 ∈ 𝑉𝑐.

∙ ∇2
ℎ : 𝑉𝐺 → 𝑉𝐺 is a finite difference discretization of the Laplacian operator. Its inverse

∇−2
ℎ : 𝑉𝐺 → 𝑉𝐺 represents convolution with a free-space Lattice Green’s Function, as detailed

in [10].

∙ Σ𝑎 : 𝑉𝑎 → R and Σ𝐺 : 𝑉𝐺 → R sum the components of a vector in 𝑉𝑎 or 𝑉𝐺 respectively, and
are useful in discretizing the circulation constraint in (4.8).

For this problem, our immersed interface corrections must be two-sided, so that any point x𝑐 ∈ 𝒞
will contribute a jump correction 𝐽+

𝛼 /ℎ
2 to the point 𝐴+(x𝑐) and a jump correction 𝐽−

𝛼 /ℎ
2 to the

point 𝐴−(x𝑐). Using the local stencil notation from section 2.2,

𝐽+
𝛼 = 𝑠𝜉,𝛼𝑓𝛼 +

3∑︁
𝑖=1

𝑠𝜉,𝑖𝑓𝑖 and 𝐽−
𝛼 = −𝑓0,

so that the corrected operator ∇2
ℎ + 𝐸𝑎𝐶 evaluates correctly at 𝐴+(x𝑐) and evaluates to zero at

𝐴−(x𝑐).
Using the operators defined above, we can write an immersed interface discretization of 4.8 as

∇2
ℎ𝜓 + 𝐸𝑎𝐶(𝐸𝑇

𝑖 𝜓,𝜓𝑏 + 𝜓) = −𝜔, (4.9)

with 𝜓 and 𝜔 now restricted to 𝒢, 𝜓𝑏 restricted to 𝒞, and 𝜓 representing a constant function defined
on 𝒞. Splitting 𝐶 into its linear components 𝐴 and 𝐵 and rearranging, we see that

∇2
ℎ𝜓 + 𝐸𝑎𝐴𝐸

𝑇
𝑖 𝜓 + 𝐸𝑎𝐵(𝜓𝑏 + 𝜓) = −𝜔, or

(∇2
ℎ + 𝐸𝑎𝐴𝐸

𝑇
𝑖)𝜓 = −𝐸𝑎𝐵(𝜓𝑏 + 𝜓) − 𝜔.

41

The operator ∇2
ℎ + 𝐸𝑎𝐴𝐸

𝑇
𝑖 is a low-rank perturbation of the free-space Laplacian, and can be

inverted efficiently with the Sherman-Morrison-Woodbury formula:

𝜓 = ∇−2
ℎ (−𝐸𝑎𝐴𝑥𝑏 − 𝐸𝑎𝐵(𝜓𝑏 + 𝜓) − 𝜔), (4.10)

where 𝑥𝑏 ∈ 𝑉𝑖 is a vector satisfying

(𝐼𝑖 + 𝐸𝑇
𝑖 ∇−2

ℎ 𝐸𝑎𝐴)𝑥𝑏 = 𝐸𝑇
𝑖 ∇−2

ℎ (−𝐸𝑎𝐵(𝜓𝑏 + 𝜓) − 𝜔). (4.11)

We can determine 𝜓 by enforcing the circulation constraint. Instead of setting the circulation around
the immersed obstacle, we can equivalently set the total discrete vorticity in the domain, so that

Σ𝐺𝜔 + Σ𝑎𝐶(𝐸𝑇
𝑖 𝜓,𝜓𝑏 − 𝜓) = 0. (4.12)

Equations 4.10, 4.11, and 4.12 are the linear system for the unknowns (𝜓,𝜓) developed by Gillis in
[9]. In this thesis, we improve Gillis’ discretization by using a slightly different application of the
SMW formula, replacing (4.10) with

𝜓 = ∇−2
ℎ (−𝐸𝑎𝑦𝑏 − 𝐸𝑎𝐵(𝜓𝑏 + 𝜓) − 𝜔), (4.13)

where 𝑦𝑏 ∈ 𝑉𝑎 is a vector satisfying

(𝐼𝑎 +𝐴𝐸𝑇
𝑖 ∇−2

ℎ 𝐸𝑎)𝑦𝑏 = 𝐴𝐸𝑇
𝑖 ∇−2

ℎ (−𝐸𝑎𝐵(𝜓𝑏 + 𝜓) − 𝜔). (4.14)

Because the unknown 𝑦𝑏 is defined on the affected points rather than the interpolation points, this
system is smaller than (4.11), which involves as many equations as there are interpolation points.
To simplify further, define a new vector 𝑧𝑏 = 𝑦𝑏 +𝐵(𝜓𝑏 + 𝜓), so that (4.13) and (4.14) reduce to

𝜓 = −∇−2
ℎ (𝜔 + 𝐸𝑎𝑧𝑏) (4.15)

(𝐼𝑎 +𝐴𝐸𝑇
𝑖 ∇−2

ℎ 𝐸𝑎)𝑧𝑏 = −𝐵(𝜓𝑏 + 𝜓) −𝐴𝐸𝑇
𝑖 ∇−2

ℎ 𝜔. (4.16)

By inspecting (4.15), we see that the circulation constraint is expressed succinctly as

Σ𝐺𝜔 + Σ𝑎𝑧𝑏 = 0. (4.17)

Equations 4.15, 4.16, and 4.17 are the full discretization of the stream function reconstruction
problem used in this thesis.

4.1.4 Solving the Discrete Stream Function System

The discretized IIM Poisson equations described in the previous section are designed to be solved
efficiently using an iterative method. The most expensive operation in the discrete linear system is
the application of ∇−2

ℎ , which represents the convolution of a source term with a free-space Lattice
Green’s function. This convolution can be carried out in 𝒪(𝑁 log𝑁) time using the FFT-base
Hockney-Eastwood algorithm described in [9], where 𝑁 is the number of points in the computational
domain. If we wish to apply the modified operator 𝐸𝑇

𝑖 ∇
−2
ℎ 𝐸𝑎, then we are assured that the source

term is defined only on the affected points, and the only relevant output resides on the interpolation
points. Consequently, we can carry out the Hockney-Eastwood convolution on any rectangular sub-
domain domain containing all of the affected points and interpolation points in 𝒪(𝑁𝑏 log𝑁𝑏) time,
where 𝑁𝑏 is the number of points in this sub-domain. For a small obstacle in a large domain, we
may have 𝑁𝑏 ≪ 𝑁 , so that the application of 𝐸𝑇

𝑖 ∇
−2
ℎ 𝐸𝑎 is significantly faster than the full ∇−2

ℎ

operator.
To solve (4.15) through (4.17), we begin with the discrete source term 𝜔, and integrate over the

domain to find the total circulation Σ𝐺𝜔 appearing in (4.17). Next we perform the convolution
𝜓0 = −∇−2

ℎ 𝜔, which must be carried out on the entire domain. With this done, we compute the
vectors 𝐴𝐸𝑇

𝑖 𝜓0 and 𝐵𝜓𝑏 which appear on the right hand side of (4.16). To compute the unknowns

42

(𝑧𝑏, 𝜓), we rephrase (4.16) and (4.17) as a single linear system:[︂
(𝐼𝑎 +𝐴𝐸𝑇

𝑖 ∇
−2
ℎ 𝐸𝑎) 𝐵

Σ𝑎 0

]︂ [︂
𝑧𝑏
𝜓

]︂
=

[︂
−𝐵𝜓𝑏 −𝐴𝐸𝑇

𝑖 ∇
−2
ℎ 𝜔

−Σ𝐺𝜔

]︂
. (4.18)

To avoid forming the dense matrix on the left-hand side of (4.18), we solve this system iteratively
using a matrix-free GMRES algorithm. Once a solution is found within an acceptable tolerance, we
perform one final convolution to reconstruct 𝜓 = 𝜓0−∇−2

ℎ 𝐸𝑎𝑧𝑏. The total cost of the solution is then
two full Hockney-Eastwood convolutions and one smaller convolution for each GMRES iteration.

If this system must be solved repeatedly for many inputs (𝜔, 𝜓𝑏), as it would be during a flow sim-
ulation, we can further accelerate the GMRES algorithm using a recycling scheme. This procedure
uses past solutions to construct an optimal initial guess, which can significantly reduce the number
of iterations required to achieve convergence. As an example, the recycling procedure described in
[10] reduces the number of iterations required to roughly one iteration per time step during the
solution of three-dimensional flow problems.

4.1.5 Immersed Interface Curl Operator

The final (and so far neglected) step in velocity reconstruction is to derive a divergence-free velocity
field from 𝜓 using

𝑢𝑥 = 𝜕𝑦𝜓 and 𝑢𝑦 = −𝜕𝑥𝜓. (4.19)

This is done using the standard second-order centered finite difference and an immersed interface
boundary treatment. To calculate the necessary third-order jump corrections, we must retain the
Dirichlet boundary condition 𝜓𝑏 + 𝜓 after solving the stream function system. Unlike the jump
corrections considered so far, we must develop separate procedures for the 𝑥-intersections 𝒞𝑥 and
𝑦-intersections 𝒞𝑦, since the 𝑥 and 𝑦 derivatives in (4.19) have different signs and operate on different
components of the velocity field. Thus the computation of 𝑢𝑦 requires jump corrections only from
the points in 𝒞𝑥, while the computation of 𝑢𝑥 requires jump corrections only from the points in 𝒞𝑦.

4.2 Vorticity Boundary Conditions

The vorticity-velocity form of the Navier-Stokes equations places a no-slip velocity boundary con-
dition on immersed surfaces. However, because the velocity field is reconstructed from the vorticity
field through an elliptic equation, it is difficult to translate the no-slip boundary condition into a
traditional boundary condition for the vorticity transport equation. In the words of Rempfer [19],
“there is no other formulation of the incompressible Navier Stokes equations that has seen such an
extensive use of improper boundary conditions as can be found in the literature on numerical meth-
ods for the solution of the vorticity-stream function equations." In this thesis we adopt the boundary
condition used by Gillis in his IIM vortex-particle scheme [10], which is quite similar to the approach
of Linnick and Fasel in their compact-differencing-based IIM scheme [14] and reminiscent of the local
boundary conditions described by E and Liu in [8]. This section reviews a very narrow selection of
the literature on vorticity boundary conditions, and then described the specific numerical boundary
condition used in this thesis.

4.2.1 Candidate Boundary Conditions

A comprehensive examination of boundary conditions for incompressible flow problems is provided
by Quartapelle [18], who considers multiple formulations of the Navier Stokes equations in both two
and three dimensions. In the two-dimensional vorticity-stream function formulation, Quartapelle
demonstrates that the no-slip boundary condition is equivalent to the requirement that the vorticity
field has a pre-determined projection onto to the space of harmonic functions (via the standard
𝐿2 inner product). Thus if ℋ(Ω) is the set of functions 𝑓 satisfying ∇2𝑓 = 0 on Ω, Quartapelle’s

43

integral condition is ∫︁
Ω

𝜔𝑓 d𝑉 =

∮︁
𝜕Ω

𝑎
𝜕𝑓

𝜕𝑛
− 𝑏𝑓 d𝑠 for all 𝑓 ∈ ℋ(Ω),

where 𝑎 and 𝑏 are functions derived from the velocity boundary condition. To enforce this condition,
Quartapelle develops a numerical method which relies on an implicit discretization of the diffusion
term, and produces a symmetric linear system with dimension equal to the number of boundary
nodes that must be solved at each time step. Although this solution is theoretically satisfying,
the boundary problem is not sparse, meaning that a matrix representation of the problem requires
𝒪(𝑁) memory in two dimensions and 𝒪

(︀
𝑁4/3

)︀
memory in three dimensions. Some preliminary

research suggests that the condition could be implemented more efficiently via a matrix-free, FFT
accelerated algorithm, but this is still considerably more expensive than a local boundary condition.
The special implicit treatment of the diffusion term also obstructs any method-of-lines discretization
of the incompressible flow problem.

Another widely-used boundary condition is the Lighthill model, which offers a physically mo-
tivated boundary treatment popular for vortex-particle methods [15]. In the Lighthill model, the
vorticity field is allowed to evolve with a no-flux condition for a small time step 𝜏 . This does not
enforce the no-slip condition, and at the end of the time step there is generally some spurious slip
velocity 𝛾 = u − u𝑏 present on the domain boundary. This spurious slip velocity is interpreted as
a singular vortex sheet confined to the body surface, which should have been diffused into the flow
over the course of the time step. Thus a pure diffusion step is carried out with the flux boundary
condition −𝜈𝜕𝜔/𝜕𝑛 = 𝛾/𝜏 . Variations on this procedure with particle-based advection are exam-
ined extensively by Marichal in his doctoral thesis [15]. The weakness of Lighthill schemes is their
temporal accuracy, which is generally limited to first-order by the splitting of the diffusion step.

Alternative vorticity boundary conditions are the subject of a publication by E and Liu [8], who
argue that global conditions like Quartapelle’s do not perform significantly better than approximate
local boundary conditions. By treating the diffusion term of the vorticity transport equation implic-
itly, the authors show that Quartapelle’s global condition is well approximated by local conditions
such as Thom’s formula and Fromm’s formula. They provide similar results for a family of global
boundary conditions considered by Andersen [1]. Although it is well argued by Wu [29], Rempfer
[19], Quartapelle [18], and others that there can be no correct local boundary condition on the
vorticity field, we adopt here the view of E and Liu [8] that a local boundary condition and explicit
integration, even if not rigorously justified, can still provide satisfactory results with a minimum of
computational resources.

4.2.2 IIM Boundary Condition

The boundary condition used here in IIM Navier-Stokes solver developed here is taken directly from
[10]. We begin each time step with a vorticity field defined on a grid 𝒢, and proceed to reconstruct
the velocity field u at these same points subject to a no-through flow boundary condition. The
velocity field at control points 𝑥𝑐 ∈ 𝒞 is set equal to the boundary velocity, to satisfy the no-slip
condition. Finally, with the velocity field fully defined, we compute the boundary vorticity by taking
the curl of the velocity field, so that 𝜔(𝑥𝑐) = ∇∧ u(𝑥𝑐).

Anticipating large vorticity gradients near any solid boundary, we choose to use a second-order
finite difference, to avoid oscillations associated with higher-order polynomial interpolation. The
resulting finite difference stencils are shown in Figure 4-1. Working in a local frame,

𝜔 = 𝜕𝑥𝑢𝑦 − 𝜕𝑦𝑢𝑥

= (−1)𝑘
[︀
(−1)ℓ𝜕𝜉𝑢𝜂 − (−1)𝑚𝜕𝜂𝑢𝜉

]︀
,

(4.20)

where the integer 𝑘 determines the left- or right-handedness of the local coordinate system and the
integers 𝑙, 𝑚 determine the positive or negative orientation of the 𝜉 and 𝜂 axes respectively. The
derivative 𝜕𝜉𝑢𝜂 is relatively easy to calculate, as all values on the 𝜉-axis are readily available. To
compute 𝜕𝜂𝑢𝜉, we must interpolate values on the 𝜂-axis to third order before applying a standard
one-sided finite difference stencil.

44

Figure 4-1: Finite Difference Stencils used in the computation of boundary vorticity.

The numerical results presented in Chapter 6 and in [10] demonstrate that this boundary con-
dition leads to second-order spatial accuracy in lift and drag computations for immersed bodies.
Though its correctness has not been rigorously proven, this condition provides a local, inexpensive
method of enforcing the no-slip boundary condition.

45

46

Chapter 5

Force Calculation

This chapter is dedicated to determining the global and local forces acting on a fluid body, using
information available in the velocity-vorticity formulation. In an incompressible Newtonian fluid,
the local stress tensor 𝜎 can be written

𝜎 = T− 𝑝I,

where T is the viscous stress tensor and 𝑝 is the scalar pressure field. Consequently, all of the
loading information we are interested in can be also additively decomposed into two contributions:
one from the action of viscosity, and one from the surface pressure distribution. Viscous forces arise
from shearing processes, and are easily recovered from the vorticity field. Pressure forces present a
greater challenge, since the pressure field is excluded from the vorticity-velocity formulation.

Throughout this chapter, we assume a constant-density incompressible fluid, and for convenience
we choose units so that 𝜌 = 1. Consequently we’ll work with the kinematic viscosity 𝜈 = 𝜇/𝜌 in
place of the dynamic viscosity 𝜇, and simply write 𝑝 in place of 𝑝/𝜌. For two-dimensional problems,
all forces and moments are expressed per unit depth.

5.1 Traction an a Material Surface

Let 𝑆 be a closed surface immersed in a fluid flow, and dS be an infinitesimal surface element
with area d𝑆 and normal vector n̂. From the definition of the stress tensor, the local traction on the
element dS is given by t = −𝑝n̂+Tn̂. If we assume the fluid is Newtonian, so that T = 𝜈(∇u+∇u𝑇),
and that a no-slip boundary condition holds on 𝑆, then we can follow an argument presented by Wu
et al. in [29] to re-express the local traction vector as

t = −(𝑝+ 2𝜈𝑟𝑠)n̂ + 𝜈(𝜔 − 2W) ∧ n̂, (5.1)

where 𝑟𝑠 is the local rate of surface stretching and W is the local angular velocity of the surface. In
terms of the surface element,

𝑟𝑠 =
1

d𝑆

D

D𝑡
d𝑆 and W =

D

D𝑡
n̂.

For a general deforming body, 𝑟𝑠 and W can be determined entirely from the surface deformation,
without reference to any external velocity field. Thus knowledge of the local pressure and vorticity
fields, along with the surface kinematics, can completely characterize the local traction forces acting
on an immersed body.

In this thesis we consider only rigid bodies, for which 𝑟𝑠 = 0 and W = Ω, the angular velocity
of the body. The surface traction then simplifies to

t = −𝑝n̂ + 𝜈(𝜔 − 2Ω) ∧ n̂, (5.2)

47

which we will split into the local pressure force f𝑝 = −𝑝n̂ and the local viscous force f𝑣 = 𝜈(𝜔 −
2Ω) ∧ n̂. We also define the integrated pressure force and moment

F𝑝 =

∮︁
𝑆

f𝑝 d𝑆 and M𝑝,x̄ =

∮︁
𝑆

(x− x̄) ∧ f𝑝 d𝑆 ,

and similarly define an integrated viscous force F𝑣 and moment M𝑣,x̄. The local viscous force f𝑣
is determined by the vorticity field on the surface, which is readily available in a vorticity-velocity
formulation of the Navier-Stokes equations. The integrated viscous loads also take simple forms; it
can be shown using the divergence theorem that the identity ∇ ·T = −𝜈∇∧ 𝜔 implies

F𝑣 = 𝜈

∮︁
𝑆

𝜔 ∧ n̂ d𝑆 ,

while a direct integration gives the viscous moment

M𝑣,x̄ = 𝜈

∮︁
𝑆

(x− x̄) ∧ (𝜔 ∧ n̂) d𝑆 − 2(𝑁 − 1)𝜈𝑉Ω

for a body of volume 𝑉 immersed in an 𝑁 -dimensional flow. The integrated pressure forces are more
subtle, and will be treated in the next section.

5.2 Integrated Pressure Forces

Although the pressure field 𝑝 is not directly available in the vorticity-velocity formulation, the
pressure gradient ∇𝑝 can be extracted directly from the the incompressible Navier Stokes equations

𝐷u

𝐷𝑡
= −∇𝑝− 𝜈∇∧ 𝜔.

If the no-slip boundary condition holds on the immersed surface 𝑆, then the acceleration of the fluid
is identical to the acceleration of the boundary a𝑏, and we can write

∇𝑝 = −𝜈∇∧ 𝜔 − a𝑏 on 𝑆. (5.3)

Using the the 𝑁 -dimensional integral identity

(𝑁 − 1)

∮︁
𝑆

𝜑n̂ d𝑆 = −
∮︁
𝑆

x ∧ (n̂ ∧∇𝜑) d𝑆

presented in [16], we can write

−
∮︁
𝑆

𝑝n̂ d𝑆 =
1

(𝑁 − 1)

∮︁
𝑆

x ∧ (n̂ ∧∇𝑝) d𝑆 ,

and after substituting (5.3) and simplifying considerably we obtain

F𝑝 =
1

𝑁 − 1

∮︁
𝑆

x ∧
(︂
𝜈
𝜕𝜔

𝜕𝑛
− n̂ ∧ a𝑏

)︂
d𝑆 − 𝜈

𝑁 − 1

∮︁
𝑆

x ∧ (∇𝜔 · n̂) d𝑆 .

In two dimensions, the second term is zero, and we can write

F𝑝,2𝐷 =

∮︁
𝑆

x ∧
(︂
𝜈
𝜕𝜔

𝜕𝑛
− n̂ ∧ a𝑏

)︂
d𝑠 . (5.4)

48

The integrated pressure moment can be handled using the integral identity∮︁
𝑆

𝑥2

2
n̂ ∧∇𝜑d𝑆 =

∮︁
𝑆

x ∧ 𝜑n̂ d𝑆 ,

which is proven in Appendix B. Letting 𝜑 = 𝑝 and substituting (5.3), we eventually obtain

M𝑝,x̄ =
1

2

∮︁
𝑆

(x− x̄)2
(︂
𝜈
𝜕𝜔

𝜕𝑛
− n̂ ∧ a𝑏

)︂
d𝑆 − 𝜈

2

∮︁
𝑆

(x− x̄)2(∇𝜔 · n̂) d𝑆 .

In two dimensions we can drop the last term to obtain

M𝑝,2𝐷,x̄ =
1

2

∮︁
𝑆

(x− x̄)2
(︂
𝜈
𝜕𝜔

𝜕𝑛
− n̂ ∧ a𝑏

)︂
d𝑠 . (5.5)

This shows that in both two and three dimensions, we can determine the global loading using only
the surface vorticity field, the surface vorticity flux, and the surface kinematics.

5.3 Local Pressure Forces

Obtaining a local pressure value from the vorticity velocity formulation is considerably more difficult
than obtaining the integrated pressure force. We’ll start with a slightly simpler task, which is to
obtain the surface pressure distribution up to an additive constant. In two dimensions we take the
tangential component of (5.3),

𝜕𝑝

𝜕𝑠
= 𝜈

𝜕𝜔

𝜕𝑛
− a𝑏 · ŝ, (5.6)

where 𝑠 is an arc length coordinate on the boundary curve and ŝ is the tangential unit vector.
Choosing an arbitrary point 𝑠0 on the boundary, we find that

𝑝(𝑠) = 𝑝(𝑠) − 𝑝(𝑠0) =

∫︁ 𝑠

𝑠0

(︂
𝜈
𝜕𝜔

𝜕𝑛
− a𝑏 · ŝ

)︂
d𝑠 . (5.7)

If we integrate over the entire length of the boundary 𝐶, then we should find that 𝑝(𝑠0) = 𝑝(𝑠0 +𝐶);
this guarantee is provided by Kelvin’s theorem.

In three dimensions, we can introduce a projection operator P𝑛 = I−n̂n̂, which projects a vector
field onto the surface. We also introduce a surface gradient operator, a surface divergence operator,
and a surface Laplacian operator, so that we can rewrite (5.3) as

∇𝑠𝑝 = g, with g = −P𝑛(𝜈∇∧ 𝜔 + a𝑏).

Taking the surface divergence of (5.3) yields the surface Poisson equation ∇2
𝑠𝑝 = ∇𝑠g. This scalar

PDE can be solved on the two-dimensional surface, up to an additive constant, to give the local
pressure distribution. Since this thesis is focused on two-dimensional flow, we won’t pursue this
surface PDE any further.

To remove the unknown additive constant from our pressure calculations, we must leave the
immersed surface. Taking the divergence of the Navier-Stoke equations gives the usual pressure
Poisson equation,

∇2𝑝 = −∇ · (u ·∇)u = ∇u : ∇u𝑇 . (5.8)

Although this is perfectly valid continuously, it is an inconvenient to implement numerically for
unbounded problems. The issue lies in the decay rate of the right hand side: in three-dimensions,
the far field velocity obeys |u− u∞| ∼ 𝒪

(︀
𝑥−3

)︀
, and in a two-dimensions it worsens to 𝒪

(︀
𝑥−2

)︀
for non-lifting flows and 𝒪

(︀
𝑥−1

)︀
for lifting flows. The square of the velocity gradient then scales

as 𝒪
(︀
𝑥−8

)︀
, 𝒪
(︀
𝑥−6

)︀
, and 𝒪

(︀
𝑥−4

)︀
, respectively. If the problem is solved on a finite computational

domain, then the very small (but non-zero) portion of the source distribution lying outside the

49

domain will be neglected. To remedy this, we follow [13] and define the total pressure

𝐻 = (𝑝− 𝑝∞) +
1

2

(︀
𝑢2 − 𝑢2∞

)︀
,

which obeys the Poisson equation
∇2𝐻 = −(u ∧ 𝜔). (5.9)

The new right hand side has the same support as the vorticity field, which is usually confined near
immersed bodies and decays exponentially as 𝑥 → ∞. This PDE requires a boundary condition at
infinity, as well as a surface boundary condition. By definition, 𝐻 decays to zero as 𝑥 → ∞, and a
Neumann boundary condition for 𝐻 can be constructed from (5.3):

𝜕𝐻

𝜕𝑛

⃒⃒⃒⃒
𝑆

=
𝜕𝑝

𝜕𝑛
− 𝜕

𝜕𝑛

(︂
𝑢2

2

)︂
= −n · (𝜈∇∧ 𝜔 + a𝑏) − u𝑏 ·

𝜕u

𝜕𝑛
.

Anticipating that our numerical surface pressure distribution may be much less noisy than the
vorticity gradient, we can also use the surface pressure distributions discussed above as a Dirichlet
boundary condition for 𝐻,

𝐻

⃒⃒⃒⃒
𝑆

= 𝑝+ 𝑝+
𝑢2𝑏
2
, (5.10)

where 𝑝 is still an unknown additive constant. To determine 𝑝, we introduce the additional integral
constraint ∮︁

𝑆

𝜕𝐻

𝜕𝑛
d𝑆 =

∮︁
𝑆

−n · (𝜈∇∧ 𝜔 + a𝑏) − u𝑏 ·
𝜕u

𝜕𝑛
d𝑆

= −
∮︁
𝑆

n · a𝑏 + u𝑏 ·
𝜕u

𝜕𝑛
d𝑆 ,

which does not involve the surface vorticity gradient.

5.4 Global Forces: CV Analysis

In an immersed interface method, calculations preformed on the immersed surface can be significantly
noisier than calculations performed on the regular grid. This is compounded by the fact that fluid
flow is characterized by thin boundary layers, leading to large and possibly under-resolved gradients
in both velocity and vorticity near no-slip boundaries. Consequently, it’s advantageous to calculate
global loads in a way that avoids the use of surface quantities. To do so, we use the control volume
approach developed by Flavio Noca [16], which makes no assumptions on the form of the viscous
stress tensor T, the location or position of the control volume, or the boundary conditions on any
surface it contains. In this we consider Noca’s “impulse 2", “momentum 4", and “flux 4" formulations,
specialized to an immersed obstacle with no-slip and no-through-flow conditions on its boundary:

𝐹𝑓4 = − d

d𝑡

∮︁
𝑆

n̂ · [(x · u)I− xu + ux] d𝑆 − d

d𝑡

∮︁
𝑆𝑏

n̂ · (ux) d𝑆 +

∮︁
𝑆

n̂ · 𝛾 d𝑆 , (5.11)

𝐹𝑖2 = − d

d𝑡

∫︁
𝑉

x ∧ 𝜔 d𝑉 +
d

d𝑡

∮︁
𝑆𝑏

n̂ ∧ (x ∧ u) d𝑆 +

∮︁
𝑆

n̂ · 𝛾 d𝑆 , (5.12)

𝐹𝑚4 = − d

d𝑡

∫︁
𝑉

ud𝑉 − d

d𝑡

∮︁
𝑆

n̂ ∧ (x ∧ u) d𝑆 +

∮︁
𝑆

n̂ · 𝛾 d𝑆 . (5.13)

50

The quantity 𝛾 in all of the above is a tensor collecting miscellaneous terms evaluated on the control
volume:

𝛾 =
1

2
𝑢2I− uu− (u− u𝑆)(x ∧ 𝜔) + 𝜔(x ∧ u) + [x · (∇ ·T)I− x(∇ ·T)] + T. (5.14)

The surface integral of 𝛾 is common to all three formulations, and can be simplified considerably by
introducing the definition of T for a Newtonian fluid and noting that 𝜔 · n̂ = 0 in two dimensions.
This gives a set of expressions involving only the fields 𝜔 and u:∮︁

𝑆

n̂ · 𝛾 d𝑠 =

∮︁
𝑆

J d𝑠+ 𝜈

∮︁
𝑆

Kd𝑠 , with

J =
1

2
𝑢2n̂− (n̂ · u)u− (n̂ · u)(x ∧ 𝜔)

K = (x · n̂)(∇∧ 𝜔) − x · (∇∧ 𝜔)n̂ + 𝜔 ∧ n̂.

For stationary obstacles, the flux formulation can be implemented using only quantities defined on
a bounding box around the object, completely avoiding the use of IIM integration. For moving or
deforming objects, the momentum formulation can be implemented without any knowledge of the
surface kinematics.

Noca’s published work does not include an analogous calculation of the moment acting on an
immersed body. However, it can be derived using similar methods, and this calculation is presented
in Appendix B. Specialized to an obstacle with no-slip and no through-flow boundary conditions,
the resulting “impulse" and “momentum" forms are

M𝑖 =
d

d𝑡

∫︁
𝑉 (𝑡)

𝑥2

2
𝜔 d𝑉 − d

d𝑡

∮︁
𝑆𝑏(𝑡)

𝑥2

2
n̂ ∧ u d𝑆 +

∮︁
𝑆(𝑡)

𝜆(n̂) d𝑆 , (5.15)

M𝑚 = − d

d𝑡

∫︁
𝑉 (𝑡)

x ∧ ud𝑉 +
d

d𝑡

∮︁
𝑆(𝑡)

𝑥2

2
n̂ ∧ ud𝑆 +

∮︁
𝑆(𝑡)

𝜆(n̂) d𝑆 . (5.16)

The quantity 𝜆(n̂) is again introduced to collect miscellaneous surface terms, and can be written as
the action of a two-tensor 𝜆 = Λn̂ if necessary (though it is not convenient to do so here):

𝜆(n̂) = x ∧ 1

2
𝑢2n̂− 𝑥2

2
n̂ ∧ (u ∧ 𝜔) − 𝑥2

2
n̂ ∧ (∇ ·T) −

(︂
1

2
𝑥2𝜔

)︂
(u𝑠 · n̂)

+ x ∧ (T · n̂) − (x ∧ u)(u · n̂).

(5.17)

It would be convenient to develop a third expression that did not involve any integrals over the
computational domain. For force calculations, the identity u = ∇ · (ux) allows an easy transition
between the flux and momentum forms, but a similar identity for x ∧ u is difficult to find. Never-
theless, the momentum formulation given above does not depend on the kinematics of the immersed
body, making it a convenient choice for moving bodies.

All of the global force formulas considered here involve integration over the computational do-
main, its outer boundary, or the boundary of an immersed obstacle. Integrals over a regular outer
boundary are performed using a simple composite trapezoidal rule, while the other two are per-
formed using the methods discussed in Chapter 2. The domain integrals can be performed with or
without using a boundary condition on the immersed object; in this thesis, we always choose to use
a boundary condition, which is constructed either from u𝑏 or 𝜔𝑏.

5.5 Calculating Vorticity Flux

The boundary vorticity flux plays a vital role in several of the formulas given here, but is not
directly available from the Dirichlet boundary condition 𝜔𝑏. It turns out that calculating this flux
smoothly and accurately is exceptionally difficult, due to the formation of boundary layers near

51

no-slip boundaries. If the boundary layer thickness is a small distance 𝛿, we expect that the wall
vorticity scales as 𝑈∞/𝛿, so that the wall vorticity flux scales as 𝜈𝑈∞/𝛿

2. Resolving this sharp
gradient requires the use of a grid spacing ℎ that is several times smaller than 𝛿, which may be a
prohibitively fine discretization for high Reynolds number flow. This difficulty is a key motivation
for the use of control volume methods, which can give accurate results without directly probing the
boundary layer.

The computation of vorticity flux in three dimensions is considered by Gillis in [10]. In two
dimensions, the smoothest and most robust second-order method known to the author is somewhat
roundabout. Using the signed distance function 𝜑, we compute the value of ∇𝜑 ·∇𝜔 in the vicinity
of the boundary, which represents a smooth extension of (n̂ ·∇)𝜔 into the domain. This is done with
second-order centered finite difference stencils. For affected points, we must correct this operation
using third-order jump corrections that incorporate the Dirichlet boundary condition 𝜔𝑏. This flux
field is then extrapolated to the immersed boundary, using a two-dimensional linear least squares
fit at every control point (Figure 5-1). This procedure combines noisy wall information with values
computed using regular stencils away from the boundary, and the two-dimensional nature of the
final extrapolation improves somewhat the smoothness of the resulting boundary flux distribution.
A simple alternative is to compute the wall gradient ∇𝜔(𝑥𝑐) directly, using the same finite difference

Figure 5-1: Stencils for computing wall vorticity flux. The field 𝜕𝑛𝜔 is computed with a regular
stencil (red) in the domain, and then interpolated to the wall using a four-point linear least-square
fit (blue).

stencils as the Dirichlet vorticity boundary condition described in Chapter 4. This formulation
relies entirely on second-order polynomials for the construction of interpolation and differencing
stencils, which helps avoid the oscillatory behavior commonly observed in higher order polynomial
interpolation. It also manages to incorporate a large two-dimensional patch of points near the
boundary, even though the benefits of a true two-dimensional fitting operation are lost. Figure 5-2
shows side-by side the flux-distributions resulting from the each discretization discussed here, to
illustrate the slight gains in smoothness form least-squares fitting. Though the vorticity flux itself
may be quite noisy, the pressure force formulas given here involve only integrals of the flux. Thus we
are able to construct a much smoother pressure distribution on the surface of an immersed obstacle,
despite our inability to calculate a smooth flux. This capability will be demonstrated in the next
chapter, where we consider an immersed interface discretization of the full Navier-Stokes equations.

52

(a) Wall Derivatives. (b) Least Squares.

Figure 5-2: Sample vorticity flux distributions computed using the two methods proposed here. The
flow problem considered is flow past a cylinder (Chapter 6), and the angular coordinate 𝜃 is defined
to be zero at the forward stagnation point.

53

54

Chapter 6

Numerical Results: Navier Stokes
with Stationary Boundaries

The material covered in the previous four chapters is enough to successfully discretize the Navier
Stokes equations on a stationary domain using the Immersed Interface Method. Other successful
IIM discretizations of the Navier-Stokes equations in vorticity-velocity formulation have already
been presented by Linnick and Fasel [14], Marichal [15], and Gillis [10]. Our purpose here is not to
re-invent the wheel; the method we present is only a slight modification of [10]. The goal of this
chapter is simply to describe the full discretization, and demonstrate that it achieves the expected
convergence properties and accurately predicts local and global loads. With this foundation in place,
we will be well prepared to extend the discretization to flow problems with moving boundaries.

6.1 An IIM Navier Stokes Solver

In vorticity velocity formulation, the two-dimensional incompressible Navier Stokes equations are

𝜕𝜔

𝜕𝑡
= −u ·∇𝜔 + 𝜈∇2𝜔

∇2𝜓 = −𝜔
u = ∇∧ 𝜓.

The first of these represents the transport of vorticity, while the last two are a convenient represen-
tation of the incompressibility constraint ∇ · u = 0 and the vorticity definition 𝜔 = ∇ ∧ u. For a
single obstacle immersed in an unbounded fluid domain, we supplement these equations with the
boundary conditions

u = u𝑏 on 𝜕Ω,

lim
|𝑥|→∞

u = u∞.

These are the no-slip condition imposed on the boundary of the object, and the condition that
the free-stream flow is undisturbed infinitely far away from the obstacle. Given an initial vorticity
distribution 𝜔0, these equations provide sufficient information to determine the vorticity field 𝜔(x, 𝑡)
at any future time.

Numerically, we reformulate the continuous problem as a large nonlinear system of ODEs of the
form

d𝜔

d𝑡
= 𝑓(𝜔, 𝑡),

where 𝜔 represents a vector containing the value of the vorticity field at every grid point in the
computational domain. We begin by computing the signed distance function for our immersed

55

obstacle, and identifying the control points 𝒞 using the algorithm described in section 2.4.1. Then,
given a discrete vorticity field 𝜔, we can calculate d𝜔/d𝑡 with the following steps:

1. Poisson Equation. Solve the reconstruction problem ∇2𝜓 = −𝜔 using the immersed inter-
face method described in Chapter 4. This explicitly enforces the no-through-flow boundary
condition. For an unbounded domain, we use Kelvin’s theorem to set the circulation constraint.

2. Velocity Reconstruction. Compute u = ∇∧𝜓 at each grid point, using the immersed inter-
face method described in Chapter 4. This explicitly enforces the incompressibility constraint.

3. Boundary Condition. Calculate the boundary vorticity 𝜔(x𝑐) = ∇∧ u(𝑥𝑐) for each control
point 𝑥𝑐 ∈ 𝒞, using the local boundary condition described in Chapter 4. This dynamically
enforces the no-slip boundary condition.

4. Force Calculation. With the velocity and vorticity available at all grid points and control
points, we can calculate any of the integrals necessary to measure lift and drag or to calculate
local traction forces. These integral formulations and their discretization are discussed in
Chapter 5.

5. Vorticity Transport. Calculate the time derivative of 𝜔, using the vorticity transport equa-
tion

𝜕𝜔

𝜕𝑡
= −u ·∇𝜔 + 𝜈∇2𝜔

𝜔 = 𝜔𝑏 on 𝜕Ω.

Here we use the discretization of the advection-diffusion equation presented in Chapter 3, and
the boundary vorticity distribution calculated in step three.

Having developed a method to compute the field d𝜔/d𝑡 from a given 𝜔, we provide our solver with
an initial condition 𝜔0, and integrate the resulting initial value problem using an explicit 𝑛-th order
Runge-Kutta scheme with time step 𝜏 . All of the immersed interface operations are performed
with at least second-order spatial accuracy, so we expect that the error in our numerical solution
scales as 𝒪

(︀
ℎ2
)︀

+ 𝒪(𝜏𝑛). The computational cost of each step is asymptotically dominated by the
reconstruction problem, which is nonlocal and requires 𝒪(𝑁 log𝑁) operations for 𝑁 grid points.
All other procedures are local and require 𝒪(𝑁) or 𝒪(𝑁𝑐) operations, where 𝑁𝑐 is the total number
of control points.

The main stability criteria for this method are the Courant number and Fourier number con-
straints associated with our explicit treatment of the transport problem. For high Reynolds number
flows, the Fourier number constraint is usually negligible, and the time-step is entirely determined
by the CFL constraint

𝜏 <
ℎ𝐶max

𝑢max
,

where 𝐶max is a fixed, pre-determined critical Courant number and 𝑢max = max(|𝑢𝑥| + |𝑢𝑦|) is the
maximum of the sum of the velocity components over the computational domain. For unsteady
flows 𝑢max changes with time, and we must recompute the value of 𝜏 at each time step.

6.2 Problem Setup: Impulsively Started Cylinder

A classic test case in two-dimensional incompressible flow is the impulsively started cylinder. Con-
sider a cylinder of diameter 𝐷 and center x𝑐 = (𝑥𝑐, 𝑦𝑐) immersed in a quiescent, unbounded fluid
with kinematic viscosity 𝜈. At time 𝑡 = 0, the cylinder begins translating with constant velocity,
which produces a free-stream velocity of u∞ = (𝑢∞,𝑥, 𝑢∞,𝑦) in a reference frame attached to the
cylinder (Figure 6-1). We non-dimensionalize the problem by defining a non-dimensional position
x* = x/𝐷, time 𝑡* = 𝑈𝑡/𝐷, and velocity u* = u/𝑢∞, leading to a non-dimensional vorticity

56

Figure 6-1: Parameters and computational domain for the impulsively started cylinder problem.

𝜔* = 𝜔𝐷/𝑢∞. Making a change of variables in the vorticity transport equation, we find that the
dynamics of the problem depend only on the Reynolds number Re = 𝑢∞𝐷/𝜈.

For the Reynolds numbers considered here, all of the solutions to this flow problem follow the
same qualitative sequence. A thin boundary layer forms immediately after the impulsive start,
and then separates from the cylinder, leaving a symmetrical re-circulation region downstream. As
𝑡* increases, the symmetry of the flow is broken by small numerical perturbations, leading to the
commonly observed vortex-shedding behavior associated with this problem. In this thesis we focus
on the formation of the boundary layer and the initial symmetrical flow.

6.2.1 Handling Impulsive Starts

Impulsive starts lead to extremely large vorticity and vorticity flux values on the object boundary.
To control the nearly-singular solution that develops at small but finite 𝑡, we begin the simulation
with a ramped time stepping procedure, in which the time step begins several orders of magnitude
below its maximal stable value and slowly increases to normal levels. Explicitly, given a number of
“safe" steps 𝑛𝑠, the time step for step 𝑛 < 𝑛𝑠 is

𝜏 =
ℎ𝐶max

𝑢max
× 10−5(1−𝑛/𝑛𝑠). (6.1)

To further increase stability, we split the advection and diffusion steps of the transport equation
during the first 𝑛𝑠 steps, and break the diffusion step into 𝑛split sub-steps. This is done improve the
smoothness of the solution at early times, at the cost of reducing the method’s temporal accuracy
to 𝒪(𝜏) near the initial singularity. For all of the impulsive starts shown in this thesis, 𝑛𝑠 ∼ 𝒪(100)
and 𝑛split = 5.

6.2.2 Re = 550: Temporal Convergence

Because this problem has been discretized using the method of lines, any explicit 𝑛-th order Runge-
Kutta scheme should achieve 𝒪(𝜏𝑛) temporal accuracy without any complications. To confirm this
behavior, we select a fixed spatial resolution, and measure the variation of the numerical solution
with respect to the time step 𝜏 . To do so, the spatially discretized system is integrated using a very
small time step 𝜏ref , to approximate the exact trajectory of the spatially discrete system. As 𝜏 is
increased, the resulting numerical solutions should deviate from this reference solution by 𝒪(𝜏𝑛),

57

where 𝑛 = 2 or 𝑛 = 3 for the Runge-Kutta schemes considered here.
For a symmetrical flow, we expect no lift force and no aerodynamic moment acting on the

cylinder, so that the drag force 𝐹𝐷 is the only relevant load. Since we are working in a regime for
which the vorticity field remains within the computational domain, we can measure the total vortical
impulse of the flow

I(𝑡) =

∫︁
𝑉

x ∧ 𝜔(𝑡) d𝑉 ,

and extract the drag force from its time derivative

F𝐷 =
d

d𝑡
I(𝑡).

To avoid issues associated with the impulsive start, we begin our convergence test at a finite time
𝑡*0. To do so, we integrate the solution from time 0 to time 𝑡*0 using the ramped time-stepping given
in (6.1), and use this result as an initial condition for another integration beginning at 𝑡*0.

For this convergence test and the tests that follow, we choose a Reynolds number of Re𝐷 = 550,
for which there is an abundance of data available from previous numerical publications. The physical
parameters used here are

𝑥𝑐 = 0.291, 𝑢∞,𝑥 = 0.9000, 𝐷 = 0.4,
𝑦𝑐 = 0.457, 𝑢∞,𝑦 = 0.4359, 𝜈 = 7.273 × 10−4,

and a grid spacing of ℎ = 1/256. We choose to integrate from 0 to 𝑡*0 = 0.1 with Courant number
𝐶max = 0.4 and initial ramping parameter 𝑛𝑠 = 150. From 𝑡*0 = 0.1 to final time 𝑡*𝑓 = 0.5, we choose
time steps covering the range 𝐶max ∼ [0.03, 0.25]. To quantify the error in the solution, we use the
non-dimensional error norms

𝜖2 =
1

𝐷2𝑈∞

√︃
1

𝑡𝑓 − 𝑡0

∑︁
𝑘

[𝐼(𝑡𝑘) − 𝐼𝑟𝑒𝑓 (𝑡𝑘)]
2
𝜏

𝜖∞ =
1

𝐷2𝑈∞
max

𝑘
|𝐼(𝑡𝑘) − 𝐼𝑟𝑒𝑓 (𝑡𝑘)|,

(6.2)

where 𝐼(𝑡𝑘) and is the magnitude of the vortical impulse at time step 𝑡𝑘. As shown in Figure 6-2, the
discretization achieves the expected order of temporal accuracy for both RK2 and RK3 integration.

6.2.3 Re = 550: Spatial Convergence of Global Loads
The leading truncation error in the Navier-Stokes discretization developed here is 𝒪(𝜏𝑛) + 𝒪

(︀
ℎ2
)︀
,

where 𝑛 = 2 or 𝑛 = 3 depending on the chosen Runge-Kutta integrator. For the impulsively
started cylinder at the resolutions shown here, the dominant stability criteria is a CFL condition,
which dictates that 𝜏 ∼ 𝒪(ℎ) as ℎ is decreased to maintain stability. Thus, if we fix a constant
CFL and decrease the grid spacing ℎ, we expect the solver to converge to an exact solution at
𝒪
(︀
ℎ2
)︀

+ 𝒪
(︀
𝐶3ℎ3

)︀
→ 𝒪

(︀
ℎ2
)︀
.

Following Gillis [10], we measure the quality of our spatial discretization by an estimate of the
number of grid points contained within the characteristic boundary layer thickness,

𝑁𝛿 =
1√

Re𝐷

(︂
𝐷

ℎ

)︂
.

For low 𝑁𝛿, the boundary layer is poorly resolved, which can trigger instability and adversely affect
the accuracy of force computations. Based on the results in [10], 𝑁𝛿 ∼ 8 represents a well-resolved
flow-field, and is usually sufficient for obtaining accurate global loading data.

To quantify the error in numerical solutions to the impulsive cylinder problem, we simulate the
problem at the finest possible spatial resolution, and use this solution as a reference for computing
the numerical error at coarser resolutions. As in the previous section, we simulate the impulsively
started cylinder at Re = 550, with parameters

58

(a) RK2 Integration (b) RK3 Integration

Figure 6-2: Temporal convergence for the impulsively started cylinder (reference solution uses 𝜏ref =
1.25 × 10−5). The 𝐿2 and 𝐿∞ error norms in the drag coefficient converge with 𝒪

(︀
𝜏2
)︀

for RK2
integration. For RK3 integration, the convergence is 𝒪

(︀
𝜏3
)︀

up until the temporal error and round-
off error become comparable.

𝑥𝑐 = 0.201, 𝑢∞,𝑥 = 0.70711, 𝐷 = 0.3,
𝑦𝑐 = 0.203, 𝑢∞,𝑦 = 0.70711, 𝜈 = 5.455 × 10−4,

and the sequence of resolutions ℎ = 1/256, 1/512, 1/1024, and 1/2048, giving quality criteria of
𝑁𝛿 = 3.27, 6.55, 13.1, and 26.2 respectively. The quantity of interest for these simulations is the
drag coefficient

𝐶𝐷(𝑡*) =
F(𝑡*) · û∞

1
2𝑢

2
∞

, (6.3)

where û∞ is a unit vector in the free-stream direction. Using asymptotic methods, Bar-Lev and
Yang [2] provide the analytic estimate

𝐶𝐷 = 4

√︂
𝜋

𝑡*Re𝐷
+ 2𝜋

(︂
9 − 15√

𝜋

)︂
1

Re𝐷

which is valid for small 𝑡*. Numerically, the drag coefficient is computed using the Noca’s “flux
4" control volume method described in Chapter 5, and the resulting drag forces are plotted in
Figure 6-3a. The well-resolved (𝑁𝛿 > 8) results agree well with the short-time analytical solution,
as well as with reference data provided by Gillis (G) [10], Marichal (M) [15], and Koumoutsakos
and Leonard (K and L) [11]. Using the ℎ = 2048 data as a reference solution, we also plot the
error 𝐶𝐷(𝑡*)−𝐶𝐷,ref(𝑡

*) in Figure 6-3b. These error plots show that the drag curve converges with
increasing resolution, and that the time over which the impulsive start affects the accuracy of the
solution decreases steadily as the grid is refined.

To quantify the spatial convergence rate of the error, we define the error norms

𝜖2 =

√︃
1

𝑡*𝑓 − 𝑡*0

∑︁
𝑘

(𝐶𝐷(𝑡*𝑘) − 𝐶𝐷,ref(𝑡*𝑘))2𝜏 ,

𝜖∞ = max
𝑘

|𝐶𝐷(𝑡*𝑘) − 𝐶𝐷,ref(𝑡
*
𝑘)|,

(6.4)

and choose the comparison interval 𝑡* ∈ [0.5, 2.5]. Figure 6-3c plots the variation of the 𝐿2 and 𝐿∞
error norms with ℎ, indicating second order convergence for ℎ = 256, 512 and better than second
order convergence for ℎ = 512, 1024.

Because resolution of our reference solution is only twice the next resolution in the sequence,

59

the convergence rates estimated in Figure 6-3c may be artificially high. To get another estimate
of the spatial convergence rate, we can compare any three consecutive resolutions ℎ0, ℎ1 = 𝑎ℎ0,
and ℎ2 = 𝑎2ℎ0, where 𝑎 < 1 is a known refinement factor. Assuming that we have some numerical
approximation of the form 𝑓(ℎ) = 𝐴+ 𝜖ℎ𝑛,

𝑓(ℎ0) − 𝑓(ℎ1)

𝑓(ℎ1) − 𝑓(ℎ2)
=

ℎ𝑛 − 𝑎𝑛ℎ𝑛

𝑎𝑛ℎ𝑛 − 𝑎2𝑛ℎ𝑛
= 𝑎−𝑛,

giving the estimate

𝑛 = − log𝑎

(︂
𝑓(ℎ0) − 𝑓(ℎ1)

𝑓(ℎ1) − 𝑓(ℎ2)

)︂
. (6.5)

Replacing 𝑓 with 𝐶𝐷(𝑡*) in (6.5) provides a method for calculating the rate of convergence of 𝐶𝑑

at a specific 𝑡*. Figure 6-3d show these instantaneous convergence rates for all 𝑡* ∈ [0, 1.5]. Away
from the singularity associated with an impulsive start, the instantaneous convergence rate varies
between second- and third-order spatial accuracy, which is consistent with the convergence results
shown in Figure 6-3c.

(a) Drag Forces. (b) Error in Drag Forces.

(c) 𝐿2 and 𝐿∞ convergence. (d) Instantaneous convergence.

Figure 6-3: Caption me.

6.2.4 Re = 550: Local Loads

To test the computation of local traction forces, we examine a cylinder at Re = 550 with parameters

60

𝑥𝑐 = 0.201, 𝑢∞,𝑥 = 0.7071, 𝐷 = 0.2,
𝑦𝑐 = 0.203, 𝑢∞,𝑦 = 0.7071, 𝜈 = 3.636 × 10−4,

on a grid with resolution ℎ = 1/1024, giving a quality criterion of 𝑁𝛿 = 8.73. The boundary of the
cylinder is parametrized by an angle 𝜃, so that 𝜃 = 0 lies on the front stagnation point and 𝜃 = 𝜋
lies on the rear stagnation point.

The local vorticity field is shown in Figure 6-4; the resulting shear stress distribution is directly
proportional to this distribution. The results agree well with data from IIM solvers developed by
Gillis (G) [10] and Marichal (M) [15] for 𝑡* = 1 and 𝑡* = 3, as well reference data from Koumoutsakos
and Leonard (KL) [11] for 𝑡* = 1.0. The relative pressure coefficient 𝐶𝑝(𝜃) = 2[𝑝(𝜃) − 𝑝(0)]/𝑢2∞ is
calculated by integrating the vorticity flux as described in Chapter 5, and the constant of integration
is fixed so that 𝐶𝑝(0) = 0. The resulting pressure distribution is in good agreement with the results of
Lee, Lee, and Suh (L) [13] and Verma et al.(V) [24], both of whom use a vorticity-based penalization
method.

(a) Vorticity Distribution (b) Pressure Distribution

Figure 6-4: Local loading for the impulsively started cylinder at Re = 550.

6.2.5 Higher Reynolds Number (Re = 3000)

To demonstrate stability at moderate Re, we examine the impulsively started cylinder at Re = 3000
with parameters

𝑥𝑐 = 0.301, 𝑢∞,𝑥 = 0.7071, 𝐷 = 0.4,
𝑦𝑐 = 0.303, 𝑢∞,𝑦 = 0.7071, 𝜈 = 1.333 × 10−4,k

on a grid with resolution ℎ = 1/1024, giving a quality criterion of 𝑁𝛿 = 7.48. Figure 6-5 shows
that the resulting drag forces for 𝑡* ∈ and local tractions for 𝑡* = 1.0 are in good agreement with
reference data provided by body-fitted grid-based methods from Anderson and Reider (AR) [1], Wu
et al. (W) [27], and Qian and Vezza (Q) [17], as well as with vortex methods by Koumoutsakos and
Leonard (K and L) and Gillis (G) [10].

6.3 Impulsively Rotated Cylinder

The short-time behavior of an impulsively started cylinder is an interesting test case for drag com-
putation, but does not produce any non-trivial moment acting on the cylinder. To test our control-
volume formulation for global moments, we examine a cylinder of radius 𝑅 which begins rotating

61

(a) Vorticity Field (𝑡* = 2.05)

(b) Drag Coefficient

(c) Vorticity Distribution (𝑡* = 1.0) (d) Pressure Distribution (𝑡* = 1.0)

Figure 6-5: Results for the impulsively started cylinder at Re = 3000.

with angular velocity Ω at time 𝑡 = 0. If we assume that the resulting flow is axisymmetric, then
we can derive an analytical expression for wall vorticity (Appendix C),

𝜔*
𝑤(𝑡) =

𝜔𝑤(𝑡)

Ω
= − 2

𝜋

∫︁ ∞

0

ℜ
{︂
𝐾0(𝑖𝑥)

𝐾1(𝑖𝑥)

}︂
𝑒−𝑥2𝑡 d𝑥 . (6.6)

where 𝐾0 and 𝐾1 represent modified Bessel functions of the second kind. Although this value cannot
be written in closed form, the integrand in (6.6) decays exponentially, so that the improper integral
can be evaluated numerically with good accuracy. The total moment acting on the cylinder can be
calculated by integrating the resulting shear stress distribution, giving

𝑀* =
𝑀

2𝜋𝑅2𝜈Ω
= 𝜔*

𝑤 − 2. (6.7)

We can define a Reynolds number

ReΩ =
𝑅2Ω

𝜈

62

based on the velocity of the cylinder’s surface. Although the analytical solution is independent of
ReΩ, it’s possible that small numerical perturbations could trigger an instability at high ReΩ, leading
to a chaotic, non-axisymmetric solution. To avoid this possibility, we simulate the impulsively
rotating cylinder at ReΩ = 1. Choosing parameters

𝑥𝑐 = 0.501, 𝑎 = 0.2, 𝜈 = 0.04,
𝑦𝑐 = 0.503, Ω = 1.0, ℎ = 1/256,

and a Fourier number constraint 𝑟 = 0.2, we integrate from 𝑡* = 0 to 𝑡* = 0.07 using RK3 integration
and the ramped time stepping scheme (6.1). The result moment 𝑀*(𝑡*) for is shown in Figure 6-6,
and is hardly distinguishable from the analytical solution for 𝑡* > 0.003.

Figure 6-6: Numerical and analytic solutions for the moment acting on an impulsively rotated
cylinder. In (a), the exact and numerical solutions are visibly indistinguishable. (b) focuses on the
early-time behavior of the simulation, which shows excellent agreement with the analytical solution
as early as 𝑡* = 0.003.

63

64

Chapter 7

IIM with Moving Boundaries

The immersed interface method provides a convenient way to discretize PDEs on a stationary irregu-
lar domain without investing computational resources in mesh generation. However, for a stationary
domain, the cost of mesh-generation may be negligible compared to the cost of time-marching. The
real value of the IIM is its ability to handle problems with moving boundaries, which would oth-
erwise require a significant investment in re-meshing the moving geometry. The use of an IIM for
flow problems with moving boundaries is not original; Brehm and Fasel have demonstrated one
such method in [6]. The novelty of our approach is that it is not tied any specific time integration
scheme, or even a specific PDE. In fact, we will demonstrate that the techniques in this chapter
are compatible with arbitrarily high-order explicit Runge-Kutta methods, and do not rely on any
physical phenomena unique to flow problems.

In this chapter we apply the IIM spatial discretization tools developed in Chapters 2 and 3 to
transport problems involving moving boundaries. The presentation is as follows: we begin first-order
integration, focusing on the spatial discretization, geometry processing, and stability considerations.
We then move to techniques that allow for higher order time integration, and present an error
analysis that reveals a non-trivial coupling between spatial and temporal error. We close with
numerical results that experimentally verify this error analysis, and demonstrate the utility of these
schemes for transport problems. While the examples in this chapter involve moving rigid bodies,
the methods described here apply equally well to arbitrarily deforming bodies.

7.1 First-Order Time Integration

Consider a single time step in the two-dimensional IIM diffusion solver described in Chapter 2, now
taking place on a moving domain Ω(𝑡) and integrated with explicit Euler time stepping. For clarity,
let 𝒲(𝑡) be the set of grid points that lie in the problem domain at time 𝑡, so that 𝑥𝑖,𝑗 ∈ 𝒲(𝑡) ⊂ 𝒢
if and only if 𝑥𝑖,𝑗 ∈ Ω(𝑡) ⊂ R2. We begin at time 𝑡0 with an initial value 𝑓𝑖,𝑗(𝑡0) for every point
in 𝒲(𝑡0), and for each x𝑘,𝑙 not in 𝒲(𝑡0) we assume that 𝑓𝑘,𝑙 = 0. Using the immersed interface
method, we approximate 𝑓 ′𝑖,𝑗(𝑡0) for each 𝑥𝑖,𝑗 ∈ 𝒲(𝑡0), and then advance each point in time via
forward Euler time integration:

𝑓𝑖,𝑗(𝑡0 + 𝜏) = 𝑓𝑖,𝑗(𝑡0) + 𝜏𝑓 ′𝑖,𝑗(𝑡0) for all x𝑖,𝑗 ∈ Ω(𝑡0).

Thus we arrive at time 𝑡1 = 𝑡0 + 𝜏 , and immediately encounter an issue (Figure 7-1): because our
domain has moved, 𝒲(𝑡0) ̸= 𝒲(𝑡1), and we have no nonzero value 𝑓𝑖,𝑗(𝑡1) for any point 𝑥𝑖,𝑗 in
𝒲(𝑡1) ∖ 𝒲(𝑡0). To have any hope of proceeding, we must provide a value for each point x𝑖,𝑗 ∈
Ω(𝑡1) ∖ Ω(𝑡0).

To do so, we begin with a key assumption: that any point which enters the domain at time 𝑡1
has a neighbor lying inside of the domain at time 𝑡0. More precisely, we require that

𝒲(𝑡1) ∖𝒲(𝑡0) ⊆ 𝒜−(𝑡0). (7.1)

65

Figure 7-1: A moving obstacle uncovers points that were previously set to zero (shown in red).

This restriction places a CFL-like condition on the maximum time step used in the discretization,
which is explored in section 7.1.1. Assuming that (7.1) holds, we can quickly come up with at least
three ways of filling these new points using the immersed interface method:

1. One simple solution begins by updating every point in 𝒲(𝑡0) from 𝑡0 to 𝑡1 using forward Euler,
without moving the domain. We then use an IIM field extension without boundary condition
(section 2.3.2) to fill 𝒜−(𝑡0) with jump corrections appropriate for time 𝑡1. Finally, we update
the domain, and discard any values not contained in 𝒲(𝑡1). Because no boundary condition
is used in the extrapolation, there is no splitting error introduced when we delay moving the
domain; the IIM machinery from time 𝑡0 is simply a convenient tool used to identify 𝒜−(𝑡).

2. To improve the accuracy of our extrapolation and the stability of the resulting numerical
scheme, we can use an extrapolation that incorporates a given boundary condition. To do so,
we begin by updating our field from 𝑡0 to 𝑡1, and marking every point in 𝒜−(𝑡0) with a flag
value (such as NaN). We then move our domain and calculate the new control points 𝒞(𝑡1).
Looping over every point x𝑐 ∈ 𝒞(𝑡1), we search for points 𝐴+(x𝑐) that are marked with a
flag value. Once found, these points are given new value using a polynomial interpolation in
the local 𝜉 direction that incorporates the boundary condition, as shown in Figure 7-2. Some
points will have multiple candidate values; we choose to average these candidates, as we do for
standard IIM field extensions.

3. If our boundary condition depends on the solution at time 𝑡1 (like the vorticity BC described in
Chapter 4), then a BC for time 𝑡1 is not available until we have filled in the newly uncovered
points, and procedure two breaks down. Knowing that we can have a BC at time 𝑡0, we
begin our time integration by filling 𝒜−(𝑡0) using an IIM field extension constructed from this
BC. We then calculate 𝑓 ′𝑖,𝑗(𝑡0) at every point in 𝒲(𝑡0), and extend the field 𝑓 ′𝑖,𝑗 to 𝒜−(𝑡0)
using an IIM field extension without boundary condition. Finally, we update every point in
𝒲(𝑡0) ∪ 𝒜−(𝑡0) using a forward Euler step, and zero any points that lie outside of 𝒲(𝑡1).

In this thesis we focus exclusively on procedure three, which can handle the boundary conditions used
in our IIM Navier Stokes solver (Chapter 6). The method is entirely characterized by the order of the
extrapolations used for the field and its derivative; for convenience, we’ll refer to an 𝑁 -th order field
extrapolation with boundary condition and 𝑀 -th order derivative extrapolation without boundary
condition as an (𝑁, 𝑀) extrapolation procedure. Before tackling higher order time integration,
we will take some time explore the consequences of assumption (7.1), and demonstrate that our
extrapolation procedure does not degrade the spatial accuracy of the finite difference schemes that
it is intended to integrate.

66

Figure 7-2: One-dimensional stencil proposed in procedure two, used to fill in the values of points
that have just entered the computational domain.

7.1.1 Restrictions on Time Stepping

In section 7.1, it was mentioned that assumption (7.1) holds under a type of CFL restriction; here
expand on this idea. Assumption (7.1) states that any point which enters the domain will have a
neighbor in the domain during the step prior to its entry. Let x𝑖,𝑗 be a grid point lying inside of
a convex domain Ω. If all of the neighbors of x𝑖,𝑗 are contained within Ω, then by convexity the
diamond of side length

√
2ℎ surrounding x𝑖,𝑗 is fully contained within Ω. This implies that x𝑖,𝑗 can

be no closer than ℎ/
√

2 to the boundary of Ω, and if no point on the boundary travels a distance
greater than ℎ/

√
2 during a single time step, x𝑖,𝑗 cannot enter the domain during that time step.

Thus if we can find a parametrization of the boundary X(𝑠, 𝑡) that obeys

max
𝑠

∫︁ 𝑡1

𝑡0

⃒⃒⃒⃒
d

d𝑡
X(𝑠, 𝑡)

⃒⃒⃒⃒
d𝑡 <

ℎ√
2
, (7.2)

then (7.1) will be satisfied. For problems where the domain boundary is composed of well-defined
material points, we can simplify this condition considerably. Let 𝑢(𝑠, 𝑡) be the velocity of a material
point 𝑠 on 𝜕Ω, and define the velocity bound 𝑢max(𝑡0, 𝑡1) by

𝑢max(𝑡0, 𝑡1) = max
𝑡∈[𝑡0,𝑡1]

max
𝑠∈𝜕Ω

|u(𝑠, 𝑡)|. (7.3)

Our general condition (7.2) is guaranteed to hold if we enforce the boundary CFL condition

CFLΩ =
𝑢max𝜏

ℎ
<

1√
2
. (7.4)

If the region Ω is not convex, this line of reasoning quickly breaks down. However, if the boundary
of Ω is “well-resolved", in a way made precise by the boundary curvature, then a similar guarantee
can still be obtained. Let 𝛾(𝑠) be an arc-length parametrization of 𝜕Ω, and let n̂ be the outward
facing normal to Ω on the boundary. Define the signed curvature 𝜅(𝑠) to be

𝜅(𝑠) = −d𝛾

d𝑠
· n̂(𝑠),

For a convex obstacle, this quantity is always positive; otherwise 𝜅(𝑠) can be either positive or
negative. For objects represented by a signed distance function, 𝜅 = ∇2𝜑, and can be calculated
inexpensively using the algorithm described in section 2.4.1.

If |𝜅(𝑠)ℎ| ≪ 1, then the radius of curvature of the boundary is much larger than the grid spacing,
and the boundary can be locally approximated by a circular arc. Figure 7-3 illustrates the basic

67

Figure 7-3: (Left) the convexity argument used to construct (7.4). (Center, Right) The geometry
used to construct (7.5); the length of 𝑏 can be calculated separately in both figures, and by equating
the two we relate 𝑐 to 𝑅 and ℎ.

geometry which determines how close the curve 𝛾(𝑠) can approach x𝑖,𝑗 . The final result is

CFLΩ <
1√
2

+
1

𝑧
−
√︂

1

𝑧2
− 1

2
, where 𝑧 = ℎ𝜅min. (7.5)

For small 𝑧, this expression is more practically represented by the Taylor series

CFLΩ <
1√
2

+
𝑧

4
+
𝑧3

32
+ 𝒪

(︀
𝑧5
)︀
, (7.6)

which indicates that for a well-resolved non-convex boundary, the maximum allowable CFLΩ does
not deviate far from 1/

√
2.

7.1.2 Numerical Results
The procedures developed above for handling moving boundaries are only useful if they do not affect
the stability and convergence properties of the transport schemes developed in Chapter 3. To verify
this, we return to the model IBVP for the advection diffusion equation advection-diffusion equation
used extensively in Chapter 3. The problem treated here is identical, except that the circular region
removed from the domain now translates at at speed u𝑏 = (𝑢𝑏,𝑥, 𝑢𝑏,𝑦). The spatial location of
this region can specified by its initial center point x𝑐 = (𝑥𝑐,0, 𝑦𝑐,0), and the error norms defined
in Chapter 3 will be reused in this section without alteration. We select a pure diffusion problem,
which is stable when integrated with forward Euler integration, and choose geometry parameters

𝑥𝑐,0 = 0.313, 𝑢𝑏,𝑥 = 1.5, 𝑟 = 0.123,
𝑦𝑐,0 = 0.337, 𝑢𝑏,𝑦 = 0.75,

and scalar distribution parameters

𝑥𝑔 = 0.4, 𝜎 = 0.6, 𝜈 = 0.01,
𝑦𝑔 = 0.4, 𝜔 = 1.0.

The resulting immersed interface discretization is integrated numerically to 𝑡 = 0.1 with a small time
step (𝑡 = 10−5). Figures 7-4a and 7-4b show the resulting spatial convergence behavior for a (2, 2)
extrapolation and a (3, 2) extrapolation, respectively. The (2, 2) extrapolation does not achieve
second order convergence in the 𝐿∞ norm, indicating that a (3, 2) extrapolation is the minimum

68

order necessary to avoiding disrupting the convergence of the second-order finite difference scheme.
This result is somewhat surprising, since fourth order jump corrections are required in a second-
order evaluation of the diffusion term. Although it would be interesting to explore this mismatch in
accuracy requirements, we do not do so here, and will continue to rely on numerical experiments to
determine the necessary order of extensions.

(a) (2, 2) Extension. (b) (3, 2) Extension.

Figure 7-4: Spatial convergence of the diffusion equation with a moving domain and first-order time
integration.

7.2 Higher Order Integration Methods

7.2.1 Explicit Higher Order Runge-Kutta Methods

If a Runge-Kutta type scheme is used, then additional extrapolation is necessary. In this thesis we
primarily consider RK2 schemes and a low-storage three-stage RK3 scheme published by Williamson
[26], which allow us to integrate the system 𝜕𝑡𝑢 = 𝑓(𝑢, 𝑡) while storing only the current 𝑢 value and
a single history field 𝑞. The 𝑛-th stage of Williamson’s three-stage method with time step 𝜏 is⎧⎪⎨⎪⎩

𝑞𝑛+1 = 𝜏𝑓(𝑢𝑛, 𝑡𝑛) + 𝑎𝑛𝑞𝑛,

𝑢𝑛+1 = 𝑢𝑛 + 𝑏𝑛𝑞𝑛+1,

𝑡𝑛+1 = 𝑡𝑛 + 𝑐𝑛𝜏,

(7.7)

where 𝑎𝑛, 𝑏𝑛, and 𝑐𝑛 are taken from

𝑎𝑘 =

{︂
0,−5

9
,−153

128

}︂
, 𝑏𝑘 =

{︂
1

3
,

15

16
,

8

15

}︂
, 𝑐𝑘 =

{︂
1

3
,

5

12
,

1

4

}︂
. (7.8)

We can write any two-stage RK2 scheme in the same way, using constants

𝑎𝑘 =
{︀

0, 2𝛼− 2𝛼2 − 1
}︀
, 𝑏𝑘 = {𝛼, 1/2𝛼}, 𝑐𝑘 = {𝛼, 1 − 𝛼}. (7.9)

Here 𝛼 is a free parameter, which does not affect the order of the method. We choose 𝛼 = 2/3,
which corresponds to Ralston’s method and minimizes truncation error; using 𝛼 = 1/2 gives the
midpoint method, while 𝛼 = 1 gives Heun’s method. If we allow for additional history fields, then

69

(7.7) can implement any Runge-Kutta method described by a Butcher tableau of the form

0
𝑐2 𝑎21
𝑐3 𝑎31 𝑎32
...
𝑐𝑛 𝑎𝑛1 𝑎𝑛,𝑛−1

𝑏1 𝑏𝑛−1 𝑏𝑛.

We demonstrate by systematically converting an arbitrary fourth order explicit scheme

𝑘1 = 𝜏𝑓(𝑢𝑛, 𝑡𝑛)

𝑘2 = 𝜏𝑓(𝑢𝑛 + 𝑎21𝑘1, 𝑡𝑛 + 𝑐2𝜏)

𝑘3 = 𝜏𝑓(𝑢𝑛 + 𝑎31𝑘1 + 𝑎32𝑘2, 𝑡𝑛 + 𝑐3𝜏)

𝑘4 = 𝜏𝑓(𝑢𝑛 + 𝑎41𝑘1 + 𝑎42𝑘2 + 𝑎43𝑘3, 𝑡𝑛 + 𝑐4𝜏)

𝑢𝑛+1 = 𝑢𝑛 + (𝑏1𝑘1 + 𝑏2𝑘2 + 𝑏3𝑘3 + 𝑏4𝑘4),

into a four step procedure⎧⎪⎨⎪⎩
𝑘1 = 𝜏𝑓(𝑡0, 𝑦0)

𝑢1 = 𝑢0 + 𝑎21𝑘1

𝑡1 = 𝑡0 + 𝑐2𝜏

⎧⎪⎨⎪⎩
𝑘3 = 𝜏𝑓(𝑡2, 𝑦2)

𝑢3 = 𝑢1 + (𝑎41 − 𝑎31)𝑘1 + (𝑎42 − 𝑎32)𝑘2 + 𝑎43𝑘3

𝑡3 = 𝑡1 + (𝑐4 − 𝑐3)𝜏⎧⎪⎨⎪⎩
𝑘2 = 𝜏𝑓(𝑡1, 𝑦1)

𝑢2 = 𝑢1 + (𝑎31 − 𝑎21)𝑘1 + 𝑎32𝑘2

𝑡2 = 𝑡1 + (𝑐3 − 𝑐2)𝜏

⎧⎪⎨⎪⎩
𝑘4 = 𝜏𝑓(𝑡3, 𝑦3)

𝑢4 = 𝑢1 + (𝑏1 − 𝑎41)𝑘1 + (𝑏2 − 𝑎42)𝑘2 + (𝑏3 − 𝑎43)𝑘3 + 𝑏4𝑘4

𝑡4 = 𝑡1 + (1 − 𝑐4)𝜏.

Since 𝑘4 is only used in the last stage, this method require the three history fields 𝑘1, 𝑘2, and 𝑘3.
The purpose of rephrasing our Runge-Kutta schemes in this format is to ensure that they are

automatically compatible with the extrapolation procedures we have already developed for forward
Euler. When a new point x𝑖,𝑗 enters the domain during stage 𝑛 of a high-order integration, it must
be provided with both a new value 𝑢𝑛𝑖,𝑗 and a new set of history fields. Define the boundary CFL
constraint for an 𝑁 step method beginning at 𝑡0 and ending at 𝑡𝑁 to be

CFLΩ =
𝑢max(𝑡0, 𝑡𝑁)𝜏

ℎ
<

1√
2

+
1

𝑧
−
√︂

1

𝑧2
− 1

2
. (7.10)

If our integrator takes the form of (7.7), then the extension procedure developed for forward Euler
integration will automatically provide a complete history for every point that enters the domain.

To see that this is true, note that any point x𝑖,𝑗 will have a complete history as long it receives an
evaluation 𝑓𝑖,𝑗(𝑢, 𝑡) at every stage of the integration. During each stage, every point with a neighbor
in the domain will receive an evaluation. For a point to enter the domain with an incomplete history,
it must have no neighbors in the domain during one stage, and then enter the domain during another.
Section 7.1.1 demonstrates that this cannot happen if the total time step 𝜏 is constrained by (7.10).

If we are willing to extend every history parameter at every time step, in addition to 𝑓𝑖,𝑗(𝑢, 𝑡) and
the field itself, then the CFLΩ restriction can be loosened slightly. If the 𝑛-th stage of a high-order
integrator advances a system from time 𝑡𝑛 to time 𝑡𝑛+1, then the condition

𝑢max(𝑡𝑛, 𝑡𝑛+1)(𝑡𝑛+1 − 𝑡𝑛)

ℎ
<

1√
2

+
1

𝑧
−
√︂

1

𝑧2
− 1

2

will ensure that only points in 𝒜−(𝑡𝑛) can enter the domain at time 𝑡𝑛+1. However, since the 𝐶𝐹𝐿Ω

constraint (7.10) is not significantly stricter than the stability restrictions imposed by the transport

70

scheme developed in Chapter 3, we choose to extend only the derivative 𝑓𝑖,𝑗(𝑢, 𝑡) and endure the
stricter stability requirement.

7.3 Coupling of Spatial and Temporal Error

In the method-of-lines IIM discretizations we have used so far, each grid point in the problem
domain becomes one unknown in a semi-discrete problem, represented by a large system of ODEs.
Grid points which lie outside of the problem domain are essentially inactive, and aside from offering
a location for storing jump corrections, they do not participate in the discretization.

For problems with moving domains, the picture is more complicated. If the motion is slight, so
that no grid points cross the domain boundary, then the set of intersections 𝒞 is constant, and we can
account for the motion through the time-dependent intersection distances 𝜓𝑐(𝑡) and the resulting
stencils 𝑠𝜉,𝑖(𝜓𝑐(𝑡)). If the motion is large enough to move grid points across the boundary, then the
problem changes fundamentally: every crossing alters the dimension of the system, so that the semi-
discrete problem can no longer be represented by a single continuous system of ODEs. In this section
we reconcile this issue by constructing a more complex semi-discrete problem, and then show that
the application of standard numerical integrators to this semi-discrete system introduces a mixed
error term of order 𝜏ℎ𝑁 for moving problems, where 𝑁 is the order of the spatial discretization.

Let ℒ be a spatial differential operator, and consider an IBVP 𝜕𝑡𝑢 = ℒ𝑢 on a moving domain
Ω(𝑡) over the time interval [0, 𝑇]. Assuming that the motion of the domain and the regular Cartesian
grid are known in advance, we can compute the exact time that any grid point crosses the domain
boundary. If we order these times, we obtain a set of disjoint intervals [𝑡𝑖, 𝑡𝑖+1] during which no
crossings occur, with [0, 𝑇] = ∪𝑖[𝑡𝑖, 𝑡𝑖+1]. Using the immersed interface method, we can construct
a different system of ODEs 𝜕𝑡𝑢𝑖 = 𝑓𝑖(𝑢𝑖, 𝑡) for each uninterrupted interval, where 𝑓𝑖(𝑢𝑖, 𝑡) is a
continuous function of time. We define an initial value for each system via spatial interpolation
operators ℐ𝑖, so that 𝑢𝑖(𝑡𝑖) = ℐ𝑖[𝑢𝑖−1(𝑡𝑖)]. These operators represent the IIM extrapolations used in
this chapter: each ℐ𝑖 removes points from 𝑢𝑖 when they leave Ω(𝑡), preserves points that remain inside
Ω(𝑡), and provides initial values for points as they enter Ω(𝑡). We’ll assume that each ℐ𝑖 has spatial
accuracy greater than or equal to 𝑁 , so that the error introduced by the ℐ𝑖 does not dominate the
truncation error of the immersed interface method. If we solve the systems 𝜕𝑡𝑢𝑖 = 𝑓𝑖(𝑢𝑖, 𝑡) exactly

Figure 7-5: A conceptual sketch of the semi-discrete system constructed in section 7.3.

and in sequence, applying the ℐ𝑖 at each crossing time 𝑡𝑖, then we arrive at a spatially-discrete but
time-continuous version of the moving immersed interface discretizations developed in this chapter
(Figure 7-5). The error in this approximation is entirely spatial; for any time 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1], the 𝑁 -th

71

Figure 7-6: An illustration of the exact solution 𝑢𝑒(x, 𝑡) at the point x𝑖,𝑗 , the semi-discrete approxi-
mation 𝑢𝑖,𝑗(𝑡), and the fully discretized solution �̃�𝑖,𝑗(𝑘𝜏). The semi-discrete system constructed here
is continuous, but may not be differentiable at the crossing times 𝑡𝑖 . This spatial discretization
introduces an 𝒪

(︀
ℎ𝑁
)︀

error, while the time stepping (which does not align with the crossing times)
introduces the expected 𝒪

(︀
𝜏𝑀
)︀

error along with an “overshoot" error of order 𝜏ℎ𝑁 .

order immersed interface discretization 𝑓𝑖(𝑢𝑖, 𝑡) guarantees that

d

d𝑡
𝑢𝑖(𝑡,x𝑖,𝑗) = ℒ𝑢𝑒(x𝑖,𝑗 , 𝑡) + 𝒪

(︀
ℎ𝑁
)︀
, so that

𝑢𝑖(x𝑖,𝑗 , 𝑡) = 𝑢𝑒(x𝑖,𝑗 , 𝑡) + 𝒪
(︀
ℎ𝑁
)︀
.

If we integrate each individual system numerically with an 𝑀 -th order integrator and time step 𝜏𝑖,
still applying the operators ℐ𝑖 at each crossing time, then we introduce an additional error of order
𝒪
(︀
𝜏𝑀𝑖
)︀
, which is propagated from one system to the next via the interpolation operators. If 𝜏max is

the largest of these time steps, then by the end of the integration we expect that

𝑢𝑖(x𝑖,𝑗 , 𝑇) = 𝑢𝑒(x𝑖,𝑗 , 𝑇) + 𝒪(ℎ𝑛) + 𝒪
(︀
𝜏𝑀max

)︀
.

Keeping the spatial discretization fixed while allowing 𝜏 to approach 0, we recover the semi-discrete
solution constructed above.

For two or three-dimensional problems, the time between boundary crossings can be prohibitively
short. To get around this, we would like to be able to take time steps of arbitrary size, applying
the operators ℐ𝑖 at the end of each time step to fill in any newly uncovered points. If we do so,
then we inevitably take a numerical step that lies partly in one interval [𝑡𝑖−1, 𝑡𝑖] and partly in the
next interval [𝑡𝑖, 𝑡𝑖+1]. If the integration is explicit, then we have approximated the evolution of the
system 𝜕𝑢𝑖−1 = 𝑓𝑖−1(𝑢𝑖−1, 𝑡) for a time 𝜏 , when in fact we should have done so for only a fraction
of the step before switching to the system 𝜕𝑢𝑖 = 𝑓𝑖(𝑢𝑖, 𝑡). In general the fraction of a step that
we misattributed to 𝑓𝑖−1 is 𝒪(𝜏), and the difference |𝑓𝑖−1(𝑢, 𝑡) − 𝑓𝑖(𝑢, 𝑡)| cannot exceed 𝒪

(︀
ℎ𝑁
)︀

at
any grid point common to both systems, since they are 𝑁 -th order approximations of the same
continuous operator ℒ𝑢. So we estimate that the error due to “overshooting" a single crossing time
is of order 𝜏ℎ𝑁 . If our overshoot covers more than two intervals, we obtain the same estimate, since
each individual system in question obeys the same 𝒪

(︀
ℎ𝑁
)︀

accuracy requirement.
Taking the overshoot error into account leads to two final error estimate for the moving IIM

discretizations developed here: 𝒪
(︀
ℎ𝑁
)︀

+ 𝒪
(︀
𝜏𝑀
)︀

for integration which respects the crossing times,
and 𝒪

(︀
ℎ𝑁
)︀

+ 𝒪
(︀
𝜏𝑀
)︀

+ 𝒪
(︀
𝜏ℎ𝑁

)︀
for integration which does not respect the crossing times. If 𝜏 is a

small parameter (as it is in any useful numerical scheme), then the mixed error term will always be
dominated by the spatial error term. However, we can still observe the existence of this error term by

72

fixing a spatial discretization and slowly decreasing the time step 𝜏 in an integrator for which 𝑀 > 1.
Eventually we will arrive at a point where the mixed error and temporal error are of comparable
magnitude, and our integrator appears to switch from 𝑀 -th order accuracy to first order accuracy.
This is no cause for concern: the mixed error of order 𝜏ℎ𝑁 cannot be the asymptotically dominant
contributor to the total error of a numerical discretization, even though we have manufactured a
situation for which it dominates the temporal error.

7.3.1 Numerical Results

If the above error estimate holds, then we have developed a scheme which improves the total temporal
error of our discrete system from 𝒪(𝜏) for forward Euler to 𝒪

(︀
𝜏ℎ𝑁

)︀
+ 𝒪

(︀
𝜏𝑀
)︀

for an 𝑀 -th order
Runge Kutta method. To confirm these gains, we begin with a simple one-dimensional example.
Consider the one-dimensional advection diffusion equation,

𝜕𝑓

𝜕𝑡
= −𝑢𝜕𝑓

𝜕𝑥
+ 𝜈

𝜕2𝑓

𝜕𝑥2
(7.11)

with 𝑢, 𝜈 > 0, which has free-space solutions of the form

𝑔(𝑥, 𝑡) = 𝑒−𝑘2𝜈𝑡 sin(𝑘𝑥− 𝑘𝑐𝑡). (7.12)

For 𝑘 = 2𝜋, these solutions remain valid on the restricted domain Ω ∈ [0, 1] with the periodic
boundary condition 𝑓(0) = 𝑓(1). To allow for an immersed interface discretization, we remove
the region [𝑥ℓ(𝑡), 𝑥𝑟(𝑡)] from Ω, and add the Dirichlet boundary conditions 𝑓(𝑥ℓ(𝑡)) = 𝑔(𝑥ℓ(𝑡)) and
𝑓(𝑥𝑟(𝑡)) = 𝑔(𝑥𝑟(𝑡)). For simplicity, let the removed interval have a constant length 𝑥𝑟,0 − 𝑥ℓ,0 and
constant translation speed 𝑢𝑏, so that {︃

𝑥ℓ(𝑡) = 𝑥ℓ,0 + 𝑢𝑏𝑡,

𝑥𝑟(𝑡) = 𝑥𝑟,0 + 𝑢𝑏𝑡.

Numerically, this problem is discretized using the immersed-interface transport scheme developed in
Chapter 3, so that advection term is calculated without the boundary condition at 𝑥ℓ. To account
for the moving boundaries, we use a (3, 2) extension procedure. Choosing parameters

𝑥ℓ,0 = 0.25 + 10−10, 𝑢 = 1.0, 𝜈 = 3.125 × 10−3,
𝑥𝑟,0 = 0.50 + 10−10, 𝑢𝑏 = 0.25, 𝑡 ∈ [0, 1],

along with numerical parameters of the form ℎ = 2−𝑛 and 𝜏 = 2−𝑚 ensures that all crossing times
align with the natural time stepping. The slight offset in [𝑥ℓ, 𝑥𝑟] ensures that the (3, 2) extrapolation
is consistently applied just after each crossing. We define the error norms

𝜖2 =

√︃∑︁
𝑖

ℎ(𝑓𝑖(𝑇) − 𝑓𝑖,ref(𝑇)2),

𝜖∞ = max
𝑖

⃒⃒
𝑓𝑖(𝑇) − 𝑓𝑖,ref(𝑇)2

⃒⃒
,

where 𝑓𝑖,ref(𝑡) is a reference solution computed with the same spatial resolution and a much smaller
time step. Figure 7-7 plots the 𝐿2 and 𝐿∞ error norms as a function of 𝜏 for several spatial
resolutions, demonstrating that that the numerical error is 𝒪

(︀
𝜏3
)︀

with a prefactor that is largely
independent of the spatial discretization.

If the interval used above is replaced by [𝑥ℓ,0, 𝑥𝑟,0] = [0.261, 0.447], then the crossing times
are no longer aligned with the temporal discretization. Figure 7-8 plots the new temporal errors; as
predicted, the behavior is initially 𝒪

(︀
𝜏3
)︀
, and eventually drops to 𝒪(𝜏) with an 𝒪

(︀
ℎ3
)︀

prefactor. The
third-order spatial convergence indicates that spatial error from the advection term still dominates
the second-order diffusion term.

73

(a) 𝐿2 Error. (b) 𝐿∞ Error

Figure 7-7: Temporal convergence of a one-dimensional advection-diffusion discretization integrated
with RK3, for time integration that aligns with the boundary crossings. The convergence rate is
𝒪
(︀
𝜏3
)︀
, with a prefactor that is independent of the spatial resolution.

To verify that our high-order time stepping does not affect the stability or spatial convergence
of our two-dimensional transport discretization, we return to the example presented in section 7.1.2.
The geometry and scalar distribution parameters are left unchanged, and the resulting immersed
interface discretization is integrated numerically to 𝑡 = 0.1 with a small time step (𝜏 = 10−5) and
RK3 time integration. Figures 7-9a and 7-9b show the resulting convergence behavior for a (2, 2)
extension and a (3, 2) extension, respectively. As with forward Euler time integration, the (2, 2) case
fails to achieve second order convergence, indicating that (3, 2) is the minimally accurate extension
needed for the transport scheme developed in Chapter 3.

The rest of the numerical examples here will use this (3, 2) extension procedure. The test de-
scribed above is repeated for an advection diffusion problem with vanishing viscosity, using geometry
parameters

𝑥𝑐,0 = 0.693, 𝑢𝑏,𝑥 = −0.39, 𝑟 = 0.123,
𝑦𝑐,0 = 0.697, 𝑢𝑏,𝑦 = −0.19,

along with scalar distribution parameters

𝑥𝑔 = 0.3, 𝜎 = 0.6, 𝑢𝑥 = 0.4,
𝑦𝑔 = 0.3, 𝜔 = 1.0, 𝑢𝑦 = 0.2.

The resulting system is integrated to 𝑡 = 0.5 using the small time step 𝜏 = 1.25×10−4 and RK3 time
integration. Figure 7-10a shows the results, which indicate third order spatial convergence in both
the 𝐿2 and 𝐿∞ error norms. We also repeat the same test with a no through-flow boundary, setting
u = u𝑏 = [−0.2,−0.4]; the results are shown in Figure 7-10b. In this case any error introduced at
the boundary remains concentrated near the boundary as the simulation progresses, leading to an
𝐿∞ convergence rate that is only second order.

To demonstrate convergence for the full advection diffusion equation, we introduce viscosity
𝜈 = 0.001, and reduce the initial width of the Gaussian distribution to 𝜎 = 0.3. The resulting
system is integrated to 𝑡 = 1.0 using a time step 𝑡 = 2 × 10−4, and the results are plotted in Figure
7-11. The spatial error initially converges at 𝒪

(︀
ℎ3
)︀
, while the advective error dominates, but drops

to 𝒪
(︀
ℎ2
)︀

at the finest discretizations. This convergence behavior is identical to the stationary solver,
indicating that the moving IIM techniques developed here are successful in discretizing transport
problems on moving domains. With this knowledge, we are fully prepared to extend the stationary
Navier Stokes solver constructed in Chapter 6 to problems with moving domains.

74

(a) 𝐿2 Error. (b) 𝐿∞ Error

Figure 7-8: Temporal convergence of a one-dimensional advection-diffusion discretization integrated
with RK3, for time integration that does not align with the boundary crossings. The initial conver-
gence is 𝒪

(︀
𝜏3
)︀
, which eventually weakens to 𝒪(𝜏) with a prefactor that scales with ℎ3.

(a) (2, 2) Extension. (b) (3, 2) Extension.

Figure 7-9: Spatial convergence of the diffusion equation with a moving domain and third-order
time integration.

75

(a) With through-flow. (b) No through-flow.

Figure 7-10: Convergence of the advection-diffusion equation with vanishing viscosity and a moving
domain. Convergence of the 𝐿2 error is nearly third-order for both test cases; the 𝐿∞ error is
between second and third order, and noticeably larger for the no through-flow case.

Figure 7-11: Convergence of the advection-diffusion equation with moving domain and Pe𝐷 = 110.
The resulting spatial convergence is initially 𝒪

(︀
ℎ3
)︀
, dropping to 𝒪

(︀
ℎ2
)︀

for the finest resolutions as
the diffusive error term begins to dominate.

76

Chapter 8

Numerical Results: Navier Stokes
with Moving Boundaries

Having developed a methodology for generalizing immersed-interface discretizations to moving do-
mains, we turn our focus back to the Navier Stokes equations. We will demonstrate through several
numerical examples that the immersed interface method described here achieves second order spatial
accuracy at the moving domain boundary, and allows for second or third order time integration. The
problems shown here involve a rigid body with a prescribed trajectory immersed in an unbounded
fluid domain. However, the extension to deforming bodies and bodies moving under the action
of a prescribed force is relatively simple, and we intend to demonstrate this capability in a future
publication.

8.1 A Moving Boundary Navier Stokes Solver
The spatial discretization used in this chapter is nearly identical to the one presented in Chapter
6, now with an added spatial interpolation step to account for moving boundaries. As before, all
time integration is done with RK2 (7.9) or a low-storage RK3 method (7.8) due to Williamson [26].
The complete algorithm for solving the Navier Stokes equations on a moving domain is described
in below; although only steps one, seven, and eight are new, we have reproduced the others for
convenience.

1. Geometry Processing. Evaluate the signed distance function 𝜑(x, 𝑡) for the current bound-
ary configuration, and zero all points that do not lie in the domain. Using the techniques
described in section 2.4.1, identify the control points 𝒞 and the associated affected points 𝒜+

and 𝒜−. Then pre-compute all the necessary immersed interface stencils (Appendix A).

2. Poisson Equation. Solve the reconstruction problem ∇2𝜓 = −𝜔 using the immersed inter-
face method described in Chapter 4. This explicitly enforces the no-through-flow boundary
condition. For an unbounded domain, we use Kelvin’s theorem to set the circulation constraint.

3. Velocity Reconstruction. Compute u = ∇∧𝜓 at each grid point, using the immersed inter-
face method described in Chapter 4. This explicitly enforces the incompressibility constraint.

4. Boundary Condition Calculate the boundary vorticity 𝜔(x𝑐) = ∇ ∧ u(𝑥𝑐) for each control
point 𝑥𝑐 ∈ 𝒞, using the local boundary condition described in Chapter 4. This dynamically
enforces the no-slip boundary condition.

5. Force Calculation. With the velocity and vorticity available at all grid points and control
points, we can calculate any of the integrals necessary to measure lift and drag or to calculate
local traction forces. These integral formulations and their discretization are discussed in
Chapter 5.

77

6. Vorticity Transport. Calculate the time derivative of 𝜔, using the vorticity transport equa-
tion

𝜕𝜔

𝜕𝑡
= −u ·∇𝜔 + 𝜈∇2𝜔

𝜔 = 𝜔𝑏 on 𝜕Ω.

Here we use the discretization of the advection-diffusion equation presented in Chapter 3, and
the existing boundary vorticity distribution.

7. Field Extensions. Using the vorticity boundary condition, extend the vorticity field to 𝒜−

at third order. The time derivative of vorticity is extended to 𝒜− at second order, without
boundary condition.

8. Time Integration. The vorticity field, history field, object position, and time variable are
updated according to the chosen Runge-Kutta scheme.

The most expensive step associated with moving bodies is the evaluation of the signed distance
function and creation of control points. Unless a clever scheme is employed to bound a moving
obstacle, these processes must consider every point in the domain, and take 𝒪(𝑁) resources. The
extensions and re-computation of stencils require 𝒪(𝑁𝑏) resources. All of the stability constraints
mentioned in Chapter 6 apply to the moving case, along with the CFL𝜕Ω < 1/

√
2 restriction dis-

cussed in Chapter 7.

8.2 Impulsively Started Cylinder

To verify the accuracy of the moving-boundary Navier Stokes solver, we return to the impulsively
started cylinder problem. In Chapter 6, this problem was presented in a frame of reference that
moved with the cylinder, leading to a nonzero free-stream velocity and a fixed problem domain. Here
we move to a reference frame with no free-stream velocity, in which the cylinder begins translating
with a fixed velocity. The parameters that define this problem are nearly identical to the stationary
case, except that we now list the cylinder’s velocity instead of a free-stream velocity, and we locate
the cylinder in space by listing its initial position (𝑥𝑐,0, 𝑦𝑐,0). To form non-dimensional quantities,
we must replace the free-stream velocity u∞ with the body velocity u𝑏, giving

Re𝐷 =
𝐷𝑢𝑏
𝜈

, 𝑡* =
𝑢𝑏𝑡

𝐷
, and 𝜔* =

𝜔𝐷

𝑢𝑏
.

We will not redefine all of the error measures and quality criteria, since all of the results listed here
have stationary counterparts described in Chapter 6.

8.2.1 Re = 550: Spatial Convergence

With the given discretization, we expect that the error in any quantity of interest behaves as 𝒪
(︀
ℎ2
)︀
+

𝒪
(︀
𝜏𝑁
)︀

+ 𝒪
(︀
𝜏ℎ2
)︀

when 𝑁 -th order Runge-Kutta integration. Because the CFL criteria for our
discretization requires that 𝜏 ∼ 𝒪(ℎ) as ℎ decreases, the 𝒪

(︀
ℎ2
)︀

spatial error term should still
dominate as ℎ → 0 if the CFL constraint remains constant. To confirm this, we consider a moving
cylinder with parameters

𝑥𝑐,0 = 0.143, 𝑢𝑏,𝑥 = 0.7071, 𝐷 = 0.2,
𝑦𝑐,0 = 0.147, 𝑢𝑏,𝑦 = 0.7071, 𝜈 = 3.636 × 10−4,

with the same sequence of resolutions ℎ and quality criteria 𝑁𝛿 used in Chapter 6: ℎ = 1/256,
1/512, 1/1024, 1/2048, and 𝑁𝛿 = 3.27, 6.55, 13.1, and 26.2. The resulting drag coefficients, errors,
convergence rate, and instantaneous convergence rates are shown in Figure 8-1. The drag data
agrees well with reference data from other authors, and is visually indistinguishable from the results

78

of the stationary simulations shown in Chapter 6. New to the moving cylinder is the introduction of
a small amount of noise in the function 𝐶𝐷(𝑡*), due to the noisy truncation error that comes from
integrating over a constantly-changing numerical domain. This noise does not affect the second
order convergence of the 𝐿2 or 𝐿∞ error norms, which are shown in Figure 8-1c. The instantaneous
convergence rates also remain between second and third order away from the impulsive start, with
the exception of a region surrounding 𝑡* ≈ 1.9. Here the errors shown in Figure 8-1b change sign,
leading to extremely small error magnitudes that cause the convergence rate estimate (6.5) to become
ill conditioned.

(a) Drag Forces. (b) Error in Drag Forces.

(c) 𝐿2 and 𝐿∞ convergence. (d) Instantaneous convergence.

Figure 8-1: Spatial convergence for the moving impulsively started cylinder problem at Re = 550.

8.2.2 Re = 550: Temporal Convergence

If we wish to investigate the temporal error, we can fix ℎ and allow 𝜏 to approach zero. As mentioned
in Chapter 7, we expect see an error of 𝒪

(︀
𝜏𝑁
)︀

for larger 𝜏 , which is eventually dominated by the
𝒪
(︀
ℎ2𝜏
)︀

term. Practically, this means that to observe the 𝒪
(︀
𝜏𝑁
)︀

convergence, we must choose a
small 𝑁 and reasonably fine spatial discretization. For this reason we choose to simulate the moving
cylinder with RK2 time integration and spatial resolutions ℎ = 1/128, ℎ = 1/256. We use the
physical parameters

𝑥𝑐,0 = 0.291, 𝑢𝑏,𝑥 = 0.995, 𝐷 = 0.4,
𝑦𝑐,0 = 0.457, 𝑢𝑏,𝑦 = 0.100, 𝜈 = 7.273 × 10−4,

79

which correspond to Re = 550. As in the stationary case, we integrate to 𝑡* = 0.25 with a single
fixed time step, and then use this result as an initial condition for the convergence test. The total
fluid impulse I(𝑡) is calculated on the interval 𝑡* ∈ [0.25, 0.88] using a range of time steps, and
compared to a well-resolved reference solution. The resulting 𝐿2 and 𝐿∞ errors for both resolutions
are shown in Figure 8-2, and indicate second order temporal convergence.

(a) ℎ = 1/128 (b) ℎ = 1/256

Figure 8-2: Second order temporal convergence of the moving cylinder test case. The observed error
does not vary significantly when the spatial discretization is changed, indicating that the observed
error is purely temporal. Errors are with respect to a reference time step 𝜏ref = 5 × 10−5.

8.2.3 Re = 550: Local Forces
To test the computation of local traction forces, we examine a moving cylinder at Re = 550 with
parameters

𝑥𝑐,0 = 0.143, 𝑢𝑏,𝑥 = 0.7071, 𝐷 = 0.2,
𝑦𝑐,0 = 0.147, 𝑢𝑏,𝑦 = 0.7071, 𝜈 = 3.636 × 10−4,

on a grid with resolution ℎ = 1/1024, giving a quality criterion of 𝑁𝛿 = 8.73. The resulting vorticity
and pressure distributions are shown in Figure 8-3, and agree well with stationary reference data
from Gillis (G) [10], Marichal (M) [15], Lee et al. (L) [13], and Verma et al. (V) [24], as well as with
the stationary results from Chapter 6 (S).

8.2.4 Higher Reynolds Number (Re = 3000)

To demonstrate stability for moving domains at moderate Re, we examine the impulsively started
cylinder at Re = 3000 with parameters

𝑥𝑐 = 0.301, 𝑢∞,𝑥,= 0.7071, 𝐷 = 0.4,
𝑦𝑐 = 0.303, 𝑢∞,𝑦,= 0.7071, 𝜈 = 1.333 × 10−4,

and a grid resolution ℎ = 1/1024, giving a quality criterion of 𝑁𝛿 = 7.48. Figure 8-4 shows that
the resulting drag forces and tractions agree well with same the stationary reference data used in
Chapter 6.

8.3 Flapping Ellipse
To demonstrate the versatility of our discretization, we turn to the flapping foil, a problem with a
non-circular moving boundary and non-steady trajectory. We’ll use a two-dimensional setup taken

80

(a) Vorticity Distribution (b) Pressure Distribution

Figure 8-3: Local loading for the moving impulsively started cylinder at Re = 550.

from by Dong [7], who provides extensive exploration of the foil’s parameter space in both two and
three dimensions. Consider an ellipse with center (𝑥𝑐, 𝑦𝑐) and major axes 𝑎𝑥 and 𝑎𝑦 immersed
in a fluid with kinematic viscosity 𝜈 and free stream velocity 𝑈∞ in the 𝑥 direction. The ellipse
is oriented so that the major axis forms an angle 𝜃 with the 𝑥-axis (Figure 8-5), and its flapping
motion is described by

𝑥𝑐(𝑡) = 𝑥0

𝑦𝑐(𝑡) = 𝑦0 +𝐴𝑦 sin(2𝜋𝑓𝑡)

𝜃(𝑡) = 𝜃0 +𝐴𝜃 cos(2𝜋𝑓𝑡).

(8.1)

To non-dimensionalize this geometry, we use 𝑎𝑥 as a length scale, and select parameters

𝑎𝑦
𝑎𝑥

= 0.12,
𝐴𝑦

𝑎𝑥
= 0.5, 𝐴𝜃 = 30∘, 𝜃0 = 0.

The non-dimensional quantities which govern the flow and dynamics are the Reynolds number and
Strouhal number, given by

Re =
𝑈∞𝑎𝑥
𝜈

= 200, and St =
2𝐴𝑦𝑓

𝑈∞
= 0.6.

We also define non-dimensional thrust, lift, and moment coefficients

𝐶𝑇 =
𝑇

1
2𝑈

2
∞𝑎𝑥

, 𝐶𝐿 =
𝐿

1
2𝑈

2
∞𝑎𝑥

, 𝐶𝑀 =
𝑀

1
2𝑈

2
∞𝑎

2
𝑥

,

which are the main quantities of interest for this test case. Lastly, we define a non-dimensional time
𝑡* = 𝑓𝑡.

For the results shown here we select 𝑎𝑥 = 0.15, 𝑈∞ = 1.0, and x0 = (0.175, 0.500); the rest of
the dimensional quantities follow from the non-dimensional parameters given above. The simulation
begins with zero vorticity in the domain, which corresponds to an impulsive start. Consequently we
continue to use the time step ramping procedure (6.1) defined for the impulsively started cylinder.

8.3.1 Results

A snapshot of the vorticity field generated by the flapping foil is shown in Figure 8-6. Unlike the
translating cylinder, the flapping foil is an accelerating body, which adds an extra term to the control

81

(a) Vorticity Field (𝑇 = 1.0)

(b) Drag Coefficient

(c) Vorticity Distribution (𝑇 = 1.0) (d) Pressure Distribution (𝑇 = 1.0)

Figure 8-4: Results for the moving impulsively started cylinder at Re = 3000.

volume force formulas based on impulse (see Chapter 5). To avoid this complication, the global loads
are calculated using the momentum formulas (5.13) and (5.16). To obtain reference data for these
global loads, the same problem is simulated using MRAG-I2D [20], a penalization-based vorticity-
velocity solver designed specifically for moving two-dimensional bodies in unbounded domains. The
resulting global thrust and lift coefficients are shown in Figures 8-7 and 8-8 respectively, while the
moment coefficient is shown in Figure 8-9. Overall the agreement between the two solvers is quite
good, particularly for the lift coefficient. The current method shows a slightly increased peak thrust
coefficient compared to the reference, and a significantly noisier aerodynamic moment.

82

Figure 8-5: Geometric setup for the flapping foil problem.

Figure 8-6: Snapshot of the vorticity field around a flapping ellipse at 𝑡* = 1.6.

83

Figure 8-7: Time-dependent lift coefficient for the flapping ellipse at 𝑅𝑒 = 200, 𝑆𝑡 = 0.6.

Figure 8-8: Time-dependent thrust coefficient for the flapping ellipse at 𝑅𝑒 = 200, 𝑆𝑡 = 0.6.

84

Figure 8-9: Time-dependent moment coefficient for the flapping ellipse at 𝑅𝑒 = 200, 𝑆𝑡 = 0.6.

85

86

Chapter 9

Conclusions

The culmination of all the ideas developed in this thesis is the moving Navier Stokes algorithm
presented in Chapter 8. The success of this method in predicting the local traction forces on a
moving body demonstrates that the immersed interface method is a viable alternative to re-meshing
techniques for simulations involving biological propulsion and fluid structure interaction. These
results are the direct product of the novel immersed interface techniques developed in Chapter 7,
which allow for the simulation of PDEs on irregular moving domains using explicit high-order Runge
Kutta time integration. Taken together, Chapters 7 and 8 form the main body of original research
presented in this thesis.

This research would not have been possible without the solid foundation provided by Gillis,
Marichal, Fasel, and all of the other authors who have explored IIM discretizations of the Navier
Stokes equations in vorticity-velocity form. Their collective contributions form the backbone of this
thesis, and chapters Chapters 2 through 6 are primarily devoted to reviewing this pre-existing work.
However, the development of this material has been interspersed with novel improvements to existing
discretization techniques, as well as several entirely original contributions to the immersed interface
literature:

∙ In Chapter 2, we clarify the underlying mechanics of the EJIIM by recasting jump corrections
explicitly as a one-dimensional polynomial extrapolation, allowing for significant improvements
in the methods traditionally used to calculate them. We also provide a novel algorithm for
identifying control points from an arbitrary level set, greatly increasing the class of geometries
that can be efficiently simulated with the immersed interface method. Finally, by rephrasing
existing level set integration methods in the language of the immersed interface method, we
allow for second-order evaluation of the integrals necessary to compute global global forces in
incompressible flow problems.

∙ Although the transport scheme introduced in Chapter 3 may be somewhat ad hoc, the IIM
boundary treatment developed there is entirely original, and allows for the stable simulation
of advection diffusion problems that cannot be handled by the traditional IIM alone.

∙ In Chapter 4, we reformulate the boundary problem in Gillis’ IIM Poisson solver in a way
that greatly reduces the dimension of the associated linear system, significantly reducing the
memory cost of the rGMRES algorithm and Gillis’ chosen recycling scheme.

∙ Finally, Chapter 5 collects several novel presentations of results relevant to force calculations
that are difficult to locate in existing literature, including what we believe to be a novel
extension of the work of Noca [16] to the calculation of aerodynamic moments.

Now that this work is drawing toward a close, we turn our eyes towards future research directions.
Because the test cases in this thesis were limited to single, simply-connected rigid bodies, one clear
path forward is to extend the current formulation to multiple arbitrarily deforming bodies. Together
with the force reconstruction techniques considered in Chapter 5, this capability should allow for the

87

simulation of fully-coupled fluid-structure interaction problems, provided that the associated solid
mechanics solver can interface with a traction distribution defined on the control points. There are
a plethora of other research projects that could feasibly grow out of material presented in this thesis,
and we present the list below as a small sample.

∙ All of the geometry considered in this thesis was assumed to be convex. However, most inter-
esting and realistic geometries are non-convex. Handling these geometries with the immersed
interface method is not trivial, and there is an immediate need for efficient IIM geometry
processing algorithms that account for non-convexity .

∙ The IIM Navier Stokes solver here suffers from stability issues at low resolutions caused by
under-resolved boundary layers. These instabilities originate on the boundary, and should be
greatly affected by the choice of vorticity boundary condition. Although a global vorticity
boundary conditions require increased computational resources, this global coupling may hold
the key to increased stability at low resolutions and high Reynolds numbers.

∙ All of the simulations presented in this thesis involve relatively short time scales. This is
because the closure of the two-dimensional reconstruction problem used in Chapter 4 relies
on Kelvin’s theorem, in a way that requires the entire vorticity field to remain within the
computational domain. To move towards simulations that allow outflow, a proper outflow
boundary condition for the transport scheme presented in Chapter 3 is necessary, as well as a
new strategy for closing the stream function reconstruction system.

∙ Although Chapter 5 considered several methods of reconstructing the surface pressure field
from the boundary vorticity flux, only one was explore in Chapters 6 and 8. The most effec-
tive formulation of the pressure Poisson equation in an immersed interface vorticity-velocity
framework remains an open question. The calculation of smooth and accurate vorticity flux
data is another useful goal for force calculations, since the methods presented in Chapter 5
and by Gillis in [10] are noisy and require a well-resolved simulation to be at all effective.

∙ We have not touched on implementation strategies for the algorithms described in this thesis.
However, there are exciting possibilities for parallel implementations, multiresolution solvers,
and other high performance computing related work. There is also a lack of literature on ef-
ficient data structures for handling the control points of an immersed interface discretization,
which becomes a significant issue for three-dimensional simulations and parallel implementa-
tions.

Finally, the simulation of fluid phenomena represents only small portion of the applications that
the IIM has found in current computational literature. The use of moving immersed interface tech-
niques for solid mechanics, or as coupling method in multi-physics simulations, is another potentially
rewarding area of research.

88

Bibliography

[1] Christopher R. Anderson and Marc B. Reider. “A high order explicit method for the compu-
tation of flow about a circular cylinder”. In: Journal of Computational Physics 125.1 (1996),
pp. 207–224.

[2] M. Bar-Lev and H. T. Yang. “Initial flow field over an impulsively started circular cylinder”.
In: Journal of Fluid Mechanics 72.4 (Dec. 1975), pp. 625–647.

[3] C. Brehm and H. F. Fasel. “A novel concept for the design of immersed interface methods”.
In: Journal of Computational Physics 242 (2013), pp. 234–267.

[4] C. Brehm and H. F. Fasel. “Novel immersed interface method based on local stability condi-
tions”. In: 40th AIAA Fluid Dynamics Conference July (2010), pp. 1–22.

[5] C. Brehm, C. Hader, and H. F. Fasel. “A locally stabilized immersed boundary method for
the compressible Navier-Stokes equations”. In: Journal of Computational Physics 295 (Aug.
2015), pp. 475–504.

[6] Christoph Brehm and Hermann Fasel. “Immersed Interface Method for Solving the Incom-
pressible Navier-Stokes Equations with Moving Boundaries”. In: January (2011), pp. 1–19.

[7] H. Dong, R. Mittal, and F. M. Najjar. “Wake topology and hydrodynamic performance of
low-aspect-ratio flapping foils”. In: Journal of Fluid Mechanics 566 (Nov. 2006), pp. 309–343.

[8] Weinan E and Jian Guo Liu. “Vorticity boundary condition and related issues for finite differ-
ence schemes”. In: Journal of Computational Physics 124.2 (1996), pp. 368–382.

[9] T. Gillis, G. Winckelmans, and P. Chatelain. “Fast immersed interface Poisson solver for 3D
unbounded problems around arbitrary geometries”. In: Journal of Computational Physics 354
(Feb. 2018), pp. 403–416.

[10] Thomas Gillis. “Accurate and efficient treatment of solid boundaries for the vortex particle-
mesh method”. PhD thesis. UCLouvain, 2019.

[11] P. Koumoutsakos and A. Leonard. “High-Resolution simulations of the flow around an im-
pulsively started cylinder using vortex methods”. In: Journal of Fluid Mechanics 296 (1995),
pp. 1–38.

[12] Paco Lagerstrom. Laminar Flow Theory. Princeton, N.J.: Princeton University press, 1996.

[13] Seung Jae Lee, Jun Hyeok Lee, and Jung Chun Suh. “Computation of pressure fields around
a two-dimensional circular cylinder using the vortex-in-cell and penalization methods”. In:
Modelling and Simulation in Engineering 2014 (2014).

[14] Mark N. Linnick and Hermann F. Fasel. “A high-order immersed interface method for simulat-
ing unsteady incompressible flows on irregular domains”. In: Journal of Computational Physics
204.1 (Mar. 2005), pp. 157–192.

[15] Yves Marichal. “An immersed interface vortex particle-mesh method”. PhD thesis. UCLouvain,
2014.

[16] Flavio Noca. “On the evaluation of time-dependent fluid-dynamic forces on bluff bodies”. PhD
thesis. California Institute of Technology, 1997.

89

[17] L. Qian and M. Vezza. “A vorticity-based method for incompressible unsteady viscous flows”.
In: Journal of Computational Physics 172.2 (Sept. 2001), pp. 515–542.

[18] L. Quartapelle. “The incompressible Navier—Stokes equations”. In: Numerical Solution of the
Incompressible Navier-Stokes Equations. Basel: Birkhäuser Basel, 1993, pp. 1–11.

[19] Dietmar Rempfer. “On boundary conditions for incompressible Navier-Stokes problems”. In:
Applied Mechanics Reviews 59.1-6 (2006), pp. 107–125.

[20] Diego Rossinelli et al. “MRAG-I2D: Multi-resolution adapted grids for remeshed vortex meth-
ods on multicore architectures”. In: Journal of Computational Physics 288 (May 2015), pp. 1–
18.

[21] Peter Smereka. “The numerical approximation of a delta function with application to level set
methods”. In: Journal of Computational Physics 211.1 (2006), pp. 77–90.

[22] John D. Towers. “Discretizing delta functions via finite differences and gradient normalization”.
In: Journal of Computational Physics 228.10 (2009), pp. 3816–3836.

[23] Kritika Upreti. “Algebraic level sets for CAD/CAE integration and moving boundary prob-
lems”. PhD thesis. Purdue, 2014.

[24] Siddhartha Verma et al. “Computing the force distribution on the surface of complex, deform-
ing geometries using vortex methods and Brinkman penalization”. In: International Journal
for Numerical Methods in Fluids 85.8 (Nov. 2017), pp. 484–501.

[25] Andreas Wiegmann and Kenneth P. Bube. The Explicit-Jump Immersed Interface Method:
Finite Difference Methods for PDES with Piecewise Smooth Solutions. 2000.

[26] J. H. Williamson. “Low-storage Runge-Kutta schemes”. In: Journal of Computational Physics
35.1 (Mar. 1980), pp. 48–56.

[27] Chunlin Wu et al. “A conservative viscous vorticity method for unsteady unidirectional and
oscillatory flow past a circular cylinder”. In: Ocean Engineering 191 (Nov. 2019).

[28] J. C. Wu. “Theory for Aerodynamic Force and Moment in Viscous Flows”. In: AIAA Journal
19.4 (1981), pp. 432–441.

[29] Jie-Zhi Wu, Hui-Yang Ma, and Ming-De Zhou. Vorticity and Vortex Dynamics. Springer, 2005,
p. 782.

90

Appendix A

IIM Stencil Calculations

The immersed interface method requires repeated calculations of stencil components for polynomial
interpolation. As discussed in section 2.2, each of these stencils can be calculated by solving a single
small linear system. Here we list these systems for all of the stencils used in this thesis, as a helpful
reference for implementations.

A.1 Interpolation and Extrapolation on a Regular Grid

The intersection algorithm presented in section 2.4.1, the vorticity boundary condition presented in
Chapter 4, and the vorticity flux computation discussed in Chapter 5 all require derivatives taken
in transverse direction. To provide values for these calculations, we must interpolate values that lie
along the local transverse coordinate axis (see Figure 2-6). For 𝑁 -th order interpolation, consider
𝑁 consecutive points 𝑥0 through 𝑥𝑁−1, as shown in Figure A-1.

Figure A-1: Labeling scheme for interpolation stencils.

To interpolate the value of 𝑥𝛽 = 𝑥0 + 𝛽ℎ, we write

𝑓𝛽 =

𝑁−1∑︁
𝑖=0

𝑠𝑖𝑓𝑖.

For 𝑁 = 4, the stencil coefficients 𝑠𝑖 must satisfy⎡⎢⎢⎣
1 1 1 1
0 1 2 3
0 1 4 9
0 1 8 27

⎤⎥⎥⎦
⎡⎢⎢⎣
𝑠𝛼
𝑠1
𝑠2
𝑠3

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1
𝛽
𝛽2

𝛽3

⎤⎥⎥⎦ . (A.1)

For 𝑁 = 3, we drop the last row and last column of the system, so that⎡⎣1 1 1
0 1 2
0 1 4

⎤⎦⎡⎣𝑠𝛼𝑠1
𝑠2

⎤⎦ =

⎡⎣ 1
𝛽
𝛽2

⎤⎦ . (A.2)

91

The extension to higher and lower orders is straightforward.

A.2 Jump Corrections with Dirichlet Condition.

In section 2.2, the following system was derived to calculate the necessary stencil for a fourth order
jump correction using a Dirichlet BC⎡⎢⎢⎣

1 1 1 1
0 (1 + 𝜓) (2 + 𝜓) (3 + 𝜓)
0 (1 + 𝜓)2 (2 + 𝜓)2 (3 + 𝜓)2

0 (1 + 𝜓)3 (2 + 𝜓)3 (3 + 𝜓)3

⎤⎥⎥⎦
⎡⎢⎢⎣
𝑠𝛼
𝑠1
𝑠2
𝑠3

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1

𝜓 − 1
(𝜓 − 1)2

(𝜓 − 1)3

⎤⎥⎥⎦ . (A.3)

This system can be truncated to give for third jump order corrections,⎡⎣1 1 1
0 (1 + 𝜓) (2 + 𝜓)
0 (1 + 𝜓)2 (2 + 𝜓)2

⎤⎦⎡⎣𝑠𝛼𝑠1
𝑠2

⎤⎦ =

⎡⎣ 1
𝜓 − 1

(𝜓 − 1)2

⎤⎦ , (A.4)

and second order jump corrections,[︂
1 1
0 (1 + 𝜓)

]︂ [︂
𝑠𝛼
𝑠1

]︂
=

[︂
1

𝜓 − 1

]︂
. (A.5)

A.3 Jump Corrections without a Boundary Condition.

Jump corrections that do not use a boundary condition are both a special case of the above (𝜓 = 0)
and a special case of the interpolation stencils from section A.1 (𝛽 = −1). There are no free geometric
parameters, so we can solve these systems in advance, giving

𝐽𝛼 = 2𝑓0 − 𝑓1 (Second Order) (A.6)
𝐽𝛼 = 3𝑓0 − 3𝑓1 + 𝑓2 (Third Order) (A.7)
𝐽𝛼 = 4𝑓0 − 6𝑓1 + 4𝑓2 − 𝑓3 (Fourth Order) (A.8)

Jump corrections that do not use a boundary condition are needed to extend the time derivative
field in IIM discretizations with moving boundaries.

A.4 Wall derivatives

For third order wall derivatives, we write

𝑓 ′(𝑥𝛼) = 𝑠𝛼𝑓𝛼 +

3∑︁
𝑖=1

𝑠𝑖𝑓𝑖,

using stencil coefficients 𝑠𝑖 that satisfy⎡⎢⎢⎣
1 1 1 1
0 (1 + 𝜓) (2 + 𝜓) (3 + 𝜓)
0 (1 + 𝜓)2 (2 + 𝜓)2 (3 + 𝜓)2

0 (1 + 𝜓)3 (2 + 𝜓)3 (3 + 𝜓)3

⎤⎥⎥⎦
⎡⎢⎢⎣
𝑠𝛼
𝑠1
𝑠2
𝑠3

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0
ℎ−1

0
0

⎤⎥⎥⎦ . (A.9)

92

For a second-order wall-derivative, we truncate the above system, so that⎡⎣1 1 1
0 (1 + 𝜓) (2 + 𝜓)
0 (1 + 𝜓)2 (2 + 𝜓)2

⎤⎦⎡⎣𝑠𝛼𝑠1
𝑠2

⎤⎦ =

⎡⎣ 0
ℎ−1

0

⎤⎦ . (A.10)

These stencils are used in the calculation of vorticity flux (Chapter 5) and the vorticity boundary
condition (Chapter 4).

93

94

Appendix B

Control Volume Formulation for
Moments

There are a plethora of control volume formulas for calculating forces and moments in the vorticity-
velocity formulation, most of which are simplified to a handful of terms by making assumptions on
the size or position of the control volume. It is more difficult, however, to find a formulation that
makes no assumptions on the size or position of the control volume. Flavio Noca presents a handful
of these general formulations in his doctoral thesis [16] which is aimed at the computation of forces
in Particle-Image Velocimetry applications. The derivation of a similar formulation for moments can
be done in a completely analogous way; however, the author has been unable to find this calculation
in the literature. It is presented here because it is needed in Chapters 6 and 8, and with the hope
that others who need it will be able to find this appendix instead of re-deriving it for themselves.

The notation used here is taken directly from Noca. We begin with an identity from J. C. Wu’s
“Theory for Aerodynamic Force and Moment in Viscous flows" [28],

x ∧ a = −1

2
𝑥2∇∧ a +

1

2
∇∧ (𝑥2a), (B.1)

where 𝑥 = |x|. Applying this to the fluid velocity u and integrating over a volume yields∫︁
𝑉

x ∧ ud𝑉 = −1

2

∫︁
𝑉

𝑥2𝜔 d𝑉 +
1

2

∮︁
𝑆

n̂ ∧ (𝑥2u) d𝑆 . (B.2)

The left hand side represents the total angular momentum of the flow, while the right hand side
represents the angular impulse and a boundary term which disappears for an infinite domain. This
relation is useful when considering a control volume analysis based on angular momentum. Assuming
unit density, we express the conservation of angular momentum by

M = − d

d𝑡

∫︁
𝑉 (𝑡)

x ∧ ud𝑉 +

∮︁
𝑆(𝑡)

x ∧ [(−𝑝I + T) · n̂] d𝑆

−
∮︁
𝑆(𝑡)

(x ∧ u)(u− u𝑠) · n̂ d𝑆 −
∮︁
𝑆𝑏(𝑡)

(x ∧ u)(u− u𝑠) · n̂ d𝑆 ,

where M is the total moment acting on the immersed body. Using (B.2) to replace the first volume
integral,

M =
d

d𝑡

∫︁
𝑉 (𝑡)

𝑥2

2
𝜔 d𝑉 − d

d𝑡

∮︁
𝑆(𝑡)

𝑥2

2
n̂ ∧ ud𝑆 − d

d𝑡

∮︁
𝑆𝑏(𝑡)

𝑥2

2
n̂ ∧ u d𝑆

+

∮︁
𝑆(𝑡)

x ∧ [(−𝑝I + T) · n̂] d𝑆 −
∮︁
𝑆(𝑡)

(x ∧ u)(u− u𝑠) · n̂ d𝑆 −
∮︁
𝑆𝑏(𝑡)

(x ∧ u)(u− u𝑠) · n̂ d𝑆 (B.3)

95

Taking a cue from Noca’s derivation of the impulse equations, we will adopt the following program:

1. Bring the time derivatives inside the integrals over the moving outer surface.

2. Replace any time derivatives of velocity using the Navier Stokes equations.

3. Transform any resulting ∇𝑝-related terms into 𝑝-related terms using an integral identity.

These new pressure terms should exactly cancel the existing pressure term, leaving a pressure-free
control volume formulation for the moment acting on a body. To accomplish the first step, we need
the tensor identity

d

d𝑡

∮︁
𝑆(𝑡)

An̂ d𝑆 =

∮︁
𝑆(𝑡)

𝜕A

𝜕𝑡
n̂ d𝑆 +

∮︁
𝑆(𝑡)

∇ ·A(u𝑠 · n̂) d𝑆 , (B.4)

where (∇ · A)𝑖 =
∑︀

𝑗 𝜕𝑗𝐴𝑖𝑗 . This can be derived by converting the left hand side to a volume
integral, applying Reynold’s transport theorem, and then converting back to a surface integral. Let
[a] be the cross-product matrix for 𝑎, so that [a]x = a ∧ x. Note that ∇ · [a] = −∇ ∧ a. Applying
(B.4) to (B.3) gives

− d

d𝑡

∮︁
𝑆(𝑡)

𝑥2

2
n̂ ∧ u d𝑆 =

d

d𝑡

∮︁
𝑆(𝑡)

[︂
𝑥2

2
u

]︂
n̂ d𝑆

=

∮︁
𝑆(𝑡)

𝜕

𝜕𝑡

[︂
𝑥2

2
u

]︂
n̂ d𝑆 +

∮︁
𝑆(𝑡)

∇ ·
[︂
𝑥2

2
u

]︂
(u𝑠 · n̂) d𝑆

=

∮︁
𝑆(𝑡)

𝑥2

2

𝜕u

𝜕𝑡
∧ n̂ d𝑆 −

∮︁
𝑆(𝑡)

∇∧
(︂
𝑥2

2
u

)︂
(u𝑠 · n̂) d𝑆

= −
∮︁
𝑆(𝑡)

𝑥2

2
n̂ ∧ 𝜕u

𝜕𝑡
d𝑆 −

∮︁
𝑆(𝑡)

(︂
x ∧ u +

1

2
𝑥2𝜔

)︂
(u𝑠 · n̂) d𝑆 (B.5)

In the last step the vector identity (B.1) has been used. This completes step one of the program.
To eliminate the time derivative of velocity, we’ll use the Navier Stokes equations in the slightly

nontraditional form
𝜕u

𝜕𝑡
= −∇

(︂
𝑝+

1

2
𝑢2
)︂

+ u ∧ 𝜔 + ∇ ·T.

Substituting this into one the first term of (B.5),

−
∮︁
𝑆(𝑡)

𝑥2

2
n̂ ∧ 𝜕u

𝜕𝑡
d𝑆 = −

∮︁
𝑆(𝑡)

𝑥2

2
n̂ ∧

(︂
−∇

(︂
𝑝+

1

2
𝑢2
)︂

+ u ∧ 𝜔 + ∇ ·T
)︂

d𝑆

=

∮︁
𝑆(𝑡)

𝑥2

2
n̂ ∧∇

(︂
𝑝+

1

2
𝑢2
)︂

d𝑆

−
∮︁
𝑆(𝑡)

𝑥2

2
n̂ ∧ (u ∧ 𝜔) d𝑆 −

∮︁
𝑆(𝑡)

𝑥2

2
n̂ ∧ (∇ ·T) d𝑆 . (B.6)

The last two integrals on the right hand side are reasonably computable, and will not be manipulated
further. This completes step two of the program.

To finish off the derivation, an identity is needed to transform the pressure integral. It turns out
that the one we need is ∮︁

𝑆

𝑥2

2
n̂ ∧∇𝜑d𝑆 =

∮︁
𝑆

x ∧ 𝜑n̂ d𝑆 .

This can be proven by noting that

∇
(︂
𝑥2

2
𝜑

)︂
= 𝜑x +

𝑥2

2
∇𝜑,

96

and integrating over a surface to obtain∮︁
𝑆

n ∧∇
(︂
𝑥2

2
𝜑

)︂
d𝑆 =

∮︁
𝑆

n̂ ∧ 𝜑x d𝑆 +

∮︁
𝑆

𝑥2

2
n̂ ∧∇𝜑 d𝑆

Using the divergence theorem,∮︁
𝑆

n ∧∇
(︂
𝑥2

2
𝜑

)︂
d𝑆 =

∫︁
𝑉

∇∧∇
(︂
𝑥2

2
𝜑

)︂
d𝑉 = 0,

and the identity follows. Picking up the earlier thread,∮︁
𝑆(𝑡)

𝑥2

2
n̂ ∧∇

(︂
𝑝+

1

2
𝑢2
)︂

d𝑆 =

∮︁
𝑆(𝑡)

x ∧
(︂
𝑝+

1

2
𝑢2
)︂
n̂ d𝑆

=

∮︁
𝑆(𝑡)

x ∧ 𝑝n̂ d𝑆 +

∮︁
𝑆(𝑡)

x ∧ 1

2
𝑢2n̂ d𝑆 (B.7)

This completes step three of the program. To collect these results, we substitute (B.7) into (B.6),
then substitute (B.6) into (B.5), and finally substitute (B.5) into (B.3), giving the expression

M =
d

d𝑡

∫︁
𝑉 (𝑡)

𝑥2

2
𝜔 d𝑉 − d

d𝑡

∮︁
𝑆𝑏(𝑡)

𝑥2

2
n̂ ∧ ud𝑆 −

∮︁
𝑆𝑏(𝑡)

(x ∧ u)(u− u𝑠) · n̂ d𝑆 +

∮︁
𝑆(𝑡)

x ∧ 𝑝n̂ d𝑆

+

∮︁
𝑆(𝑡)

x ∧ 1

2
𝑢2n̂− 𝑥2

2
n̂ ∧ (u ∧ 𝜔) − 𝑥2

2
n̂ ∧ (∇ ·T) −

(︂
x ∧ u +

1

2
𝑥2𝜔

)︂
(u𝑠 · n̂) d𝑆

−
∮︁
𝑆(𝑡)

x ∧ 𝑝n̂ d𝑆 +

∮︁
𝑆(𝑡)

x ∧ (T · n̂) − (x ∧ u)(u · n̂) + (x ∧ u)(u𝑠 · n̂) d𝑆

Canceling the pressure terms and collecting the surface terms brings us to an angular-impulse based
control volume formula for moments,

M =
d

d𝑡

∫︁
𝑉 (𝑡)

𝑥2

2
𝜔 d𝑉 − d

d𝑡

∮︁
𝑆𝑏(𝑡)

𝑥2

2
n̂ ∧ ud𝑆 −

∮︁
𝑆𝑏(𝑡)

(x ∧ u)(u − u𝑠) · n̂ d𝑆 +

∮︁
𝑆(𝑡)

𝜆(n̂) d𝑆 ,

(B.8)

where the quantity 𝜆(n̂) collects miscellaneous surface terms:

𝜆(n̂) = x ∧ 1

2
𝑢2n̂− 𝑥2

2
n̂ ∧ (u ∧ 𝜔) − 𝑥2

2
n̂ ∧ (∇ ·T) −

(︂
1

2
𝑥2𝜔

)︂
(u𝑠 · n̂)

+ x ∧ (T · n̂) − (x ∧ u)(u · n̂).

(B.9)

We are also free to use (B.1) to transform the above back into an angular momentum formulation.
Doing so removes the integral over the immersed boundary, in exchange for an extra integration
around the edge of the domain:

M = − d

d𝑡

∫︁
𝑉 (𝑡)

x ∧ ud𝑉 +
d

d𝑡

∮︁
𝑆(𝑡)

𝑥2

2
n̂ ∧ u d𝑆 −

∮︁
𝑆𝑏(𝑡)

(x ∧ u)(u − u𝑠) · n̂ d𝑆 +

∮︁
𝑆(𝑡)

𝜆(n̂) d𝑠

(B.10)

Equations B.8 and B.10 are the control volume formulations introduced in Chapter 5, and used in
Chapters 6 and 8.

97

98

Appendix C

Analytical Solution for an
Impulsively Rotated Cylinder

The impulsively rotated cylinder with imposed axi-symmetry is a flow problem simple enough to
have an analytical solution, and after a bit of searching one can find an expression for the velocity
field in Lagerstrom [12]. However, the author does not provide the details of the solution, and
incorrectly states the resulting vorticity field, leading to an erroneous expression for the shear stress
on the cylinder. Here we fill in the details leading to Lagerstrom’s velocity field, and provide the
correct expression for the shear stress.

Consider an infinitely long cylinder of radius 𝑎 at rest in an unbounded domain. The fluid in
this problem is incompressible and Newtonian, with kinematic viscosity 𝜈. At 𝑡 = 0, the cylinder
begins to rotate with angular velocity Ω. The problem is axisymmetric and two dimensional, so it
is easiest to work in polar coordinates. The symmetry of the problem implies that

𝑢𝑟 = 0 and
𝜕

𝜕𝜃
= 0,

so that u ·∇u = 0 and the Navier-Stokes equations reduce to a one-dimensional PDE for 𝑢𝜃(𝑟, 𝑡):

𝜕𝑢𝜃
𝜕𝑡

= 𝜈

(︂
𝜕2𝑢𝜃
𝜕𝑟2

+
1

𝑟

𝜕𝑢𝜃
𝜕𝑟

− 1

𝑟2
𝑢𝜃

)︂
,

𝑢𝜃(𝑎, 𝑡) = Ω𝑎, and lim
𝑟→∞

𝑢𝜃(𝑟, 𝑡) = 0,

𝑢𝜃(𝑟, 0) = 0.

To non-dimensionalize the problem, we make the substitutions

𝑡* =
𝜈𝑡

𝑎2
, 𝑢* =

𝑢𝜃
Ω𝑎

, 𝑟* =
𝑟

𝑎
.

Then, after collecting terms and dropping the asterisks, the IBVP becomes

𝜕𝑢

𝜕𝑡
=
𝜕2𝑢

𝜕𝑟2
+

1

𝑟

𝜕𝑢

𝜕𝑟
− 1

𝑟2
𝑢,

𝑢(1, 𝑡) = 1, and lim
𝑟→∞

𝑢(𝑟, 𝑡) = 0,

𝑢(𝑟, 0) = 0.

The problem can be solved using a Laplace transform for the time variable. Let 𝐹 (𝑠) = ℒ[𝑓(𝑡)] =

99

∫︀∞
0
𝑓(𝑡)𝑒−𝑠𝑡 d𝑡 denote the Laplace transform. For a function 𝑓(𝑡) and constant 𝑐,

ℒ
[︂

d𝑓

d𝑡

]︂
= 𝑠𝐹 (𝑠) − 𝑓(0−), and ℒ[𝑐] = 𝑐𝑠−1.

Applied to the PDE, the transformed function 𝑈(𝑟, 𝑠) obeys

𝑠𝑈 − 𝑢(𝑟, 0−) =
𝜕2𝑈

𝜕𝑟2
+

1

𝑟

𝜕𝑈

𝜕𝑟
− 1

𝑟2
𝑈.

Applying the initial condition and boundary conditions, along with some trivial simplification, we
obtain

𝑟2
𝜕2𝑈

𝜕𝑟2
+ 𝑟

𝜕𝑈

𝜕𝑟
− (1 + 𝑠𝑟2)𝑈 = 0,

𝑈(1, 𝑠) =
1

𝑠
and lim

𝑟→∞
𝑈(𝑟, 𝑠) = 0.

This strongly resembles a modified Bessel equation. To get rid of the 𝑟2𝑠 term, we let 𝛽 =
√
𝑠𝑟, so

that
𝜕

𝜕𝑟
=

√
𝑠
𝜕

𝜕𝛽
, and

𝛽2 𝜕
2𝑈

𝜕𝛽2
+ 𝛽

𝜕𝑈

𝜕𝛽
− (1 + 𝛽2)𝑈 = 0.

The general solution to this equation 𝑈(𝑟, 𝑠) = 𝑐1𝐼1(𝛽) + 𝑐2𝐾1(𝛽), where 𝐼1 and 𝐾1 are modified
Bessel functions of the first and second kind, respectively. Since 𝐼1(

√
𝑠𝑟) tends to infinity as 𝑟 → ∞,

our boundary conditions dictate that 𝑐2 = 0 and

𝑐1𝐾1(
√
𝑠) =

1

𝑠
.

Solving for 𝑐1, we arrive at an expression for our transformed velocity:

𝑈(𝑟, 𝑠) =
1

𝑠

𝐾1(
√
𝑠𝑟)

𝐾1(
√
𝑠)
.

To recover 𝑢(𝑟, 𝑡), the inverse Laplace transform is required. This is accomplished using the contour
integral

𝑢(𝑟, 𝑡) =
1

2𝜋𝑖

∫︁
𝐶

𝐾1(
√
𝑠𝑟)

𝐾1(
√
𝑠)

𝑒𝑠𝑡

𝑠
d𝑠 ,

where the contour 𝐶 is the Bromwich contour, 𝑠 = 𝛾 + 𝑖𝑥 for 𝑥 ∈ [−∞,∞]. Another quantity of
interest is the vorticity field, which can be evaluated using the identity

d

d𝑧
𝐾𝑛(𝑧) = −𝐾𝑛−1(𝑧) − 𝑛

𝑧
𝐾𝑛(𝑧).

Specializing to the current case,

d

d𝑟
𝐾1(

√
𝑠𝑟) +

1

𝑟
𝐾1(

√
𝑠𝑟) = −

√
𝑠𝐾0(

√
𝑠𝑟).

Applying this to the contour integral, we obtain the vorticity field

𝜔 =
𝜕𝑢

𝜕𝑟
+
𝑢

𝑟
= − 1

2𝜋𝑖

∫︁
𝐶

𝐾0(
√
𝑠𝑟)

𝐾1(
√
𝑠)

𝑒𝑠𝑡√
𝑠

d𝑠 .

100

Evaluating this function at the wall gives the shear stress and moment on the cylinder, since

𝜏

𝜈
= −𝜔 + 2

𝜕𝑢

𝜕𝑟
=
𝜕𝑢

𝜕𝑟
− 𝑢

𝑟
= 𝜔 − 2

𝑢

𝑟
= 𝜔 − 2Ω, and

𝑀 =

∮︁
𝑎𝜏 d𝑠 =

∫︁ 2𝜋

0

𝑎2𝜏 d𝜃 = 2𝜋𝜈𝑎2(𝜔 − 2Ω).

From our earlier choice of non-dimensional quantities, we obtain 𝜔 = Ω𝜔*, so that

𝑀* =
𝑀

2𝜋𝑎2𝜈Ω
= 𝜔*

𝑤 − 2.

This can be evaluated numerically, with some effort. Consider the integrand for 𝜔*
𝑤,

𝐼(𝑠) =
𝐾0(

√
𝑠)

𝐾1(
√
𝑠)

𝑒𝑠𝑡√
𝑠

On the contour 𝐶, this integrand oscillates with period 2𝜋/𝑡 and decays slowly as |𝑠| → ∞, making
the integral difficult to approximate by conventional methods. To avoid this, we choose a different
contour. 𝐼(𝑠) has a branch cut on the negative real axis, and a singularity at 𝑠 = 0, but otherwise
is analytic. Consequently, the integral of 𝐼(𝑠) over the contour shown in Figure C-1 vanishes. As
the height of this contour is allowed to grow, the vertical segment will become the desired integral.
The behavior of 𝐼(𝑠) at 𝑠 = 0 and at |𝑠| → ∞ in the left half plane is such that the integrals over
the arcs will vanish. Consequently, the integral we seek can be determined from the integrals above
and below the branch cut:

𝜔*
𝑤(𝑡) =

1

2𝜋𝑖

∫︁ 0+𝑖𝜖

−∞+𝑖𝜖

𝐼(𝑠) d𝑠+
1

2𝜋𝑖

∫︁ −∞−𝑖𝜖

0−𝑖𝜖

𝐼(𝑠) d𝑠 .

To simplify, let 𝑠 = 𝑢2, so that

𝐾0(
√
𝑠)

𝐾1(
√
𝑠)

𝑒𝑠𝑡√
𝑠

d𝑠 = 2
𝐾0(𝑢)

𝐾1(𝑢)
𝑒𝑢

2𝑡 d𝑢 .

The corresponding contour for 𝑢, conveniently, begins at 𝑢 = 𝑖∞, descends to 𝑢 = 0, and then
continues down to 𝑢 = −𝑖∞; the square root “unwraps" the keyhole contour, so that

𝜔*
𝑤(𝑡) =

1

𝜋𝑖

∫︁ −𝑖∞

𝑖∞

𝐾0(𝑢)

𝐾1(𝑢)
𝑒𝑢

2𝑡 d𝑢 =
𝑖

𝜋

∫︁ 𝑖∞

−𝑖∞

𝐾0(𝑢)

𝐾1(𝑢)
𝑒𝑢

2𝑡 d𝑢 .

Now let 𝑢 = 𝑖𝑥, so that

𝜔*
𝑤(𝑡) = − 1

𝜋

∫︁ ∞

−∞

𝐾0(𝑖𝑥)

𝐾1(𝑖𝑥)
𝑒−𝑥2𝑡 d𝑥 .

Because the 𝐾0 and 𝐾1 are analytic and nonzero on (0,∞), this integrand has an even real part on
the real line and an odd imaginary part, giving

𝜔*
𝑤(𝑡) = − 2

𝜋

∫︁ ∞

0

ℜ
{︂
𝐾0(𝑖𝑥)

𝐾1(𝑖𝑥)

}︂
𝑒−𝑥2𝑡 d𝑥 .

This integrand is non-oscillatory, non-singular at 𝑥 = 0, and decays as 𝑒−𝑥2𝑡 as 𝑥 → ∞. Conse-
quently, it can be evaluated to any desired degree of accuracy. If we wish to avoid complex arithmetic,
𝐾𝛼(𝑖𝑥) can be re-expressed as a combination of 𝐽𝛼(𝑥) and 𝑌𝛼(𝑥), the Bessel functions of the first
and second kind, giving

𝜔*
𝑤(𝑡) = − 2

𝜋

∫︁ ∞

0

𝐽0𝑌1 − 𝐽1𝑌0
𝐽2
1 + 𝑌 2

1

𝑒−𝑥2𝑡 d𝑥 .

101

Figure C-1: Contour for the inverse Laplace transform.

However, depending on the numerical implementation of the Bessel functions, this real integrand
may or may not evaluate faster than the previous complex integrand.

102

