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Abstract

Counterfactual prediction is useful in settings where one would like to know what
would have happened had an alternative regime been followed, but one only knows
the outcomes under the observational regime. Typically, the regimes are dynamic
and time-varying. In these scenarios, G-computation can be used for counterfac-
tual prediction. This work explores a novel recurrent neural network approach to
G-computation, dubbed G-Net. Many implementations of G-Net were explored and
compared to the baseline, linear regression. Two independent datasets were used
to evaluate the performance of G-Net: one from a physiological simulator, CVSim,
and another from the real-world MIMIC database. Results from the CVSim exper-
iments suggest that G-Net outperforms the traditional linear regression approach
to G-computation. The best G-Net model found from the CVSim experiments was
then evaluated using the MIMIC dataset. The outcomes under a few different coun-
terfactual strategies on the MIMIC cohort were explored and evaluated for clinical
plausibility.

Thesis Supervisor: Roger Mark
Title: Professor

Thesis Supervisor: Li-wei Lehman
Title: Research Scientist

3



4



Acknowledgments

First and foremost, I would like to thank my direct supervisor on this project, Li-wei

Lehman, for all her help in putting together this project, the overall research direction

guidance, and the countless meetings and discussions. Thank you Professor Mark as

well for the help in defining a meaningful clinical focus for this project, patiently

explaining the medical side of things to me, and the discussions and feedback. I’ve

gained much clinical knowledge in the process.

I would also like to thank my mentors on this project, Zach Shahn and Jun Li.

Thank you, Zach, for the many lengthy discussions and for your statistical expertise. I

learned much about statistical models and evaluation methods from the meetings with

you. Thanks, Jun, for your deep learning expertise and the numerous discussions,

ranging from kalman filtering to residual networks to memory networks. I learned

much about state of the art deep learning techniques from you.

Thanks, Ming Yu Lu, for the work in generating the CVSim datasets used in this

project. Thanks to the rest of the IBM team for the discussions.

Last but not least, thanks to my parents for their unconditional love and support.

5



6



Contents

1 Introduction 12

2 Related Work 14

3 Background on G-Computation 16

4 G-Network Design 19

4.1 Separation of Covariates for Sequential Simulation . . . . . . . . . . . 19

4.2 G-Net Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Training Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3.1 Teacher Forcing During Training . . . . . . . . . . . . . . . . 21

4.3.2 Choice of Loss Functions . . . . . . . . . . . . . . . . . . . . . 22

4.4 Simulation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 CVSim Experiments 25

5.1 CVSim Dataset Generation . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 CVSim Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 26

5.3 CVSim Evaluation Methods . . . . . . . . . . . . . . . . . . . . . . . 27

5.3.1 MSE Over Time . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3.2 Calibration Over Time . . . . . . . . . . . . . . . . . . . . . . 28

5.3.3 Population Level Average Trajectory . . . . . . . . . . . . . . 28

5.3.4 Individual Patient Monte Carlo Visualizations . . . . . . . . . 29

5.3.5 Analysis of Average Treatment Effect . . . . . . . . . . . . . . 29

7



6 CVSim Results 30

6.1 MSE over Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.2 Calibration Over Time . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.3 Population Level Trajectory Visualizations . . . . . . . . . . . . . . . 32

6.4 Individual Patient Level Monte Carlo Simulation Visualizations . . . 33

6.5 Analysis of Average Treatment Effect . . . . . . . . . . . . . . . . . . 34

7 MIMIC Experiments 35

7.1 A Clinical Application: Effects of Fluid Administration . . . . . . . . 35

7.2 MIMIC Data Extraction and Processing . . . . . . . . . . . . . . . . 36

7.3 MIMIC Evaluation Methods . . . . . . . . . . . . . . . . . . . . . . . 37

7.4 MIMIC Experimental Setup Details . . . . . . . . . . . . . . . . . . . 38

8 MIMIC Results 40

8.1 Check of Predictive Performance . . . . . . . . . . . . . . . . . . . . . 40

8.2 Illustration of Effects of Counterfactual Strategies . . . . . . . . . . . 42

9 Discussions and Future Work 44

10 Conclusion 45

A CVSim Dataset Details 47

A.1 CVSim Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A.1.1 Inputs Variables to CVSim . . . . . . . . . . . . . . . . . . . . 47

A.1.2 Output Variables from CVSim . . . . . . . . . . . . . . . . . . 47

A.2 Dataset Generation Procedure . . . . . . . . . . . . . . . . . . . . . . 48

A.2.1 Introducing Instability and Stochasticity . . . . . . . . . . . . 48

A.2.2 Treatment Under the Observational and Counterfactual Regimes 50

B MIMIC Dataset Details 52

B.1 Variables Included . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

B.1.1 Static Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 52

B.1.2 Time Varying Variables . . . . . . . . . . . . . . . . . . . . . 52

8



List of Figures

4-1 Framework for G-Network . . . . . . . . . . . . . . . . . . . . . . . . 21

4-2 M1: Linear Regression Baseline . . . . . . . . . . . . . . . . . . . . . 24

4-3 M2: Representational Layer + 2 Linear layers . . . . . . . . . . . . . 24

4-4 M3: 2 LSTMS, one for categorical variables, one for continuous variables 24

4-5 M4: 1 Representational Layer + 2 LSTMS, one for categorical vari-

ables, one for continuous variables . . . . . . . . . . . . . . . . . . . . 24

5-1 CVSim Data Generation Procedure. 𝐷𝑂 is the training dataset gener-

ated under the observational regime 𝑆𝑂. 𝐷𝐶1 and 𝐷𝐶2 are the coun-

terfactual test sets generated under intervention strategies 𝑆𝐶1 (treat-

ment) and 𝑆𝐶2(no treatment). . . . . . . . . . . . . . . . . . . . . . . 27

6-1 MSE Over Time Plots for Models M1-M4 for both 𝑆𝐶1 (treatment)

and 𝑆𝐶2(no treatment) . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6-2 Calibration Plots for Models M1-M4 for both 𝑆𝐶1 (treatment) and

𝑆𝐶2(no treatment) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6-3 Population level trajectory plots for a few selected variables. 𝑆𝐶1

(treatment). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6-4 Visualizations of 100 Monte Carlo Simulations generated by the best

G-Net model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6-5 Comparison of the average treatment effect predicted by the best G-

Net model and the actual average treatment effect. . . . . . . . . . . 34

9



8-1 The population level average trajectory plots for a few censoring vari-

ables: death and diuretics initiation. . . . . . . . . . . . . . . . . . . 40

8-2 The population level average trajectory plots for a few time-varying

covariates: systolic blood pressure, diastolic blood pressure, respiratory

rate, and temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . 41

8-3 The effect of the counterfactual strategies on some variables of interest

using the best G-Net model . . . . . . . . . . . . . . . . . . . . . . . 42

10



List of Tables

A.1 CVSim Input Variables and Ranges . . . . . . . . . . . . . . . . . . . 48

A.2 CVSim Output Variables and Abbreviations. The final column indi-

cates whether the particular variable was included as one of the covari-

ates, 𝐿𝑡, in the study. . . . . . . . . . . . . . . . . . . . . . . . . . . 49

B.1 MIMIC Static Variables Included . . . . . . . . . . . . . . . . . . . . 53

B.2 MIMIC Time-Varying Variables Included. An asterisk next to variable

means it is the treatment variable, 𝐴𝑡. The rest of the variables listed

are the covariates, 𝐿𝑡. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

11



Chapter 1

Introduction

Counterfactual prediction is necessary in many application settings, where one has

access to the data under the observational regime, but one wonders what would hap-

pen had an alternative regime been followed. For instance, in clinical decision making

tasks, it is often the case that researchers know the interventions that were followed

and the outcome for the patients under these observed interventions. However, re-

searchers want to know what would have happened to the patients had physicians

followed an alternative intervention strategy, also known as the counterfactual strat-

egy. Treatment strategies of interest are usually time-varying and dynamic; there is

an intervention at each time step and the intervention at each time step is dependent

on the history up until that time point. Counterfactual prediction also generally re-

quires accounting for causal effects between the treatment strategies and the other

variables of interest.

Let us consider a particular clinical problem, the administration of fluid in the

ICU [4]. The amount of fluid that the patient receives at each time step is dependent

on the patient’s health history up to and including that time step. For instance, if a

patient’s blood pressure has been extremely low for the previous few time steps and no

fluid had been administered yet, a physician might want to administer a large volume

of fluid to help increase blood pressure and blood perfusion to organs, especially in

the case of septic patients. However, too much fluid could have negative effects such

as increased chances of developing pulmonary edema. It is often difficult to determine
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the amount of fluid to administer, so it would be immensely helpful to physicians if

there were a system to allow them to explore what would happen to a patient under

different counterfactual strategies.

The collection of g-methods can be used to estimate the effects of dynamic, time-

varying treatment strategies [6]. G-methods include marginal structural models,

structural nested models, and g-computation [13, 10, 11, 16, 12, 17, 14, 9]. Of these

g-methods, g-computation is the best suited for general dynamic treatment strate-

gies with high dimensional history [10]. G-computation is a framework that first uses

the data under the observational regime to learn the conditional distribution of the

covariates at the next time step given the history of covariates and treatments, and

then as a second step, estimates the counterfactual outcomes by running Monte Carlo

simulations forward in time. Many different statistical models could be used as the

regressor to model the conditional distribution of the covariates at the next time step

given the history of covariates and treatments.

Traditionally linear regression has been the regressor of choice. However, recent

works have shown that recurrent neural networks (RNN) perform well in modeling

and predicting high-dimensional multivariate time-series data. This thesis explores a

recurrent neural network framework for G-computation, called G-Net. Many variants

of the network architecture are explored and compared against each other and against

the traditional linear regression approach to G-computation. The performance of

these models was evaluated on two datasets; the first one is generated from CVSim[5],

a hemodynamic system simulation program, and the second one is extracted from

MIMIC-3, a public critical care database [7].

13



Chapter 2

Related Work

The first application of the parametric g-formula to an epidemiological problem was

conducted by Taubman et al. [16]. They use the parametric g-formula to predict

the population risk of coronary heart disease under different intervention strategies.

As a part of their study, they included some static covariates (age, smoking prior to

the start of the study, BMI at the start of the study, etc.) and some time-varying

covariates (BMI, high blood pressure, diabetes, cancer, diabetes, etc.). Some inter-

ventions they tried included no intervention, quitting smoking, exercising 30 minutes

a day, consuming at least 5g alcohol per day, and a few interventions which were

combinations of these previous interventions. Using g-formula, they were able to pre-

dict the 20 year risk ratio as a result of each of these interventions. In their study,

they used traditional linear and logistic regression to predict some of the covariates.

Taubman et al. found that the g-formula method does indeed support the idea that

a joint intervention of no smoking, increased exercise, improved diet, moderate alco-

hol intake, and reduced BMI reduces the risk of coronary heart disease. This result

lends support to the belief that g-formula is a powerful and accurate framework that

could be used to estimate the effects of different counterfactual dynamic, time-varying

interventions.

There has been some recent work by Atan et. al., Alaa et.al., and Yoon et.

al. to predict the outcome under counterfactual strategies given data under the

observational regime [2, 1, 19]. However, their works mainly focus on learning point
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exposure rather than dynamic, time-varying treatment effects.

Lim et al. used a RNN approach to marginal structural models (MSM) for coun-

terfactual predictions [8]. However, there is a limitation to MSMs; MSMs can only

make predictions for static time-varying intervention strategies. History adjusted

MSMs could make predictions for a strategy like "give 0.5 liter of fluid for the next

4 hours" or "give 1 liter of fluid for the next 2 hours and then give 1 liter for the fol-

lowing 2 hours". Under these strategies, the treatment amount at each hour must be

specified up front. MSMs cannot make predictions for dynamic intervention strate-

gies, such as "if blood pressure falls below 65 for the next 4 hours, give 1 liter of

fluid; else give no fluids" or "if no fluids had been given in the past 2 hours and blood

pressure was below 65 in the past hour, give 1 liter of fluid". G-computation, though,

can make predictions for dynamic intervention strategies, where the intervention at

each timestep could depend on the covariates at that time step, and the covariates

and treatments in the past.

Schulam et al. introduced counterfactual Gaussian processes, a form of contin-

uous time g-computation[15]. In their study, they only experimented with static

time-varying intervention strategies applied to ICU data. Xu et al. used Gaussian

processes to predict individual patient level treatment response curves, though they

only evaluated their work on a held out test set from the real-world observational

ICU data; they did not evaluate their method for counterfactual prediction [18]. One

limitation of Gaussian processes is that they have high time complexity. On the

other hand, RNNs are much more scalable and better able to handle larger number

of observations and higher dimensional data.

RNNs, in particular LSTMS, have been shown to achieve state-of-the-art perfor-

mance on predictions involving time-series data. There have not been any works on

using RNN for regressors in G-computation, though RNNs seem promising due to

their state of the art performance on time-series data. This work explores a RNN

based G-computation. Not only is a RNN based G-computation expected to perform

well, but also it does not have the limitations the previously mentioned related works

have.

15



Chapter 3

Background on G-Computation

G-computation is a framework that first uses the data under the observational regime

to learn the conditional distribution of the covariates at the next time step given the

history of covariates and treatments, and then as a second step, estimates the counter-

factual outcomes by running Monte Carlo simulations forward in time. Many coun-

terfactual strategies can be tested and the simulation outcomes compared to see the

effects of various strategies on the covariates. If one such counterfactual strategy was

a strategy where treatment is always withheld, then comparing the simulations from

a counterfactual treatment strategy where treatment were administered against the

no treatment counterfactual simulations, would give insights on the treatment effect.

The Monte Carlo simulations can be analyzed and summarized to give the population

level average treatment effects, which can then be used to enable exploration of what

strategies are good for a cohort in general. In addition, these Monte Carlo simulations

can be analyzed at the individual patient level to see what would have happened to

an individual patient if they had been under a particular counterfactual strategy.

Let 𝐴𝑡 be the treatment action at time 𝑡, 𝑌𝑡 be the outcome of interest at time

𝑡, and 𝐿𝑡 be the vector of covariates at time 𝑡. Let 𝑌𝑡(𝑆𝑚) be the counterfactual

outcome by following the counterfactual intervention strategy 𝑆 starting at time 𝑚

until time 𝑡. The goal of counterfactual prediction is to estimate the expected outcome

at time 𝑡 given the history through time 𝑚, 𝐻𝑚 = (𝐿1:𝑚, 𝐴1:𝑚−1), and a specific

counterfactual strategy 𝑆 which is started at time 𝑚 and continues until time 𝑡. If
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written mathematically, this would be:

𝐸[𝑌𝑡(𝑆)|𝐻𝑚] (3.1)

It is also possible to estimate the counterfactual outcome distribution.

𝑝(𝑌𝑡(𝑆)|𝐻𝑚) (3.2)

In order for g-computation to properly estimate (3.1) and (3.2), there is a set of

assumptions which must hold [10].

1. Consistency: the observed outcome is the same as the counterfactual outcome

where the counterfactual strategy is the observed strategy

2. Sequential Exchangeability: there is no unobserved confounding of treat-

ment at any time and any future outcome

3. Positivity: the counterfactual treatment strategy of interest has some non-

zero probability of being followed

With these assumptions in place, (3.2) can be re-written for 𝑡 = 𝑚.

𝑝(𝑌𝑚(𝑆)|𝐻𝑚) = 𝑝(𝑌𝑚|𝐻𝑚, 𝐴𝑚 = 𝑆(𝐻𝑚)) (3.3)

For times 𝑡 > 𝑚, it is necessary to adjust for time-varying confounding.

𝑝(𝑌𝑡(𝑆) = 𝑦|𝐻𝑚) =

∫︁
𝑙𝑚+1:𝑡

𝑝(𝑌𝑡 = 𝑦|𝐻𝑚, 𝐿𝑚+1:𝑡 = 𝑙𝑚+1:𝑡, 𝐴𝑚:𝑡 = 𝑆(𝐻𝑚:𝑡))

×
𝑡∏︁

𝑘=𝑚+1

𝑝(𝐿𝑘 = 𝑙𝑘|𝐻𝑚, 𝐿𝑚+1:𝑘−1 = 𝑙𝑚+1:𝑘−1, 𝐴𝑚:𝑘−1 = 𝑆(𝐻𝑚, 𝑙𝑚+1:𝑘−1))

(3.4)

This integral is difficult to calculate in closed form, so Monte Carlo simulation is

typically used to estimate it. In order to use Monte Carlo simulation it is necessary
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to be able to simulate from the joint conditional distribution:

𝑝(𝐿𝑡|𝐿1:𝑡−1, 𝐴1:𝑡−1) (3.5)

Training data would be needed in order to fit a model to learn this joint conditional

distribution. Once this model has been fit to the training data, it is possible to start

simulating from this joint conditional distribution. The outcome, 𝑌𝑡, can be set as

one of the 𝐿𝑡, for simplicity in modeling. The G-computation framework, where 𝑌𝑡 is

set to be one of the covariates, 𝐿𝑡, is shown below in pseudocode form.

G-Computation Framework
# Step 1: Fit a model to learn 𝑝(𝐿𝑡|𝐿1:𝑡−1, 𝐴1:𝑡−1)
𝑅← trainModel(training data)
# Step 2: Simulate under counterfactual strategy 𝑆
𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 = []
for 𝑛← 1 to number of samples do

for 𝑗 ← 1 to number of simulations do
𝐿𝑚 ← 𝑅(𝐿1:𝑚−1, 𝐴1:𝑚−1)
𝐴𝑚 ← 𝑆(𝐿1:𝑚, 𝐴1:𝑚−1)
𝑠𝑗 = []
for 𝑡← 𝑚 + 1 to 𝑇 do

𝐿𝑡 ← 𝑅(𝐿1:𝑡−1, 𝐴1:𝑡−1)
𝐴𝑡 ← 𝑆(𝐿1:𝑡, 𝐴1:𝑡−1)
𝑠𝑗 += [(𝐿𝑡, 𝐴𝑡)]

end
𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 += 𝑠𝑗

end
end
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Chapter 4

G-Network Design

Many models can be used to learn the 𝑝(𝐿𝑡|𝐿1:𝑡−1, 𝐴1:𝑡−1) used for G-computation. G-

Net is a neural network framework for G-computation where the model used to fit the

conditional probability is a recurrent neural network structure, since recurrent net-

works have been shown to perform well in predictive tasks involving high-dimensional

multivariate time-series data. This chapter explains the general G-Net framework and

discusses a few specific implementations of G-Net.

4.1 Separation of Covariates for Sequential Simula-

tion

Often times, the distributions of the covariates are very different from one another,

so it may be difficult to simulate from the joint distribution. One solution is to

separate the covariates into groups, where the covariates within each group have

similar distributions. Then, it is possible to sequentially simulate the covariates,

group by group. Separation of the covariates by their distribution types allows for

the use of a separate model for each of the distribution types, which in theory should

result in better performance.
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The conditional probability distribution

𝑝(𝐿𝑡|𝐿1:𝑡−1, 𝐴1:𝑡−1) (4.1)

can be rewritten as

𝑝(𝐿0
𝑡 |𝐿1:𝑡−1, 𝐴1:𝑡−1)×𝑝(𝐿1

𝑡 |𝐿0
𝑡 , 𝐿1:𝑡−1𝐴1:𝑡−1)×...×𝑝(𝐿𝐺−1

𝑡 |𝐿0
𝑡 , 𝐿

1
𝑡 , ..., 𝐿

𝐺−2
𝑡 , 𝐿1:𝑡−1, 𝐴1:𝑡−1)

(4.2)

where the superscripts denote the group a particular covariate is in. Each variable

could be its own group, or all variables could be in one group. The number of groups,

𝐺, could vary from 1 to the number of covariates of interest used by model. The

mathematical equivalence of (4.1) and (4.2) allows for separate models for different

variable types. For this particular project, there were only two major types of covari-

ates used: categorical and continuous variables, so in all the G-Net variants explored

in this project 𝐺 = 2.

4.2 G-Net Architecture

With 𝐺 = 2, the G-Net framework would essentially have two regressors, one for the

categorical variables and one for the continuous variables, as illustrated in Figure 4-1.

The categorical regressor, 𝑅0, takes as input all the current timestep’s covariates,

(𝐿0
𝑡 , 𝐿

1
𝑡 ) and the intervention 𝐴𝑡 at this timestep. It outputs the prediction of the

categorical covariates at the next timestep, 𝐿0
𝑡+1. The continuous regressor, 𝑅1, takes

as input all the current timesteps covariates, (𝐿0
𝑡 , 𝐿

1
𝑡 ), treatment 𝐴𝑡, and the output of

𝑅0, 𝐿0
𝑡+1. It outputs the prediction of the continuous covariates at the next timestep,

𝐿1
𝑡+1.

Figure 4-1 only illustrates the high level schematic for G-Net. Many possible

G-Net implementations could extend this high level architecture. For instance, it is

possible to first learn a representation for (𝐿0
𝑡 , 𝐿

1
𝑡 , 𝐴𝑡) and feed that learned feature

into 𝑅0. It is also possible to try many different implementations for the regressors

𝑅0 and 𝑅1, such as a linear layer, a linear layer with ReLu activation, or LSTMs. A
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Figure 4-1: Framework for G-Network

few combinations of these different implementations are experimented with. Figures

4-2 through 4-5 illustrate the various G-Net implementations that are experimented

with in this thesis.

Model 𝑀1 (shown in Figure 4-1) is the baseline linear regression model, with one

linear layer for the categorical variables and one linear layer for the continuous vari-

ables. Models 𝑀2 and 𝑀4 (shown in Figures 4-3 and 4-5) include a representational

layer, 𝐹 , to first encode a representation for the inputs. In this project, 𝐹 = 𝐿𝑆𝑇𝑀 .

𝑀2 and 𝑀4 are different in that 𝑀2 has linear layers for the categorical and con-

tinuous regressors, while 𝑀4 has LSTMs. 𝑀3 (shown in Figure 4-4) does not have

a representational layer, 𝐹 . 𝑀3 has two LSTMs to function as the categorical and

continuous regressors.

4.3 Training Details

4.3.1 Teacher Forcing During Training

During training time, there are two possible ways to train the second regressor for the

continuous covariates 𝑅1. One way is student forcing, the other is teacher forcing.

Teacher forcing is when the regressor 𝑅1 is fed as input the actual 𝐿0
𝑡+1 from the

training data. Student forcing, on the other hand, is when the regressor 𝑅1 is fed as
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input the predicted ˆ𝐿0
𝑡+1 from regressor 𝑅0. There are pros and cons to each one of

these methods. For this project, teacher forcing was chosen because it would result

in a 𝑅1 that is more representative of the conditional distribution in the training set.

4.3.2 Choice of Loss Functions

Many possible loss functions can be used. For this project, the loss function used

for the categorical variables was cross entropy loss. The loss function used for the

continuous variables was root mean-squared error (RMSE) loss. Both the cross-

entropy loss and the RMSE loss were averaged over all timesteps. By averaging over

the losses at all the timesteps, the regressors 𝑅0 and 𝑅1 will be less prone to bias

due to the timestep number. The total loss that is backpropagated is the sum of the

average cross-entropy loss and the average RMSE loss.

4.4 Simulation Details

Regressor 𝑅0 estimates the conditional expectation 𝐸[𝐿0
𝑡 |𝐿1:𝑡−1, 𝐴1:𝑡−1], and regressor

𝑅1 estimates the conditional expectation 𝐸[𝐿1
𝑡 |𝐿0

𝑡 , 𝐿1:𝑡−1, 𝐴1:𝑡−1]. However, the prob-

ability distribution 𝑝(𝐿0
𝑡 |𝐿1:𝑡−1, 𝐴1:𝑡−1) and 𝑝(𝐿1

𝑡 |𝐿0
𝑡 , 𝐿1:𝑡−1, 𝐴1:𝑡−1) are needed in order

to simulate from the categorical and continuous distributions respectively.

The conditional expectation for the categorical variables could be used directly

for the simulation process. The output of 𝑅0 is the softmax over the all possible

categories for each categorical variable. To simulate a single categorical variable, a

sample is generated from the categorical distribution with the probability of each

category being equal to the softmax prediction for the category.

Simulating from the continuous distribution is a bit more complicated. Equa-

tion (4.3) shows how it is possible to simulate the distribution from the conditional

expectation, 𝐸̂[𝐿1
𝑡 |𝐿0

𝑡 , 𝐿1:𝑡−1, 𝐴1:𝑡−1] and the empirical losses, 𝑒1𝑡 .

𝐿1
𝑡 |𝐿0

𝑡 , 𝐿1:𝑡−1, 𝐴1:𝑡−1 ∼ 𝐸̂[𝐿1
𝑡 |𝐿0

𝑡 , 𝐿1:𝑡−1, 𝐴1:𝑡−1] + 𝑒1𝑡 (4.3)
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where 𝑒1𝑡 is a random sample from the distribution of the empirical residuals 𝐿1
𝑡 −𝐿1

𝑡

𝑒1𝑡 ∼ 𝐿1
𝑡 − 𝐿1

𝑡 (4.4)

The empirical losses 𝑒1𝑡 are calculated from a hold-out validation set (from the obser-

vational regime dataset) that is not used to train the model. This way of sampling

from the continuous distribution is non-parametric, as only the empirical losses are

used; there is no assumption of the underlying distributional form. There is no need

to limit the application of G-Net to any particular distriution like Gaussian, Pois-

son, etc. A non-parametric implementation is more general and has the advantage of

working on any type of distribution.

23



Figure 4-2: M1: Linear Regression Baseline

Figure 4-3: M2: Representational Layer + 2 Linear layers

Figure 4-4: M3: 2 LSTMS, one for categorical variables, one for continuous variables

Figure 4-5: M4: 1 Representational Layer + 2 LSTMS, one for categorical variables,
one for continuous variables
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Chapter 5

CVSim Experiments

Counterfactual prediction is difficult to evaluate on real world datasets because real

world datasets only contain the observations under the observational regime. There

is no ground truth to evaluate against for the counterfactual policies. For this reason,

a physiological simulator was used to generate the datasets under the counterfactual

strategies of interest to be used for evaluation of G-Net, in addition to a generated

training set under the observational regime. Three datasets were generated using

the physiological simulator: one training set, 𝐷𝑂, generated using the observational

regime 𝑆𝑂, and two test sets 𝐷𝐶1, 𝐷𝐶2, generated using the counterfactual policies

𝑆𝐶1 and 𝑆𝐶2, respectively.

5.1 CVSim Dataset Generation

The physiological simulator used to generate the ground-truth is CVSim, a program

that simulates the human cardiovascular system. CVSim takes as input a few vari-

ables that define the hemodynamic system. Using these input variables as settings

for the 6-compartment circulatory model, CVSim deterministically simulates forward

25 output variables under the hemodynamic model. Some of the output variables

include arterial pressure (AP), central venous pressure (CVP), total peripheral resis-

tance (TPR), total blood volume (TBV). Four extra variables were derived from the

25 CVSim ouptut variables: systolic blood pressure (SBP), diastolic blood pressure
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(DBP), mean blood pressure (MBP), and a pulmonary edema binary indicator. A

subset of these 28 CVSim output and derived variables are included in the covariates

𝐿𝑡. Details on the variables included can be found in Appendix A.

In a clinical setting, physicians try to keep AP and CVP at some reasonable

level by administering fluid (adjusting TBV) or by giving vasopressors (adjusting

TPR). In this project, the intervention of interest is a vector of 2 interventions, 𝐴𝑡 =

[𝐴1
𝑡 , 𝐴

2
𝑡 ]: bolus amount and vasopressor amount. Bolus administration was mimicked

by increasing the TBV. Vasopressor administration was mimicked by increasing TPR.

Observational intervention 𝑆𝑂 is a stochastic intervention regime. Under 𝑆𝑂, the

amount of fluid and vasopressor administered at each timestep varies according to a

logistic function with respect to the change in CVP and change in MAP. The first

counterfactual strategy, 𝑆𝐶1, is similar to 𝑆𝑂, except it is a deterministic strategy with

different coefficients for the function to calculate treatment from the covariates. The

second counterfactual strategy, 𝑆𝐶2, is a strategy where treatment is always withheld.

In other words, no bolus or vasopressor is ever administered under 𝑆𝐶2. The exact

equations for 𝑆𝑂 and 𝑆𝐶1 are given in Appendix A.

𝐷𝑂 is generated in its entirety using the observational strategy 𝑆𝑂. 𝐷𝐶1 and 𝐷𝐶2

were generated under 𝑆𝑂 for the first 𝑚 timesteps. From timestep 𝑚 and on, 𝐷𝐶1

and 𝐷𝐶2 were generated under 𝑆𝐶1 and 𝑆𝐶2, respectively. This method of dataset

generation is shown in Figure 5-1. There were a total of 10,000 samples in 𝐷𝑂, and

1000 in each of 𝐷𝐶1 and 𝐷𝐶2, and with outlier removal the final numbers were 8282

samples in 𝐷0, and 895 samples in 𝐷𝐶1 and 895 samples in 𝐷𝐶2. For 𝐷𝐶1 and 𝐷𝐶2,

𝑚 = 34 timesteps. For 𝐷𝑂, 𝐷𝐶1, and 𝐷𝐶2, the total number of timesteps was 66.

5.2 CVSim Experimental Setup

The four models described in Section 4, 𝑀1 −𝑀4, are experimented with on the

CVSim datasets. Each of 𝑀1 −𝑀4 were trained on the observational dataset, 𝐷𝑂

and then evaluated on both 𝐷𝐶1 and 𝐷𝐶2. During evaluation time on test set 𝐷𝐶1,

the models were first fit to the first 𝑚 timesteps of 𝐷𝐶1, and then at each time 𝑡,
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Figure 5-1: CVSim Data Generation Procedure. 𝐷𝑂 is the training dataset generated
under the observational regime 𝑆𝑂. 𝐷𝐶1 and 𝐷𝐶2 are the counterfactual test sets
generated under intervention strategies 𝑆𝐶1 (treatment) and 𝑆𝐶2(no treatment).

for 𝑡 > 𝑚, the model predicts the covariates 𝐿𝑡 and computes an intervention, 𝐴𝑡,

under the intervention strategy 𝑆𝐶1 using 𝐿1:𝑡, ˆ𝐴1:𝑡−1 . The same process is repeated

for all models on 𝐷𝐶2, except the intervention would set 𝐴𝑡 = [0, 0] now since 𝐷𝐶2 is

the no-treatment counterfactual test set. For each sample (conceptually a sample is

a patient) from 𝐷𝐶1 and 𝐷𝐶2, 𝐾 = 100 Monte Carlo simulations were generated by

the models, using the simulation method outlined in Section 4.4. A total of 𝐾 × 𝑁

simulations were generated for each of 𝑆𝐶1 and 𝑆𝐶2, where 𝑁 is the total number of

patients in the respective test set.

5.3 CVSim Evaluation Methods

The 𝐾 × 𝑁 Monte Carlo simulations from the models 𝑀1 −𝑀4 can be compared

against the "ground-truth" generated by CVSim, given in 𝐷𝐶1 and 𝐷𝐶2 for timesteps

𝑡 > 𝑚. Many different evaluation methods are explored. All of the following eval-

uations in combination will give an accurate assessment of the performance of these

models.
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5.3.1 MSE Over Time

The first check will be of how close the models predictions of the covariates, 𝐿𝑡, are to

the ground-truth generated by CVSim, 𝐿𝑡. The metric used to measure the difference

between the two is MSE. For each patient, the 𝐾 = 100 simulations are averaged into

an average trajectory for that patient. This average trajectory is then compared to

the actual trajectory given in 𝐷𝐶1 and 𝐷𝐶2 by computing the MSE at each timestep

of simulation. The MSE is the average MSE across all covariates at the timestep.

The MSE is then averaged across all the patients in the counterfactual test set. Each

of 𝑀1−𝑀4 has a MSE over time plot. These plots are compared to see which model

has the lowest MSE over time.

5.3.2 Calibration Over Time

The second check will be of how well calibrated the simulations are. Ideally, the actual

trajectory will be within the ranges of all the Monte Carlo simulations corresponding

to that actual trajectory, and near the average of the Monte Carlo simulations. For

each simulation timestep, the proportion of trajectories over all variables that fall

within the 5th and 95th percentiles of their respective 𝐾 Monte Carlo simulations

is calculated. For a well-calibrated model, 90 percent of the actual averages will fall

within the 5th and 95th percentile of all the Monte Carlo simulations. The calibration

over time can be plotted for each of these models, 𝑀1 −𝑀4, to visualize how well

calibrated the models are over time.

5.3.3 Population Level Average Trajectory

For each covariate, the actual average population trajectory can be plotted to see if

it falls within the 5th and 95th percentile of the 𝐾 × 𝑁 simulations. The predicted

averages from G-Net can be plotted as well to see if the predicted average is close to

the actual average. The actual average should fall within the 5th and 9th percentiles

of the 𝐾×𝑁 simulations and be fairly close to the predicted average across the 𝐾×𝑁

simulations.

28



5.3.4 Individual Patient Monte Carlo Visualizations

A third check will be a visual check of the trajectories for each of the covariates

for a single patient, rather than the population level average trajectory. For a few

randomly selected patients from the counterfactual test sets, the actual trajectory

was plotted along with the 𝐾 = 100 Monte Carlo simulations for that patient. One

plot was created for each covariate. If the actual trajectories fall within the ranges

for the 𝐾 = 100 Monte Carlo simulations, then this is another piece of supporting

evidence that the models are performing well.

5.3.5 Analysis of Average Treatment Effect

A fourth check is of the average treatment effect to make sure the predicted treatment

effect is close to the actual treatment effect. Treatment effect is the difference between

the outcomes under treatment, 𝑆𝐶1 and no-treatment, 𝑆𝐶2. To compute the treatment

effect of a single variable, the difference of the mean under 𝑆𝐶1 and the mean under 𝑆𝐶2

is computed for each patient at each timestep. Then, for each time 𝑡, the treatment

effect for a particular variable is the average treatment effect across all patients. This

procedure is repeated for each covariate. At the end of this, each covariate will have

its own treatment effect over time plot with both the treatment effect from the G-Net

predictions, and the actual ground-truth treatment effect computed from the test set.

The predicted treatment effect should be similar to the actual treatment effect.
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Chapter 6

CVSim Results

In this chapter, CVSim results are presented. The performances of models 𝑀1−𝑀4

are compared through MSE and calibration over time plots. The best model found

was then evaluated by looking at the population level trajectories, individual patient

level Monte Carlo simulations, and treatment effect plots.

6.1 MSE over Time

The performances of the various models, 𝑀1−𝑀4, were evaluated by looking at the

MSE over time. At each timestep, the MSE between the predictions and the ground

truth from CVSim was recorded. This was done for both the counterfactual strategy

𝑆𝐶1, where there was treatment administered, and the counterfactual strategy 𝑆𝐶2,

where treatment was withheld. From Figure 6-1, it is evident that the G-Net LSTM

models outperform the traditional linear regression model, since they have lower MSE

than linear regression. There is also the trend of increasing gaps in performance as the

number of simulation timesteps increases. This is expected because LSTMs are known

for their abilities to summarize history and perform better than linear regression in

the long run. The best G-Net model in terms of the lowest MSE over time is 𝑀3, the

model with 2 LSTMs, one for the categorical regressor, and one for the continuous

regressor.
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Figure 6-1: MSE Over Time Plots for Models M1-M4 for both 𝑆𝐶1 (treatment) and
𝑆𝐶2(no treatment)

6.2 Calibration Over Time

Besides looking at MSE, it is also useful to look at how well calibrated the models are.

For each timestep of simulation, the percentage of actual covariates falling within the

5th and 95th percentile of simulations was recorded. This was done for all models

on both counterfactual strategies 𝑆𝐶1 and 𝑆𝐶2. The perfect calibration would be

Figure 6-2: Calibration Plots for Models M1-M4 for both 𝑆𝐶1 (treatment) and 𝑆𝐶2(no
treatment)

90 percent. The calibration plots shown in Figure 6-2 show that the G-Net models

are better calibrated than the linear regression baseline, in general. The percentage

calibrated is not perfect but is reasonable and expected. The calibration is initially

higher and then falls as the number of simulation timesteps increases. This behavior
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is expected because the longer the simulations run, the more the predictions will

diverge from ground truth. The calibration plots also indicate that the G-Net model

𝑀3 is best due to its higher calibration over time relative to the other models.

6.3 Population Level Trajectory Visualizations

Besides evaluating performance by looking at MSE and calibration, it is also helpful

to visualize the population level trajectories for each one of the covariates individually.

Figure 6-3 showcases a few population level trajectories for a few selected covariates:

heart rate(HR), mean arterial pressure(MAP), left ventricular pressure(LVP), and

arterial volume (AV). These results are from the best G-Net model, 𝑀3, as determined

from the previous MSE and calibration plots.

Figure 6-3: Population level trajectory plots for a few selected variables. 𝑆𝐶1 (treat-
ment).
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These results show the average of the trajectories predicted by G-Net with the

average of the actual trajectories generated by CVSim. The predicted average and

the actual average are fairly close, another indication that the models are performing

well. The 5th and 95th percentiles are included in the plots as well. The actual

averages fall between the 5th and 95th percentile lines, as expected.

6.4 Individual Patient Level Monte Carlo Simulation

Visualizations

It is also possible to view the 100 Monte Carlo simulations for a single patient. The

best G-Net model, 𝑀3, was used to generate the Monte Carlo simulations shown in

Figure 6-4. Figure 6-4 shows the Monte Carlo simulations for left ventricular pressure

(LVP) and arterial flow (AQ) for a patient selected at random from the test set. The

light, semi-transparent blue lines are single Monte Carlo simulations. The solid blue

line is the average over all 100 simulations. The red line is the actual trajectory for

the variable for this particular patient. The actual trajectory should fall within the

ranges of the Monte Carlo simulations, and they do, as expected.

Figure 6-4: Visualizations of 100 Monte Carlo Simulations generated by the best
G-Net model.
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6.5 Analysis of Average Treatment Effect

Figure 6-5 shows the average treatment effect between 𝑆𝐶1 (treatment) and 𝑆𝐶2 (no

treatment) for a few variables. The best G-Net model, 𝑀3, was used to generate the

results given in Figure 6-5.

Figure 6-5: Comparison of the average treatment effect predicted by the best G-Net
model and the actual average treatment effect.

The actual treatment effect, shown in red, is compared with the predicted treat-

ment effect, shown in blue. The 5th and 9th percentiles of the predicted average

treatment effects are shown as well. The predicted treatment effect is close to the

actual treatment effect, and the average treatment effect falls within the 5th and 95th

percentile lines as expected.

The treatment effect curves seem to suggest that a joint intervention of fluids and

vasopressors will decrease the heart rate, increase blood pressure, and not have much

effect on variables like left ventricle flow (LVQ).
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Chapter 7

MIMIC Experiments

Previously, the performance of the G-Net was evaluated on a dataset generated by

a simulator, CVSim. However, ideally, G-Net would be used on real-world datasets

and be able to predict what would happen to patients under counterfactual strategies

after training on a real-world observational dataset. This chapter explores a real

world clinical use case, where the cohort for the clinical study was extracted from

MIMIC.

7.1 A Clinical Application: Effects of Fluid Admin-

istration

For patients in the ICU, physicians typically administer fluids to patients to increase

blood pressure if it is too low. However, too much fluid has adverse effects, such as

pulmonary edema. It would be useful to know what would happen to the patient

under different fluid intervention strategies. This would allow physicians to test out

different strategies to find the one that would result in greater survival rate and better

health trends for the patients, without having to experiment on the patients through

trial and error in real life.

Fluid administration strategies are typically dynamic and time varying. At each

time step, the amount of fluid administered is dependent on the patient’s current
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health status and the patient’s health trends in the previous few time steps. The

counterfactual prediction problem involving dynamic, time-varying strategies calls

for the use of g-computation. In this clinical setting, the intervention, 𝐴𝑡, is the

amount of fluid administered at each timestep.

7.2 MIMIC Data Extraction and Processing

The cohort of this clinical study of fluid administration strategies was limited to pa-

tients who had a pre-ICU fluid amount recorded under Metavision from the MIMIC

database. (Data extraction was limited to Metavision because it has better docu-

mented pre-ICU fluid information.) After this filter was applied the total cohort size

was 11,919 patients.

The variables of interest included in this study included both static and time-

varying variables. Static variables include demographic information (gender, age,

etc.) and previous health history information (end stage renal failure, congestive

heart failure, diabetes, etc.). Time varying variables include patient vital signs (heart

rate, blood pressure, temperature, etc.) and lab values (blood urea nitrogen, lactate,

etc.). The full list of variables included is charted in Appendix B.

Time varying variables were binned by the hour. Vital signs are typically more

frequent than lab values. There may be more than one measurement recorded for

a particular variable in a single hour. If that is the case, the average over all mea-

surements within that hour is summarized. If no measurements were charted in a

particular hour, a NA is recorded. The NA values were then prorated by filling for-

ward the most recent measurement. If a patient trajectory starts with NA values,

the NA values are replaced with zeros.

Both time-varying variables and static variables can be continuous or categorical.

Continuous variables were normalized by subtracting the mean and dividing by the

standard deviation for that variable: 𝑥 = 𝑥−𝑥
𝜎(𝑥)

. Categorical variables were one hot

encoded.

Unlike the CVSim experiments, the experiments with the MIMIC cohort included
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censoring variables. There are four censoring variables: death, mechanical ventilation

(MV) initiation, initiation of diuretics administration, and discharge from hospital.

These variables are binary indicators. As soon as a 1 is encountered for a patient

for any one of these censoring variables, the patient is censored, meaning no training

data is available for that patient from the censoring timepoint and onward. Patient

data was limited to a maximum of 240 hours after ICU admission. If a patient dies

within 240 hours, their death indicator is set to 1 for the hour of death. The diuretics

indicator is set to 1 when diuretics is initiated. The MV indicator is set to 1 when

MV is initiated. If the patient record is less than 240 hours, and the patient has

not yet been censored due to death, diuretics initiation, or MV initation, the release

indicator was set to 1 for the final hour of data, meaning the patient was discharged

from hospital.

7.3 MIMIC Evaluation Methods

An issue with using a real-world clinical datasets is that only the outcomes under the

observational regime are available. It is not clear what the ground-truth is for different

counterfactual strategies. In this case, it is impossible to evaluate the counterfactual

predictive abilities of G-Net, since there is no ground-truth for the counterfactual

strategies to compare against. However, it is still possible to evaluate the predictive

abilities of G-Net on the observational dataset. If the G-Net has accurate predictions

for the observational dataset, it should do reasonably well in predicting the outcomes

under counterfactual strategies, assuming the conditional distributions under the ob-

servational regime and the counterfactual regimes are similar.

It is also useful to try a few real-world counterfactual policies on the MIMIC cohort

to see what would have happened had physicians followed a specific alternative fluid

administration strategy. Two counterfactual strategies were experimented with in this

study: one aggressive fluid administration strategy, 𝑆𝐶1, and one conservative fluid

administration strategy, 𝑆𝐶2. The aggressive counterfactual strategy is to give 1000

mL of fluid if blood pressure is below 65. The conservative counterfactual strategy is
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to give 200 mL if blood pressure is below 55. The results are then analyzed to see if

they are reasonable in a clinical sense.

Aggressive Counterfactual Regime: 𝑆𝐶1

if 𝐿𝑀𝐵𝑃
𝑡 ≤ 65 then
𝐴𝑡 = 1000 mL

else
𝐴𝑡 = 0

end

Conservative Counterfactual Regime: 𝑆𝐶2

if 𝐿𝑀𝐵𝑃
𝑡 ≤ 55 then
𝐴𝑡 = 200 mL

else
𝐴𝑡 = 0

end

7.4 MIMIC Experimental Setup Details

Only the best G-Net model, 𝑀3, was used for the MIMIC experiments. Its predic-

tive performance on the observational dataset was evaluated. Then, it was used to

illustrate the effects of the two counterfactual strategies on the covariates, 𝐿𝑡.

The cohort of patients with pre-ICU fluid charted totaling 11,919 individuals was

split into a training set, a validation set, and a test set, using a 60-20-20 split, resulting

in 7151 in the training set, 2383 in the validation set, and 2385 in the test set. The

G-Net model was first trained using the training set, with the hyper-parameters tuned

for using the validation set.

The experimental setup during testing is different from the CVSim setup. With

the MIMIC experiments, the treatment, 𝐴𝑡, is also predicted along with 𝐿𝑡 at each

timestep, since only the predictive performance of the model is evaluated on the test

set from the observational regime; there is no counterfactual strategy to define 𝐴𝑡 at

each timestep. During test time, the G-Net model is first fit to the 𝑏 timesteps of data

as the baseline (𝑏 = 5 for the results presented in the next chapter). Then, starting
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at time 𝑡 = 𝑏 + 1, 𝐾 trajectories were simulated for each patient (𝐾 = 5 for the

results presented in the next chapter), giving a total of 𝐾 ×𝑁 simulations, where 𝑁

is the total number of patients in the test set. If at any time during the simulations,

a censoring variable becomes 1, the trajectory is censored and not included in the

population level analysis from that censoring time step and onward.

For each variable, the 𝐾 ×𝑁 simulations from G-Net are averaged for each time

point of the simulation window. This results in a population average predicted tra-

jectory curve for each variable. This curve is plotted against the actual population

average trajectory curve calculated from the test set. The actual average for each

variable at each timestep is calculated by taking the average over the 𝑁 patient tra-

jectories in the test set. These predicted and actual population average trajectory

curves are compared to see if they are close.

Using the trained G-Net model, counterfactual strategies 𝑆𝐶1 and 𝑆𝐶2 were exper-

imented with. Unlike previously with the predictive check on the observational test

set, now 𝐴𝑡 is no longer predicted by the model. Rather at each timestep, 𝐴𝑡 is com-

puted based on the counterfactual strategy of interest. These 𝐴𝑡 are then used along

with 𝐿𝑡 to predict 𝐿𝑡+1. The simulation procedure is the same as the simulations

for the predictive check, where population level averages are computed resulting in

population level trajectory curves. The population level trajectory curves under the

aggressive counterfactual strategy, 𝑆𝐶1, and the conservative counterfactual strategy,

𝑆𝐶2, are compared to see if the difference between the two makes clinical sense.

Results of the predictive check of the best G-Net model on the observational test

set and the counterfactual illustrations are shown in the next chapter.

39



Chapter 8

MIMIC Results

8.1 Check of Predictive Performance

Figure 8-1 shows the predictive abilities of the best G-Net model, 𝑀3, under the

observational regime on a few of the censoring variables. These variables are cate-

gorical(binary), taking the values 0 or 1. These plots show the fraction of the test

set population that have been censored due to death or diuretics initiation at each

time step, starting at the first simulation timestep and continuing through until the

end of the simulation window. The predicted curve is very close to the actual curve,

Figure 8-1: The population level average trajectory plots for a few censoring variables:
death and diuretics initiation.

which shows that the G-Net model performs well on predicting categorical variables.
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Figure 8-2 shows the best G-Net model’s predictive performance on a few continu-

ous variables: systolic blood pressure, diastolic blood pressure, respiratory rate, and

temperature.

Figure 8-2: The population level average trajectory plots for a few time-varying
covariates: systolic blood pressure, diastolic blood pressure, respiratory rate, and
temperature.

The predicted trajectory and the actual trajectory are very close, upon inspection

of the clinical ranges for these values. The clinical differences between the two curves

are almost negligible, and shows that the G-Net model can perform well on continuous

variables as well.

41



8.2 Illustration of Effects of Counterfactual Strate-

gies

Two counterfactual strategies, 𝑆𝐶1(aggressive policy) and 𝑆𝐶2(conservative policy),

were experimented with to see what would have happened to the MIMIC cohort

under those strategies. Details on 𝑆𝐶1 and 𝑆𝐶2 are in Chapter 7. The plots in

Figure 8-3 show the population level effects of an aggressive and a conservative fluid

administration policy on certain variables. Usually, if more fluids are administered,

the blood pressure would be higher, the urine output should increase, and the blood

urea nitrogen (BUN) score should decrease. The plots in Figure 8-3 supports this. The

fact that the results make clinical sense indicates that the G-Net model is performing

well on counterfactual prediction tasks.

Figure 8-3: The effect of the counterfactual strategies on some variables of interest
using the best G-Net model
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Only two simple counterfactual policies 𝑆𝐶1 and 𝑆𝐶2 were explored in this project,

however, any complicated dynamic, time-varying fluid administration strategy could

be implemented. Physicians can use G-Net to test various counterfactual strategies

of interest to see what would have happened to the population.
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Chapter 9

Discussions and Future Work

In this project, a non-parametric approach to G-computation using recurrent neural

networks was explored. However, it is possible to assume different parametic forms

for the conditional distributions, such as Gaussian, Poisson, exponential, etc. One

potential area for future work is to explore parametric implementations of G-Network.

Parametric implementations might work well in the case that strong assumptions

could be made about the distribution in the dataset because they are more tailored

to the specific distribution.

Another potential area of future work is to explore different models for the G-

Net framework. In this project, only a few models were explored. However, many

improvements can be made to these models, such as the addition of a temporal

attention mechanism to improve performance on datasets where there may be long

range dependencies.
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Chapter 10

Conclusion

This thesis introduces a novel recurrent neural network approach to G-computation,

dubbed G-Net. A few specific implementations were explored for the G-Net frame-

work. The CVSim results show that G-Nets perform better in counterfactual predic-

tion tasks than the traditional linear regression implementation of G-computation.

The MIMIC results illustrate the accurate predictive abilities of G-Net under the ob-

servational regime, and the clinical plausibility of the counterfactual predictions from

G-Net.

G-Net can be used for counterfactual prediction tasks where the strategies of

interest are time-varying and dynamic, and aid in the decision of which intervention

strategy is ideal and leads to the best outcome. Though this thesis only explored

clinical datasets and clinical interventions, G-Net can be used in any real-world setting

where it is useful to know counterfactual outcomes under various dynamic, time-

varying intervention strategies.
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Appendix A

CVSim Dataset Details

CVSim is an open-source simulator of the human cardiovascular system [5]. The

dataset generated for this study was derived from the waveforms output of the 6

compartment CVSim model. CVSim is a deterministic model, where the output at

the next instance is fixed given the input to the CVSim model. Since a distribution

of possible values was needed for this project, the dataset created using the CVSim

model had some stochasticity injected during the dataset generation procedure.

A.1 CVSim Variables

A.1.1 Inputs Variables to CVSim

CVSim takes as input some values for certain hemodynamic parameters. To simulate

many trajectories, input values were sampled randomly from the range of values

allowed by CVSim. The input variables and their corresponding ranges are given in

Table A.1.

A.1.2 Output Variables from CVSim

At each time point, the 6 compartment CVSim model generates 25 hemodynamic

outputs. For this project, 4 additional outputs were derived from the 25 hemodynamic

outputs: diastolic blood pressure(DBP), systolic blood pressure (SBP), mean blood
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Table A.1: CVSim Input Variables and Ranges

Input Variables Range
Arterial Compliance 0.4 - 1.1
Nominal Heart Rate 40 - 60

Pulmonary Arterial Compliance 0.1 - 19.9
Pulmonary Microcirculation Resistance 0.4 - 1.0

Total Blood Volume 1500 - 1600
Total Peripheral Resistance 0.1 - 1.4

Total Zero-Pressure Filling Volume 500 - 3500

pressure(MBP), and pulmonary edema indicator flag. The DBP is the lowest arterial

blood pressure measurement over a time interval. The SBP is the highest arterial

blood pressure measurement over a time interval. The MAP is average pressure

during one cardiac cycle. It defined mathematically as 𝑀𝐴𝑃 = 2
3
𝐷𝐵𝑃 + 1

3
𝑆𝐵𝑃 .

The pulmonary edema flag is 1 if pulmonary venous pressure (PVP) is above 25, else

0. The pulmonary edema indicator is a categorical(binary) variable.

Table A.2 lists the various variables generated as output by CVSim. The final

column in the table indicates whether the variable was included as a covariate 𝐿𝑡 in

the project. Some output variables were dropped to satisfy the assumptions necessary

for G-computation. A total of 20 variables were included in 𝐿𝑡.

The output variables were normalized by the generalized logistic (GL) normaliza-

tion method, since the GL normalization method tends to be robust to outliers, and

has better performance on smaller datasets [3].

A.2 Dataset Generation Procedure

A.2.1 Introducing Instability and Stochasticity

CVSim is deterministic, meaning once the system is initialized with a set of input

variables, the trajectory will be fixed. Realistically though, there would be unpre-

dictability due to instabilities in a patient, such as disease. For this study, some

probability of disease is introduced at each timestep. There are two types of disease:

sepsis and blood loss. At each timestep, there can only be sepsis or blood loss, not
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Table A.2: CVSim Output Variables and Abbreviations. The final column indicates
whether the particular variable was included as one of the covariates, 𝐿𝑡, in the study.

Output Variables Abbreviation Included in 𝐿𝑡

Arterial Pressure AP Yes
Arterial Flow AQ Yes

Arterial Volume AV Yes
Arteriolar Resistance AR Yes

Central Venous Pressure CVP Yes
Central Venous Flow CVQ No

Central Venous Volume CVV No
Diastolic Blood Pressure DBP Yes

Heart Rate HR Yes
Intra-thoracic Pressure PTH Yes
Left Ventricle Pressure LVP Yes

Left Ventricle Flow LVQ Yes
Left Ventricle Volume LVV No

Left Ventricle Contractility LVC Yes
Mean Arterial Pressure MAP Yes

Pulmonary Arterial Pressure PAP No
Pulmonary Arterial Flow PAQ No

Pulmonary Arterial Volume PAV No
Pulmonary Edema PE Yes

Pulmonary Venous Pressure PVP No
Pulmonary Venous Flow PVQ No

Pulmonary Venous Volume PVV No
Right Ventricle Pressure RVP Yes

Right Ventricle Flow RVQ Yes
Right Ventricle Volume RVV Yes

Right Ventricle Contractility RVC Yes
Systolic Blood Pressure SBP Yes

Total Blood Volume TBV Yes
Venous Tone VT Yes

both. The probabilities of the diseases are given below:

1. Probability of Disease, 𝑃 (𝑑𝑖𝑠𝑒𝑎𝑠𝑒) = 0.05 at each time 𝑡

2. Probability of Blood Loss Given Disease, 𝑃 (𝑏𝑙𝑜𝑜𝑑 𝑙𝑜𝑠𝑠|𝑑𝑖𝑠𝑒𝑎𝑠𝑒) = 0.5

3. Probability of Sepsis Given Disease, 𝑃 (𝑠𝑒𝑝𝑠𝑖𝑠|𝑑𝑖𝑠𝑒𝑎𝑠𝑒) = 0.5

If there is sepsis at a given time 𝑡, then 𝑇𝑃𝑅𝑡+1 = 𝑟𝑠×𝑇𝑃𝑅𝑡, where 0 < 𝑟𝑠 < 0.7.

In words, if there is sepsis at time 𝑡, the total peripheral resistance is reduced by a
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factor 𝑟𝑠, which is sampled from a uniform distribution between 0 and 0.7. If there

is blood loss at a given time 𝑡: then 𝑇𝐵𝑉𝑡+1 = 𝑟𝑏 × 𝑇𝐵𝑉𝑡, where 0 < 𝑟𝑏 < 0.95. In

words, if there is blood loss at time 𝑡, the total blood volume is reduced by a factor

of 𝑟𝑏, which is sampled from a uniform distribution between 0 and 0.95.

A.2.2 Treatment Under the Observational and Counterfactual

Regimes

The treatment in this study is a vector of two treatments [𝐴1
𝑡 , 𝐴

2
𝑡 ]: 𝐴1

𝑡 = 𝑓𝑙𝑢𝑖𝑑𝑠 and

𝐴2
𝑡 = 𝑣𝑎𝑠𝑜𝑝𝑟𝑒𝑠𝑠𝑜𝑟𝑠. To mimic the administration of fluids using CVSim, the total

blood volume is increased. To mimic the administration of vasopressors using CVSim,

the arterial resistance is increased. For this project, the goal of the treatment is to

stabilize blood pressure. Therefore, the treatment strategies explored are functions

on the mean arterial pressure (MAP) and central venous pressure (CVP). Under the

observational regime 𝑆𝑂, the treatment strategy is stochastic function of MAP and

CVP. Under the counterfactual treatment regime 𝑆𝐶1 the treatment is deterministic

function of MAP and CVP. (There is no treatment under 𝑆𝐶2, so treatment is always

0 at all simulation timepoints).

Observational Regime: 𝑆𝑂

∆𝑀𝐴𝑃
𝑡 ← 65− 𝐿𝑀𝐴𝑃

𝑡

∆𝐶𝑉 𝑃
𝑡 ← 10− 𝐿𝐶𝑉 𝑃

𝑡

𝑃 (𝐴𝑡|𝐿𝑡)← 1
1+𝑒−𝑥 , where 𝑥 = 𝛼1 ×∆𝑀𝐴𝑃

𝑡 + 𝛼2 ×∆𝐶𝑉 𝑃
𝑡 + 𝛼0

𝐴1
𝑡 ← 𝑚𝑎𝑥(0, 𝛽1

1 ×∆𝑀𝐴𝑃
𝑡 + 𝛽1

2 ×∆𝐶𝑉 𝑃
𝑡 + 𝛽1

0), where 𝛽1
0 ∼ 𝑁(1500, 1000)

𝐴2
𝑡 ← 𝑚𝑎𝑥(0, 𝛽2

1 ×∆𝑀𝐴𝑃
𝑡 + 𝛽2

2 ×∆𝐶𝑉 𝑃
𝑡 + 𝛽2

0), where 𝛽2
0 ∼ 𝑁(0, 1)

The parameter values used for the CVSim dataset generation process used in this

project are 𝛼0 = 0.02, 𝛼1 = 0.06, 𝛼2 = 0.24, 𝛽1
1 = 10, 𝛽1

2 = 60, 𝛽2
1 = 0.1, 𝛽2

2 = 0.15.
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Counterfactual Regime: 𝑆𝐶1

∆𝑀𝐴𝑃
𝑡 ← 65− 𝐿𝑀𝐴𝑃

𝑡

∆𝐶𝑉 𝑃
𝑡 ← 10− 𝐿𝐶𝑉 𝑃

𝑡

𝑠ℎ𝑜𝑐𝑘_𝑖𝑛𝑑𝑒𝑥← 𝐿𝐻𝑅
𝑡

𝐿𝑆𝐵𝑃
𝑡

if 𝐿𝑆𝐵𝑃
𝑡 ≤ 100 and 𝑠ℎ𝑜𝑐𝑘_𝑖𝑛𝑑𝑒𝑥 ≥ 0.8 then
𝑃 (𝐴𝑡|𝐿𝑡)← 1

else
𝑃 (𝐴𝑡|𝐿𝑡)← 0

end
𝐴1

𝑡 ← 𝑚𝑎𝑥(0, 𝛽1
1 ×∆𝑀𝐴𝑃

𝑡 + 𝛽1
2 ×∆𝐶𝑉 𝑃

𝑡 )
𝐴2

𝑡 ← 𝑚𝑎𝑥(0, 𝛽2
1 ×∆𝑀𝐴𝑃

𝑡 + 𝛽2
2 ×∆𝐶𝑉 𝑃

𝑡 )
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Appendix B

MIMIC Dataset Details

B.1 Variables Included

B.1.1 Static Variables

Certain static variables were included in the prediction of the covariates 𝐿𝑡, but were

not time-varying, so were not predicted by the model. Some static variables are health

history information, such as whether the patient has metastiatic cancer, diabetes, end

stage renal failure, etc. Some others are demographic information such as gender, and

age. The full list of these static variables included in the study is given in Table B.1.

B.1.2 Time Varying Variables

Vital signs and lab values are examples of time-varying variables, though vital sign

measurements are more frequent than lab values. Time varying variables fall into two

categories: continuous and categorical. The full list of time-varying variables, along

with their units of measurement, included in the study are given in Table B.2.
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Table B.1: MIMIC Static Variables Included

Static Variables Variable Type Units
Age Continuous years

Pre-ICU Fluid Amount Continuous mL
Gender Categorical(Binary) N/A

Valvular Disease Categorical(Binary) N/A
Peripheral Vascular Categorical(Binary) N/A

Hypertension Categorical(Binary) N/A
Paralysis Categorical(Binary) N/A

Chronic Pulmonary Categorical(Binary) N/A
Diabetes Uncomplicated Categorical(Binary) N/A
Diabetes Complicated Categorical(Binary) N/A

Hypothyroidism Categorical(Binary) N/A
Liver Disease Categorical(Binary) N/A

AIDS Categorical(Binary) N/A
Lymphoma Categorical(Binary) N/A

Metastatic Cancer Categorical(Binary) N/A
Solid Tumor Categorical(Binary) N/A

Rheumatoid Arthritis Categorical(Binary) N/A
Coagulopathy Categorical(Binary) N/A

Obesity Categorical(Binary) N/A
Deficiency Anemias Categorical(Binary) N/A

Alcohol Abuse Categorical(Binary) N/A
Drug Abuse Categorical(Binary) N/A

End Stage Renal Failure Categorical(Binary) N/A
Congestive Heart Failure Categorical(Binary) N/A
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Table B.2: MIMIC Time-Varying Variables Included. An asterisk next to variable
means it is the treatment variable, 𝐴𝑡. The rest of the variables listed are the covari-
ates, 𝐿𝑡.

Time-Varying Variables Variable Type Units
Base Excess Continuous mmol/L
Bicarbonate Continuous mmol/L
Total CO2 Continuous mEq/L
Hemoglobin Continuous g/dL

Lactate Continuous mmol/L
SO2 Continuous %

PCO2 Continuous mmHg
PH Continuous Numerical[1,14]
PO2 Continuous mmHg

Potassium Continuous mEq/L
BUN Continuous mmol/L

Temperature Continuous ∘C
Bilirubin Continuous mg/dL

Creatinine Continuous mg/dL
Platelet Continuous counts/109 L

Urine Output Continuous ml/kg/hr
Heart Rate Continuous beats/min

Systolic Blood Pressure Continuous mmHg
Diastolic Blood Pressure Continuous mmHg

Mean Blood Pressure Continuous mmHg
Respiratory Rate Continuous breaths/min

SpO2 Continuous %
Weight Continuous lbs

Fluid Amount* Continuous mL
GCS Treated as Continuous Numerical[3-15]

GCS-Motor Treated as Continuous Numerical[1-6]
GCS-Verbal Treated as Continuous Numerical[1-5]
GCS-Eyes Treated as Continuous Numerical[1-4]

Fluid Amount Indicator* Categorical(Binary) N/A
Mechanical Ventilation(MV) Indicator Categorical(Binary) N/A

Vasopressor Indicator Categorical(Binary) N/A
Death Indicator Categorical(Binary) N/A
Release Indicator Categorical(Binary) N/A
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