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A STATISTICAL LINEARIZATION APPROACH TO REAL TIME

NONLINEAR FLOOD ROUTING

ABSTRACT

This work examines the flood routing problem. A nonlinear
router based on a series of reservoirs served as the model and modern
estimation theory techniques were used to improve its performance in
real time river discharge forecasting. The model was statistically
linearized to become compatible with a Gaussian minimum variance esti-
mator. The Taylor-Gauss methodology was proposed for the analytical
determination of the expected value of nonlinear functions when the
independent variable is approximately normally distributed. Having
bypassed the heavy computational requirements for the numerical calcu-
lation of the statistical linearization gains, a recursive estimator
for the states and parameters was designed. The outcome of the synthesis
procedure described, the stochastic flood routing model, was used in a
real world application to forecast six-hour discharge values at the
Bird Creek drainage basin in Oklahoma, U.S.A. Procedures for the
determination of initial parameter values are described. An adaptive
run with suboptimal error statistics showed fast convergence in the
direction of minimum average squared error.
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Chapter 1

INTRODUCTION

1.1 Scope of Study

Optimal design and operation of flood control reservoirs

require the implementation of efficient flood routing schemes. For

instance, flood forecasting systems together with stage-discharge

relationships are used to predict the depth of flooding, the main

factor governing direct damage to structures in the flood plain.

Subsequently, depth-damage cost relationships are utilized for the

design of flood control works, which will reduce the damage cost asso-

ciated with a given flood (Bhavnagri and Bugliarello, 1965).

The flood routing model is also the basic tool in the

determination of the damage cost-frequency curves associated with an

existing reservoir. The historic floods with known seasonal or annual

probabilities of occurrence are routed through the reservoir for various

levels of initial storage and release schedules. The computed releases

and overflows approximate (since the optimal release schedule is not

known a priori) downstream flows. The computed flows are, then, used

in damage cost-discharge (or depth) relationships for the construction

of damage cost-frequency curves (Hughes, 1971).

In many cases, determination of the expected value of the

flood stage and damage costs is not adequate, and a measure of the error

involved in this estimate is needed. Coefficient of variations of the

flood damage cost greater than one have been reported (Langbein, 1958).
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This requires the use of flood routing schemes that provide an estimate

of the discharge (mean value) as well as a measure of the uncer-

tainty in this estimate. Literature over the past years have used

Kalman filtering (Kalman, 1960) to give an efficient solution to the

problem. Unfortunately, the algorithm for the optimal estimator requires

linear system dynamics and linear observation equation. Thus, if the

system in nonlinear, then some sort of linearization is required.

The purpose of this work is to design a stochastic flood

routing model, compatible with large conceptual soil moisture accounting

schemes, to be used in the real time forecasting of river flows. The

model should be capable of utilizing, in real time, the information

available in the observations of the river discharges at a single

location. A real world application will serve to verify the design.

1.2 Program of Study

A review of existing models is presented and a selection made

based on the goals of this work. Since the chosen model is nonlinear,

the results of optimal estimation theory are not readily applicable,

and linearization is required. Statistical linearization is used due

to its superior properties over ordinary linearization using a truncated

Taylor series expansion. This technique has the disadvantage that the

resultant linearization gains are functions of expected values of the

nonlinear functions involved. The problem is almost prohibitive in

the case of multi-dimensional functions. A methodology is developed for

the approximate, analytical, determination of the expected value of
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vector, multi-dimensional, nonlinear functions. The requirements are that

the function is differentiable to some order and that its arguments have

probability distributions that can be characterized by a finite number

of parameters.

A Gaussian minimum variance estimator of parameters and states

is designed for the statistically linearized model. The issue of

stability for the state estimator is examined. Tests of the stochastic

model in the 2344 km2 drainage basin of Bird Creek, Oklahoma, U.S.A.,

are performed.

In Chapter 2, a review of existing flood routing models is

offered. The models are grouped in dynamic, conceptual and regression

type. A conceptual model based on a series of nonlinear (in general)

reservoirs is chosen and its response characteristics are examined.

A methodology to determine analytically the expected value of

a nonlinear function is presented in Chapter 3. Results of comparisons

with numerical integration schemes are also discussed for the case of

m
a two-dimensional function of the type a - x . The arguments a, x of

the function are assumed to be normally distributed.

The statistical linearization technique is presented in Chapter

4. The theory for stationary processes is outlined first and subsequent-

ly, results for the nonstationary case are used to linearize the nonlinear

flood routing model. A Gaussian distribution is assumed for the states

and parameters of the model. The gains of linearization are computed

using the results of Chapter 3.

The minimum variance estimator based on the assumption of

Gaussian distribution for the initial states and the driving noise terms
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is discussed in Chapter 5. The canonical form of the system equations

is developed. Use of the canonical form is made to examine the state

estimator stability properties. The formulation for simultaneous

state and parameter estimation is also given.

The stochastic flood routing model designed is used in Chapter

6 to predict six-hour discharge values at the Bird Creek drainage basin

in Oklahoma, U.S.A. Implementation considerations as well as evaluation

of the filter parameters are discussed.
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Chapter 2

FLOOD ROUTING

2.1 Introduction

Flood routing is defined by Viessman, et al. (1972), as the

procedure used to predict the temporal and spatial variations of a flood

wave, as it traverses a river reach or reservoir.

During the past years, several descriptions of the phenomenon,

in terms of mathematical models, have been formulated. Flood routing

models differ in: the representation of the process physics, the ways

of estimating model parameters, and the input data requirements.

In the sections to follow, a review of the commonly used flood

routing models is offered. The criteria for selection among them are

discussed in terms of the scope of this study. Subsequently, the

important features of the chosen model (based on the predetermined

criteria) are examined. Characteristic applications of modern estimation

theory to flood routing problems are also presented.

2.2 Flood Routing Models

It is customary, in order to facilitate the discussion on

the subject, to group the different routing models under categories. In

the past, division of the models has been based on the number of their

parameters (Dooge, 1973) or on the aspects of the physical phenomenon

(flood wave movement) that they best simulate (Weinmann and Laurenson,

1977). In recent years, advances in estimation theory permitted the use

of simplified models in river flow forecasting with satisfactory results.
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This fact calls for a somewhat more general categorization

of models.

For the purposes of this development, the modern flood routing

models will be divided in a) dynamic (or physically oriented), b) concep-

tual (or phenomenological) and c) regression type (or black box) models.

All models that are based on the description of the physical

phenomenon using the conservation of mass and momentum equations (usually

referred to as the St. Venant equations) are grouped under the heading

"dynamic models." Representatives of this group of models are those

utilizing the full equations for gradually varied, unsteady channel flow,

those that are based on equations derived from a linearization of the

complete nonlinear St. Venant equations, and the kinematic wave model.

Conceptual hydrologic models are the reservoir storage type

and the so-called kinematic models. Their characteristic feature is

that they retain some of the physical laws (e.g., conservation of mass)

in their mathematical formulation, without being exact representations

of the physical reality.

The last category includes the regression type of models.

They rely heavily on an input-output description of the phenomenon, with-

out simulating any of the physical processes involved. In these models,

the flood wave-channel network system is replaced by some sort of impulse

response function.

Admittedly, there is no exact representation of the physical

reality given the assumptions inherent in the best available description

of the flood wave propagation in channel networks; the main assumptions
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being one-dimensional flow and resistance laws similar to those of steady

uniform flow in prismatic channels. Furthermore, exact analytical solu-

tion to the partial differential equations of motion and continuity for

a given set of initial and boundary conditions is not available.

Consequently, a major abstraction is introduced in most cases due to

the discretization schemes used for the numerical integration of these

equations. Therefore, one is tempted to include the dynamic models

under the second category. However, the distinction is made since it

is believed that physical models are superior to the other ones in that

they are capable of good performance in ungaged drainage basins, utiliz--

ing hydro-geologic data.

Concerning the so-called conceptual models, the common

procedure to evaluate their parameters is to use input-output data and

as a consequence little or no physical meaning can be attributed to the

obtained values. In this way, they resemble very much the models of the

third category. Nevertheless, conceptual models are expected to have a

better performance than the "black box" models, in forecasting under

conditions dissimilar to those of their calibration period (Kitanidis

and Bras, 1978).

In the following, a rather qualitative discussion of the

characteristic models of each category is presented.

2.2.1 Dynamic Models

The laws of conservation of mass and momentum for gradually

varied, unsteady flow can be written as (Eagleson, 1970),
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2z + u - + y - = - + 2qL (2.1)
at Dx x b

au 2 q!L U2 T0
+ U u + g - =Y [i -f + L ] u - (l + ) -- + g - Sat Dx ax b y b p*y o

(2.2)

where y is the flow depth measured perpendicular to the channel bottom;

u is the flow velocity, assumed parallel to the channel bed (one-

dimensional problem); x is the direction of flow; t is the time; i is

the rainfall intensity; f is the infiltration rate; qL is the lateral

inflow to the channel; b is the width of the channel, assumed rectangular;

g is the gravitational acceleration; p is the fluid mass density; S0 is

the slope of the channel bed and T is the boundary shear stress.

Under the assumptions of negligible rates of rainfall (i) and

infiltration (f), and small contribution of the lateral inflow in the

momentum equation (see corresponding discussion in Eagleson, 1970),

one can rewrite the governing equations (2.1) and (2.2) as

+ U - + y a - = 0 (2.3)
at x Dx b

Sf S - - 1 u u_ u (2.4)
f 0 Dx g at g ax

where S is the friction slope (Henderson, 1966), being equal to the

2y T
expression: (1+ P) 0 .

If the assumption is made that the friction slope can be

determined as in steady, uniform flow, then,
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Sf = u2  - (2.5)
C2-R

where C is a constant coefficient and R is the hydraulic radius.

Substitution of Eq. (2.5) in the momentum Eq. (2.4) yields:

1/2 .3y 1 u u u 1/2u = C -( R-2 , _ u / (2.6)
o x g 3t g 3x

or, in terms of discharge Q ( =uA):

Q = A - C - R1/ 2 *(S 1 au -U 3u1)1/2 (2.7)
o ax g t g ax

where A is the cross-sectional area of flow. It should be noted that

Eqs. (2.6) and (2.7) imply that the velocity and discharge are not single

valued functions of the depth. Thus, it is common to refer to them (in

particular, Eq. (2.7)) as looped rating curves.

Equations (2.3) and (2.6) have been used for the simulation

of the flood wave propagation in rivers. Major assumptions inherent in

the derivation of these equations are a) one-dimensional flow, b) small

bottom slope S 0, c) hydrostatic pressure distribution along the depth

of flow, d) the resistance laws for steady, uniform, turbulent flow are

considered applicable. The last two terms in the momentum equation

(2.4) are the local and convective acceleration terms, respectively,

while ax represents the pressure gradient.

Equations (2.3) and (2.6) are coupled, nonlinear, first order

partial differential equations of the hyperbolic type. They require one

initial and two boundary conditions for their solution. For subcritical

flow, the boundary conditions are specified at both ends of the river
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reach under consideration, while for supercritical flow (not usually

found in natural rivers), both boundary conditions are specified upstream

(since disturbances propagate only downstream). Discharge or depth

hydrographs and stage vs. discharge (rating) curves are utilized as

boundary conditions.

The objective in solving these equations is to determine the

water depths and velocities at all points in the reach, for all times.

Unfortunately, there is no known analytical solution. Numerical schemes

are required to discretize the space and time axes and convert the dif-

ferential equations to difference ones. Different numerical schemes

have been suggested.

Barnes (1967) made a comparison of three numerical schemes

in terms of their ability to give stable solutions and to adapt to sub-

and supercritical flow. The results of the numerical experiments were

compared with the results obtained from an experimental facility that

was operated under known initial and boundary conditions. The method of

characteristics gave superior results as compared with a scheme utilizing

a triangular mesh of solution points in the position-time space and with

another utilizing a rectangular grid and second order differences. The

initial conditions were taken as those of a steady uniform flow, while

a discharge hydrograph and a rating curve were the boundary conditions.

An implicit characteristic method using a characteristic

network, an explicit direct method and an implicit direct method were

compared by Amein and Fang (1969). Their tests were made for a) flow
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through an idealized channel and b) flow through a natural channel.

These investigators suggested the use of an implicit scheme that would

take advantage of the sparse nature of the simultaneous algebraic equa-

tions that need to be solved at each iteration step.

Due to the computational burden associated with the numerical

solution of the "complete" equations (2.3) and (2.4), as well as due to

the quantity and quality of the input data required for their solution,

several approximations have been proposed, within the class of dynamic

models.

Dooge and Harley (1967) presented a linearized version of

Eqs. (2.3) and (2.6) about a reference discharge Q , as follows:

(ge22 2 2 2- -S
(g-y - U2- _ 29u - D - @ 2 = 3-g-S + 0 -

o 0 2 o ax t 2 o x u t

(2.8)

where Q represents discharge; y and u are the reference depth and

velocity, respectively, corresponding to the reference discharge. Note

that the lateral inflow has been assumed insignificant, and it does not

enter Eq. (2.8). Since the perturbation analysis was based on small

deviations from the reference trajectories, these investigators performed

sensitivity analysis with respect to the values of Q0. They reported

that a) an increase in Q results in a decrease in the lag-time for

the channel reach under study, b) the second moment of the outflow hydro-

graph was not sensitive to changes in the value of Q 9, c) for floods of

long duration, changes in Q have a small effect on the shape of the

hydrograph. Based on these observations, they subsequently suggested
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that the operation of the linearized channel on the inflow appears to

consist of a translation dependent on the reference discharge Q 0 , and

an attenuation effect practically independent of the reference discharge.

That is, the system has been replaced by two subsystems, one causing

a nonlinear translation of the inflow and the other causing a linear

attenuation to the translated inflow. This linearized version of the

complete equations was mainly used to evaluate simpler linear models

(Dooge, 1973).

Simplification of Eq. (2.8) leads to the so-called diffusion

analogy models whose describing equation is of the type:

-_ + c -D = D - 2 (2.9)
t ax 2

ax

where c is a coefficient related to the translation of the flood wave;

D is a diffusion coefficient that introduces attenuation of the flood

wave. If lateral inflow is significant, it is added in the right hand

term in the form of c-qL. Price (1973) proposed analytical expressions

for the determination of the coefficients D and c in natural channels.

In the diffusion analogy models, the acceleration terms of

the momentum equation (2.6) have been neglected, while the pressure

gradient term -y has been retained. This suggests that this type of
Dx

model is well-suited for very mild slopes of the channel bed where

pressure terms become significant. The diffusion analogy models preserve

the double valued relationship between discharge and stage.
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Perhaps the dynamic model used most often is the kinematic

wave model (Lighthill and Whitham, 1955). In this case, the momentum

equation is reduced to the following:

S = S (2.10)

Consequently, there is a one to one correspondence between

stage and discharge. In this case, the describing equations can be

determined to be (Eagleson, 1970):

DA + = (2.11)at Dx L

Q = a - Am (2.12)

where a and m are constant coefficients, or in a combined form

(Lighthill and Whitham, 1955):

1 - + DQ= q (2.13)
c 3t 3x L

where c is the celerity of the kinematic wave and can be determined as:

C= A (2.14)
dA

x=x
c

where xc is any value of the position coordinate.

Solution of the system of Equations (2.11) and (2.12) is

usually based on the method of characteristics, since this simplified

model possesses only one system of forward characteristics, in contrast

to the hyperbolic equations (2.3) and (2.4) that possess two systems
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of characteristics.

The kinematic wave model is a good representation of the

physical process of the flood wave movement when inflow, free surface

slope and inertia terms are negligible in comparison with those of bottom

slope and friction (Eagleson, 1970).

Henderson (1966) suggests that the kinematic wave behavior is

very close to the one observed for natural floods, in steep rivers whose

slopes are of the order of 10 feet per mile or more.

A kinematic wave does not subside or disperse, but it will

change shape (it steepens) due to the dependence of the velocity on the

depth. If the steepening process ceases, the result will be a steady

state formation called the kinematic shock (or monoclinal wave)

(Henderson, 1966). This kind of behavior is confirmed by observed

natural floods, but the waves do not steepen as much and do exhibit

attenuation (Weinmann, 1977).

The term kinematic is used to indicate that the generated

waves initiate in the continuity equation. Dynamic waves result from

the use of the complete equations (2.3) and (2.6).

Both kinematic and dynamic waves are present in natural floods.

The bulk of the flow behaves like a kinematic wave, while dynamic waves

precede and follow it. It can be shown (Eagleson, 1970) that for natural

floods (F < 2), the dynamic wave preceding the kinematic one will atten-

uate rapidly, making little contribution to the progress of the flood

wave.
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Due to the ability of the kinematic wave model to represent

the flood wave movement in natural floods (except perhaps at the junction

of the main river with tributaries carrying significant flow), and its

analytical tractability, especially for overland flow type of problems,

it has been widely used.

Eagleson (1967) used this model to derive the contribution to

peak catchment discharge from an impulse of rainfall excess at a certain

location in the catchment. Bras and Perkins (1975) utilized the kine-

matic wave equations to simulate flow in a conceptual basin represented

as a network of overland, stream, pipe and gutter segments, in order to

determine the effects of urbanization in the runoff hydrographs of

selected areas.

Bras and Rodriguez-Iturbe (1975) used a finite difference

representation of the kinematic wave equations in network design prob-

lems.

Recently, Chan and Bras (1978) derived the distribution of the

water volume above a given threshold discharge for overland flow based

on the kinematic wave theory.

2.2.2 Conceptual Models

Due to existing uncertainty in the input data, system

parameters, and initial-boundary conditions, conceptual models for

flood routing have been developed. Almost all of them use the conserva-

tion of mass law and to a varying extent try to approximate the conserva-

tion of momentum law.
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One group of these models, called kinematic (Weinmann and

Laurenson, 1977), are generalizations of the kinematic wave model, in

that they account for attenuation effects through the numerical methods

used for the discretization of the kinematic wave equations.

The most commonly used representative of these models is the

Muskingum River model (Viessman, et al., 1972). If the kinematic wave

equation (2.13) is discretized, based on the scheme of solution points

of Figure 2.1, then

1 (6 (I- I ) + (1- 6)(Q2 - Q) Q1 +Q - 1 2 _ (2.15)
+ =

c At 2Ax

I , 2 input discharges

where the lateral inflow has been omitted for simplicity and c represents

* Axan average value of c in the reach. Setting c equal to a constant K

and solving for Q2 results in the commonly used form of the Muskingum

model. Cunge (1969) showed that if c evaluated as a representative value

of the kinematic wave celerity in the reach with length Ax, and 6 is set
1 (1Qb

equal to 1 - (l - b Ax) then the Muskingum scheme is a second
0

order approximation of the Equation (2.9), which corresponds to diffusion

analogy models.

A second order approximation to Equation (2.9) was obtained

from the kinematic wave equation (2.13) by discretizing in space only

and solving the resultant differential equation for the unknown dis-

charge. The solution can be written in the form:
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2 = 1 + k2* 12 + k3 * Q1 (2.16)

where

k= Ax (1 -k )-k (2.17)
1 Z-At 3 3

k = 1 - (1 - k3 ) (2.18)2 Z!-At 3

c* At

k 3 = e Ax- (1-6) 2.19)

It can be shown (Weinmann and Laurenson, 1977) that the model

described by Eqs. (2.16) through (2.19) can be reduced to the model

proposed by Nash (1959), to the successive routing method of Kalinin

and Milyukov (Dooge, 1973) and to the kinematic wave model (e.g., set

6 = 0.5 and c is evaluated from a steady flow rating curve). This model

is attributed to A. Koussis. The same investigator generalized this

model (Koussis, 1976) by introducing the effects of pressure for very

mild bed slopes, through the "Jones formula" (Henderson, 1966), based on

the kinematic wave assumption of no subsidence.

In general, it can be stated that the group of kinematic models

presented above are introducing attenuation effects for values of the

parameter 6 in the interval 0 < 6 < 0.5.

For 6 = 0.5, a pure translation results (kinematic wave),

while for 6 = 0, a pure attenuation is in effect.

The parameter c is a measure of the translation effects.

A second class of models in the conceptual category consists of

those of the reservoir type. These models introduce attenuation due to
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the storage properties of the channel network or reservoirs involved.

Different configurations for the reservoirs have been proposed (Nash,

1959; Overton, 1967; Mein, et al., 1974). Perhaps that of Mein,

Laurenson and McMahon (1974) is the most general one. In this case, the

continuity equation has been retained and a nonlinear relationship

between storage and discharge is assumed. The channel network is divided

in subreaches and the model is used with each one of them. The different

reservoirs are connected through the use of the conservation of mass law

at each junction of subreaches. Detailed discussion about this type of

model is reserved for later sections.

The parameters of the reservoir type of models are estimated

from hydro-geologic data (Mein, et al., 1974) or from observed input-

output data (which is the most common approach when these data are

available).

Weinmann (1977) compared complete dynamic models, diffusion

analogy models, kinematic wave models and kinematic models in regular

and highly irregular channels. The criteria for comparison were:

a. the ability of the models to closely approximate the

physical phenomenon,

b. the ability to produce stable and accurate results for a

wide range of conditions when used with numerical schemes,

c. the flexibility of the associated parameter estimation

procedures to adjust to different forms of input informa-

tion and to make use of all available data,
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d. the flexibility of the model structure to permit a

matching of the model complexity and outputs (considering

accuracy and format), to the quality of the available

input data and to the purpose of the routing results.

He concluded that none of the models included in the study had

all the desirable features of an "ideal" model. However, he suggested

that the model proposed by Koussis (1976) shows great potential of being

developed into a practical model with general applicability.

2.2.3 Black Box Models

The models of this category part completely from any physical

analogy to the flood routing phenomenon. They describe the discharge

(or depth) at a given position and time as a (usually linear) function

of the discharges at (n) previous time steps in all (m) positions as

well as a function of the inflows at (k) previous time steps in (p)

inflow locations. The major problem in those models is to estimate the

parameters involved. For example, if the model is linear, then estima-

tion of the regression coefficients and the integers n, m, k is sought.

This is done exclusively using inflow-outflow observed data and linear

regression techniques (Dooge, 1973).

Concern regarding the predictive capability of black box type

models for periods dissimilar to the calibration period suggests their

use in short-term prediction. Preferably, "black box" models should be

used with observation processors to incorporate additional streamflow and

input measurements in the estimated value of their parameters (e.g., as
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in a Kalman filter).

2.3 Use of Modern Estimation Theory in Flood Routing Studies

Kalman and Bucy (1961) solved the linear filtering problem

that consists of obtaining the linear, minimum variance, recursive

estimator of the state variables of a system (described by a set of

first order differential equations) at time t, given observations on

the output of the system up to and including time t. The major assump-

tion of the developed theory are a) linear system dynamics equation and

linear equation relating the observed quantities with the system states,

and b) the second moment statistics of the additive disturbance processes

must be known (see also Chapter 5).

Several extensions to the basic theory were proposed to relax

the assumptions involved (Jazwinski, 1970). Mainly, for the purpose of

parameter estimation, the so-called extended Kalman filter was developed.

This is based on a linearization, through a Taylor series expansion, of

the nonlinear multi-dimensional functions involved and an augmentation

of the state vector of the system by the vector of parameters. Then,

the basic theory was applied to the resultant higher order, linear

system.

Based on the fact that the so-called Kalman filter is ideally

suited for use in the hydrologic forecasting problem (equivalent to

prediction in the sense of Kalman, et al., 1961), several investigators

have applied this technique within the hydrologic context (e.g., Hino,

1973; Todini and Bouillot, 1975; Bras and Rodriguez-Iturbe, 1975;
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Kitanidis and Bras, 1978).

In this section, only some of the characteristic applications

of this estimator to flood routing studies will be presented.

Hino (1973) used the Kalman filter to recursively estimate

the parameters of unit hydrographs (models of the regression category).

Bras and Rodrlguez-Iturbe (1975) used a state-space formulation

of the kinematic wave model, coupled with a multivariate non-stationary

rainfall generator to assess the accuracy inherent in the estimation of

the rainfall input by a raingage network.

Logan, Lennox and Unny (1978) utilized a nonlinear storage

type model with time varying parameters together with a Kalman filter

for state and parameter estimation, with satisfactory results.

Wood (1978) used a simplified model of channel routing (black

box type) to forecast river flows at different points in a river network

with a short lead time of forecast (2 hours).

Li, Duong and Simons (1978) used a state space formulation of

the stage-discharge relationship with an iterated extended Kalman filter

(Jazwinski, 1970) to study the parameters that affect the form of the

looped rating curve at a location along the river.

Kitanidis and Bras (1978) used a simple linear reservoir as

the routing model of the National Weather Service River Forecast System

(NWS HYDRO-31), together with an extended Kalman filter for state and

parameter (coefficient of the linear reservoir model) estimation. Their

formulation included adaptive estimation of model errors and input error

identification techniques. A comparison of a black box type of model
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with the conceptual storage type hydrologic model favored the second

type, especially for long forecast lead times.

All the above presented studies convert the describing equations

of the flood wave movement into a system of first order, ordinary, dif-

ferential equations and then apply the results of modern estimation

theory. Since a basic prerequisite for the use of optimal estimation

is the linearity in the model and measurement equations, it is a standard

procedure to linearize the system equations by keeping the leading terms

in a Taylor series expansion of the nonlinear functions about some

reference point. Kitanidis and Bras (1978) were the first to use the

technique of statistical linearization in hydrologic studies. Although

superior to ordinary linearization (Gelb, 1974), this technique has not

been adequately explored.

Another characteristic of the studies presented is that there

has been little work in using conceptual models for real. time flood

routing, even though whenever used, they produced satisfactory results

(Kitanidis and Bras, 1978).

To the best of the authors' knowledge, there has not been an

attempt to work directly with the partial differential equations of

motion (Equations (2.3) and (2.6)), even though estimation techniques

for distributed systems are available (Seinfeld, et al., 1971).

Clearly, an approach like this would be ideal in cases where accuracy

is the only objective and at the same time adequate hydrologic data are

available for good observability properties of the resultant filters.
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2.4 Model Selection

In mathematical terms, the problem of model selection can be

formulated as a mathematical programming problem, whose objective func-

tion is a weighted combination of accuracy, computational economy and

availability of input data functions. One can go even further and con-

vert the problem to a stochastic programming one by considering the

uncertainty inherent in the values of the weights of the objective func-

tion. The solution to the generalized model selection problem can then

be obtained through successive evaluations of the objective function

with respect to all the available alternatives.

Even if the weights of the objective function were given, time

constraints do not permit the above described venture. In addition, such

a procedure has not been used in cases with objectives similar to those

of this study. Therefore, the selection of the flood routing model to

be used in this work will be based on qualitative arguments.

It is the purpose of this work to formulate a stochastic flood

routing model to be used in real time streamflow forecasting, together

with large conceptual hydrologic models. The available data consist of

an inflow discharge hydrograph, which is usually the output of a soil

moisture accounting scheme, and an observed outflow discharge hydrograph.

The flood routing model is intended to be used with real time estimation

schemes that will compensate for errors in the input hydrographs, model

formulation and estimated parameter values. On-line parameter estimation

schemes will be designed to tune the model for the particular drainage

basin under study.
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It is consistent with the above considerations to prefer a

conceptual model over a dynamic one. On the other hand, when used in

real time with recursive estimators, conceptual models perform better

than regression type models for relatively large forecast lead times

(Kitanidis and Bras, 1978). Consequently, a conceptual flood routing

model seems well suited for the purposes of this work.

A general model based on a series of reservoirs similar to the

one proposed by Mein, et al. (1974) is adopted.

2.5 Flood Routing Using a Series of Nonlinear Reservoirs

Based on the relative homogeneity of the hydro-geomorphologic

properties of a catchment (e.g., roughness of the channel bottom, slope

of the channel, distribution of channel inflow), one can divide the total

length of the main channel in n reaches. Each one of the reaches can be

thought of as a reservoir that stores water and releases it according

to some law.

Denote by S (t) the volume of water in storage at the ith

reach, I (t) the lumped inflow rate in the 1th reach, and by Q (t) the

corresponding outflowing discharge.

The conservation of mass law applied to the ith conceptual

reservoir gives,

dS. (t)

dt I (t) - Q.(t) ; i = 1, 2, ... , n (2.20)

for all times t.
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To complete the model, it is necessary to define the release

law of the reservoirs, which would provide a relationship between S (t)

and Q (t) for all i and t.

There is analytical and field evidence (Mein, et al., 1974)

that supports a power law between the outflowing discharge at time t

and the volume of water in storage at the same time t, for each reservoir.

For example, consider a wide rectangular channel and let y (t) repre-

sent the depth at the i h reach at time t, on the average. If L. is

the length of the reach and b. is the average width of the channel, then,

the total volume in storage at time t for the ith reach is,

S.(t) = b. - y.(t) - L. (2.21)
1 1 1

Use of Chezy's formula for the resistance law in uniform flow

and of a kinematic relationship that equates the friction slope with the

slope of the bottom of the channel results in,

Q (t) = C.A.(t) - R (t) - S1/2  (2.22)
1 i i 1

where C is a constant; Ai(t) is the cross-sectional area of flow at

time t; R.(t) is the hydraulic radius at time t; k is a parameter and

.th
S is the bedslope for the i reach.
0.i

Using

R.(t) y (t) (2.23)

in Eq. (2.22) and substituting,
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A (t) =bi - y (t)

Q1 ()=C-b-y (t) - yi (t) - S1 2.

Substitution of y (t) from Eq. (2.21) gives,

A)S.(t) *S.(t) k

Q.(t) = C. 1 y- -y1~~ S/2

i i L 'b-L 0.

i i i)1

m

Q.(t) = a, - S (t)
1 i

where in this case,

C. - 1/2
a 

=

k k+1
b. - L.I I

m = k + 1

(2.28)

(2.29)

If a Q (t) vs. S (t) relationship of the type in Eq. (2.27)

is accepted, then Eq. (2.20) can be rewritten as,

dS.(t) m

dt = I.(t) - a. - S.(t)
1t 1 1

(2.30)

The input distribution can be taken as,

I(t) = - u(t) + a S _ (t) ; i = 2, ... , m
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(2.24)

(2.25)

or

(2.26)

(2.27)

and

(2.31)

(2.32)

I (t u (t)



where u(t) is the total channel inflow and p1 , i = 1, 2, ... , n, is the

th
proportion of u(t) that serves as an input to the i reservoir. Under

these conditions, the equations of the system of reservoirs can be

expressed as

dS.(t)

dt p. - u(t) + a. 1 - S (t) - a. S.(t)

i = 1, 2, ..., n
with

(2.33)

A
a = 0 (2.34)

A schematic representation of the system is given in Figure

2.2.

The final output of the system is the discharge Qn(t) given

by

Q (t) = a Sm (t) (2.35)
n n n

The parameters a., i = 1, 2,..., n, and m of the model can be

determined either from survey data or/and from input-output discharge

records. If detailed survey data are available, for example, average

values of b., L., S , C., k for all reaches, and the assumptions used
1 1 0. 1

to arrive in Eq. (2.30) are a good approximation to reality, then

initial estimates of the parameters can be obtained from Eqs. (2.28)

and (2.29). If inflow and outflow discharge data are available, then

an estimation scheme should be used to produce the best fit to the

records, according to some criterion, utilizing the values obtained
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from Eqs. (2.28) and (2.29) as initial values.

Parameter estimation based on input-output information is

recommended since b., L., S , C., k are distributed quantities in space
1 1 0. 1

1

and possibly varying in time, rather than deterministic quantities

clearly identifiable for each lumped reach.

In the absence of survey data, the estimation of parameters

must be solely based on the input and output discharge records. There

is a variety of parameter estimation schemes. In particular, advances

in filtering theory permit the on-line evaluation of the parameters.

That is, each observation is processed as it becomes available. Chapter

5 will deal with the problem of the on-line parameter estimation. It

is a well-known fact, though, that the main problem of on-line parameter

estimation schemes is to obtain convergence of the estimates. In other

words, the estimation schemes produce stable parameter values if the

initial estimates used were good. The most common way to obtain good

initial estimates is to conduct simulation studies for a certain period

when historical input-output data are available. Parameters are

selected based on a criterion of performance (usually, a time averaged

squared error criterion). Selected values are then used as initial

estimates for the on-line parameter estimation schemes. In the follow-

ing, certain properties of the nonlinear reservoir model are presented

that will facilitate the determination of good initial parameter values.

It is obvious from Eq. (2.33) that if the system is not

operated in real time, one can consider each reservoir individually (with
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input the sum of the hydrograph produced by the previous reservoir and

the channel input). Consequently, reasonable parameters may result from

studies of a single reservoir response to a given input. It will be

convenient to characterize the output hydrograph from a single reservoir

with the same parameters as the input hydrograph. The objective is to

relate output and input characteristics as a function of model parameters.

The inverse relationship could then be used to identify a model that will

reproduce (up to some limited characteristics) an observed output hydro-

graph. It should be noted that the invariant in the transformation of

the input, when routed through a reservoir, is its total volume of water,

provided that the initial volume in storage is zero. The identification

problem could be a trial and error procedure to determine the values of

the parameters of the model (a. for all reservoirs and the number of

reservoirs) from given values of the parameters of the observed input

and the output hydrographs.

In this work, the input hydrograph is simplified to a triangular

shaped one. The characterizing parameters in this case are the peak

discharge Q , the time to peak t and the duration of the falling limb
1 1i

t . The subscript i denotes that the parameters correspond to the output
r.

1th
of the i reservoir (the input to the next one). One can convert any

hydrograph to triangular form by preserving Q and the volumes of water

under the rising and the falling limb.

When the reservoir is assumed linear, the analysis is simple

since one can determine the output parameters analytically. This is

pursued in Appendix B. The results can be presented in a recursive form
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as follows:

Q -ft pi-l At. 1

1 -
I~ t N-

1= g a. t ,

P1-1

(2.36)

(2.37)

t

i-1
t 

-1

t t

1 g a.- t , (2.38)g 2 t p. _r. 11 r
1 1-1

t

a. - t = a t , 1-1] (2.39)
1 P 3 i p _ tr.1-

where At. is the translation in time of the peak discharge due to the

routing through the reservoir and g1 , g2 ' g3 are nonlinear functions.

(Note: Q , t and t would be the characteristic parameters of the
p p r9

input to the cascade of reservoirs.) Expressions for the nonlinear

functions gi, g2 ' g3 are given in Eqs. (B.49), (B.51) and (B.52) of

Appendix B. +.

pi-1
Given values for , and a. t

t i pr. i
one can determine ,

-i pi-l
At. p

t-1 _ - and a. -t . Inversely, if At . and t are given, then, on
pi_1 r i i-1

can use these equations to determine the value of a. (e.g., using itera-

tions on Eq. (2.37) or using graphical methods). A typical identifica-

tion procedure would be the following. Q , t , t are given. The
p p r

observed output parameters Q ,t , t and At (translation time of the
pn an r

peak) are also given. The problem is to determine the sequence of a1 ,
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i = 1, 2, ... , n and the value of n. One can immediately check if one

reservoir is adequate, from Eq. (2.36). If n can be one, then the value

of a. is determined from the set of Equations (2.36) through (2.39) as

previously indicated. If one reservoir is not adequate, it seems unavoid-

able to follow a trial and error procedure. At. would be specified for

each added reservoir and the corresponding values of the parameters would

be obtained from the available equations. At. needs to be specified

such that the sum over i will give the total observed translation time.

Although tedious, the procedure described above eliminates the

need for costly simulation studies for the linear case. Simulation

appears to be a necessity when dealing with nonlinear reservoirs.

Exploratory studies for various values of Q PO, t , t (given in Table

2.1), indicated that Eq. (2.36) holds true with great precision for

values of the exponent m in the interval [0.8, 1.6]. Figures 2.3 and

9P. At.i
2.4 present plots of the parameter a. vs. and for m = 0.8

1 Q t
Pi-l pi-1

and m = 1.6, respectively. The parameters of the input used in these

3
figures were Qm = 850 m /sec, t = t = 9.5 hours. It requires a

significant change in the value of a. to attain a relatively small change

_p._ At1
inQ or t . This implies that small errors in the parameter a

Pi-l Pi-l
have a negligible effect on the output characteristics. These figures

also bring about a phenomenon observed in identification studies, called

the problem of multiple optima. Based on Figures 2.3 and 2.4, one can

find combinations of a. and m that produce identical results in terms of
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Table 2.1

INPUT PARAMETERS USED IN SIMULATION STUDIES

Q (m3 /sec) tP

100

100

500

500

1000

600

600

600

850

(hours)

18

6

12

6

6

6

5

6

t (hours)
0

18

6

12

18

6

4

5

14

9.5 9.5

Volume (m )

6.48x10 6

2.16x106

21. 6x10 6

21. 6x10 6

21.6x10 6

10. 8x106

10. 8x106

21. 6x10 6

29.07x10 6
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1.0

II 
I

NORMALIZED MEASURES OF TRANSLATION AND ATTENUATION OF A TRIANGULAR
HYDROGRAPH INPUT TO A NONLINEAR RESERVOIR AS A FUNCTION OF PARAMETER
a 1. m = 1.6

55

I'll

Ati

P i-I

0.51

0.0
10~10

10-9o

5X1Q' 0

a j

Qpj
QPi-



p. At.
and 1

-pil pi-1
Hence, it would seem that, if the objective function used in the identi-

fication study is to minimize, in some sense, deviations from and
At pi-i

and a single reservoir was adequate, there would be more
t

i-l
than one pair of a. and m that would give minimum objective value. This

is only due to the fact that the problem was not well posed. In other

words, all the information available from the observed hydrograph was not

used, while all the characteristic parameters of the input hydrograph

were utilized to obtain the plots in Figures 2.3 and 2.4. The ambiguity

is removed by adding, as an objective, the preservation of the observed
t t
pi P.

. Figure 2.5 shows the sensitivity of the parameter -to variations
r. r.

1 1
in m, for the same set of input parameters. It can be stated that for a

given input hydrograph and given level of attenuation,

-Q - Pi
Q-1 i

large values of m give rise to fast rising hydrographs with long duration

of the falling limb.
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Chapter 3

ANALYTICAL DETERMINATION OF THE EXPECTED VALUE OF A

NONLINEAR FUNCTION

3.1 Introduction

This chapter will derive analytical approximations to the

expected value of nonlinear functions. The proposed methodology can be

applied to any scalar or vector valued functions of a scalar or vector

random variable. The assumptions of this development are

a. the nonlinear function under study possesses derivatives

of some order,and

b. the joint probability density of the independent variables

is characterized by a finite number of parameters.

The idea is to expand the elements of the vector valued

function in a Taylor series about the point whose coordinates are the

mean values of the independent variables. Then, use the expectation

operator with each term in the series expansion. Since it was assumed

that the joint probability density of the independent variables is

characterized by a finite number of parameters, it follows, in principle,

that the joint central moments of any order of these variables will be

functions of these parameters only. Thus, the desired expected value

will be expressed as a series in the parameters of the given joint

distribution. I

The resultant series will not be convergent, in general, since

the expectation operator will utilize values of the independent variables
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that lie outside the radius of convergence of the initial Taylor series

expansion. Hence, the approximation series will have minimum residual

error for a finite number of terms. Studies of the magnitude of the

individual terms in the series or comparison with numerical integration

schemes can be used to determine the number of terms that provide the

best approximation to the expected value of the nonlinear function under

study.

This methodology will be useful in cases where analytical

expressions are sought to assess the importance of the parameters of

the input joint distribution to the expected value of the nonlinear

function, or in cases where the expected value of the nonlinear function

has to be calculated repeatedly (e.g., in a sequential estimator formula-

tion), since the analytically derived solution is more efficient and

economical than numerical integration schemes.

In the following, the case of a scalar function of one variable

will be treated first. Generalization to higher dimensional functions

is given subsequently. At the end, examples of application of the

proposed methodology within the flood routing problem are presented and

a comparison with numerical integration schemes is made.

3.2 Expected Value of a Nonlinear Function of Random Variables or

Vectors

Consider the function f(x) of the random variable x, whose

probability density function is denoted by p x(x; a). a represents the

vector (of finite dimension) with elements a1 , a2, ... , a the parameters
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of p (x; a). At this point, it should be noted that x is a continuous

random variable.

A Taylor series expansion of f(x) about E{x} yields:

f(x) = f(E{x}) + df(x) (x - E{x})
dx 1f 1!

d E{x}

+ d2 f(x) (x E{x}) 2 + (3.1)
dx E{x}

If f(x) is approximated by the sum of the first N+1 terms

in ther series of Eq. (3.1), this expression can be rewritten as:

N nn
f(x) Y d f(x) (x - E{x})n (3.2)

n=O dxn E{x} n!
N

where n! = 1-2... (n-l)-n. In Equation (3.2), Y (-) represents the sum

th n=O
of the first N+l terms starting with the 0 order term, and

dnf(x) th
dn E{x} is the n order derivative of the function f(x) evaluated
dx n Ex

at the point E{x}.

The expected value of f(x) can be approximated by means of

Eq. (3.2),

Elf(x)} = E Y d f(x) (x - E{x) (3.3)
n=O dxn E{x} n(

Interchange of the expectation operator E(-) and the summation operator

E(-) (since they both are linear operators) results in:

N d nf(x) n
E{f(x)} = 1 . n - E{(x - E{xn (3.4)

n=0 n! dxn E{x}
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Clearly, Equation (3.4) gives the expected value of the

nonlinear function f(x) in a series involving the central moments of the

random variable x, up to the Nth order, as well as the first initial

moment E{x}. In principle, these moments can be expressed as functions

of the parameters of the distribution of x. Expressions for the nth

central and the first moment about the origin of the most common proba-

bilistic models are presented below. The details of their derivation

are given in Appendix A.

Exponential

p.d.f.: pX(x; A) = A - e

E{x} = pi

; A > 0; x > 0

E{x} = 1/A

E{(x - E(x))n} _

Rectangular

p.d.f.: p (x; , A) =

n! k
Xn (1)k

An k=0 k

1 A A
, - x < x +

2 >2
> 0

E{ = n! . X 
( n-i+l S .E (n-i+ )! i! Pi=O

Gamma

p-l -x
p.d.f.: p (x ) seX ~ r(P) 1>(0 , > .0

(3.11)
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(3.6)

(3.7)

(3.8)

(3.9)

A n-i+l1
2

(3.10)



where if p is an integer F(p) = (p-i)!, while if p is not an integer

P(p) = (p-l)(p-2) ...6- r(6) where 6 is a positive real number less than one.

E{x} = P (3.12)

n-l ii n-i Pn
E({ (x- E {x})} n. - - (p+n-i-j) + n!(-l)n

E{x-~})} I i= (n-i) ! 1! jln!i=0
(3.13)

Log-normal

p.d.f.: p X(x; m, a) 1 - e

12

E{x} = mne

- [1 - n (x )22 a1
;x > 0, a > 0

(3.14)

1 2 2
n -- a [(n-i) +i]

E{(x-E{x})n} = m n*n! - i ( -. (-1) * e2

Normal

Ix-p 2
1 2 a ;

p.d.f.: p X(x; P,a *O=V2-r0 e a> 0

E{x} = yP

(3.15)

(3.16)

(3.17)

E{(x-E{x})n} 1-3-5..(n-1) an, n = 2k.; k = 0, 1, 2, ...

o , n = 2k+l; k = 0, 1, 2, ...

(3.18)

A result similar to Equation (3.4) is available for the

expectation of f(x1 , ... , xa): E{f(x1 , ... , x )}. Extension to vector

valued functions is straightforward and can be done by applying the

following development to each element of the vector valued function.
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Expansion of f(x ... , x ) about the point (E{x }, E{x ' ,.

E{x }.) in the m dimensional space, in an N terms Taylor series yields
m

(Hildebrand, 1976):

N-l 1
f(x) = - - ([x 1-E{x 1 ]

n=0

- - +
x

.+ [x -E{x }] -)n

xm

- f(x1 , ... , x)

x =E{x }

x =Ef{x3}
m m

Given real numbers y1 , y2 '
' ' ' 3 m'

(y1+...+y) n =

n ,...,n m

n +n +. ..+n =n
1 2 m

Using Eq. (3.20) in Eq.

n n 2
yl 2

n
m...'O m

n!
n 1! n !...mn

(3.20)

(3.19) and defining,

r. =x. - E{x.} ; i = 1, 2,

x = [x x2 **.* .x]I

T
= [E{x1 } E{x } ... E{x }]

(3.21)

(3.22)

(3.23)

(where "T" denotes the transpose of a matrix or vector quantity) results

in ,
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N-i1  n1 n 1 n 2 nm
_~) = - -. n r - r- .f(x) n! n n !...n ! 1 2 rm

n=O n ,...,n 1 2 m

n +. ..+n m=n
1 m

f(x)

n  n n (3.24)

Ox1 O2 ) . xm -

Thus, the expected value of the function f(x) is given by means of Equation

(3.24) as follows

N-1 1 f(x)
E{f(x)} = ZElfx~l Y ! nn --n n

n=O n ,...,nm 1 2 m 1x )1 2 )2 ... ( m
n +...+n =n
1 m

- E r 1 ... r m (3.25)

In the derived expression, the n h order central moment of the

random vector x = [x, x22 '''' I] is involved. If this moment can be

expressed as a function of a finite number of parameters, characterizing

the joint probability density of x, then the number N* that provides the

best approximation to the E{f(x)} can be determined by comparison with

numerical integration schemes.

Expressions for the nth order central moment of the common

multivariate normal distribution are as follows:

1 T -

p.d.f.: p (x; R P) = 1/2e-- 1/2(x 1
- (2Tr) - (det P) (3.26)

where P is a positive definite, mxm, symmetric matrix, "det " denotes the
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determinate of the matrix P, '' denotes the inverse of the matrix P, x

and p are m dimensional vectors.

E{_x = Pj (3.27)

0, L = 2k + 1, k = 0, 1, ..

Efr. -r. .. .- r. } = 2 2 2
11 12 r I a. . -a. . ... a. , L=2k., k=0,1,..

jlj 2 Lq*'2''''L 312 33 4 3L-1 L

P {iy ,i 2 ' ' ' L} (3.28)

where P ei, i2 ' .. ' L I denotes all distinct pairs of subscripts j1, j2 '
2

jL that are permutations of {il, i2 ' '.'' L a j.jk is the (jl k

element of matrix P. Note that repetition is allowed in the subscripts i

i2' '' L. For example,

E{(x - Pl) (x2 -12) (x3  13) (x4  P4

2 2 2 2 2 2

1 2  3 4 +a 3 *a 2 4 + a1 4 -a 2 3

4 2
E{(x. - Pi) } = 3 - a.

3.3 A Taylor-Gauss Application

Non-linear flood routing provides several examples of the

methodology presented in the previous section. In particular, expectations

used in the determination of the statistical linearization gains (see

Chapter 4) will be approximated for the case when the independent variables

involved are normally distributed with given means, variances and

covariances.
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3.3.1 Nonlinear Function of a Single Random Variable

Consider the function

f (x) =x (3.29)

Assume that x can be modeled as the sum of a mean level, P,, and

2
a Gaussian random process, r., with zero mean and variance equal to a.,

2
where the dependence of x , y , r1 , a. on time is not shown explicitly

for notational convenience. Then:

x = + r (3.30)

and

f (r i) = (it + r i)m (3.31)

A Taylor series expansion of the function f(r ) about the point

E{r } = 0, keeping the N+l leading terms, yields,

(P. + r.)m = Pm + P (m-1) * r + m-(m-1) (m-2) r2 +
i i i 1.i 1 2! i i

+ m-(m-1) ... (m - N + 1) (m-N)

Applying the expectation operator to both sides of Eq.

results in

E{( + r . )}= P + - P (m-1) - E{r } + M(m-l) P (m-2 )
i i i 1! i 1 2! 1

+ m- (m-1) ... (m - N + 1) . (m-N) N Er }
N! i i

r (3.32)
i

(3.32)

E{r 2 +
i

(3.33)

By means of Eq. (3.18), the function E{(p. + r.)im} can be rewritten as:
1 1
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2k-1 k

N' H (m-i) - H (2-j-1)

E{(p.+r.)m} = - 1+ V2k (3.34)
i i k=1 (2-k)! i

with

(max even integer < N)
N' = 2

where the coefficient of variation, V., of the random variable x. is

given by,

SU.= 1P (3.35)

In a similar manner, the function E{r.(p. + ri)m} can be approxi-

mated by,
2k-2 k

N, H (m-i) - H (2-j-1)

Er. -(p + r)M} (M+) Y i=0 j=1 2k
1 1 + k=l (2*k-l)! i

(3.36)

Approximate analysis of the magnitude of the residual terms is

possible, leading to a procedure to analytically determine the order N'

that minimizes the magnitude of the last term in the series.

Alternatively, comparison of the results derived by the methodology

proposed (called a Taylor-Gauss approximation) with numerical integration

results can determine the value of N' that minimizes the truncation

error.

Denote by RiN,, R2N1, the N'th term of the series in Eqs. (3.34)

and (3.36), respectively. Then,

2N'-l N' V2N'
m 1

R1 N = H (-i) .H (2j-1) - (2N')! ; N' > 1 (3.37a)
i=O j=l
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R10 = 1 (3.37b)

(m+l) 2N'-2 N' V 2N3
R2N .I (M-i) T1 (2j-1) - ; N' > 1 (3. 38)

i=O j=l

* *
To determine the N1 , N2 that minimize the terms RlN, , R2N'

over the range of N', one has to investigate the ratio of two successive

terms. Namely,

SlN= RlN' (339)SN' Rl '1

R2N'
S2NI R2 Nl (3.40)

N 2N'-1

In regions where SiN I (1S2 ,) is less than one, the successive

terms are decreasing in magnitude, while where the absolute value is

greater than one, the successive terms are increasing in magnitude.

Hence, the maxima N*, N* are sought, that result in ISlN+ I and IS2N+1

equal to or less than one.

Direct substitution of Eqs. (3.37) and (3.38) in Eqs. (3.39)

and (3.40), respectively, gives:

I(m-2N'+2) - (m-2N'+1) 2 2SlN1= 2N' i ; N' > 1 (3.41)

(m-2N'+2) -(m-2N'+3) 1

S2N = 2N -2 .V i; N' > 2 (3.42)

The value N* is the solution to the following mathematical integer1

programming problem,

max N'
N'
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subject to

I(m-2N'+2) - (m-2N'+l)j 2 < 1
2N' i -

N': integer > 1; m,V are given, while the integer programming

problem to find N* is
2

max N'
N'

subject to

(m-2N'+2) - (m-2N'+3) 2

(2N'-2) V.< 1

N': integer > 2; m,V are given.

Solution of the integer programming problems presented above

2
(e.g., by enumeration), for different values of the parameters m and V.,

leads to Figure 3.1. There, plots of N*, N* vs. V. are presented for1' 2 1

different values of m. Sensitivity analysis showed that N* and N* are1 2

relatively insensitive to the value of m for m in the range (0.8, 2.0),

which is the range of m reported in the literature as applicable to non-

linear reservoir routing models.

The asymptotic behavior of the series in Equations (3.34) and

(3.36) is depicted in Figure 3.2. In this figure, the magnitudes

(absolute value) of the ratios of two successive terms in the series is

plotted against the order of the term of the numerator in the ratio (N')

for m = 0.8 and V. = 0.4. Similar results were obtained (not shown) for

different parameter values. Notice that the absolute value of the ratios
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decreases rapidly with N'. Thus, it is expected to obtain a very good

approximation by just keeping the first two or three terms of the series

in Equations (3.34) and (3.36).

Summarizing, it is possible to state the following:

a. For given m and V., there is a minimum value for IR. I
1 iN

i = 1, 2. Thus, the series approximation used in the Taylor-Gauss method

generates always an error which cannot be reduced (i.e., the series is an

asymptotic one).

b. N4; i = 1, 2 depends largely on V.. It decreases rapidly as
1 1

V. increases.

c. Nt; i = 1, 2 is relatively insensitive to the value of m, for

m in the range (0.8, 2.0). Nevertheless, it decreases as m decreases.

d. A few terms in the series are enough to give a good approxima-

tion to the functions E{(p . + r.)ml and E{r * (. + r.)m}. Keeping only
1 1 i 1 1

the two leading terms, these functions are approximated by (i.e., keeping

up to fourth order terms in the original Taylor series),

E{( p. + r = - {1 + m(m-) (3.43)

and

M} m+l 2 m(m-l)(m-2) 4
E{r. (. + r.) } =. *mV. +. 2 V.} (3.44)

1 1 1 1 1 2 1

3.3.2 Nonlinear Function of Two Random Variables

An approach similar to the above is possible to determine the

expected value of a nonlinear function of two random variables which

are assumed to obey a normal probability law. This situation arises
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very often within a sequential estimator algorithm (Chapter 5) when the

simultaneous estimation of the states and parameters of a stochastic

nonlinear system is sought. As will be shown in Chapter 4, statistical

linearization gains depend on functions of the type to be treated below.

Consider the function g (a., x ) given by

S(ax.) = a. - x = g1 (r , r ) (3.45)
1 x. a.

1 1

where

a.=lp + r (3.46)
1 a.

x = x + r (3.47)i x. x
Si

with p , 11 being the means of the random variables a., x. and r , ra. x i a. x.
1 1 2 2 1

the normally distributed random residuals with variances 0 , 2
a. x.

2
respectively, and with covariance a 1

ia~

Also define

m
g (r , r ) = r -(a + r ) - (y + r )m- (3.48)
2 x. a. x. a. a. x. x.

g (r , r ) = r - (a. + r ) (py + r )m (3.49)
3x. a. a. a. a. x. x.

1 1 1 1 1 1 1

The Taylor-Gauss method will be used to approximate the functions

E{g 1 (r , r )}, E{g 2 (r , ra )} and E{g 3 (r , ra )}.
i 1 1 i 1 1
At first, the partial derivatives of the functions g1 , g2 and g3

are,
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n +n12 g1 (r ,r)a
1 1

Or )n n2
x.) a(.)
1 1

(m
-(-). (m-n+)-x

(0,0) O

-n (n 2) < 1, n1 >0
a. 2 -

; n 2> 1

(3.50)

;n 2<:'1>0
n +n2

g r ,r)
1 1

n In 2
(r ) -(r a

1 1 (0,0)

(M
n 1-m-(m-1).. (m-n 1 +2)-- .

10

-n1 +1) (1-n 2 )
OP a.

1

;n> 1

(3.51)

and

(m

g3 (r ,r) . (m-n +1) - y
1 I2

-(ar )
1i (0,0) O

-ni) (2-n 2 )

-pa.I
;n 2<_2, n >0

;n2 > 2

(3.52)

The nth order central moment of two jointly Gaussian random

variables is given by (n = n1 + n2 :

n1  n2  n1-n2  2n2
E{r *r } = (n +n -) - (n +n -3)..3-1- -, ;

x. a. 1 2 1 2 x. x.a.
1 1 1 1 1

n n n n
E{r -r } (n -l) - (n -3)..3-l-.a 1 2

x. a i 1 x. a.

n < 1
2 (-

(3.53)

n1-n2 2n2
+ n-(n-l)-(n - 3)..3o-1 2 a ; 2 n2 = 2

1 1 1

(3.54)

Using up to fourth order terms in the Taylor series expansion of

Eq. (3.25) (in view of its asymptotic behavior) and using Eqs. (3.50)

through (3.54) yields,
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E{gl(r ,r )I
xIa

a. m + me (M-1) . 11 (m-2)
a x 2 a x

+ M- x (a
i xia

E{g 2 (r ,r )} = (*rP- )

2xi a a x i

2 ma + y
x. x.

2
x. a.

1 1

+ m- (m-1) - (m-2) (m-3) 4
6 a. x. x.

1 1 1

+ 3-m- (m-i)
2

,r = m *oiyla a x.

(m--2) 2
x. x.

2
- a

x a1

2
x a

(3.56)

m P a2

x a

+m (nm-i) -(m-2) (m-3)
2 a. x

+ m- (M-1) (m-2)
2 x.

Normalization of Eqs.

2
x

2 2
x x a

G2 + 2-a ]a x a
(3.57)

(3.55), (3.56) and (3.57) results in:

E{g (r ,r )}/[p Pm = 1+-m-(M-1) -V21 x a a x 2 x.
+ m-p x - V * 0Vax(a3 x8

(3.58)

(m+l) 2 + V "VEfg (r ,r )}Py* ] = M-V + p -V-g2 x a .)}/[ x x. x.a. x. a.
1 1 1 1 1 1 1 1 1

+ m- (m-1) - (m-2) . V4
2 xi

+ 3-m-(m-1) " 2 & V -V
2 x x a x. a
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2 m 2
E{g (r ,r )}/[ *y] =mp -V -V+V

3 x. a. a.x x a. x. a. a.
1 1 i i i i 1 1 1

+ m-(m-l)-(m-2) .V 2 - P -V -V + m-(m-l)
2 x x a. x a 2

2+ 2-p
xia

2
-V

xi

S[V 2 .V2
x. a.

2
V ]
a.

I

where

x.
V =1
x. yI
1 X.

a
V =
a. Il
1 a1

2
x.a.

a =-
x.a. a -a
1 1 x a

3.4 Comparison of Taylor-Gauss Method with Numerical Integration

The Gaussian joint probability density of the random variables

2 2 2 2
r -a - 2-r -r -p *a *a +r -a
x. a. x. a. x.a. x. a. a. x
1 1 1 1 11 1 1

2' a2-y 2
x.
1

e

2 2
* a (1-p )a. x a.

2T-a - a - (1- p2  )1/2
x. a. x.a.1 1 11i

(3.64)

isFor any function g (r , r ), the expected value E{g (r , r )}
1 x. a. i x. a.

given by,

+00+00

E{g (r , r )} = J j (r , r) p R R
1 x .. 00 00 1 1 x a.i i i i1 1

(r , r ) dr -dr
x(. x. a.

(3.65)
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(3.60)

(3.61)

(3.62)

(3.63)

r ,.x.
r
a

is:
.

PR ,R
x. a.
1 1

(r ,r ) =
x. .
1 1



Use of the functions g 1 (r , ra 2(r , ra.) g3 (r , ra.) (Eqs. (3.45),

(3.48), (3.49)) in Eq. (3.65) and substitution for the joint probability

density (Equation (3.64)) results in,

E{g 1(r , r ) =a
1 i. a

+co +o

P -Pm -(,+V -t)-(+V -u)mo e
f f a x a x

1- E 2

2 2
u -2u-t-p +ti a.

- 2
2-(1-p 

)
x a

2 1/2
21T(1 - p )

x ia

> 0, 2 > 0

(3.66)

or

E{g (r ,r )(P 'Pm
1 x a a x

c o c

1 -
2 1/2) .

21T(1-p ) -/ -
x i 1 2

2u -2u-t-p 2
+t

x. a.
2

2 (1-p )
x a

(1+V *t)-(1+V -u)mea 1 dudt

(3.67)

Similarly,
V

E{g 2(r , rm x+ u / 2
2 x a a i 2T(1-p 2  u 2 2-u-t-P

xia x ut a

+00+00

+m~o

S u-(1+V -t)-(1+V -u)m  e
1 x

2(1-p 
)

Si 

2

dudt

(3.68)

V

E{g (r ,r 2 m 2 3X a ai xi 27 (1 - p )1/2
1iai U2-2-u-t-p 

1
x1a

+00 +00
( m

-J t-(l+V -t).(1+V -u) , e
f f a x

- 1 -E2

2(1 - p )
xia.

dudt (3.69)
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In the above set of equations, the lower limits of integration,

usually taken as "- m" for truly normally distributed random variables,

have been set equal to -E , -e2 where el, E2 are suitably chosen positive

parameters.

With the perspective of using the results of this chapter in the

statistical linearization of the nonlinear functions involved in the

differential equations describing a flood routing model, it is essential

to retain the physical constraints: x > 0 and a. > 0. Hence, the random

variables x., a. cannot be distributed normally. However, to retain the

attractive properties of the normally distributed random variables, assume

a truncated or mixed distribution, Gaussian like, based on the assumption

of small coefficients of variation for the random variables under study.

Consider, for example, the one-dimensional problem; analogous

arguments can be made for the two-dimensional problem. A random variable

u is normally distributed a priori with zero mean and unit variance.

The constraint 1 + V - u > 0 is imposed, thus restricting u to regions:

u > - - ; V > 0. It is desired to reshape the Gaussian probability
- V x.

x. I
1

density to account for the imposed constraint but, at the same time, to

retain the properties of the a priori density (i.e., odd moments equal

to zero, the a priori mean and variance) necessary for the use of the

Taylor-Gauss methodology. Based on the assumption of small V , the

compound distribution of Figure 3.3 can be used, where the area of

probability less than - m is concentrated on (- V ). This type of

x. px.

a posteriori probability density is also consistent with the physical
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reality of ephemeral streams, where this situation usually arises (x. = 0).

Using the notation of Figure 3.3, one can determine the a pos-

teriori statistics of the constrained random variable as follows:

-1/v x

P =J

-00

+00

fU(u) du = f
l/Vx

fU(u) du (3.70)

+ 00

E {u} = P- +a A V
i -1/V

x

consequently,

+ CO

E {u} =
a /

l/V X
I

u - f (u) du
U.

i

P
u - f (u) du -

x.
1

with f(u) denoting the a priori probability density of the random variable

u (Gaussian). By means of Eq. (3.71), it is concluded that Ea{u} is a

monotonically increasing function of V . Thus, e.g., the bias associated

with the a posteriori mean E {u} is found to be 0.083 for V = 1. Denote
a~x.

2
by a the a posteriori variance of u. Then,

a

2 2
a = E {(u - E {u}) } (3.72)
a a a

or

a2 = E fu2 + E 2{u} - 2-E {u} - u}
a a a a

consequently,
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C2 = E {u} - E 2{u}a a a

Ea {u 2} = (- 1 )2 - p +

-1/V

2 f (u) d u

x.

which results in

+ 00 -1/v

Eau } - 2 + fu fU(u) du - u

x. 0I

fU(u) du

2V2
-1p

E {u2 } = + 1 1
a /+2 T V x.

x. 1

rearranging terms in Eq. (3.75) yields: _ 1

2V2

2 1 x
Ea{U } = P< * 2 -l] + 1- e

a 2V 7  x.
x.
1

Substitution of Equation (3.76) into Equation (3.73) yields

F2 1 1 + 1 ---e
a 2 V

x.

1

2V 
2

x.

1

21
2V2

1 - e7 (3.77)
x.

since from Eq. (3.71),
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(3.75)

(3.76)
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2
2V2

1x P
E {u} = 2- *e (3.78)

1

If we denote by E1 and E2 the absolute percent errors, relative

to the standard deviation, in the mean and the standard deviation,

respectively, when approximating a Gaussian distribution by a mixed one,

then,

E {u} - 0.
1 x E = a = 0 Ea{u} (3.79)

1 00 11a

and

0 -l11 x a
100 E 2 - 1 ja - (3.80)

Figure 3.4 displays the error indices El, E2 as functions of the

coefficient of variation V . Note that the error in the mean is about

half the error in the standard deviation and that the maximum error in

the standard deviation (for V = 1.0) is about 10%. Thus, the biases

due to the reshaping of the a priori Gaussian distribution to an

a posteriori compound one are not large. Consequently, the a posteriori

distribution f a(u) of Figure 3.3 will be used for the numerical integra-

tion of Eq. (3.65). In addition, it is evident that due to the functional

form of the integrand in Eqs. (3.67) through (3.69), the discrete part of

the a posteriori distribution has zero contribution in the calculation

of the mean of the nonlinear functions. The right-hand side of Eqs. (3.66)

through (3.69) with 6= - + - and 2 = + V is the contribution of
a. x.

1 1
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continuous part of the compound distribution.

For the purposes of the comparison to numerical integration, up

to fourth order terms were used in the Taylor-Gauss approximation.

Call 1 I2' 13 the results of the numerical integration of the func-

tions E{g 1 (r , ra )}, E{g 2 (r , r )}, E{g 3 (r , r )} (Equations (3.45),

(3.48) and (3.49), respectively and T, T2' , he results of the Taylor-

Gauss approximation for the same functions, then define

T - I

p = ( ) x 100 (3.81)

T - I

p = ( ) x 100 (3.82)
2 I2

and
T - I

P = 3 3) x 100 (3.83)
3 13

the percentage errors of approximation. The parameters in these errors

are m, V , V and p . Tables 3.1 to 3.3 present values of p1 , p 2 '

P3 for m equal to 1.2 and V , Va in the range (0.1, 1.0). Similar

results are given in Tables 3.4 to 3.6 for m equal to 0.8. Tables 3.1

and 3.4 correspond to p equal to 0.2, Tables 3.2 and 3.5 to p x a

equal to 0.4 and Tables 3.3 and 3.6 to px a equal to 0.6. If V = 0

11 1

(it follows that p is also equal to zero), the results correspond
xia

to the functions E{(y + r )m and E{r -(p + r )m} treated in

i i i i i

Section 3.3.1. The absolute percentage errors 1p11'Ip 21 for this case

are displayed in Figures 3.5 (m = 1.2) and 3.6 (m = 0.8).

Based on these results, the following comments can be made for

the one-dimensional case:
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a. The absolute percentage errors 1p1l and |p2 1 are increasing

functions of the coefficient of variation, V .

b. These errors are greater for m = 0.8 than for m = 1.2, for

all the range of values for V . In particular, the absolute

percentage error in the approximation of the function

E{r - (P + r )m}, is very sensitive to m.

c. The error in the approximation of the function

E{(p + r )m} is always less than the error in the approxi-
x. x.1 1

mation of the function E{r -(W + r )m} for all m (m = 0.8,
x. x. x.
1 1 1

m = 1.2) and all V (0.1 < V < 1.0). The maximum error
x. -x
1 I

in the approximation of E{r (yI + r )m} (for V = 1.0)
x. x. x. x.1 1 1 1

is about 30%, the error corresponding to the same function

for V = 0.6, being less than 10%.

d. In general, the Taylor-Gauss approximation gives satisfactory

results for the one-dimensional case, being exact for values

of V less than 0.3.
x.

For the two-dimensional case, one can state that for constant m

the error indeces IP1j, 921 and lp 31 in general tend to decrease as the

cross-correlation px.a. increases. |p11 attains its maximum value 9.85%
1 1

for m = 0.8, p = 0.2 and V = V = 1.0, while the maxima 28% and
x~.x. a.

1 1 1 1

20.6% of the errors IP2I and jp3, respectively, are obtained for m = 0.8,

p = 0.2, V =1.0, V = 0.1 and m = 0.8, p = 0.6, V = 1.0,x.a. x. a. x.a. x.
11 1 11 1

V = 0.1. Note that the maximum errors in the two-dimensional case are
a.

bounded by those of the one-dimensional one.
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Table 3.1

PERCENTAGE ERRORS p1 , p2 AND p3 M

m = 1.2; px.a. 0.2

1 11

V V. 23

0.1 0.1 -0.3x10-3  0.1x10-2  0.5x10-3

0.1 0.5 -0.40 0.76 2.09

0.1 1.0 -7.30 6.80 17.30

0.5 0.1 -0.58 1.82 0.71

0.5 0.5 -0.67 1.08 1.09

0.5 1.0 -5.82 -1.64 11.88

1.0 0.1 -5.68 7.47 2.69

1.0 0.5 -4.42 4.87 -1.87

1.0 1.0 -7.25 1.09 5.10
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Table 3.2

PERCENTAGE ERRORS p1 , p2 AND p3 M

m = 1.2 ; x.a. = 0.4

J-J2-

-0. 68x10~4

-0.36

-6.80

-0.53

-0.34

-3.75

-5.29

-2.70

-2.70

0. 11x10 2

1.13

10.34

1.64

0.59

-0.01

6.79

2.57

-1.72

89

p3
V
x.

0.1

0.1

0.1

0.5

0.5

0.5

1.0

1.0

1.0

V
a.

0.1

0.5

1.0

0.1

0.5

1.0

0.1

0.5

1.0

0. 68x10 3

1.85

15.75

1.05

0.56

7.34

4.38

-1.23

0.71



Table 3.3

PERCENTAGE ERRORS p1 , p2 AND p3 M

m = 1.2 ; p a 0.6

p 1

0. 98x10~ 4

-0.33

-6.35

-0.48

-0.04

-2.04

-4.92

-1.24

0.69

P2

0. 89x10-3

1.26

11.59

1.46

0.12

0.32

6.17

0.70

-3.18

90

V
x.

.1

0.1

0.1

0.1

0.5

0.5

0.5

1.0

1.0

1.0

Va

0.1

0.5

1.0

0.1

0.5

1.0

0.1

0.5

1.0

p3

0. 71x10-3

1.64

14.40

1.16

0.10

3.87

4.91

-1.23

-2.35



Table 3.4

PERCENTAGE ERRORS p1 , p2 AND p3 M

m = 0.8 ; pa = 0.2

p3

-0.46x10- 3

1.04

9.43

1.68

1.19

-0.96

28.00

21.35

11.75

0.1x10-2

2.17

17.75

0.79

1.75

13.90

13.70

0.79

6.69
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V
x.

.1

0.1

0.1

0.1

0.5

0.5

0.5

1.0

1.0

1.0

V
a.

0.1

0.5

1.0

0.1

0.5

1.0

0.1

0.5

1.0

p1

0. 32x10-3

-0.41

-7.43

-0.01

-0.37

6.22

-7.44

-6.47

-9.85



Table 3.5

PERCENTAGE ERRORS p1 , p2 AND p3 M

m = 0.8 pxa 0.4

V Va P 2 3

0.1 0.1 0.x10 3  O.3x10-3  O.1x10 2

0.1 0.5 -0.39 1.41 2.00

0.1 1.0 -7.11 12.50 16.70

0.5 0.1 -0.02 1.54 1.05

0.5 0.5 -0.31 0.92 1.22

0.5 1.0 -4.90 1.65 9.70

1.0 0.1 -7.13 26.25 18.75

1.0 0.5 -5.00 15.15 3.49

1.0 1.0 -5.78 5.47 3.25
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Table 3.6

PERCENTAGE ERRORS p1 , p 2 AND p 3 M

m = 0.8 px a.

p1

-0. 1x10- 3

-0.37

-6.79

-0. 3x10 1

-0.25

-3.61

-6.82

-3.73

-2.53

= 0.6

p 3

0. 8x10 3

1.53

13.55

1.41

0.60

2.29

24.55

10.21

0.63
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V
x.

1

0.1

0.1

0.1

0.5

0.5

0.5

1.0

1.0

1.0

V
a .

0.1

0.5

1.0

0.1

0.5

1.0

0.1

0.5

1.0

0.1x10 2

1.85

15.75

1.15

0.74

6.51

20.60

4.26

-0.76



Chapter 4

STATISTICAL LINEARIZATION

4.1 Introduction

It is a well-known fact that the study of nonlinear systems

is a much more difficult task than the study of linear ones. The super-

position principle does not hold in nonlinear systems, thus making the

analysis input and initial condition specific. .It is not possible to

generalize from the response to a generic input form (e.g., unit impulse

function), to the response to other classes of input. Even within a

certain class of input, the response of the nonlinear system will depend

on the characteristics (e.g., magnitude) of the individual inputs.

Since powerful results have been obtained in estimation (and

control) theory for stochastic linear system models, it is often desir-

able to convert the stochastic nonlinear model of the physical phenomenon

to an equivalent linear one, where the word "equivalent" is defined

according to a prespecified criterion. Common approximations involve:

the use of linear models of high dimensionality as a piece-wise linear

approximation to nonlinear models; a Taylor series expansion of the non-

linear functions about reference trajectories, keeping the leading

linear term in the expansion, and use of models resulting from the

statistical linearization of the nonlinear functions involved.

For the purposes of this work, statistical linearization seems

to be the most promising technique since:
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1. it provides a model that has all the advantages of being

linear,

2. it gives an unbiased estimate for the mean of the non-

linear function involved,

3. it is especially convenient when the nonlinear function to

be linearized is not differentiable, thus excluding a

Taylor series expansion,

4. it does not increase the dimensionality of the nonlinear

model,

5. it provides linear systems with weighting functions

dependent on the form and magnitude of the input, thus

retaining the essential properties of the nonlinear model,

and

6. its use in streamflow forecasting has given satisfactory

results (Kitanidis and Bras, 1978).

This chapter deals with the statistical linearization

technique. The next section outlines the theory as it has been developed

for the case of stationary inputs. The last two sections present exten-

sions of the technique to account for nonstationarity of the input as

well as applications to the flood routing model based on a cascade of

reservoirs.

4.2 Statistical Linearization for Stationary Processes

To establish notation, some of the basic concepts of linear

theory are reviewed first.
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Denote the response of a linear system (in general time

varying) to the unit impulse 6(t 0), by W(t, t ), with 6(t0) representing

the Dirac delta function. Then for every input x( ),it holds

t

y(t) = x(T) - W(t, T) dT (4.1)

~00

where y(t) represents the output at time t. If the system is time-

invariant, Eq. (4.1) reduces to,

+00

y(t) = x(t - T) - W(T) dt (4.2)

0

When x(t) can be considered to be a random process (e.g., due

to the noise level inherent in x(t)), then it is readily shown that,

+00

E{y(t)} = m = E{x(t - T)} - W(T) dT (4.3)

0

where E(.) denotes expected value.

If x(t) is a wide sense stationary process, then

+ 00

my =m - W(T) dT (4.4)

0

where m and m stand for the means of the processes y(t) and x(t),
yx

respectively.

Also,

E{(y(t) - m )(y(t+T) - m )
y y

+00 +00

= W(T1 ) f W(T2 ) - E{(x(t-Tl) - m )*(x(t+ T-T2  - m )}

0 o 
- dT2 - dT1

(4.5)
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and

E{(x(t) - m )(y(t + T) - m) =
x y

+ 00

= W(T ) E{(x(t) - in)(x(t+ T-T1 ) -m )} dT (4.6)

Denoting

2
a (T) = E{(y(t) - m ) (y(t + T) - m) (4.7)
yy y y

2
a (T) = E{(x(t) - m ) (x(t + T) - m )} (4.8)xx x x

and

2
a (T) = E{(x(t) - m ) (y(t + T) - m (4.9)xy x y

Equations (4.5) and (4.6) reduce to

+00O +00

2 2
a (T) = W(T1  f W(T 2) -a (T + T - T )-dT- dT2 (4.10)

0 0

and

+00

2 (T) = W(T) - a2 (T - T)-dT1  (4.11)
xy f xx 1

0

Equations (4.4), (4.10) and (4.11) give expressions for the

mean and autocovariance functions of the output process as well as the

input-output cross-covariance function, given the mean and autocovar-

iance functions of the input, for a linear time-invariant system and

wide sense stationary inputs.
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Based on the Riemann definition of the integral, Eq. (4.2)

can be approximated by a discrete summation. Since the sum of Gaussian

random variables is also Gaussian, if x(t) is a Gaussian process, then

y(t) should be also Gaussian. It is the unique property of the class of

linear systems to permit the Gaussian input form to be retained in the

output too. Furthermore, if one uses the central limit theorem for the

case of uncorrelated (in time) input processes (e.g., white sequences),

Eq. (4.2) indicates that the output process y(t) will tend to a Gaussian

process, irrespectively of the distribution of x(t ), V t . It is also

true, even though not yet theoretically proven, that, in general, non-

Gaussian inputs (even non-white) tend to become more nearly Gaussian as

a result of linear filtering (Gelb and Vander Velde, 1968).

All the properties mentioned hold for the class of the linear

systems. When the system under study does not satisfy the superposition

principle, then it is evident that one has to study every input form

(and initial condition) separately. To avoid the construction of large

catalogs of input-output pairs for a nonlinear system, several approxi-

mations can be proposed. Surely, the most common one is to linearize

the nonlinear functions of the system at hand using a Taylor series

expansion, retaining up to and including the first order term.

The major problem of this approach is that it requires

differentiability of the nonlinear functions involved. Thus, if the

function is discontinuous, this methodology cannot be used. In addition,

it is justified for small deviations of the independent variables from
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the nominal trajectory, and it fails when the higher order terms in the

Taylor series expansion are of significant magnitude. In particular,

when the inputs to the system are random processes, such a truncation

introduces biases.

Another approach is quasi-linearization. Quasi-linearization

is the operation on the nonlinear function that results in linear

approximations dependent on some properties of the input. In particular,

when the input to the system is a random process, the operation is called

statistical linearization. Gelb and Vander Velde (1968) and Graham

and McRuer (1961) present comprehensive treatments of quasi-lineariza-

tion. These are the major references in the development to follow.

The fundamental idea of quasi-linearization is to construct

linear time-invariant operators, called describing functions, that will

preserve certain response characteristics of the nonlinear functions,

for some generic input forms.

As a result of linear filtering, general input forms reduce

to the form of biases, sinusoids and Gaussian random processes. If the

system configuration is a feedback one, the application of the quasi-

linearization technique requires the presence of a linear operator before

the nonlinear function, so that the signal to be "fed-back" (to the

nonlinear function) is filtered to approximate generic input forms.

For the purposes of this development, only biases and Gaussian

random processes will be utilized.

Having defined the generic input forms, one has to specify

what input-output transfer characteristics to preserve in the quasi-
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linear approximation. In quantitative terms, if we denote by ya(t) the

resulting linear approximation of the function y(t), possible choices

for a criterion function to be minimized might be,

E{(y(t) - ya(t)) 2; E{fy(t) - ya(t)1}; E{[y(t) - E{y(t)}] }

-E{[ya(t) - E{y a(t)}]2 };E{y(t)} - E{ya(t)} ; E{x(t) - y(t)}

- E{x(t) ya (t)} ; E{(y(t) - E{y(t)})*(y(t+T)

- E{y(t+T)})} - E{(ya(t) - E{y a(t)})(ya(t+T) - E{ya(t+T)})

Usually a minimum mean squared error criterion is used. The major

reasons are that the derivatives of the criterion function will result

in a system of linear equations, which is easily solved, and that mini-

mization of this objective function implies optimization with respect

to some of the other criteria presented above as well.

Denote by e(t) the error of approximation,

e(t) = y a(t) - y(t) (4.12)

Then,

E{e2 (t)} = E{y 2 (t)} + E{y 2 (t)I - 2E{y (t) y(t)} (4.13)

The objective is to minimize the mean squared error with respect to

the set of functions: w (t), i = 1, 2, ... , n where

+00

n

ya(t) = * w(T) - xi(t - T) dT (4.14)

0

100



with x.(t), i = 1, 2, ... , n, denoting the generic input forms that

add up to the total input in the nonlinearity. Clearly, the problem

fits within the calculus of variations framework. Its solution (Graham

and McRuer (1961)) for broad sense stationary inputs results in the

well known in estimation theory Wiener-Hopf integral equation,

n2

w.(T2 ) - a 2  (T - T ) dT = E{y(t) x.(t -T);
.~ f 2 x ix. 1 2 2

-T 1 0, i =1, 2, ...,n

(4.15)

The left-hand side of Eq. (4.15) is the cross-correlation of the ith

input process with the output of the approximation ya (t). Thus, the

optimal set of weighting functions is the set that equates the input-

output cross-correlation corresponding to the nonlinear function with

the input-output cross-correlation corresponding to the linear one.

.This property is also true for the Wiener filter.

Several properties of the approximation are given in the

following:

1. The error of approximation is uncorrelated with the input

to the nonlinear function.

2. The linear approximation results in a mean-squared output

always less or equal to the mean-squared output of the

nonlinearity.

3. When the inputs are statistically uncorrelated, Eq. (4.15)

results in,
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+ 00

w (2) x. 1 - 2) dt2 = E {y(t) x 1(t - T);

0

T > 0 , i = 1, 2, ... , n (4.16)

A special case of interest in this work arises when the input

processes can be decomposed in a bias term x1 plus a zero mean Gaussian

random variable x2(0),

x(t) = x1 + x2 (t) (4.17)

Since x and x2 (t) are uncorrelated, Eq. (4.16) can be used. Conse-

quently,

+00

Jw 2  1 dT2  x1  E{y(t)} (4.18)

0

and

+0

w2  2 2 r1 - T2 ) dT2 = E{y(t) * x2 (t - T)} ;T > 0

0 (4.19)

Equation (4.18) is particularly meaningful when the expectation E{y(t)}

is equal to a constant. This implies that the nonlinearity y(t) is

dependent on time only through x(t) (time invariant or static non-

linearity) and that the Gaussian process is at least wide sense

stationary. Under the circumstances, Equation (4.18) can be written

as,

+ CO

N = w (T2  E{y(t)} (4.20)
x1 1 2 x

0
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And the component ya (t) of the output approximating the nonlinearity
1

will be (Equation (4.14)),

Ya (t) = X - N (4.21)

with N x given by (4.20).

Equation (4.21) states that, under the conditions specified,

the time variation of the optimal weighting function w 1 (T) is not

important.

Note that,

+ 00

E{y (t)} = E{N x + w2  2(t - T) dT} (4.22)

0

Using Eqs. (4.3) and (4.20) and assuming that x 2(t) is a zero mean wide

sense stationary process results in,

E{y (t)} = N - x1 = E{y(t)} (4.23)
a x

Thus, the equivalent linear approximation is unbiased.

When the input process is not stationary, then one cannot,

in general, minimize Eqs. (4.13) to arrive at equations similar to the

Wiener-Hopf expression (4.15), since,in this case, the covariances

involved are functions of two arguments.

The difficulties of the nonstationary case can be avoided

using an approximation of the type,

n

Ya (t) = N (t) - x.(t) (4.24)
a x i
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instead of the more general expression given in Eq. (4.14). Since the

purpose of quasi-linearization is to simplify a nonlinear problem, and,

in view of the fact that the expression in Eq. (4.14) is not itself a

general linear approximation (a wider class of approximations would

involve time-varying linear gains w i(t, T)), the expression in Eq. (4.24)

will be employed to approximate a nonlinear function when its input is

nonstationary.

4.3 Statistical Linearization for Nonstationary Processes

It is of interest to minimize the mean quadratic error of

approximation given in Eq. (4.13) when the approximation ya (t) is of

the type in Eq. (4.24). In the following, the dependence of the time

functions on t is not explicitly shown. Proceeding formally by taking

the derivations of Eq. (4.13) with respect to the gains Nx. , i = 1, 2,

n, and equating the result to zero gives,

n
Y Nx - E{x. x.} = E{x. y} ; i = 1, 2, ... , n (4.25)

j=l j

Solution of the set of coupled linear equations gives:

-1
N = P - (4.26)
-x-

_-l
provided that P exists.

th -l
N is the n-dimensional vector whose i element is N , P

th1
is an n by n positive definite matrix whose (i, j) element is E{x. x.}

1 J

th
and is the n-dimensional vector whose i element is E{x -y}.

The condition that the determinant of P be different from

zero is exactly the condition that the set of gains in Eq. (4.25) give
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a minimum mean squared error, because P is equal to the Hessian matrix

of E{e }. If all the xi's are zero mean processes, then P is a covari-

ance matrix. If x1 is a bias input, then the (n-1) by (n-1) lower

principal minor of P is a covariance matrix. In this case, the only

nonzero element of the first row and first column is the (1, 1) element,

2
equal to x2. Therefore, the condition for nonzero determinant for P is

equivalent to the (n-1) by (n-1) covariance matrix being positive

definite. For a 2 by 2 covariance matrix, positive definiteness is

implied by the condition that the cross-correlations between any two x!s

be less than one in absolute value.

For covariances of dimensions greater than two, this is not

true and one has to examine the set of required sufficient conditions to

assure existence of a solution (i.e., Equation (4.26)). To illustrate

this, consider a 3 by 3 covariance matrix as follows:

2
a p -a -a p - -0

x 1 1 2 x1 x2 1 3 x x 3
P = p ax -a a 2  P ax a a (4.27)- 12 x1 x2 x 2 23 x2 x 322

p -a *a p -a -a a
13 x x3 23 x2 x3 x3

1 1
If p 12 1 3  -1 - and p2 3  2 -j , the determinant of P is equal to zero,

even though the correlations are all less than one in absolute value.

The procedure outlined in this section is used in the following

for the statistical linearization of the nonlinear functions involved in

the flood routing model used in this work.

105



4.4 Linearization of the Outflow Discharge Function of a Nonlinear

Reservoir

The differential equations of motion for a flood routing model

based on nonlinear reservoirs are of the type:

dx.(t)
dt = u.(t) + a. (t) - x (t) - a.(t) - x(t) ;dt i-i -l -1 i

i = 1, 2, ... , n (4.28)

where

thx.(t) is the i state of the system

u (t) is the ith input to the system

a.(t) is the (possibly) time varying parameter of the

system with a (t) = 0

m is a constant, known, exponent

n is the number of the reservoirs used in the model or

equivalently the order of the system

The state x.(t) Vi represents volume of water in storage.

Since the objective is to design algorithms to estimate a.(t)
1

and x.(t), Vi, t, in real time using the powerful results of linear

filtering theory (e.g., Kalman filter), it is convenient to proceed with

the statistical linearization of the function, a.(t) - x7(t).

The processes a.(t), x.(t) are taken as Gaussian, assuming
1 1

that there is adequate linear filtering in the system (Figure 4.1)

and that the inputs u (t) are normal random processes. -

The time dependence of a.(t), x.(t) will not be shown in
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order to facilitate notation.

Decompose a., x. as:

a .= p a + ra. (4.29)
1 1

x. = P + r (4.30)

1 1

where p , Pa are bias terms while r , r are normally distributed
x. a. a.x.

1 1 1 1

random variables (for a certain value of t) with zero mean, variances

2 2 2 2a , 2 and covariance a ( )
a. x. x.a. a. x.

Define the nonlinear function,

g( , Pa , r , r a) = (p a + r )* (p x + r )m (4.31)
S 1 1 1 1 1 1 1

The goal is to find the "best" linear approximation to the function

g(P, Pa. , r , ra.). The approximation will take the form

1 1 1 1

g ( P r, ra) = Nb*(a + y ) + N - r + N - r
a x a x a b a x x x a a

(4.32)

The problem reduces in finding the set of gains Nb., N , N a., such
1 1 1

that the error of approximation,

. e = g(y , p a, r x, r ) g a(P , p , r , r ) (4.33)
x ax. . . a x. a. x. a.
1 1 1 1 1 1 1 1

has a minimum mean squared value.

The mean square error value is

Efe } = E{[(y + r ) - (P + r x)m -N b-(Py + P ). a. x. rx. b. -Na. x.
1 1 1 1 1 1 1

- N - r - N - r (4.34)
x. x. a. a.

-1 1 1 1
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Carrying out the necessary algebraic operations, Eq. (4.34)

reduces to

2 2
Efe } = E{(yi + r ) -(ya.a. x.

1 1 1

+ r )2m}+ Nb -(P
i a

2 2
+ N - a -2 -(y + 1 ) - (p

X. x. b. a. x. a.
1 1 1 1 1 1

- 2-N a.- Efr -. a + r ). - (ya. a. a. a. x

2 2 2
+ 1 ) + N -cY

x. a. a.
1 1 a

+ r )-(v' + r)}a. x. x.
1 1 1

+ r
x.
1

- 2-N E{r e (p + r ) - (p + r )m
x. x a ai x x.

2
+ 2 - N N a

a x. x. a.
(4.35)

Given Equation (4.35), the optimal (static) gains

N satisfy
xI

_ _ 2
*(E{e })

Nb

__ 2
(E{e }) = 0N

a1i

_ _ 2
(E{e }) =xN

x.

when the matrix

322
H={h..} = 1 E{e }};_B f 3y. i y .

i, j = 1, 2, 3

is positive definite, with y., y denoting any of the N b, N , N .
1 1 1

It can be shown that,
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1 1
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0

(4.37)
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2-(p + 1 )2 0 0a. x.
1 1

2 2
H 0 2cy 2cy (4.40)

x. x.a.
1 1 1

0 2a2  2a2
x.a. a.
11 1

The principal minors of matrix H are

D =2 - (p + )2 (4.41)
1 a. x.

1 1

D =4 (p + P 2 2 - (4.42)
2 a. x. x.

1 1 1

2 2 2 4
D = 8 - (p + P ) . [a - a - a ] (4.43)
3 a. x. x. a. x.a.

1 1 1 1 1 1

It is evident that in the nontrivial cases when p > 0,

2 1

a. > 0, a < a - a , the minors D., i = 1, 2, 3 are all positive.
I I 1 1 -

Consequently, matrix H is a positive definite matrix and the optimal

N b, N , N are given by Eqs. (4.36), (4.37) and (4.38) implicitly.

Solution of the system of Eqs. (4.36) and (4.35) yields,

E {(p + r ) - (P + r )ma. a. x. x.

N = 1 1 1 1 (4.44)
b. (ya + y )

1 a. x.
1 1

a2 E{r -(p +r )-(p +r )m} - a2 E{r -(p +r )( + r )m
a. x. a. a. x. x. x.a. a. a. a. x. x.

N = 1 1 1 1 1 11
x 2 a 2  -a 4

x. a. x.a.
1 (4.45)

2 m 2m
a -E{r -(P +r )-(P +r ) }-a -E{r -(p +r )-(p +r
x. a. a. a. x. x. x.a. x. a. a. x. x.

N = 1 1 1 1 1 1 1
a. 2 2 4

a a - a
1 1 11a (4.46)
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The above correspond to Eq. (4.26) with P given by Eq. (4.40).

In the development presented above, the bias terms were grouped

and only one gain was attributed to them. This results from the fact

that the different biases are indistinguishable for the purposes of the

approximation. One can verify this by using different gains for the

two bias terms and then follow the procedure described above. In this

case, the matrix H is only semi-definite and the solution to the set of

Eqs. (4.36) through (4.37) provides saddle points.

All the properties shown for the stationary case can be verified

here also.

At this point, invoke the results of the previous chapter to

derive analytical expressions for the gains using the input statistics

as parameters. Substitution of the expectations involved in Eqs. (4.44),

(4.45) and (4.46) by the expressions of Eqs. (3.58) through (3.63) and

carrying out the algebraic operations results in
m

Pa. x
N = - I, + m-(m-1) . V2 + mop -V V (4.47)
b. (iy +14 ) + 2 x. x a. x. a ~(.7i a+ x 1 i 1 i

N = - - {M + M-(m-l)-(m-2) V 2
x a x 2 x

1 1 1 1

N m 1 {+ m-(m-1) V (4.49)
a. x. 2 x.1 1
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Equations (4.47) through (4.49) give the optimal gains as

functions of the parameters V , V.
1 1 1

When the parameter a. can be adequately modeled by only a

constant bias term, the expressions for the optimal gains become

(V = 0; p = 0):a. x a.
1 ~1 1

m
.a x 2

N = - 1 +m(m-1 * V } (4.50)
b. (11 +yJ ) 2 x1 a. x.

1 1

N = P - y(m-l) {m + m (m-1)-(m-2) .2 } (4.51)
x. a. x. 2 x.

1 1 1

Some of the properties of the one-dimensional case (Eqs. (4.50)

and (4.51)) are described in the following:

One can easily verify that

a. for m = 1 (i.e., g(a., x.) = a 0 x.), it follows that

Nb. =N = P (4.52)
1 1 1

b. for m = 2 (i.e., f(x) = x2

2
N = y - y -(l+ V )/(p + P ) (4.53)
b. a. x. x. a. x.
1 1 1 1 1 1

N = 2 - a - (4.54)
xi 1 x.

Equations (4.53), (4.54) give the analytical forms of the gains

using the Taylor-Gauss approximation. Note that these are the exact

values of the gains. Figures 4.2 and 4.3 present plots of the normalized

gains (non-dimensional),

112



1.15

1.101

I .05|

1.00

0.95

0.2 0.4

OF VARIATION

0,6 0.8

OF STATE i : V

010

COEFFICIENT

Figure 4.2

NORMALIZED GAIN FOR THE BIAS X. AS A FUNCTION OF THE COEFFICIENT
1

OF VARIATION OF THE i thSTATE FOR DIFFERENT VALUES OF THE EXPONENT m

113

_ M= 1.0

0,0

-~ S
1 I ~ ~~I

0

z

0z

1.0



1 .6

m= 1.5

m=11.2
0
LL

z
0m 1.0

1.0 -:I--
0
w

m 0.8
0

010 0,2 0.4 0.6 0.8 1,0

COEFFICIENT OF VARIATION OF STATE i: V

Figure 4.3

NORMALIZED GAIN FOR THE GAUSSIAN RESIDUAL rx AS
1 th

A FUNCTION OF THE COEFFICIENT OF VARIATION OF THE i STATE

FOR DIFFERENT VALUES OF THE EXPONENT m

114



Mb. = 1 + V
I

(4.55)
1

m-(m-1) - (m-2) 2
x. 2 xxI x

(4.56)

as functions of the coefficient of variation V , for different values

of m. Based on these figures, the following can be stated:

a. The normalized gain Mb is relatively insensitive to the

value of the exponent for small values of V. (< 0.30).
1-

It is quadratic in V.

b. The normalized gain M is relatively insensitive to the

value of V. for a given m. It is very sensitive to the

value of m, especially for small coefficients of variation

(for V. < 0.30 is practically equal to m).

c. Consider the ordinary linearization using the linear terms

in a Taylor series expansion of the function: g(Pa , p,a x.
i

r ) = P a (pi + r ) about the point r = 0.
x. Tx x. x
1 1 i 1

Then,

in
g (P , p , r ) = p * P + m - P

T a. x. x. a. x. a.
1 1 1 1 1 1

The normalized gains in this case are:

Mb
T

Mx
x.

1T

=M

=-in

(m-1)
x.
1

(4.56)
1

(4.57)

(4.58)

Direct comparison of Eqs. (4.57), (4.58) with Eqs. (4.55) and (4.56),

respectively, shows that statistical linearization accounts for the
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effects that the variance of the random variable has on the output of the

nonlinear function. If V. can be assumed to be small (with a reasonable

value of m), the results of the statistical linearization became identi-

cal to the ones of the ordinary linearization.

When the parameter a. is equal to the sum of a bias term plus

a zero mean Gaussian residual, Eqs. (4.47) through (4.49) should be

used. In this case the normalized gains are

Nb
i - .( + ) (4.59)

m a. x.
a. x.
1 1

N
_ xi (4.60)

N = (m-l)
Pa. - Ix.

1 1

N
a.

M - a- (4.61)
a im

i ix.

Figures 4.4, 4.5 and 4.6 present isometric plots (Restrepo-Posada,

1978) of M.b as a function of the coefficients of variation V and

i 1

V x~ for correlation coefficients p xa equal to 0.3, 0.6 and 0.8 respectively.
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Plots of M vs. V and V are
x. a. x.
1 1 1

4.9 for the same values of p

of the normialized gain M as
a.

independent of the value of p

4.10 the V, V

displayed in figures 4.7, 4.8 and

respectively. Figure 4.10 is a plot

a function of V and V , which isa. x.1 1

x a (Eq. (4.49)). In figures 4.4 through

axes initiate at the value 0 and terminate at the

value 1. In all cases the vertical axis initiates at the value 0.7

and terminates at the value 1.5. The vertical coordinate of the point,

where the surfaces intersect the vertical axis, is indicated in this

group of figures. The effect of the correlation coefficient is more

apparent in the case of the normalized gain Mb. . It can be seen that

the higher the correlation is, the more (V a 0, V # 0) the gaina. x.1 1
departs from the value it takes (i..e. one) when the nonlinear

functions involved are linearized through truncation of their Taylor's

series expansions after the linear terms.
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Chapter 5

REAL TIME STATE AND PARAMETER ESTIMATION

5.1 Introduction

In recent years, the sequential, linear, minimum mean squared

error estimator, called Kalman filter (Kalman and Bucy, 1961) has found

widespread usage within the hydrologic forecasting framework. In

particular, use of this estimator with conceptual hydrologic models has

considerably improved their performance in forecasting streamflow

(Kitanidis and Bras, 1978). In flood prevention studies, the Kalman

filter provides a quantitative estimate of the measures of uncertainty

needed.

This chapter concentrates on the study of the sequential

estimator to be used with the statistically linearized flood routing

model based on a series of nonlinear reservoirs.

At first, the state equations of the model are converted to

canonical form, which leads to decoupled first order differential equa-

tions. This representation of the system is used for the integration of

system equations as well as in the study of controllability and observa-

bility properties of the system. A Gaussian minimum variance estimator

is employed to process the measurements and the necessary formulation

is presented for on line state and parameter estimation. Stability of

the state estimator is inferred from the observability and controllabil-

ity properties of the system.
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5.2 Canonical Form of Linearized State Equations

The differential equations governing the flood routing model

based on n nonlinear reservoirs are of the type

dx.(t) m

dt p. u(t) + a (t) x (t) - a. Wdt i -1- I

i = 1, 2, ... , n (5.1)

th
where x.(t) is the i state of the system at time t (volume of water

in storage in the ith reservoir); u(t) is the input to the system at time

t; p., a (t), i = 0, 1, ... , n, and m are the parameters of the system

with a (t) = 0 Vt and p 0.

In this section, the parameters a.(t), i = 0, 1, 2, ... , n,

are assumed to be known constants.

Since nonlinear differential equations rarely have analytical

solutions and, most importantly, powerful results have been obtained in

estimation theory for linear systems, some sort of linearization of the

system of equations described by Eq. (5.1), for all i, is in order.

Suppose that the nonlinear (m # 1) functions x.(t), i = 1, 2, ... , n,

are linearized in some way about some a priori determined reference

trajectory (Vt). In addition, since the input to the system is in most

practical situations a piece-wise constant function (e.g., observations

or predictions of the input available every six hours), it is assumed

that the reference trajectory is a piece-wise constant function.

Under the above conditions, the set of Eqs. (5.1), for all i,

can be written as,
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dx1(t)
= b. + 1. - x (t) - . x.(t); i = 1, 2, .. , n

dt k i-i i-i 1 k 1
d kk k

tk < t < tk+l (5.2)

where

m m
b = p.- u(t k) + a _ (tk i- tk a (tk k)

i = 1, 2, ... , n

(5.3)

S = 13 (tk), I = 1, 2, ... , n, k = 0, 1, 2, ... (5.4)

i (tk), i 1, 2, ... , n, k = 0, 1, 2, ... are the coefficients

m
due to linearization of the functions a. xi(t), i = 1, 2, ... , n, about

the reference trajectory x (tk ) i = 1, 2, ... , n, k = 0, 1, 2, ... ,
0

and, the intervals [tk, tk+1] Vk are the intervals of constant input,

u(tk).

Note that Eq. (5.2) describes a set of n coupled, first order,

linear differential equations, for t in the interval [tk, tk+1]

The system of differential equations can be converted to

canonical (normal or diagonal) form. This is a particularly convenient

representation since it leads to uncoupled first order differential

equations for the description of the state (x (t), i = 1, 2, ... , n)

evolution in time. In addition, this type of representation is very

useful in the study of system controllability and observability to be

undertaken in later sections.
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The constraint tk < t < t will be assumed (unless otherwise

stated), and it will not be written explicitly for convenience in nota-

tion.

The set of equations described by Eq. (5.2) can be written in

matrix form as,

dx (t)

dt =k + Ak * x t)

where vectors are underlined and matrices under- and over-lined, and

(5.5)

x(t) = [x (t) x2 (t)

b-k [b 1  b2
k k

0

-2k

62k

0

0

. * . x (t) I

. . b
nk

0

0

0

0

0

0
-n-lk

0

The superscript "T" denotes the transpose of a vector or

matrix quantity.

The eigenvalues k, 1i=l, 2, ..., n, of the matrix Ak can

be found as the solution of the algebraic equation:
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A k

0

0

0

(5.6)

(5.7)

(nxn)

(5.8)

0

0
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det{A -I - }= 0 (5.9)k -n

th
with det { - I denoting determinant and I nn the n order unit matrix.

Since the quantity in brackets in Eq. (5.9) is a lower triangular matrix
n

(e.g., Eq. (5.8)), its determinant is equal to: II (Xk + )
i=l k

Consequently, Eq. (5.9) is satisfied if

X. = - . , i = 1, 2, ... , n (5.10)

It is now possible to determine the set of eigenvectors u k

i = 1, 2, ... , n, associated with X. , i = 1, 2, ... , n. By definition,

k .U. Ak -u. ; i = 1, 2, ..., n (5.11)
k k Ik

u. = [u. u . u . ]T (5.12)
-i k 1' k 2, k n,l k

Substitution of Eq. (5.12) in Eq. (5.11) yields,

U A 0 . - u.
1,i ik X1 k 000U19 k1 

-..0 0 Ul.

2,1 2 0 0 U 2, ik

- ; i=l,,.,

U. 0 0 . . -A A U.
n, ik n-lk nk n,l k

(5.13)

Due to the sparse nature of matrix Ak, one can solve the system

of equations described by Eq. (5.13) to find u1 3 , ... , un,ik for each

i (i = 1, 2, ... , n). For distinct eigenvalues,
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U. 0
3, 1k

u =c

u . . = L ( k) c ;
3' , k =i+ 1 (A X ik i 91k k

; j < i, j = 1, 2. ... , n-i

i = 1, 2, ... , n

j > i, j = 2, ..., n

where H(-) represents the product operator and c is an arbitrary constant

taken as unity in this work.

Next, a matrix T is
-=k

constructed with the eigenvectors u. ,

i = 1, 2, ... , n, as follows,

T= u -2
k k

Explicitly, T takes the

.:u nkI (nxn) (5.17)

form,

kA -
21

n 2,-i
9=2 2k 1

k k

0

1

n -

9=3 2, k 2
k k

Since T is a lower triangular matrix:

n
det{T 1 1)=1 0

=k

0

0

1

(nxn)

(5.18)

(5.19)
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(5.14)

(5.15)

(5.16)

T =



-l

It follows that the matrix T, called the inverse of Tk,

exists and it is also a lower triangular matrix, whose elements can be

computed recursively by

i-1

t j. =- t. t~ ; i > j, j = 1, 2, ... , n-1
ik 9,=j 'k 'k q9

-1
tiik = 1 i = 1, 2, ... , n (5.21)

t~1. = 0
i,J

(5.22)

th
where t. represents the (i, j) element of matrix T

ijk=k

Substitution of t. from Eq. (5.18) reduces Eq. (5.20) (after

straightforward but tedious algebraic manipulations) to,

ij0i-1 P,
= (- 1 )+ *i-i ______) ;

For ek k 

For example, if n = 3, then,

i > j, j = 1, 2, ... , n-1

(5.23)

1k

12 1k k

2 1
k k

( 3  - )( 2  X1 )
k k k k

(5.24)

and
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T=
--k

0

2 k

2

1

3 2
k k

0

1



1 0

k

2 k k

2 1
k k

(A3  2  ( 3
k k k k

2 k
3 2

32
k k

Define the set of canonical variables, y 1 (t), y2(0

by the transformation,

x(t) = T * y(t)

y2(t) n T

Substitution of Equation (5.26) into Equation (5.5) results in

(5.28)

-1
Multiplication of both sides of Eq. (5.28) by T reveals,

d -
dt WO)=1

(5.29)- - ~ y (t) + -

It can be shown (Schultz and Melsa, 1967) that,

-l
T - k -k -T k (5.30)

where Ak is a diagonal matrix, whose elements are the corresponding eigen-
-1

values of Thus, denoting by 4 the vector T
- bk, the equation
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_-1

-k

0

0

1

(5.25)

with

0.' 9 n

(5.26)

(5.27)-Y(t) = [yi(t)

'k - (d (t )). = Ak k - -1k) + b k



describing the motion of the canonical state vector y(t), of the system

is

(5.31)
.f(y(t)) = Ak -y(t) + Sk

Each element of the vector _y(t) obeys

dt (y (t)) = .dt i I k
- y () + c ik ; i = 1, 2, ..., n

Notice that the first order, linear equations derived, are

decoupled. Consequently, the solution (integration) of Eq. (5.31) is

in terms of a diagonal transition (or fundamental) matrix, lk (t, t2 )

whose (i, i) th element (t, t2 ) satisfies,

k

-d $ (t, t ) .
dt i'ik 0 k

with initial condition

* . k (t, t 0 )

$. . (t , to) = 1

It follows that,

k . (t -

$. (t, t ) = e k
1,ik 0

t 0 )

; i = 1, 2, ..., n

The solution of Eq. (5.32) is then,

t

y (t) = 'k . (t, to) -y (t ) + . . (t, s) - c. - ds

t
0

i = 1, 2, ... , n (5.36)

or substituting for $. . (t, t ) from Eq. (5.35) for all i results in
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(5.33)
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(5.35)



;k. (t-t )

y.(t) = y (t 0 e

x. (t-t )

y 1 (t) = y (to) -e

t e.(t-s)

t
0

- ds ;

i = 1, 2, ... , n (5.37)

c. i (t-t )
k k k

- - (1 - e)
1k

i = 1, 2, ..., n (5.38)

assuming X k is nonzero for all i.

[tk$ tk+1I.

The above solution is in the interval

If one is only interested at the end points of the intervals

[tk, tk+1] , k = 0, 1, 2, ... (e.g., observations of the output are

available at these points), then Eq. (5.38) yields

x -At c I kAt
I k 1 e k
k k ky. =y. -*e ---- ( - e );

k+1 k1i

I = 1, 2, ... , n, k = 0, 1, 2, ...

(5.39)

with Atk defined as:

Atk = tk+1 - tk k = 0, 1, 2, ...

Denote by (tk ' tk) the one step transition function.

It follows that the multiple step transition function is given by

k-1

#9qi(t k' j . i(t k+1, t) ;

k > j, i = 1, 2, ... , n, j = 0, 1, 2, 3...

(5.41)
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and

j-1

, (tk t ) = H 'l (t t +1

j > k, i = 1, 2, ... , n, k = 0, 1, 2, 3,

(5.42)

where ). (t , t k+l) is,

-X. -At
kk.4. (t , t ) = e ; i = 1, 2, ... , n, k = 0, 1, 2, ...

i,i k' k+l

(5.43)

The multi-step transition matrix c(t , t.) is defined as a diagonal

matrix whose (i, i)th element is equal to the discrete transition func-

tion 4 .ii (tk, t.). These matrices will be used later in conjunction

with the conditions for stochas ic observability and controllability of

the linearized and discretized system.

5.3 Gaussian Minimum Variance Estimator

It is a common procedure in engineering practice to work with

mathematical models that are simpler, but less accurate than the best

available model of a given physical process. The major reasons for

this are: a) to reduce the computational burden associated with simu-

lation, b) to simplify the analysis of the system under study.

Consequently, the output of the mathematical model differs from the

observed one.
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Formally, one can attribute the resulting discrepancy to the

following errors:

a) errors in the structure of the model,

b) errors in the values of the parameters of the model,

c) errors in the input data,

d) errors in the observation of the output.

Treatment of the above mentioned error sources within a

probabilistic framework have lead to a well-defined class of stochastic

models. Deterministic models have been coupled with models representing

the probabilistic behavior of the above mentioned errors. For example,

the time varying linear deterministic model, with dynamics,

dx(t)

dt= F(t) - x(t) + B(t) u(t) (5.44)
dt ---

and output equation,

y(t1 ) = I(t k) (t) ; k = 1, 2, ... (5.45)

can be modified to the form,

dx(t)

dt = F(t) - x(t) + B(t) u(t) + G(t) w(t) (5.46)

and

y(t) = H(tk) * X(t k) + v(tk) ; k = 1, 2, ... (5.47)

where x(t) is the n-dimensional state of the model at time t, u(t) is

the p-dimensional input vector, _y(tk) is the m-dimensional output (or
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observation) vector, w(t) is a continuous time random error process of

dimension r, and v(tk) is an additive error sequence (at times t, t2 '

... ) of dimension m. F(t), B(t), G(t) are time varying coefficient

matrices of dimensions (nxn), (nxp), (nxr), respectively, and H(tk) is

the measurement coefficient matrix at time step k.

A very useful model for the continuous time error process

w(t) has proven to be white noise. This process can be thought to be

the formal derivative of the Wiener's process (since Wiener's process

is not mean square differentiable) (Jazwinski, 1970). The unique feature

that is responsible for its wide use in filtering theory is its peculiar

autocorrelation function, which is a Dirac delta function. Note that

this implies infinite power for this process, thus it is not physically

realizable. Due to the delta autocorrelation function, when w(t) of

Eq. (5.46) is modeled as a white noise process and is independent of

the initial state, then the generated state vector process x(t) is a

Markov process (u(t) is assumed to be a known function of time). In

fact, this holds true for a much more general situation, namely, when

the physical phenomenon is described by a nonlinear differential equa-

tion.

In an analogous manner, v(t k) is usually modeled as a white

sequence. That is,

E{[v(tk) - E{v(tk)}][v(t.) - E{v(t )I]T = (tk kj (5.48)

where R(tk) is the covariance matrix of v(tk) at time tk and 6kj is

Kronecker's delta, taking the value one when k is equal to j and zero
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otherwise.

A fundamental problem in filtering theory is to give the best

(according to some criterion of optimality) estimate of the state of a

continuous system given discrete-time observations of the output up to

a given instant, as well as information about the statistics of the

state at some initial time and of the error processes at all times. One

can decompose the problem in: a) the propagation step, where the state

estimate X(tkItk ) at time tk having processed the observation at tk'

needs to be propagated in the interval of time [tk, tk+1], where there

are no observations of the output available, and b) the updating step,

where the estimate x(t k+l tk) at time tk+l resulting from the propagation

step, needs to be corrected to the estimate x(tk+lltk+l) by the incor-

poration of the information contained in the observation available at

timet k+l

For the continuous time differential equation (5.48), it can

be shown (Gelb, 1974):

t (_x(t~tk) T (t) (tItk) + _(t) - u(t) (5.49)

with initial condition:

x(t|tk) = x(tkltk) (5.50)

and

d -T -T

-- (P(tItk)) = F(t) - P(tIt k)+P(ttk) F (t) + G(t) - Q(t) G (t)

(5.51)
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with initial condition

P(t Itk) = P (tkltk) (5.52)

Q(t) is the covariance parameter matrix (a time varying

spectral density) of the white noise process w(t) and is defined by,

T
E{w(t) - w (t)} = Q(t) - 6(T) (5.53)

with

E{w (t )} = -0 (5.54)

6(T) is the Dirac delta function, being zero at values of T

different from zero and infinite at T equal to zero.

Solution of the set of Eqs. (5.49) through (5.52) gives the

optimal estimate (mean process) of the state: x(t k+ltk) and the asso-

ciated error covariance (since the optimal estimate is the mean):

P(tk+lltk), given the estimate x(tkltk) and the error covariance

P(t ktk). This completes the propagation step.

It is rather clear that in the processing of the observations,

the conditional probability density p(x(t)|I ), where Y is the vector
Lk

of all measurements up to time tk, plays a central role. It can be

thought to be the real state of the stochastic system.

If one employs a mean quadratic estimation error criterion,

then it is known that the optimal estimate is the conditional mean, for

all types of probability densities. If, in addition, one assumes
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Gaussian initial conditions for the state and Gaussian statistics for

the driving noises w(t) and v(t k), then the following are true:

a. During the propagation step, the state remains Gaussian

with mean x(tltk) and covariance P(tjtk) for tk - t < tk+l'

b. The random vectors x(t )/Y and v(tk) are jointly
-k+l -k - k+1

Gaussian due to the independence properties of v(t k+). Consequently,

yj(t k+1) is a Gaussian random vector being the sum of jointly Gaussian

random vectors, y(tk+l) = (tk+l x(tk+l) + v(tk+l).

c. Following (b), x(t )/Y and y(t )/Y are jointly
k+1 -=k k+l -k

Gaussian random vectors since,

x(t ) ~ I LL 0 LL x(t )~
x _k+ -n -- m - k+5

(5. 55)

y(tk+l) H(tk+1 v(tk+l

d. Since x(tk+ )/Y and y(tk+l)/Y are jointly Gaussian, the
k1-k kl'

conditional density is also Gaussian with mean,

-l
~(t It)=~t I) +PL It )*P (t It

k+l|tk+l) =(tk+l|tk -xy k+ltk - k+ltk

-(tk+1 --(tk+l|tk)) (.6

and covariance:

-1

(tk+lltk+l) = (tk+lltk y (tJtk) - (tk+lltk

-P yx(t k|ltk) (5.57)
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It holds that,

(tk+1|tk) = .(tk+l) - (tk+1|tk)
(5.58)

y (tk+lItk) = E{[H(tk+l -(x(tk+l) - tk+lItk)) + v(tk+1)]

[H(tk+l) (x(tk+l) - (tk+l|tk)) + vCtk+1 ]T

(5.59)

or

P (tk+ k H(t k+) P(tk+l k) - (tk+1) + (tk+)

xy(tk+lltk) = E{[x(tk+l) - 3"(t k+ltk)] - [H(tk+l)

S(tk+ tk+ Ik)) + v(tk ](tk+ k+ k k+l

xytk+lltk) = P(tk+lltk) ffa kl

(5.60)

(5.61)

(5.62)

Substitution of Eqs. (5.58) through (5.62) in Eqs. (5.56) and

(5.57) yields the optimal minimum variance estimator equations for

Gaussian statistics,

(tk+lltk+l) = x(tk+lltk) + K(tk+l) - (y(tk+l

- (t k+) - X(tk+ 1tk)) (5.63)
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(tk+l 1 tk+l) - P(tk+1 tk) - K(tk+l) - (tk+1) - tk+1tk)
(5.64)

with

K(tt ) T --
k+l = k+1Itk) * H_ (tk+1 ) 0 [H(tk+l) (tk+lltk

-T --
-H (t ) + R(t ) (5.65)

-k+l - k+l

Several comments can be made at this point.

1. The optimal estimator is a linear function of the

observations y(tk+1). Thus, the optimal estimator is a linear estimator

in this case. Kalman and Bucy (1961), who essentially derived Eqs.

(5.63) to (5.65), assumed a priori a linear type of estimator to arrive

at the same results. In this case, one can argue that there might

exist a nonlinear estimator that can do better in the least squares

sense. In other words, if one makes the assumption of linearity, then

the linear estimator might not be the conditional mean of the underlying

distribution and P(t) needs some other interpretation. The assumption

of Gaussian statistics assures that the estimator is optimal over all

linear and nonlinear estimators.

2. For the linear model treated, the covariance matrix P(t)

is not a function of the observations. So one can do some covariance

analysis without actual simulation. This matrix is very useful as an

accuracy estimate.

3. The covariance update Eq. (5.64) can cause some problems,

due to the fact that P(tk+lltk+l) can become negative definite due to

computational error, especially at the initial stages of the filter
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operation where P(tk+lltk) and K(t k+l) are expected to be large and

P(tk+lltk+l) is expected to be small. Direct algebraic calculations

reveal that Eq. (5.64) is equivalent to

(tk+l|tk) = n - K(tk+l) - H(tk+1)] tk+lltk)

[I - K(t ) - H(t )]T + K(t )-R(t )
-nn - k+l k+l -k+l - k+l

ST(t ) (5.66)
- k+l

when K(tk+1) is given by Eq. (5.65). In Eq. (5.66), there is no possi-

bility for P(tk+lltk) to become negative definite since it is equal to

the sum of two non-negative definite matrices. However, the computa-

tional burden associated with Eq. (5.66) is larger than that of Eq.

(5.64).

4. During the derivation, the parameters Q(t), R(tk) were

assumed known for all times t, tk. Also, the initial values of _( k|tk '

I(tk It k) for tk = t were assumed given. If the values of these param-

eters used in the filter are not the true ones, then the resulting

filter will not operate optimally (suboptimal filter). Sensitivity

analysis is possible (Gelb (ed.), 1974) to determine the effect of the

use of the wrong parameters in the filter performance.

5. Very often, one deals with scalar observations. This is

commonly the case, for example, in streamflow forecasting, where observa-

tions of the river stage (or discharge) at the outlet of the catchment

are available. In cases like this, the update equations can be

simplified.
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Suppose,

H(tk) [0 0 . . . hn k)] (lxn) (5.67)

that is the state xn (t) is observed at times tk, k = 1, 2, ... , and

v(tk), R(tk) are scalars.

Then,

H(t ) P(t Ht (t + _'t
(tk+l - _ k+ltk T -tk+l) + (tk+1

=h (t p (tk+k + R(tk+1) (5.68)
n k+l nn ltk

thIt
with p nn(tk+lItk) denoting the (n, n) element of P(tk+ltk). Also,

Pln(tk+ljtk)

k~' t ) = P2n (t k+l Itk) n(k.l6tkP(t k+Itk) - Ih(tk+lltk2 hn(t k+ t 5.69)

Pnn (tk+l|tk)

Thus,

hn(tk+l|k ipn(tk |k.
k (tk+l 2 ; i = 1, 2, ... , n

hn(tk+ltk) nntk+ltk) + R(tk+ (5.70)

where k (t k+) is the ith element of the vector (in the case of a single

observation) gain k(t k+) and p. (t k+Itk) is the (i, j) th element of

matrix P(tk+lltk)*

It is worth noting that the correction to the ith state is

due to the cross correlation of this state and the observed state. Hence,

if p. (tk+lItk) is zero for some state i at some time tk+l, then the
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gain k (tk+1) is zero and from Eq. (5.63) and the fact that K(tk+l) is

a vector in this case, it follows that the updated estimate is the same

as the propagated value at tk+l*

Substitution of Eqs. (5.67) and (5.70) in Eq. (5.64) yields,

j t k+l1tk+l) = i,j (tk+l Itk) - k (tk+l) e hn(tk+l) * n,j(tk+lltk);

i, j = 1, 2, ... , n (5.71)

where p j(tk+lltk+l) is the (i, j) th element of matrix P(tk+lltk+l)*

If either pi,n (tk+llt k) or Pnj(tk+l1tk). is zero, the updated

covariance is equal to p .(tk+lltk) (the propagated one).

6. Denote by .(t k+) the one step ahead predicted residuals:

v(tk+l) =Y (tk+1 ) - k+l - k+l tk) (5.72)

The variance of v(tk+l) is given by Eq. (5.60). Direct

calculation also shows that for the sequence of optimal gains (Eq.

(5.65)), the residuals are uncorrelated in time, provided the parameters

of the filter are correct (e.g., R(t), R(t k)). Thus, it is often useful

to examine the statistics of v(tk+l) after an application of the filter

in real world, to verify if the values of Q(t), R(tk) assumed are the

true ones.

5.4 State Estimation

The statistically linearized flood routing model based on n

nonlinear reservoirs is converted to a stochastic model of the type in

Eqs. (5.46) and (5.47). At each time, the state x(t) of the system is
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decomposed into a mean term P (t) and a zero mean Gaussian residual

process r (t), such that for each i (i = 1, 2, ... , n),

x.(t) = P (t) + r (t) (5.73)
Sx. x

1 1

while the parameters a*, i = 1, 2, ... , n, are assumed constant. The

mean term p (t) is treated as a deterministic quantity and is propagated

according to the differential equations describing the motion of the

system. The process r (t) is estimated by the minimum variance Gaussian

estimator of the previous section. Thus, at the observation times,

the a posteriori mean of r (t) is not necessarily zero.

Suppose the initial time is t k* At this time, x(tk) is

decomposed in u (tk) and r (tk), where r (t k) is zero mean. Both quan-

tities are propagated in the interval (tk, tk+1) using the system equa-

tions. Thus, a priori, at time tk, the mean of x(t) is P t )k+13 -x k+l

since, if the system equations are linear, r (tk+l) has zero mean. At

time tk+l, an observation is available and is processed by the estimator

to determine the a posteriori mean of r (t k+l) equal to r (t ), not
-x k+) -x k+l

necessarily equal to zero. Thus, at this time step, the mean of x(t)

is P (t + k). As initial value p (tk) for the propagation-;x k+l r xtk+1 -x k+l

of the mean in the time interval (t t the value p (tk) +
k+1' k+2 ' x tk+l)

r x(tk+l) is used, while r (t) is again an a priori zero mean process.

This cycle is repeated for all the observations.

The following formulation follows the above guidelines.

2 thDenote by a (t) the variance of the i state at time t andx.
1

by V X.(t) the coefficient of variation of the same state,
1

146



GI (t)

V x(t) = P ) ; i = li, 2, ..., n
x

It was found (Chapter 4) that the function

g(p , r ) = a. - (y (t) + r (t))mx. x. x x.

(5.74)

(5.75)

can be approximated, in a least squares sense, by the function,

ga(P , r ) = N (t) - p (t) + N (t) - r (t)
a x ix b x. x. x (5.76)

The gains Nb. (t), N (t) are given by Eqs. (4.50) and (4.51),
1 1

respectively. Since in this development a. is assumed known and constant,

Pa (t) = a..a. 1

Substitution of Eq. (5.76) for all i, in the system of Eq.

(5.1) results in

dx.(t)

dt = p. - u(t) + N bdt 1 . ( i-l (t) + N il
(t) -r

x.

- N (t) (t) - N (t) - r (t); i = 1, 2, ..., n

(5.77)

Taking the expected value of both sides of Eq. (5.77) yields

d
-( (t)) = p P u (t) + Nbdt x. 1-u

(t) - y (t) - Nb(t) - (t) ;
1- 1

i=1, 2, ... , n (5.78)

where pu (t) represents the expected value of u(t) and,

u(t) = pu (t) + r (t) (5.79)
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with r u(t) a zero mean Gaussian process.

The equation describing the evolution of the residual

processes r (t), i = 1, 2, ... , n, in time, can be derived by subtract-

ing Eq. (5.78) from Eq. (5.77),

d(r (t))

d =N (t) - r (t) - N (t) - r (t) + p. - r (t);
dt x _- x i x x u

i = 1, 2, ... , n (5.80)

The measurement equation of the system is (k = 0, 1, 2, ... ),

z(tk) = an (px (tk) + r (tk)) m (5.81)
n n

where z(t k) is the actual observation of the outflowing discharge at

time tk*

Statistical linearization of Eq. (5.81) gives (for each k)

Z(t k = n (t ) - P (tk ) + N (t ) - r (t ) (5.82)
n n n n

or

z r(t k z(t k N k(t ) - x (t = N (t ) - r (t ) (5.83)
n n n n

Equation (5.78) describes the propagation in time of the mean

process of x.(t), i = 1, 2, ... , n.

Equation (5.80) is the propagation between observation times

of the zero mean residual process r (t), i = 1, 2, ... , n, with asso-

ciated measurement equation (5.83). In matrix form,
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d
-- [r (t)] =F(t) - r (t) + B - r (t)
dt- --x - u

z (t k (t) - r (t )rk - k -x k

-N (t)
xl

N (t)

0

0

; k = 0, 1, 2, ...

0

-N 2(t)

N (t)
x

2

0

r (t) = [r (t)
-x x

0

-N (t)
x3

0

r r (t)]
x 2 x n

B= [pl P2 .nI

H(tk) = [0 0 . . . . N (t k)]k

Addition of driving noise terms converts Eqs. (5.84) and (5.85)

to the form of Eqs. (5.46) and (5.47), respectively. Thus, the formulae

of the previous section are directly applicable, provided that r u(t) is

a white noise process and that at each time step the initial value of

the estimate r (t k) is set to zero.

Equations (5.84) and (5.85) are linear equations with constant
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(5.84)

where

(5.85)

F(t) =

0

0

0

0 -N (t)
n

(nxn)

(5.86)

(5.87)

(5.88)

(5.89)



coefficients for the intervals (ti, t i+) for i = 0, 1, 2. .... Using

the results of Section 5.2, one can convert them into the equivalent

canonical form. Addition of the discrete noise processes to the resul-

tant equations gives the following stochastic system,

r (tk+1 r(tk+ tk y (t ) +k W(tk) (5.90)

zr (tk+l) = E'(tk) - r (tk) + v(tk) ; k = 0, 1, 2, ... (5.91)

where 4 (tk+l' k) is the diagonal transition matrix; Ik-W(tk) is a

weighted discrete noise process that accounts also for the input uncer-

tainty; H'(tk) is a lxn matrix with nonzero elements (in general).

r (t) is the canonical state related with r (t) by the transformation,

-y -x

r (t) = T - r (t) ; tk < t < tk+l (5.92)
-x -rk --ykk+

with T of the type in Eq. (5.18), provided that the eigenvalues of
rk

F(tk) are distinct for all k. Since Eq. (5.92) is linear, the mean and

covariance matrix of r (t) are given as T - E{r (t)} and

-Tx-k -
T - P (t) - T , respectively, where P (t) is the covariance matrix of

r (t) computed from the linear equation (5.90). The canonical form is
-y

particularly convenient to study the stability of the estimator. Deyst

and Price (1968) showed that if a system is uniformly completely

observable and controllable, the resultant filter is stable. That is,

errors in the state estimate or in the error covariance matrix "die out".

In Appendix C, it is shown that when the elements of H'(tk '

4)r (tk+l, tk) are well behaved (e.g., bounded and nonzero) for all times
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tk , and the covariances R(tk) and (tk) of the noise sequences have

nonzero and bounded elements (g(tk) is assumed diagonal and _1 k is

diagonal with elements equal to unity). Then, the system of equations

(5.93) and (5.94) is both uniformly completely controllable and observ-

able.

Note that given that the filter is stable, the choice of the

initial covariance matrix is not crucial in its performance. In addi-

tion, if the system is time invariant and the true covariance matrices

Q(t k) and R(t k) are independent of time (stationary statistics), it can

be stated that the filter will reach a steady state.

5.5 Simultaneous State and Parameter Estimation

It is desired to identify the value of the parameters that

minimize a mean quadratic error criterion. Similar to the state estima-

tion problem, a sequential estimator is sought, so that the observations

are processed as they become available and thus, excessive computation

storage requirements are avoided. Since, in most cases, the parameter

estimator will operate in parallel to the state estimator, the problem

is one of simultaneous state and parameter estimation (adaptive filter-

ing).

Perhaps the most common estimator in situations like this is

the extended Kalman filter, where the nonlinear multi-dimensional func-

tions involved are linearized about a reference trajectory.

Linearization through truncation of a Taylor series expansion results

in a bias in the expected value of the function involved, introducing

151



an error source that can cause divergence of the estimator from the true

value or it can give biased estimates (Ljung, 1979).

As an alternative to ordinary linearization, statistical

linearization has not found widespread usage in parameter estimation,

even though it gives unbiased expected values for the nonlinear functions.

The major reason for this is that one has to calculate the expected value

of a nonlinear function in order to determine the gains of linearization

(Chapter 4). The common numerical integration solution is immediately

rejected due to the numerical burden associated with the evaluation of

multi-dimensional integrals at each iteration step.

To overcome this problem, the approximations developed in

Chapter 3 will be used in the statistical linearization of the nonlinear

functions involved. The adaptive filtering problem will be converted

to a state estimation one, by the introduction of differential equations

to describe the dynamics of the parameters.

If the standard assumption of the states and the parameters

being approximately Gaussian is used, then

x.(t) = Pi (t) + r (t) ; i = 1, 2, ... , n (5.93)
1 x.

a.(t) = P (t) + r (t) ; i = 1, 2, ... , n (5.94)
1 a a.

1 1

with py (t), pa (t) representing mean processes and r (t), r (t) zerox. a. x. a.1 1 1 1
2mean normally distributed residual processes with variances a (t) and

2 12a (t), respectively. The covariance between x. and a. is denoted by

2'a (t). x.(t) and a.(t), i = 1, 2, ... , n, are the states and thex.a. i i
11l
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parameters, respectively, of a flood routing model based on n nonlinear

reservoirs, of the type discussed in Chapter 2.

Statistical linearization of the generic function a.(t)-xm(t),i I

where m is a real number in the interval [0.8, 1.6] gives (Chapter 4)

a.(t) - xm(t) = N ( - 'a (t) + N (t) ( y (t) + N (t) -r (t)
i i b a b x. x. x1 1 i ~ i 1 1

+ N (t) - r (t) (5.95)
1 1

where Nb.(t), N (t) and N (t) are given in Eqs. (4.47), (4.48) and
1 1 1

(4.49), respectively, with

a (t)

V (t) = t) i = 1, 2, ... , n (5.96)xi x
11

a (t)

Va. (t) i = 1, 2, ... , n (5.97)
1 a.

and p (t) represents the cross-correlation between the ith state and

the ith parameter at time t. In the development to follow, it is assumed

that the means are nonzero.

The differential equation governing the motion of the ith state

of the system is Eq. (5.1). Substitution of Eq. (5.95) in Eq. (5.1)

yields,

d(p (t)+r (t))

= Piu (t) + p.-r (t) + N (t)b. - (t)
dt 1 u b a

+ Nb Wtx (t)+Na (t)-ra (t) + N (t)-r (t)
il1 1-1 a. 1  a- i-1-

- Nb (t)- (t)-Nb (t)-yv (t)-N (t)-r (t)-N (t)-r (t);

i = 1, 2, ... , n (5.98)
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where u(t) is considered to be the sum of the mean process pu(t) and the

2
zero mean Gaussian white noise r (t) with variance parameter a (t).U U

The expected value of Eq. (5.98) is

d(i (t))

1 = pi'-u(t)+Nbdt U b (t) Pa (t) + Nb (t)-P
i- i-IL

- N (t)* y (t) - N (t)*y (t) 1, 2, ... , n

(5.99)

Subtraction of Eq. (5.99) from Eq. (5.98) results in:

d(r (t))
x.
dt N
dt xi

(t) - r (t) + N (t) - r (t)
~i-l a . 1 a -1

- N (t) r (t)- N (t) r (t) + p. r (t) ;x1 x2 a an

i = 1, 2, ... , n (5.100)

Equations (5.99) and (5.100)

t.

hold for N (t) = 0 and N (t)
0 a

Constant parameters obey a differential equation of the type

d(a. (t))

dt =0 i = 1, 2, ..., n

Consequently,

d(P (t))

dy

d(r (t))

dt = 0

i =1, 2, ...,n

i 1, 2, ... ,n
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i-i

0 for all

(5.101)

(5.102)

(5.103)

i-JL
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The system of equations (5.100) and (5.103) can be rewritten

in a matrix notation as

d (r(t)) = N(t) - r(t) + p - rut)

where

(5.104)

T
r(t) = Ir (t)

r (t) = [r (t)
-xx

r a(t) = [r a(t)

2 = [p1

.r (t)] T

r (t)]T

In
r (t)
x
2

r a2(t) . . ra n(t)]T

T

(5.105)

(5.106)

(5.107)

(5.108)

N (t) N (t)
-r . -r

N(t) =

with 0nn representing the

N-r (t) =

x

-N (t)
xl1

(2nx2n) (5.10

(nxn) matrix whose elements are all zero.

0

N (t) -N (t)
x1 x2

0

0

0

0

0

0N (t) -N (t)
23

0 0 0 -N (t)
x
n

(nxn)

(5.110)

155

9)



-N (t) 0 0 . . 0

N (t) -N (t) 0 . 0
a1  a2

0 N (t) -N (t) . . 0

N-r (t) = (nxn)

o 0 0 . . -N (t)
a

(5.111)

It is assumed that the observations of the output of the system

at some time tk, k = 0, 1, 2, ... , consist of a single measurement of

the discharge at the outlet of the catchment of interest, at time tk'

k = 0, 1, 2, ... It follows,

z(tk) Nb (tk x (tk) + Nb (tk a (tk) + N (t ) r (t k
n n n n n n

+ N (tk) - r (tk) (5.112)
n n

where z(t k), k = 0, 1, 2, ... , represents the sequence of measurements.

Denote by zr (t) the function defined as

z r ( k z(tk) - b (tk x (t k) - Nb (tk a )(t (5.113)
n n n n

Then, in matrix notation,

zr tk) = H(tk) - r(tk) (5.114)

where

H(tk) = [H (t ) a (t)] (lx2n) (5.115)
-k -x k . ak
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H(t) [0 0 ... N (tk)] (lxn) (5.116)

Ha(tk)= [0 0 N a (tk)] (lxn) (5.117)
n

Equations (5.104) and (5.114) are the system equations in matrix form.

At this point, white noise, w'(t), is added to Eq. (5.104) having

diagonal intensity (or variance parameter) matrix equal to q' (t), to

account for errors in the model structure and in the value of m. Since

the intensity of the white model error is not predetermined by any law

and r u(t) is also modeled as a white noise process, the two are lumped

into a single noise process w(t) multiplied by a weighting matrix G(t).

In the implementation of the filter equations, the variance parameter

T 2
Q(t) of this noise is'taken as -u(t) + '(t).

The discrete time white noise v(tk), k = 0, 1, 2, ... , is

added in Eq. (5.114) to account for model and measurement schedule

deficiencies. Its variance is denoted by R(tk), k = 0, 1, 2, ... Thus,

d
dt (r(t)) = N(t) - r(t) + G(t) - w(t) (5.118)

where G(t) is a weighting matrix, and

zr (tk) = H tk) r(tk) + v(tk) (5.119)

Use of the Gaussian minimum variance filter with Eqs. (5.118)

and (5.119) results in the following algorithm:

State Estimate Propagation

dt (r(ttk)) = N(t) - r(tltk) (5.120)
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with initial condition

i(tO|tk) = (tkItk) (5.121)

Error Covariance Propagation

( (ttk) =(t) - P(tit) + P(tltk) -N (t) + G(t) q(t) c (t)

(5.122)

with initial condition

(tO|tk tk k) (5.123)

State Estimate Update:

A

r(tlk+ltk+l) = r(tk+tk) + k(t k+) - v(t k+) (5.124)

Innovations Sequence:

-V(t k+l) = Z r(t k+) -H(t k+l -;t k+l|tk) (5.125)

Error Covariance Update:

K(tk+lltk+l) = CI2n,2n - k(tk+l) . !f(tk+1)) - (tk+1Itk) (5.126)

where I2n,2n is the (2nx2n) dimensional unit matrix.

Gain Matrix:

k(tk) (tk+1tk -T (tk+1 Q k+1 (5.127)
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Variance of the Innovations:

Q (tk+l) = i(tk+ ( t kk+Itk) - H (t k+) + R(t +) (5.128)

The error covariance matrix can be decomposed as follows:

P (t) 'P (t)-x . -xa
P(t) =. . . . . . . . (2nx2n) (5.129)

P (t) P (t)-ax . -a

Equation (5.129) can be substituted in the filter equations to

reduce the dimensionality of the matrices involved. This results in:

Error Covariance Propagation:

d ---- T(P (t x(t) - (tIt) + K (t) -P (t t) + T (tt) - N (t)dt -x k -x -x k -a -xa k -x k -

+ x(t t) -N (t) + G (t) - Q (t) G (t) (5.130)-xa k -a -X -x -

with initial condition,

P(t tk x (tk t ) (5.131)

where q(t) is the variance parameter of the portion of the white noise

w(t) associated with r (t).

d (P (tit )) = N (t) * -P (tit )+N(t) * P(tjt) (5.132)
dt -xa k x -xa k -a -a k

with initial condition,

.,a (totk) = i]Fxa(tkltk) (5.133)
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ax k xa k
for all t

d [ t k a(t) - (t) -&G (t)dt -a IkJ -a1 (t) t--

with initial condition,

-ao(ttk (tk tk) (5.136)

where qa(t) is the variance parameter of the portion of the white noise

w(t) associated with r at).

Error Covariance Update

Px(tk+l1tk+1) = I - k x(tk+1) *Hx (tk+1) x(tk+lItk)

- k (tk+ 1 P(t )t k+t)x ktl)Hakl -T k+ltk) (5.137)

a (tk+1 k+1 n k+) (tk+ )) xP k+lttxa ~l tkl) -nn -x k1-x k+ -xatk+ltk)

x (tk+1 -a tk+1 -a(tk+ltk)

P (t -tk+T = T
-ax k+lk+ --xa tlItkl

(5.138)

(5.139)

a(tk k+ a k+1 x k+1 -xa k+1Itk)

+ (inn - a (tk+1 a (tk+1 -a k+ltk

(5.140)
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Gain Vectors

-x k+1k tk) -ltkk+ + Pxa Ik+tk)

-a (k+1) ] - (tk) (5.141)a*H ~lt k+l

-ak l -xa (t l *H(t )+ H (tt)k (tk+ -,a tk+tk) -x k+l -a k+ltk) - (tk+1

SQ 1(tk+) (5.142)

State Estimate Update

Sx(ttk+ k+ = rx (t k+1k) + k + (tk+l) V(tk+1) (5.143)

r (t k+ tk+l) = r (t k+tk) + k ) V(t k+) (5.144)

where v(t k+) is the innovations sequence.

The assumption (for the calculation of the statistical

linearization gains) that at the beginning of each propagation step

(tk, tk+l), the residual processes r (t), r a(t) have zero mean, leads

one to add the biases r (t ktk)' r a(tktk), resulting from the filter

operation, to the mean values, y (tk) and ga tk), from the solutionR tk -a tk)

of Eqs. (5.99) and (5.102). Therefore, at each propagation step, the

zero mean assumption is not violated. This simplifies the equations

of the state estimates in the filter algorithm to the following form:

State Estimate Update

x (tk+lltk+) = k x(tk+l) zr (tk+l) (5.145)
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a tk+ tk+ a (tk+) * zr (tk+) (5.146)

where r(tk+lltk) has been set equal to zero by means of Eq. (5.119),

given that Eq. (5.121) has been modified to the following,

r(t_ Itk) = 0 (5.147)

If the initial values of P (t) and P (t) are equal to 0 ,-a -xa -nn

then the algorithm reduces to the state estimation algorithm with the

parameters being constant, equal to their initial value.
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Chapter 6

CASE STUDY

6.1 Introduction

The use of the Gaussian minimum variance estimator with the

statistically linearized, nonlinear flood routing model, is illustrated in

this chapter. Off-line procedures to obtain parameter values are utilized,

based on input-output discharge data. Given the parameters, the state

estimator is used to forecast six-hour discharge values for the Bird Creek

drainage basin in Oklahoma, U.S.A. Subsequently, the simultaneous state

and parameter estimation scheme presented in the previous chapter is used

to refine crude parameter estimates obtained from off-line estimation

procedures.

Evaluation of the stochastic model performance is based on the

mean squared error criterion and on the agreement between predicted and

observed hydrograph characteristics (e.g. time to the peak discharge,

magnitude of the peak discharge).

6.2 Available Data

The Bird Creek drainage basin, near Sperry, Oklahoma, has a

drainage area of 2344 km2 at the point of flow measurement

(USGS Station No. 07177500). Six-hour discharge records were provided by

the National Weather Service, Office of Hydrology, for the October 1955 to

September 1962 period. The average discharge for this period is of the order

of 20 m 3/sec, with maximum recorded discharge of 2535.11 m 3/sec and a
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minimum of 0.22 m 3/sec. Long spells with near zero discharges

interrupted by sharp, high peak, hydrographs occurring, mainly, in

the period from May to September are characteristic of the discharge

records. Flows rising from a near zero level to 200-250 m 3/sec

in 18 hours are common in the records. This kind of behavior

(small base-flow contribution) suggests that the flood routing

scheme will be the crucial performance regulator for any rainfall-

runoff simulation model.

The soil moisture accounting scheme of the National

Weather Service River Forecast System (NWSRFS) model was utilized

to obtain the spatially lumped channel inflow hydrographs to be

routed through the channel. Descriptions of the NSWRFS model are

given in NWS HYDRO-31 (1976) and in Kitanidis and Bras (1978).

Calibration was performed by the N.W.S. Hydrologic Research

Laboratory. Parameters of the Bird Creek calibration are

available in Georgakakos and Bras (1979).

The months of May and July of the water year 1959

were selected as test periods. Real time forecasting of

six-hourly discharge values using the state estimator is done-

for these months. The parameter values used are based on

preliminary simulation runs. Rough initial estimates are

obtained utilizing the results of section 2.5. The on-line

parameter estimation procedure suggested in Chapter 5 is

examined during the second half of the month of May, 1959.
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In each of the selected months, successive flood events

produced sharp hydrographs with peak discharges separated by time periods

ranging from four to six days. The maximum recorded peak discharge in May

is 254 m 3/sec and in July is 286 m3 /sec. In both cases the minimum discharge

is less than 0.5 m 3/sec.

6.3 State Estimation Runs

In this section the parameters of the model are held constant

and the Gaussian minimum variance estimator is used to forecast the discharge

with a six-hour lead time.

It is necessary to obtain values for the number n of the cascaded

reservoirs, for the parameters a,, i = 1, 2, .. , n, for the exponent m

and for the input distribution p,., i = 1, 2, .. , n. The test period is

characterized by sharp hydrographs. Reshaping the hydrographs into

triangular form, preserving the volumes under the rising and under the

t
falling limbs, gives ratios - (where t is the time to peak and tr the

r
time duration of the falling limb of the equivalent triangular hydrographs)

of the order of one. Similarly, the channel inflow hydrographs, produced

by the NWSRFS model have characteristic times of the same magnitude

(their time ratio is about one). Section 2.5 showed that the lower the
t

exponent m of the routing model is, the bigger the ratio -n- of the
t
r

output hydrograph will be (Section 2.5). This suggests small values for m.

An m value of 0.8 is adopted for all reservoirs. The number of reservoirs

is initially set to 3. To obtain a long lag time between input and output

the input distribution was taken as p, = .95, p2 = .05, p3 = 0.
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Rough parameter estimates result from the procedures

discussed in section 2.5. Suppose that the parameter a., of the 1th

reservoir is to be determined, given the quantities, Q , t ,

t

t =- k _. QP represents the peak discharge of the hydrograph
-i-

th thoutput from the i-1 reservoir that serves as an input to the i

reservoir.

From available data define a ratio, 1 .

Q i-1

From equation (B.34)

Q P
1

At. = t -( ) (6.1)
1 pi-1 k i-1

where At. is the time difference of the input and output hydrograph peaks.
1Q

The value of a. that gives the desired ratio 1 can now be
1 Q

pi-l

determined from graphs similar to the one in Figure 2.3, that correspond
tpi-1

to given values of Q , t , .
'i-1 Ei-l r

t
p.

The ratio - to be used for the next reservoir can be
r.

obtained from plots similar to the one in Figure 2.5 for the given

characteristics of the input hydrograph and the ratio .
Q i-1

166



The time to peak t of the output hydrograph to be used in the

determination of At i+ from Equation (6.1) is obtained by equating the

input and output hydrograph volumes,

t
Pi

+ t -i-
r. Q

(t
pi-

(6.2)+ t )
i-i

t
pi

Given the ratio - , Equation (6.2) can be solved for the value of t
tr. Pi

The previously outlined procedure is then repeated to find parameter a.

thof the i + 1= reservoir.

In this section, parameter values are determined based on the

flood of July 15, 1959. The input peak discharge is Q

The output peak discharge is Q = 280 m3/sec. Also, t

= 850 m3/sec.

= t = 9.5 hours.
r

0 0

The total time difference between input and output peak discharges,

AtT, is 24 hours. Q

(a) For the first reservoir, set - 0.6. Then

Q = 510 m 3/sec, and At = 3.8 hours (9.5 x 0.4
11.0

From Figure 2.3 one obtains a ~ 103
t

Figure 2.5, = 0.45 t t
p +

and from

= 1x 19 = 31.7 hours,0.6

so t = 10 hours.
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Q
(b) For the second reservoir, set = 0.6. Then

Q = 306 m3/sec At 1x0.4 9 hours,
P2 2 0 .4 5-hors

t

a2  10- , =t2 0.45.

r 2

Also t + t = x 31.7 =53 hours
p2  r2  0.6

so t 16.5 hours
P2

Q
(c) For the third reservoir, set = 0.7 then

3 0.3 -3Q = 214 m /sec, At =16.5 x -.4 = 11 hours, a3 =10.
p3  3 0.453

Thus, the output peak discharge after a series of three reservoirs

is 214 m3 /sec and the lag time between input and output peak discharge is

AtT = At1 + At2 + At 3 = 24 hours, when m = 0.8 and a =a2 =a 3 = 10-

Clearly, the values of a1 , a2, a3 obtained are rough estimates since the

plots in Figures 2.3 and 2.5 were made for an input discharge of 850 m3 /sec

and t = tr = 9.5 hours. Consequently, the use of these plots
p0 0

for different characteristics of the input hydrograph (e.g. second and third

reservoirs) is not theoretically justifiable. Obviously, there has been

some trial and error procedure to arrive at the results presented above.
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Emphasis has been given to preservation of the correct time lag between

input and output peaks.

Realizing that the values a1 = a2 = a3 = 10-3 are only crude

estimates of the parameters, simulation studies were used to improve

them. In the simulation runs, a quadratic error criterion was used to

guide parameter selection. The 3-reservoir model equations were

integrated using a fourth order Runge integration scheme, for the period

from the 913th time step up to the 960th time step in May, 1959 which is

the flood period in this month. Each parameter took two values:

10- 3, 5 x 10-4 and the average quadratic error was evaluated at the eight

vertices of the cube in Figure 6.1. The coordinates of the vertices are

given in Table 6.1. The corresponding average squared error is given in

Table 6.2. It can be seen that the error is less on the plane determined

by the vertices 3, 5, and 7.

For state estimation, the parameters corresponding to vertex 7

were used. That is, a1 = 5 x 10 , a2 = a3 = 10-. Figures 6.2 and

6.3 show the observed (solid lines) and off-line forecasted (dashed lines)

flows for May and July, 1959, respectively. The numbers on the lower part

of the figures correspond to the number of the six-hour period in the

water year 1959. Thus, 1093 is the first six hour period in the first

day of July, 1959.
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Figure 6.1

LOCUS OF PARAMETERS OF SIMUILATION RUNS IN PARAMETER SPACE

170



INN 00000000 00 a ONO 00600000 c a

0 0 0 0 0 0 0 a 0 0 0 0 0 9 0 0 0 0 0 m 0 ol in 10 v ro m m velimMI)IM ONN a *.ln(ljOmNoOinvrmv)m NNN N N---MNN-cO NMIC wo"O'N nm ammol NON- o M,M 'o 41 M 0 v 0 t"
N N N

=M0 000000 0 00 0 0 0 0 00 000000 0000 cc oow N:!-Q 0. ON CiN,00,E Mmmmgv 0 CN 0 vl_ Mvv).QN mv)m No . GD "NN,0000-00, .0,on n o MN GD , , - .1 1 9 9 9 9 9 9 9 9 9 9 9 c v MNNMONm w N 'IMOMN N010,1010( VO=MnM O

N 0, D, ODc in m N N mm N N o
N N

..........................................................................................................................

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...................................................................... 
................................... .................

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . .It . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
V,

ft-fto
MP-16, *-Wm N~W .. ...................................................

cc 6, 6 - & N m 0, o - N m v in c N m * c ; U: r c; 0:x v In 0 0 0 0 W) In r In fn -4 a 10 N N c'4 m V 0 c N M O 0 - N M r c N M O 0 ;! N M V 0 1 M 1), o ri m v n o N m v n N m ( a N m m o-
r, N N rl N N I N m m m cc m m w m co m 0 0. ol ol *. ol ol ol

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm 0 01 0 N fj r rj N r N fi M r, r, M M.- Me,, r w v v v v v v v v W) 0 0 41 0 0 0 In 0 r

Figure 6.2

OFF-LINE RUN. SIX-HOUE LEAD FORECASTS FOR MAY, 1959. DASHED LINE CORRESPONDS 3
TO THE FORECASTED VALUES. SOLID LINE CORRESPONDS TO THE OBSERVED VALUES - m /sec



7' 0: 7 7 77"?7

r, N N N - - - - - N N r; r.

0 m r m 7 T c

0 0 0 - r, rq r. N N r. 14 N N N N C.N v cj r r, r, N CA N NNN N N N rl N N M, tq r, o . . . m m w, p m o oo o N o in v m N r; m c m c:w o ri o, m r4 Fj F. N o, w v o N ! . w N r, o m - ul m x
N N cl C. N N r. K N 'o 0 v

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .i . . . . . . . . . . . . . . . . . . . . . . . . . .

I 
mm

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I - - . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N . . . . . . . . . . . . .

OW Mob. . . . . . . . . . . . .
13 wa:N a 4 m W o M c- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

- - - - - - - - - --- - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - -

Figure 6.3

OFF-LINE RUN. SIX-HOUR LEAD FORECASTS FOR JULY, 1959. DASHED LINE CORRESPONDS 3
TO THE FORECASTED VALUES. SOLID LINE CORRESPONDS TO THE OBSERVED VALUES - m /sec



Table 6.1

PARAMETER SPACE COORDINATES USED FOR SIMULATION RUNS

Vertex Number

1

2

3

4

5

6

7

8

a1 ( x 10 )

5

5

10

10

10

5

5

10

a2( x 104

5

10

10

5

5

5

10

10

a 3 Xo 4 )

5

5

5

5

10

10

10

10
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Table 6.2

AVERAGE QUADRATIC ERROR FOR SIMULATION RUNS

Vertex Number

1

2

3

4

5

6

7

8

Error (m 6/sec 2

4402

2995

1967

3086

1974

2995

1993

2343
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Characteristics of these figures are:

(a) The model tends to underestimate the peak discharges.

(b) The forecasted hydrographs tend to peak earlier than

observed hydrographs (by about 6 hours).

(c) The hydrographs of the 872, 1128 and 1145 time steps

are completely missed.

(d) There is an apparent eighteen-hour delay in the

predicted hydrograph (with respect to the observed

one) in time step 935.

Comments (a) and (b) can be attributed to the suboptimal

set of the model parameters used as well as to errors in the input

to the model. These type of errors are expected to be corrected

by the on-line state estimator.

(c) and (d) errors were observed in all the simulation

runs made and are attributed to large errors in the time and

magnitude of the input hydrographs, obtained from the the soil

moisture accounting scheme of the NWSRFS model running off-line.

These errors would require the use of very high input noise

intensity as well as high model error spectral densities locally,

so that an on-line filter can disregard completely the input data

and rely basically on the observations. On-line abrupt input error

identification schemes are presented in Kitanidis and Bras

(1978) and can be used in cases of unanticipated gross

input errors. This is not pursued here.
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It is expected,however, to observe local filter divergence in the regions

of errors (c) and (d) during on-line parameter estimation and

forecasting.

The square root of the average squared error, a , and the lag-one

correlation coefficient of the prediction errors, p1 , for the off-line

run are as follows:

a (m /sec) p1

May : 33.1 0.786

July : 27.8 0.789

The high values of the correlation coefficient p1 reveal that

there is information in the observations that is not utilized by the output

of the model (to be expected since this is an off-line run). Ideally,

the values of p1 should be close to zero for optimal performance.

Filter parameters for on-line state estimation and forecasting

were obtained based on preliminary runs. The model error spectral density

matrix was taken diagonal and so was the initial state covariance matrix.

Values for the diagonal elements were obtained from a small scale

(not exhaustive) sensitivity analysis and are presented in Table 6.3.

The input noise intensity was taken proportional to the square of the

instantaneous input. The sensitivity analysis gave a value of 6.25 for the

coefficient VI of proportionality.
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Table 6.3

STATE ESTIMATOR STATISTICS

Parameter

QXl

P (to)

P (t,)

Px3 3 (to)

Value (m 6/sec 2

2.75 x 1012

0.165 x 1012

0.165 x 1012

5.5 x 109

0.055 x 109

0.055 x 109
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The observation error was assigned a variance proportional

to the square of the observation value at each time step. The coefficient

of proportionality was 0.01, that corresponds to very good measurement

quality.

Figures 6.4 and 6.5 present plots of the six-hours ahead

forecasted (dashed line) vs. the observed (solid line) discharges for the

months of May and July, 1959, using the online state estimation procedure.

The corresponding error indices a and p are given next.

3
a (m /sec) p1

May 24 0.379

July 16 0.489

With respect to the off-line runs of Figures 6.2 and 6.3 there

is a decrease of about 30% and 40% in the square root of the average

squared errors for the month of May and July, respectively. The

prediction error lag are correlation coefficients of the on-line run are

about half those of the off-line for the same months.

As expected the filter diverged locally in the regions of

errors (c) and (d). However, it considerably improved the timing and the

magnitude of the peak discharge for all cases.

Although local divergence contributer to the high correlation

coefficients it is expected that adaptive estimation schemes that identify

the input and model error noise intensities or more detailed sensitivity

analysis will give error statistics that will reduce the correlation level

of the one-step ahead predicted residuals.
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6.4 Simultaneous State and Pa].ameter Estimation Runs

A major problem in the use of simultaneous state and parameter

estimation through state augmentation, is the determination of the filter

statistical parameters. In particular, the model error spectral density

2
matrix Q, the input noise intensity a (t) and the observation error

variance R(tk). R(tk) can often be estimated relatively accurately,

given information about the observation mechanism and the quality of the

observation data. The relative magnitude of the spectral densities

Q , corresponding to the states, and Q corresponding to the parameters,

dictates the modelling of the parameters as random constants or as

random walk (Gelb, 1974) processes. The choice between the two types of

models is very important for the convergence properties of the resultant

filters. It is obvious that the smaller Qa is the faster the parameters

will converge to some value. If one believes that the model structure

is the true one, then it would seem appropriate to use estimates based

on the whole history of the observations rather than on the few last time

steps of the filter operation. It might not be appropriate, in other

cases, to use a constant parameter model (Qa 0), letting the filter gains

go to zero and, consequently, design a filter not capable of operating

when there is a future change in system behavior.

It is not a trivial task to test an identification scheme for

convergence to the true parameter estimates when there is a state estimator

operating in parallel. Depending on the statistical parameters of the filter,
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different in general, parameter values will minimize the average quadratic

error criterion of performance,

It is not the purpose of this section to present detailed

analysis of the simultaneous state and parameter estimation problem. The

intent is to examine if the adaptive algorithm of the previous chapter

converges and can be used as an analysis tool in identification studies.

The statistical parameters P (t ) and Q were the ones used in-x 0 -

the previous section. The input noise intensity was considerably reduced

so that the parameters would be blamed for discrepancies between predicted

and observed discharges, given that a relatively low model error spectral

density matrix la was adopted to increase convergence. It was taken as

the 5% of the squared value of the input at each time. 9a was taken

-a
diagonal and so did the initial covariance matrix TPa(to). The cross

covariance matrix Pxa (to) was set equal to zero. The diagnoal elements

of the matrices 9 and P (to) are given in Table 6.4. For uniformity ina -a

the magnitude of the numbers corresponding to states and parameters,

desired to avoid numerically singular cross-covariance matrices, the

calculations were performed in units of mm/m 2/time-step for the discharge

and mm/m2 for the volume of water. The duration of one time-step was

six hours. Table 6.4 reflects these units. For convenience, Table 6.5

presents the state estimator statistics in the same units.

The parameter values corresponding to the vertex 4 (Figure 6.1)

were chosen as initial parameter values. Iterations using the state and

parameter estimation scheme were made, where the initial parameters of each
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Table 6.4

PARAMETER ESTIMATOR STATISTICS

Parameter Value

3 x 10-5

2 x 10-5

5 x 10-5

Pa (

P a22(to)

P a33(to)

183

102
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Table 6.5

STATE ESTIMATOR STATISTICS USED IN ADAPTIVE RUN

Parameter Value (mm2 /m 4(time-step)2 )

Qxl'
.5

.03

.03

P x (to)

P 22 0 )

P (t,)
x 330)

184
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Table 6.6

Run

Of f

Sta

PARAMETER ESTIMATES AND ASSOCIATED PERFORMANCE INDICES

Description a1 (x 10) a2 (x 10 4 a3 (x 10 4

-line 10 5 5

te Estimator 10 5 5

Adaptive

1st Iteration

2nd Iteration

3rd Iteration

4 th Iteration

thI
5 thIteration

10.09

10.09

9.92

9.83

9.57

7.10

8.18

8.70

8.87

9.05

7.66

8.70

9.14

9.31

9.40

S2and p

2

3086 0.799

2068 0.674

1412

1132

1083

1072

1071

0.602

0.533

0.507

0.497

0.495
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iteration were equal to the final estimates of the previous one. The

period used for all iterations extended from the 913 time-step up to

the 960 time-step in the water year 1959. Table 6.6 gives the final

estimates of each iteration step with the associated average quadratic

2
error of prediction a and the associated lag-one prediction error

p

correlation coefficient, p . Results for the off-line run and the

state estimator (with equivalent filter statistics) are also

included. In this table (for comparison with the parameter estimates

obtained from the simulation runs in the previous section), the

discharge units are m 3/sec and the volume units are m3

It is obvious from Table 6.6 that the parameter estimation

2scheme has succeeded in reducing the error indices a and p1p
associated with state estimation. Convergence of the parameter

values to the values 9.5x104 , 9.05 xlO 4, 9.40x10~4 is apparent.

2Subsequent runs did not give significant improvement in a , p1 .

In terms of the parameter space, the estimates moved from

vertex 4 toward vertex 8 on the side defined by points 3, 4, 5, 8

of the cube. Then moved toward the plane 3, 5, 7 to arrive at

their final values. Examination of the values of the errors in

Table 6.2 reveals that the adaptive algorithm moved the

parameters in the right direction.

The first iteration for parameter estimation reduced

2
a to about 70% of the value resulting from exclusive
p

state estimation. The second iteration reduced it to about 55% of

the same value, and the third to about 48%.
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The last two iterations offered minor improvement. This suggests that

the first two iterations account for most of the variance reduction,

implying fast convergence to optimal parameters.

The high prediction error correlation observed for the last

iteration suggests that the model error spectral densities and the input

noise intensity values used were suboptimal.

Note that the initial parameter values used as inputs to the

adaptive scheme of Chapter 5, had an average squared error larger than

that of the parameter values obtained from the off-line estimation

procedures based on the results of section 2.5 (a = a2 = a3 = 10 x 104).

This suggests that in practice one can determine crude initial values from

the off-line procedure and then directly use the on-line adaptive

estimation scheme to refine those, without a second stage of refinement

through simulation.

187



Chapter 7

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

This work has examined the flood routing problem. A nonlinear

router based on a series of reservoirs served as the model and modern

estimation theory techniques were used to improve its performance in

real time river discharge forecasting. The model was statistically

linearized to become compatible with a Gaussian minimum variance estimator.

The Taylor-Gauss methodology was proposed for the analytical determination

of the expected value of nonlinear functions when the independent variable

is approximately normally distributed. Having bypassed the heavy

computational requirements for the :numerical calculation of the

statistical linearization gains, a recursive estimator for the states and

the parameters was designed. The outcome of the synthesis procedure

described, the stochastic flood routing model, was used in a real world

application to forecast six-hour discharge values at the Bird Creek

drainage basin.

Judging from the results of the case study, it is concluded that

the statistical linearization technique, in conjunction with the Taylor-

Gauss method, is a powerful tool of analysis for the flood forecasting

problem. The conceptual flood routing model used can reproduce most of

the characteristics of the output hydrographs (e.g. hydrograph shape,

time to the peak discharge), while it does not require high quality input

data (e.g. survey data), for the determination of initial values for its

parameters.
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Future research should concentrate on comparisons among the

estimator design used in this work (based on statistical linearization),

and other available nonlinear estimators (e.g. extended Kalman filter,

second order filter, etc.), for both the state and the state-parameter

estimation problems. The use of adaptive filter parameters identification

schemes should be investigated in order to reduce the correlation of the

predicted residuals and to establish a firm basis for comparison among the

different models. Detailed sensitivity studies for the filter parameters

and, in particular, for the input variance parameter and the model error

spectral density matrix are suggested to see how changes in their values

affect the speed of convergence of the parameter estimates to their

optimal values. It will also be valuable to establish the magnitude

of the region of initial values for the parameters for which the parameter

estimation scheme gives convergent estimates. Finally, the use of the

model for different flood events in different catchments, would increase

its credibility.
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Appendix A

CENTRAL MOMENTS OF COMMON PROBABILISTIC MODELS

The purpose of this Appendix is to derive analytical

expressions for the nth central moment of a scalar random variable, given

the underlying probability distribution law.

Denote by X a scalar random variable with probability density

function (p.d.f.) pX(x; 9 2' '9 m). x is a population sample and

19 ,2' 0'' m are the m parameters of the p.d.f. of X. It is desired

to find analytical expressions for the expectation: E{(x - E{x})n}.

The binomial form expansion of E{(x - E{x})n} yields,

E{(x - E{x})n} = E{(n )xn + (-1)1-(n )xn-l.E{x}+

+ (-1)n-1. n 1 )-x-[E{x}]n-1 + (-1).- n )-[E{x}]n

(A.1)

E{(x - E{x})n} = E (-1) - (") xni i (A.2)
i=0

where

p = E{x} (A.3)

Due to the fact that the expectation operator can be inter-

changed with the summation operator, Eq. (A.2) results in:

n..
E{(x - E{x})n = * E{xn-i} (A.4)

i=O 1
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Thus, the problem becomes to determine the expectation E{xn-i}

as a function of the parameters of the probability density function of X

for all (n-i).

In the following, the expectation E{x } is determined for

integer k when X is obeying an exponential, rectangular, gamma, log-

normal and normal (univariate) probability distribution law.

The p.d.f. for the exponential distribution is given as:

Xe ; X > 0 ,x > 0

PX (x; A) = (A.5)

1 ; x< 0

where A is the parameter of the p.d.f.

By definition

+ 00

E{ x} = (x; A) - dx (A.6)

0

Substitution of Eq. (A.5) in Eq. (A.6) results in

+00,

E{x }= x - e- x - dx (A.7)

0

The integral in Eq. (A.7) is equal to (Gradshteyn and Ryzhik,

1965, integral number: 3.351 (3))

+00

A f x k * e x dx = ! - A ,  (A.8)

0

Consequently,

E{x } = ! -A (A.9)
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The probability density function for a rectangular

distribution is:

Px(X 
= 0i , + < x or x < 3 -x

22

where 3, l are the parameters of the distribution.

In this case:

E{x } =

; > 0

(A.10)

1 d
-x - dx (A.11)

Direct evaluation of the integral in Eq. (A.ll) yields

E 1 0 2 + 0 f + I
E{x } X -(9,+l) * ( +)-]-

A Gamma distributed random variable has p.d.f. as follows,

X-1 -x

r (lx)

PX(x; A)

0

x > 0 , x > 0

(A.13)

x < 0

where F(X) is the Gamma function.

It follows

k+0 x X-1 Je x

E{x I = x M- -dx

0or

+ 00

Efx } = x +X-le -dx
Ml)

0

(A.14)

(A.15)
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The integral in Eq. (A.15) is a Gamma function (Gradshteyn

and Ryzhik, 1965, integral number: 3.381 (4)) with argument equal to

i+X. Thus,

E{x } = + x)
r()

(A. 16)

Since (Hildebrand, 1976),

F(s) = (S-l) - (-2)...-(6+l)- 6 - r(6) (A.17)

for any > 0 and 0 < 6 < 1, and in addition, k is an integer, it

follows

E{x}= H (X + k - j)
j=1

(A.18)

The lognormal probability density function is:

PX(x; A, ) =

1 x2( 1 - [ - 9,n( )]2
-e

xV7-8

0

; > 0, x > 0

(A.19)

x<0

The expectation E{x I can be determined by

x 2
0-0

E{x }= x 1 * e
x* vF

dx (A.20)

Using the transformation y = knx, with dy = -dx and x = ey,

in Eq. (A.20) results in

+00o 1 2 2
EA9,  1 f -y e -Y~ [y -2-,nX-y + (9,nX) I

Ejx } = [e i

42 Tr- J
CO0

- dy (A.21)

197



or
1 k~nX 2

E ex } =e(f, X)

where I(, X) represents the integral

+0 - 2 y2+ ( +nX

I(f, f) = e 2

00C

Gradshteyn and Ryzhik (1965; integral number:

( +)2_
2 2

IfX) V 27r - e

Noting that

2
( 1) - = -+ - 2

3.323 (2)) give

(A.24)

(A. 25)

Eq. (A.24) yields

I (,X) = 3 - -e

[ (nX 2  2 2 + 29-9nX]
2 (

Substitution of this expression of I(, X) in Eq.

in the following expressions for the expectation E{x }:

1.22

E{x } = - e

(A.22) results

(A. 27)

Substitution of Eqs. (A.9), (A.12), (A.18), and (A.27) in Eq.

(A.4) with k = n - i results in the expressions given by Eqs. (3.7), (3.10),

(3.13) and (3.15).
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For the normal distribution, it is easier to directly work

with the integral:

+ CO

E{(x - E{x} )n} f (x - Efx} )n _ p 3 X)(x dx

~00

(A.28)

where the p.d.f. pX(x; , X) is given by

PX(x; , X) = -

At first it is shown

E{x} = X

1 (x-X 2
2

e (A.29)

(A.30)

By definition,

+00

E{x}=f x

1 x-X 2

e

or

E{x} = d e(ied)a

where the integral I( , X) is defined as

+00 -

I(0, A) = f x - e

2- x+2-( )-x
2 26

Analytical expression for this integral is given in Gradshteyn

and Ryzhik (1965; integral number: 3.462 (6)) as

(- 2
I(6, A) = A - 1/2Tr-8 - e2
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- dx (A.31)

(A.32)

- dx (A. 33)



Substitution in Eq. (A.32) proves the validity of Eq. (A.30).

Under the circumstances, Eq. (A.28) can be rewritten as

+00 - x-X 2

E{(x - X)n} f (x - X) n . e2 dx (A.35)

~00

Using the X-Xtransformation y = - - in Eq. (A.35) results in

+00

E{(x - X)n} _ n+l

-00

1 2

yn e - dy (A. 36)

E{(x - )n} = n+1

+ C*
n

f 
y

12

e - dy (A. 37)

Decompose the integral of Eq. (A.37) in two as follows

+00

E{(x - X)n} = n+1 [J y -

0

1 y2 0 1 y2
2 n 2
12 dy + y - e

-00

a. If n is an odd integer, then the transformation z = -y converts the

last integral of Eq. (A.38) to the form

0 1 2In~
y -e Y

+00 1 2
n ~iz

dy = - Z . e

.0

Consequently, in this case

E{(x - X)n} = 0 n is an odd integer

b. If n is an even integer, then the transformation z = -y converts

the last integral of Eq. (A.38) to the form
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0 1 2

yn 2 y
fy *e

.CO

+00 dy1 =2

.dy f J n Z e
0

Substitution in Eq. (A.38) yields

+00 1 2

E{(x-X)n}= 2- (n+1) n * e 2 - dy; n is an even integer
(A.42)

Gradshteyn and Ryzhik (1965; integral number: 3.461 (2)) show:

+ O 1 2
fn ~2 (n-1) 11

ndy 2 - Z7 ; n is an even integer

0

where

(n-i)!! = 1-3-5 .. (n-1) ; n is an even integer

Substitution of Eq. (A.43) in Eq. (A.42) results in:

E{(x - X)n= n+ . (n-i)!! ; n is an even integer

(A.45)

The combination of Eq. (A.40) and (A.45) gives Eq. (3.18).
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Appendix B

PARAMETRIC STUDY OF A LINEAR RESERVOIR

The input hydrograph is assumed to have a triangular shape.

Denote by Qm its maximum discharge and by T the time to the peak

discharge. The time duration of the falling limb is denoted by T2'

Under these definitions, the input hydrograph equations are:

m
u(t) = t. - ;

u(t)Q -(t T
mTl1eT2

O < t < T

TI < t < T1 + T2

where u(t) is the input rate at time t and it has been assumed that

the initial time is equal to zero.

To facilitate notation, define the constants C and C2 as:

C =M (B.3)1

Q
2 (B.4)

The equation describing the motion of water through a linear

reservoir is

dS(t) u(t) - a S(t)
dt (B.5)

where S(t) is the water in storage at time t and a is a constant

parameter.
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The output discharge is given by

Q(t) = a - S(t) (B.6)

Equation (B.5) can be solved analytically to yield (Hildebrand,

1976),

t

S(t) = J-a(t-T) * u(T) - dT

0

(B.7)

Substitution of the expressions for u(t) from Eqs. (B.1) and

(B.2) in Eq. (B.7) results in

t

S(t) = e-a(t-T) 0 T - Cl - dT

0

;0 < t < T 1

T 1

SWt = e-a(t-T) -T-Cl-dT +

0
t

- e -a(t-T)-a

T 1

t

f Ja(t-T)- Qm-dT

T 1

- T )-C2*dT ; T < t < T + T2

(B.9)

Integration by parts of Eq. (B.8) yields,

S(t) = C1 - e-at , 1 [
t t

aT t aT

0

or

C--atC1 e -a at 1 at 1
S(t) = [t e e -- e + -]

a a a

Rearranging terms in Eq. (B.11) gives

SW) = 1 - [at - 1 + e-at
a2

;0 < t < T 1
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Equation (B.9) can be written as

(B.13)S(t) = Ih (t) + I2 (t) -13(t) ; T I < t <_ T + T2

where the integrals I (t), I 2(t) and I 3(t) are given by

I1(t) = 1e-a(t-T)

0

t

I 2(t f -a(t-T)

- T a C1 - dT

* Q - dT

t

13 ( -a (t-T) T) C2 * dT

Integration by parts of Eq. (B.14) gives

I -Ct) 2 [aT1 - 1 + e
a

Similarly, Eq. (B.15) gives,

Qm -a(t-T )
12(t) - - [1 - e

-aT1
1]

(B.16)

(B.17)

(B.18)

The integral in Eq. (B.16) can be evaluated by a change of

variables. Let,

u = T - T (B.19)

-a (t-T
1 3 (t) = e I

0

t-T 
1

e - u - C - du
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Integration yields,

I(t) = e-a(t-T) C 2 [u eau t-T 1  t-T 1

0 0

eau du] (B.21)

or

-a(t-T 1 C2  a(t-T1 ) - a(t-T1) +
I(t) = e - -- [(t-T)- e--- e + -]3 a 1a a

(B.22)

Substitution of Eqs. (B.17), (B.18) and (B.22) in Eq. (B.13)

results in
-a(t-T 1)

Cl-e _-aT 1 QM -a(t-T 1)
S(t) = a [aT - 1 + eal + - [1 - e t ]

a2  1a
- 2 [a-(t-T 1 + e -a(t-T1)]; T1 < t < T1 + T2
a 

(B.23)

Due to the translation in time of the input when it passes

through the linear reservoir, it is expected that, if t denotes the
p

time to the peak of the outflow, it holds,

t > T (B.24)

Also, since the outflow discharge is in a one-to-one

correspondence with the volume of water stored by means of Eq. (B.6),

then the maximum outflowing discharge will occur when S(t) is maximum.

The time t when the maximum of S(t) occurs can be obtained by differ-
p

entiating Eq. (B.23) with respect to time and setting the derivative

equal to zero. This gives,
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C e 1  -aT -a(t -T)
- - [aT -1+ e ] +Q -*e

a 1 m

C2  -a(t -T ) C2
+ - e p1 -- =0 (B.25)

a a

Solving for (t - T ),

t - T  - (B.26)
p a

where

A = C2 (B.27)

C2 +am C 1 - (aT 1 1+eaTl)

or 
T

A=T 2  (B.28)
T -aT1

-+ 1 - e

2

Use of Eq-. (B.25) in Eq. (B.23), for t t , results in a peak

storage volume expression,

C2 %m C2
S - -- + ---- -[a(t - T) -1] (B.29)
m 2 a 2 p 1a a

or

S =m --- 1 - tP-T1(B.30)
m a T 2

The peak outflow discharge Q is given by

Qp = Qm - 1 (B.31)
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Denote by R1 the normalized attenuation given by

R = (B.32)
1Qm

and by R2 the normalized translation time given by,

t - T
R = (B.33)2 T

Using these definitions in Eq. (B.31) results in

R T
1 1
R = -- = KT (B .34)
2 2

This suggests that the ratio of the normalized attentuation

vs. the normalized translation time is only dependent on the ratio of

the characteristic times T, T2 of the triangular input hydrograph.

Thus, one linear reservoir cannot provide arbitrary normalized discharge

attenuation and translation times by simply varying its coefficient a.

The results of a linear reservoir response to a triangular

input hydrograph can be used to study the behavior of a cascade of

reservoirs with parameters a.. To do so, the output of each reservoir
1

in the sequence must be approximated by a triangular hydrograph preserv--

ing the relevant characteristic features (time to peak, peak discharge,

recession time). The approximated triangular hydrograph will serve as

an input to the next reservoir. One way to reshape a given hydrograph

to triangular form is to assure that the volume of water discharged up

to the time of the peak discharge t is preserved in the transformation.

207



Similarly, for times greater than t
p

Denote by VI the volume under the output hydrograph up to the

a - Cl- (at - 1 + e-at dt
a

0 t p0-a (t-

+ f a - , 2

T 0

p QM
+ a - 1 -e

Td
1)

- . (aT1 - 1+ e

-a(t-T
1 ) dt

T1 t

C2  -a(t-T1 )- a - * - [a -(t -T1) -1+ e ] - dt
f a

(B. 35)

Carrying out the necessary integrations in Eq. (B.35) yields

22
Cy a T

1i= 2 2 - aT - e
a

-a(t -T1 )
(e - 1) +

-aT C -aT

+ 1) - - (aTy- + e )

-a (t -T 1 )
0T) Q

QM- (t p - T )+ - (e

(t -T ) C C -a(t -T )
-C + 2 t - T) + - (e p2 2 a P 2

- 1)

- 1)

(B.36)

By means of Eq. (B.25), the above expression simplifies to,

T 2 Q (t -T) C
V C - + 0 (t -T1) - - C - 1 + - (t T ) (B.37)

s1 2 t p 1 a  2 2  a p r

Substitution of Cl, C 2 from Eqs. (B.3) and (B.4) results in:
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time t
p

Then,

T

V =f1

-aT
1 ) - dt



2
T= Qm (t -T1 ) Qm (tp- T)

V Qm * 2 + Qm (t p-T) -a m - T + a T
2T 22

(B. 38)

Expressing Qm in terms of Q [Equation (B.31)] yields,

Q (t -T1 ) tV =-- - +Q 2 + m 2 (B.39)
1 a p 2 2

The total volume VT is given by

VT = (T + T *m (B.40)T~ = (T* 1  T)

Denote by V2 the volume discharged after time t . Then,
2 p

V2 T 1 (B.41)

or

= T Q (t -T1 )
V Q 2 2 + - Q - - (B.42)
2 p 2 + a p 2

Denote by t' an equivalent time to the peak of the output
p

hydrograph and by t' an equivalent falling limb time of the same hydro-
r

graph. Then,

- Q t' = V (B.43)2 p p 1

and

- Q - t' = V (B.44)2 p r 2

It follows

2-Vi
t' 1 (B.45)
p Q
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2-V
t' = 2 (B.46)
r Q

Substitution of the expressions for V1 and V2 from Eqs. (B.39)

and (B.42), in Eqs. (B.45) and (B.46), respectively, gives,

t' = - + - T + -M (B.47)
p a p 1 Q p

p

and

t' = T + 2 - (t T (B.48)
r 2 a p 1

The combination of Eqs. (B.31), (B.34) and (B.26) yields,

Q = 1 + a * KT (B.49)
Qm aT1

Equation (B.47) gives,

at' = -2 - knA + (aT - mnA) 1 (B.50)
P 1 + KT nA

aT

Similarly, Eq. (B.48) gives

at' = aT - + 2 + ZnA (B.51)
r I KT

Then,

(aT -2nA) -2 - knA
l+K---
1t' T aT1

-= T (B.52)

r aT - + 2 + YnA
1 KT

The normalized equations (B.49), (B.50), (B.51) and (B.52)

can be used to predict the characteristics of the output of a cascade
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of linear reservoirs, given a set of reservoir parameters for any given

number of reservoirs.
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Appendix C

UNIFORM COMPLETE OBSERVABILITY AND CONTROLLABILITY

OF A SYSTEM IN CANONICAL FORM

The nth order system,

r (tk+l) = T(tk+, tk (t) + - w(tk) (5.106)

with scalar observations,

zr k (t r (tk) + v(tk); k = 0, 1, 2, ... (5.107)

is said to be uniformly completely observable (Gelb, 1974) if there

exist some integer N > 0 and positive intergers a, a2 such that,

a ~~ - I T=-N (t ,t) H(t )-R~ (t ) (t )-- nn- i~-N -r iP t --ri i -r i

< a n ; < Go

-2 -nn' 2

for all k > N.

Denote by N the matrix:
-;1N

k

N = I T (tk-:lN i=k-N " k

- r (ti .tk)

(C.1)

- (t) - (t) H(t) - (t,tk-r~~ i i ri rk

(C.2)
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and let,

H(t) = [hr t )h r(t) ... h r(ti) (lxn) (C.3)

Assume that the system of Equations (5.106) and (5.107) is in

thcanonical form. Then, the matrix &t , t) is diagonal with (i,i)

element, r (tt). Under this condition the (t ,j) h element

1 YI of the matrix _ -1 can be written as,

k

ij i=k-N ,
(ti ,tk) - h (t ) - hr i (ti,tk) R( )i rj j Rtj

; ij = 1,2,,..,n (C.4)

k
W S

Ij i=k-N
- S ; Ij = 1,2,...,n

where

4r(t ,%tk) .hr (t

s = ; %= 1,2,...,n

Let i be any non-zero real vector of dimension n.

matrix Sl is positive definite if
N

(C.5)

- (C,6)

The

T-

N
for all *.

213

or



Denote by i the ith element of 4_. Then, the quadratic

form Y can be written as,

2 k 2 2
Y =P . I S +$

I i=k-N 1,1 2

k
2 - .1_ - i Sk-Ni=k-N

k 2 2
S 1+ + n

i=k-N 2,i

1 . 2,0+2 1 + - 1 3 *3

k 2.

i=k-N n

k
S

i=k-N

+ + 2 *n-1
k

n - S N
n i=k-N n11

k n

Y I ( I* - . 2 .8
i=k-N j- j j i

Since Y is equal to the sum of non-negative variables,

it is equal to zero when all the variables are equal to zero. An

equivalent statement will be that the set of N + 1 equations:

n
I X * - S.
j=1 i i -I

= 0; i = k-N, ..., k

has a solution 4'*, j = 1,2,...,n, not equal to zero. In general,

this will be the case for N > n.

The ith transition function of the system of Equations

(5.106) and (5.107) is,
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3,1

5 n,i
(C.7)

(C.9).



k-i

I At2

1i i(t ,tk) = e ; t < tk Si > 0 Vk (C.10)

where k is the ith eigenvalue at time step k.

If, for k growing, the eigenvalues are finite; the

elements of H (tk) are bounded; and R(tk) is not zero, then the

second condition of Inequality (C.1) will not be violated. In this

case the system is uniformly completely observable.

The system of Equations (5.106) and (5.107) is said to be

uniformly completely controllable (Gelb, 1974) if there exist some

positive integer N and two positive integers al, a2 such that

a - n < - (tkp,+1)-r i -i T r (tk t+
LAL ik- - -r v T

< a - I ; t < CO (C.11)2 -nn 2

for all k > N.

Denote by 02 the matrix defined as
N

k-l -T -T

-2 T k' i+l (ti ) -i -rtk' i+l (C.12)
N i=k-N

Let the Q(t ) matrix be diagonal w4th prositive- elements

q (t ), j =1,2,...,r and let the (2,j)th element of matrix 1'
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be Y, , , 2. = 1,2,...,n, j = 1,2,..,,r. Then, given that the

system is in canoninal form it holds

k-1

2 =r
Y, j i=k-N x, 2,

r

(tkvti+l1 , i T q STT (t Y Tvi

' Or . . tk ti+l) (C . 13)

If * is any real vector with j th element , and the

quadratic form:

T -
Y j *2N - 1 , V P o (C.14)

is positive, then the matrix 2 is positive definite.

The above can be expressed as,

n n k-1

X=1 j=1 =k-N
r (tk ti+l)

21,k

r

(t), T - T ,T r
T=l i i . k, ti+1 

j*

(C. 15)

Interchanging the summation operators yields,

(C.16)
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where

v qy . - 4 (t ,t ) ' .
Tj TT T,i r k i+l

j = 1,2,...,n (C.17)

At this point the derivation is restricted by the

requirement that y- . = Yj , j,Z= 1,2,...,n for all i. This

type of .> matrix is of use in this work. Under this condition,
-1

$T,I = 1,2,...,n, Vi

Equation (C.16) is equivalent now to,

k r n 2

Y= - I ' ]
i=k-N T=1 j=1 J'Ti

Based on Equation (C.19), Y is zero if and only if

= 0 ; T = 1,2,...r, i = k-N, ...,k
n

j=1 JP' i

(C.18)

(C.19)

(C.20)

For well behaved matrices r , Q(ti ) and P(t iti+ 1 ) it

is clear that for N > (n - r + 1) Equation (C.20) will give

zero solution for the elements of the * matrix. For example if
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is diagonal with elements equal to unity, Equation (C.20) can be

rewritten as

n

X (t (t ) -.kt+ j = 0; T =1,2, r i=kN k
j=l ij,...

(C.21)

In this case one has to find the minimum N such that the

resultant r + N simultaneous linear equations in the n variables

*x ,J = 1,2,...,n, have the solution $. = 0, j = 1,2,...,n, for time

steps k > N.

For finite values of the elements of r Q(t) -r (ti),

it is clear from Equation (C.13) that the inequality in (C.11) is

true, given that,

k-l
- a i - At

19 (t kti+1) e ;,i~ t i+1 < tkV

a > 0 Vk (C.22)
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