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AUTOMATIC PARAMETER ESTIMATION

OF A LARGE CONCEPTUAL RAINFALL-RUNOFF MODEL:

A MAXIMUM LIKELIHOOD APPROACH

BY

PEDRO J. RESTREPO POSADA AND RAFAEL L. BRAS

ABSTRACT

A stochastic parameter estimation procedure to be ap-
plied to large conceptual rainfall-runoff models is proposed.
The procedure is based on a maximum likelihood approach, which
is enhanced to allow for the use of prior information about
some of the parameters.

A stochastic model of base flow is proposed, and an
algorithm for automatic identification of the time interval of
base flow activity is developed. This algorithm, which permits
the estimation of prior values for the base flow discharge
coefficients, is successfully applied to two basins in the
United States.

The application of the maximum likelihood estimation
procedure to large conceptual rainfall-runoff models is
divided into two stages. In the first stage the procedure is
applied to a simplified version of the National Weather Ser-
vice River Forecasting System model, the parameters of which
are estimated by using synthetically generated data. This
stage produces valuable information about the performance of
stochastic parameter estimation procedures in large conceptual
rainfall-runoff models. In the second stage the maximum like-
lihood procedure is applied to estimating the parameters of
the National Weather Service River Forecasting System model
for the Bird Creek and for the Cohocton River basins, respec-
tively. In the first case a severe structural error arising
from a defficient formulation of the channel causes some of
the parameters to converge to unrealistic values. In the sec-
ond case the stochastic model performs in a matematically cor-
rect but hydrologically unappealing fashion. The reasons for
this problems are attributed to the non-identifiability of the
threshold parameter of the upper zone tension water element
and to interaction between several of the percolation function
parameters.
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Chapter 1

INTRODUCTION AND REVIEW OF LITERATURE.

1.1 Introduction.
Flood forecasting requires the use of mathematical

models to represent the very complex processes ongoing in a
catchment during the rainfall-runoff process. According to
the modeling philosophy, rainfall-runoff models can be divided
into three categories: physical, conceptual, black box. Phys-
ical models are those that represent the process following the
physical laws that govern it. Conceptual models do not follow
the laws exactly, but have a structure that approximates the
physical reality. The parameters of these models thus have
some physical meaning. Black box models consist of a func-
tional relationship between input and output, and have no
physical meaning. Each of these three categories can be fur-
ther subdivided into deterministic and stochastic models.
Stochastic models are those in which the presence of random
errors in the data and/or in the model is explicitly consid-
ered. Deterministic models do not take into account these
errors.

The estimation of model parameters in real catchments
can be done by experienced hydrologists by trial and error
using manual procedures, with a reasonable degree of success.
Since the number of skilled personnel capable of performing
high quality estimation of parameters is very small, an auto-
matic technique of parameter estimation is highly desirable.

This work will be directed toward the development and
implementation of a methodology for automatic parameter esti-
mation in stochastic rainfall-runoff conceptual models.

1.2 Review of the Literature.
1.2.1 Introduction.

A literature search of parameter estimation in
rainfall-runoff models is necessary in order to clearly state
the areas of the field in which research is needed. In order
to take advantage of previous researchers' experience in pa-
rameter estimation, it is very important to search the respec-
tive literature in fields other than rainfall-runoff modeling.
Therefore, a review of the research done in groundwater
hydrology and water quality modeling will also be included
here.

1.2.2 Parameter Estimation in Rainfall-Runoff Modeling.
Dawdy and O'Donnell (1965) published the first known

paper on automatic parameter estimation of a conceptual
rainfall-runoff model. The model chosen was developed by
O'Donnell, and the nonlinear optimization technique was
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Rosenbrock's (1960). This technique, also known as "rotating
coordinates method", is a ridge-following algorithm in which
the axes of coordinates are rotated so that one of them
coincides with the ridge. These authors first generated a
synthetic series of streamflows from a given rainfall-evapora-
tion record. Then, they proceeded to evaluate the performance
of the optimization algorithm in finding the correct set of
parameters, when an initial set different from the one used
for generating the flows was given. This particular technique
of using synthetic series enabled these authors to study the
performance under ideal circumstances, since no input, output
or structural errors were present.

Chapman (1970) compared three non-linear optimization
methods for a deterministic conceptual model developed for the
Australian Water Resource Council. This author judged the
Simplex method (Nelder and Mead, 1965) highly superior to the
steepest descent and univariate minimization techniques when
applied to conceptual models in real catchments.

Murray (1970) used Boughton's (1965) deterministic

daily rainfall-runoff model to study a 20.2 km2 catchment
in North Wales. An automatic parameter estimation routine
that made use of Rosenbrock's (1960) algorithm was included.
The initial values for the parameters were obtained manually
from the original record. Some parameters had to be
constrained in order to prevent them from taking unrealistic
values. Other parameters were left unchanged by the optimiza-
tion algorithm.

Liou (1970) developed a computer program that automat-
ically adjusted the parameters of the Stanford Watershed Model
using a least squares criterion. The optimization method was
based on a trial and error scheme which in essence was an au-
tomation of the manual procedure.

Grunewald and Dyck (1971) used two different optimiza-
tion techniques, linearization of normal equations, LNE, and
statistical optimization (a regression analysis) with three
linear deterministic conceptusal models.

Ibbitt and O'Donnell (1971) presented an excellent
study of the problems involved in the automatic optimization
of parameters in conceptual models. The model chosen for
their study was Dawdy and O'Donnell's. They presented a heu-
ristic discussion of some of the potential difficulties in the
optimization of parameters in conceptual models. They
discussed problems with saddle points, valleys and plateaus.
Some concrete examples found in their specific case were
illustrated, as the multiple optima situation. A useful dis-
cussion on the interaction between parameters was included.

Monro (1971.) implemented a pattern search method to
optimize the parameters of the National Weather Service
Rainfall-Runoff model. The results showed that unrealistic
values for the parameters were frequently obtained.
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Ibitt (1972) studied the effect on parameter esti-
mation of the random errors in the data.. This author used
Rosenbrock's optimization method, modified to handle the "pe-
culiar fitting problems" associated with conceptual catchment
models. He concluded that, despite the high influence of
errors in the runoff on the value of the objective function,
the final value of the parameters was not "much worse" than in
the case of those obtained with error-free data.

Haan (1972) 'used a simple four parameter self-cali-
brating deterministic model to predict monthly runoff from
daily rainfall in small catchments. The optimization proce-
dure was a one-dimensional search of one parameter at a time,
using prespecified steps.

Bultot and Dupriez (1976) developed a conceptual de-
terministic model with 21 seasonally varying parameters. The
performance of the model was judged very satisfactory with
manually fitted parameters.

Moore and Weiss (1976) reported the application of an
Extended Kalman Filter for on-line estimation of the four pa-
rameters of a non-linear model. Their approach may be consid-
ered as a particular case of the state augmentation technique.
It was validated in a real situation.

Johnston and Pilgrim (1976) compared the performance
of two numerical techniques, Simplex and Davidon-Fletcher-
Powell methods. This last method is one of the "Quasi Newton"
methods in which an approximation of the inverse Hessian ma-
trix of the objective function is constructed at every time
step. These authors reported convergence of both methods to
local minima. The optimization procedure was highly improved
after the mathematical optimization techniques were modified
to account for the special characterisitics of the conceptual
rainfall-runoff models.

Singh (1977) used a modified version of Rosenbrock's
algorithm to estimate the three parameters of Dooge's (1967)
cascade of non-linear reservoirs model. Two of the parameters
were assumed to be constant for basins of the same size. A
regression equation between the third parameter and some phys-
ical measurements of the basin was developed.

Sugawara (1979) developed a trial and error procedure
to find the optimal set of parameters for the tank model.
This deterministic model is a cascade of linear and non-linear
reservoirs. The fitting criterion was to minimize the
deviations between the shapes of the predicted and the
observed hydrograph and to minimize, simultaneously, the error
in the predicted time to peak. The author claimed a high rate
of convergence (less than 15 iterations).

Bras and Restrepo-Posada (1980) used the state augmen-
tation technique for on-line estimation of two parameters of a
four parameter non-linear conceptual catchment model. The
results showed that filtering techniques were successful in
minimizing the impact of noisy synthetic data on the esti-
mation of parameters. The effect of the structural errors was
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studied by generating synthetic data with a different model
and then trying to estimate the parameters of the original
model. It was shown that structural errors prevent the con-
vergence of the parameters to a single value. In addition,
these authors showed that simple heuristic techniques can also
be successfully used in estimating the parameters of a model.

Fjeld and Aam (1980) published a paper on the use of
estimation techniques with a hydrologic model which is applied
to the prediction of daily runoff into a hydroelectric power
station. The authors emphasized the advantages of a conceptu-
al model over a linear ARMA model in modeling runoff under
Nordic conditions. This was due to the fact that the inclu-
sion of freezing and snow melting during the winter season
implies either a change in the structure or large parametric
changes on an ARMA model. The stochastic conceptual model
used by these authors was based on the deterministic model
developed by Bergstrom and Forsman (1973), and Bergstrom
(1975), which is considerably simpler than that of the
Stanford-type models. All parameters of the model were coarse
calibrated with a least square criterion. Only the runoff dis-
charge coefficients were "fine tuned" with a maximum likeli-
hood criterion. The calibrated model has been operational at
the Tonstad power station on the Sira Kvina river in southern
Norway.

Soorooshian and Dracup (1980) used a power transforma-
tion technique such that the variance of the transformed flows
is the same at every time step. The objective function was a
least squares criterion of the transformed flows. These
authors reported a good rate of convergence in the solution
procedure.

Sooroshian (Unpublished report, 1981), working with a
reduced set of parameters of the National Weather Service mod-
el, has shown the occurence of ridges and local optima in the
loglikelihood function of that particular model. Further dis-
cussion of these issues is left to later chapters.

1.2.3 Stochastic Parameter Estimation in Groundwater Hydrology
and Water Quality Modeling.

Currently, there is a large number of ongoing research
dedicated to the problem of parameter identification in
groundwater and water quality models. Unfortunately, most ap-
proaches to the problem have been from a deterministic point
of view. In the area of stochastic parameter estimation are
the works of Beck (1974, 1976) in which a maximum likelihood
methodology was used to estimate the parameters of a water
quality model. Moore and Jones (1977) developed a coupled
Bayesian-Kalman Filter parameter estimation scheme for a dy-
namic water quality model. McLaughlin (1975), after comparing
several deterministic optimization techniques, strongly
recomended the use of linear filtering techniques in order to
minimize the impact of noise in the measurements on the
estimates of the parameters in groundwater models. Lin and
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Yeh (1974) applied quasi-linearization and optimal control, to
identify 11 parameters of an inhomogeneous aquifer..

Extensive literature on parameter estimation is avail-
able in fields other than water resources. The reader is
referred to an excellent survey published by Astrom and
Eykhoff (1970).

1.2.4 Summary of the Review.
The previous section revealed the following points:
1) There is a strong evidence of the unfavorable im-

pact that data errors and structural errors have on the
estimates of the parameters of conceptually-based
rainfall-runoff models.

2) Stochastic conceptual rainfall-runoff models with a
built-in filtering procedure have better performance than
comparable deterministic models. Similarly, filtering
techniques have been proven useful in minimizing the effect of
data errors in the estimation of the parameters.

3) In spite of 1) and 2), few applications of stoc-
hastic parameters estimation to conceptual rainfall-runoff
models have been recorded.

4) It has been shown that a good set of parameters can
be obtained by means of heuristic procedures. Moreover, the
performance of pure mathematical techniques on parameter esti-
mation can be greatly improved by heuristically modifying such
techniques in order to account for particular characteristics
of conceptual rainfall-runoff models.

1.3 Scope and Organization of the Research.
This research aims to solve some of the problems

discussed in the previous section. A methodology for stoc-
hastic parameter estimation in large conceptual
rainfall-runoff models is developed in order to explicitly
consider the problems posed by noise in the system and in the
measurements on the parameter estimates. In addition, an
algorithm is developed which identifies the interval of the
records in which base flow is the main streamflow component,
and estimates the corresponding parameters. This is done to
circumvent observability problems that may lead to unrealistic
parameter values. The final purpose of the research is to ap-
ply the methodology developed to real catchments. The
rainfall-runoff model used is based on the National Weather
Service River Forecasting Model, which will be described later
on this work.

The research was divided into three stages. The first
stage was the development of a stochastic parameters esti-
mation procedure and the identification of possible problems
associated with the use of the procedure. Due to the high
cost of performing tests on the complete National Weather Ser-
vice model a simplified version of the model was developed
which was less expensive to run, but kept the basic structure
and characteristics of the original.
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The second stage was directed toward the development
of an algorithm for automatic identification of the time in-
terval of base flow activity. This task involved the imple-
mentation and verification of a stochastic model of Base Flow
and the testing of the algorithm with real data.

The third and final stage applied the methodologies
developed in the first two stages to estimate parameters of
the National Weather Service river forecasting model in two
river basins. The performance of the model under the parame-
ters thus estimated was also studied.

1.4 Thesis Outline.
This thesis is divided into 8 chapters. Chapter 1

contains the introduction, literature review, scope and out-
line of the research, and outline of the thesis. In Chapter 2
several parameter estimation techniques are presented. Chap-
ter 3 includes a description of the maximum likelihood parame-
ter estimation technique as applied to the present research.
The basics of the National Weather Service model, not covered
elsewhere, and the simplified rainfall-runoff model are
described on Chapter 4. The algorithm for automatic identifi-
cation of base flow activity is presented in Chapter 5. Chap-
ter 6 describes the identification of the parameters of the
simplified rainfall-runoff model and the problems found.
Chapter 7 is concerned with the application of the complete
methodology to the Bird Creek and Cohocton River basins, using
the National Weather Service model. The conclusions and
recomendations are included in Chapter 8.
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CHAPTER 2

PARAMETER ESTIMATION TECHNIQUES: A BRIEF SUMMARY.

2.1 Classification of Parameter Estimation Techniques.
Mathematical models of physical systems can be divided

into two broad categories, according to whether the variables
representing the state of the system are considered random
variables or deterministic variables. These two categories
are: 1) stochastic and 2) deterministic models. Similarly,
the parameter estimation techniques are also divided into
"probabilistic" or "deterministic". Probabilistic techniques
are also known as "stochastic" techniques when the system un-
der consideration is dynamic.

2.2 Brief Survey of Parameter Estimation Techniques.
Section 2.2 contains a brief description of some of

the parameter estimation techniques, although by no means it
is an exhaustive survey. Furthermore, not all of these
techniques are applicable to all kind of problems.

2.2.1 Deterministic Methods.
2.2.1.1 Algebraic.

This method is applicable to those models for which it
is possible to formulate a system of linear algebraic equa-
tions in which the parameters are the unknown and the
coefficients of the equations are functions of the (known)
state variables. If there are k unknown parameters, k mea-

surements will be needed. A system of k simultaneous equa-

tions with k unknowns is solved (see McLaughlin, 1979, and

Sagar, et al., 1975). The simplicity of this method is
counterbalanced by its sensitivity to measurement errors, com-
monly yielding physically unrealistic parameter estimates
(McLaughlin, 1979).

2.2.1.2 Mathematical Programming
This method is derived from the algebraic method.

More measurement equations are used in order to solve the
problems presented by the algebraic method. This will lead to
a system of k2 linear equations with k unknowns, with

k < k This implies that all equations can not be satisfied

simultaneously and there will be an error in k 2 - k1 equa-

tions. The algebraic equations are thus modified in order to
include this error and a linear programming problem is set up,
in the case of a linear objective function, such that a chosen
function of the error terms is minimized. One of the main
problems of this method is the frequent occurrence of degener-
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acy, which has been reported by Kleinecke (1971) and
McLaughlin (1975). A non linear programming technique will be
required if the objective function is non-linear (Yoon and
Yeh, 1976, Chang and Yeh, 1976).

2.2.1.3 Weighted Least Squares
The goal is to find a set of parameters, 6, such that

the weighted sum of squares of the errors between the
predicted and the measured values is minimized:

Min ET (0) W(G) s(O) (2.1)

where s is the (column) vector containing the differences be-
tween the predicted and the measured values and W is the
weighting matrix. It may be chosen by "engineering judgement"
in a way such that more weight is placed on some measurements
than on others. It is important to mention the fact that when
the system under consideration has been modeled as a stochast-
ic process, the weighting matrix that yields the smallest er-
ror is W =Pz, where P is the covariance matrix of the

sampling error vector.
This is a very powerful and general approach and has

been widely used in the past.

2.2.1.4 Heuristic Methods
This class of parameter estimation methods covers pro-

cedures based mainly on experiences with a given system. The
estimation procedure is frequently carried out by trial and
error, either manually or by means of an algorithm programmed
into a computer. Alternatively, heuristic methods can be used
to calculate the gain matrix for the feedback term in the
stochastic approximations algorithm, which will be presented
later in this chapter. Although the first reaction of many
people to these methods is unfavorable, experience has shown
that skillful and experienced technicians can get a good set
of parameters by taking advantage of their knowledge of the
physical system being modeled.

2.2.2 Stochastic Methods
2.2.2.1 State Augmentation

This simple technique can be applied in the case of
stochastic dynamic models of the form (in the general,
non-linear case),

x(t+1) = 1(k(t), 0(t), t) + G(x(t), 6(t), w, t) (2.2)

z(t+1) = H(x(t+1), 6(t+1), t+1) + v(t+1) (2.3)
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where
x(t) = state vector at time t-
O(t) = unknown parameters vector, at time t
.,.) = non-linear state transition matrix

G(.,.,.) = non-linear model error matrix
w(t) = noise term

H(.,.,.)= non-linear measurement matrix
v(-t) = measurement error
z(t) = vector containing the measurements at time t

For the most common case of constant parameters, the "state
dynamics" equation of the parameters is,

0(t+1) = O(t) (2.4)

Equations (2.2) through (2.4) are thus combined to yield:

I(t+1) = $(i(t),t) + G(x(t),w(t),t) (2.5)

z(t+1) = H(_(t+1), t+1) + v(t+l) (2.6)

where
x(t)

i~_t) = -(t

(x(t), e (t), t)

=(t) I

and H is different from H only in the notation, since the pa-
rameter array O(t) is now included in I(t).

The state variables of the system represented by Equa-
tions (2.5) and (2.6) are commonly estimated by linear
filtering techniques, with appropriate algorithms to deal with
the non-linearity of these equations.

The simplicity of this method and the ease of imple-
mentation are highly counterbalanced by the following two
problems. First, the non-linearity of Equations (2.5) and
(2.6) decreases such linear systems' advantages as the propa-
gation of Gaussian properties. Second, the number of
operations necessary to carry out the state estimation by one
of the most commonly used linear filtering techniques, known
as the Extended Kalman Filter, is proportional to the third
power of the number of state variables. Augmenting the state
vector with the unknown parameters will thus cause costs which
are proportional to the third power of the size of the
resulting state vector.
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2.2.2.2 Stochastic Approximations
This name applies to a family of iterative techniques

that are used to find minima of functions without requiring
too much knowledge about these functions. In the case of dy-
namic systems with constant parameters a parameter dynamics
equation as Equation (2.4) is formulated. Estimates are a
linear combination of old estimates and a correction term
based on the difference between a predicted measurement from
the system and the actual observation. The correction term is
weighted with an appropriate gain matrix:

6(t+ljt) = 0(tjt) (2.7)

O(t+lIt+1) = w(t+1) [z(t+1) - z(t+1)I + 0(t+l|t) (2.8)

where
0(sjt) estimate of the parameters' vector at time s, with

measurements taken up to time t
w(t) = weighting matrix
z(t) = actual observation at time t
g(t) = predicted measurement at time t

Equations (2.6) and (2.7) are used in combination with
Equations (2.2) and (2.3), and with the estimation of states.
The simplicity of this family of algorithms is the cause of
their main disadvantage. Since, in general, little informa-
tion about the system is built into the algorithm, the con-
vergence is usually slow (Schweppe, 1973, p. 358).

2.2.2.3 Maximum Likelihood Estimation.
This is a very powerful, though conceptually simple,

technique. The parameter estimation algorithms developed dur-
ing the course of this research are based on the maximum like-
lihood criterion. The next chapter will be fully dedicated to
the theory and implementation of this technique.
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CHAPTER 3

MAXIMUM LIKELIHOOD PARAMETER ESTIMATION

3.1 Introduction
- The method of maximum likelihood is widely used for

parameter estimation. Its popularity stems from a set of
valuable properties which will be outlined later on this chap-
ter. The method is very well described in many statistics
textbooks and the uninitiated reader is particularly refered
to Benjamin and Cornell (1971) for a simple but complete de-
scription. We will, otherwise, assume that the reader is fa-
miliar with the essential concepts behind maximum likelihood
procedures.

3.2. Maximum Likelihood Estimation
Let Z be a set of identically distributed random

variables, and let

pZ(Z; 0) (3.1)

be the joint probability density function of that set, in
which 0 is the set of unknown parameters of that distribution.
Given a set of measurements on Z, say z, the likelihood func-
tion of the sample z is defined by equation (3.2)

L(01z) = pZ(z;G) (3.2)

Having defined the likelihood of the sample by Equa-
tion (3.2), the criterion of maximum likelihood can now be
defined:

"The maximum likelihood estimator of 0 is the value 0 that
maximizes Equation (3.2)"

For some probability density functions, it is more
convenient to define the estimator in terms of the logarithm
of the likelihood function, which is called the loglikelihood
function, and which will be denoted in this work by 4. Since
the logarithm is a monotonically increasing function, the val-

ue 0 that maximizes the likelihood function also maximizes
the loglikelihood function.

The maximum likelihood estimators, hereon 0 , have a
series of properties which are independent of the underlying
distribution. As mentioned earlier, we will list these
properties without a formal proof. The reader is again
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refered to Benjamin and Cornell (1971) for examples of the
applications and for additional references. For large n,

*
where n is the number of data values, the estimator, 0 , is
approximately normal, with mean asymptotically equal to the

true parameter value; that is, 0 is asymptotically unbiased.
Its mean square error is asymptotically equal to

Var[. ] = -[nE[32/30 ] 2]

where subscript i refers to a given element of vector 0.
Also asymptotically, the maximum likelihood estimator

has the minimum expected squared error of all possible unbi-
ased estimators: it is efficient. It also is consistent,
since with increasingly high probability they will be arbi-
trarily close to the true values of the parameters. Finally,
0 makes maximum use of the information contained in the data;
that is, they are sufficient.

3.3 Maximum Likelihood Estimation in Linear Dynamic Systems.
Let a discrete-time linear dynamic system be

x(t+1) = I x(t) + B u(t) + G w(t) (3.3)

and the associated measurement equation

Z(t) = H x (t) + v(t) (3.4)

where:
x(t): State variable at time t. (An nx vector)

1: State transition matrix. (n on )x x
B: Matrix relating the exogenous

inputs to the state vector.(n *n )x u
u(t): Exogenous input. (An nu vector)

G: Matrix (n on )x x
w(t): Discrete time white gaussian noise.

(An nx vector)

Z(t): Measurements. (An nz vector)

H: Measurement matrix. (n *n )z x
V(t): White gaussian noise. (An nz vector)

in which
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x(0): Normally distributed initial conditions
for the state vector

E[w(t)]=0
E[v(t)]=0

E[w(t)wT s)l=Qs~t

E[v(t) v(s) T]=R6 st
E[.] Expectation operator
6. .: Kronecker's delta

1,J
Superscript T indicates the transpose of a vector
or a matrix

Assume now that some of the elements of the matrices
1, B, H, Q, R are unknown and we want to apply the maximum
likelihood criterion to estimate these elements of the system.
To do this we have to form the likelihood-function of the un-
known parameters, given the measurements, L[81z(1),...z(T)],
or the loglikelihood function [01z(1),....z(T)]. We therefore
need the pdf of the output of the system,

pZ(1),...Z(T) [z(l),...z(T)].

Linear systems have the property of propagating the
gaussian quality of the inputs into the system. Since the
measurements are also a linear function of the states, the set
of Z-(t), for t > 1, will also be normally distributed. More-
over, the probability density function of Z(t) given the mea-
surements up to time T, can be calculated by linear estimation
techniques. One of these techniques is the Kalman Filter, the
description of which is standard material in modern estimation
textbooks. The reader is referred in particular to Schweppe
(1973) and to Gelb (1974) for formal presentation and develop-
ment of the filter. We will limit our discussion to the pre-
sentation of the equations required for the calculation of (
in linear dynamic systems, and in the next section for the
non-linear dynamic systems.

The stochastic process ZT is defined as:

T=[Z(1). . .Z(T)]

and it is assumed to be normally distributed.
Once the measurements zT of the stochastic process ZT

have been made, the loglikelihood function of these measure-
ments can be calculated from the joint Normal distribution of

2(G.zT = T) + o(o T) (3.5)
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The terms &b and &4 are known as the bias component

and the observations component of the loglikelihood function.
These terms are defined by

t( T) =-T nz Zn (21T) - Z Zn|P z(tlt-1:6)I (3.6)

T T (t:6) P Z(tjt-1:6)~1 v(t:0) (3.7)

where
v(t:0)= z(t)-2(tjt-1:0)
z(tlt-1:6):Best estimate of z(t), given measurements

up to t-1

P Z(tlt-1:6) = E[v(t:8)v(t:_) T

From Equation (3.7), we see that &4 is composed by the

sum of the squares of the residuals, normalized by their
variances. This is an important term which will be used in
one of the post-optimality tests to be defined later on. The
values 'z(tjt-1) and PZ(tlt-1) are calculated by means of the

well known Kalman Filter equations. For the sake of complete-
ness, these equations are included here. In the following set
of equations, the dependence of the state variables on the un-
known set of parameters 0 is explicitly shown. However, for
shortness in notation, the time and 0 dependence of the
matrices 4, H, B, Q, R, is not shown.

x(t+1jt+1:0) = 4 x(tjt:O) + B u(t) +

P (t+lt:O)HT P 1(t+lt:o)'

V(t+1:6) (3.8)

g(t+1jt: 6)=H[ f5 (tjt: O)+Bu(t) ] (3. 9)

P (t+1lt+1:)=P (t+lt:e) -

P (t+llt:O)HT P (t+1|t:0)x

HP (t+1t:0) (3.10)

P (t+ljt:O) = P (tlt:O)f T + GQGT (3.11)
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P (t+ljt:O)= R + HP (t+llt:O)HT (3.12)
z x

with initial conditions
P (010:0) = P

x(Oj0) = 0

System identification is per se an off-line procedure.
This is, for some historic data one looks for the best set of
parameters that fit a chosen model. In contrast to off-line
procedures, some models require the use of "adaptive" parame-
ters, so that short term inadequacies of the model in
representing real life can be corrected "on-line", that is, in
real time. This is particularly true for the case of linear
models that approximate non-linear processes. This modifica-
tion of the parameters to account for the most recent errors
in the prediction necessarily hampers the-long range fore-
casting capability of the models. It seems then natural that
models that accurately represent a real process should be
calibrated "off-line".

Some other considerations, such as the cost of the
estimation scheme, play a role in deciding on whether to de-
velop an on-line or an off-line parameter estimation proce-
dure. As a rule of thumb, on-line parameter estimation
schemes may be cheaper to use that off-line parameter esti-
mation schemes. This is due to the fact that in an on-line
scheme the time-steps to calculate the state variables are
combined with successive approximations to the parameter's
values, following a scheme similar to the stochastic approxi-
mations discussed in Section 2.2.2.2. In the case of maximum
likelihood estimation of dynamic systems, however, there is no
way of calculating exactly the loglikelihood function on-line,
at a given time step T, without having to redo all the
computations from t=1 to t=T. Since the cost of doing this
will eliminate the cost-advantage of the on-line methods, ap-
proximations to the loglikelihood function must be used. This
approach, however, invalidates the properties of the maximum
likelihood estimators, since the true loglikelihood is not be-
ing used. In general, we can say that the better the approxi-
mation, the highest the cost. There is, therefore, a trade
off between cost and accuracy. The approach to be followed in
this work is the off-line procedure. Since the NWSRFS is a
non-linear dynamic model, the maximum likelihood estimation
procedure in non-linear dynamic systems is presented next.

3.4 Maximum Likelihood Estimation in Non-linear Dynamic
Systems.

Non-linear dynamic systems do not propagate the
gaussian property of the inputs through the system. Therefore
the results of optimum linear estimation theory, in which the
Kalman Filter is based, do not fully apply. However, by
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linearization of the non-linear equations the results of the
previous sections can be used. The degree of success in
applying those results depends not only on the linearization
scheme but on the number of measurements taken to calculate
the likelihood function. A large number of measurements lessen
the impact of the gaussian assumption, and hence, of the non-
linearities in the system. (Schweppe, 1973, p. 442). There
are different techniques by which the system can be
linearized. Kitanidis and Bras (1980) used two of these
techniques in linearizing the continuous-time equations of the
NWSRFS. They utilized statistical linearization and Taylor's
series expansion to the first order approximation. The system
can then be written in a discrete-time linear form, as
explained in the above reference, and the calculation of the
loglikelihood function is performed as in the linear case.

3.5 Incorporation of Hydrologic Information into the Stochast-
ic Parameter Estimation Procedure.

One of the major problems addressed in the automatic
parameter estimation literature is the convergence of some
prameters to 'unrealistic' values. This immediately suggests
the idea of the existance of prior knowledge about the range
of some of the parameters. If this is the case, this prior
information should be incorporated within the parameter esti-
mation procedure.

In a Bayesian framework, this amounts to maximizing
the posterior probability which is proportional to the product
of the likelihood function and the prior probability:

p"(0) = K L (g1zT) p'(0) (3.13)

in which

p"1: posterior probability
L: likelihood Function
K: normalizing constant

p'I: prior probability

Taking logarithms in both sides of Equation (3.13),

Zn p"(Z) = Qn K + (OJz) + kn p'(0) (3.14)

The problem can be formulated as

Max' [ ((I.) + Zn(p'(0))] (3.15)
e
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Notice that since En K is a constant it was taken out
of Equation (3.15) without affecting the outcome of the
maximization process. The importance of this approach is that
not only the initial estimates, but also the quality of these
estimates is taken into account. The acquisition of the prior
values and variances of the parameters is the object of Chap-
ter 5. Notice that Equation (3.15) was derived from a Bayesian
point of view. We can, however, look at it from a Fisher's
point of view, in which the prior information on the parame-
ters is added to the information coming from the system's out-
put, to form a joint loglikelihood function. This will be es-
pecially clear for the case of p'(0) being a Normal distri-
bution. In this case, the function p' is fully described by
its first two moments, the prior values of the parameter's
estimates as the first moment, 6', and the prior covariance of
these estimates as the second moment, P ' Under the Normal

assumption, the logarithm of the prior that enters in Equation
(3.15) can be written,

2*Zn p'(0) = -n 0 (2 ) - en -P|1 +2 6,(018') (3.16)

to, (| = 1/2e (0-0 ')T*p 0  1e(o-o') (3.17)

where n0 is the number of parameters with prior information.

Of the three terms on the right hand side of the equal sign in
Equation (3.16), the first two will remain constant under the
posterior optimization of Equation (3.15) and can be dropped
without affecting the outcome. The remaining term is the
square of the deviations of the prior values from the final
ones, weighted by the prior variance of estimation. This term
acts as an extended observation component of the loglikelihood

(t ). The extended observations component will consist of the

T measurements of discharge and n0 observations on the parame-

ters. We can combine Equations (3.15) and (3.17) in the form
of Equation (3.5), to arrive at

2t_ (1IzT'O')=b ( To zT)+o (ozT'') (3.18)

t (' ( ) = ( T , + (010') (3.19)

In which
x (ojzT''): Extended loglikelihood of the parameters
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given the discharge measurements and the
prior estimates of the parameters

(- 1' Extended observations component

Two final observations can be made about i (,(10' ):

First, if the prior estimates of the parameters form an inde-
pendent set, P will be a diagonal matrix, and (010') can

be written as

to(0 ')= 1/2 (60 -0 ' 2/0 2 (3.20)

In which o 2 is the prior variance of estimation of the pa-

rameter 0.. Second, there are no restrictions on the number

of observations of each parameter. Each independent observa-
tion can be included weighted by its variance of estimation.

3.6 Details of The Maximum Likelihood Algorithm

3.6.1 Search Algorithm.
The optimization of the likelihood function requires

the use of non linear, unconstrained optimization schemes.
These non linear optimization algorithms are based on the sys-
tematic search for the maximum of the objective function along
a sequence of straight line searches. In each of these
searches, a one dimensional optimization problem is solved. A
new direction of search is chosen once an optimum is found.
The way in which the direction of these line searches is cho-
sen defines the difference among the non linear optimization
procedures.

The efficiency of a non linear optimization algorithm
is measured in terms of the rate of convergence of the solu-
tion toward the optimum point. The most efficient algorithms
are also the most demanding ones in terms of computational re-
quirements. Therefore, there is a trade-off between cost of
computation and efficiency of the algorithm. The ease of
implementation of the algorithm is also a factor.

An algorithm that offers an excellent compromise be-
tween these three factors is the Davidon-Fletcher-Powell
(hereafter refered to as DFP) algorithm (Luenberger, 1973)
which was selected as the optimization algorithm for the prob-
lem at hand. The DFP method belongs to the class of
quasi-Newton methods in which the inverse Hessian matrix is
approximated iteratively starting from any positive definite
matrix. The inverse Hessian calculated by DFP is exact for
quadratic objective functions at the end of the optimization
process. The way the algorith successively approximates the
inverse Hessian will be presented below.

The DFP procedure has been developed for minimization
of non linear functions. Since we are interested in the
maximization of the loglikelihood function, we have
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implemented the method to minimize the negative of the log-
likelihood function. The method goes through the following
steps.

1.) Start with any symmetric positive definite matrix S0 (In

our case, the identity matrix), and any point 00. Set k=O

k k k
2.) Set d = -S k
where

k.
g is the gradient of the negative loglikelihood function

with respect to the parameters at iteration k.

Sk is the approximation to the inverse Hessian.

dk is the direction of search.

3.) Minimize - (k + ak dk) with respect to ak, to obtain a
k+1

new value of the parameters, 0 .The corresponding gradient,

k is calculated at this point. The new set of parameters is

calculated at the optimum k , as

0k+1 k k

where
k k k

p = a di

4.) Compute the difference between the gradients at iterations
k

k+l and k, q , which is used to approximate the inverse
Hessian:

k k+1 k
_q _q_

Improve the approximation to the inverse Hessian by means of

k+1 k pk pkT sk k kT sk
Sk+ k + q q

k k kT k k
p q q S q

Update k and go to step 2.
In our work, two additional issues were considered in

implementing DFP. First, the approximation to the inverse

Hessian S k, computed by DFP is exact for quadratic objective
functions. Since the loglikelihood is a non quadratic func-
tion, the approximate inverse Hessian at a point, after sever-
al iterations, may not resemble the real inverse Hessian at
that point. Second, a linear search in a multi-parameter
space may lead some of the parameters to unfeasible regions
thus posing serious computational problems.

The solution to the first problem is to re-initialize
the approximation to the inverse Hessian after a number of
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linear searches, by setting the Hessian equal to the identity
matrix. The solution to the second problem will be presented
later in this section.

3.6.2 Gradient Calculation.
The analytical calculation of the gradient of the log-

likelihood function with respect to the parameters of a linear
problem is an easy task and represents a relatively small cost
of computation. However, the analytical gradient of a highly
non linear system, as ours, represents an extremely high
computational burden. Due to this, we chose to calculate the
gradient by the method of finite differences, which has been
shown to perform satisfactorily in many maximum likelihood
estimation cases. (Peterson, 1975).

3.6.3 Linear Search Optimization.
k

Once a direction of search d has been chosen at step
2.) of DFP, a one dimensional (along the given direction)
optimization problem has to be solved. This problem is
expressed as:

Min - (k + ak (k 3.21)
k

a

In which is the loglikelihood function, the superscript k

refers to the kth iteration, and 0k is the vector of parame-
ters at the kth iteration.

In general, the optimum point along this direction,

ak* can not be found exactly, and a compromise must be made
between accuracy of the solution and cost of computation. The
procedure implemented here is such that the loglikelihood
function is calculated successively for increasing values of
k k k k

a : a 1 ,a 2'. '.,a . These values are chosen such that

k k k k k
a =al, a 2-a a=2 .. .a i+-a =i+1, in which a. are a series

of step sizes that follow the recursion:

a ii=2ea i(3.22)

Figure 3.1 represents a hypothetical two parameter case of the
linear search problem and its associated variables. The origin
of the axis has been set at the value the parameters had at
iteration k.

The initial value, a is chosen as a solution to
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Definition Sketch for the Linear Search Opti-
mization at Iteration k.
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Max a

Subject to

a d mk ,*0 k for all m

In which m is a subscript that indicates each of the parame-
ters, and E is a value set by the user (E=0.1 in our case).
This is done in order to keep the most sensitive parameters

(those with a high dm k) from changing abruptly at the

beginning of the linear search. The geometric growth of the
series of a , given by Equation (3.22) guarantees a rapidly

increasing step size, thus decreasing the number of values of
the objective function to be calculated until the optimum val-
ue along the direction of search has been located between two

k
consecutive a j-1 and a .. This minimum is located when

k k-(a .)>- (a . ). At this point, the last three values of
JJ-

k k k
- (-&(a . 2), -(a . ), -4(a .)), are used to calculate

the minimum of the parabola passing through these points.
(Figure 3.2). The point at which this minimum lies shall be

called a k*. The loglikelihood at this point &(ak*) is calcu-
lated and a new set of three points will be formed. The new

set will include a k*, and one of the ends of the previous set
will be excluded. (Point "a" in Figure 3.2). This reduces
the size of the interval in which the minimum point of the
linear search lies. The criterion to indicate which point
will be replaced is very clearly described by Luenberger
(1973, pp 142-143) and guarantees that the optimum value of
the objective function lies somewhere within the interval. A
new parabolic interpolation is performed and the process of
selecting new sets of three points and interpolating is re-
peated until the distance between the points surrounding the
minimum is less than a given value, (10% of the step size, in
our case), or until the number of quadratic interpolations
exceeds a maximum (5, in our case).

A test to determine global optimality, (described
later in this chapter) is performed at this stage. Should
this point fail to pass the test, a new direction of search
(step 2. of DFP) is calculated and the procedure is repeated.

Sometimes, in places near the global optimum, the
value of the loglikelihood calculated at the first step in a

linear search along the direction dk is smaller than the value
of the function at the beginning of that search. Should this
be the case, a new search is performed in the direction of the

gradient _k and a new value of the loglikelihood function is
calculated. If the condition persists, like in the case of
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e: MINIMUM
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OF INTERPOLATING

at

Figure 3.2 Definition Sketch for the Parabolic
tion Scheme.

Interpola-
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point "b" in Figure 3.3 an additional value for the likelihood
function is calculated at a third point located 0.l*step from
the starting point. If this last point fails to improve the
value of the loglikelihood, (Point "c" in Figure 3.3) it is
assumed that global convergence has been achieved and the val-
ue of the parameters at the beginning of the iteration will be
the maximum likelihood estimates for these parameters. If the
third point improves the value of the loglikelihood, (Point
"d" in Figure 3.3), the quadratic interpolation procedure
mentioned above is performed, and the standard global
convergency test, (described later on) will be applied.

3.6.4 Handling of Parameters' Infeasibility.
There are regions of the parameter's space, usually

far from the global optimum, in which the direction of search
may force some of the parameters to take physically infeasible
values. For example, the coefficient of a linear reservoir
may become negative which will make the dynamic system unsta-
ble. The numerical problems created by this infeasibility
preclude the calculation of the loglikelihood function, which,
no doubt, would be extremely small, thus making the boundary
an obvious constrained optimum in the linear search. Figure
3.4 illustrates this situation.

A basic assumption of the maximum likelihood method is
that there is a set of parameters for which the stochastic
model corresponds exactly to the measurements, in a statisti-
cal sense. That is, there are no structural errors. Under
these ideal conditions, the global optimum lies in a region in
which all parameters are feasible. Assuming the loglikelihood
is unimodal, there are starting points from which the
convergency path to the optimum lies always in the feasible
region. The immediate solution to the problem above would be
to try different starting points, until global convergence is
achieved by trial and error.

There are three problems connected with the trial and
error solution. First, although it may be easy to find a good
starting point in a case with few parameters to be estimated,
this may not be the case in a high dimensional problem. Sec-
ond, it requires the interaction between the user and the com-
puter. Third, and a very important one in real life and espe-
cially in rainfall-runoff models, structural errors are un-
avoidable. Therefore, we must expect to find cases in which
the optimum lies outside the feasible region. This would force
the user to try a very large number of parameters while hope-
lessly and unknowingly trying to achieve convergency in a fea-
sible region. Since one of the aims of our research is to de-
velop a user independent parameter estimation procedure, the
trial and error solution is not applicable here and a differ-
ent one has been implemented. The adopted solution takes the
following steps:

Step 1. When a parameter reaches the boundary, the
value of the loglikelihood at a feasible point very close to
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Figure 3.3 Values of the Loglikelihood in the Direction of
the Gradient.
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-10.
ing parameter takes the (arbitrary) value of 10 1 which is
several orders-of magnitude smaller than the normal range of
the parameters of the model, but still within the feasible re-
gion. If the loglikelihood is smaller than the value of the
loglikelihood computed in the previous step the maximum in the
linear search lies somewhere in the feasible region and the
standard quadratic interpolation procedure mentioned before is
performed. If this is not the case, the procedure continues
with step 2.

Step 2. The gradient at this point near the boundary
is computed and it is determined whether or not a search in
the direction of the gradient will move the binding parameter
back into the feasible region. Should this be the case, DFP
is reinitialized, starting in the direction of the gradient.
If this is not the case, a DFP search is initiated in a
subspace excluding the binding parameter.. Within this
subspace, the feasibility check is performed in every line
search and the dimension of the subspace is then further
decreased should new parameters tend to move into the non fea-
sible regions. Given the high cost of calculating the gradi-
ent, its computation at the binding point may be skipped and
the DFP will proceed with the search in the subspace
excluding the binding parameter.

Step 3. At the end of every linear search, the gradi-
ent of the loglikelihood function with respect to all parame-
ters is calculated and it is determined which bounded parame-
ters will move into the feasible region, thus increasing the
size of the subspace.

3.6.5 Global Optimality Criterion.
In the neighborhood of the optimum point, the loglike-

lihood function can be approximated by a quadratic surface.
It has been shown by (Edwards, 1972) that the loglikelihood
function evaluated at two standard deviations of the parame-
ters away from the optimum is exactly two units smaller than
the maximum. Therefore, if a linear search fails to improve
the loglikelihood function by more than two units it is likely
that the parameters are closer than two standard deviations
from their maximum likelihood values. Since any improvement
in the loglikelihood function thereafter will be very small,
the last point in the linear search can be taken as the maxi-
mum likelihood estimate of the parameters. This criterion has
been succesfully used in the General Purpose System Identifier
and Evaluator (GPSIE), developed by (Peterson, 1976). Our own
experience with estimating the parameters of the conceptual
rainfall-runoff models shows that sometimes the difference be-
tween the loglikelihood functions at two consecutive itera-
tions may be less than two units, yet the maximum of the like-
lihood surface is not near. We adopted a stricter criterion
which calls for the global search to be suspended after the
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optimization algorithm fails to improve the loglikelihood
function by more than 0.01 units. The goodness of this esti-
mate can be measured by several criteria, taken also from the
above reference, and briefly described below:

1.) Positive definiteness of the information matrix,
F, which is aproximated by the negative Hessian. This is a
necessary condition for optimality.

2.) The elements in the diagonal of the parameters
covariance matrix, approximated by the inverse of F, give us
the lower bounds on the variances of the parameter's
estimates, a measure the quality of these estimates.

3.) The value of the loglikelihood function at two
standard deviations of the parameters away from the optimum
point should be two units less than the value at the optimum.

4.) The expected value of the sum of squares of the
normalized residuals, equation (3.7), equals the number of
degrees of freedom, i. e., the number of measurements minus
the number of parameters to be estimated from these data.

5.) The lag-0 correlation coefficient of the
normalized residuals should be close to its expected value,
1.0, and the lag-j (jO0) correlation coefficient should be
close to zero. This a statement of residuals whiteness. The
standard deviations of these correlation coefficients are also
calculated, and the normalized correlation coefficients,
defined as the estimated correlation coefficients divided by
their respective standard deviations, are printed. These give
an idea of the deviation of the correlation coefficients away
from their expected value, in units of standard deviations.
The correlation coefficients, p(i), are estimated in our
scalar measurements case by 7(i), which is computed by

T-j
p(j)= [v(t)*v(t-j)]/(T-j),j=0,4

t=1

where T is the total number of measurements and j is the lag
It can be shown that the standard deviation of the

estimates of the correlation coefficients, a is (Peterson,

1975):

a (i) = p(i) - E[p(i)]
p 1 + E[p(i)] i-i

T T2

1 for i = 0
In which E[p(i)]= 1

(0 for i > 0

The Durbin and Watson Statistics, (Langseth and
Bras, 1979), is also calculated to test the whiteness of
residuals.

48



A problem associated with this convergency criterion
was detected in the last stage of this work and appears when
the loglikelihood is very sensitive to some of the parameters,
and relatively insensitive to the others. This problem is
illustrated, for a two parameter case, in Figure 3.5. In that
figure, the superscripts f and b denote, respectively, the
forward and backward perturbation of the parameters. These
perturbations are used to calculate the gradient of the log-
likelihood function with respect to the parameters by a cen-

tral differences scheme. In Figure (3.5 -a), 0k is the value
of the parameter vector at iteration k.

For the case we are presenting, the gradients computed
by finite differences will be such that

gk 2 j>gk 1

This causes the direction of linear search, d k, to be
mostly in the direction of 0 2. We found that in several cases

the difference between the values of the loglikelihood at the

end of the linear search, 4( k+), and that at the beginning,

&(0 k), (A in Figure 3.5-c), was smaller than the global
convergency criterion presented above. This caused the non
linear optimization process to stop at points far from the
global optimum. The process was re-started at the point of
convergency after stopping the optimization of those parame-
ters for which the values of the forward and backward
differences did not improve the value of the loglikelihood.
(Figure 3.5-c). An automatic solution to this problem was
implemented by means of which only those parameters which at
the end of a linear search improve the value of the loglikeli-
hood in either the forward or the backward direction are
included in the following linear search optimization. Those
parameters that do not improve the value of the loglikelihood
in either direction are left unchanged regardless of the mag-
nitude of their gradient. Since this solution converts the DFP
method into a blend of DFP and pattern search, we do not be-
lieve it to be an optimal solution. We will be addressing this
topic again in the last chapter, Conclusions and
Recomendations.
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CHAPTER 4

THE CONCEPTUAL RAINFALL-RUNOFF MODELS

4.1 Introduction.
This chapter describes the stochastic conceptual

rainfall-runoff models employed in this work. The first mod-
el, which will be presented in section 4.2, is the model for
which the parameter estimation procedure was developed. The
second model, described in section 4.3, was developed as a
simpler version of the previous one with the purpose of help-
ing in the implementation of the parameter estimation proce-
dures at a reasonable cost.

4.2 Continuous Form of the NWSRFS Model
The stochastic conceptual rainfall-runoff model

selected for application of the parameter estimation procedure
developed in this work is esentially the model presented by
Kitanidis and Bras (1980). These authors applied a linear
filtering technique (Kalman Filter) to a stochastic version of
the deterministic conceptual Sacramento model in use by the
National Weather Service. This agency has developed a large
system of programs for river flows forecasting. This system
is known by the acronym NWSRFS, which stands for National
Weather Service River Forecasting System, a part of which is
the Sacramento model. In this work the term "NWSRFS model"
will be used instead of the term "Sacramento model". The
NWSRFS model was originally published as a modification of the
Stanford Watershed Model IV, based on the work by Crawford and
Linsley (1966). The elements of the NWSRFS model are
schematized in Figure 4.1. The model by Kitanidis and Bras
(1980) has been sligthly modified from its original form, as
reported by Georgakakos et al. (1980). The single linear res-
ervoir channel router used by Kitanidis and Bras (1980) has
been replaced by the discrete-time linear routing scheme
developed by TASC (1980).

Since the NWSRFS model is well described elsewhere
(NWSRFS Hydro-31, 1976), it will not be extensively discussed
here. We will present only the continuous-time equations
which are the basis for the state-space formulation required
by the estimation techniques presented in Chapter 3. These
equations correspond to Equations (21) through (26), p. 1029
in the Kitanidis and Bras paper. Equations (27) and (28) in
the same reference are the continuous time state space equa-
tions for the linear reservoir model of the channel, which, as
mentioned above, will be replaced by a different routing
scheme.

4.2.1 Continuous-Time Equations for the NWSRFS Model (Soil
Moisture Phase).
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Before presenting the equations of the soil part of
the model, it is convenient to introduce the reader to the no-
tation to be used. This notation is presented in Table 4.1,
and is adapted from the notation proposed by TASC (1980).

In order to make the notation compact and readable, we
shall define a series of intermediate variables and functions
that will be used in the state space formulation to follow.
The threshold functions are defined by

g(x,x,u) =-u, 
x=x0, u>O

t0, otherwise

Two constants that will be used are:

C1 = 'x 0

1x4 +d15

C2  x4 0 x 4
0 +x 5

0

Other common functions are:

y = 1-[(x 3 +x 4 +x 5 )/(x3
0 +x 4

0 +x5
0

F = C2 [2(1-x 4 /x 4
0 )]/[2-x 4 /x4 0-x5 /x,5

0

3 = (l-Pf)[l-(x
3/x 3 )m]

Pc = C1 ( 1+y) x2/x2 
0

The governing simultaneous differential equations for
the various storage elements of the NWSRFS model follow. The
upper zone is defined by:

dx /dt = g(x ,x 1
0 ,u -u2 *(x 1/x 0)) + u1 - u2 x1 /x 10 (4.1)

dx2 /dt = -g(x1 1 x 
0 u 1 -u2 (x1 /x 1 )) - dux2 - c

+g(x2 'x2 0'h (uZ)uZ) (4.2)
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NWS
SYMBOL ACRONYM DESCRIPTION

NWS
SYMBOL ACRONYM

xl

x 2

x 3

x 4

x 5

x
6

x 7 ,

u 2

0x2

0
x 

2
0

x
3

0
x

4
0X 5

d '

UZTWC

UZFWC

LZTWC

LZFPC

LZFSC

ADIMC

x 8 ...

Inputs

PX6/DT

EDMND/DT

Parameters

UZTWM

UZFWM

LZTWM

LZFPM

LZFSM

-En(l-UZK)/24

-in(l-LZPK)/24

Upper zone tension water content (mm)

Upper zone free water content (mm)

Lower zone tension water content (mm)

Lower zone free primary water

content (mm)

Lower zone free supplementary

water content (mm)

Additional impervious storage (mm)

Unit Hydrograph states (mm)

Instantaneous moisture input (mm/h)

Instantaneous evapotranspiration

demand (mm/h)

Upper zone

Upper zone

Lower zone

Lower zone

Lower zone

capacity

Upper zone

drainage

Lower zone

drainage

tension water capacity (mm)

free water capacity (mm)

tension water capacity (mm)

free primary capacity (mm)

free supplementary

(mm)

instantaneous

coeff. (h~ )

primary instantaneous

coeff. (h-1)

-in(l-LZSK)/24 Lower zone supplementary instantaneous

P f

ZPERC

REXP

PFREE

11 SIDE

a 1 ADIMP

a 2 PCTIM

r RSERV

g

Pc
F

y

T.ci

-l
drainage coefficient (h )

Parameter in percolation function

exponent in percolation function

Fraction of percolated water assigned to

the free water aquifers

Fraction of base flow not appearing in

river flow

Fraction of basin that becomes impervious

when tension water requirements are met

Fraction of basin permanently impervious

Fraction of the lower zone free water

unavailable to supply lower zone tension

requirements

Other variables and functions

Threshold functions

Approximation of the threshold function

in x3

Percolation rate

Fraction of percolating water to the

free aquifers that goes to the

primary aquifer

Defficiency ratio

Total channel inflow

TADLE 4.1

NOTATION

DESCRIPTION



In Equation (4.2) u is the net inflow rate equal to the sum

of all terms in the right of Equation (4.2) excluding the
function g( , , hf(u,)u,), where

h f(u) = 1 u > 0

hf(u ) = 0 u < 0

The lower zone obeys,

dx3 /dt = PcT 3 -u2(1-x 1/xlo)*[x3 /(x1
0 +x 3 ) (4.3)

dx4 /dt = -d 1 X4 +P f(l-3)*F (4.4)

dx5 /dt = -d 1 "x 5 +P f(1- 3 )*(1-F) (4.5)

dx 6/dt = u 1 +[(x 6 x 1 0)/x3 0 2 g[x1 x1 0,u1 -u2 (X1 /X 1 ) (4.6)

The total inflow to be routed in the channel is:

Tci =u1 *a 2 - 6 30 2 u1-u2 2 2

a 1-g(x2'x2 ' h f(UZ )u Z)*(1-a1- a 2)

C~bg(x2 ' 2 0' h f(u )u )e[-(x6x1 0/3o] 2 *a 1+

(1-a1-a2)[d x2+(d1'x4+d1 x5)/(1+u) (4.7)

0 0
1 if x6 < x 1 + x 3

C =

0 if x6 >10 + x3

4.2.2 Discrete-Time Reduced Order Linear Channel Routing
Scheme.

The Analytic Sciences Corporation (TASC, 1980)
suggested a discrete-time linear routing scheme with the form:

x U(k) = x (k-1) + G . T ci(k-1) (4.8)

and a measuring equation of the form
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z(k) = H(k) x (k) + v(k) (4.9)

in which xu (k) is the vector containing the unitgraph states

at time step k, i and G are constant coefficient matricesu u
determined from the unit hydrograph of the basin under consid-
eration. The procedure to identify these matrices from an
available unit hydrograph is described by TASC (1980).

The continuous time soil phase equations (4.1) to
(4.6) are linked to the discrete time unit hydrograph channel
(Equation 4.8) by means of the total channel inflow, T ci, giv-

en by Equation (4.7). For the prediction step the soil phase
equations are integerated through a complete time step of du-
ration DT=0.25 days. The acumulated T ci during that time in-

terval is then used in Equation (4.8) to compute the predicted
discharge.

The filtering step requires the estimation of the
covariance matrix of the complete system, soil phase and chan-
nel, which, as we mentioned above, are continuous and discrete
time models, respectively. Since the filter implemented by
Kitanidis and Bras is a discrete time linear filter, (the fact
that the measurements are taken at discrete time intervals
requires the use of a discrete time filter), we have to find a
discrete time linear approximation to the complete soil phase
and channel systems. That linear approximation was developed
by Georgakakos et al. (1980) and is presented here. To put
this presentation into perspective, we first introduce the
linear approximation of the complete system, and then we will
explain how tne different components of that approximation are
computed.

The discrete time linear approximation of the system
will take the form

Xc (k) = Ic x (k-1) + Gc * u(k-1) + F (4.11)

where:

x (k) = { Complete-system state vector at k=T*DT.

Ic : Linearized complete system transition matrix.

G ,F : Matrices obtained from the linearization

and integration schemes, to be introduced later.

We are going to proceed to the derivation of Equation
(4.11) in two steps. In the first step we are going to explain
how the linearization and integration of the linearized equa-
tions of the soil phase model is performed. In the second step
we will concentrate on the linearization of the channel model.
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For the linearization and integration of the
linearized equations of the soil phase model, we follow the
schemes of Kitanidis and Bras (1980). Let the system of con-
tinuous time non linear differential equations of the soil
phase be represented in a generic form as:

dx./dt = f (x,u,t) + w

We want the system to be linearized in the form:

dx/dt = A x(t) + B u(t) + w(t) (4.12)

where
A i= af /ax | "'L, j=1,6, i=1,6

B = af /au IX=X, i=1,6

Notice that only the derivative with respect to u1 is

required, since the evapotranspiration demand u 2 was assumed

to be deterministic. Notice also that the matrices A and B are
evaluated at a nominal value xL' which in Kitanidis and Bras'

application corresponds to

xL (x(k+l) + x(k))/2.

The integration of the system of equations (4.12) is
done with the integration scheme proposed by Kitanidis and
Bras (Equation 54, p. 1032, 1980), to arrive at

x(k+1) Is x(k) + Gs u(k) + w(k) (4.13)

where

Is (k)=(I-A*DT/2+A
2*DT2 /12) 1(I+A*DT/2+A

2 *DT2/12)

Gs (k) = (I-A*DT/2+A2*DT2/12)1eDT*B

and w(k) is now a discrete time White Gaussian Noise.
The second step is the linearization of the channel

model equation with respect to the soil phase states and the
input, since Equation (4.8) is already linear on the unit
hydrograph states. We can express the total channel inflow
(Equation 4.7) in compact form as
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Tci =f (x, t) (4.14)

Linearizing Equation (4.14) with respect to x and u 1 we obtain

Tci = + 0 Tx(k) + 0 eui(k) (4.15)

where

fo fcL'ul (k),k) - p *gL ~ oueu(k)

T= c /xx

=af /au Iu c 1 u=u 1 (k)

By replacing Equation (4.15) into Equation (4.8) we
arrive at

xu (k) = f uxu (k-1) + G (A Tx(k-1)+Ou*u (k-1)+f ) (4.16)

Equations (4.13) and (4.16) can now be expressed in
the form of Equation (4.11)

X ) T0 "x] G S W (k)~

du k i rU. st uk-1 s tUj u .

4.3 The Simplified Rainfall-Runoff Model.
A simplified version of the NWSRFS model was developed

during the first stage of the research. The motivation was
mostly cost reduction. As in the original model, the state
variables of the simplified model will be the water content in
the different storage elements. We will use frequently the
term "storage element" or simply "element" to refer to the
state variables. In this section, we will explain the simple
model, following Figure 4.2 as a guide. The continuous time
equations, the description of the functional relationships
among the state variables, and the parameters of the model
will be presented in section 4.3.3. Before going into the de-
scription of the model itself, it is important to mention the
differences between- the simplified model and the Kitanidis and
Bras model.
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4.3.1 Differences Between the Simplified Model and Kitanidis
and Bras' Model.

The first change was to modify the "S" curves which
were proposed by Kitanidis and Bras (1980, p. 1031), as an
option to the threshold functions. Two changes were made on
these curves: 1) the function itself was changed from an
arc-tangent to a hyperbolic tangent, and 2) the curves will
now be included in the model so that they act before the water
goes into the corresponding element. In this form, the
contents of the storage elements are not constrained to be be-
low a maximum value. In addition, the values of the "S"
curves are used to measure the level of " saturation" in each
element. This last point is a significant difference in the
notations of both models. For the NWSRFS model saturation

means the relative water content in a storage element, x./x. ,
1 1

in which the subscript "i" refers to any of the storage
elements.

The second change was to reduce the number of state
variables in the soil moisture accounting part of the model,
by eliminating the additional impervious content, ADIMC, and
its associated parameter, a1 .

The third change was to model the channel by two
non-linear reservoirs, following the model presented by
Georgakakos and Bras (1980).

The fourth and last change was to replace the function
that divides the water flowing to the lower zone free primary
and supplementary reservoirs.

4.3.2 Model Description
There are two inputs to the model, both of them

assumed to be deterministic inputs: the precipitation rate,
U1 ,and the evapotranspiration demand, u 2 . u1 is divided into

the direct runoff, rd' and the fraction of precipitation which

becomes infiltrated, ir. rd goes directly to the channel,

while ir is divided by the "S " curve in a portion that drains

into the upper zone tension water element, x1 , and a portion

that overflows from the upper zone tension element, f . If
U

the content of this element is very low, the value of the "S "

curve will be close to zero, and most of the infiltrated water
will go into x1 . On the other hand, if x1 is high, S will

approach the saturation value of 1.0, and most of the water
will overflow and go into the upper zone free water element.
The only direct output from the tension water is the evapo-
ration term, e .

The overflow from the upper zone tension is routed
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through the second "S" curve, S2' and divided between surface

runoff, SR, and the part that will drain into the upper zone
free water, x2 . In a similar manner as in the previous case,

if x2 is low, S2~O.0,- and SR~0.0. Three outputs are possible

from the upper zone free water element: 1) the evaporation
output, e2 ' which tries to satisfy demand not fulfilled by xi;

2) the interflow, i. f which is modeled as a linear reservoir,

following the NWSRFS model, and drains to the channel; and 3)
the percolation function, which, being considered the "heart"
of the NWSRFS model was modeled in exactly the same way as in
the original model.

The percolating water, Pr' is divided into the frac-

tion that drains directly into the lower zone free water
elements and the part acted on by the "S" curve of the lower
zone tension water element, S When S3 approaches satura-

tion, the overflow from the lower zone tension water element,
fl, increases and joins the free-percolating part. The

remaining drains into the tension water element, x3 ' which has

only one output, the evaporation term, e3 ' that tries to sat-

isfy demand not fulfilled by the two previous elements.
I The water percolating to the lower zone free water

elements, accounting for the base flow of the basin, is now
divided between the primary and supplementary reservoirs, x4
and x5 , respectively. The criterion for dividing the water

between both elements was proposed by Georgakakos et al.
(1980) and is reproduced later in this chapter. In the origi-
nal NWSRFS model these two reservoirs do not have threshold
functions. The maximum amount of water they hold is indirect-
ly controlled by the saturation ratio of the reservoirs' con-
tent through the percolation function. Since in the simplified
model the saturation of the elements is measured by the value
of the "S" curve, we have used "S" curves in each of these
reservoirs. Both reservoirs are linear, and the output from
them forms the total base flow, rb. This is divided into the

base flow which is a component of the total channel inflow,
rbc' and the part that does not go to the channel, rbn. The

total channel inflow, T ci is divided into two components, each

draining into one of the two reaches of the non-linear chan-

nel, x 6 and x 7 . The output from the upper non-linear channel

goes to the second reach of the channel, and the output from
this becomes the total channel outflow, Tco* No evapotranspi-

ration from riparian vegetation is considered and no losses
from the channel are taken into account.
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4.3.3 Governing Simultaneous Differential Equations of the
Simplified Model.

We made reference in the previous section to two
functions which the simplified model employs and which have
not yet been introduced. These are the "S" curves and the
function that distributes water between the lower zone free
primary and supplementary reservoirs (The F function). Before
proceeding with the presentation of the simultaneous differen-
tial equations that mathematically describe the simplified
model, we are going to introduce the "S" curves and the "F"
function.

The "S" curves used in the simplified model are
defined by Equation (4.17), and are presented in Figure 4.3

S = 0.5 [tanh(w) + 11 (4.17)

where

w = [(x/xi 0)/Sf - 11 Ps (4.18)

where
w: Dimensionless water content.
x.: State variable "i"
1

x : Parameter of the curve coresponding

to state "i"
S : Parameter to shift the midpoint of the

curve (set to 0.65)
Ps: Parameter to alter the slope of the

curve (Set to 4.0)

The parameters x 0/ i=1,5, are to be estimated. Two

parameters were included in order to make the S curve to ap-
proximate closely the threshold function. The first one, Sf,

shifts the midpoint of the curve. For S =1, S=0.5 for x./x. =f 11i

1. With S <1, it is possible to get S=1, for x./x. ~1, thusf 11i

simulating the effect of the original threshold in the NWSRFS
model. The parameter Ps was arbitrarily set as 4.0 for all "S"

curves. The effect of this parameter is to change the slope
of the curve. For Ps=1 the slope of the curve is unity, at

x /x. =S A value of Ps greater than one, will make the

slope steeper. The opposite will hold for a value of P5

smaller than one.
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The reason why the original F function in the NWSRFS
model was not used stems from the fact that the original func-
tion may attain an undetermined zero over zero value in the
stochastic model. This condition can not appear in the de-
terministic model. The original function was given by

F(d4 1 d 5 ) = C2 .d /(d 4 +d5 ) (4.19)

where

d = (1 - x4 /x 4
0 ) (4.20)

d5 = (1 - x5 /x 5
0 ) (4.21)

and C2 was defined in Section 4.2.1.

In that form, Equations (4.20) and (4..21) represent the defi-
ciency ratios, or relative dryness of the respective elements.
However, updating the state variables after the measurements
of the discharge have been obtained may cause both d and d5
to be simultaneously zero, which will cause an indetermination
in the function F. To prevent this from happening, a different
function was proposed by Georgakakos et al. (1980)

Let F(S4 ,S5 ) be the function that divides the total

percolating water to the lower zone free water elements, such
that, at the two extremes, F=1 will direct the water to the
primary reservoir, and F=0 will direct the water to the sup-
plementary reservoir. Notice also that the function is now ex-
plicitly defined in terms of the saturation values given by
the "S" curves of the lower zone reservoirs, instead of the
reservoirs' contents themselves.

Define the following policy: for x 4 = 0.0, all water

coming into the free water reservoirs (free precolation +
overflow from tension water) will go to the primary reservoir:

F(0,S 5) = 1, all values of S5  (4.22)

When both reservoirs are full, the amount of water
sent to the primary reservoir is equal to the water that
leaves the reservoir. Under saturated conditions, the maximum
percolating water to both reservoirs is set as

Pb dI''x 0+ d"'x5 (4.23)

in which d ' and d 1" are the coefficients of the linear

reservoirs. According to this policy, for S1 =S 2 =1 (both

reservoirs are fully saturated),
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F(1,1)-Pb d 1d 4 (4.24)

or F = F(1,1) =d ''x /Pb (4.25)

Finally,

F(1,0) = 0.0 (4.26)

A function that fulfills these conditions is given by

Equation (4.27), and is represented in Figure 4.4.

F(S 4 S5 ) = (F 'S5 4 + 1 (4.27)

Given the above definitions of S and F(S 4 1 S5 ) it is

now possible to give the governing equations of the simplified
model.

Upper zone tension water, x

dxj/dt = (1-Sl) - e1  (4.28)

ir 1 1 -rd (4.29)

rd u a2 (4.30)

* = u 2 S1 (4.31)

where:
u 1: Precipitation rate (Input)

u 2 : Evapotranspiration demand (Input)

S : "S" curve corresponding to x1 (S1 (x ,x1
0 )

ir: Rate of infiltration

rd: Direct runoff

a2 : Impervious area as a percent of total area

(Parameter)

x 10 Parameter of S

Upper zone free water, x2

dx2 /dt = (1-S2 u - ) f e e2 ~ r (4.32)
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f= i 'S (4.33)

i = d *x (4.34)
f u 2

e2  u 2  ( 1-Sl) S2 (4.35)

P r= P b S 2 (1 + ' d ) (4.36)

Pb = d' 1 x + d ' 5 0 (4.37)

dr = 1 (S3 + S4 + S5)/3 (4.38)

where:

S "S" Curve: S2 (x2 1x
0

x 0 Parameter of the "S" curve

f : Overflow from x

i f: Interflow

e 2 : Evaporation from x2
P : Percolation to the lower zone
r

d : Interflow' s parameter- u

Pb: Maximum rate of percolation under complete

saturation of the lower zone
d' : Parameter for the lower zone primary reservoir

x 40 Parameter of S4

d : Parameter for the lower zone supplementary

reservoir

x 50 Parameter of S5
d : Defficiency ratior
T: Parameter of the percolation function

S3: "S" curve of x3 : S3 (x 3 1x 3
0 )

x30: Parameter of S3

S4: "S" curve of x4 : S( x4
0 )

x40: Parameter of S4

S 5 "S" curve of x 5 : S5 (x 5 'x5
0 )

x50: Parameter of SS
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Lower zone tension water element, x3 :

dx3 /dt = Pr (1 - Pf)

e3= u 2 (1-S )

(1-3 3 

(1-S 2 ) S3

Evaporation from x3

Lower zone free primary reservoir, x4

dx4 /dt = [Pr Pf + Pr f S3]F - rb

rb' d ' ' x

where
P .

(4.41)

(4.42)

Parameter that indicates the amount of

water flowing directly to the free water zones

F: Function that controls the filling of
the lower zone reservoirs.

Lower zone free supplementary reservoir, x5

d'(dx 5 /dt = [P r*P f+ P r(1-P . '1F - r b

rb" d " ' x
5

(4.43)

(4.44)

Upper channel reach, x 6:

dx 6/dt = Tci

f = Ck
c

* (1 - Dc) - fc

x
6

T . = r + SR + i + rCi3 d f bc
rbc (rb' + rb")/(1 + )

Fraction of Tci flowing to the
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e 3 :

(4.39)

(4.40)

where
Dc:

(4.45)

(4.46)

(4.47)

(4.48)



second reach (Parameter)
f : Outflow from the upper channel reach
c

Fraction of groundwater not flowing
to the channel (Parameter)

Ck: Parameter of the channel
m': Exponent of the non-linear channel

Lower channel reach, x7

dx 7/dt = T . ' Dc + f - T (4.49)7 ic co(4)

T = 0.5 * Ck * x m' (4.50)co 7

Notice that the channel coeffient in the lower reach
of the channel is exactly one half of the coefficient in the
upper reach. If the model were going to be applied to a real
catchment, the channel coefficients in both reaches should be
allowed to vary arbitrarily in order to better fit a real
channel. Since the purpose of this model was to be used only
with simulated data this simplification was used in order to
decrease the number of parameters to be estimated.

69



CHAPTER 5

EXTRACTION OF PRIOR INFORMATION FROM HYDROLOGICAL RECORDS

5.1 Introduction
A manual calibration procedure for the parameters of

the National Weather Service model is very well described by
Peck, (1976). In that report, the parameters are classified
into five categories. The first category groups the parame-
ters which are easily computed from the observed hydrograph
and precipitation. The second category groups parameters more
difficult to estimate from the same records. The third cate-
gory has only one parameter, the area of the basin, which is
measured from maps of the basin. The fourth category covers
the percolation function parameters, which are estimated from
neighboring basins which have been previously simulated. The
fifth category covers three parameters for which only nominal
starting values are given.

From Peck's classification of the parameters' obser-
vability we can see that prior information on the parameters
in the first two categories is available in portions of the
discharge records. The prior information on the parameters of
the fourth category comes from other sources, in this case
neighboring basins for which the parameters have already been
estimated. We are interested in extracting the prior informa-
tion which is contained in portions of the records themselves.

The estimation of the parameters under the first two
categories take advantage of the fact that some elements of
the model would be inactive during some periods of time, thus
making the parameters related to the active elements highly
observable. Following that idea it is then possible to-devel-
op stochastic models of small dimensionality that represent
one or two of the elements that may be active at a particular
period. The problem of parameter estimation may then be posed
as series of hypothesis tests in which not only the soil pa-
rameters but also the error terms and the time periods for
which the models (sub sets of the larger model) apply have to
be identified. The ability to identify the time periods for
which the models apply is indeed the key issue in justifying
the development of a stochastic model to be used in estimating
parameters that are, otherwise, easily identified "by eye"
from the records. In addition, the maximum likelihood ap-
proach in which the algorithm is based provides the variance
of estimation of the parameters, which, together with the val-
ue of the parameters fully describes the prior normal distri-
bution of the parameters (See Chapter 3). We can also obtain
the variances of the model error and the measurements error
terms with the stochastic procedure. While the identification
of the last two variances require the use of a stochastic pa-
rameter estimation technique, the variance of the parameter
estimates can be approximated by repeatedly estimating the pa-
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rameters in different time intervals, using a deterministic
procedure. The larger the number of estimates.for each pa-
rameter, the better the approximation of the variance. This
will, nevertheless, increase the costs of employing techniques
alternate to maximum likelihood parameters estimation, thus
reducing the cost advantage these alternate techniques may
have had over maximum likelihood.

This chapter deals with the presentation of an algo-
rithm for automatically identifying the region of base flow
and related parameters using the maximum likelihood procedure.
The resulting parameters and estimation variances will then be
prior information in estimation of parameters of the full
NWSRFS model. Chapter 3 discussed how to incorporate this pri-
or information in the maximum likelihood procedure. The
resulting increased observability will hopefully reduce the
common problem of parameters achieving non realistic values
during automatic calibration.

5.2 Stochastic Model of Base Flow
A schematic diagram on which the stochastic base flow

model is based, is presented on Figure 5.1. In developing the
model, the following assumptions are made:

1. The only input to the system is white Gaussian noise. The
upper zone free water element is fully depleted implying
that there is no percolation or interflow.

2. There is no transfer of water from the lower zone free wa-
ter elements to the lower zone tension water element.

3. There is no evapotranspiration from the channel and ripar-
ian vegetation.

4. The ratio of unobserved discharge to observed discharge
(p) is taken as a nominal value.

5. The fixed rate of discharge lost from the total channel
flow (NWSRFS acronym SSOUT) is negligible.

6. Due to the slow varying conditions of the river discharge
during low flow periods, channel routing may be disre-
garded.

The first assumption is justified by the very defini-
tion of base flow. This is the only component of the dis-
charge when there are no inputs to the system and when there
is no interflow. Assumptions 2 and 3 are also made in the
Kitanidis and Bras (1980) model. These authors showed that
the modeling of these conditions was of negligible importance.
Assumption 4 is an important one, since the influence of pa-
rameter V is not negligible by any means. This assumption,
however, will be fully justified later in this section after
the model of base flow and its associated parameters are
introduced. Assumption 5 is justified in all cases in which
there is not strong contradictory geological evidence. If this
evidence is present, the model of base flow proposed here will
not be directly applicable. A modification to it, suggested in
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the final chapter, will be able to handle this case. The
tests built-in in the model will assure that the procedure to
be presented here does identify the base flow interval and its
associated parameters which follow the previous set of assump-
tions.

The procedure we are going to follow in deriving the
stochastic differential equations of the model of base flow
involves the differentiation and integration of a system of
differential equations. Since the first of our assumptions
state that the only input to the system is white gaussian
noise, we should start from a system of stochastic differen-
tial equations. However, since white gaussian noise is a non
differentiable process, we will base our derivation on a
differentiable deterministic system. Moreover, since the dis-
charge measurements that will serve to update the states are
available at discrete time steps, the final governing equa-
tions will be in the form of discrete-time difference stoc-
hastic equations. These equations will be derived by integra-
tion of the continuous-time deterministic differential equa-
tions and by addition of discrete-time white gaussian noise
processes.

The continuous time deterministic differential equa-
tions describing the base flow model are:

dx / =
dxl/dt = Il(t) - 01 (t) = - d 1 x 1 (t) (5.1)

dx2 /dt = 12 (t) - 02 (t) = - d 1 " 2 (t) (5.2)

with initial conditions:

x l(O), x 2(0)

In the above equations the subscript 1 refers to the
water content in the lower zone free primary water element,
and the subscript 2 represents the water content in the lower
zone suplementary water element. The two (unknown) parameters
d' 1and d 1" correspond to the linear reservoir constants d '
and d " respectively.

Since the measurements are taken at discrete time in-
tervals, At, rather than continuously, the system can be
modeled in a discrete-time equivalent form by direct integra-
tion of Equations (5.1), and (5.2)

After integration from time t to time t + At, the dis-
crete time stochast-ic system equations become:

:l(t+At) = exp(-d 1 'At).x1 (t) + W 1 (t) (5.3)
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x2 (t+At) = exp(-d 1 2At)ex2(t) + W2(t) (5.4)

z(t) = 01 (t) + 02 (t) + V(t)

= d1 ' x (t) + d1 " E2 (t) + V(t) (5.5)

In which Wi(t) is a discrete time white gaussian noise

process.
Notice that the original parameters appear now in a

highly non linear form, in equations (5.3) and (5.4). This
poses no problem for the parameter estimation procedure, which
is, anyway, the optimization of a nonlinear function.

Since the discharge of the river is the rate of change
in the content of the linear reservoirs, Which is an indirect
measurement of the states, we chose to change variables so the
new state variables are observed directly.

Let us define

x1 (t) = dx 1(t)/dt (5.6)

x2 (t) = dx2 (t)/dt (5.7)

as the rates of discharge of both reservoirs, respectively.
By differentiating Equations (5.1) and (5.2),

replacing equations (5.6) and (5.7) into equation (5.5), the
continuous time system equation in the new state space
becomes,

dx 1 (t)/dt = -d1 ' x 1 (t) (5.8)

dx2 (t)/dt = -d " x 2 (t) (5.9)

Integrating Equations (5.8) and (5.9) from time t to
time t+At and adding the discrete time white gaussian noise
processes, the discrete time system equations become,

x 1 (t + At) = A1 x 1 (t) + W 1 (t) (5.10)

x2 (t + At) = A2 x2 (t) + W 2 (t) (5.11)

z(t) = x 1 (t) + x 2 (t) + v(t) (5.12)
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In which

A = exp(-d1 'At) (5.13)

A2 = exp(-d 1 "At) (5.14)

W (t), W 2 (t) and v(t) are discrete time independent

white gaussian noises with zero mean and unknown variances,

Q1 1 , Q 2 2 , and R1 (t), respectively, which must be estimated.

Q1 and Q22 will be assumed to be constant, while the
modeling of the variance of v(t) follows the research by
Georgakakos and Bras (1980), in which it is assumed that the
measurement noise.( E[v(t) 2 ]) is proportional to the dis-
charge. It will be assumed that at any time t, R 1 (t)=R*z

2 (t),

and R is the parameter to be estimated.

5.2.1 Observability of the Model.
The system dynamics represented by Equations (5.10)

and (5.11), and the measurement equation (5.12), can be repre-
sented in matrix form as

x(t + At) = A x(t) + W(t) (5.15)

z(t) = H x(t) + v(t) (5.16)

where

Fx (t)
x(t) = (5.17)

- x2 Wt

A A 0 (5.18)
- 0 A 2

w(t) = Lw t)- 1(5.19)
t42 (t)-

H = [1 1] (5.20)

The observability of a model defines the ability to
determine the sequence of state variables x(1), x(2),..,x(k),
from a given set of measurements z(1), z(2),...,z(k). There
are two tests to check observability in a system. A determin-
istic test, and a stochastic test. As we will show next, both
tests yield the same results when applied to the model of base
flow. The deterministic observability test consists in
determining the rank of the matrix ., defined as
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[HT:HTAT:HTA ... (5.21)

(For details, see Gelb, 1974, pag. 67)
In our case,

1A1  (5.22)

1 A2 = A2 - AA2

Which implies that the system is non observable, in the de-
terministic sense, only if the two coefficients of the linear
reservoirs are identical.

The stochastic observability test is based on the
existance of the states' covariance matrix, in the absence of
process noise and a priori information about the state
variables. (See Gelb,.1974, pp. 131-132, for details). Under
these conditions, the inverse covariance matrix can be shown
to be expressed by

P ~1(t) = AT (t,)HT R~ H A(t,t) di (5.23)
x -

In which the matrix A is the state transition matrix, which is
defined by Equations (5.13), (5.14) and (5.15). Notice that
here we have included explicitly the dependency of A on the
interval At = t - T. The stochastic observability criterion
establishes that the system is stochastically observable, if
for some t > 0 the integral in Equation (5.23) is positive
definite and bounded. For linear stationary systems like ours
the criterion corresponds exactly to the deterministic obser-
vability criterion (Smith, G. L., 1965, pp. 350-359).

5.2.2. Weighted Least Squares Parameter Estimation. (WLS)
Since the method proposed in this chapter is presented

as an alternative to manual estimation methods, it is conve-
nient to compare the estimates of the parameters obtained with
maximum likelihood, manual estimation methods and a popular
parameter estimation method, weighted least squares.
Minimizing the weighted sum of squares of the observed
discharges minus the predicted discharges is a very common
criterion of parameter estimation. The criterion can be simply
stated as

T
2

Min J = (z(t) -z(O, t)) 2W(t) (5.24)
0 t=1

In which 0 is the unknown set of parameters, z(t) are
the observed discharges, (O,t) are the predicted discharges,
and w(t) are the weights.
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A set of weights consistent with the modeling of the
measurement error is

w(t) = R/z2 t) (5.25)

since it resembles the modeling of the standard deviation of
the measurement errors being proportional to the discharge, as
used in the stochastic model.

The WLS criterion which will be applied here can then
be rewritten as

T2
Min J = R [(z(t) - (0,t))/z(t)] 5.26)

t=l

5.2.3. Maximum Likelihood Parameter Estimation. (MLPE)
This section discusses some characteristics of the

loglikelihood function for the model under consideration. The
study of these characteristics is an invaluable tool in
defining the strategy to follow when a problem-oriented, rath-
er than a general optimization scheme is being developed.

A convenient way to study the features of the log-
likelihood function is through its graphical representation.
A three dimensional isometric view of the function of two pa-
rameters, combined with a contour lines plot of the same,
provides global appreciation of the characteristics of the
function over a wide range of the two parameters simultaneous-
ly. The following sections include these kind of plots, which
were obtained by generating synthetic discharges with the set
of parameters

A 07 0. x(0) =
0 0.3 4

Q11 = Q22 = 10-6 E[v2 = 10~4 z2

Next, two of the parameters at a time were varied
within a range, (described in the corresponding section),
forming a 40 X 40 grid. The remaining parameters were kept
constant at their real values.

5.2.3.1 Loglikelihood of the Model Dynamics' Parameters.
The loglikelihood function of the two model dynamics

parameters is shown in Figures 5.2 and 5.3. The reader should
notice that the interval between contour lines varies so that
important features such as the optima can be easily located.
The two parameters were varied linearly from A =A 2=0.1, to

A =A 2=1.0. Two characteristics of the loglikelihood function

are immediately evident. First, the function is symmetric
with respect to the plane A 1=A2. Second, there is a cusp in

the function along the same plane.
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Figure 5.2 Isometric View of the Loglikelihood Function of
the Model Dynamics Parameters.
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Figure 5.3 Contour Lines of the Loglikelihood Function of

the Model Dynamics Parameters.
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The symmetry appears when both initial conditions and
both error terms are, respectively, identical. This symmetry
is an important consideration. Any optimization procedure
requires the choice of a starting point, an initial guess for
the parameter's values, A lo, A2o' etc. A logical choice is to

select A 10> A 2 , which is equivalent to d ' < d " , since
l 2 1 o lo sic

the suplementary reservoir is faster draining than the primary
one. Therefore, we expect the MLPE procedure to converge to a
point such that the last inequality is not violated. During
the non linear optimization procedure, it is possible that the
search path crosses the symmetry plane and convergency is
achieved on the maximum located at the opposite side of the
symmetry plane from the starting point, with the consequence

that A 1  < A 2 ' or, equivalently, d ' > di" , where the

denotes ML estimates. Should this be the~case, the system
dynamics parameters and other parameters being estimated, must
be respectively interchanged.

The cusp in the loglikelihood function does not rep-
resent any problem in the MLPE procedure. It marks exactly
the plane in which the state variables are non-observable.

5.2.3.2 Loglikelihood of the Model Error's Parameters.
The loglikelihood function of the two model error pa-

rameters is shown in Figures 5.4 and 5.5. The data for these
figures was obtained by geometrically varying the model error

terms from 10-10 to 10-3
Two important features are immediately distinguished.

First, there is a plateau covering a wide range of the
parameters' values, on which the loglikelihood function is al-
most insensitive to the model error parameters. Second, the
loglikelihood function has a ridge that crosses the maximum
point. The top of the ridge is esentially a horizontal line,
which is parallel to one coordinate axis, for a very large
range of the parameter's values. For some others cases, in
which the parameters used in generating the synthetic data
were different from the current ones, it has been observed
that the plateau is bounded by a ridge on two of its sides.
(Fig. 5.6).

The implications of the above features are the follow-
ing. First, both model error parameters are non identifiable
if the starting point lies on the plateau. Second, if the fi-
nal convergency is on the ridge, the Hessian will be singular.
This implies that one of the most valuable results of the MLPE
technique, the lower bound of the parameters covariance ma-
trix, which is defined as the inverse of the negative Hessian,
can not be obtained.

These problems indicate that an alternative to
estimating these parameters may be the selection of nominal
values for them. How good that alternative is must be judged
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Figure 5.4 Isometric View of the Loglikelihood Function of
the Model Error Parameters.
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Figure 5.5 Contour Lines of the Loglikelihood Function of
the Model Error Parameters.
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Figure 5.6 Contour Lines of the Loglikelihood Function of
the Model Error Parameters with and Edge Around
the Plateau.
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by the effect of the value chosen for the model error terms on
the other parameters estimates.

5.2.3.3 Estimation of the Initial Conditions of the State
Variables.

The computational cost of non linear optimization pro-
cedures grows considerably according to the number of
variables, thus making it desirable to keep the number of pa-
rameters to be estimated at a minimum. With this in mind, one
might be tempted to assume nominal values for the initial con-
ditions of the state variables instead of obtaining maximum
likelihood estimates. The reasoning for this action may be
that in optimal estimation theory, the Kalman filter will be
able to "forget" about the initial conditions, if a large ini-
tial covariance matrix is given, and quickly converge on good
estimates for the state variables. The fallacy of this ap-
proach lies on the fact that when the parameters are unknown,
the estimation is NON optimal and the above property does not
apply. Furthermore, a large initial covariance matrix will
"blame" a large part of the prediction error on the state
variables, rather than on the parameters. This will cause
convergency of the MLPE to parameters' values which are close
to the starting point, and probably, far from the real ones.

A very small initial covariance matrix, on the other
hand, indicates very large confidence on the initial con-
ditions of the state variables. This will make the current
parameter estimates mostly responsible for the prediction
errors, thus increasing the sensitivity of the loglikelihood
function to the parameters. But, if the initial conditions
are not close enough to the real ones, the parameters
estimates will have to compensate for the bad initial con-
ditions in the state variables, thus converging to values
which are far from the real ones.

The consequence of the above arguments is that the
initial conditions for the state variables must form part of
the set of unknown parameters and must be jointly estimated
with the remaining parameters of the model. Now that the need
for estimating the initial conditions of the state variables
as unknown parameters has been justified, we can justify as-
sumption No. 4 at the beginning of the chapter.

Remembering that V is defined as the ratio of
unobserved discharge to observed discharge, including p in the
measuring equation of the base flow model leads to

z(t) = (x 1 (t) + x2 (t))/(1+P) + v(t) (5.27)

or, in matrix notation,

z(t) = H x(t) + v(t) (5.28)
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where H = [m ml
and m = 1/(1+y)

For reasons of clarity, we will base our discussion
below on the lower zone primary reservoir only. Although only
one state variable will be included, the subscripts are kept.
The conclusions will make it evident that the discussion is
valid for the complete model of base flow.

At time t=1 x(1) and z(1) are given respectively by

x 1 (1) A x (0) + W (0) (5.29)

z(1) = m[A1 x 1 (0) + W1 (0)] + v(1) (5.30)

The discharge at t=2 becomes

z(2) = m x1 (0) A 1
2 + m A1 W1 (O) + m W1 (1) + v(2) (5.31)

Taking expected values on both sides of the last two equations
we arrive at

E[z(1)] = m x 1 (0) A1  (5.32)

E[z(2)] = m x1 (0) A 1
2  (5.33)

The variance of the discharges is obtained by
subtracting the expected value from the measurement, squaring
and taking expectations:

a2 1)= m2 Q2 + R2  (5.34)

a2 (2) = m2 2 (A 2 + 1) + R2 (5.35)

Generalizing for t > 2, we can see from Equations
(5.32) and (5.33) that the discharge contains only information
about the product of the parameters m and x1 (0), but not about

the individual parameters. Hence, these parameters can not be
jointly estimated. Similarly, from Equations (5.34) and (5.35)
we see that the variance of the discharges contain information
about the product of m and Q, but not about the individual pa-
rameters. It follows that m and Q are not jointly identi-
fiable.
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The solution to this problem is to fix m, (or equiva-
lently fix v) to some value, and estimate the other parameters
with the awareness that the estimated parameters will be de-
pendent on the value chosen for m. The largest value this pa-
rameter can take is unity, (V = 0), for the case in which all
the groundwater discharge is observed through the channel.
This implies that our estimates for the initial conditions
will actually be lower bounds for these parameters. This was
the criterion followed in this work.

5.2.4 Parameters Observability and Positive Definiteness of
the Observation Matrix.

Earlier in this chapter we examined the observability
of the states of the system when the parameters are known. In
this section we are interested in examining the observability
conditions for the unknown parameters. The discussions of this
section are essential for the development of the algorithm to
automatically identify the time interval of base flow activity
which will be presented later on this chapter.

We say that a parameter 0. is locally observable in

the neighborhood of a point 0 when the first two partial de-

rivatives of the loglikelihood function &() in the direction
of 6., evaluated at 0 do not vanish simultaneously.

Let us assume that we are trying to estimate the pa-
rameters of the base flow model (herein M 2 ) in an interval

that corresponds to primary base flow exclusively. Since the
discharge contains no information regarding the parameters of
the lower zone supplementary reservoir, we would expect that
all the partial derivatives of & with respect to the lower
zone supplementary parameters would be zero under the non
observability conditions presented above. In the way M 2 is

formulated, however, the lower zone reservoirs are constantly
driven by white gaussian noise, which would make them observ-
able all the time, and consequently, the maximum likelihood
parameter estimation procedure always computes non zero
gradients with respect to the parameters of that model. Here
we have, then, an apparent contradiction. We tell the model
that the parameters are observable but we know that the dis-
charge contains no information about the parameters of the
supplementary reservoir for part of the data. This apparent
contradiction is solved by the maximum likelihood parameter
estimation by driving the coefficient of the supplemental res-
ervoir, d ", to zero. At that point, the first and second

partial derivatives of the loglikelihood with respect to x (0),

(the initial condition), will be zero, since that parameter
will have no effect on the likelihood function. This will
cause the information matrix of M 2 to be non positive defi-

nite, making non positive definiteness a necessary but not
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sufficient condition for non-informativeness. It is not a
sufficient condition since convergence to a non optimum point,
such as a saddle point, will cause the same non positive defi-
niteness.

5.2.5. Model Validation.

5.2.5.1 Selected Data.
A dry period covering the months of July, 1957 and Au-

gust, 1957 for the Bird Creek basin was selected to test the
model under real conditions. The discharge during that period
is shown on Figure 5.7.

Since there is an interval in which the
semilogarithmic plot of the discharge can be approximated by
two straight lines, "a" and "b" in Figure 5.7, it may be
assumed that the discharge in that interval is indeed due to
base flow. The slopes of these lines are estimates of the
system dynamics parameters, A1 and A from which the

coefficients of discharge of the linear reservoirs, d ' and

di", respectively, can be calculated with Equations (5.13) and

(5.14). The values for d ' and d " thus calculated are

presented on Table 5.1, together with the values for the same
parameters calibrated by the National Weather Service staff,
and with the results obtained with the WLS and MLPE
techniques.

5.2.5.2 Weighted Least Squares.
The WLS procedure defined by Equation (5.26) was

performed with real data. The predicted values were calculat-
ed by means of a deterministic model which is described by
Equations (5.15) to (5.20), when the model error parameters
are set equal to zero. The discharges predicted with the de-
terministic model with the parameters estimated by WLS, are
compared to the measured ones in Figure 5.8

5.2.5.3 Maximum Likelihood Estimation.
The parameters estimates and the corresponding

coefficients of variation obtained with the MLPE procedure are
presented in Table 5.1. The correlation matrix, and the seri-
al correlation of the residuals are included in Table 5.2.
Figure 5.9 shows the predicted and the measured discharges, in
which the parameters estimated by MLPE have been used.

The lower bounds on the error for the parameter
estimates (Table 5.1) are under 15% of the parameter values.
The correlations among the parameter estimates are also small.
Both results indicate that good estimates of the parameters
were obtained. Comparing the parameter estimates by the dif-
ferent procedures we see that the estimates of d 1 ' given by

the NWS, the visual fitting performed by the author and that
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Figure 5.7 Semilogarithmic Plot of Bird Creek Discharges
for July and August 1957.
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Figure 5.8 Six-Hour Lead Forecast of Bird Creek Discharges
Using a Deterministic Base Flow Model With Pa-
rameters Estimated by WLS.

89



Parameter NWS

d ' 0.013 0.013 0.014 0.020 0.12

d " 0.126 0.338 0.390 0.550 0.06

Xj(O) - - 5.35 6.04 0.06

X 2 (0) - - 6.89 7.00 0.05

Q - - - 1.96x10-3 0.15

R - - - 1.79x10-4 0.13

Note:

NWS: National Weather Service

WLS: Weighted Least Squares

ML: Maximum Likelihood

CV: Coefficient of Variation

Table 5.1 Parameter Estimates by Different Procedures
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Correlation Matrix

d1" X (0) X 2 (0)

1 ,

-0.11

0.02

-0.01

S Y M M E T R I C

1

0.03

-0.03

1

-0.13

Serial Correlation Coefficients

Lag 0 1 2

p 1.01 -0.05 0.03

r 0.04 -0.54 0.30

Sum of Squar

Number of Data Points:

Number of Parameters:

Expected Sum of Squares:

Standard Deviation:

Computed Sum of Squares:

Deviation (Units of S. Dev):

Durbin and Watson Statistic:

of the Normalized Residuals

3 4

0.00 0.34

0.03 3.72

es Test

117

6

111

14.9

116.54

0.37

1.022

Table 5.2 Maximum Likelihood Post Optimality Analysis.
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xi(0)
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R

0.41

0.37
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0.54
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0.54
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Figure 5.9 Six-Hour Lead Forecast of Bird Creek Discharges
using a Stochastic Base-Flow Model with Parame-
ters Estimated by ML.
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obtained by WLS are essentially identical, while differing
considerably from the MLPE estimate. This can be explained
because a visual fitting is an approximated least squares.
(The person performing the fitting tries to minimize the
deviations between the predicted and the observed discharges).
The method of maximum likelihood includes, in addition to the
sum of the squares, the bias term of the likelihood function.
We should not expect parameter estimates obtained from differ-
ent estimation criteria to be identical. A wider range of
values was obtained for the estimates of d ", with the

smallest value given by the NWS, and the highest given by
MLPE. This wide range of values for that parameter would make
us think that that parameter would not be highly observable.
But paradoxically, the coefficient of variation in the maximum
likelihood estimate of this parameter is only 6%.

The quality of the point of convergency for the maxi-
mum likelihood estimates can be judged by the comparison be-
tween the calculated sum of squares of the normalized
residuals and its expected value and by the degree of indepen-
dence of the residuals. The results indicate that the calcu-
lated sum of squares of the normalized residual is only 0.37
units of standard deviation from its expected value. This
indicates that the point of convergency is very close to the
ML point. The estimates of the serial correlation
coefficients of the normalized residuals are excellent, with
the exception of p(4), which is 3.7 units of standard devi-
ation off its expected value. The reason for this is that Bird
Creek's discharge records are good, except during low flows,
(i. e. during the period of base flow activity) in which the
instantaneous discharges are manually estimated from the daily
average. This is done by letting the instantaneous discharge
be equal to the daily average instantaneous discharge. Since
we have four "measurements" per day, the first two measure-
ments are, on the average, under estimated, and the last two
measurements are, also on the average, over estimated. (Figure
5.10) This introduces an error with a periodicity of four time
steps (24 h) which is the cause of the very high p(4). The
Durbin and Watson statistic gives another measure of the inde-
pendence of the residuals. A value of that statistic in the
neighborhood of 2 would indicate a good degree of indepen-
dence. The value of 1.022 indicates that the residuals are not
independent. The problem, again, is blamed on the reconstruc-
tion of the instantaneous discharge from the daily average.

Up to this point we have shown how the maximum likeli-
hood parameter estimation procedure performs when estimating
the parameters of the base flow model in an interval of base
flow. A question we-would like to address now is how the pro-
cedure performs when estimating the parameters of the base
flow model in an interval which is not a base flow interval.
To answer this question we applied the maximum likelihood
estimation procedure to estimate the parameters of the base
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Figure 5.10 Error Introduced in the Discharge Measurements
by Estimating the Instantaneous Discharges from
Daily Averages
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flow model in an interval that "looks like" an interval of
base flow (Figure 5.11). Notice the two straight lines which
fit the data reasonably well. Table 5.3 presents the parameter
estimates by visual fitting, weighted least squares and maxi-
mum likelihood. All of these estimates are reasonably close,
and the parameter estimates obtained from WLS and MLPE repro-
duce the discharges in a reasonable way. (Figures 5.12 and
5.13). The comparison between the computed sum of squares and
its expected value, Table 5.4, indicates that point of
convergency was close to the maximum likelihood point. The
analysis of the normalized residuals indicates, however, that
the residuals are highly correlated at lags 1 through 4 an in-
dication that the filter is performing poorly. This result
makes it clear that even though the discharge looks like being
due to base flow, and that the models are able to reproduce
the discharge reasonably well, that period is probably not an
interval of base flow.

5.3. A Stochastic One-linear-Reservoir Model, M .
We will call M a sub-model of the stochastic model of

base flow, in which only the lower zone primary reservoir is
active. The discussion included in the previous sections re-
garding the observability of the model noise parameters still
applies.

The Stochastic One Linear Reservoir Model is defined
by the state-space equation:

xl(t+1) = Ajxj(t) + W1 (t) (5.36)

with a measuring equation defined by:

z(t) = x1 (t) + v(t) (5.37)

where:
xl(t): Discharge at time t

A1: Unknown reservoir's parameter

xl(O): Unknown initial condition

W1(t): Discrete-time white gaussian noise

z(t): Observations at time t

v(t): Discrete-time white gaussian noise

The statistics of the white noise are:

E[W 1(t)] = 0
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Figure 5.11 Semilogarithmic Plot of Bird Creek Discharges
During a Non-Base-Flow Interval.



Visual WLS

A1  0.99 0.992 0.973 0.011

A2  0.88 0.811 0.822 0.005

X1 (O) - 0.239 0.165 0.170

X2 (0) - 0.709 6.530 0.029

R - - 0.002 0.109

Note:

WLS: Weighted Least Squares

ML: Maximum Likelihood

CV: Coefficient of Variation

Table 5.3 Parameter Estimates by Different Procedures.

Non Base Flow Interval.
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Correlation Matrix

A
1

A
2

X, (0)

x2(0)

R

A
1

1.0

-0.41

-0.31

0.40

-0.15

A 2 X 1 (0)

1.0

-0.30

-0.67

-0.01

1.0

-0.07

-0.23

x2(0)

1.0

-0.08

R

1.0

Serial Correlation Coefficients of the Normalized Residuals

Lag 0 1 2 3 4

p 1.04 0.42 -0.31 -0.14 0.22

r 0.30 4.14 -3.05 -1.42 2.15

Sum of Squares Test

Number of Data Points:

Number of Parameters:

Expected Sum of Squares:

Standard Deviation:

Computed Sum of Squares:

Deviation (Units of S. Dev):

96

5

91

13.5

99.1

0.6

Table 5.4 Maximum Likelihood Post Optimality Analysis.

Non Base Flow Interval.
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E[W1 2 t)] = Q
E[v(t)] = 0

2 2 2
E[v (t)] = z (t) R
E[v(t)W1 (t)]= 0

where:
R: Unknown parameter

Unknown parameter

This model will play a role in the identification of
the interval of base flow activity to be discussed next.

5.4. Description of the Algorithm for Identification of the
Time Interval of Base Flow Activity.

The identification of the time interval of base flow
activity is done by means of an iterative procedure which
examines the records through a "window" of varying length, L .w
The window has an initial length, I Lw defined by the user,

which is increased by a number of DLw data points at every it-

eration. The window is set such that the last value in the
window corresponds to the smallest discharge in a particular
year. (See Figure 5.14). The rationale behind this is that
if in a given year there is a time interval of base flow ac-
tivity, the lowest discharge should be at, or close to, the
end of that interval.

Two shortcomings of that approach are clear. First, it
is possible that due to large errors in the discharge measure-
ments, the smallest discharge in a year and hence the position
of the end of the window, may fall in an area in which the
base flow is not the dominant feature. Second, if more than
one possible base flow intervals are present in a year the
algorithm will identify only that one wich has the smallest
discharge. This problem may be solved by dividing the data
into several parts, each containing only one "suspected" in-
terval of base flow.

At every iteration, the algorithm employs two stoc-
hastic models, M and M as defined in Sections 5.3 and 5.2

respectively. M is the stochastic one linear reservoir model

and M2 is the stochastic model of base flow. The testing of

two alternate models is required because towards the end of
the base flow activity only the lower zone primary reservoir
is active. The discharge then contains no information about
the lower zone supplementary reservoir parameters, thus making
imposible the successful identification of the supplementary
reservoir's parameters. (The detailed description of the be-
havior of the model under the non-observability of the supple-
mentary reservoir's parameters was explained in Section 5.2).
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Therefore, in a particular iteration, the successful identifi-
cation of the parameters of a one linear reservoir model
combined with the unsuccessful identification of the parame-
ters of the two reservoir model, indicates that the window is,
at that particular iteration placed over the final part of the
interval of base flow activity.

At every iteration, the models are tested according to
three rules . There are three possible outcomes from these
tests: 1) M1 and M 2 are rejected; 2) M1 is accepted and M2 is

rejected; and 3) M is rejected, and M 2 is accepted. Upon ex-

amination of the results, once the maximum number of itera-
tions has been completed, the time interval of base flow ac-
tivity will be defined as the one corresponding to the largest
window for which M2 was accepted. A flow diagram of the algo-

rithm is shown in.Figure 5.15.

5.4.1. Tests for Model Acceptance or Rejection.
Test No. 1. is based on the positive definiteness of

the information matrix. If a model has a non-positive definite
information matrix the model is rejected. The conditions under
which a non-positive definite Information matrix may arise
were discussed in Section 5.2.

Test No. 2. is based in the evaluation of the like-
lihood of both models. It is used to decide between M or M1 2
in a given window, in case that both models have passsed test

No. 1. Let ( be the loglikelihood of model "i" at its op-

timum value, for i=1,2. Then the model rejected is the one

with the smallest .

The last test, No. 3, looks at the normalized serial
correlation coefficients of the residuals, which were defined
in Chapter 3. The normalized serial correlation coefficients
of the residuals measure the number of standard deviations at
which the estimated correlations are from their theoretical
values. In this form, these statistics are an indicator of
the performance of the stochastic model. To apply this test,
the user specifies a threshold value for the normalized corre-
lation coefficients, Tr' and a maximum number, Nr' of these

coefficients that he would allow to go beyond that threshold
without rejecting the model. As an illustration, assume that
T = 4.0 units of standard deviation and Nr = 2 have been cho-

sen, and that the following normalized serial correlation
coefficients have been obtained:

r(0) r(l) r(2) r(3) r(4)
No. 1 4.2 5.1 4.1 1.3 0.8
No. 2 2.1 1.2 1.5 0.9 0.7
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In series No. 1, the model will be rejected, since three
coefficients exceeded the threshold of 4.0, while the model
corresponding to series No. 2 will be accepted.

5.5. Examples of Applications of the Algorithm.

5.5.1 Application to Bird Creek, near Sperry, Oklahoma.
As was already explained in Section 5.2.5.3 the data

available for Bird Creek consisted of "Best Estimate Instanta-
neous Discharge", QINE, in the NWSRFS convention for series'
denominations. That series is formed by the observed instan-
taneous discharges during the high flows, while the instanta-
neous discharges during the low flow periods are estimated
from their average daily values. This causes very high lag-4
correlation coefficients. With this in mind, we decided not
to include the lag-4 correlation coefficient in test No. 3.
The threshold for rejection of the models in this test, Tr'

was set at 1.5 standard deviations. A summary of the results
of applying the proposed procedure to Bird Creek are presented
in Table 5.5. The different variables that appear in that ta-
ble are: Iteration No. (It ' the model (M), the window's

length at each iteration (L ), the number of non positive

eigenvalues in the Hessian (N ), the loglikelihood function

(4), the normalized correlation coefficients (r(O) through
r(4)), the model accepted at the end of each iteration, and
the final decision. To reduce the computational costs, the
estimation of parameters for each interval is divided into two
stages. In the first stage, a weighted least squares estimate
of the model dynamics parameters and initial conditions is
obtained. If all these parameters are in the feasible region,
a maximum likelihood estimate of these parameters and the er-
ror terms are obtained in a second stage. Since the weighted
least squares procedure uses a deterministic model, its use is
considerably less expensive than trying to use maximum likeli-
hood in a single stage. When some of the parameters converge
to zero in the WLS stage, the maximum likelihood estimation is
not performed and the values of -& and r(O)... r(4) do not ap-
pear in Table 5.5.

The data chosen for the testing of the algorithm was
the same data which was used for the validation of the stoc-
hastic model of base flow. The selected interval covered the
months of July and August, 1957. A plot of the discharges was
reproduced in Figure 5.7.

The analysis of the results in Table 5.5 show how the
algorithm performs. From iteration 1 through iteration 8, M 2
is rejected by Test No. 1, while M, passes Tests Nos. 1 and

3. (Test No. 2 is applied only when both M and M2 pass Test

No. 1). After iteration 9, both models pass Test No. 1.
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Ic M Lw

*1 1 50
2 50

2 1 55
2 55

3 1 60
2 60

4 1 65
2 65

5 1 70
2 70

6 1 75
2 75

7 1
2

80
80

8 1 85
2 85

9 1 90
2 90

10 1 95
2 95

11 1 100
2 100

12 1 105
2 105

13 1 110
2 110

14 1 115
2 115

15 1 120
2 120

16 1 125
2 125

r(0) r(1) r(2) r(3)

66.0 0.01 -0.09 -1.03 1.00

74.0 -0.03 -0.05 -1.08 0.99

80.4 0.05 0.11 -1.16 0.85

89.1 -0.02 0.08 -1.17 0.91

82.3 -0.04 0.39 -0.35 -0.11

82.5 -0.02 -0.45 -0.15 -0.12

89.5 -0.02 -0.48 -0.20 -0.19

94.1 -0.03 -0.46 -0.16 -0.06

95.3 -0.08 -0.28 -0.10 0.15
101.9 -0.02 -0.48 -0.39 -0.18

96.6 -0.04 -0.27 0.16 0.33
108.1 -0.14 -0.66 -0.64 -0.28

101.0 0.01 -0.31 0.36 0.57
110.7 -0.11 -0.21 -0.29 -0.20

102.3 -0.03 -0.27 0.59 0.69
117.6 -0.07 -0.21 -0.31 -0.15

105.3 0.03 -0.28 0.70 0.86
123.0 -0.04 -0.34 -0.46 -0.16

82.6 0.78 0.09 3.54 1.28
118.0 -0.09 -0.17 0.35 0.00

32.8 -0.81 0.25 2.36 0.65
121.8 -0.06 -0.58 0.26 -0.04

-77.5 -0.06 7.42 5.24 3.41
63.6 -0.22 3.13 2.97 1.37

17 1 130 -170.2 0.05 9.99 7.73 5.37

r(4) nl.

1.86 0
2

1.80 0
2

1.25 0
2

1.43 0
2

0.71 0
2

2.63 0
2

2.79 0
1

3.15 0
2

3.42 0
3.14 0

3.96 0
3.27 0

4.17 0
3.07 0

4.29 0
3.19 0

4.76 0
3.37 1

5.30 0
3.41 0

1.93 1
3.70 0

2.87 0
3.14 0

3.20 0
2 130 -52.0 -0.02 4.86 2.08 0.66 -1.06 1

Table 5.5 Summary of the Algorithm's Results for Bird Creek.
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Test No. 2 indicates that M should be rejected, since

- > 2 and M2 passed test No. 3. After iteration 16 both

models are rejected. Notice however that at iteration 13 M2
has a non positive definite Hessian and it is rejected. The
analysis of the Hessian revealed that the negative eigenvalue
is almost zero. This may indicate that the non possitive def-
initeness of the Hessian may be due to numerical inaccuracies
rather than to convergency to a non optimal point. This con-
clusion is supported by the fact that the parameter estimates
in iteration 13 are quite close to the estimates in iterations
12 and 14. Therefore, according to our definition, the time
interval for base flow activity, is the one covered by itera-
tion No. 15.

We have included in Figure 5.16 the values of the pa-
rameter estimates for different iterations. Notice that the
model error term (Q1 1 ) remains essentially constant for itera-

tions 9 through 13, after which it increases by a factor of 2.
Notice also that the standard deviations of the model
dynamics' parameters decrease to a minimum at iteration 12.
Moreover, the parameter estimates at iterations 11 through 13
were considerably closer to the NWS estimates of the same pa-
rameters than the maximum likelihood estimates at iterations
14 and 15. If we combine all these factors, we could establish
an alternate definition of the interval of base flow as the
interval before the model error starts to increase signifi-
cantly. This behavior must be corroborated by analyzing dif-
ferent basins. However, in the application to the Cohocton
River, presented in the next section, M2 was accepted only at

one iteration. Further research is required before an alter-
nate definition is adopted.

5.5.2 Application to Cohocton River, near Campbell, NY.
This river is the only river avilable to us for which

measured instantaneous discharge (QIN) is available for both
high and low flows. Part of the river discharge is sometimes
diverted for hydropower production. (The volumes of daily
diversions are tabulated as USGS station 01528700). Since
this diversion may seriously affect the estimation of the pa-
rameters of the base flow, we were restricted to work with a
year for which there was no diversion during the low flows.
Accordingly, a period covering the months of August, 1970
through October, 1970, was selected. The corresponding
discharges are shown in Figure 5.17. A summary of the results
at every iteration is shown in Table 5.6.

An analysis of the results in Table 5.6 shows that both models
were rejected for the first 4 iterations. M 1 was accepted in

iteration No. 5, and M2 was accepted in iteration No. 6.
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Ic M Lw , r(0) r(1) r(2) r(3) r(4)

14
14

24
24

34
34

12.7 0.04 -0.23
12.4 0.10 -0.21

12.5 -0.08 1.69
12.0 -0.09 1.75

-2.09
-2.05

0.22 1.78 1
0.29 1.83 1

-0.50 -1.37 -0.45
-0.40 -1.30 -0.45

18.5 0.02 0.21 -1.65 -0.90

1
1

1.11 1
2

4 1 44 19.2 -0.12 3.94 1.80 0.89 0.39
2 44

54
54

64
64

34.0 -0.04 -0.15 -1.61 -0.48
35.3 -0.01 -0.14 -1.40 -0.47

29.4 0.06
31.8 -0.05

1.35 -2
1.50 -2

.02 -0.77

.23 -1.42

1
1

0.49 0
0.43 2

1.17 0
0.22 0

Table 5.6 Summary of the Algorithm's Results for the
Cohocton River
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The base flow activity corresponds to the period covered by
iteration No. 6, according to the definition proposed earlier
in this chapter.

5.6. Conclusions.
This chapter has presented an algorithm for automati-

cally identifying the time interval of base flow activity.
This algorithm was based on the maximum likelihood estimation
of the parameters of the stochastic model of base flow, also
presented in this chapter. Two applications of the algorithm
were successfully carried out, which demonstrated the feasi-
bility of this approach. The parameters determined from the
application of this algorithm will be used to form the prior
likelihood to be used in the global optimization program,
according to the scheme presented in Chapter 3.

A discussion on the characteristics of the loglikeli-
hood function was included and served.to justify the choice of
nominal values for the model error parameters.

The results showed that the visual, WLS and MLPE ap-
proaches yielded comparable parameters estimates. The advan-
tage of MLPE is in providing independent measures of the qual-
ity of the parameter estimates.
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CHAPTER 6

APPLICATION OF MAXIMUM LIKELIHOOD PARAMETER ESTIMATION TO THE
SIMPLIFIED RAINFALL-RUNOFF MODEL

6.1. Introduction.
The implementation of the stochastic parameter esti-

mation procedure, which was outlined in Chapter 1, included
the development of a simplified rainfall-runoff model as an
inexpensive way to research the features of estimating the pa-
rameters of conceptual rainfall-runoff models. This chapter
is dedicated to the discussion of those results.

The results presented in this chapter are divided into
two categories:
1. special features and problems of the estimation procedure;

and
2. evaluation of the performance of the parameter estimation

technique.

The identification of special features and problems of
the estimation procedure must be done in a systematic way.
This was done by dividing the model parameters into three
classes and studying the features corresponding to each class
of parameters and to combinations of several classes. These
classes are:

1. parameters of the soil moisture accounting model.
2. initial conditions for the state variables.
3. model error and measurement error parameters.

Since this stage of the research was dedicated to ex-
plore the characteristics of maximum likelihood estimation in
conceptual rainfall runoff models, it was important to perform
the experiments, or test runs, under controlled conditions.
This was achieved by generating a synthetic series of
discharges from the precipitation and evapotranspiration input
to a real catchment. In this form it was possible to study
the performance of the estimation procedure under ideal con-
ditions, since the real parameters of the model were known.
Although a very large number of computer runs were made, it
would be pointless to describe each one of these runs in de-
tail since many of the results showed similar features. In-
stead, we are going to cover the major problems and features
found in the application of the maximum likelihood procedure.

6.2 Problems Found.

6.2.1 Discontinuity in the Loglikelihood Function.
The builders of the model devised a variable time step

integration scheme that insures high accuracy results. The
integeration step is dependent on the amount of percolation
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between the upper and the lower zones. For periods of time in
which there is no percolation'(or very little), and there is
no surface runoff (controlled by the upper zone free water
content, x2 ), the time step is kept as 0.25 days, which is al-

so the time between observations. When there is percolation
the time interval is subdivided into NINC subintervals, each
with a duration of DT=0.25/NINC days. NINC was arbitrarily
chosen as the highest integer resulting from dividing x2 plus

the precipitation that becomes infiltrated by 5.00. This es-
sentially limits major transfers of water to 5.0 mm or less
during each time step.

This scheme works very well in normal runs, without
estimation of parameters. But when parameters are being esti-
mated, the following situation may arise. Let us take for ex-
ample the case of estimating du' the constant for the linear

reservoir in the upper zone free water element, which deter-
mines the interflow. For some value of that parameter, 01,

assume that at some time step x2 is sligthly larger than 5.0

mm, and, for simplicity, there is no precipitation. This sit-
uation will result in NINC=2, which yields DT = 0.125 day. As-
sume the loglikelihood then takes the value 4 . Continuing

with the linear search, a new parameter value 02 is tried. It

may then happen that x2 is now slightly less than 5.0 mm,

leading to NINC=1, and DT = 0.25 days. With a larger time
step, the integration is less accurate, the residual will be
larger, and (2)<t(8). An actual occurence of this phenome-

non is presented in Figure 6.1. A non linear optimization
procedure, with a step size in the linear search not large
enough to "jump" over the discontinuity, would converge to the
peak of the discontinuity.

Although the example was done with one parameter, in
fact several parameters affect the content of the upper zone
free water element, thus causing ridge-like discontinuities in
the loglikelihood function which may prevent the achievement
of global optimality and will cause high correlations among
the estimates of the parameters involved. An "artistic con-
ception" of this situation is visualized in Figure 6.2. This
figure shows a hypothetical loglikelihood function of any two
parameters which affect the content of x2 . The global optimum,

( may not be achieved if the search follows the dashed line
in that figure. In this case, the discontinuity "traps" the
search path and forces convergericy to the point (', far from

*
the global optimum .

It is interesting to notice that the occurence of
ridges in the objective function of parameter estimation pro-
cedures has been reported in the literature. In particular,
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eO,

Figure 6.2 Conceptualization of a Ridge-like Discontinuity
in the Loglikelihood Function of Two Parame-
ters.
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Soorooshian (1981), working with a small set of parameters of
the NWSRFS model has reported the-presence of these ridges
when using maximum likelihood, as well as weighted least
squares criteria. However, we can not claim that the variable
time integration scheme is the only cause of the ridges. These
ridges will also be caused by parameters' interdependency, as
will be seen in the next section.

The solution to this problem is a rather simple one.
We recognize the fact that, due to the non-linearities in-
volved in the simulation of the soil moisture by the NWSRFS
model when the percolation is active, a small time step is
required to keep an accurate track of the process. On the
other hand, the choice of a small, constant, time integration
scheme would be wasteful in those periods in which the non-li-
nearities are not so acute. Therefore, it is necessary to
choose a scheme which allows for variation of the time incre-
ment according to the non-linearity of the process, yet inde-
pendent of the parameters of the model. A very simple solu-
tion is to make NINC to be dependent on the precipitation in
the last nt hours, in which nt should be specified by the us-

er. In this form, we still have an indirect influence of the
amount of percolating water on the selection of the time in-
terval for integration.

6.2.2 Parameter Interaction.
In studying the characteristics of the joint identifi-

cation of some of the soil system parameters and some of the
initial conditions for the state variables we detected a case
of parameters interaction, also known as parameters interde-
pendency. The set of parameters that was used is shown in Ta-
ble 6.1. That table gives the real value for the first three
parameters. The real values for x 1 (0) and x2 (0), which were

synthetically generated, were not recorded. The same table
shows the initial value of the parameters, and the value at
which the parameter estimation procedure converged. Also shown
is the value of the initial covariance matrix of the state
variables, P . The term 6.. is the Kronecker's delta, and

0 .. 13
1J 1

indicates that the initial covariance matrix was chosen as a
diagonal matrix with the elements in the main diagonal equal
to 10.0. This value corresponds to a coefficient of variation
of the initial state variables of the order of 10%, which
indicates a high certainty on the value of the initial state
variables. This is important in the context of estimating the
initial conditions of the state variables, as discussed in the
previous chapter. The results can be qualified as very satis-
factory, according to the closeness of the parameter
estimates from their real values, and also according to the
post optimality tests discussed in previous chapters which are
shown in Table 6.2. The coefficients of variation calculated
by the program, are, with the exception of the coefficient of
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Final Value C.V. (%)

x10 120.0 100.0 143.6 8.0

x20 15.0 10.0 15.2 2.2

d 0.3 0.5 0.27 3.8
u

x1 (0) - 50.0 90.1 8.6

x2 (0) - 2.0 1.1 107.0

= 10 6..

Table 6.1 Maximum Likelihood Estimates for Five Parameters

With Synthetic Data. Simplified Model.
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0 0

1

0.41

-0.13

0.97

-0.01

1

-0.60

0.47

0

Correlation Matrix

d u x 1 (0) x2 (0)

SYMMETRIC

1

-0.20

-0.01

1

-0.01 1

Serial Correlatic

Lag 0

p 1.01

r 0.08

n Coefficients of

1 2

-0.07 0.02

-1.06 0.30

the Normalized Residuals

3 4

0.01 -0.02

0.20 -0.35

Sum of Squares Test

Number of Data Points: 200

Number of Parameters: 5

Expected Sum of Squares: 195

Standard Deviation: 19.8

Computed Sum of Squares: 201.5

Deviation (Units of S. Dev): 0.33

Table 6.2 Post Optimality Results. Five Parameters,

Synthetic Data.
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variation of the estimate of x2 (0), very low. The final esti-

mate for x1 0, however, is about 20% higher than the real value

of the parameter. This contrasts sharply with the lower esti-
mate of the error of estimation of 8% given by the coefficient
of variation. This problem is related to parameters' interac-
tion as will be discussed below. The high coefficient of vari-
ation of the estimate of x2 (0) means that little information

about this parameter was available in the data. This is due to
the very fast varying nature of x2 ' which makes the system

quite insensitive to its initial condition.
The calculated sum of squares is only 0.33 standard

deviations from its theoretical value, which indicates that
the point of convergency is very close to the true optimum.
The same conclusion is supported by the computed correlogram
and the normalized correlogram.

The outstanding feature of the results of that table
is the very high correlation (.97) between the estimates of

x 1 and xl(0), which are the "S" curve parameter for the upper

zone tension water content and the initial condition for the
same storage element. This high correlation implies that the
information about both parameters is such that

xl(0) = k.xl1  (6.1)

in which k is a proportionality constant. This interdependen-
cy between parameters causes a ridge in the loglikelihood
function. This ridge "traps" the direction of search in the
non-linear optimization process, which decreases the efficien-
cy of gradient-based optimization procedures. We can visualize
the location of this ridge in Figure (6.3). In that figure,
the numbers on the line correspond to the iteration's number,
and the position corresponds to the values the parameters had
at the end of each linear search. After the sixth iteration
all subsequent values of the parameters lie close to a
straight line which is the location of the ridge.

The interaction between parameters not only adds cost
to the optimization process but it is also an indication of
overparameterization (one parameter is functionally dependent
on the other), which prevents the.simultaneous identification
of both parameters (i. e., the product of both parameters, or
the ratio between the parameters is identifiable, but not the
individual parameters). It is important, then, to determine
the cause of this interdependency. Several other runs were
made to investigate the correlation between the above
mentioned parameters. Although the detailed results will not
be discussed here, it was shown that the correlation persisted
even with 1): the inclusion of additional measurements,
(T=400), and 2) starting from points far from the ridge.
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As mentioned earlier in this chapter, the testing of
the parameter estimation procedure on the simplified model was
done with synthetically generated streamflows. This made it
possible to examine the state variables from which the
streamflows were -generated. This analysis revealed that the
upper zone tension water content is a very slowly varying ele-
ment. Figure 6.4 presents the S curve, in which w 1 is the

normalized water, content. We can distinguish three zones in
which the curve has been divided. These zones correspond to
the dry, intermediate and wet regions. To understand the me-
chanics of the S curve, we are going to examine, separately,

the processes of filling and depleting. In filling: when
O<w <a, the element is very dry, S =0, and most of the incom-

ing water will be directed to the upper zone tension water el-
ement, which will.make w 1 to approach rapidly the intermediate

zone, B. For w 1 >b, the opposite is true: S 11, and most of

the incoming water will be diverted to the free water element,
thus making w to remain close to b. In drying, the evapo-

ration part of the model is also controlled by the S curve.
For w 1 >b, S1 =1, and the evaporation will be high, thus making

w to approach the intermediate zone. For a<w 1 <b the value of

S decreases rapidly and so does the evaporation from that el-

ement. The net effect of both filling and drying is that w

tends to remain in the intermediate region. Figure 6.5

presents the variation of the synthetically generated x 1 vs.

time. The two horizontal lines represent the limits of the
corresponding intermediate region of the "S " curve, and the

letters A, B, ands C identify the corresponding regions in
Figure 6.4. The two points to and t1 delimit the ends of the

interval that was used for estimating the parameters of the
simplified model. Studying that interval, (t0 <t<t1 ), it is

clear that the state variable at any time step, x 1 (t), is

highly correlated with the initial condition for the state,

x 1 (t0) in that interval. In other words, letting

x 1 (t) = x 1 (t0 ) t>O (6.2)

would not make much of a difference in the simulated

discharges. Now, in the model, x1 0 and xl(t) appear only as

the ratio x 1 (t)/x 1 in the S curve. By using Equation (6.2)
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in the previous ratio it follows that the ratio x 1 (t0 )/x1

and not the individual parameters are identifiable. The value
of that ratio corresponds to the constant k in equation (6.1).

Based on the above scenario, we assume that the use of
the "S" curve, under the current formulation for both filling
and drying of the upper zone tension water element is the
probable cause of the correlation problem. The problem is par-
ticularly acute in the case of simulated discharges. In real
life, however, the problem may be different since the upper
zone of the soil (modeled by the upper zone tension and free
water elements) does become dry. It follows that there is a
defficiency of the model in capturing the behavior of the real
counterpart. This structural error may lead to poor fore-
casting ability, and to biases in the estimates of the parame-
ters.

The solution to the interaction problem could be a
reparameterization of the model by eliminating a redundant pa-
rameter. Since in our case the two parameters involved belong
to different classes of parameters (soil moisture and initial
conditions), this reparameterization would mandate consider-
able changes in the structure of the model, such as changing
the state variable No. 1 from accounting for absolute amount
of water (mm) to relative water content (dimensionless).
Since the problem was found to be caused by the S curve, an-

other solution may be the replacement of the S curves by dif-
ferent functions. The next chapter will present the results
of estimating the parameters of the NWSRFS model. It will be
shown that a different source of correlation between the same
parameters was caused by the non observability of the upper
zone tension water content. It is thus not immediate that a
change of the "S" curves for different functions would solve
the correlation problem.

6.2.3 Estimation of the Variances of the Model Error Terms
Identifying the variances of the model error terms is

one of the most difficult remaining problems to solve. We
showed already in Chapter 5 the problems of estimating the
variances of the noise corresponding to the base flow
elements. This section will address a multiple local optima
situation

We will concentrate our attention on the character-
istics of the loglikelihood functions of the variance of the
error of the last reach of the non linear channel (Q 7 7 ). Fig-

ure 6.6 shows the loglikelihood function of that parameter,
for values ranging from 0.1 to 100. This curve was generated
using synthetic data, while setting all other parameters of
the model at their real values. The presence of three local
optima is a disturbing feature, for which there is not a defi-
nite explanation. For.clarity, these local optima are numbered
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in the figure. The global optimum, Q7 7 = 75 is close to the

real value for this parameter (Q7 7 = 100). The possibility of

convergence to the other optima is complicated by the fact
that the curvature of the loglikelihood function at these
points is very large (notice the logarithmic scale), which
would yield a high information matrix and a very small bound
for the estimation variance of that parameter. This small
estimation variance misleadingly indicates a very high confi-
dence on that estimate.

In an attempt to find a reason for this behavior we
examined the components of the loglikelihood function. For
simplicity we will eliminate the measurements zT and the

remaining parameters from the notation, and we will represent

Q77 by 0.

In Chapter 3 we saw that the the loglikelihood func-
tion without prior information is formed by

2(() = -(O) - b(o) (6.3)

The first order necessary conditions for optimality
state that

d (6.4)

0=0

Using Equation (6.4) into Equation (6.3) we get

d o _ db . (6.5)
dT 0=0 dO 6=8

In the case of convex functions Equation (6.5) will
hold at only one point and we will have a single optimum. Fig-
ure 6.7 shows two local minima in the negative loglikelihood
function which are due to the non convexity of the normalized
sum of squares. The conditions expressed by equation (6.5)
are fulfilled at 0=0 and 0=0 2. To check the convexity of the

components of we made high resolution plots of ( and b. We

found out that while b was a convex increasing function ,
b0

was non convex and has a discontinuity in its first deriva-
tive. A plot of the normalized sum of squares, ( 0), for sev-

eral values of Q is presented in Figure 6.8. The observed

discontinuity in the derivative of the normalized sum of
squares with respect to the parameter is the cause of the
third local optimum in Figure 6.8. Since there is no explicit
calculation in the model of that derivative, the only causes
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for its existance are either numerical inaccuracies or errors
introduced by the Taylor's series expansion of-the non linear
channel. This last explanation is supported by the fact that
the loglikelihood function of the linear channel of the NWSRFS
model, to be presented in the next chapter exhibits a com-
pletely different behavior.

6.3. Results of the Joint Identification of the State
Variables and Parameters of the Soil Moisture Accounting Mod-
el.

In the previous sections we presented three problems
that were isolated during the first stage of the research, two
of which were left unsolved, waiting for additional research
to be done during the last stage of the work, which is covered
in Chapter 7. The first of these two problems was the high

correlation between the estimates of x1 0 and x1 (0), and the

second was the the occurence of multiple optima for the like-
lihood of the model error term. The final experiment
performed with the simplified model consisted of the joint
estimation of the soil system parameters and three initial
conditions. Since the model has seven state variables, there
were four initial conditions that were not estimated: x 1 (0)

(due to the correlation problem), x 5 (0) and the initial con-

tent of the two channel reaches (due to the fact that the very
fast varying nature of the corresponding variables makes the
loglikelihood insensitive to these parameters). In performing
the experiment, the parameters and initial conditions which
were not estimated were set at their real values, those used
in the generation of the synthetic data. The initial values,
real values, estimated values and coefficients of variation of
the parameters which were estimated are shown on Table 6.3

The estimates of the parameters, judged objectively by
the coefficient of variation of the lower bound of the
estimates, and subjectively by the closeness to their real
values, can be judged as good. The calculated sum of squares
of the normalized residuals is, however, more than 2 standard
deviations from its expected value, which indicates that the
parameters estimates can still be improved. This may be due
to the fact that not all the parameters of the model were
estimated, therefore they may not be at their maximum likeli-
hood point. An important observation concerning the accuracy
of the lower bound in the variance of estimation of the pa-
rameters must be made here. The real value for d ' was 0.0113,

whereas the value estimated by the maximum likelihood proce-
dure was 0.029, which is 156% in error, compared with the real
value. The coefficient of variation calculated from the lower
bound in the variance of estimation yielded a very optimistic
2.0%. This clearly indicates that the coefficient of varia-
tion of the estimates should be looked at carefully before
drawing conclusions regarding the quality of the estimates.

129



Param. Real Value

a
2

0
x

0
x 
2

0

xg 3 0
x 

4

0
x 5

X2(0)

x3(0)

x 4(0)

0.001

120.0

15.0

160.0

140.0

14.0

0.3

0.011

0.126

48.0
3.55

Initial Value

0.002

100.0

10.0

120.0

120.0

10.0

0.2

0.02

0.2

20.0
3.0
5.0

90.0

10.0

Final Value- C.V. (%)

0.0015

127.2

13.7

126.2

119.2

13.0

0.32

.0.03

0.149

29.8
4.32
6.39

81.2

11. 1

Serial Correlation Coefficients of the Normalized Residuals

0
0.70

-2.95

1
-0.06
-0.89

2
0.04
0.51

3
-0.03
-0.39

4
0.01
0.16

Sum of Squares Test

Number of Data Points:
Number of Parameters:
Expected Sum of Squares:
Standard Deviation:
Computed Sum of Squares:
Deviation (Units of S. Dev):

200
14

186
19.3

140.9
2.3

Table 6.3 Parameter Estimates and Post Optimality Results for

14 Parameters, Synthetic Data. Simplified Model.
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6.4. Conclusions.
This chapter presented the characteristics of the

estimation of parameters for the simplified rainfall runoff
model. It was shown that one of the causes of ridges in the
objective functions of parameter estimation procedures in
rainfall runoff models is due to a variable time-step integra-
tion scheme. When estimating some of the soil parameters
jointly with the initial conditions for the state variables, a
large correlation between two of the parameters was detected.
The reason for the problem was traced to the use of the con-
tinuous approximation to the threshold elements which is known
in this report as the S curve. We also showed the presence of
multiple optima with respect to one of the parameters of the
model error terms. Finally, we presented the results obtained
with the simultaneous estimation of 14 parameters. From these
results, it is clear that theoretical errors resulting from
the maximum likelihood technique, being only lower bounds, may
tend to be unrealistically low.
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CHAPTER 7

APPLICATION OF MAXIMUM LIKELIHOOD PARAMETER ESTIMATION TO THE
NWSRFS MODEL

7.1. Introduction.
In the previous chapter we examined the performance of

the maximum likelihood parameter estimation procedure under
ideal conditions, since the discharge data used had been syn-
thetically generated from real precipitation and evapotranspi-
ration demand records. In this form, we were certain to com-
ply with two hard-to-meet assumptions of maximum likelihood
estimation. First, there is a set of parameters for which the
model fits the data. Second, the system and measuring errors
were pure white gaussian noise processes. When applying the
maximum likelihood estimation criterion to estimate the pa-
rameters of a model representing a real basin the two con-
ditions above are not strictly met. The one-dimensional,
lumped parameter conceptualization of the physical process of
water movement in the soil certainly violates the first as-
sumption, and, consequently, there is no "real" set of parame-
ters with which we can compare our estimates. The second as-
sumption is also violated very commonly, since pure white
gaussian processes do not exist in nature. We can at best hope
for -a reasonable fascimile.

We can see that while the use of synthetic data is an
important tool in finding some of the features of a parameter
estimation procedure, the real test of such procedure is given
by its use with real data. The object of this chapter is to
describe the characteristics of the maximum likelihood parame-
ter estimation procedure when applied to two basins in the
United States. The basins are the only ones for which in-
stantaneous discharges measured every six hours were avail-
able. These are the same basins in which the model of base
flow was tested (Chapter 5).

This chapter is divided into four major sections. Sec-
tion 7.1 contains the Introduction. Section 7.2 describes the
application of the procedure to estimate the parameters of
Bird Creek. Section 7.3 covers the application of the maximum
likelihood parameter estimation procedure to estimate the pa-
rameters of the Cohocton River. The conclusions are presented
in Section 7.4.

An important factor in parameter estimation is the
cost of the algorithm. The rest of the present section will
give some figures reflecting the cpu usage of the model as
implemented. The procedure was programmed in Fortran IV, on a
Honeywell Level 68/DPS computer, running under the Multics
operating system. In this environment, the computer takes
about 22 seconds of cpu to simulate one month of six-hourly
discharges. This is equivalent to approximately 7 seconds of
cpu on an IBM 370/168, running under os/vsl as the operating
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system. As was seen in Chapter 3, the non linear optimization
algorithm which was implemented requires the calculation of
the gradient of the loglikelihood function, to determine the
direction of search. A calculation of the gradient by central
differences take-s 2n computations of the loglikelihood func-

tion, where n0 is the number of parameters being estimated.

Since each computation of one value of the loglikelihood func-
tion requires the performing of a simulation run, it follows
that the total cost of calculating the gradient is about 4 4 ne
cpu seconds per parameter on the Honeywell 68 computer, or
about 14n seconds on the IBM 370/168 machine. For a simulta-

neous estimation of 20 parameters, this would be translated
into 880 secs. of cpu per month of data on the Honeywell, or
280 secs. of cpu on the IBM. This cost certainly places fi-
nancial constraints on the extent of the data we will examine.
We decided to initially test the procedure with one month of
6-hourly precipitation and discharge values, and to use the
information on the estimation error to decide if additional
data is required.

7.2 Maximum Likelihood Parameter Estimation of the NWSRFS Mod-
el in the Bird Creek Basin.

7.2.1 Introduction and Data Selection.
The characteristics of Bird Creek's records were

described in Chapter 5, where we estimated the parameters of
the base flow. In that chapter, we mentioned that these
records are considered of good quality for high flows, while
the instantaneous discharges for low flows are actually
reconstructed from the average daily flow records. This data
manipulation must be kept in mind when evaluating the results
of this section. In addition to the quality of the records,
the cost of performing the parameter estimation runs is anoth-
er factor in determining the length of the interval of the
records to be used in the estimation. Since the cost criterion
expre'ssed in Section 7.1 restricted us in principle to use on-
ly one month of data, we had to choose a month for which we
believed that all the elements of the model, and hence its pa-
rameters, were going to be active. This lead us to select a
month presenting very high discharges. Simulation runs
performed with the deterministic model and manually calibrated
parameters indicated that the year of 1957 was exceptionally
well simulated by the deterministic model. In particular, the
month of April, 1957 also fulfills the requirement of having
high flows (Figure 7.1). Therefore, this month was initially
selected for the experiments.

We shall compare our results with the parameters
calibrated by the National Weather Service Hydrologic Research
Laboratory (NWSHRL) staff, but three warnings should be given
in advance. First, the model for which these parameters were

133



0
0
0

0

0

0

0

0
~oc~
0

0 0

-T I I

(D

(D

15

Figure 7.1

0 45 60 75 90 105

Time Step
Six-Hour Lead Forecasts of Bird Creek
Discharges by the Deterministic NWSRFS model
with NWS-estimated Parameters, for April 1957.

(Q

E

L

(U
(>30a(JJ

It

0 120
I

3



calibrated was a deterministic model. This implies that the
parameters had the sole responsibility of accounting for the
errors between the forecasted and the measured flows. Second,
the deterministic part of the stochastic model has some
differences with -the original NWSRFS model. These differences
were already described in Chapter 4 of this work. Third,
there is no set of "real" parameters. A good manual calibra-
tion is just a reasonable alternative. This combination of
factors alone will almost guarantee that some of the maximum
likelihood estimated parameters will converge to different
values, even if the same data are used for the calibration.

7.2.2 Parameter Estimation Without Prior Information.
The first results we will present are those

corresponding to the estimation of parameters without the use
of prior information about. In other words, we will carry out
the estimation of parameters by a standard maximum likelihood
procedure. Table 7.1 presents a list of the parameters that
were estimated. The second column presents the value of the
parameters at the beginning of the estimation procedure. This
set of values corresponds to the values which the staff of the
National Weather Service Hydrologic Research Laboratory had
previously calibrated for the same basin. It was felt that,
given the quality of the predictions in the off line simula-
tion (Figure 7.1), the initial value of the parameters should
be reasonably close to the maximum likelihood estimate of the
same parameters. This should result in faster convergency to
the optimum than when starting from arbitrary values. Also
shown in Table 7.1 are the maximum likelihood estimates of the
parameters and the lower bound of the coefficient of variation
of these estimates, obtained with one month of data and with
four months of data. The reader may notice that the initial
conditions of the state variables are not among the estimated
parameters. Although this omission aparently contradicts our
previous assessment of the need of estimating the initial con-
ditions for the state variables jointly with the remaining pa-
rameters, we chose a different approach because the quality of
the predictions of the off line run for the calibration month
indicated to us not only that the parameters should be rela-
tively close to their maximum likelihood estimates, but also
that the initial conditions for the state variables should al-
so be close to their real values. We decided to decrease the
number of parameters to be estimated (and the cost), by set-
ting those initial conditions at the values given by the off
line simulation.

Analizing the results of column (3) in Table 7.1 we
see that for five of the parameters the final values are given
as N. F. (Which stands for Non Feasible). This means that
these parameters converged to zero or tried to become nega-
tive. These parameters are: a2' d ", di', P V. Since the

month chosen for the estimation contains high discharges, it
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Param. NWS
Estim.

(1) (2)

April
Estim.

(3)

109.8

1957
C.V.
(4)

0.02

14.5 13.3

6.36 0.21

NF -

0.79 0.05

48.0 7.33
2.37 25.47

159.2 0.17

0
xl

0
x
2

du

a2a 2a1

0
x
3

0
x
5

0
x
4

dy"

di'

Pf

v1
R

Q 11

3.57
0.17
1.25

0.17
0.15

April-July
Estim.
(5)

122.5

14.7

0.75

0.013

0.14

38.2
1.09

160.0

12.5

140.0

0.08

0.011

0.02

5.17
0.25
1.33

0.0018 1.45

NF: Non Feasible.

Table 7.1 Maximum Likelihood Parameter Estimates Without Prior

Information for the Bird Creek Basin.
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14.0 23.18

140.0 27.63

NF -

NF -

NF -

120.0

15.0

0.3

0.001

0.17

48.0
2.10

160.0

14.0

140.0

0.126

0.013

0.02

3.5

1957
C.V.
(6)

0.09

0.13

0.20

0.68

0.31

1.09
0.66

0.51

2.40

0.61

1.71

1.16

25.21

0.83
0.12
0.14



is not surprising tht the two coefficients of the base flow,

d ' and d " attained non feasible values. Base flow, which is

the most direct source of information about those parameters,
is a very small component of the discharge. While the total

measured discharge reached a peak value of 311 m 3/s, the base

flow is only of the order of m 3/s. More surprising perhaps
is the fact that a2 also attained a non feasible value. This

parameter acts only when there is precipitation, and we would
expect that, in the absence of structural errors, the high
discharges on a humid month would contain a large amount of
information about this parameter. The parameters P and p ac-

tually converged to zero. Strictly speaking this is a feasi-
ble value for these parameters. They were signaled as N. F.
because the convergence to zero may be. related to the values
at which other parameters converged, as we explain in the next
paragraph.

From the remaining parameters, only du and a con-

verged to a value significantly different from the initial
one. The rest of parameters converged to values identical or
close to their initial value. Two explanations are possible.
First, the model is insensitive to these parameters, or, sec-
ond, the initial value did correspond to the maximum likeli-
hood estimate of these parameters. An answer to that question
could be given by the coefficient of variation of the parame-
ter estimates, column (4). A very high coefficient of varia-
tion means that the confidence on the parameter estimate is
very small which implies that the data contained little or no
information about these parameters, and, consequently, the
model is insensitive to these parameters. If the coefficient
of variation is very small, the values of these parameters at
the point of convergency do correspond to their maximum like-
lihood estimates. We will be discussing this further. The
final values for d and a may be due to the model trying to

compensate for the non feasibility of a2 . Both du and a1 play

an active role during high moisture conditions. The values to
which these parameters converged may indicate that the model
is trying to make up for the loss of the additional direct
runoff, which is controlled by a2 ' which converged to zero.

Both parameters converged to very high values when compared
with the manually calibrated ones. These high values, drasti-
cally reduce the role played by the lower zone elements. The
high value for a decreases dramatically the fraction of water

that becomes infiltrated. Of the fraction that becomes
infiltrated, a large part will appear as interflow, due to the
high value of du' thus largely decreasing the amount of water

that percolates to the lower zone. Under these circumstances
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the only active parts of the model are the upper zone elements
and the channel. This caused the lower zone coefficients of
discharge of the linear reservoirs, d 1 ' and d 1 " to be driven

to zero since these parameters are not playing any role. In
the absence of discharge from the lower zone, the other lower
zone parameters become unidentifiable, which means that these
parameters can converge to any value without changing the val-
ue of the loglikelihood. This caused p to converge to zero,

and x 4  and x5 0 to remain unchanged.

Notice also that the value of 6.36 at which d con-
u

verged may be non feasible in some cases. du is defined as

the daily fraction of the upper zone free water element that
goes to the channel as interflow. If the time interval of in-
tegration of the soil. phase equations is 1 day, the maximum
feasible value which d can take would be- 1.0/day. If the

time interval is smaller than one day, 6 hours, for example,
the maximum feasible value for du will be 4.0, or 1/(0.25

day). Therefore, a value of 6.36/day would be feasible for
those cases in which the time interval of integration is
smaller than l./6.36 days, or 3.8 hours. Notice that since we
estimated that parameter using a month with very high flows,
the time interval of integration, which depends on the amount
of precipitation, (Section 6.2.1), is certainly smaller than
0.25 days. Nonetheless, this very high value and the values
at which the other parameters converged indicate that one
month of data do not supply sufficient information for
obtaining meaningful estimates of the parameters in Bird
Creek. A close look at column (4) of Table 7.1 confirms this
conclusion. Some of the coefficients of variation in this col-
umn are "astronomically" high. Some others are reasonably
small, but those correspond to the parameters that converged
to values very different from the values calibrated by the
NWS, which is, at least, suspicious. Based on these findings
an additional estimation run using four months of data which
included a large portion of low flows was made. The months
selected for this run were the months of April through July,
1957, in which a more representative sample of the range of
discharges in Bird Creek is given. The measured discharges in
these months are presented in Figure 7.2. From the results in
columns (5) and (6) of Table 7.1 we can see that not only the
parameter estimates are considerably closer to those of the
NWS but the errors of estimation are within acceptable ranges,
although the parameters related to the lower zone still have
very large errors of estimation. It is important to notice
that all parameters converged to feasible values. Only a2 is

one order of magnitude larger than the value estimated by the
NWS. We hypothesize that the reduced order unit hydrograph
model for the channel may be, in part, responsible for this
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situation. In Figure 7.3 we have included the three state
unit hydrograph used in our version of the NWSRFS model and
the original Bird Creek hydrograph which was used for calibra-
tion of the model by the NWS. Notice that the three state
hydrograph is unable to reproduce the magnitude of the peak of
the original hydrograph. This inherent structural error
causes some of the parameters to converge to values different
from the true ones. (Bras and Restrepo-Posada, 1980). It was
also shown by these authors that the value of convergence of
the parameters depends on the time interval used for the pa-
rameter estimation, in such a form that the parameter
estimates optimize the performance during the interval of pa-
rameter identification, but not in a global sense. In the
NWSRFS model, a2 produces the fastest possible responding out-

put to the precipitation input, since it directs a fraction of
that input directly to the channel as impervious runoff. It
is reasonable to speculate that the model,. trying to compen-
sate for the smaller peak in the prediction of the hydrograph
because of the channel defficiency, tries to direct a larger
part of the input to the channel thus forcing a2 to converge

to a value considerably larger than the previously calibrated
one. Notice also that we have obtained value of 25 to the co-
efficient of variation of P This is a classical example of

non observability about a parameter. This essentially means
that'the model will do as well with any value of Pf during the

calibration period. The reason for this is based in the period
of records chosen for estimating the parameters. A very high
precipitation insures that the lower zone tension water ele-
ment will be at its maximum capacity during a large part of
the time. This implies that all percolating water will go di-
rectly to the lower zone free water elements thus making Pf

unimportant.
The criteria for optimality are included in Table 7.2.

The sum of squares test indicates that the computed sum of
squares is very close to the expected value, which is a good
indicator of the parameters being at the optimum point. The
performance of the filter is analized through the statistics
of the residuals. An optimally performing filter should pro-
duce residuals which are independent. The degree of indepen-
dence of the residuals is measured by two different tests,
already mentioned in Chapter 3. A Durbin and Watson statistic
close to 2.0 indicates that the residuals are uncorrelated. In
our case, a value of 0.8 indicates that the residuals are
highly correlated. This is confirmed by the lag-1 correlation
coefficient, which -at a value of 0.52 is 11.5 standard
deviations from its expected value of 0.0. This type of
suboptimal performance is caused by the presence of structural
errors in the system. These structural errors can be divided
into two categories. First, errors due to parameters that are
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Serial Correlation Coefficients of the Normalized Residuals

Lag 0 1 2 3 4

p 0.90 0.52 0.14 -0.14 -0.26

r -1.51 11.55 3.13 -3.07 -5.66

Sum of Squares Test

Number of Data Points: 488

Number of Parameters: 16

Expected Sum of Squares: 472

Standard Deviation: 31

Computed Sum of Squares: 440

Deviation (Units of S. Dev): 1.0

Durbin and Watson Statistic: 0.8

Table 7.2 Post Optimality Analysis. Parameter Estimates Without

Prior Information, Bird Creek Basin, April-July 1957.
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not at their true value. The errors in this category are
solved by means of the parameter identification procedure. The
second category covers the cases in which there is no set of
parameters that fits the data in a statistical sense. Notice
that even if we disregard the lumped characteristics of the
model, the structural errors we have pointed out in the chan-
nel are sufficient to cause this type of suboptimal perfor-
mance. Two more factors may also be a source of structural
errors. These factors are the modeling of the model error
terms as constant over time, and the assumption of indepen-
dence between the model error terms. The effect of these
factors on maximum likelihood parameter estimation has not yet
been addressed.

7.2.3 Parameter Estimation With Prior Information.
The use of prior information in the maximum likelihood

estimation of parameters requires the.computation of the
extended sum of squares, introduced in Chapter 3 as . The

calculation of this term requires the prior value of the pa-
rameters and the corresponding error of estimation. We
obtained prior estimates for d ' and d " for Bird Creek from

the model validation results presented in Chapter 5. These
values and the corresponding errors of estimation were shown
in Table (5.1). The results of estimating the parameters of
the model by using prior information for the values of d ' and

d " are presented in Table 7.3. For comparison with the previ-

ous results and with the values estimated by the NWSHRL, the
results of estimating the parameters without prior information
are also included. In general, the parameter estimates with
prior information are close to the estimates without prior in-
formation, with few exceptions. In the estimates with prior
information, a2 is even higher than the corresponding estimate

without prior information, but a1 compensates by being

smaller. The major change is in the estimate for d ", which

moves closer to the prior value of that parameter, and away
from the NWS estimate. Another effect of the use of prior in-
formation is the overall reduction in the lower bound of the
estimation error, measured by the coefficient of variation.
The only exception is the estimate of P which now has an in-

finite variance. The optimality measurements are presented in
Table 7.4. There are not significant changes between these
results and the corresponding results for the estimation with-
out prior information.

7.2.4 Verification of the Parameter Estimates for Bird Creek
The results discussed in the previous section showed

that the stochastic model is not performing optimally during
the calibration period. It is important, nevertheless, to ap-
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Param. NWS

(1)

0
xl

0
x
2

d
u
a1

a1

a
0

x
3

0
x
5

0
x 
4

d1 1

Pf

1'
R

Estim.
(2)

120.0

15.0

0.3

0.001

0.17

48.0
2.10

160.0

14.0

140.0

0.126

0.013

0.02

3.5

April-July 1957
(No Prior)

Estim.
(3)

122.5

14.7

0.75

0..013

0.14

38.2
1.09

160.0

12.5

140.0

0.08

0.011

0.02

5.17
0.25
1.33

C.V.
(4)

0.09

0.13

0.20

0.68

0.31

1.09
0.66

0.51

2.40

0.61

1.71

1.16

25.21

0.83
0.12
0.14

April-July
(Prior)

Estim.
(5)

122.5

14.7

0.86

0.02

0.13

38.0
1.14

160.0

12.5

140.0

0.55

0.015

0.0

5.18
0.24
1.35

Table 7.3 Maximum Likelihood Parameter Estimates With Prior

Information for the Bird Creek Basin, April-July 1957.
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1957

C.V.
(6)

0.09

0.13

0.001

0.61

0.29

0.84
0.46

0.50

0.55

0.37

0.45

0.70

0.25
0.12
0.10



Serial Correlation Coefficients of the Normalized Residuals

Lag 0 1 2 3 4

p 0.91 0.55 0.17 -0.12 -0.25

r -1.38 12.11 3.74 -2.59 -5.56

Sum of Squares Test

Number of Data Points: 488

Number of Parameters: 16

Expected Sum of Squares: 472

Standard Deviation: 31

Computed Sum of Squares: 444

Deviation (Units of S. Dev): 0.9

Durbin and Watson Statistic: 0.8

Table 7.4 Post Optimality Analysis. Parameter Estimates With

Prior Information, Bird Creek Basin, April-July 1957.
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ply the model to periods of records which were not used in the
parameter estimation and to compare the performance of the
model with the two sets of parameters, the one manually
calibrated by the National Weather Service, and the other
obtained from the maximum likelihood estimation with prior in-
formation. We selected the water year 1958-1959 which previ-
ous experience showed to be difficult to simulate. Four dif-
ferent simulations were made. The first two series of results
that we are going to show correspond to deterministic
simulations, each one performed with each set of parameters.
We will be referring to these deterministic simulations as
"off line runs". The second series of results correspond to
stochastic simulations in which the linearized Kalman filter
has been used to update the states. These simulations will be
referred to as "on line runs". For shortness, we will call
OFNWS and OFML the off line runs made with the National Weath-
er Service and the maximum likelihood estimated parameters,
respectively. The on line runs will be called ONNWS and ONML.
The input data used for these runs are included in Appendix A.

From the water year 1958-1959 we selected three months
to illustrate the characteristics of the simulations carried
on with the two set of parameters. The general characteristic
of the parameters estimated with maximum likelihood is that,
in the Bird Creek case, the model over predicted the small
hydrographs, predicted well hydrographs in an intermediate
range, and under predicted the large hydrographs. The under
prediction of small hydrographs can be seen in the off line
simulation for the month of February, 1959. The OFNWS run,
Figure 7.4 predicts reasonably well a small hydrograph
starting around the 10th of the month. The discharge predicted
by OFML is much larger, which can also be seen in Figure 7.4.
The on line runs correct the predictions with the final-result
that ONML predicts the peak better than ONNWS. (Figure 7.5).
The simulation of the discharges for the month of March is an
example of an intermediate hydrograph, beginning on the 25th
of the month, which is better predicted by the OFML than by
the OFNWS, (Figure 7.6). Both filtered predictions, Figure
7.7, correct the over prediction of the small hydrograph at
the beginning of the month, with the ONML showing a better
prediction of the rising limb of the final hydrograph, but a
worse prediction of the peak flow than ONNWS. Finally, the
month of July presents a case in which all large hydrographs
are under predicted both by OFNWS and OFML, with the larger
errors being produced by the latter. (Figures 7.8). The ONNWS
run predictions are good regarding the magnitude of the peak,
but are lagging one time step. (Figure 7.9). This lag in the
prediction of the hydrograph is typical of the on line runs
for the complete ye'ar. Notice that the lag essentially
indicates that the model under predicts the rising limb of the
hydrograph, while over predicting the falling limb. If we re-
call the unit hydrograph model, Figure 7.3, we see that the
three state unit hydrograph model does exactly that: the
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Figure 7.4 Six-Hour Lead Off-Line Forecasts for Bird
Creek, February 1959.
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rising limb of the unit hydrograph is under predicted and the
falling limb is over predicted. This indicates.that the chan-
nel model is certainly one of the causes of the structural
errors. The ONML run, Figure 7.9, also shows the lag in the
prediction, with a worse prediction of the hydrographs' peak.
The figures corresponding to the remaining months of the four
simulation runs are included in Appendix B. In addition to
the graphical summary of the runs we have made, we are
including a statistical summary, produced by the standard
NWSRFS.

The statistical analysis of the simulations, included
in the NWSRFS model is based on the errors in the predictions
of daily volumes of runoff, while the maximum likelihood pa-
rameter estimates were obtained from instantaneous discharges
taken every six hours. A proper statistical analysis should
be based on the analysis of the results at the same level of
aggregation as the one used in the parameter identification
procedure. However, since the performance of all models will
be compared using the same type of statistics, we believe
that, for that purpose, the use of the daily volumes of runoff
is adequate.

The statistical summary of the off line runs is
presented in Table 7.5. The difference between the simulated
mean and the observed mean for the off line run with parame-
ters estimated by maximum likelihood indicates that this model
under predicts the discharges. Moreover, the overall perfor-
mance of the model with maximum likelihood estimated parame-
ters is worse than the performance of the model with the orig-
inal parameters, according to the percent absolute error and
the percent root mean square error, (RMS), although in both
cases the error is very high (181.46% and 193.53%). These two
statistics, the percent absolute error and the percent root
mean square error are calculated in the NWSRFS as percent of
the annual average flow. This places equal weighs on the indi-
vidual predictions, regardless of the magnitude of the

observed flows. In other words, a 10 m 3/s day error in the

prediction of a 100 m 3/s day flow, (a 10% error), will have

the same weight than a 10 m 3/s day error in the prediction of

a 1 m 3/s day.flow (a 1000% error). These statistics are a good
measure of the performance of a model if the fitting criterion
has been the minimization of either the average absolute error
or the RMS error. If we assume that a person performing a man-
ual fitting of a model will pay more attention to the predic-
tion of the high flows than to the prediction of the low
flows, the two statistics we are discussing will adequately
measure the performance of the model. These two statistics may
not reflect the performance of a model whose parameters have
been estimated by the method of maximum likelihood, because
this method weighs all errors according to their expected
standard deviations, which, in a non stationary system like
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Annual Averages NWS

Simulated Mean (m 3/s-day) 9.605

Observed Mean (m 3/s day) 9.180

Percent Bias 4.62

Bias (mm) 5.710

Maximum Error (Sim-Obs)(m 3/s day) -123.978

Percent Absolute Error 65.47

Percent RMS Error 181.46

a) Daily Volume Error Statistics

nterval Number of

day) cases

- 0.15 87 1

- 0.70 109

- 7.00 113

- 14.00 16

- 42.00 18

- 140.00 16

and above 9

b) Distribution of Errors by

ML

9.444

9.180

2.87

3.547

-175.075

65.85

193.53

Percent RMS Error

NWS ML

423.60 1510.48

547.47 807.34

161.33 241.95

223.68 167.78

90.16 61.57

62.81 47.81

42.66 56.53

Flow Interval.

Table 7.5 Statistical Analysis of Prediction of Daily

Volumes of Runoff with Off Line Simulations.

Bird Creek, Water Year 1958-1959.
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Flow I
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0.00

0.15

0.70

7.00

14.00

42.00
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the NWSRFS model, vary according to the magnitude of the flow.
Table 7.5-b presents the same statistics grouped according to
the magnitude of several intervals of flow. The results of
Table 7.5-b are plotted in Figure 7.10 to provide a visual
comparison. We can see that both models performed very poorly

in predicting the flows under 0.70 m 3/s day, and reasonably
well for high flows. In the same table, we see that the model
with the parameters estimated by maximum likelihood performed
better than the model with the original parameters in
predicting the flows in the intermediate ranges of 7.0 to

140.0 m 3/s day. Another dissaggregation of the percent abso-
lute error and the percent RMS error is shown in Table 7.6. In
that table we show the two statistics computed for every
months of the year. The percents are calculated relative to
the average monthly runoff. The annual averages shown in that
table are the arithmetic average of the values in the columns
above them. Therefore, they differ from the annual percent ab-
solute error and annual percent RMS error reported in Table
7.5.

The statistical summary for the on-line runs is
presented in Table 7.7. In that table we see that the values
of the percent absolute error and the percent RMS error for
the on line runs are smaller than the errors for the off line
runs which were shown in Table 7.5. The percent RMS error for
the on line run with the maximum likelihood estimated parame-
ters is bigger than the same statistic for both on line and
off line runs done with the original parameters. We have
explained already why this statistic may not reflect very well
the performance of a model whose parameters have been fitted
with a maximum likelihood criterion. The disaggregation of the
percent RMS error by interval of flow, presented in
Table 7.7-b shows that the percent RMS for the on line run
with the maximum likelihood estimated parameters tend to stay
in a range between 25% and 65% of the flow, with exception of
the very low flows, which although showing a 144% RMS error in
the prediction, perform better than the model with the origi-
nal parameters. Figure 7.11 shows the percent RMS error by
flow interval for both on line runs, for ease of comparison.
The percent RMS for the on line run with the original parame-
ters clearly-shows a better performance of the model in
predicting the high flows than in predicting the low flows,
thus confirming our assesment about the performance of models
with manually fitted parameters. The disaggregation of percent
absolute error and percent RMS error by months is shown in Ta-
ble 7.8.

7.3 Maximum Likelihood Parameter Estimation of the NWSRFS mod-
el in the Cohocton River Basin.

The experience gained in estimating the parameters of
Bird Creek indicated that one month of data was not enough for
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Figure 7.10 Percent RMSError by Interval of Flow. Bird
Creek, Off-line Runs.
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MONTH

October

November

December

January

February

March

April

May

June

July

August

September

Average

National Weather Service

Percent Percent

Abs Err RMS

616.45

107.18

73.84

23.34

41.45

114.41

67.76

58.52

81.58

55.61

312.57

82.92

136.30

629.02

213.29

79.11

27.89

85.15

244.89

117.80

95.69

129.47

83.44

321.48

194.10

185.11

Maximum

Percent

Abs Err

683.02

83.34

164.49

.158.69

242.71

153.64

117.03

51.79

85.91

51.66

328.36

79.64

183.36

Likelihood

Percent

RMS

822.57

124.94

362.97

329.98

658.76

263.62

178.90

89.55

110.07

97.58

335.72

231.99

300.55

Table 7.6. Percent Absolute Error and Percent

for the Off Line Runs by Month.

Bird Creek Water Year 1958-1959.

RMS Error
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Annual Averages NWS

Simulated Mean (m 3/s day) 9.297

Observed Mean (m /s day) 9.180

Percent Bias 1.27

Bias (mm) 1.573

Maximum Error (Sim-Obs)(m 3/s day) 41.168

Percent Absolute Error 18.37

Percent RMS Error 62.13.

a) Daily Volume Error Statistics

ML

7.441

9.180

-18.94

-23.398

-168.143

44.39

186.86

Flow Interval Number of Percent RMS Error

(m 3/s day) cases NWS ML

0.00 - 0.15 87 213.64 144.23

0.15 - 0.70 109 88.71 55.47

0.70 - 7.00 113 36.07 26.62

7.00 - 14.00 16 34.19 49.06

14.00 - 42.00 18 24.11 47.87

42.00 - 140.00 16 29.56 64.27

140.00 and above 9 11.00 51.37

b) Distribution of Errors by Flow Interval.

Table 7.7 Statistical Analysis of Prediction of Daily

Volumes of Runoff with On Line Simulations.

Bird Creek, Water Year 1958-1959.
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Figure 7.11 Percent RMS Error by Interval of Flow. Bird
Creek, On-line Runs.
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MONTH

National Weather Service

Percent Percent

Abs Err RMS

October

November

December

January

February

March

April

May

June

July

August

September

Average

94.26

16.95

10.88

3.99

16.74

29.28

15.65

19.27

20.98

15.43

47.37

20.64

25.96

95.09

48.30

11.91

4.78

38.99

64.58

33.73

33.81

37.50

28.42

49.76

63.34

42.52

Maximum

Percent

Abs Err

82.07

9.58

23..22

12.16

10.25

28.04

23.03

63.52

20.21

38.91

34.55

17.57

30.25

Likelihood

Percent

RMS

99.60

15.47

57.30

24.44

17.56

90.20

55.90

124.41

40.06

66.80

38.41

54.49

57.05

Table 7.8. Percent Absolute Error

for the On Line Runs

Bird Creek Water Year

and Percent

by Month.

1958-1959.

RMS Error
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obtaining meaningful parameter estimates. We decided to use at
least two months of data for estimating the parameters of the
Cohocton River. The months selected were May and June of 1969,
which not only have a good range of high and low flows (Figure
7.12), but are also free from snowfall and snowmelt. This last
factor enables us to obtain parameter estimates which are in-
dependent of the influence of the calibration of the snowmelt
model and errors in the snowfall measurements. Table 7.9
presents the original parameters used by the National Weather
Service, which were also used by Kitanidis and Bras (1980) for
the validation of the stochastic version of the NWSRFS model.
In that table we also include the initial value of the parame-
ters, the value at which the parameters converged, and the co-
efficient of variation of the estimated parameters. Notice
that, in contrast with the parameter estimation for Bird
Creek, Section 7.2, the initial conditions of some of the
state variables were also estimated. Since the prior informa-
tion about the coefficients of the lower zone linear
reservoirs indicated that these coefficients were essentially
identical to the values estimated by the National Weather Ser-
vice, we decided to leave these parameters fixed at their pri-
or values. Some of the parameters converged to values signif-
icantly different to those calibrated by the National Weather

Service. In particular, the value of x 0 estimated by the NWS

as 100, converged to a value of 39.4. We may notice, however,
that x1 is a state variable that is depleted only by evapo-

ration and which is observable only when there is outflow from
that element into the upper zone free water element. That
occurs in the original formulation of the model when

x i(t)=x 1 .In our case, the threshold corresponding to the

upper zone tension water element has been statistically
linearized. In this form, the outflow from the element depends
actually on the probability that the water contents during a
time interval exceeds the value of the threshold. Since the
probability distribution of the state variable x 1 has been

approximated by a normal distribution, there is always, in
theory, a finite probability of the threshold being exceeded.
In Kitanidis and Bras' model, the prior variance of x1 depends

on the precipitation. If there is no precipitation, the vari-
ance is very small, which essentially converts the normal
distribution into a spike thus decreasing the probability of
exeeding the threshold to virtually zero. This makes the water
content in the upper zone tension water element only observ-
able when there is precipitation and shortly after. This
causes the model to be sensitive in most cases to the differ-

ence between x 1 and x1 (t), rather than to the full value of
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Param.

0
x 1

0
x
2

d
u
a
2

a1

0
x
3

0
x 
5

0
x 4
x (0)

x2(0)

X3(0)

X 4(0)

x5(0)

R

Q11

Q22

NWS
Estimate

100.0

25.0

0.3

0.004

0.010

25.0
1.8

200.0

100.0

75.0

0.03

Initial
Value

50.0

10.0

0.3

0.2

0.02

25.0
1.8

80.0

20.0

50.0

10.0

1.0

60.0

1.0

40.0

0.02
0.1
0.3

0.1

Table 7.9 Maximum Likelihood Parameter Estimates for the

Cohocton River Basin.
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May-June
Estimate

39.4

16.5

0.20

0.0

0.0

22-.6
0.8

80.9

17.6

50.0

6.16

1.25

81.1

1.25

28.2

0.0
0.025
1.29

0.05

1969
C.V.

0.09

0.17

0.13

7.5
8.3

8.2

9.2

6.9

1.3

3.0

18.7

3.0

3.5

0.05
0.15

0.31



0
x1 . For example, a precipitation of 20 mm which does not

produce interflow, only indicates that x 1 (t) was at least 20

mm smaller than x To see this more clearly we are going to

examine the relationship between x 1 0 and x 1 (0), which is the

initial condition of x (t).

Since x (t) is observable only when there is precipi-

tation, the filtering stage of the state estimation process
will not correct the state variable between t=0 and the arriv-
al of the first storm, t=t This implies that there is a de-

1'
terministic relationship between xl(0) and xl(t1 ), unless

xl(tl)=0.0. (Notice that the evapotranspiration demand is

modeled as a deterministic input). Now, if the model observes

only the difference x 1 0-x1 (t1 ), given the deterministic rela-

tionship between x1 (0) and x1 (t1 ), we would expect the de-

terministic model to be sensitive to the difference x 1 -x1 (0),

which implies that the estimates of x 10 and x1 (0) should be

highly correlated. To verify this hypothesis we followed the
procedure which was suggested in Chapter 6 to examine the in-
terdependency between the same two parameters when the thresh-
old was substituted by the smooth "S" curve. That procedure
consisted in plotting the successive values the parameters
take during the non linear optimization process. The basic
idea is that if the parameters are highly interdependent, the
successive values the parameters take during the non linear
optimization process should lie along a straight line that
marks the position of the ridge. Therefore, if the model is
sensitive to the difference between two parameters, the pa-
rameter values at different iterations should lie along a
straight line with the form

0 - A01 -02 =A

where 0 and 62 are the two parameters and A is the difference

actually observable.
Now, if we account for the fact that the model is sen-

sitive to the difference between one of the parameters (x1
0 )

and a function of the other parameter (x 1 (t1 ) = Xx1 (0) + A'),

we should find a relationship of the form
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x, - Xx (0) = A

or,

x 0=Xx1(0) + A

To test the effect of the interaction between x 1
0 and

x 1 (t) in a deterministic model, we performed a least squares

estimation of x 0, x 1 (0) and another parameter, d , to add one

more dimension to the parameter space. The initial values of
the parameters was the maximum likelihood estimate. The dif-

ferent pairs of values x 1
0 and x1 (0) took at the end of 21

linear searches are plotted in Figure 7.13. These different

values lie along the line with equation x1
0 =0.676x1 (0)+45.9.

Additional insight into the presense of the ridge is given by
the contour lines of the objective function. The contours of
the weighted least squares objective function near the maximum
likelihood optimum are shown in Figure 7.14. These contours
were obtained with all parameters fixed at their maximum like-
lihood estimates, while the weighted least squares function

was calculated for different values of x 0 and x 1 (O). The

elongated shape of the contours delimits the ridge, which
coincides with the straight line in Figure 7.13 This result
confirms the hypotheses of the deterministic model being sen-

sitive to the difference between x10 and x1 (t1 ).

Since interdependency between parameters is inherent
to the model it affects all methods of parameter estimation,
regardless of the fitting criterion. However, the nature of
the interaction is different for the maximum likelihood proce-
dure. This is due to the fact that the maximum likelihood
criterion includes a filtering stage which affects xl(tl). The

action of this filtering stage can not be predicted in ad-
vance. We can only say that it affects the approximate linear
relationship between xl(tl) and xl(O) that we assumed above.

Figure 7.15 shows the contour lines of the loglikelihood func-
tion in the neighborhood of the optimum. These were generated

by changing the values of the parameters x1 0 and x 1 (O), while

the remaining parameters were left at their maximum likelihood
estimates. We first notice that the final point of convergence
(') was close to the global optimum, (4*), and that there is
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a local optimum at x1 (0)=30, x 0=35. Interestingly enough, the

reader may notice that the contours of the loglikelihood do
not change abruptly at the value of the threshold (x1 (O) =

x ) 0*This is due to the fact that the threshold function of

the upper zone element is statistically linearized, which

sends the excess x 1 (0)-x 1 >O to the upper zone free water ele-

ment. The low and high variances of estimation of x 1
0 and

x 1 (O), respectively, are explained by the curvature of the

contour lines around *. The loglikelihood varies considerably

along the direction of x 0, while the contour lines are essen-

tially parallel to the direction of x1 (O). The reader may al-

so notice that the estimated correlation coefficient between

x 10and x 1 (0) of 0.61, Table 7.10, implies that those two pa-

rameter estimates are not highly correlated. This is also
consistent with the absence of a dominant ridge in the log-
likelihood function, as was shown in Figure 7.15.

This problem can only be solved if the total magnitude
* 0

of x 1 were observable during the data interval selected for

model calibration. The total magnitude of x 1 would be ob-

servable only during a period of high precipitation following
a long dry spell, during which x1 and x2 can be safely assumed

to be empty. The incoming precipitation would first satisfy
the tension water requirements with the excess water flowing
into the upper zone free water element. When the latter
becomes saturated surface runoff will be generated. The
predicted discharge will thus contain information about the

total magnitude of x1
0 and x A value of x smaller than

the true one will cause a large fraction of the precipitation
to flow into the channel as interflow, and eventually as sur-
face runoff, causing an over prediction of the discharge.
Even though we tried to include the case of a high discharge
following a recession curve in the period selected for cali-
bration, the verification runs will clearly show that the true

value of x 10 is larger than the one estimated. This finding

may seem paradoxica-l given the small coefficient of variation

which was obtained for the estimate of x 1 . We must remember

that the variance of estimation computed by the maximum like-
lihood procedure is just a lower bound of that variance. The
actual error may be larger. 169



0 0

1.00

d y a x0  x0  x
U 3 5 4

0.00 1.00

0.06 -0.72 1.00

0.08 0.18 0.07 1.00

-0.07 -0.22 0.00 -0.83 1.00

-0.13 -0.07 0.15 0.65 -0.30 1.00

-0.07 -0.23 -0.01 -0.92 0.97 -0.36 1.00

-0.15 0.02 -0.16 -0.79 0.55 -0.94 0.59 1.00

-0.02 -0.14 0.18 -0.04 -0.05 -0.11 -0.02 0.11

0.61 -0.50 0.56 -0.04 -0.02 0.06 0.02 -0.09

-0.01 -0.14 0.01 -0.42 0.53 -0.01 0.53 0.19

-0.21 0.14 -0.20 -0.57 0.26 -0.96 0.30 0.89

0.01 0.25 -0.18 0.29 -0.55 -0.24 -0.51 -0.02

0.11 -0.09 0.21 0.52 -0.34 0.56 -0.40 -0.47

0.09 0.77 -0.86 0.14 -0.13 -0.07 -0.16 0.04

0.10 0.49 -0.77 -0.13 -0.04 -0.18 0.02 0.16

R X1 (0) X2 (0) X3 (0) X4 (0) X5(0) Q11 Q2 2
0

xl
0x 2

du
y
a

0x 3
0x 5
0x 4
R

X 1 (O)

x2(0)

x3(0)

x 4(0)

x5(0)

Qil

Q 1 2

Table 7.10 Correlation Matrix of the Parameter Estimates

Cohocton River
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Some of the parameter estimates have very large
coefficients of variation. In some instances these large
coefficients of variation are caused by parameter interdepen-
dency. Table 7.10 presents the computed correlation
coefficients between the parameter estimates. Notice that the
highly correlated parameters, with the exception of a,
remained at their starting values, which confirms the fact of
the loglikelihood function not being sensitive to these pa-
rameters. The parameters with the highest correlations are
precisely those which enter in the percolation function. We

point out the 0.97 correlation coefficient between a and x 5 '

the -0.96 between x 3 0 and x3(0), -0.94 between x3 and x ,

-0.92 between I and x5 . As we explained in Chapter 4, these

high correlations imply the occurence of ridges in the log-
likelihood function, along which the value of the loglikeli-
hood function does not change significantly. This explains

0 0 0
the high variances of estimation of 1, a, x 3 ' x4 ' x5 . The

reason why a changed significantly from its starting value and
still showed such high coefficient of variation is explained
by the fact that the starting value of a was probably far from
the ridge in which a lies. Once the optimization process
started, a was trapped by the ridge which produced the high
correlation shown.

Due to the high variances of estimation of the perco-
lation function parameters, it is not surprising to see that
the point of convergency for these parameters is very differ-
ent from the value calibrated by the NWS. In particular, the
0.8 estimate of a not only is different from the NWS estimate,
but also changes the curvature of the percolation function, as
shown in Figure 7.16. For a>1 the percolation rate tends to
approach the percolation base rate faster than for a=1. The
opposite is true for a<1. The net effect is that a higher
percolation rate keeps the upper zone free water element at
lower levels, thus decreasing the volumes of interflow and
surface runoff. Notice that since this result compensates the
high volumes of surface runoff and interflow which are due to

having a small x 0, we would expect to find some degree of in-

terdependency between x1 and a. However, the correlation co-

efficient measures only the degree of linear dependency, with-
out shedding any light on the occurrence of non linear
dependencies. We may say that, in general, the value for a
should be larger than one, in order to resemble the actual
percolation process ocurring in nature.

In the application to the Cohocton River, the model
displayed little sensitivity to the initial conditions of the
state variables as can be inferred from their coefficients of
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variation. Among these, x1 (0) and x 3 (O) are highly correlated

with the corresponding threshold parameter, x 1 0 and x3 ' which

explains the high coefficients of variation for those
estimates. Since no significantly high correlations were
found between the remaining initial conditions estimates and
other parameter estimates, the high coefficient of variation
indicates that the loglikelihood is not sensitive to these
initial conditions. In fact, if we examine the contribution to
the runoff from x2 ' x4 and x5 , (interflow, primary base flow

and supplementary base flow), at the beginning of the calibra-
tion interval, we find that the primary contributor is the
supplementary base flow (73%), followed by the interflow
(22%), while the primary base flow is just a 5% of the total
runoff. This implies that, given the small contribution of the
primary base flow to the total runoff, the model can not be
sensitive to that initial condition, during the period of cal-
ibration. The value of x2 is very small to begin with, which

implies that the element will become dry quickly due to perco-
lation and interflow. Therefore, the model is not very sensi-
tive to this initial condition either.

Three parameters converged to zero, and since that
value is quite close to their previous estimate, they are not
reported as "Non Feasible" as was the case with some of the
Bird Creek parameters.

7.3.1 Verification of the Parameter Estimates for Cohocton
River.

Verification was performed with water year 1969-1970,
which was the same year used by Kitanidis and Bras (1980) for
the verification of the on line river forecasting procedures.
We will be presenting the results corresponding to off line
runs and on line runs in which the parameters of the model
were estimated by the National Weather Service and by the max-
imum likelihood procedure. As before, we will be referring to
these runs as OFNWS, OFML, ONNWS, ONML. The parameters of the
stochastic part of the model used for the ONNWS simulation
were those manually estimated by Kitanidis and Bras. The input
data used for these runs is included in Appendix A. We
selected four months of the year which we considered were rep-
resentative of the features exhibited by the model running
with the different sets of parameters. These months are Decem-
ber, 1969, January, July and August 1970. For the month of De-
cember, Figure 7.17, OFNWS predicts the rising limb and the
timing of the peak of the hydrograph starting on the 10th
about six hours ear-lier than the actual occurrence. The actual
magnitude of the peak is over predicted by about 20%. The
corresponding month for the OFML run, Figure 7.17 not only
show the same earlier prediction of the rising limb of the
hydrograph, but the peak is now over predicted by 508% of the
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measured discharge. This is a case in which the role of the

small estimated value of x 0 is very important. The correc-

tion action taken by the filter is seen in the ONNWS and ONML
runs, Figure 7.18. In the ONNWS case, the corrective action is
taken two time steps after the rising started, producing a zig
zagged hydrograph that, although odd in shape, reproduces well
the falling limb. The groundwater recession curve is over
estimated. A more pronounced zig zag effect is displayed by
ONML, but the ground water recession curve is well estimated.
The one step ahead predictions for the month of January with
the off line runs are shown in Figure 7.19. Both results are
quite similar, and over predict the discharge during most of
the month. Towards the end of the month both OFNWS and OFML
fail to predict the increase in the discharge. We speculate
that in this case the errors may be due to ice jamming, to
over prediction of the snow melt by the snowmelt model to
freezing of the ground, or to a combination of these factors.
The corrective action taken by the filter can be seen in Fig-
ure 7.20, for the ONNWS and ONML runs. In the former, the pre-
diction of the receding discharge is corrected, although still
shows a large correlation in the residuals. Towards the end,
the model increases the predicted discharge but still fails to
raise the discharge to the measured levels. A much better per-
formance is displayed throughout the complete month by ONML.
The month of July, 1970 presents a completely different behav-
ior between the forecastings produced by the OFNWS and OFML
runs. (Figure 7.21). The former essentially missed all the
small hydrographs, while the latter over predicted them.
Again, we believe the reason of this behavior is the wrong

0
estimate of x 1. The fact that OFNWS misses the hydrographs

may indicate, however, that the NWS estimate for x1
0 is larger

than the real value, or that the real evapotranspiration was
considerably smaller than the one calculated from the annual
averages. In both cases, the effect is that x is able to hold

all the incoming precipitation without becoming saturated.
The on line runs for the same month are shown in Figure 7.22.
The ONNWS shows the hydrograph predictions lagging with re-
spect to the observed ones, while the ONML displays the al-
ready familiar zig zag. Finally, the month of August, 1970 is
the most important example of the effect of the small value of

0
x 1 . The off line runs for that month are presented in Figure

7.23. Towards the end of the month, at the end of the reces-
sion curve there is a measured discharge that peaks at 17.2

m 3/s. The OFNWS predicts a peak of 20.2 m 3/s, while OFML

predicts a peak of 445 m 3/s. The ONNWS and ONML simulations
are shown in Figure 7.24. The former misses the timing for the
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Figure 7.20 Six-Hour Lead On-Line Forecasts for the
Cohocton River, January 1970.
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Figure 7.22 Six-Hour Lead On-Line Forecasts for the
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peak, but the predicted hydrograph is considered "satisfacto-
ry". The latter over predicts the rising limb o.f the hydro-
graph, correct itself and predicts the rest of the hydrograph
one step behind. We have included in Table 7.11 the computed
values of the components of the runoff for the different
models. We can see that the major difference between the
models with the NWS estimated parameters and the models with
the maximum likelihood estimated parameters is the amount of
surface runoff. The simulated discharges with the different
procedures for the remaining months of the water year
1969-1970 are included in Appendix B.

The performance summary of the off line runs, measured
by the percent absolute error and the percent RMS error are
included in Table 7.12. Although the bias and the percent bias

3are smaller in the ML case, the maximum error of 236 m /s is
considerably larger-than the maximum error with the NWS esti-

mated parameters of 90.7 m 3/s. The percent absolute error and
the percent RMS error with the NWS estimated parameters are
also smaller than the corresponding values with the ML esti-
mated parameters. The distribution of the percent RMS errors
by interval of flow, are shown in Table 7.12-b, and are
plotted in Figure 7.25. In general, the model with the origi-
nal parameters without a filter out-performs the model with
the maximum likelihood estimated parameters. The distribution
of the errors by month is presented Table 13. The outstanding
feature in these results is the 2111.7% RMS error for the
month of August, with the maximum likelihood estimated parame-
ters, which was already analyzed.

The statistical summary for the on line runs is
presented in Table 7.14. In this case the run with the maximum
likelihood estimated parameters out-performs the on line run
with the NWS estimated parameters. The distribution of the
errors per interval of flow is presented in Table 14 -b. With

the exception of the very low flows, (0-2m 3/s day), the model
with the maximum likelihood estimated parameters performed
better than the model with the original parameters. These
results are also presented in Figure 7.26. The distribution of
errors by month, Table 7.15 shows that the first month has a
very large error in both cases. This is due to the fact that
the on line runs were started at that particular month with
arbitrary initial conditions. If the first month is excluded
from the computation of the annual average at the bottom of
the table, the computed values for the RMS error would be
33.05% and 37.28% for the maximum likelihood estimated and the
NWS estimated parameters, respectively.

7.4 Conclusions.
This chapter has presented the results of applying the

maximum likelihood estimation estimation procedure to two
basins in the United States. In the case of the application to
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Table 7.11 Distribution of the Total Runoff Components by Month
for the Different Simulations
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Annual Averages NWS

Simulated Mean (m 3/s day) 7.715

Observed Mean (m 3/s day) 11.087

Percent Bias -30.41

Bias (mm) -87.376

Maximum Error (Sim-Obs)(m 3/s day) -90.716

Percent Absolute Error 63.89

Percent RMS Error 135.07

a) Daily Volume Error Statistics

Flow Interval Number of

(m 3/s day) cases

0.00 - 2.00 68

2.00 - 5.00 98

5.00 - 10.00 84

10.00 - 20.00 64

20.00 - 30.00 19

30.40 - 40.00 12

40.00 and above 20

b) Distribution of Errors by

Percent RMS Error

NWS ML

21.97 155.48

71.25 191.64

56.74 106.00

47.02 240.00

60.94 85.73

67.46 70.61

80.17 101.35

Flow Interval.

Table 7.12 Statistical Analysis of Prediction of Daily

Volumes of Runoff with Off Line Simulations.

Cohocton River, 1969-1970.
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River, Off-line Runs.
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MONTH

October

November

December

January

February

March

April

May

June

July

August

September

Average

National Weather Service

Percent Percent

Abs Err RMS

19.18

51.36

42.42

116.76

45.74

59.48

84.57

59.74

22.08

37.66

34.05

62.20

52.99

25.03

105.07

53.96

124.75

63.41

126.34

96.60

63.20

30.89

46.44

69.26

102.34

75.56

Maximum

Percent

Abs Err

54.22

129.92

79.21

131.61

50.52

57.83

81.34

54.29

21.91

80.35

434.77

169.76

112.14

Likelihood

Percent

RMS

122.64

288.84

219.31

140.35

67.79

122.69

93.87

72.09

30.07

134.63

2111.70

390.45

316.20

Table 7.13. Percent Absolute Error and Percent RMS Error

for the Off Line Runs by Month.

Cohocton River, Water Year 1969-1970.
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Annual Averages NWS

Simulated Mean (m 3/s day) 10.405

Observed Mean (m3 Is day) 11.087

Percent Bias -6.15

Bias (mm) -17.676

Maximum Error (Sim-Obs)(m 3/s day) -42.831

Percent Absolute Error 30.32

Percent RMS Error 58.90

a) Daily Volume Error Statistics

Flow Interval Number of

(m 3/s day) cases

0.00 - 2.00 68

2.00 - 5.00 98

5.00 - 10.00 84

10.00 - 20.00 64

20.00 - 30.00 19

30.40 - 40.00 12

40.00 and above 20

b) Distribution of Errors by

Percent RMS Error

NWS ML

127.59 275.87

75.24 15.62

35.23 14.32

29.88 17.11

28.01 8.80

31.93, 17.74

36.79 21.64

Flow Interval.

Table 7.14 Statistical

Volumes of Runoff

Cohocton

Analysis of Prediction of Daily

with On Line Simulations.

River, 1969-1970.
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ML

10.787

11.087

-2.70

-7.762

-40.932

11.27

35.99
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Figure 7.26 Percent RMS Error by Interval of Flow. Cohocton
River, On-line Runs.

189

---- PARAMETERS FROM ML

-0- ORIGINAL PARAMETERS

0

\60

50

40-

30-

20

10 -

0

Cr_

I-

z
wL
U)

X
0LJ

I I



MONTH

October

November

December

January

February

March

April

May

June

July

August

September

Average

National Weather Service

Percent Percent

Abs Err RMS

148.52

54.21

25.64

55.45

18.46

26.88

34.42

19. 72

8.20

5.99

14.82

25.56

36.48

186.71

79.69

29.24

59.66

25.34

55.70

40.19

21.22

10.74

10.31

40.77

37.13

49.73

Maximum

Percent

Abs Err

69.46

8.30

8.82

7.21

9.13

14.55

11.27

3 .30

5.43

6.66

60.31

9.77

17.85

Likelihood

Percent

RMS

332.11

14.19

16.37

14.32

13.89

40.34

19.39

4.46

6.25

13.54

204.30

16.48

57.97

Table 7.15. Percent Absolute Error and Percent RMS Error

for the On Line Runs by Month.

Cohocton River, Water Year 1969-1970.

190



Bird Creek, it was shown how structural errors in the model of
the channel cause some of the parameters to converge to un-
realistic values. The use of prior information about some of
the parameters decreased the variance of estimation of the
remaining parameters. The bias in the parameters, introduced
by the channel model caused the model to perform worse than
the previously estimated parameters, for off line and on line
runs. The application to the Cohocton river detected a series
of strong correlations between several of the parameters, all
of them associated with the percolation function. These high
correlations were the cause of very high variances in the pa-
rameter estimates. This application also showed that one of

the parameters, x 0, converged to the maximum likelihood esti-

mate of that parameter corresponding to the period of data
used in the estimation. This estimate, however, proved to be
smaller than the best estimate of the parameter in the verifi-
cation runs, since the model consistently over predicted the
amount of interflow and surface runoff. These over predictions
forced the on line model to correct the hydrographs in a zig
zagued fashion, which although mathematically correct is
hydrologically unappealing.

We found the the maximum likelihood procedure to be-
have very differently in each of the two basins tested. In the

application to the Cohocton River, we found that x 1
0 converged

to an optimum point which applied only to the calibration pe-
riod, while the estimate of the same parameter for Bird Creek
checked very well with the NWS estimate of the same parameter.
The very high correlation between several parameters in the
Cohocton River case was not found in the Bird Creek applica-
tion. In the latter, the absense of high correlations between
the parameter estimates must be cautiously evaluated because
of the structural errors in the channel.

The length of the data interval used in the calibra-
tion of Bird Creek had a strong influence in the parameter
estimates and in the variances of these estimates. Due to the
very high cost of performing the experiments several questions
remain unanswered, such as the influence of of the initial
guess of the parameters on the final parameter estimates. We
do not know whether the correlation between the percolation
function parameters will re-appear when applying the maximum
methodology to different basins. The effect of the non
stationarity of the model error terms, and of the independence
between the same error terms on the parameter estimates re-
mains to be studied. These points will be addressed again in
the next chapter, Conclusions and Recomendations.
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

8.1 Summary of Results
This work has studied the application of maximum like-

lihood, in conjunction with the use of prior information on
some of the parameters, to the estimation of the parameters of
the National Weather Service River Forecast System soil phase
model.

The prior information is built into the stochastic pa-
rameter estimation procedure in a form that permits subjective
information to be used in a mathematically sound form in com-
bination with information coming from the discharge records.

A simple stochastic model is proposed for modeling the
base flow of a basin. This model is used in an iterative fash-
ion to determine the parameters of the base flow discharge
coefficients, and at the same time identify the interval of
discharges that corresponds to base flow. In this form prior
information about these parameters is obtained which can be
used in the global estimation procedure. The model and the
procedure are tested in two basins in the United States. The
robustness of the algorithm in identifying the time interval
of base flow activity is shown with an example of how the mod-
el rejects an interval that "looks like" an interval of base
flow.

A non linear constrained optimization procedure, based
on the Davidon-Fletcher-Powell method and on a gradient pro-
jection algorithm is developed. The algorithm had to be
adapted to the special characteristics of the rainfall runoff
model, in order to prevent convergence of the parameters to
points far from the global optimum, by selectively including
or excluding parameters from the linear searches that are part
of the Davidon-Fletcher-Powell algorithm.

In order to minimize the implementation costs of the
parameter estimation procedure a simplified version of the
NWSRFS model has been proposed. In this simple version the
threshold curves which cause the highest non linearities in
the original system have been replaced by smooth "S" curves.
The simplified model, by keeping the general structure of the
original model, helps in finding a major source of
discontinuities in the loglikelihood function. These
discontinuities cause the parameters to converge to local
optima. A change in the criterion for calculation of the num-
ber of time subintervals required for the integration of the
non linear soil moisture equations is proposed as a solution
to the problem. A very high correlation between the estimates
of two of the parameters of the model is traced to the "S"
curve corresponding to the upper zone tension water element.
This indicates that some modifications to the incorporation of
the "S" curve into the model must be carried on, if the
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simplified model is to be used in the prediction of real
flows. These modifications are outlined in the.next section.

The maximum likelihood parameter estimation procedure
was applied to two basins with different physiographic charac-
teristics. In the first case, the application to Bird Creek
was seriously affected by biases in the parameters introduced
by the model of the channel. The use of prior information
about two of the parameters produced an overall reduction on
the estimation variance of the remaining parameters. In the
application to the Cohocton River some of the parameters were
unidentifiable during the period of calibration. Very high
interdependency was found between several parameters. Espe-
cially afected were some of the parameters entering in the
percolation function. Furthermore, it was shown that, due to
the unobservability of the upper zone tension water content,
the model was sensitive to the difference between the maximum
upper zone tension water content and the initial condition of
the associated state variable.

8.2 Recommendations
In order to eliminate the biases in the parameter

estimates due to inaccuracies in the precipitation and snow
melt model, and to the channel model, the state variables of
the three models, (precipitation-snow melt, soil phase and
channel) must be jointly estimated, and the parameters of the
three models should be jointly identified.

There is recent evidence in the literature (Kuczera,
1982) on the improvement on the parameter estimates by using
additional time series data in addition of the input-output
series currently being used. Kuczera studied the effect of
groundwater depth data averaged over two months in the parame-
ter estimates of a simple two-state conceptual model used to
predict two-month averaged discharges. This author concluded
that the use of groundwater depth information helped in
obtaining consistent estimates for one of the groundwater re-
lated parameters. Although groundwater depth supplies little
information for six hour runoff forecasting, the same princi-
ple can be applied here. In particular, an effort should be
made of including snow depth information and satellite mea-
surements of areal averaged short wave radiation in the 1.55
cm wave length band. The former will improve the estimation of
snow melt. The second has been shown to be correlated with the
soil moisture of the upper layers of the soil, (Blanchard et
al., 1981). For application to the NWSRFS model, the short
wave emissivity data must be first related to the upper zone
tension water content and to the upper zone free water con-
tent. In this form the problems of non observability of the
upper zone tension water content and the identifiability of
the upper zone tension water maximum may be solved. In addi-
tion, the additional information will hopefully improve the
estimates of the remaining parameters of the soil phase model,
since the direct measurements of the state variables may elim-
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inate the inconsistent estimates obtained due to biases in the
channel model.

Since the availability of satellite data as a routine
may take many years to be implemented, short term solutions to
the problem of observability of the upper zone tension water
element must be found. In its present form, the NWSRFS model
is an accurate conceptualization of the soil moisture move-
ment. But, is it really worthy to have a good description of a
process whose parameters can not be estimated.? Modifications
of the model's current structure must be studied, such that
the upper zone tension water element is permanently observ-
able. Here we have a trade-off between the high accuracy of a
model with some parameters which are non identifiable, and a
less accurate model which has identifiable parameters and ob-
servable state variables. One such modification of the upper
zone tension water element which will make this element ob-
servable has been made in the HBV model (Fjeld and Aam, 1980,
Bergstrom, 1975, Bergstrom and Forsman, 1973). In this model
the upper zone tension water permanently drains into the upper
zone free water element, according to a power function of the
relative fullness of the upper zone tension water element. In
this form, that state variable is permanently observable,
which will hopefully solve the problem of the identifiability

0
of x .

Further research into the interaction of the perco-
lation function parameters is necessary, by applying the maxi-
mum likelihood parameter estimation procedure to other basins.
If the interaction between these parameters persists, the
percolation function must be modified such that the
redundancies are eliminated.

The stochastic model of base flow can be enhanced to
account for constant water losses from the channel. One ap-
proach is outlined here. The number of state variables re-
mains in two, and the number of unknown parameters to be esti-
mated by maximum likelihood is increased by one. The governing
equations for the proposed approached are included in Appendix
C.

The ideas of Section 5.6.1 regarding the use of the
variation in the estimate of the model error term to define
more accurAtely.the interval of base flow must be tested in
different basins.

The modifications which were required in the non lin-
ear optimization algorithm converted the method into a blend
of pattern search and gradient based techniques. No comparison
exists between the performance of this mixed procedure and the
performance of a pattern search technique. This comparison
should be carried out and the procedure changed if a pure pat-
tern search technique proves to be more efficient in achieving
global convergency then the algorithm here implemented.

The sensitivity of the point of convergency to the
initial estimates of the parameters must also be studied,
since the possibility of convergence to local optima exists.
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The importance of the stochasticity of the potential
evapotranspiration and the non stationarity of-the model noise
in the state estimation and in the parameter identification
must be investigated. The former can be modeled similarly to
the rainfall plus snowmelt input to the soil phase model. The
latter can be related to the state variables such that the
variance of the model error terms is functionally related to
the state variables themselves.

Finally the high cost of using maximum likelihood to
identify the parameters of the NWSRFS model was a major reason
for leaving many unanswered questions. Least expensive, though
approximate ways, of calculating the loglikelihood function,
such as the use of constant gains for the filtering of the
states and propagation of the covariance must be seriously
considered and evaluated. It must be determined if the model
is consistently insensitive to some of the parameters. If this
is the case, the insensitive parameters must be identified and
given nominal values. If it is determined that the model is
relatively insensitive to some of the parameters, those pa-
rameters can be roughly estimated by a less expensive method
such as weighted least squares, after which the most sensitive
parameters must be "fine tuned" by maximum likelihood.
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APPENDIX A

LISTING OF CARD DECKS FOR SIMULATION RUNS
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VERIFICATION RUN. OFF LINE, ORIGINAL PARAMETERS
COHOCTON-RIVER AT CAMPBELL-NY

10 1968 9 1970
1 1 3 1 1 0 1 0 0
1

LAB FILE
LAB FILE
LAB FILE

1
iC
iC
iC

0
MAP
QME
QIN

CAMPBELL, NY
CAMPBELL, NY
CAMPBELL, NY
CAMPBELL, NY

0 0 1
LAB FILE 1C MAT
CAMPBELL, N.Y.
CAMPBELL, NY

CAMPBELL, N.Y.
01529500

2
3.01

0 0 0
0.279EOO
0.293EQO
0.660E00
0.842E00
0.776E00
1.020E00
0.625E00
0. 571 EOO
0.660E00
0.591E00
0.689E00
0. 418E00

3. 4.
9 2
1. E-12
0. 3E00

1
6

24
6

1 0 1
4319-CAMPBELL,
3742- 01529
6126-CAMPBELL,

CAMPBELL BASIN
25.0 1.8 2

60. 10. 1
0 1 0
6 4801-

MAT 450. -
001

450.
0. 0.
0. 1.
.03 .07
01529500
01529500

5 10

0 0 3 0
0.468
0.862EQO
1.445E00
3.675E00
3.803EQO
12.986E00
4.176E00
6.305E00
4.686E00
4.391EOO
3.666E00
2.041EQO

0 0 LAB FILE 1C

NY- 4/28/77-1434.7016 COHOCTON R,
500- 1/ 8/77-1730.3780 COHOCTON R.
NY- 9/16/77-1547.7593 COHOCTON R,

1.00 1.00 100. 25. .30 .004 .01
100. 75. .05 .002 02 0.3 0.03
51 89 160 270 335 375 340 250 150
10. 70. 210.

CAMPBELL
CAMPBELL
CAMPBELL
.01

94 53

001- 4/28/77-1434.8748 CAMPBELL BASIN, N.Y.
-0.6 -0.7 -0.6

1.20 1. .32 .05
0. 0. 0. 0.

.20

.20 .27 .35 .45
1217. 0 0
CAMPBELL, NY

20 30

1 0 1 1
.04 .56 .28 .08

1 1 1 1
.04

1

.06
0.

.57
6

40

100

1.E-06 0.25E00 0.0351E00 0.0625E00 0.5625E00
1.0E03

40. 3. 42.3

.73
0
0

5

0 0 0 0 0 0
7.4687359E-012.0566864E-01-1.288279E-02-3.922349E-03-3.017193E-03
-5.587757E-01-3.146569E-01-9.930304E-02-2.258615E-02-1.887379E-02
2.5913744E-01-7.352188E-01 5.244121E-01-2.732608E-01-1.450422E-01
-1.673535E-01 3.547002E-01 5.796233E-01 2.985887E-01-6.398414E-01
1.4403226E-01-3.316243E-01-3.442156E-01 7.158802E-01-2.363407E-01

0 0 0 0 0

0 0
1 7

E-01

0

-6.322069E-01-7.601960E-01 5.909361E-02-9.304722E-02 6.733289E-02
-2.474841E+01 1.095328E+01-1.150028E-01-8.536949E-02-5.521520E-02
.SK

0



VERIFICATION, RUN. OFF LINE, PARAMETERS FROM MITSCP, MAY-JUNE69
COHOCTON-RIVER AT CAMPBELL-NY

10 1968 9 1970
1 1 3 1 1 0 1 0 0 0 0 LA
1 1 0 1 1 0 1

LAB FILE 1C MAP 6 4319-CAMPBELL, NY- 4/28/77-1434.7016 CO
LAB FILE 1C QME 24 3742- 01529500- 1/ 8/77-1730.3780 CO
LAB FILE 1C QIN 6 6126-CAMPBELL, NY- 9/16/77-1547.7593 CO
CAMPBELL, NY
CAMPBELL, NY
CAMPBELL, NY
CAMPBELL, NY

0 0 1
LAB FILE 1C MAT
CAMPBELL, N.Y.
CAMPBELL, NY

CAMPBELL, N.Y.
01529500

2
3.01

0 0 0
0.279EQO
0.293EQO
0.660E00
0.842EQO
0.776EQO
1.020E00
0.625E00
0.571E00
0.660E00
0.591EQO
0.689E 00
0.418EOO

3. 4.
9 2
1. E-12
1 .3E00

CAMPBELL BASIN
22.6 0.8 80.9

36
60. 10. 150.

0 1 0
6 4801-

MAT 450. -0.4
001

450. 1.
0. 0. 0.
0. 1. .05
.03 .07 .13
01529500
01529500

5 10

0 0 3 0
0.468
0.862E00
1.445E00
3.675E00
3.803E00
12.986E00
4.176E00
6.305EQO
4.686E00
4.391 EQO
3.666E00
2. 041 EQO

B FILE 1C

HOCTON R,
HOCTON R.
HOCTON R,

1.00 1.00 39.4 16.5 .20 .000 .00
18. 50. .05 .002 .02 0.3 0.00

51 89 160 270 335 375 340 250 150
10. 70. 210.

CAMPBELL
CAMPBELL
CAMPBELL
.01
.00
94 53

001- 4/28/77-1434.8748 CAMPBELL BASIN, N.Y.
-0.6 -0.7 -0.6

1.20 1. .32 .05 .06
0. 0. 0. 0. 0.

.20

.20 .27 .35 .45 .57
1217. 0 0 6
CAMPBELL, NY

20 30 40

1 0
.04 .56

1 1

1
.28

1

1
.08
1

.04
1

40. 3. 42.3

.73
0
0

0 0
1 7

100

5.1E-02 0.25E00 0.0351E00 0.0625E00 0.5625E00
40.7E00

E-07

0

1

0 0 0 0 0 0
7.4687359E-012.0566864E-01-1.288279E-02-3.9223419E-03-3.017193E-03
-5.587757E-01-3.146569E-01-9.930304E-02-2.258615E-02-1.887379E-02
2.5913744E-01-7.352188E-01 5.244121E-01-2.732608E-01-1.450422E-01
-1.673535E-01 3.547002E-01 5.796233E-01 2.985887E-01-6.398414E-01
1.4403226E-01-3.316243E-01-3.442156E-01 7.158802E-01-2.3.63407E-01

0 0 0 0 0
-6.322069E-01-7.601960E-01 5.909361E-02-9.304722E-02 6.733289E-02
-2.474841E+01 1.095328E+01-1.150028E-01-8.536949E-02-5.521520E-02
. SK

C>



VERIFICATION RUN. ON LINE, ORIGINAL PARAMETERS
COHOCTON-RIVER AT CAMPBELL-NY

10 1969 09 1970
1 1 3 1 1 0 1 0 0
1 1 0 1 1 0 1

LAB FILE 1C MAP 6 4319-CAMPBELL, NY- 4/28/
LAB FILE 1C QME 24 3742- 01529500- 1/ 8/
LAB FILE IC QIN 6 6126-CAMPBELL, NY- 9/16/
CAMPBELL, NY CAM
CAMPBELL, NY
CAMPBELL, NY
CAMPBELL, NY

0 0 1
LAB FILE 1C MAT
CAMPBELL, N.Y. MAT
CAMPBELL, NY

CAMPBELL, N.Y.
01529500

2
3.01

PBELL BASIN
25.0 1.8 200.

36
60. 10. 150.

0 1 0
6 4801-

450. -0.4
001

450. 1.
0. 0. 0.
0. 1. .05
.03 .07 .13
01529500
01529500

5 10

1.00 1.00 100.
100. 75. .05
51 89 160 270
10. 70. 210.

0 0 LAB FILE 1C

r7-1434.7016 COHOCTON R,
r7-1730.3780 COHOCTON R.
r7-1547.7593 COHOCTON R,

25. .30 .004 .01
.002 02 0.3 0.03
335 375 340 250 150

CAMPBELL
CAMPBELL
CAMPBELL
.01

94 53

001- 4/28/77-1434.8748 CAMPBELL BASIN, N.Y.
-0.6 -0.7 -0.6

1.20 1. .32
0. 0. 0.

.20

.20 .27 .35
1217. 0
CAMPBELL, NY

20 30

1 0
.04 .56

1 1

1 1
.28 .08

1 1

.05 .06
0. 0.

.45 .57
0 6

40

100
.04

1

40. 3. 42.3

.73
0
0

0 0 0 0 0 0 0
0.279E00 0.468
0.293E00 0.862E00
0.660E00 1.445E00
0.842E00 3.675E00
0.776E00 3.803E00
1.020E00 12.986E00
0.625E00 4.176E00
0.571E00 6.305E00
0.660E00 4.686E00
0.591E00 4.391E00
0.689E00 3.666E00
0.418E00 2.041E00

3. 4.
9 2
1.E-12 1.E-06 0.25E00 0.0351E00 0.0625E00 0.5625E00 5
0.3E00 1.0E03

0 0 0 0 0 0
7.4687359E-012.0566864E-01-1.288279E-02-3.922349E-03-3.017193E-03
-5.587757E-01-3.146569E-01-9.930304E-02-2.258615E-02-1.887379E-02
2.5913744E-01-7.352188E-01 5.244121E-01-2.732608E-01-1.4501422E-01
-1.673535E-01 3.547002E-01 5.796233E-01 2.985887E-01-6.398414E-01
1.4403226E-01-3.316243E-01-3.442156E-01 7.158802E-01-2.3,63407E-01

0 0 0 0 0
-6.322069E-01-7.601960E-01 5.909361E-02-9.304722E-02 6.733289E-02
-2.474841E+01 1.095328E+01-1.150028E-01-8.536949E-02-5.521520E-02

0 0
1 7

E-01

0

0



VERIFICATION RUN. ON LINE, PARAMETERS FROM MITSCP, MAY-JUNE69
COHOCTON-RIVER AT CAMPBELL-NY

10 1969 9 1970
1 1 3 1 1 0 1 0 0 0 0 L AB FILE 1C
1

LAB FILE
LAB FILE
LAB FILE

1 0
1C MAP
1C QME
1C QIN

2

CAMPBELL, NY CAM
CAMPBELL, NY
CAMPBELL, NY
CAMPBELL, NY

0 0 1
LAB FILE 1C MAT
CAMPBELL, N.Y. MAT
CAMPBELL, NY

CAMPBELL, N.Y.
01529500

2
3.01

1 1 0 1
6 4319-CAMPBELL,
4 3742- 01529
6 6126-CAMPBELL,
PBELL BASIN

22.6 0.8 80.9
36

00. 10. 150.
0 1 0
6 4801-

450. -0.4
001

450. 1.
0. 0. 0.
0. 1. .05
.03 .07 .13
01529500
01529500

5 10

NY- 4/28/77-1434.7016 COHOCTON R,
500- 1/ 8/77-1730.3780 COHOCTON R.
NY- 9/16/77-1547.7593 COHOCTON R,

1.00 1.00 39.4 16.5 .20 .000 .00
18. 50. .05 .002 .02 0.3 0.00

51 89 160 270 335 375 340 250 150
10. 70. 210.

CAMPBELL
CAMPBELL
CAMPBELL
.01
.00
94 53

001- 4/28/77-1434.8748 CAMPBELL BASIN, N.Y.
-0.6 -0.7 -0.6

1.20 1. .32 .05 .06
0. 0. 0. 0. 0.

.20

.20 .27 .35 .45 .57
1217. 0 0 6
CAMPBELL, NY

20 30 40

1 0 1
.04 .56 .28

1 1 1

1
.08
1

.04
1

40. 3. 42.3

.73
0
0

0 0
1 7

100

0 0 0 0 0 0 0
0.279E00 0.468
0.293E00 0.862E00
0.660E00 1.445E00
0.842E00 3.675E00
0.776E00 3.803E00
1.020E00 12.986E00
0.625E00 4.176E00
0.571E00 6.305E00
0.660E00 4.686E00
0.591E00 4.391E00
0.689E00 3.666E00
0.418E00 2.041E00

3. 4.
9 2
1.E-12 5.1E-02 0.25E00 0.0351E00 0.0625E00 0.5625E00 1.E-07
1.3E00 40.7E00

0 0 0 0 0 0 0
7.4687359E-012.0566864E-01-1.288279E-02-3.922349E-03-3.017193E-03
-5.587757E-01-3.146569E-01-9.930304E-02-2.258615E-02-1.887379E-02
2.5913744E-01-7.352188E-01 5.244121E-01-2.732608E-01-1.450422E-01
-1.673535E-01 3.547002E-01 5.796233E-01 2.985887E-01-6.398414E-01
1.4403226E-01-3.316243E-01-3.442156E-01 7.158802E-01-2.363407E-01

0 0 0 0 0
-6.322069E-01-7.601960E-01 5.909361E-02-9.304722E-02 6.733289E-02
-2.474841E+01 1.095328E+01-1.150028E-01-8.536949E-02-5.521520E-02
.SK

0n



ON LINE RUN, UNITGRAPH MODEL, PARAMETERS FROM MCP.
BIRD CREEK NEAR SPERRY,OKLAHOMA

10 1958 09 1959
0 1 3 1 1 0 1 0 0 0 0 LAB FILE 3C
1 1 1 1 1 0 1

LAB FILE 3C MAP 6 5766-BIRD CREEK - 7/ 7/78-1854.9825 WMO MAP(ADJUSTED)
LAB FILE 3C PTPE 24 6104-BIRD CREEK - 7/ 7/78-1856.6403 POINT POTENTIAL ET
LAB FILE 3C QME 24 6190- 07177500- 7/ 7/78-1856.7513 BIRD CR,NEAR SPERRY
LAB FILE 3C QINE 6 6288-USGS07177500- 7/ 7/78-1856.7847 BIRD CREEK--SPERRY
BIRD CREEK BIRD CREEK MAP 1.0 1.0 120. 15. 0.3 .001 .17 .001
BIRD CREEK 48. 2.1 160. 14. 140. .126 .013 .02 .30 3.55
BIRD CREEK BIRD CREEK .33 .33 .31 .32 .52 .67 .69 .69 .66 .62 .42 .33
BIRD CREEK 102. 0. 140. 0. 10. 221.
BIRD CREEK--SPERRY USGS07177500 2344. 0 0 6 0 0 0
USGS07177500 07177500 USGS07177500 0 1 14

.15 0.7 7.0 14. 42. 140.
3.0

BIRD CREEK--SPERRY 0 0.0 1 1 750.
BIRD CREEK--SPERRY .023 .04 .072 .11 .13 .128 .125 .114 .095 .07
BIRD CREEK--SPERRY .05 .03 .01 .003
BIRD CREEK--SPERRY 1 1 1 1 1 1 1 1 1
BIRD CREEK--SPERRY 1 1 1 1

0 0 0 0 0 0 0
0.358984E 00 0.257818E 01
0.150761E 01 0.192790E 02
0.690823E 00 0.109351E 02
0.187018E 01 0.248343E 02
0.272435E 00 0.123490E 01
0.127052E 01 0.235601E 02
0.573548E-01 0.764108E-01
0.207403E 00 0.174053E 01
0.159774E 00 0.314154E 00
0.839839E-01 0.169653E 00
0.255548E 00 0.245921E 01
0.573548E 00 0.470271E 01
3. 4.

9 2
1.E-12 1.E-2 2.5E-1 4.6E-2 1.95E-1 4.9E-1 5.E-1

0.300E0 10.EO
1.96E-2 1.1E-3 1.E-3 8.79E-2 1.56E-2 1.4E-1 1.E-2

0.924498E 00 0.127624E 00-0.120877E-01 0.147609E-02-0.221878E-02 0.1140791E-02
-0.320435E 00 0.749457E 00 0.133947E 00-0.723106E-02 0.118776E-01-0.550329E-02
-0.129278E 00-0.570561E 00 0.571302E 00 0.777237E-01-0.106783E 00 0.831124E-01
-0.595580E-01-0.116204E 00-0.293226E 00 0.638737E 00 0.656881E 00 0.128785E 00
-0.937171E-01-0.199812E 00-0.421724E 00-0.687642E 00 0.267024E 00 0.346402E 00
-0.909697E-01-0.141622E 00-0.502120E 00 0.206233E 00-0.529903E 00-0.305710E 00
0.358971E 00 0.563439E 00 0.553704E 00 0.185776E 00 0.301332E 00 0.265058E 00
0.286981E 02-0.179404E 02 0.413898E 01-0.368092E 00 0.570344E 00-0.327956E 00

-0.327000E-03-0.100000E-03-0.100000E-03-0.100000E-03-0.100000E-03-0.100000E-03



ON LINE RUN, UNITGRAPH MODEL, PARAMETERS FROM MITSCP, APRIL-JULY57 (PRIOR
BIRD CREEK NEAR SPERRY,OKLAHOMA

10 1958 09 1960
0 1 3 1 1 0 1 0 0 0 0 LAB FILE 3C
1 1 1 1 1 0 1

LAB FILE 3C MAP 6 5766-BIRD CREEK - 7/ 7/78-1854.9825 WMO MAP(ADJUS
LAB FILE 3C PTPE 24 6104-BIRD CREEK - 7/ 7/78-1856.6403 POINT POTENTI
LAB FILE 3C QME 24 6190- 07177500- 7/ 7/78-1856.7513 BIRD CR,NEAR
LAB FILE 3C QINE 6 6288-USGS07177500- 7/ 7/78-1856.7847 BIRD CREEK--S
BIRD CREEK BIRD CREEK MAP 1.0 1.0122.5 14.7 0.86 .019 .13 .0
BIRD CREEK 38. 1.1 160. 12.5 140. .549.0155.0000 .30 5.18
BIRD CREEK BIRD CREEK .33 .33 .31 .32 .52 .67 .69 .69 .66 .62 .4
BIRD CREEK 102. 0. 140. 0. 10. 221.
BIRD CREEK--SPERRY USGS07177500 2344. 0 0 6 0 0
USGS07177500 07177500 USGS07177500 0 1

.15 0.7 7.0 14. 42. 140.
3.0

BIRD
BIRD
BIRD
BIRD
BIRD

CREEK--SPERRY
CREEK--SPERRY
CREEK--SPERRY
CREEK--SPERRY
CREEK--SPERRY

0
.023

.05
1
1

0.0
.04
.03

1
1

1
.072

.01
1
1

1
.11

.003
1
1

13

1

750.
.128

1

TED)
AL ET
SPERRY
PERRY
01

2 .33

0
14

.125 .114 .095

1 1 1

.07

1

0 0 0 0 0 0 0
0.358984E 00 0.257818E 01
0.150761E 01 0.192790E 02
0.690823E 00 0.109351E 02
0.187018E 01 0.248343E 02
0.272435E 00 0.123490E 01
0.127052E 01 0.235601E 02
0.5735148E-01 0.764108E-01
0.207403E 00 0.174053E 01
0.159774E 00 0.314154E 00
0.839839E-01 0.169653E 00
0.255548E 00 0.245921E 01
0.573548E 00 0.470271E 01
3. 4.

9 2
1.E-12 1E-14 2.5E-1 4.6E-2 1.95E-1 4.9E-1 3.E-4

1.3523 4.12
1.96E-2 1.1E-3 1.E-3 8.79E-2 1.56E-2 1.4E-1 1.E-2

0.924498E 00 0.127624E 00-0.120877E-01 0.147609E-02-0.221878E-02 0.140791E-02
-0.320435E 00 0.749457E 00 0.133947E 00-0.723106E-02 0.118776E-01-0.550329E-02
-0.129278E 00-0.570561E 00 0.571302E 00 0.777237E-01-0.106783E 00 0.831124E-01
-0.595580E-01-0.116204E 00-0.293226E 00 0.638737E 00 0.656881E 00 0.128785E 00
-0.937171E-01-0.199812E 00-0.421724E 00-0.687642E 00 0.267024E 00 0.346402E 00
-0.909697E-01-0.141622E 00-0.502120E 00 0.206233E 00-0.529903E 00-0.305710E 00
0.358971E 00 0.563439E 00 0.553704E 00 0.185776E 00 0.301332E 00 0.265058E 00
0.286981E 02-0.179404E 02 0.1413898E 01-0.368092E 00 0.570344E 00-0.327956E 00
-0.327000E-03-0.100000E-03-0.100000E-03-0.100000E-03-0.100000E-03-0. 100000E-03

C



OFF LINE RUN, UNITGRAPH MODEL, PARAMETERS FROM MCP.
BIRD CREEK NEAR SPERRYOKLAHOMA

10 1958 09 1959
0 1 3 1 1 0 1 0 0 0 0 LAB FILE 3C
1 1 1 1 1 0 1

LAB FILE 3C MAP 6 5766-BIRD CREEK - 7/ 7/78-1854.9825 WMO MAP(ADJUSTED)
LAB FILE 3C PTPE 24 6104-BIRD CREEK - 7/ 7/78-1856.6403 POINT POTENTIAL ET
LAB FILE 3C QME 24 6190- 07177500- 7/ 7/78-1856.7513 BIRD CR,NEAR SPERRY
LAB FILE 3C QINE 6 6288-USGS07177500- 7/ 7/78-1856.7847 BIRD CREEK--SPERRY
BIRD CREEK BIRD CREEK MAP 1.0 1.0 120. 15. 0.3 .001 .17 .001
BIRD CREEK 48. 2.1 160. 14. 140. .126 .013 .02 .30 3.55
BIRD CREEK BIRD CREEK .33 .33 .31 .32 .52 .67 .69 .69 .66 .62 .42 .33
BIRD CREEK 102. 0. 140. 0. 10. 221.
BIRD CREEK--SPERRY USGS07177500 2344. 0 0 6 0 0 0
USGS07177500 07177500 USGS07177500 0 1 14

.15 0.7 7.0 14. 42. 140.

BI R
BIR
BIR
BIR
BIR

3.0
D CREEK--SPERRY
D CREEK--SPERRY
D CREEK--SPERRY
D CREEK--SPERRY
D CREEK--SPERRY
0 0 0 0 0 3 0
0.358984E 00 0.257818E 01
0.150761E 01 0.192790E 02
0.690823E 00 0.109351E 02
0.187018E 01 0.248343E 02
0.272435E 00 0.123490E 01
0.127052E 01 0.235601E 02
0.573548E-01 0.764108E-01
0.207403E 00 0.174053E 01
0.159774E 00 0.314154E 00
0.839839E-01 0.169653E 00
0.255548E 00 0.245921E 01
0.573548E 00 0.470271E 01

0 0.0
023 .04
.05 .03

1 1
1 1

1
.072

.01
1
1

1
.11
003

1
1

750.
.13 .128

1 1

.125 .114 .095

1 1 1

3. 4.
9 2
1.E-12 1.E-2 2.5E-1 4.6E-2 1.95E-1 4.9E-1 5.E-1

0.300E0 10.EO
1.96E-2 1.1E-3 1.E-3 8.79E-2 1.56E-2 1.4E-1 1.E-2

0.924498E 00 0.127624E 00-0.120877E-01 0.147609E-02-0.221878E-02 0.140791E-02
-0.320435E 00 0.749457E 00 0.133947E 00-0.723106E-02 0.118776E-01-0.550329E-02
-0.129278E 00-0.570561E 00 0.571302E 00 0.777237E-01-0.106783E 00 0.831124E-01
-0.595580E-01-0.116204E 00-0.293226E 00 0.638737E 00 0.656881E 00 0.128785E 00
-0.937171E-01-0.199812E 00-0.421724E 00-0.687642E 00 0.267024E 00 0.346402E 00
-0.909697E-01-0.141622E 00-0.502120E 00 0.206233E 00-0.529903E 00-0.305710E 00
0.358971E 00 0.563439E 00 0.553704E 00 0.185776E 00 0.301332E 00 0.265058E 00
0.286981E 02-0.179404E 02 0.413898E 01-0.368092E 00 0.570344E 00-0.327956E 00
-0.327000E-03-0.100000E-03-0.100000E-03-0.100000E-03-0.100000E-03-0.100000E-03

0

.07

1



OFF LINE RUN, UNITGRAPH MODEL, PARAMETERS FROM MITSCP, APRIL-JULY57(PRIOR
BIRD CREEK NEAR SPERRY,OKLAHOMA

10 1958 09 1960
0 1 3 1 1 0 1 0 0 0 0 LAB FILE 3C
1 1 1 1 1 0 1

LAB FILE 3C MAP 6 5766-BIRD CREEK - 7/ 7/78-1854.9825 WMO MAP(ADJUS
LAB FILE 3C PTPE 24 6104-BIRD CREEK - 7/ 7/78-1856.6403 POINT POTENTI
LAB FILE 3C QME 24 6190- 07177500- 7/ 7/78-1856.7513 BIRD CR,NEAR
LAB FILE 3C QINE 6 6288-USGS07177500- 7/ 7/78-1856.7847 BIRD CREEK--S
BIRD CREEK BIRD CREEK MAP 1.0 1.0122.5 14.7 0.86 .019 .13 .0
BIRD CREEK 38. 1.1 160. 12.5 140. .549.0155.0000 .30 5.18
BIRD CREEK BIRD CREEK .33 .33 .31 .32 .52 .67 .69 .69 .66 .62 .4
BIRD CREEK 102. 0. 140. 0. 10. 221.
BIRD CREEK--SPERRY USGS07177500 2344. 0 0 6 0 0
USGS07177500 07177500 USGS07177500 0 1

.15 0
3.0

CREEK--SPERRY
CREEK--SPERRY
CREEK--SPERRY
CREEK--SPERRY
CREEK--SPERRY

0 0 0 0
0.358984E 00
0.150761E 01
0.690823E 00
0.187018E 01
0.272435E 00
0.127052E 01
0.573548E-01
0.207403E 00
0.159774E 00
0.839839E-01
0.255548E 00
0.573548E 00
3. 4.

.7 7.0 14. 42. 140.

1
.072

.01
1
1

1
.11

.003
1
1

13

1

0 0.0
.023 .04

.05 .03
1 1
1 1

0 3 0
0.257818E 01
0.192790E 02
0.109351E 02
0.248343E 02
0.123490E 01
0.235601E 02
0.764108E-01
0.174053E 01
0.314154E 00
0.169653E 00
0.245921E 01
0.470271E 01

750.
.128

1

.125

1

TED)
AL ET
SPERRY
PERRY
J1

2 .33

0
14

114 .095 .07

1 1 1

9 2
1.E-12 1E-14 2.5E-1 4.6E-2 1.95E-1 4.9E-1 3.E-4

1.3523 4.12
1.96E-2 1.1E-3 1.E-3 8.79E-2 1.56E-2 1.4E-1 1.E-2

0.924498E 00 0.127624E 00-0.120877E-01 0.147609E-02-0.221878E-02 0.140791E-02
-0.320435E 00 0.749457E 00 0.133947E 00-0.723106E-02 0.118776E-01-0.550329E-02
-0.129278E 00-0.570561E 00 0.571302E 00 0.777237E-01-0.106783E 00 0.831124E-01
-0.595580E-01-0.116204E 00-0.293226E 00 0.638737E 00 0.656881E 00 0.128785E 00
-0.937171E-01-0.199812E 00-0.421724E 00-0.687642E 00 0.267024E 00 0.346402E 00
-0.909697E-01-0.141622E 00-0.502120E 00 0.206233E 00-0.529903E 00-0.305710E 00
0.358971E 00 0.563439E 00 0.553704E 00 0.185776E 00 0.301332E 00 0.265058E 00
0.286981E 02-0.179404E 02 0.413898E 01-0.368092E 00 0.570344E 00-0.327956E 00

-0.327000E-03-0.1000OOE-03-0.100000E-03-0.1000OOE-03-0.100000E-03-0.100000E-03

ZJ
0

BIRD
BIRD
BIRD
BIRD
BIRD



APPENDIX B

PLOTS OF SIMULATED DISCHARGES

DURING THE VERIFICATION RUNS
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BIRD CREEK OCT
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Figure B.1 Six-Hour Lead Off-Line Forecasts for Bird
Creek, October 1958.
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BIRD CREEK NOV 1958 OBSER ...... OFNNS ------ OFML
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Figure B.2 Six-Hour Lead Off-Line Forecasts for Bird
Creek, November 1958.



BIRD CREEK DEC 1958 - OBSER . OFNHS ------ OFML
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Figure B.3 Six-Hour Lead Off-Line Forecasts for Bird
Creek, December 1958.
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BIRD CREEK JAN 1959 - OBSER - - 0FN --....-..-- OFML

0
0

6b. 00 80. 00
TIME STEP
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Figure B.4 Six-Hour Lead Off-Line Forecasts for Bird
Creek, January 1959.
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BIRD CREEK RPR 1959 OBSER OFNWS ------ OFML
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Figure B.5 Six-Hour Lead Off-Line Forecasts for Bird
Creek, April 1959.



BIRO CREEK MRT 1959 _. OBSER .. OFNWS.--...- OFML
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Figure B.6
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Six-Hour Lead Off-Line Forecasts for Bird

Creek, May 1959.
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Figure B.7 Six-Hour Lead Off-Line Forecasts for Bird

Creek, June 1959.
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Figure B.10 Six-Hour Lead On-Line Forecasts for Bird Creek,
October 1958.
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Figure B.12 Six-Hour Lead On-Line Forecasts for Bird Creek,
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Figure B.14 Six-Hour Lead On-Line Forecasts for Bird Creek,
April 1959.
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Figure B.17 Six-Hour Lead On-Line Forecasts for Bird Creek,
August 1959.



BIRO CREEK SEP 1959 - OBSER . . NNHS ------ ONML
C
C

6
0_

C

C
C)J

C
0

6N

0
0

00 20. 00 40. 00 60. 00
TIME

80. 00
STEP

100. 00

Figure B.18 Six-Hour Lead On-Line Forecasts for Bird Creek,
September 1959.
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Figure B.19 Six-Hour Lead Off-Line Forecasts for the
Cohocton River, October 1969.
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Figure B.20 Six-Hour Lead Off-Line Forecasts for the
Cohocton River, November 1969.
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Figure B.21 Six-Hour Lead Off-Line Forecasts for the
Cohoctoi River, February 1970.
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Figure B.22 Six-Hour Lead Off-Line Forecasts for the
Cohocton River, March 1970.
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Figure B.23 Six-Hour Lead Off-Line Forecasts for the
Cohocton River, April 1970.
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Figure B.24 Six-Hour Lead Off-Line Forecasts
Cohocton River, May 1970.

COFIOCTON RIVER MAT 1970 ___OBSER CFNWS ------ CFML

_j

l__.

Cr)

LUJ
0

C)

Co

-

c

C)

0~
('J

C

0'
0. 00 20. 00 40. 00 140. 00

for the



COHOCTON RIVER JUN 1970 ___OBSER . FNHS -- OFML
0

0

0-

0

(T(I

MO

w Cr 0

C%

C:0. 0 0 20. 00 40. 00 60. 00 80. 00 100. 00 120. 00 140. 00
TIME STEP

Figure B.25 Six-Hour Lead Off-Line Forecasts for the
Cohocton River, June 1970.
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Figure B.26 Six-Hour Lead Off-Line Forecasts for the
Cohocton River, September 1970.
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Figure B.27 Six-Hour Lead On-Line Forecasts for the
Cohocton River, October 1969.
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Figure B.28 Six-Hour Lead On-Line Forecasts for the
Cohocton River, November 1969.



C)

0~

0-

C)

C3

C)
CJ

I I
100. 00 120. 00

Figure B.29 Six-Hour Lead On-Line Forecasts for the
Cohocton River, February 1970.

COHOCTON RIVER FEB 1970 OBSER ONNHS ------ ONML

/'

|I

'~O

(0

t~-)
C...)

C)

(0-

0
ca.

0.00 20. 00 40. 00 60. 00
TIME

80. 00
STEP

140. 00



0
0

0
0-C'J(\N

o.
0
0

(n 0
C o

(Y)0

Co
C 1

c,

=0.
0

1 I

60. 00 80. 00
TIME STEP

100. 00 120. 00 140.00

Figure B.30 Six-Hour Lead On-Line Forecasts for the

Cohocton River, March 1970.
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Figure B.31 Six-Hour Lead On-Line Forecasts for the
Cohocton River, April 1970.
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Figure B.33 Six-Hour Lead On-Line Forecasts for the
Cohocton River, June 1970.
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APPENDIX C

Stochastic Model of Base Flow With Constant Channel Losses.

Let the deterministic continuous time equations of the
model of base flow be

dx (t)/dt = -d1 ' x (t) (C.1)

dx2 (t)/dt = -d " x 2 (t) (C.2)

Integrating Equations (C.1) and (C.2) from time t to
time t+At and adding the discrete time white gaussian noise
processes, the discrete time system equations become,

x 1 (t + At) = A1 x 1 (t) + Wj(t) (C.3)

x 2 (t + At) = A 2 x2 (t) + W 2 (t) (C.4)

z(t) = x 1 (t) + x2 (t) - Ss + v(t) (C.5)

In which all symbols, except SS, the constant channel

losses, were defined in Chapter 5. Ss is, of course, equiva-

lent to the NWSRFS acronym for SSOUT. The only change in the
Kalman filter equations used in the model of base flow of
Chapter 5 is in the calculation of z(tjt-1):

z(tjt-1) = x1 (tlt-1) + x2 (tit-1) - Ss (C.6)

The parameter Ss should not be confused with a state

variable. That parameter must be estimated by maximum likeli-
hood jointly with the remaining parameters of the model.
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