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ABSTRACT

Approaches to lake water quality modeling are critically examined with
particular attention to the formulation of water quality transport as the
link between hydrodynamics and biogeochemical reaction. A linked water
quality model for shallow lakes includes three major components: a biogeo-
chemical reaction component, a lake hydrodynamics component and a water
quality transport component. State-of-the-art modeling approaches for
each component are reviewed, and a synopsis of phosphorus dynamics in
shallow lakes is given. For the water quality transport component,
review of the literature shows two significantly different approaches to
water transport: a lumped component approach based upon multiple
fully-mixed boxes, and a continuum approach employing the finite differ-
ence method to approximate the continuous governing equations. The
multiple-box model is shown in an analysis of the kindred fully-mixed
tanks-in-series conceptual reactor model to create an excessive implicit
dispersion due to its formulation. This leads to a model in which the mod-
el mass transport is not closely related to the properties of the physical
system. being modeled. Rather, dispersive transport in the model is
shown to depend heavily upon the model formulation -- the model trans-
port parameters thus cannot be specified from hydrodynamic data but
must be found by calibration. In direct contrast, the finite difference
model maintains a far closer approximation to the physical system and
permits direct specification of water quality transport from the actual lake
hydrodynamics.

To support these arguments, a computer program incorporating both a
multiple-box model and an alternative one-dimensional finite difference
model is developed and applied to Lake Balaton in Hungary. The biogeo-
chemical component of both models is a four component
phosphorus-phytoplankton interaction model originally proposed by van
Straten (1980). Hydrodynamic information is supplied to the
one-dimensional finite difference model by linkage to a transient
two-dimensional single-layer model of wind-driven circulation. A
one-dimensional dispersion coefficient is computed from the
two-dimensional velocity field using a method based upon that of Fischer
(1966, 1969) and Holley, Harleman and Fischer (1970), but proceeding
from the assumption that advection rather than turbulent diffusion domi-
nates lateral mixing. The finite difference model developed for Lake
Balaton consists of forty grids and is used to simulate a representative
period from early spring to late summer. The results are contrasted with
those produced by a four-box model of the lake using long-term average
advection and calibrated dispersive exchange flows. The finite difference
model is found to lead to a predicted behavior more similar to that
observed in field data collected from Lake Balaton.* Experimentation with
the models is conducted to examine the behavior of the lake and the domi-
nant factors leading to that behavior.
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1 INTRODUCTION

1.1 Background of the Study

The deterioration of lake water quality is being faced throughout the
world. Increasing population and development, and changing agricultural
practices have created pressures from which few water bodies escape.
And, although society can take steps to prevent or correct water quality
degradation, such actions are invariably costly and prior knowledge of
their effectiveness is often impossible. The people and agencies charged
with planning water quality control thus face a very difficult set of prob-
lems indeed. Not only must they develop methods and strategies to
control water pollution, but they must also forecast the cost and effec-
tiveness of these strategies to guarantee that the controls used insure the
best water quality at the least expense.

Mathematical computer models of water quality have arisen in response
to the needs of water pollution control planning. Clearly, society cannot
afford to test expensive control strategies by trial and error; a less cost-
ly means to develop and evaluate control alternatives is required. Water
quality models contribute in two ways. First, by describing the physical,
biological and chemical processes affecting water quality, models increase
understanding and suggest control methods. And secondly, predictive
models can forecast future water quality and permit trials of possible
strategies at very reasonable expense. Accurate and efficient water qual-
ity models can thus play a valuable role in the management of
environmental water quality.

Here we report on a program of research to develop and apply math-
ematical computer models of water quality in a particular, important enyi-
ronment: the shallow freshwater lake. Although shallow lakes as large as
our application lake, Lake Balaton in Hungary, are rare, small shallow
lakes and ponds are perhaps the most common of water bodies. Relatively
little attention has been paid in the past to the special problems of model-
ing such environments and even less attention has been directed to the
particular interest of our research: the influence of hydrodynamics upon
shallow lake water quality, and the proper linkage of hydrodynamic
transport models with biogeochemical water quality models.

Our attention to the linkage of hydrodynamic models and biogeochemi-
cal water quality models addresses a weakness in current water quality
modeling practice. This weakness arises when the modeler fails to consid-
er the dominant length and time scales of the lake processes of interest.
The complete water quality model must match these dominant scales in its
representation of both hydrodynamics and biological dynamics. This is
seldom done in practice.. As a result, one finds highly sophisticated mod-
els of lake water quality chemistry and biology compromised by
inadequate, or even inaccurate, models of water motion and mass trans-
port. Similarly, there are models which attempt to determine
hydrodynamics and mass transport with high accuracy, but then simply
lump all biochemical transformations into a single first-order loss te.rm.
In this report we seek to demonstrate the necessity to consider both
hydrodynamics and biochemistry in a compatible and even-handed fashion.

1



Our hypothesis is that the proper linkage of hydrodynamic and biogeo-
chemical models will create a more accurate and complete picture of lake
water quality dynamics.
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1.2 Summary

Shallow Lake Water Quality Modeling

In Chapter 2 we briefly review water quality modeling for shallow
lakes, first supplying background on the processes which govern shallow
lake water quality dynamics and then reviewing a number of models typi-
cal of current practice. Our specific goal in water quality modeling is to
chart the course of eutrophication and to determine water quality manage-
ment schemes which can slow or reverse eutrophication.

In virtually all lakes, algal biomass, which is the most prominent man-
ifestation of eutrophication, is limited in growth by an insufficiency of the
nutrient phosphorus. Although phosphorus is found in numerous
particulate and dissolved forms in water, orthophosphate is the primary
form readily utilized by algae. Modeling efforts thus concentrate on the
possible pathways to orthophosphate. In shallow bodies of water there is
a net loss of phosphorus to the sediments, but episodic release of
sedimentary orthophosphate is probably an important, though
intermittent, exception. Such releases are episodic in shallow water since
orthophosphate is chemically bound to the sediments under the aerobic
conditions which typically prevail. On those occasions when the water
overlying the sediment becomes anoxic, or when the sediments are phys-
ically disturbed, orthophosphate release can occur. Another source of
utilizable phosphorus is that which enters the lake from the surrounding
drainage basin. Human activity becomes an important factor here since
sewage inflow and runoff from agricultural and urban areas can all be rich
in utilizable phosphorus. The task of the eutrophication model is thus to
trace. the pathways of phosphorus from these external and internal
sources to the growth of algae and eventually to the departure of
phosphorus from the active biological system.

In most engineering studies, such as this one, a biogeochemical water
quality model is employed. Such a model is founded on the principle of
conservation of mass of the element or elements of interest. In lake
eutrophication, our interest is in phosphorus and the proper formulation
of its cycle in the lake environment. In Chapter 2, four alternative
phosphorus biogeochemical models developed specifically for shallow lakes
are presented. Differences in the models are due largely to the number
of phosphorus forms included as model compartments and the consequent
complexity of the mathematical formulation and parameter requirements.

We also point out in Chapter 2 that the spatial resolution of the model
is an important factor, though it has been given minor attention in most
previous modeling investigations. Most models have employed simple mod-
el spatial structures -- often hypothesizing the lake as a single, homoge-
neous tank, or at best two or a few such tanks. However, as we will
show in the results of this study, the choice of the model spatial struc-
ture is a matter of considerable subtlety which greatly influences the
model's ability to properly include hydrodynamic transport as an influence
relative to biogeochemical processes.

3



In a review of spatial structure and mass transport i n lake water quali-
ty models we find widely varying practices. Two different premises in
model construction are identified: the finite difference model which seeks
to approximate the continuous mass conservation equation, and the box
model in which an integral expression of mass conservation is made for
each of one or more discrete volume elements. The first is essentially a
continuum approach, while the second is a lumped parameter approach.

Differences in the averaging of time and space are largely responsible
for the different approaches to water quality modeling in general and to
mass transport in particular. All transport models depend upon *a
more-or-less arbitrary separation of advection from diffusion or
dispersion. The separation is effected by averaging over time and space
-- the resulting mean motion is defined as advection while all residual
transport becomes diffusion or dispersion. If the degree of averaging in
space is over fewer than three dimensions, a finite difference model is
employed. Three-dimensional averaging, either over the entire lake or
over large lake segments, leads to the box model approach.

We continue our analysis of transport modeling with a review of a num-
ber of state-of-the-art lake water quality models. There'is little consen-
sus in current practice on a single "best" modeling approach -- both
finite difference and multiple-box formulations are employed commonly.
Most unfortunate is the-failure of the literature to critically examine and
contrast the different modeling approaches. Even in research programs
employing both finite difference models and box models, there are no
definitive comparisons or recommendations.

Our examination of model spatial structure and mass transport con-
cludes with a theoretical analysis. The analysis concentrates on a critical
review of multiple-box models, studying their properties through analyt-
ical solutions for conceptual reactor models. A comparison of the
tanks-in-series reactor, as the analog of the box model, and the dis-
persed flow reactor, corresponding to the continuum model, indicates the
representation of dispersive transport to be a weakness in the box
models. Unlike the continuum models, the box models carry large implicit
dispersion in their formulation. This dispersion is unrelated to the real
mixing properties of the physical system and thus must be treated as an
empirical model parameter, typically found by calibration. In contrast, in
a well formulated continuum model, dispersion is a specified input which
may be directly determined from the observed properties of the actual.
lake.

Lake Circulation Modeling

The discussion above has suggested the potentially major role of
hydrodynamics in lake water quality, so in Chapter 3 we include a review
of the state of the art in lake circulation modeling. Our goal in this
review is to supply the background needed to select an appropriate
hydrodynamic model component to be used in concert with a biogeochemi-
cal model of lake water quality.

4



The review of lake circulation modeling proceeds along three subject
lines: an overview of the common modeling approaches, an examination of
the limitations imposed by typical model assumptions, and a look at the
important parameters to be employed as model input.

The numerous approaches to circulation modeling all seek to solve the
equations of momentum and continuity in some simplified form. We may
classify these models according to their temporal variation -- either tran-
sient or steady state -- and according to their spatial representation.
Spatial representation falls into two broad categories: simplified models of
less than two dimensions, and true circulation models of two or three
dimensions. There are three major groups within this latter category:
single-layer models, which assume a vertically homogeneous lake;
multi-layer models, which presume the lake to be divisible in two or more
essentially homogeneous layers; and, the Ekman models, which neglect
certain forces and accelerations in order to partially solve the problem by
analytica.l methods.

. Simplifying assumptions and approximations are a necessary part of
any circulation model, and are quite acceptable where conditions permit.
A number of assumptions in wide use are examined, and we state condi-
tions under which the assumptions are appropriate. Investigated are the
shallow water assumptions, neglect of convective acceleration, neglect of
horizontal shear transport, and the rigid-lid assumption. All of. the
approximation criteria, however, include the very important caveat that
they may be inapplicable in nearshore or other local regions where
bathymetry changes abruptly.

Circulation models also depend upon the selection of values and formu-
lae for. various input parameters. Particularly important parameters are
the vertical eddy viscos-ity and the stresses at the water surface and bot-
tom. The-eddy viscosity, though it significantly impacts the velocity pro-
files predicted by a model, is a subject of considerable disagreement in
the literature. Many representations of this parameter as a function of
depth have been proposed, but there is virtually no information with
which to identify a superior alternative. There is greater coherence in
the literature addressing the stress produced by wind on the water sur-
face. The formulae of Wu (1969) are found to be widely accepted,
although preliminary results by some researchers indicate that these for-
mulae may not be accurate in very shallow water. Bottom stress is
represented using a greater variety of methods than surface stress,
though this is due more to computational constraints than to a lack of
understanding or agreement. Though it is less true for the bottom stress
as a parameter than for the surface stress or vertical viscosity, we can
nevertheless make the followin9 summary observation: although the form
and value of these parameters significantly affect model results, selection
of parameters is made difficult by the lack of unified theory or adequate
experimental data. Thus, the model results inevitably reflect the consid-
erable uncertainty of these parameters.

Lake. Balaton

Following the review of the literature of circulation modeling, the
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report turns in Chapter 4 to a description of the application lake, Lake
Balaton. Balaton is a large, but unusually shallow lake (3.2 meters deep,
on average, and 75 kilometers long). Hydrologic flows into and out of the
lake are minor compared to the dominating wind-driven flows and
seiching. Wind-driven flows are influential due to the lake's shallowness,
however their complexity defies a simple generalization of their dynamics.
Non-uniformities in wind speed and direction, as well as the boundaries of
the lake shoreline, influence horizontal flow patterns. The vertical flow
profile is shown by field measurements to be non-uniform and highly tran-
sient. Superimposed upon this motion is a very prominent seiche, with
both longitudinal and transverse modes as well as various secondary
modes. Comprehensive field studies by Hungarian scientists over more
than. a decade have. defined the characteristics of Lake Balaton's seiche in
some detail. The shallowness of the lake significantly influences the lon-
gitudinal seiche by lengthening its period and causing it to damp out after
a few cycles.

Water in Lake Balaton is generally of high quality, although elevated
biomass levels and blue-green algae are creating problems in Keszthely
Bay. The lake is a hardwater lake with high pH, alkalinity, calcium and
magnesium. Dissolved oxygen is rarely low, as a consequence of the con-
stant wind mixing throughout the shallow depth. A high suspended
sediment concentration is also caused by the wind action.

Phosphorus is believed to be the nutrient which limits algal growth,
however its behavior in the lake is not satisfactorily understood. The
dominance of calcium carbonate in the lake's chemistry should lead to
nearly complete removal of orthophosphate from the lake, preventing sub-
stantial algal growth. However, growth does occur and different sources
and controls of orthophosphate may govern. The character and origin of
possible orthophosphate sources in Lake Balaton is an area of current
research and experimentation.

It is clear, nevertheless, that nutrient loading from outside the lake is
a major factor in phosphorus availability. The concentration of nutrient
inflows at the lake's western end, particularly the Zala River inflow, leads
to strong longitudinal gradients of phosphorus along the lake. A recent
study published by HIASA (Jolankai and Somlyody, 1981) has quantified
the nutrient loads into the lake according to their origin and location.

Linked Water Quality Model Development

In Chapter 5 we describe the linked water quality model developed for
this study with a particular emphasis on the use of a rational and system-
atic procedure to define the capabilities and characteristics needed in the
model. The procedure followed is, first, to prescribe the goals and pur-
poses of modeling the lake; second, to identify the length and time scales
of the major physical and biochemical processes in the lake; and, third, to
design the model components for consistency with the time and length
scales of the processes of interest and with the available observation data
from the lake. This model identification process for Lake Balaton indi-
cates a model able to identify variations in algal abundance along the lake
over time periods of a few weeks. Consequently, a transient

6



one-dimensional water quality model is proposed as an appropriate model.
Further analysis leads to the selection of a transient two-dimensional
(single-layer) wind-driven circulation model as the model's hydrodynamic
component and a simplified four-compartment model of the phosphorus
cycle as the biogeochemical component.

The water quality transport model establishes the basic structure of
the model. The transport model solves the equations of mass conservation
for a set of water quality constituents subject to advection, dispersion,
reaction, and inflow and outflow. The model links the results of the
hydrodynamic and biogeochemical components as inputs for its solution of
the equations. The mass transport equations are formulated in both of
two alternative forms: a finite difference continuum model and a
multiple-box model. The availability of two approaches permits compar-
isons, as well as a critical evaluation of the multiple-box model which is
common in current lake water quality modeling practice.

The hydrodynamic component of the water quality model is a horizontal
two-dimensional model of wind-driven circulation. The model solves the
linearized equations of motion subject to non-linear bottom stress and
wind surface stress. Determined are the histories of water surface ele-
vation and of depth-integrated velocity in the two horizontal directions.
The equations are solved using an explicit finite difference method. Out-
put from this component is used to specify one-dimensional advection and
dispersion to the water quality transport model.

The biogeochemical component is drawn from the SIMBAL model,.devel-
oped by van Straten (1980) and made available by HIASA. The model sim-
ulates the transient interactions of four species of phosphorus: two algal
populations (with different temperature tolerance), a pool of dissolved
inorganic phosphorus and another of detrital phosphorus. The transient
in.fluences of external phosphorus loads, water temperature and solar
radiation are included as well. Output from this model component deter-
mines the reaction and nutrient input terms of the water quality transport
equations.

Determination of the hydrodynamic inputs to be employed in the linked
water quality model is discussed next. The conclusions of the discussion
are that it is impossible, but fortunately unnecessary, to determine the
small-scale movement caused by seiche transport. The excursion of the
seiche is too small to be modeled correctly, but it is also too small to be an
important influence upon the water quality. Elimination of advective
motion leaves dispersion due to wind-driven circulation as the important
mechanism linking water quality and hydrodynamics. A new method,
appropriate to the lake environment, is developed to compute dispersive
transport from the velocity distributions predicted by the hydrodynamic
component. The method is a technique similar to those developed by
Fischer (1966,1969) for open-channel flow, but rederived from the differ-
ing assumption that secondary currents dominate lateral mixing in the lake
environment.
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Simulation of Lake Balaton

In Chapter 6 we report on simulations of Lake Balaton which evaluate
the influences on the lake's water quality and compare alternative model
formulations. Considered first is the behavior predicted by the
continuum model employing a finite difference grid of forty increments.
We compare models based on hydrologic flow alone, models using the
dispersion coefficient computed by the method of Chapter 5, and models
using fixed dispersion coefficients. The results show that behavior most
similar to that observed in the lake is produced by the model employing
the computed dispersion coefficient. This conclusion is drawn from the
general character of the observed Lake Balaton data. These data are
insufficient to verify the model in a rigorous fashion, but the conclusions
are nevertheless well-supported by the data available. Simulations
employing constant values of the dispersion coefficient in time and space
show that a coefficient of 1 m 2 /s gives fair agreement with the results of
models using the spatially and temporally varying computed dispersion
coefficient.

Additional simulations show that the dominant influence upon Balaton's
water quality is the spatial distribution of inflowing nutrient loads. The
hydrodynamic and biogeochemical components hold roughly equal influence
upon the predictions, at a lesser but still important level below the nutri-
ent load distribution. The results thus indicate that calibration of the
biogeochemical component is less a determinant of the model results than
has generally been supposed. The results further support our contention
that model hydrodynamics is an important influence upon water quality
and should be duly accounted for in model development and calibration.

Finally, the results of the continuous forty-grid model are compared
with the four-box model. The four-box model without exchange flow is
found to include greater dispersion than the forty-grid model. Exchange
flows, which would add additional dispersion, should thus not be consid-
ered. The four-box model is also found, not surprisingly, to lose all
detail in the spatial concentration distribution. In summary, the four-box
model results are approximate and tend toward underprediction.

Closing Remarks

Chapter 7 reports the major conclusions and recommendations drawn
from the results of this research. Our primary conclusion is that the mul-
tiple-box model is an inferior alternative to the continuum approach
embodied by the finite difference model. The multiple-box model fails
because its formulation implicitly adds unintended dispersion to the model
mass transport and divorces the model parameters from the geometry and
physics of the prototype lake. As a consequence, model design must
depend heavily on calibration to specify mass transport. In contrast, the
finite difference model avoids these pitfalls caused by excessive spatial
averaging. The finite difference approach maintains a good approximation
to the continuum of the actual lake, thus permitting direct specification of
model transport from the observed or simulated lake hydrodynamics. This
insures that mass transport will be found independently of the model
biogeochemistry, avoiding the pitfalls faced by some modelers when they
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attempt to calibrate both hydrodynamic transport and biogeochemical rate
constants simultaneously.

Our recommendations for design of water quality models is presented in
a reanalysis of the length and time scales governing the model behavior.
This repeats the analysis which began Chapter 5, but it is done in much
greater detail and accuracy, and with specific attention to the modeling
assumptions made in development of the hydrodynamic linkage. The anal-
ysis finds that the model formulation is sound, with good consistency
between its various components. The analysis is further generalized to
examine other modeling regimes feasible for Lake Balaton and to indicate
directions for the application of such analyses to lake modeling problems
in general. Finally, we draw upon the analysis as a guide for the design
of a field data collection program to support water quality modeling.

Besides our general investigation of approaches to lake modeling, we
devoted considerable effort in this study to the specific case of Lake Bala-
ton. The clearest of our findings concerning Lake Balaton is that the
observed water quality of the lake is most directly the result of the spa-
tial distribution of the incoming phosphorus load. The resulting
phosphorus distribution in the lake is substantially altered by biogeochem-
ical reaction, long-term advection and dispersive.mixing -- all acting with.
more-or-less the same degree of influence. A remarkably minor determi-
nant of the lake's observed water quality was judged to be the advective
influence of the seiche. The dispersion caused by seiche advection is
important however.

Finally, we close with recommendations for future research. Our sug-
gestions are to work. further with the Lake Balaton finite difference model
to continue investigating the influences of the biogeochemical and hydro-
dynamic transport components. To this end, recalibration of the biogeo-
chemical model is proposed as well as refinement of the model loading
inputs. Other suggestions are to gather further data from the lake to
construct a model component for water-sediment phosphorus interaction
and, on a different front, to independently and critically examine the
determination of the dispersion coefficient developed in this study.
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2 WATER QUALITY MODELS FOR SHALLOW LAKES

2.1 Introduction - The Purpose of Lake Water Quality Models

Lake water quality models have many applications; however, in this
research we are specifically concerned with predicting .the lake's trophic
state. The trophic state of a lake is a reflection of the availability of
nutrients for the growth of algae. Lakes range from oligotrophic (nutri-
ent poor -- literally, "poorly fed") to eutrophic (nutrient rich -- "well
fed"). Typically, they begin as oligotrophic and, over geologic time,
become progressively more and more eutrophic. The speed of this transi-
tion, if allowed to proceed naturally, depends upon the quantity of
organic matter supplied to the lake by its drainage basin and the nutri-
ents recycled within the lake itself.

The process described above, proceeding imperceptively through
geologic time, would hardly seem sufficiently worrisome to provoke com-
puter modeling to predict its course. However, the lake's natu-ral course
can be greatly accelerated by man's activities. The discharge of sewage
and other wastes to the lake, as well as rainfall runoff from urban areas,
feedlots and fertilized agricultural lands, can introduce far more nutrients
than natural processes. The resulting acceleration of the -lake's nutrient
enrichment hastens the arrival of the eutrophic condition, a process some-
times called cultural eutrophication.

The effects of nutrient enrichment engender the concern over eutro-
phication. The overabundance of nutrients leads to rapid algae growth --
often of species which render the lake unattractive for swimming and oth-
er recreational activities. Further, too rapid growth of algae may cause
severe depletion of life-sustaining oxygen in the water column. The sub-
sequent decay of dead algae leads to offensive odors and otherwise
unpleasant recreational conditions. As well, taste and odor imparted to
the water may. taint the lake as a water supply. Concern over such
effects, rather than over nutrient enrichment per se, has led H. F.
Hemond to suggest as a practical working defin.ition of eutrophication,
any biomass level that people object to."

Whatever definition one employs, the goals for eutrophication modeling
are clear. What is desired is a means to predict the course of the lake's-
algal population under nutrient introduction regimes likely in the future.
In particular, we would like the ability to foresee probable algal blooms --
the rapid, nearly uncontrolled, growth of algae. With such a model as a
tool, control schemes to correct the lake's course may be proposed and
evaluated. It is this ability to anticipate the likely behavior of the lake
under different water quality management programs that is the key poten-
tial of water quality models.

In the sections to follow, we address the formulation of a model compo-
nent to describe water quality dynamics, including eutrophication, in
terms of the biogeochemical cycling of phosphorus.
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2.2 Phosphorus in Shallow Lakes

The remarks of the previous section emphasize the importance of nutri-
ents in determining the lake's water quality. Although phytoplankton
require many chemical elements for growth and life processes, the major
nutrient elements are phosphorus, nitrogen and carbon. On average,
plant tissue contains these three elements in the ratio of one part (by
weight) phosphorus to seven parts nitrogen to forty parts carbon
(Wetzel, 1975). This ratio must be roughly preserved in the plant's
nutrient needs as well. According to Liebig's Law of the Minimum, the
growth of an organism will be limited by that nutrient which is least rela-
tive to the organism's needs; in most lakes this is the element phosphorus
(Wetzel, 1975). Accordingly, most water quality models simulate the
availability and cycling of phosphorus in order to determine the behavior
of the lake ecosystem over time. In this section, we will present a short
review of phosphorus in aquatic habitats and particularly the shallow
lake.

2.2.1 Forms of Phosphorus in Lake Water

The analysis of phosphorus is made difficult by problems of. measure-
ment (Wang, 1981). The chemically identifiable fractions of phosphorus in
water do not necessarily reflect the forms of phosphorus important in
biological cycling. Further, the measurement techniques have been shown
prone to error, and thus the quantities of phosphorus in the various frac-
tions are often inaccurately reported. Despite these difficulies, we may
construct a reasonably coherent picture of the phosphorus forms in
natural water.

Phosphorus is found in both particulate and dissolved forms in lakes
(Wetzel, 1975). The particulate or sestonic phosphorus includes
organisms, phosphorus minerals and phosphorus carried by organic

particulates. Orthophosphate (PO 4 ), polyphosphates and organic
colloids are the usual dissolved forms. We will examine these particulate
and dissolved sub-groups in turn below, before proceeding to a
description of their transformations in the phosphorus cycle.

The organisms included in particulate phosphorus are primarily
phytoplankton, with zooplankton and bacteria to a lesser extent.
Phosphorus is a key element in the organic compounds functional in the
photosynthetic and metabolic processes of the phytoplankton. It is found
in the nucleic acids, DNA and RNA, in the energy transporting
nucleotides, ATP and ADP, and in numerous other organic compounds of
lower molecular weight. These various organic compounds within
phytoplankton account for most of the particulate phosphorus found as
organisms.

The mineral forms of phosphorus common in lakes- are the apatites -
calcium phosphate hydroxides. The primary form is hydroxylapatite,
Ca 5 (PO 4 )30H, a relatively insoluble compound. Also included in the min-
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eral particulate forms are those inorganics to which phosphorus will
adsorb. The major adsorbers are calcium carbonates, iron and aluminum
compounds, and clays. At high pH, calcium carbonates have high
adsorption capacity for phosphorus (Lijklema, 1980). In hardwater lakes,
where calcium carbonate preci.pitates as a result of biological activity,
adsorbed phosphorus will co-precipitate in substantial quantities as well
(Otsuki and Wetzel, 1972). Iron and aluminum hydroxides and clay com-
pounds are also important adsorbers of phosphorus; however,- their
influence is felt most at lower pH.

The third particulate fraction is that phosphorus associated with
non-living organic matter -- either adsorbed onto dead organic
particulates or as a constituent of the particles. All living material con-
tains organic phosphorus and thus any organism is a potential source of
particulate organic phosphorus. . Typically, it is one of the more substan-
tial phosphorus fractions in lake water.

Though a very small part of the total phosphorus in a lake,
orthophosphate generates considerable interest. Orthophosphate, or dis-
solved inorganic phosphorus, is the form most readily available for uptake
and use by phytoplankton. Its invariably low concentration in lake water
reflects the rapidity and completeness of algal uptake. Orthophosphates
are the product of such natural processes as weathering and dissolution
of phosphorus-bearing rocks and soil, and biological processes within the
lake. Other sources include agricultural fertilizers and domestic sewage..
Under the usual pH conditions in lakes, it appears as the ionic forms

HPO4 2- and H 2 PO4 associated with phosphoric acid, H3  4 '

The second dissolved phosphorus form, condensed polyphosphate, is
the result of biological activity or synthetic man-made compounds, partic-
ularly detergents. Polyphosphates are broken down by biological activity
to eventually yield orthophosphate. Though slow compared to other
biological phosphorus reactions, these reactions are sufficiently fast to
significantly affect nutrient availability. Time scales for polyphosphate
degradation are on the order of.days to weeks (Stumm and Morgan, 1970).

Dissolved organic phosphorus includes both dissolved and colloidal
forms produced by biological growth. The exact chemical character of
these high molecular weight compounds is largely unknown, though they
constitute roughly one-fourth the total phosphorus in typical lake waters
(Stumm and Morgan, 1970).

2.2.2 Phosphorus Transformations in Shallow Lakes

A review of the literature of phosphorus in lakes reveals a number of
phosphorus transformations which can produce orthophosphate, the
biologically important form. In this section we will examine major trans-
formation pathways associated with algal growth processes and with the
exchange of phosphorus between the sediments and the water column.
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Phytoplankton Growth and Phosphorus

The existence of radioactive phosphorus isotopes, 3 2 P and 3 3 P, has
made it possible to study the transformations of phosphorus between its
biologically important forms in tracer experiments with laboratory
cultures. Unfortunately, the difficulties mentioned earlier in accurately
measuring the different forms of phosphorus prevent these techniques
from being as fruitful as they would were the fractions more reliably
measured. Nevertheless, the experimental results have -identified impor-
tant aspects of phosphorus movements in lake water.

Particularly illuminating are Lean's findings (1973), which are also dis-
cussed by Wetzel (1975). From tracer experiments, Lean deduced at least
four major compartments of biologically important phosphorus. (See Fig-
ure 2.1..) The major pathway found by Lean can be followed in sequence
around the cycle. First, there is uptake of orthophosphate by the
particulate fraction. Lean feels that the particulates incl.ude at least two
sub-fractions: one, presumably algae, is actively involved in cycling
phosphorus, while the other does not participate. The particulate phase
excretes or releases a minor amount of orthophosphate and a greater
quantity of low molecular weight dissolved organic phosphorus. A small
portion of this low molecular weight phosphorus is directly hydrolysed to
orthophosphate. The majority follows a longer route, first binding to
colloidal phosphorus in a condensation reaction. This reaction apparently.
displaces orthophosphate from the colloid to. start the cycle over again. A
small portion of the colloidal phosphorus is continuously lost from the
cycle to particulates unavailable for biological use. These eventually set-
tle from the water column, as does a portion of the particulate fraction.

The most striking aspect of this cycle is its. rapidity. Lean found,
after injecting isotope-labeled orthophosphate into the culture, that only
two minutes were required before radioactive phosphorus appeared in the
colloidal fraction. Fast cycling was verified in lake field studies as well.
Such rapid turnover has important implications for the ultimate fate of
phosphorus in lakes. As pointed out by Golterman (1973), a small frac-
tional loss from a rapidly repeating cycle can lead. to substantial removal
over the course of a year.

Water-Sediment Interactions and Phosphorus

In most aerobic, and thus shallow, lakes there is a net transport of
phosphorus. to the sediments (Wetzel, 1975). Phosphorus reaches the
sediments via the settling of particulates -- both the organic and inorgan-
ic particulate forms described above are important sources. The
phosphorus returns to the water column in a number of ways according to
the physical, chemical and biological character of the. lake.

Usually, the concentration of dissolved phosphorus, and particularly
orthophosphate, is much higher in the interstitial water of the sediments
than in the overlying lake water. The orthophosphate concentration
changes continuously from a low value at the sediment surface to high
concentrations a few centimeters into the sediments. In the sediments,
orthophosphate in solution in the interstitial water is usually in saturation
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Biological movements of phosphorus according to Lean (1975)

equilibrium with the mineral forms of phosphorus, according to Stumm and
Stumm-Zollinger (1972). They report interstitial orthophosphate concen-
trations up to 10.5 mg/Z .-- as many as one thousand times greater than
typical lake water orthophosphate concentrations. Sedimentary
phosphorus is also suppied by the decay of organic matter which has set-
tled to the sediment surface. As a result of the accumulation of these
phosphorus inflows, the sediments hold an enormous store of phosphorus
in most lakes. Release of sedimentary phosphorus is thus a major factor
in the ability of a lake to recover from eutrophication. Unfortunately, it
is an uncertain factor.

Mechanisms causing the release of sedimentary phosphorus depend
mainly upon physical and chemical processes. We will examine two impor-
tant routes for phosphorus release in lakes: the diffusion processes
which occur when the sediments are undisturbed and the phosphorus
releases which accompany the mixing and resuspension of sediment.

The proximity of very different orthophosphate concentrations within
and without the sediments leads to diffusive transfer driven by steep con-
centration gradients. Diffusion within the sediment interstitial water is
necessarily a slow process, but may nevertheless cause substantial
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phosphorus transfer (Stumm and Stumm-Zollinger, 1972). The effective-
ness of this transfer is controlled by the chemistry of the sediments
(Wetzel, 1975 and Lijklema, 1980). In shallow lakes, the water column is
usually completely aerobic and oxygen will diffuse into the sediments to a.
few centimeters. This oxygen microzone has significantly different chem-
istry than the lower sediments. Most importantly, reduced iron diffusing
from below into the microzone will be oxidized into insoluble iron
hydroxide -- a compound with very high adsorption capacity for
phosphorus. Thus, the oxidized microzone acts as a very effective
phosphorus trap, virtually sealing off the sediments from active exchange
with the lake water.

Under certain conditions -- namely, when the oxidized. microzone does
not interpose -- diffusion can be an important phosphorus release mech-
anism. In stratified eutrophic lakes, anoxic conditions occur in the
hypolimnion every summer. Eventually, the sediments become anoxic and
reduced, the absorption capacity is greatly diminished, and phosphorus is
released. Anoxia may occur in shallow, unstratified lakes on those occa-
sions when extreme algal growth and decay exhaust all available oxygen
and impede oxygen introduction at the lake surface. These rare condi-
tions occur only in highly eutrophied shallow lakes. Also possible in
shallow lakes is the physical disturbance of the sediments to below the
microzone. This will expose the reduced sediments to the. water column
and lead to phosphorus release for a period of time.

Physical disturbance of the sediments is an important mechanism in
shallow lakes. Frequently, strong winds cause the water column to mix
down to the sediments, and the consequent disruption of the surface
sediments can lead to release of phosphorus.. The mechanism of this
interaction involves both physical and chemical processes. The physical
agent is the shear stress exerted on the lake bottom by currents and
wave action, causing sediment particles and organic matter to become sus-
pended in the water column. For the suspended sediment, this leads to a
change in chemical conditions -- often a substantial change. Usually, the
interstitial water of the sediments will have lower pH, but higher
orthophosphate concentration than the overlying water. Thus, when
particulates with phosphorus bound to aluminum or iron are resuspended,
the increase in pH will cause orthophosphate to be released.

Resuspended calcium carbonate, on the other hand, will absorb more
orthophosphate at the higher pH of the lake water. But, the transport
from the high orthophosphate concentration of the sediments to the lower
concentration in the water column has the reverse influence, causing the
release of orthophosphate. Either process may prevail, so that the behav-
ior of resuspended calcium carbonate sediments must be determined
experimentally for any particular lake (Lijklema, 1980).

Other Biological Processes and Phosphorus

Research by many different workers, summarized by Wetzel (1975),
suggests that zooplankton, bacteria and aquatic macrophytes may all enter
into the cycling of phosphorus. Zooplankton, for example, ingest
phosphorus with phytoplankton and other seston, but then excrete it as
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orthophosphate and other forms. The significance of zooplankton as an
orthophosphate source relative to other sources is as yet undecided, how-
ever.

As with phytoplankton, aquatic plants require phosphorus as an essen-
tial nutrient. Thus, as the plants grow during the spring and summer,
they acquire and store phosphorus. This phosphorus is rapidly returned
to the lake after the plant has died and decayed (Wetzel, 1975).

An interesting possible influence of plant life on the limnetic
.phosphorus cycle is the potential ability of macrophytes to transport sig-
nificant quantities of orthophosphate from the sediments to the lake
water. McRoy et al. (1972) have conducted careful studies of eelgrass in
a coastal marine environment and shown that the macrophytes absorb sig-
nificantly more orthophosphate from the sediments than the lake water.
Subsequent excretion to the water effected a net phosphorus transport
from the-sediments to the water column. Though McRoy's findings are for
a marine ecosystem, similar pathways are likely in freshwater bodies -- a
conjecture strongly supported by Wallsten's (1980) studies in a shallow
Swedish lake. The si-gnificance of macrophyte nutrient pumping relative
to other possible phosphorus regenerative mechanisms in shallow la-kes is
entirely unknown, however.
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2.3 Models of Shallow Lake Water Quality

2.3.1 Classification of Models

Following Quinlan (1975), we may identify three basic approaches to
modeling aquatic ecosystems. First is the biodemographic model, which
uses the individual or species as a fundamental unit. Such a model will,
for example, bookkeep cell numbers based upon a mathematical formulation
of the cell life cycle.

A second approach to water quality ecology is via the bioenergetic
model. These models, which quantify the ecosystem in terms of energy or
power, trace the flow, storage and loss of energy within the ecosystem.
A formulation of the conservation of energy will govern such models.

*The third approach is the most common in engineering applications and
will be used in this study. This is the biogeochemical model, a model
based on the conservation of mass of one or more key elements. In lakes,
the elements of most interest are the nutrients -- carbon., nitrogen and
particularly phosphorus; biomass and dissolved oxygen may be modeled as
well. These models attempt to duplicate the cycling of elements within the
waterbody, at least to the extent that the cycles are .known. The ele-
ments are quantified in terms of concentration within the lake -water, for
example phosphorus in mg/e.

Regardless of the approach employed, we may cite some guiding prin-
ciples to be observed in model formulation (Najarian and Harleman, 1975).
First is the .stipulation that mass be conserved for all elements
considered. Implications of this requirement are the use of consistent
units for all' element compartments and the careful bookkeeping of all ele-
ment transformations. The second fundamental principle is causality --
that the transformations between the forms of phosphorus be determined
by the interacting components and by environmental. influences upon the
element system. Application of this principle is limited by our knowledge
of the transformation processes and by the inability to capture all detail
in practical computation.

2.3.2 Water Quality Model Structure

There are two major aspects to the structure of lake water quality
models: the representation of the phosphorus cycle and the spatial resol-
ution of phosphorus distribution. The phosphorus cycle is represented in
the model as various different forms of phosphorus between which trans-
fers of matter occur. The phosphorus forms employed are known as state
variables, or sometimes compartments. The transfers between the forms
are due to chemical or biological transformations which are formulated in
the model as reaction equations. Typically, a biogeochemical model formu-
lates the phosphorus cycle via the trophic levels of the ecosystem. For
example, one model compartment may represent zooplankton phosphorus,
which feeds upon phytoplankton phosphorus, which. in turn uptakes dis-
solved inorganic phosphorus, and so on. This model formulation is based
upon experimentation with laboratory cultures and can draw upon labora-
tory results as a guide in parameter specification.
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To decide the spatial resolution desired for the water quality model is
to decide the associated hydrodynamic transport model -- the two issues
are inseparable. The alternative spatial structures for lake models (both
deep and shallow) are summarized in Figure 2.2. Most water quality mod-
els to date have tended to use the simpler structures - modeling the lake
as a single fully-mixed tank (known as a one-box model) or as two such
tanks. The two-box model is often used in deep stratified lakes with one
box to represent the epilimnion and one for the hypolimnion. More
sophisticated models are less common, but do exist, particularly for the
vertical structure of stratified lakes. For the problem at hand, shallow
lakes, there is very little vertical structure in the actual lake and the
horizontal spatial resolution is of greatest interest. We will further
explore the model variations from Figure 2.2 in this and the next chapter
in the contexts of modeling transport and circulation.

In the following sections we review a selection of biogeochemical and
water quality transport model alternatives from the literature. Discussed
are models pertinent to shallow lake modeling in general, and to Lake Bal-
aton in particular.
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2.4 Models of Phosphorus Biogeochemistry

2.4.1 Review of Selected Models

A limited number of phosphorus models specifically for shallow lakes
have been proposed. In this section we will review three models devel-
oped for Lake Balaton in Hungary drawing upon the original. references as
well as a similar review by van Straten and Somly6dy (1980). At the close
of this section, we will briefly report another shallow lake model from the
literature to illustrate a higher trophic level model formulation.

BEM

The earliest model of Lake Balaton was developed by the Balaton Eco-
logical Modelers Group of the Hungarian Academy of Sciences (Herodek
and Csaki,- 1980, Csski and Kutas, 1980 and Kutas and Herodek, 1980).
This model is a mixed biomass and nutrient model rather than a model of
the phosphorus. cycle. alone. It considers seven compartments. Three of
these track biomass:* one compartment each for winter and summer algal
species and one for .bacteria (decomposers). Biomass components are
measured in mg dry weight of biomass (algal or bacterial) per liter.
Nutrient compartments include orthophosphate, nitrate and dead organic
matter (detritus). The seventh model compartment is the sediment
phosphorus store.

Two main transformation pathways are modeled: the primary production
of algal biomass and the decomposition of detritus by bacteria. (See Fig-
ure 2.3.) Primary production is the growth of algae which accompanies
-the uptake of the nutrients nitrate and orthophosphate. It is modeled as
a function of algal biomass and temperature subject to limitation by nutri-
ent and -ligh.t availability. Nutrient limitation is fashioned as a Monod.
kinetic process for each of the two nutrients. A geometrically weighted
average of the three limiting factors, the two nutrients and light, is taken
to control primary production.

Detritus in the model is the product of algal and bacterial mortality. It
is recycled to the nutrients nitrate and orthophosphate by the growth
process of the bacteria. Bacterial uptake of detritus is modeled as-.a
function of temperature, bacterial biomass and detrital concentration, the
'last quantity in a Monod-type expression. The decomposition process,

.which includes excretion of the elemental nutrients as well as respiration,
is a function of temperature and bacterial biomass. Conversion from mass
of detritus to bacterial biomass, and thence to nutrient biomass, is accom-
plished assu'ming fixed nitrogen and phosphorus proportions in the
detritus and 'by taking nitrate and orthophosphate production to be fixed
fractions of decomposition.

Other pathways of the model are the loss of orthophosphate to the
sediments by co-precipitation with calcium carbonate formed during algal
primary production. A sediment release function reintroduces a part of
the sedimentary phosphorus back into the water column as a temperature
dependent first order process.
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The model hydrodynamics are simple: a single fully mixed tank is con-
sidered. This formulation has been employed to model single basins of
Lake Balaton in .separate simulations.

BALSECT

The model BALSECT (standing for Balaton Sector Model) was devel-
oped at HIASA by Leonov (1980a, 1980b). The theoretical model'includes
eight phosphorus components in addition to dissolved oxygen (Figure
2.4a). The phosphorus components are dissolved inorganic phosphorus
(orthophosphate), dissolved organic phosphorus and non-living
particulate phosphorus (detritus) in both the water and the sediments.
In the water alone are compartments for phytoplankton and bacterial
phosphorus. The lake is modeled hydrodynamically as four fully-mixed
basins (Figure 2.4b) -.- a division of the lake originating in' hydrologic
studies discussed in Section 4.2.1. Solids and water continuity are main-
tained between the basins using monthly average inflows and outflows.

Phosphorus is cycled in the water column by biologically mediated
reactions. Algae consume dissolved inorganic phosphorus at an uptake
rate determined by a Monod dependence on the nutrient concentration,
and further controlled by temperature and light. The algae in turn
produce dissolved organic phosphorus by excretion and non-living
particulate phosphorus by mortality. Mortality is taken to be inversely
proportional to the uptake rate by a Monod-type relation, thus making
excretion a very complex function of the nutrient concentration in the
water. The dependency of excretion and mortality on the uptake rate is
an unusual and complex formulation for models of this type.

Bacteria mediate the mineralization of dissolved organic phosphorus.
Uptake of dissolved organic phosphorus is modeled by Monod kinetics
including temperature dependency. Excretion of orthophosphate (dis-
solved inorganic phosphorus) and mortality to the particulate compartment
are formulated in analagous relations to those used for algae. Finally,
particulate phosphorus is assumed to decompose to dissolved organic form
in a temperature dependent reaction.

The water column components interact with simultaneously reacting
components in the sediments. Phosphorus enters the sediment via settling-
of non-living particulates. Once in the sediments, it is assumed to
decompose to, first, dissolved organic phosphorus and then to dissolved
inorganic phosphorus, both' steps proceeding by temperature dependent
first-order decay. A portion of the dissolved organic phosphorus is lost
to permanently unreactive forms in the sediments. Sedimentary
phosphorus re-enters the water by first-order release of dissolved inor-
ganic phosphorus. This model of the sedimentary phosphorus cycle has
yet to be implemented in simulations of Lake Balaton due to a lack of cali-
bration data. In its place, first order settling to and release from the
sediments has been employed.

SIMBAL

Another model from IIASA is SIMBAL, the simple Balaton model, devel-
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oped by van Straten (1980) using the BEM model as a basis. This model
is of interest for its means of development as much as for the model itself.
It is, in fact, a second, more elaborate formulation of a previous model
found lacking in its ability to reproduce observations from the lake.
Rejection of the first model was the outcome of a formalized procedure to
evaluate model performance given incomplete and imperfect measurements
from the field.

van Straten's procedu're explicitly accounts for the various uncertain-.
ties facing the model -- the large. uncertainty in observation data and in
forcing function input data -- as well as the incomplete knowledge of the
system behavior and thus model formulation. He allows for these -factors

*by first defining an acceptable range of model results for historical peri-
ods, based on the incomplete and uncertain observation data for those
periods. '.Then, for a given model formulation, bounds are placed on the
possible values of the model parameters. With these definitions, a Monte
Carlo simulation is performed, selecting parameter values randomly from
within the defined bounds and recording those parameter combinations-
which yield model results within the acceptable response range.

van Straten's first model, shown as Model I in Figure 2.5, was unable
to produce any response within the acceptable range. Model I is a simpli-
fied representation of the phosphorus cycle. It omits bacteria from
explicit formulation, capturing the effect of bacterial behavior through *a
strong dependence on temperature for the mineralization term.. In addi-
tion, the detritus compartment combines both dissolved organic and
particulate organic phosphorus. Interaction with the sediment is included
through first-order sedimentation of detrital phosphorus and biogenic
precipitation of dissolved inorganic phosphorus, and through a temper-
ature dependent release of dissolved inorganic phosphorus from the
sediments. The model includes two algal compartments for summer and
winter species, a distinction ca-ptured through different temperature
dependencies. Algal growth is limited by the orthophosphate concen-
tration. via a Monod relation, and by light availability. Growth is also
formulated to incl-ude temperature dependence, as is algal mortality.

As stated, Model I was unable to reproduce the-observed lake behavior
within the permitted range, a failure due to overpredicted dissolved inor-
ganic phosphorus increases at the end of the algal growing periods. To
correct this error, van Straten hypothesized another mechanism at work
to remove the excess orthophosphate: a process of continuous adsorption
and desorption with suspended sediment in the water column. This proc-
ess was added to create Model 11, also shown in Figure 2.5. The flux of
phosphorus to or from the sorbed state is assumed proportional to the dif-
ference in lake orthophosphate concentration above or below a specified
equilibrium level. This. level is a model parameter, varied with location in
the lake. Inclusion of the adsorption-desorption mechanism eliminates the
problems of Model I, and Model II was able to make reasonable simulations
of the lake's behavior.

The hydrophysical model employed in SIMBAL is based upon the same
longitudinal four-box structure used in the other Balaton models. van
Straten adds one feature, however, in an attempt to capture the dynamic
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character of Lake Balaton's water motion. He terms this a return
velocity, though it might more appropriately be called an exchange flow
since it represents equal but opposite flows between two adjacent boxes.
The return velocity is taken as constant in both time and space. van
Straten finds estimation of the other parameters to be sensitive to the
value of the exchange flow -- a finding which reinforces our contention,
stated in Chapter 1, that water quality models must pay careful heed to
both hydrodynamics and biogeochemistry.

Jorgensen's Model

Since the Lake Balaton models include relatively few trophic levels, it
is instructive to look at Jorgensen's model, developed to model small shal-
low lakes in Denmark (Jorgensen, 1976 and 1978). As can be seen in Fig-
ure 2.6, Jorgensen includes the higher fish and zooplankton trophic
levels, in addition to phytoplankton. Grazing rates are all defined using
Monod-type relations.

Jorgensen's representation of phytoplankton dynamics is a significant
departure from the models above. He formulates phosphorus uptake uy
phytoplankton as a two-stage process, differentiating between the -uptake
as a function of lake water nutrient concentration, and the cell growth,
governed by the phytoplankton internal cell nutrient concentration. Such
a formulation is effective in modeling luxury uptake by cells during short
periods of high ambient concentration. In the model, the rapid luxury
uotake realistically leads to a slower, long term growth of the
phytoplankton population. This representation is better able to model the
response to transient release of sediment nutrients than a model without a
lag factor between uptake and growth.

Jorgensen's model also includes a complex submodel of water-sediment
interaction (Jorgensen et al., 1975). Phosphorus enters the sediment via
first-order settling of detritus and phytoplankton from the water column.
It enters into the sediment compartment labelled "exchangeable
phosphorus," which we take to consist of the particulate organic form.
This in turn is degraded to "interstitial phosphorus," presumably dis-
solved orthophosphate. The degradation reaction is a temperature
dependent first-order decay. Release of the interstitial phosphorus to
the water column is proportional to the concentration difference in
orthophosphate between the interstitial and lake water, modulated by a
temperature dependence.

2.4.2 Conclusions

Use of water quality models for prediction requires that they first be
calibrated and verified. It is safe to presume that any of the biogeochem-
ical models presented can be calibrated to match the measurements taken
in Lake Balaton. The models include sufficient parameters to allow wide
ranges in their response, and the field data for calibration include only
nine stations along the lake sampled biweekly. With few data and many
parameters, calibration is easily possible. This has been demonstrated to
varying degrees of accuracy with the Balaton models and is fair to assume
for Jorgensen's model as well.
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Thus, the models are probably similar in their ability to produce
behavior near that observed in the lake. Differences between the models
arise from their complexity and their choice of emphas's. Emphasis is
best placed, in our opinion, upon the sediment-water interaction relation.
Ultimately, it is the fate of the sedimentary phosphorus stores which will
determine the lake's response to water quality management programs.
Continued phosphorus release from the sediments will lead to slow recov-
ery. from eutrophication despite- significant decreases in the external
phosphorus inputs. The sediments are thus the critical factor controlling
the. shallow lake's eventual trophic state.

Model complexity increases with the number of state variables and
reaction terms. And, as complexity grows, so grow the number of model
parameters and the quantity of data required for calibration. Th.e number
of state variables, for example, is a good indicator of the amount of cali-
bration information needed. Jorgensen (personal communication) suggests
that the number of data needed grow roughly as the square of the number
of model parameters. In Table 2.1, we show a census of state variables
and parameters for the four models examined. Of the parameters shown,
only about one-fourth need be considered essential to (he model cali-
bration process; the other, non-essential, parameters may be defined
from the literature or exhibit minor influence upon the model results.
According to Jorgensen's criterion for model calibration - data
requirements, the SIMBAL model needs but half the data of the other
models. Even still, SIMBAL's calibration requirement approaches or
exceeds the availability of directly measured quantities in the Balaton data
base. Adequate calibration is thus a limitation on all of the Balaton mod-
els.

Although the problems of calibration seem great, the problems of ver-
ification are, if anything, greater. So far, the Balaton models have not
been verified in the sense that calibration parameters developed in simu-
lations of one year have been employed to successfully simulate a second
year. This, however, is the crucial test of a model's predictive ability
and 'an absolute requirement if the model is to be accepted as a predictive
tool. Indeed, Simons and Lam (1980) have pointed out that the model
cannot be considered a predictor of long-term eutrophication until it has
been verified in continuous simulations lasting at least as long as the
lake's hydraulic residence time. For Lake Balaton, this means the model
results must be compared with field observations .over a duration of about
a decade. There are not sufficient data for such a task, but even if
there were, it is unlikely that the present models would be verified over
such a long time period, judging from Simons' and Lam's results in a simi-
lar test for Lake Ontario.

To conclude, we find that biogeochemical modeling is in its infancy.
The problems of calibration, verification and even model formulation must
still be grappled with before such models grow into routinely used tools
for prediction.
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Table 2.1

Number of state variables and parameters for phosphorus cycle models

BALSECT BEM SIMBAL Jorgensen

State variables 8 6 4 7

Model parameters - total 30 33 22 30

Rate Constants 15 12 9 12

Nutrient limitation factor constants 1 3 1 5

Light limitation factor constants 3 3 2 3

Temperature dependency constants 11 12 9 5

Phosphorus content conversion factors 0 3 0 4

Assumed constant concentrations 0 0. . 1 1

Factors to convert model output to 1 0 3 0
measures quantities



2.5 Models of Water Quality Transport

As stated earlier, the spatial structure of the model necessarily implies
a formulation of hydrodynamic transport to accompany the model
biogeochemistry. The selection of the proper spatial detail, and conse-
quently the hydrodynamic transport model, is a problem of considerable
subtlety which is only beginning to be addressed by water quality
modelers. Since a major emphasis of this research is upon just this issue,
we will return to it in later chapters for more detailed discussion in the
context of our application lake. As background to that d-iscussion, this
section gives a review of modeling techniques applied to hydrodynamic
transport in lake water quality models.

A large number of lake eutrophication models presume that the lake can
be modeled as a fully-mixed tank with spatially uniform concentration.
While such models can be appropriate and useful for small shallow lakes
with short hydraulic residence times, they simplistically represent larger
or deeper. lakes in which significant concentration variations exist. In
deep lakes, vertical temperature stratification leads to significantly dif-
ferent properties above and below the steep temperature gradients of the
thermocline. To capture these differences, models with two or more ver-
tical layers have been developed. The concentrations of biochemical
constituents within each layer are determined by accounting for the
reactions within the layers and the transport of matter between the
layers. Biogeochemical models of deep lakes are thoroughly reviewed by
Wang (1981).

Modeling the vertical dimension of deep lakes is of only peripheral
interest to our study of shallow lakes. However, the practices of model-
ing horizontal variations in large lakes are essentially the. same for shallow
lakes and deep lakes. Large shallow lakes are far fewer than deep lakes,
so modeling examples of spatial transport in shallow lakes are rare. Lake
Balaton is without doubt the most intensively modeled large shallow lake,
but the Balaton models supply only a restricted range of transport model
alternatives. In the remainder of this section we will review a selection of
lake models representative of different approaches to 'modeling horizontal
transport. The review considers the formulation of model transport
assuming the circulation information necessary to quantify transport is.
given. A review of mathematical models to determine lake circulation is
included later as Chapter 3.

2.5.1 Governing Equations

The equation ,of mass conservation for a dissolved or suspended con-
stituent within the lake water is:
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are the horizontal direction components,
is the vertical direction component,
is time,
is the constituent concentration,.
are the fluid velocity components in the x, y
and z directions respectively,
is the turbulent diffusion coefficient in the
direction indicated by its subscript, and
represents the rate of net addition of constit-
uent mass per unit volume due to external and
internal sources and sinks.

This equation states that the change in concentration with
the change due to advective transport (represented. by
terms on the right-hand side), due to diffusive transport
terms) and due to sources and sinks (the last term, s).
sources and sinks term are the addition and subtraction
biogeochemical reaction.

time is equal to
the first three
(the next three
Included in the
of mass due to

Boundary conditions to Equation 2.1 are generally simple. Flux
boundary conditions apply at the lake bottom and water surface, and at
the lake periphery -- most often the flux is zero.

Equation 2.1 is the basis of all lake water quality models, albeit with
extensive simplification in some models. In the discussions to follow we
pay particular attention to two basic approaches to solving Equation 2.1.
The first is the multiple-box model, in which the lake is divided into a -set
of completely mixed volume elements. Concentration is determined in each
element by simple mass balance -- essentially the integral of Equation 2.1
over the element volume. This results in an ordinary differential equation
for each element k:

dc k
V k dt-

where Vk

ck

kC + Ek jk (c -ck)]
[) ki Y j ] S

is the volume of element k,

is the concentration in element -k,

Qjk is the advective flow from element j to k,

Cj k is the diffusion coefficient between elements j and k,
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A is the interfacial area between elements j and k,

Sk is the sum of all sources and sinks within element k,
and

. ~k is the distance between the centroids of elements j
and k.

In some derivations, an exchange flow, Xk is introduced to replace the

quantity EjkAjk /jk which has the units of a flow. In the discussion to

follow we will refer to models of the type in Equation 2.2 as multiple-box
models (or finite section models after Thomann (1972)).

Implicit in the construction of the multiple-box model is the require-
ment that Equation 2.1 be reduced to a zero-dimensional version by aver-
aging over all three spatial dimensions. In zero-dimensional models,
concentration can no longer be considered a continuous function of space;
it is a discrete function over relatively large integrated volume elements.

Alternatives to this model are to retain the three-dimensional depend-
ence of Equation 2.1 or to employ less extensive averaging, retaining one
or two-dimensional dependence. This permits Equation 2.1 to be solved
by a fundamentally different approach in which the continuous depend-
ence of mass concentration upon at least one spatial dimension is modeled.
For these models, one employs the finite difference method to construct an
approximate' representation of the equation (Leendertse, 1971). Applica-
tion of the finite difference method results in a difference equation which
is directly. analogous to the original differential equation. The difference
equation is, in essence, a continuum approach which seeks to approximate
the continuous governing equation at finite intervals. As such, it differs
conceptually from the integral approach of the multiple-box model. We
will return to this distinction in detailed discussions in later chapters.

2.5.2 Transport in Water Quality Models

Two types of transport are included in Equation 2.1: advective trans-
port due to organized large-scale motion and diffusive transport due to
small scale turbulent fluctuation. The first type of motion is captured in
the fluid velocities u, v and w, while the second type of motion is repres-

ented via the turbulent diffusion coefficients, -e . y and E . The sepa-

ration of motion into two such components is arbitrary to the extent that
it depends upon the time and length scales assumed to represent
advection. In the limit of infinitely short length and time scales, all
motion will be represented as advection, and turbulent diffusion will dis-
appear.
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The representation of turbulent transport using diffusion coefficients
is an imperfect, but highly successful, approximation made by analogy
with Fick's Law of molecular diffusion. Formally, turbulent transpor+ is
the residual transport which remains after averaging the extremely tran-
sient field of velocity and concentration over .a short but finite time
period. The time period implicit in Equation 2.1 is no longer than a few
of minutes. If considerably longer periods are used -- for example the
inertial period or seiche period of the lake -- the subdivision of advective
and diffusive motion will be much different and the diffusion coefficient
will change accordingly. The modified coefficient resulting from longer
averaging periods is sometimes termed the effective diffusion coefficient.
The. question of temporal averaging arises frequently in modeling tidal
estua'ries; it is discussed further in that context by Harleman (1971) and
Hinwood and Wallis (1975).

Models based upon the time periods above, though covering a broad
range, all fall within the category of transient models in Figure 2.2a.
Time periods on the order of weeks or months can be modeled as
quasi-steady -- that is, as a series of steady-state cond.itions under the
assumption that the lake has had sufficient time to reach a new equilib-
rium within each time period. Still longer time periods, over one or more
years, can be modeled as steady. The effective diffusion coefficients for
these models will again differ from those appropriate for shorter time
periods.

Just as temporal averaging creates turbulent diffusive transport, spa-
tial. averaging aIso leads to on apparent transport known as dispersion.
Dispersion arises from spatial nonuniformities in velocity and concen-
tration over the dimension or dimensions of averaging. As with turbulent
diffusion, dispersive transport is usually assumed to adhere to Fickian
diffusion relations. Thus, dispersive transport is taken as the product of
the concentration gradient and a dispersion coefficient; D.

Just as different effective diffusion coefficients result from different
time averaging periods, the dispersion coefficient will vary according to
the- dimension removed 'by spatial averaging. In Figure 2.2b, a number of
spatial' averaging regimes are identified. Two-dimensional models are cre-
ated by averaging vertically over the depth or laterally over the width of
the lake. The dispersion coefficients appropriate to laterally averaged
models will in general be very different than those for vertically
averaged. One-dimensional models are created for long shallow lakes by
averaging vertically over the cross section and for deep lakes by averag-
ing horizontally. Complete averaging over all three dimensions gives rise
to zero-dimensional models -- fully-mixed tanks -- in which internal
dispersive transports are no longer considered.

Dispersive transport must also be considered in models which are
produced by subdividing the lake into discrete spatial intervals. The
multiple-box model, for example, averages over the spatial nonuniformities
in the distributions of velocity and concentration along and within the box
boundaries. The consequences of this particular type of spatial averag-
ing upon the selection of the dispersion coefficient have not been
systematically addressed in the literature. Typically, an empirical
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approach is practiced, determining the dispersion coefficient by cali-
bration of the model results. In some versions of this model, the
dispersion coefficient is not directly employed but a dispersive transpor+
is specified as an exchange flow, the equal exchange of mass between
adjacent boxes as defined above following Equation 2.2.

More attention has been paid to the dispersion due to the spatial aver-
aging implicit in a fixed grid finite difference model. - The analysis is
appropriate to horizontally two-dimensional single or multi-layer models --
these models fall within both the two-dimensional and three-dimensional
categories in Figure 2.2. For these models, the concept of a
sub-grid-scale turbulent transport has been developed assuming horizon-
tally isotropic turbulence which is a function of the length scale (grid
spacing) considered. The transport is represented by what is known a-s a
sub-grid-scale turbulent diffusion or dispersion coefficient. The hypoth-
esis of this method is that the diffusion coefficient can successfully
capture motion occurring on length scales less than the grid size. A the-
oretical basis is established to support this hypothesis (Deardroff, 1971),
however the appropriate value of the dispersion coefficient as a function
of grid size is not determined by the theory. In practice, the coefficient
is determined empirically from field data as presented, for example, by
Murthy and Okubo (1977).

The variety of transport modeling alternatives defies easy or compre-
hensive generalization. The models clearly share one common trait: they
are all statements of the conservation of mass. However, making that
statement is complicated by the fact that motion is a continuous spectrum
in space and time. Any difference in the model in characterizing space or
time thus necessarily affects the nature of the conservation of mass state-
ment. Formally, the statement arises by averaging Equation 2.1 over.time
or space or both, and differences in the periods of averaging are seen in
the advective transport and diffusive or dispersive transport. In the fol-
lowing section, we review how some prominent lake models treat the
problem of characterizing transport. The influence of spatial averaging is
more pronounced in these lake models and we emphasize that aspect of
model formulation in our review.

2.5.3 Review of Selected Models

In this review we examine some of the more well-known models of water
quality in large lakes. Our emphasis is on spatial detail and hydrodynam-
ic transport, however we will indicate the models' biogeochemical formu-
lations as well. The. order of presentation will be from spatially simple to
complex, beginning with multiple-box models.

DiToro and Matystik (1980) and DiToro and Connolly (1980) have
recently published models of Lake Huron and Lake Erie. The mode-Is are
similar in their treatment and determination of transport, although they
differ in their biogeochemical' formulation. The Lake Erie biogeochemical
model is more compl*ex, using fifteen compartments to model the dissolved
oxygen, phosphorus, nitrogen and silicon cycles. The Lake Huron model
considers only the phosphorus and nitrogen cycles., requiring eight model
compartments. The emphasis of both models is upon the biogeochemical
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kinetics, and sophisticated formulations are developed to model the ele-
ment cycles. A computational time step of one-half day-is used for both
models.

Simple spatial structures and transport models accompany the complex
biogeochemical kinetics in DiToro et al.'s models. The models are of the
multiple-box type. Both lakes are modeled as th.ree horizontal segments
-- in two vertical layers in the Lake Huron model and in three layers in
the Lake Erie model. In both models, horizontal advection, which is con-
fined to the surface layers, is determined by flow budgets based on
long-term observed hydrology. The advective transport is thus steady,
reflecting the net rate of transport through the lakes over periods of
some years. The diffusive transport is determined by calibration against
observed temperature and chlorinity in Lake Huron, but against only tem-
perature in Lake Erie. The segmentation and calibrated flows for Lake
Erie are shown in Figure 2.7.

Somewhat greater complexity is found in the three-dimensional
multiple-box models used by a number of researchers including Thomann
et al. (1975 and 1979), Chen et al. (1975 and 1979), and Richardson
(1976). The Thomann model, LAKE3, consists of a total of sixty-seven
finite segments arranged into five layers. The horizontal subdivision
varies from twenty-six segments in each of the upper layers, to ten,
three and two segments as one proceeds downwards through the three
lower layers.

Thomann et al. devote consioerable effort to model calibration and ver-
ification in their study published in 1979. As a result of their calibration
efforts, they changed the model biogeochemical structure. from that ori-
ginally proposed in 1975. Initially a ten compartment model of the nitro-
gen and phosphorus cycles was employed; however, this was replaced by
an eleven compartment model incorporating silicon as well.

Thomann et al. depended largely upon field data to specify transport
in the model. Advective flows were given for winter and summer condi-
tions as best estimates based on field observations, using published math-
ematical circulation model results as an additional guide. Sensitivity to
advective transport was tested and found small for reduction of transport
by a factor of ten. Dispersion, coefficients were found by calibration
using temperature.as a tracer.

The Thomann model is very similar to DiToro's models, but extends the
analysis to two horizontal dimensions with greater spatial detail. The ele-
ment cycles. are modeled similarly in both models, and the treatment and
determination of transport is essentially the same. For transport, both
use an ad hoc procedure to specify advection and dispersion. The trans-
ports are treated as steady or quasi-steady, and determined in an
approximate fashion from available field data and steady-state circulation
model results. Horizontal dispersion is generally held constant, with the
exception that Thomann assumes dispersion between nearshore and off-
shore regions to drop to zero from mid-April to the end of May as a
consequence of the thermal bar effect. Thomann uses a computational
time step of about two hours.
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The model developed by Chen et al. (1975 and 1979) is more complex
than that of Thomann et al., yet it is based upon generally similar princi-
ples. The model is a multiple-box type, segmenting the lake into
forty-one horizontal boxes extending over eight layers. The biogeoc.hemi-
cal model .. includes thirty-nine compartments and considers the
phosphorus, nitrogen, silicon and carbon cycles as well as pH and inert
tracer substances. The computation time step is one day. The transport
model departs from the procedures used in the models reviewed previously
-- rather than using calibrated steady or quasi-steady flows, Chen et al.
employ simulation results from a numerical circulation model to specify
flow between the boxes. The authors do not, however, state the proce-
dures followed to specify dispersion.

Richardson (1976) constructed a model of Saginaw Bay in Lake. Huron
along the same lines as Thomann's model, but including only a single con-
servative substance, chloride. Richardson's paper is a narrative
description of the steps followed in first setting and then modifying the.
model transports to achieve a calibration with field observations. The
most striking aspect of this procedure is the degree of improvisation and
extrapolation of observations necessary to arrive at transport quantities.
Richardson first poses a steady transport regime based on published
observations. This is calibrated to duplicate observed concentrations
when assuming steady conditions, but the calibration subsequently fails in
attempts to reproduce transient observations. This leads to .a two-season
transport specification hypothesized from observations of a spring thermal
bar effect. Although the final model results are a fair match to field
data, the procedure begs many questions: Can the calibrated transport be
unique? Can the calibration be used successfully for any year of obser-
vation? Is there , a more. direct, less empirical means to quantifying
transport for the model?

All of the 'preceding models were of the multiple-box or finite section
type. The alternative formulation, the finite difference model, has been
employed by fewer researchers, most notably Simons, Lam and others at
the Canadian Center for Inland Waters (CCIW). Other examples of finite
difference models are given by Paul et al. (1979).

The CCIW model, with variations, has been applied to Lake Ontario-
(Boyce et al., 1979 and Simons, 1976), Lake Erie (Lam 'and Jaquet, 1976
and Lam and Simons, 1976) and Lake Superior (Lam and Halfon, 1978).
The models share some common features. For all, a multi-layer circulation
model was employed to determine the advective transport. The circulation
model employed a finite difference method on a square- mesh grid. The
grid size, ranged. from 5 km on Lake Ontario, to 6.67 km on Lake Erie, to
10 km on Lake Superior. The results from the circulation- simulations
were averaged over time for Lake Ontario (over .the inertial period, sev-
enteen hours) and Lake Erie (one day) prior to use in the water quality
simulations.

The treatment of spatial discretization varies considerably in the water
quality components developed to model the different lakes. In Lake Erie,
coincident finite difference grids were employed for both circulation and
water quality so that the advective flux from the circulation model could
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be used as transport in the water quality model with no modification for
spatial differences. However, the circulation model output was, as men-
tioned above, averaged in time to remove transient oscillations. The
diffusive transport was defined from the concept of sub-grid-scale turbu-
lence. Both the circulation and water quality models employed a single
layer formulation for most of the simulation year, using a two layer model
only during summer stratification.

The basic water quality transport model for Lake Erie was employed to
model both chloride (Lam and Simons, 1976) and phosphorus (Lam and
Jaquet, 1976). Chloride is conservative and thus requires but a single
model component. It was simulated with a six-hour computation time step;.
the results .were compared with extensive field data and verified. Also,
the sensitivity to the sub-grid-scale turbulent diffusion coefficient was
tested and found moderate -- coefficients in the range 25 to 75 m./s
proved satisfactory. The chloride model served as the foundation for a
two-component phosphorus model. The phosphorus model considered
transport, settling and resuspension/regeneration to be the major mech-
anisms controlling total phosphorus, with simulation results revealing
transport to be dominant. Only the period after the autumn overturn
(the single-layer situation) was modeled for phosphorus; reasonably good
agreement with field data was achieved. The computation time step used
in the chloride model was doubled in the phosphorus model, to twelve
hou rs.

In Lake Superior, Lam and Halfon (1978) used an approach slightly
different from that followed in the LaKe Erie model. The water quality
model of Superior employed .a grid size of 20 km, twice that in the linked
hydrodynamic model. Vertically, a four-layer model was used for both
Water quality and hydrodynamics. Horizontal advective transports in the
water quality model were determined by appropriately summing the circu-
lation computed in the hydrodynamic simulation. Diffusion was defined
from the grid size following the sub-grid-scale diffusion concept. The
biochemical ' component of the water quality model was the two-species
phosphorus model used for Lake Erie. The model was exercised in three
different modes: in the first, a one-box (spatially uniform) model was
run; in the second, the 20 km grid model was run; and in the third, the
grid model was run, but without considering transport. All three pre-
dicted similar lake-wide average concentrations. However, the
multiple-box model with transport showed important nearshore-offshore
differences in phosphorus concentration which were corroborated by field
data. Neglect of transport led to significant departures from the spatial
patterns observed in the field.

CCIW's most recent modeling effort is the study of Lake Ontario. The
horizontal discretization used for Lake Ontario is a dramatic departure
from the two previous lake models. As shown in Figure 2..8, the water
quality model was not based upon a regular mesh, but rather, upon
irregular segments. The published description of horizontal transport is
a bit sketchy, particularly for the determination of diffusive transport.
Advection was found by summing the hydrodynamic model results (spatial-
ly interpolated where necessary) over the faces of the. water quality
segments. Diffusive transport could be computed in either of two ways,
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according to Boyce et al. (1979). Equal but opposite exchange flows
between the segments could be found by calibration or computed from
sub-grid-scale diffusion coefficients. The description by Simons (1976)
implies the latter was used, however no procedural details are given.
The model employs a four-layer vertical structure, computing vertical
diffusive transport as a function of density stability. The transport mod-
el was verified in simulations of temperature prior to modeling
phosphorus.

The Lake Ontario model version reported by Simons (1976) included a
complex biochemical model based on the previously described Thomann et
al. (1975) formulation. Simons made no changes in Thomann's model,
except to use a longer computational time step, one-half day. The three
situations tested with the Lake Superior model were once again compared:
a one-box model, a spatially discretized model, and a discretized model
without transport. The findings were similar to those given earlier -- the
inclusion of spatial detail improved the agreement with observations, but
was not necessary to capture the lake-wide average behavior.

The Lake Ontario project summary (Boyce et al., 1979) is frustratingly
inconclusive. The work reported earlier by Simons is only referenced in
the summary although results from a simpler two-component phosphorus
model are discussed. Despite many years of experience in modeling the
Great Lakes with differprt approaches to biochemical simulation and in the
treatment of transport and spatial discretization, the authors offer. no
concl.uqions or recommendations. Their closing remarks simply state that
more work is necessary on individual model components. before lake models
can be fruitful. Unfortunately, their failure to completely report their
findings from the different model formulations prevents us from drawing
firm conclusions, although it is clear that spatial discretization is neces-
sary if it is desired to predict more than simply the lake-wide response.

Similarly inconclusive is the report by Paul et al. (1979). From a
number of lake modeling efforts discussed in Paul's report, the most per-
tinent to this review is the study of Lake Baikal in the U.S.S.-R. Lake
Baikal was modeled using a three-dimensional finite difference model as
well as a multiple-box model consisting of fourteen boxes. The
three-dimensional model was based upon a finite difference solution on a
15 km by 7.8 km horizontal grid. Advective transport for the finite dif-
ference model was determined in a 3-D hydrodynamic circulation model
with a coincident grid; diffusive transport was based upon sub-grid-scale
diffusion. A single conservative substance was modeled. The
fourteen-segment model employed a much simpler approach. The segments
were more or less arbitrarily specified, and long-term transport between
the segments was' found from the mean current pattern in an approximate
fashion. Unfortunately, no results from the fourteen-segment model are
given and thus it is impossible to compare results from the two modeling
approaches. The report therefore offers no conclusions or recommen-
dations as to the preferred water quality modeling technique -- a finite
difference model or a multiple-box model.
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2.5.4 Analysis of Mass Transport Formulations

The preceding review of the state-of-the-art in modeling water quality
in large lakes reveals widely varying approaches in the treatment of
transport and spatial structure. We believe mass transport and spatial
structure to be a fundamental issue in lake water quality modeling and
particularly in coupled hydrodynamic and biogeochemical models. In this
section we will present a theoretical analysis of hydrodynamic transport in
the water quality model and examine aspects of that theory in lake models.
The theory and illustrations will examine the differences between box
models and finite difference models.

Multiple-box and finite difference models have been used in many dif-
ferent applications, however previous researchers have offered no conclu-
sions as to the preferable formulation. As an approximation of the
continuous differential equations, the finite difference models should offer
greater detail and accuracy. Yet, multiple-box models are in wide use
with an apparently reasonable degree of success. What, then, is the fun-
damental distinction between finite difference models and box models in
their ability to capture water quality transport and reaction?

Conceptual Reactor Models

To begin to answer this question we can look upon the lake as a simple
reactor vessel similar to the engineered vessels used in wastewater treat-
ment or chemical engineering. In those fields a number of conceptual
models have been developed to represent the flow and mixing character-
istics of the reactors. The fully-mixed tank presented in.Section 2.4.1 is
one such model. For Lake Balaton, two other conceptual models are of
interest: the tanks-in-series reactor and the dispersed flow reactor. For
simplicity, our analysis will be directed to models of one-dimensional
transport. However, our conclusions are of wider validity and generally
apply to three and two-dimensional modeling as well as one-dimensional.

Before examining the tanks-in-series and dispersed flow models, it is
useful to discuss the most fundamental models, the fully-mixed tank and
the plug flow reactor (shown schematically in Figure 2.9). These models
are the end points in a continuous spectrum of models and their flow and
mixing -characteristics bracket all others. Such characteristics are con-
veniently determined by the concentration seen in the -reactor outflow in
response to a pulse injection of conservative, unreactive tracer entering
with the inflow to the reactor. The fully-mixed tank instantaneously and
completely mixes the injected mass throughout the reactor. The tracer is
thus immediately observed in the outflow and slowly decreases in concen-
tration as it is diluted with fresh, tracer-free inflow. The concentration
response is:

C e (2.3)C
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where c
M

.V
t
t*
Q

c

is the outflow concentration,
is the mass of injected tracer,
is the tank volume (constant in time),
is the time since tracer injection,
is the tank residence time, given by Q/V,
is the flow into and out of the tank (constant in
time), and
is the reference concentration, defined as M/V.

While the fully-mixed tank is based on the premise of infinitely strong
mixing, the plug flow reactor supposes no mixing to occur at all. A trac-
er injection entering the plug flow tank simply travels through the tank
as a plug, exiting the tank unaltered after the time to traverse the tank.
Its concentration response is:

CO t t*
C

(2.00 otherwise

The concentration is infinite since undiluted tracer has that concentration
by definition.

The dispersed flow reactor gives a response falling between the plug
flow and fully-mixed limits; it is a reactor which includes mixing, but not
the infinite mixing of the fully-mixed tank (Figure 2.9). The mathemat-
ical basis of the model is the one-dimensional advective-dispersion
equation.

A + UA -
at .ax

(2.5)A (D -)ax ax

where U
A
D

is the cross-sectionally averaged advective velocity,
is the cross section area, and
is the one-dimensional dispersion coefficient.

In this simplified version of the equation, the substance of interest is
assumed conservative with no loss or gain of mass, and the
cross-sectional area and average velocity are assumed constant with x.
This model shares the governing equation and is thus the conceptual
equivalent of the one-dimensional lake water quality model. For a reactor
of finite volume this equation must be solved with the boundary conditions
that the total flux at x = 0 is zero after the pulse injection (t > 0):
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Qc - AD = 0
ax

at x = 0 (2.6a)

and that the dispersive flux at the end of the reactor is zero:

AD- = 0
ax

D
A
L

at x = L (2. 6b)

is the dispersion coefficient,
is the tank cross-sectional area, and
is the tank length.

(In many analyses, the second boundary condition is improperly replaced
by the condition that c = 0 at x = ., leading to an incorrect solution for a
finite tank.) The solution of Equation 2.5 with boundary conditions 2.6
for a pulse tracer input is given by Thomas and McKee (1944):

C.
C0

=2 Z

n=1

Pn (Pe/2 sin pn +Pn cos P )

[(Pe/2)2 + n2 + Pe]

2 2
SPe (Pe/2) + Pn t

exp 2 L Pe It* (2.7)

The nth root, Sn, in this equation is defined by the implicit relation:

cot P = n -Pe/2

n 2 Pe/ 2
P n

Pe is the Peclet Number, the
(through-flow) to dispersion (mixing)

dimensionless ratio of advection
it is defined as:

Pe = 2
AD

(2.9)
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The Peclet Number is a convenient measure of the reactor's dispersive
character. In the limit that dispersion becomes infinite -- the fully-mixed
tank -- the Peclet Number is 0. As the dispersion vanishes and the reac-
tor approaches plug flow, the Peclet Number becomes infinite. The
response of the dispersed flow reactor, as given by Equation. 2.7, is
shown in Figure 2.10 for a range of Peclet Numbers.

The tanks-in-series model is the conceptual equivalent of the
multiple-box lake model. Shown schematically in Figure 2.9, the model
consists of a series of tanks with through-flow entering the first tank,
passing from the first tank to the second, and so forth -until it exits the
last tank. The model may be made more complex by including equal but
opposite exchange flows between neighboring tanks, or by considering.
tanks of unequal volumes. For the simplest configuration, n equal volume
tanks with no exchange flow, the response to a pulse injection is given
as:

n-1

(n-i)! ( exp (2.10)

where c is the concentration in the outflow of the nth tank,
V is the volume of an individual tank, and
t* is the residence time of one tank, equal to V/Q, and
c is the reference concentration, equal to M/nV.

Equation 2.10 is plotted for various values of n in Figure 2.11. For n
equal to 1, the response is obviously that of a single fully-mixed tank.
Less obvious is the response as n becomes infinite -- in that case the
series behaves as the plug flow reactor. In the intermediate range of n,
the tanks-in-series model implicitly includes a degree of mixing; this can
be seen by comparing tanks-in-series responses with those of dispersed
flow reactors.

The addition of exchange flows between tanks-in-series has the effect
of increasing mixing. The equation for this model cannot be solved ana-
lytically; however numerical solutions are given by Tuan et al. (1980).
Solutions for equal volume tanks-in-series are shown in Figure 2.12 for
various values of the exchange ratio, a, defined as:

X

where X is a constant exchange flow between all tanks.

As can be seen, in the limit that a becomes infinite, the concentration
response approaches the fully-mixed tank.

45



2.0

1.8

1.6

1.4 . Pe = 35

25
1.2 -

C 15
C 1.0 . 10

0.8 6
4

0.6 2

Pe- 0
0.4

0.2

0.0

0 0.5 1.0 1.5 2.0

t/t*

Figure 2.10

Response of dispersed flow reactor to pulse input
as a function of Peclet Number, Pe

2.6

2.4

2.2

2.0

1.8
n = 40

1.6
20

c 1.4
15C

0
1.2 10

7
1.0

0.8 4 Balaton four-box model
3

0.6 2

0.4

0.2

0. 0
0 0.5 1.0 1.5 2.0

t/t*

Figure 2.11

Response of fully mixed tanks-in-series to pulse input
as a function of number of tanks, n

46



The effect of unequal tank volumes is a function of the relative tank
sizes and the number of tanks, and must be treated on a case-by-case
basis. The solution can be derived, for tanks without exchange flow, by
repeated application of the unit impulse response for a single tank
(Thomann, 1972):

(2.11)

The response of fully-mixed tank number i in a series of tanks is the con-
volution of the unit impulse response with the mass inflow:

t

c. (t) = M.(T) u. (t - T) dT

0

where M(t)

u (t)

c.

For the first tank

2.12 yields the

is the mass inflow to tank i as a function of
time,
is the unit impulse response based on the vol-
ume and residence time of tank i, and
is the concentration response- of tank i.

in a series M (t) is the impulse input, and Equation

solution in Equation 2.3. For the ith tank,

M(t) = QCiI (t), so that the solution to the complete series can be built

by proceeding stepwise through the tanks. For example, for four une-
qual tanks-in-series the solution is:

c I 2 r r4 1 r )( r ) 1 r
=0 (+2+3+r ) .1-r2 ) (1-r3) (1-r4 )

2
r2 )t

(r2-1) (r2-r3) (r2-r) rxp( t*
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2
r

3

(r3 -1) (r3 -r 2 ) (r3 -r4 )

2
3 2 r3

(r 4-1) (r 4-r 2) (r4 -r 3)

exp - +
r3t*)

r 4t* (2.13)

where c is the reference concentration based on
series volume, equal to M/(V1 +V2 V3+V 4 ),

the total

t* is the residence time based on tank 1, equal to
VI/Q, and

r. is the volume ratio of tank i to tank 1,
V.i/V .

equal to

The response of this model using the volume ratios of the four Lake Bala-
ton basins is shown as the dashed line in Figure 2.11. The volume of
Basin I is much smaller than the other, more nearly equal basins, so that
the total Balaton response is nearly that for three equal tanks-in-series.

Relating Dispersed Flow Reactors and Tanks-in-Series

The similarity of the dispersed flow and tanks-in-series reactor
responses is apparent in Figures 2.10 and 2.11, and the reactor charac-
teristics have been related by a number of researchers. Determining the
variance of the concentration with time as an analytical expression of
dispersion, Levenspeil and Bischoff (1963) found the following relation
between the number of tanks, n, and the dispersed flow reactor Peclet
Number, Pe:

1 2 ( + e )

Pe
(2.14)

For large n and Pe this approaches Pe = 2n-1 = 2n . This relation neg-
lects the influence of.exchange flow in the tanks-in-series reactor, how-
ever. We can isolate the influence of the exchange flow upon the
tanks-in-series Peclet Number by using the following relation between
exchange flow and the dispersion coefficient:

DA
X AX
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(This relation is derived below as Equation 5.14). Substituting L = nAx
for n equal tanks,. and employing the definition of the Peclet Number,
Pe = QL/AD, we find the Peclet Number due only to exchange flow for the
tanks-in-series model:

Pe'= n - (2.15)

We thus have two Peclet Numbers, one implicit in the number of tanks
(which for large n is approximately Pe = 2n) and one due to exchange
flow (Pe' = n/a). The combined influence of these two effects is:

1 - 2n-
Pe" 2a+1 (2.16)

Pe +Pe'

This relation agrees with that given by Zvirin and Shinnar (1976). The
influence of the exchange flow can be seen to decrease the tanks-in-series
Peclet Number by a factor of 2a+1. There are two asymptotes for Equation
2.16:

Pe" = Pe for Pe' >> Pe (a << )
2

Pe" = Pe' for Pe >> Pe'. (a >> 2

Let us return for a moment to the tanks-in-series model without
exchange flow and consider the limit of large n. In this limit, the tank
length, Ax, becomes small and the model approaches a finite difference
approximation of the differential equation for mass transport. Such
approximations are known to include so-called numerical or artificial
dispersion, an apparent dispersion arising from truncation errors in the
finite difference equation (Bella and Grenney, 1970). A typical difference
formulation is given as Equation 5.10 (in Figure 5.3). For Equation 5.10
the numerical dispersion in grid i, presuming U = Q/A to be constant, is:
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-D = (Y. + y -1) U 2At (2.17)
n i i+1 2 2

The second term arises from truncation error in the approximation of the
time derivative. The first term is a function of the spatial weighting

coefficents, T. and Ii+1. It occurs when upstream or downstream differ-

encing is used for the advective term; or to be more precise, it is due to
the truncation error in the spatial derivative because these differencing
schemes are only first-order accurate in Ax. If the second-order accurate

central difference is used (Ti = 2r.,.1 = 1/2), this contribution to artificial

dispersion disappears. In the multiple box model, 2* = X = 1 for flow

from upstream to downstream. The numerical dispersion due to advective
error alone is then:

D UAx
D =

a 2

Using Ax = L/n and rearranging we find:

UL= Pe = 2n
Da

This says, for large n, that the numerical dispersion due to off-centered
finite differences is equal to the implicit dispersion of the tanks-in-series
model. Thus, the tanks-in-series implicit dispersion is, in a sense,
numerical dispersion. However, it should be clear from Equation 2.14
that for small n, factors other than finite difference truncation error come
into play. We will thus continue to distinguish between implicit
dispersion, a factor in multiple-box models with a few tanks, and numer-
ical dispersion, the error seen in finite difference models with large n.
This distinction is subtle, but important.

Magnitude is an important aspect of the distinction between the implicit
dispersion of the tanks-in-series model and the numerical dispersion in
finite difference approximations of dispersed flow. In a well-constructeld
finite difference model, the numerical dispersion will be small and will be
dominated by the dispersion specified through the model dispersion or dif-
fusion parameter. In a tanks-in-series model, however, the implicit
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dispersion is large. .It is a major determinant of the model behavior; in
fact, in the absence of exchange flows it is the only dispersion in the
model. Application of the tanks-in-series model to chemical engineering
or water treatment problems employs the implicit dispersion as a surrogate
for the actual dispersion of the reactor. That is, the number of tanks n
is chosen to produce an effluent response similar to that observed from
the physical system; as such, the number of tanks is a calibration param-
eter. An equivalent procedure would be to enter Equation 2.16 with the
Peclet Number,. Pe, of the system to be modeled, and choose n and a to
achieve an equivalent dispersion in a tanks-in-series model. Stefan and
Demetracopoulos (1981) use this philosophy to apply a tanks-in-series
model (without exchange) to riverine transport, however we know of no
similar treatment of n as a calibration parameter in lake or reservoir mod-
eling.

2.5.5 Conclusions for Lake Model Formulation

The preceding analysis of conceptual reactor models is important to
lake water quality modeling in two ways: it allows direct comparison of
the hydrodynamic properties of the multiple-box and finite difference
models, and most important, it points out the implicit dispersion contained
in multiple-box models. This implicit dispersion is the fundamental dis-
tinction between the box (or finite section) models and the finite differ-
ence models, aside from the obvious difference of spatial resolution in the
model results. The consequence of the implicit dispersion is diminished
control over the mixing characteristics of the multiple-box water quality
model. Control exists in the continuum model through explicit diffusion
or dispersion parameters which the modeler specifies. In contrast, the
box model without exchange flow permits no specification of dispersion
other than that hidden within the selected number of tanks. Even if an
exchange flow is specified, it must significantly exceed the through-flow
if it is to dominate the dispersion implicit in the number of tanks. If the
exchange flow is less, as will often be the case, the lake must be subdi-
vided into tanks so as to achieve the desired dispersion, rather than
making a *subdivision based on lake bathymetry or the desire for pred-
ictions at particular locations.

A corollary to the arguments of the preceding paragraph is the prob-
lem which arises when a box model is formulated with.no consideration for
its implicit dispersion. This, unfortunately, appears to be the usual
practice in multiple-box models for lake water quality where box bounda-
ries are typically chosen based only on lake geometry. In this case,
unless the implicit dispersion is fortuitously near that of the actual lake,
the resulting model bears little resemblance to the system is purports to
model.

Ignorance of the implicit dispersion can also lead to error in specifying
exchange flows for a multiple-box model. Clearly, the hydrodynamic
characteristics of box models are not uniquely related to those of the
physical system -- a fact which must be realized in model design and
parameter estimation. Particularly when unequal, boxes with varying
exchange and through-flows are used, the box model exchange flow can-
not be specified directly from field data or circulation model results.
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Some modelers imply that field data or circulation model results can be
used to specify the exchange flows. However, this is simply not
accurate: there is no well-founded method to relate the observed flow his-
tory or velocity distribution to the model exchange flow. To see this,
consider the implications of the relation between the exchange flow, X,
and the dispersion coefficient, D, for one-dimensional transport:

- DA
Ax

According to this, the exchange flow and the dispersion coefficient do'not
have a unique relation based only on the properties of the physical
system: the model parameter Ax intervenes. Given that D and A are
properties of the physical system, it is clear that X cannot be found inde-
pendently of the model formulation. One cannot, for example, determine
the velocity distribution in a cross section of the lake, find the mean
velocity in that section, and then sum the positive deviations from the
mean to get an exchange flow. Although this deviation flow, and the
equal but opposite flow due to negative deviations, are clearly involved
with mixing in the lake, they cannot be related to the multiple-box
exchange flow, X, in any straightforward manner.

The only available route to determination of exchange flows or
dispersion coefficients in the multiple-box models is calibration. Cali-
bration is acceptable under certain conditions. For example, calibration
against a conservative tracer is a sound procedure if sufficient data are
available. Nonconservative tracers, such as temperature, are far less
suitable, however. If the interreacting variables of the water quality
model are used rather than independent tracers, the calibration procedure
becomes rapidly unworkable. A transport calibration performed through
the biogeochemical model only compounds the already difficult problem of
calibrating biogeochemical rate constants by adding hydrodynamic parame-
ters as well. Such a procedure confuses biogeochemical with
hydrodynamic influences and generally obscures the character of the mod-
el. A far more attractive alternative is a model in which hydrodynamic
parameters can be determined directly from hydrodynamic data, either
field data or circulation model simulations, independently of the model
biogeochemistry.

In summary, our analysis of conceptual reactor models has found cur-
rent lake modeling practice based on multiple-box models to have serious
inadequacies. Two major failings are evident. First, the multiple-box
models carry within their formulation a substantial degree of implicit
dispersion governed by the number of boxes in the model. This
dispersion is usually not properly considered when multiple-box models
are constructed. Second, a parameter which can be purposely varied to
control mixing in the model is the exchange flow -- however there is no
rigorous means to determine exchange flows from lake hydrodynamics.
These failings greatly impede the modeler seeking rational model design.
He has available only two parameters to control the model dispersion. One
is the number of boxes, n, which he would prefer to fix from the lake's

53



geometrical characteristics. Second is the exchange flow, which can only
be found properly by calibration against field measurements of a conserv-
ative tracer. In current practice, the modeler rarely appreciates the s.ub-
tle influence of these parameters upon mixing in the model.
Consequently, their effects are ignored and an erroneous or inappropriate
model is employed.
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3 LAKE CIRCULATION MODELING

3.1 Introduction

The circulation of water within a lake or reservoir is a major determi-
nant of the lake's water quality behavior. Too often, this influence is
treated inadequately in models of lake water quality, which tend to employ
simple box models and long-term average flows. In later chapters, we will
develop a water quality model which includes a more sophisticated hydro-
dynamic component. As background to the development of that model,
this chapter presents an overview of lake circulation modeling.

Two major classes of motion, horizontal and vertical, will be dealt with
in the discussion to follow. Horizontal circulations are those due
predominately to the travel of water from the inflow points of the lake to
the outflows, or arising from the force of wind upon the water surface.
Vertical. circulations arise from the differences in water density in a
stratified lake and are produced when various agents disrupt the normally
stable stratification. Mixing by the wind, inflows of high or low density
water, and heating or cooling at the water surface are typical agents.

Excluded from this chapter are a number of types of water motion
which do not involve the large scale travel of water masses. Surface
waves are the major class of these omitted smaller scale processes. The
discussion to follow is general, however, in the sense that models appro-
priate to both deep and shallow lakes, rather than just shallow, are pre-
sented.

3.2 Mathematical Formulation of Lake Circulation

The equations of 'fluid motion in a lake are the departure point from
which all mathematical circulation models must begin. These. equations
include the equations of conservation of mass (or the continuity
equation), and the equation of conservation of momentum in each of the
three coordinate directions. For an incompressible fluid, the continuity
equation is:

au + aW 0 (3.1)

where x and y are the horizontal direction components, as
shown in Figure 3.1,

z is the vertical direction component, measured
downwards from the mean water surface'ele-
vation, and,

u, v, w are the fluid velocity components in the x, y
and z directions respectively.
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The momentum equations express the acceleration of the fluid resulting
from various forces. The equations in the horizontal plane are given as
Equations 3.2 and 3.3. For clarity, the correspondence between the
terms in the equations and the physical accelerations and forces which
they represent is shown:

+ {u + V + _u
at ax ay 3Z

(a) (b)

1 a 32u a2u A au
'- + + } +)

(c) (d) .(e)

(3.2)

(f)

+ {u ax +
at ax

(a) (b)
32v 32v 3 v-fu - + A + +r- (AV ) (3.3)

(c) (d)

where t
f
p
p
AH' A

is the time variable,
is the Coriolis parameter,
is the fluid pressure,
is the fluid density,
are the horizontal and vertical eddy viscos-
ities respectively.

The terms of these equations have the following meanings:

a - the instantaneous or local acceleration of the fluid at
a point

b - the convective acceleration, caused when fluid is
transported from one point to another of different
fluid velocity
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c - the Coriolis force due to the earth's rotation

d - the horizontal pressure force

e - the horizontal transport of momentum due to shear
stresses

f - the vertical transport of momentum due to shear
stresses

The momentum equation in the vertical direction is entirely similar to
those above, but includes an additional term on the right hand side to
represent the force due to the gravitational acceleration, represented by
g. The equation is considerably simplified by the realization that the
pressure and gravitational forces dominate all others. Neglect of the
lesser terms is known as the hydrostatic approximation, and leads to the
equation:

p 3Z (3.4)

The boundary conditions for these equations are specified at the free
surface, the lake bottom, and the lake shoreline. At the free surface,
the kinematic boundary condition specifies that continuity be maintained:

an an Vana-- = wat ax ay

where

at z= -n (3.5)

-11 is the free surface displacement.

An additional condition at the free surface represents the shear stress
due to the wind:

P u = as s X y

where

- at z = -q (3.6)

s is the x-component of the shear stress on the sur-

face, and

T s is the y-component.
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Figure 3.1
Definition sketch for mathematical formulation

At the lake bottom, a no-slip boundary condition specifies that the flu-
id in direct contact with the rough bottom cannot move:

u -= v = 0 at z = h (3.7)

where h is the lake depth.

Alternatively, a shear stress condition similar to that at the surface may
instead be specified:

p au = x
Pav b au_P AV a zy
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at z = h (3.8)
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where Tb is the x-component of the bottom shear stress, and

b y is the y-component.

At the lake perimeter, a no-flow no-slip boundary condition applies:

U = V = 0 at the x and y boundaries (3.9)

The equations and boundary conditions presented above are complex
and their solution is difficult -- the non-linear convective terms and
boundary conditions being particularly troublesome. As a consequence,
most solution methods depend upon simplification of the equations by
averaging to reduce the problem dimensions, or by neglecting the less
important terms in the equations. We can gain insight into the relative
importance of the various terms by transforming the equations to a
non-dimensional form. This is done in Figure 3.2, where typical scales of
length, depth, time and velocity have been used to normalize the dimen-
sional variables. The scales employed are length, L; depth, H; time, 1/f;
and velocity, U. As seen in Figure 3.2, this process gives rise to the
Rossby number, Ekman numbers and Froude number as dimensionless
parameters which indicate -the relative magnitude of the terms in the
equations. We will refer to these parameters in the following discussions
of modeling strategies, assumptions and parameters.
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Definition of Dimensionless Parameters

U
Fr = Froude Number = -

U
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H
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Conservation of Vertical Momentum (Hydrostatic Pressure)
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3.3 Modeling Strategies

3.3.1 Introduction

The choice of the lake circulation model is determined by its intended
u.se and the physical characteristics of the waterbody to be modeled.
Modeling is not an inexpensive exercise, and one usually wishes to select
the most appropriate and efficient model for the problem at hand. Also, a
simpler model will be easier to use and less prone to error than one which
is more complex, adding further impetus to the choice of an appropriate
model.

This section briefly discusses the various classes of models based upon
thei-r representation of time and space. (See Figure 2.2.)

3.3.2 Temporal Representation

The temporal representations employed in lake circulation models are
broadly classed as steady state or transient. The simpler steady state
models produce a picture in which the lake is unchanging in time, and
may. be used when the lake's circulation remains roughly constant during
the time scales of interest. Although they omit much detail, steady state
models often supply sufficient information for the evaluation of water qual-
ity control strategies and other broad management concerns.

Transient models are those which trace the changes in the lake's circu-
lation under time-varying conditions. Although more expensive to run
that steady models, they supply considerably more information about the
lake's behavior. Their greater expense demands an intelligent assessment
of the need for this additional information and the level at which the
information will be useful. For example, time steps for transient models
can vary from on the order of minutes to days and longer and the time
step must be chosen for consistency with the proces-ses of interest and
the spatial scale of the model.

A compromise between the fully transient model. and the steady state is
the quasi-steady model. In these models,. th-e time variation of the proc-
ess of interest is assumed sufficiently well-behaved to model the history
as a series of steady states. Typically, these models operate on longer
time steps (between a month and a year).

3.3.3 Spatial Representation

A much broader range is found in the spatial features of available mod-
els. Two general classifications may be considered: circulation models,
which simulate two or three-dimensional flow, and simplified models with
fewer dimensions. The section to follow briefly describes the possibilities
within these two broad classes.
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3.4 Modeling Alternatives

3.4.1 Simplified Models

Zero- Dimensional Models

The most simplified model is the zero-dimensional, in which the lake is
assumed to act as if it were entirely homogeneous. This representation,
referred to as the Fully-Mixed Tank (FMT) or Continuous-Flow Stirred
Tank Reactor (CSTR), is not, of course, a circulation model since there
is no consideration of water movement within the tank. They do appear
frequently in conjunction with water quality models, however, and are
simply mentioned here for completeness.

A variant on the fully-mixed tank is the multiple.-box model in which
different sectors of the lake are represented as connected FMT's. These
models do add an increment of spatial detail to the single FMT, but still
cannot be considered as circulation models, per se.

One-Dimensional Models

One-dimensional models, although not generally called circulation mod-
els, do satisfy the broad definition of this chapter. Two major types of
one-dimensiona-l models exist: vertical and longitudinal (Brown, 1978).

The vertical one-dimensional model considers the lake to be horizontal-
ly homogeneous, but with a distinct vertical density structure. A series
of layers of different temperature (and thus density) represent the lake
in these models, the densities changing in time according to the equations
of mass conservation (continuity) and heat energy. The models consider
the flux of heat at the water surface according to meteorological condi-
tions, as well as the inflow and outflow of water at various depths in the
lake. In addition, some models consider the influence of wind at the
water surface as a mixing agent. Vertical circulations arise when these
influences act to produce an inverse stratification (heavier water overly-
ing light), or when water must flow from inlets at one level to outlets at
another. The models'are generally successful in modeling the temperature
changes in deep stratified lakes. (Published models of this type are
reviewed by Orlob, 1977 and by Parker, Benedict and Tsai, 1975.)

Longitudinal one-dimensional models are less plentiful than their verti-
cal counterparts owing to their narrower applicability. These models are
applicable to long, narrow lakes in which vertical variations due to strat-.
ification are negligible. The majority of lakes which lend themselves to
these models are characterized by large throughflows, to the point that
Brown (1978) describes them as essentially sluggish rivers. Another
class of lakes for which these models may be useful are shallow lakes
which are long and narrow, without necessarily large throughflows. Con-
siderations of circulation are usually minimal in the one-dimensional
models; for example, variations in the lateral velocity are captured via a
dispersion coefficient rather than by explicitly modeling the non-uniform
flow field. Often, flow rates are specified so that only mass conservation
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is modeled, although the one-dimensional momentum equation may be con-
sidered as well.

3.4.2 Circulation Models

With two and three-dimensional models, we enter the realm of the true.
circulation models: those which consider the forces of the wind and bot-
tom friction, as. well as the influence of inflows and outflows, to predict
the motion within the lake.

In this section, we will draw upon our own search of the literature as
well as published reviews by Cheng, Powell and Dillon (1976), Lindijer.
(1976, 1979) and Simons (1979) to outline the major classes of models.
Three classes are defined by Cheng, Powell and Dillon: single layer mod-
els, multi-layer models, and Ekman-type models. To this group we add.
some additional, less common, variations.

Single Layer Models

Single layer models proceed from the assumption that the lake is verti-
cally homogeneous (unstratified) to eliminate consideration of vertical var-
iations in currents and other parameters. The vertical variation is
removed by integrating the continuity and momentum equations from the
free surface to the lake bottom, reducing the three-dimensional problem to
one of only two dimensions. The integration process transforms the prob-
lem variables from velocities to horizontal mass transports, defined as:

U = f dz V = vdz (3.21)

h h

The integration also incorporates the surface and bottom boundary condi-
tions into the resulting equations.

Single layer models simulate mass flux and free surface motion well,
but omit all detail concerning the vertical circulation structure. Their
major use has been in storm surge studies in both deep and shallow lakes.
Their applicability is more general in shallow lakes, however, where the
assumption of vertical homogeneity holds well. A number of single layer
model applications are listed in Table 3.1.
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Published single layer lake circulation models

Reference

Platzman (1963)

Erie Cheng and Tung (1970)

Murty and Rao (1970)
Murty and Rao (1970)
Murty and Rao (1970)
Murty and Rao (1970)

Simons (1971)

Paskausky (1971)

Length Width Depth A A *
(km) (km) (m) (cm/s) (ci2/S)

400

400

400
500
400
600

285

285

100

100

150
125
100
400

70

70

64

64

230
80
64
406

220

220

Ax
(km)

40 13.9

30 20

f(W)
f (W)
f(W)
f(W)

106 f(W)

-- 22.5

15.2
12.7
10.2
13.9

Ay
(km)

13.9

Comments **

Unsteady

10 Finite
Element

15.2
12.7
5.1

13.9

7 & 5 7 & 5 Unsteady

2.5 2.5 Unsteady,
Vorticity
Simulation

* f(z) indicates variation with depth, f(W) indicates variation with wind speed
** unless noted, models are steady and use a finite difference solution

Lake

Erie

0"),

Huron
Michigan

Erie
Superior

Ontario

Ontario

Table 3. 1



Multi-Layer Models

Multi-layer models extend the single layer methodology to stratified
water bodies. Basically, the process applied to the entire water column in
the single layer models is applied piecewise to a number of layers through
the lake. A different density may exist in each layer, and the vertical
eddy viscosity may vary from layer to layer as well. The equations of
continuity and momentum are vertically integrated over the depth of each
layer, incorporating the free surface boundary condition into the top lay-
er equation, and the bottom condition into the equation for the lowest
layer. Inter-layer conditions must also be specified, and become part of
the layer equations as well. The final result of this procedure is a series
of equations which represent the motion within each layer individually.
The layers are, of course, coupled via the inter-layer conditions.

Two approaches to the construction of the layers exist. In the Type I
approach, the position of the layers is fixed in space and vertical trans-
ports occur between layers to maintain continuity. These transports also
transfer momentum between the layers. In the Type II models, the layers
are considered to be distinct, as if separated by thin membranes. No
mass transport occurs between the layers; rather, the layers displace
vertically to maintain continuity. The layers communicate via momentum
transport due to interfacial stress.

Multi-layer models correct the deficiencies of the single layer models,
and the Type I models especially predict both free surface elevafnn and
currents well. The Type II approach is less common than the Type 1, and
is most appropriate to distinctly stratified lakes with a clearly developed
thermocline. A selection of multi-layer models from the published litera-
ture is summarized in Table 3.2.

Ekman-type Models

The Ekman-type models simplify the equations of motion considerably
more than the methods above. Based upon the assumption that the Ross-
by number is small, the horizontal momentum equations are linearized by
dropping the convective acceleration terms. This important simplification
permits the form of the vertical distribution of the horizontal velocities to
be determined analytically. Once the form of the vertical structure is
known, completion of the solution requires only that the variation in hori-
zontal space be defined. This information is supplied by the' solution of
the vertically integrated conservation equations. The Ekman-type model
solution specifies the three-dimensional variation of the horizontal cur-
rents only. The smaller vertical velocity component is not determined.

The Ekman-type solution, owing to the simplification of the equations,
is the easiest method for computation. However, the assumptions made in
simplifying the equations reduce the model's applicability and require that
the model's suitability be evaluated for each application. The model
remains useful for a wide range of lakes nevertheless, as attested by the
examples shown in Table 3.3.
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Published multi-layer lake circulation models

Length Width' Depth A A * Ax
(km) (kin) (m) (cm 2/s) (cm2/s) (vii)

Ay
(k)

Layers Comments **

Simons, 1972

Hollan and
Simons, 1978

285 70 - 220 106 f(W)

60 15 250

5 5 3 Unsteady

? 50 1 1 5 Unsteady

Baikal

Sea of Azov

-I Michigan

Paul et al, 1979

Paul et al, 1979

Kizlauskas and
Katz, 1973

600 75 1600

360 220 13 3x10 6

500 125 80

10 7 10 to
1000
f(z)

7.8 15 8

25 9.5 6.8

-- 50 10.8 10.8

8

Unsteady

Unsteady

2 Unsteady,
Type II

* f(z) indicates variation.with depth, f(W) indicates variation with wind speed
** unless noted, models are steady, Type I and use a finite difference solution

Lake Reference

Ontario

Constance

Table 3.2



Table 3.3 Published Ekman-type circulation models

Reference

Su, Pohl and
Shih, 1976

Ontario . Gallagher, Liggett
and Chan, 1973

Superior

Erie

Velen

Mendota

Geneva

Ontario.

Lien and-
Hoopes, 1978

Gedney and
Lick, 1972

Bengtsson, 1973

Nelson, 1979

Bauer and Graf
(described by

Sundermann, 1979)

Bonham-Carter
and- Thomas, 197.3

Length Width Depth A A *
km) (km) (m) (c mS/) cV)

55 49

285

600

400

7

10

70

285

70

400

100

1

7

15

70

4.5

220

406

64 5x10 5

9

22

31.0

220

10

AX
(k)

2.5

4200

100

38

15

15
f(z)

450

_ x
(km)

2.5

Comments **

Finite
El emen t

4 Finite
Element

25.4 25.4

3.2 3.2

0.73 0.73 Unsteady

1

2.5

1

2.5

* f(z) indicates variation with depth, f(W) indicates variation with wind speed
** unless noted, models are steady and use a finite difference solution

Lake

Okeechobee

M'
00



Longitudinal Two-Dimensional Models

A rarer type of two-dimensional model is that which computes motion in
a vertical plane along the lake. These models, which are used for long,
deep but relatively narrow lakes, ignore transverse variations in the
flow. Invariably, lakes which satisfy these criteria are impounded
streams whose hydrodynamics are dominated at the upper end by inflow
current and at the lower end by temperature stratification. Such reser-
voirs typically exhibit a distinct two-dimensional temperature structure
characterized by tilted isotherms. The two-dimensional models of this
type combine the features of the two versions of one-dimensional models
discussed in the previous section. The model by Edinger and Buchak
(1979), for example, employs the equations of continuity, longitudinal
momentum, vertical pressure and two-dimensional heat energy to simulate
the transient dynamics of such reservoirs.

Fully Three-Dimensional Models

The final, and clearly the most complex, modeling alternative is the
full three-dimensional model. These models attempt to determine the
lake's flow field in its full complexity, often with the simultaneous consid-
eration of the vertical density structure. The fully three-dimensional
models are generally similar to the two-dimensional circulation models
abovP' except that the vertical momentum equation is retained and the
horizontal equations are not vertically integrated. Models of this variety
are not common, however, owing to the complexity and expense inF-rent
in a three-dimensional grid. Thus, while examples do exist (for instance,
Liggett, 1970), the general state of the art for these models is not
advanced to the point of practical application.
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3.5 Major Model Assumptions

The discussion above indicates many possible simplifications and
assumptions which the modeler may employ. In this section, the various
assumptions will be examined and criteria to evaluate their applicability
will be given. Many of these criteria are drawn from Lindijer (1979).

3.5.1 Vertical Variability

When the depth of the lake is much smaller than its length, one can
invoke a family of simplifications which Lindijer calls the shallow water
approximation. The approximation consists, in fact, of three approxi-
mations. The first is the commonly used hydrostatic approximation,
Equation 3.4. This is valid in all but the deepest lakes, and is found in
virtually every circulation model.

The second shallow water approximation is the assumption that vertical
velocities are so much smaller than those in the horizontal that they may
be neglected in the equations for horizontal momentum (Equations 3.2 and
3.3). This approximation yields a model which is three-dimensional in the
sense that the variation of horizontal velocity is determined in all three
coordinate directions, but not in the sense that the three velocity compo-
nents are determined.

The third shallow water approximation is that the water body is verti-
cally homogeneous, that is, that it does not exhibit any density strat'ica-
tion. Field studies have shown this to be a reasonable assumption for
shallow lakes, where the influence of strong winds penetrates throughout
the water column and produces complete vertical mixing (Entz, 1976; and
Seki, et al., 1980). Although brief periods of weak stratification can
occur during the summer, even moderate winds will remix very shallow
lakes. Usually, stratification persists no longer than a day or two.

A quantitative indication of the depth to which wind penetrates in the
lake (and thus, the'degree of vertical homogeneity) is supplied by the
Ekman friction depth:

D = T
2AV

This depth indicates roughly the depth to which the wind stress on the
surface will be influential. Under criteria given by Lindijer (1979), the
lake qualifies as very shallow if the ratio of the characteristic lake depth
to the Ekman friction depth is less than 0.25, and as shallow if the ratio
is between 0.25 and 2.0. A lake is deep if the ratio exceeds 2.0.

3.5.2 Convective Accelerations

Neglect of the non-linear convective terms-leads to a considerable sim-
plification of the momentum equations and is the key assumption of the
Ekman-type models. The magnitude of the Rossby number, the ratio of
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the inertial forces to the Coriolis force, determines whether or not this is
a valid assumption. If the Rossby number is much less than one, the
convective terms will have negligible impact upon the lake-wide circulation
and may be omitted.

The phrase "lake-wide circulation" was used in the last paragraph to
purposely exclude local effects. Recently, there has been a good deal of
attention in the literature to the importance of local inertial effects and
the ability of numerical models to capture such effects (Abbott, 1976;
Abbott and Rasmussen, 1977; and Lean and Weare, 1979). Unfortunately,
these investigations have addressed channel, estuarine and coastal flows
where Velocities, and thus convective inertia, are much greater than in
wind-induced lake circulation. Nevertheless, we can conclude from these
studies that where there are large abrupt changes in the bathymetry or
shoreline geometry numerical models which omit the convective terms will
fail to capture induced secondary circulations correctly. The severity of
these local errors depends upon the coarseness of the finite difference
grid, the character of the geometry, and the strength of the currents.
We expect that the errors will be minor for low velocity wind-induced flow
in lakes.

3.5.3 Free Surface Effects

An assumption with major impact upon lake circulation models is the
rigid lid approximation. As the name implies, the assumption is that the
lake behaves as if it were covered with a slippery rigid lid. This lid pre-
vents vertical motions at the free surface, but still allows horizontal
motions and pressure variations. By preventing the kinematic effects of
surface motion, the rigid lid filters out high frequency inertial and gravi-
ty waves without affecting steady state solutions and with only small
distortion of low frequency movements. The consequence of eliminating
the high speed gravity waves is to permit an order of magnitude increase
in. the time step of numerical solution methods, and greater numerical
accuracy and stability (Bryan, 1969).

Operationally, the rigid lid approximation is to assume -au/at = w = 0
in the kinematic boundary condition, Equation 3.5. Calculation of free
surface displacements is still possible with this approximation by first
solving the horizontal momentum equations for pressure, and then using
the hydrostatic equation to determine the free surface displacement from
the pressure (Cheng, Powell and Dillon, 1976).

The rigid lid approximation has very great computational advantages
over the alternative free surface representation, but not without a cost in
certain circumstances. Bedford and Rai (1978) give the criterion that the
square of the ratio of the seiche period to the inertial period must be
much less than one to use the rigid lid approximation. This is expressed
mathematically for a lake of length L as:
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L2 f 2

(2) gH

Others give a similar criterion without the factor of (21) 2

Two papers from the research group headed by Lick at Case Western
Reserve explore the rigid lid approximation in some detail (Haq and Lick,
1975; and Sheng, Lick, Gedney and Molls, 1978). Their comparisons of
rigid lid and free surface models were made using actual events on Lake
Erie, where the ratio criterion above is not met. Their findings indicate
that the rigid lid model converges to a steady state many times faster that
the free surface model, but that transient currents and seiches are incor-
rect in the rigid lid model results. The free surface model does preserve
these effects, and thus predicts greater bottom shear stresses and
sediment resuspension in their linked circulation and sediment transport
model.

One aspect of the approximation at the free surface is poorly presented
in some papers and easily confused with the rigid lid approximation. This
approximation, which we will call the small amplitude approximation, is
that the free surface boundary conditions are applied at z = 0, rather
than at the actual free surface, z = -n. (Cheng, Powell and Dillon (1976)
are particularly unclcar in distinguishing this approximation from the rig-
id lid approximation.) The small amplitude approximation is commonly
used in both free surface and rigid lid models. The validity of the
approximation may be evaluated with the surface boundary parameter as a
guide. This parameter, which is the ratio of the square of the Froude
number to the Rossby number, arises when the kinematic and wind stress
boundary conditions are made dimensionless. (See Figure 3.2.) If the
parameter is small, it may be assumed reasonable to employ the small
amplitude approximation and apply the boundary conditions at z = 0 rath-
er than at z =

3.5.4 Horizontal Shear Effects

In most analytical solutions and in many of the Ekman-type models, the
equations are simplified by neglect of the horizontal shear forces (term e
in. Equations 3.2 and 3.3). This approximation may be justified by the
size of the horizontal Ekman number, the ratio of the frictional force to
the Coriolis force. Where the horizontal Ekman number is small compared
to one, the terms may be safely ignored.

A subtle aspect of this approximation must be considered along the
shoreline, where frictional influences may be important locally. Lindijer
(1979) gives an evaluation criterion for these effects based upon the bot-
tom slope, s. The criterion states that the horizontal shear terms may be
neglected for gradual slopes:
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s << s
C

H and L

EV and EH

sc

are the mean depth and length of the
lake,
are the vertical and horizontal Ekman
numbers respectively, and
is the critical bottom slope.

This condition can be interpreted as a requirement that vertical shear

stresses (represented by HAVE7) remain much larger than those in the hor-

izontal (LV') despite the bottom slope.
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3.6 Model Parameters"

In this section we examine a number of key parameters which signif-
icantly affect the predictions of circulation models. Unfortunately, the
literature presents multiple alternatives for these parameters, but no
clear consensus as to which are superior.

3.6.1 Vertical Eddy Viscosity

The momentum equations presented earlier employ the assumption that
the turbulent flux of momentum due to the Reynolds stresses can be
represented as the product of an eddy viscosity and the first spatial
derivative of the velocity. The validity of this assumption is often ques-
tioned. (See, for example, Babajimopoulos and Bedford, 1980.) However,
a working practical alternative does not now exist, and it is a rare circu-
lation model that does not make use of the eddy viscosity assumption.

Published Formulae

Perhaps because the concept is without rigorous theoretical grounds, a
bewildering variety of formulations for the eddy viscosity may be found in
the literature. A selection of the available formulae for the vertical eddy
viscosity are shown in Figure 3.3. The obvious diversity in the proposed
forms reflect significant differences in the originators' views of the turbu-
lent transport process.

Some convergence of the literature may nevertheless be found for par-
ticular aspects of the vertical eddy viscosity formulation. There is
agreement that the eddy viscosity depends upon the intensity of the tur-
bulence and the density instability of the water column, and thdt it varies
throughout the lake. Lick (1976) lists the following turbulence generat-
ing processes: surface wind stress, vertical shear currents due to
horizontal pressure differences, internal waves, bottom friction and
bathymetry, and density stability. For shallow, homogeneous lakes the
surface and bottom sources of turbulence are the most influential.

The value of the eddy viscosity at the lake bottom appears to be
another point of common ground within the literature. As explained by
Thomas (1975), the rigid bottom inhibits vertical eddying motions and
thus the viscosity closes to zero. With a few'exceptions, the formulae of
Figure 3.3 follow this behavior.

There is far less agreement on the proper formulation at the water sur-
face. Many researchers view the wind stress as the driving source of
turbulence and therefore feel that the vertical viscosity should be maximal
at or near the surface (Lick, 1976; Lindijer, 1976; Thomas, 1975; and
Bengtsson, 1973). Opposing this view is Madsen (1977), who argues that
the eddy viscosity will behave similarly near any sheared boundary in the
fashion described by Thomas. Accordingly, he proposes. a linear increase
from zero viscosity at both the surface and the bottom.

Most researchers do agree that the eddy viscosity will increase as the
boundary shear increases, although this dependency is not well defined.
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The uncertainty about this dependency, as well as an increase in compu-
tational difficulty, leads most modelers to assume the eddy viscosity not to
vary with boundary shear or wind speed. Where a variation is modeled,
the procedure is to generally assume a linear proportionality to either the
wind speed or the wind friction velocity as seen in Figures 3.3d, e, f, h,
k and I.

The great diversity of opinion about the vertical eddy viscosity is
troublesome for the modeler who seeks a more sophisticated
respresentation than to simply assume constant viscosity. Hamblin and
Salmon (1975) point out the importance of this parameter in the circulation
model:

A number of experiments in which model predictions are
compared with observed currents have indicated that the
vertical diffusion of momentum is probably the most impor-
tant internal parameter of the model .... Drastic variability
in the vertical profile of current can result from the spec-
ification of the magnitude and variation of the vertical
eddy viscosity.

Comparison with Observations

A basis for evaluation of the eddy viscosity formulations is found in
the results of laboratory and field investigations. . Laboratory flume
studies, such as those reviewed by Shemdin (1973), invariably reveal log-
arithmic velocity profiles at both the water surface and the flume bottom.
The near-surface logarithmic profile has been confirmed in the field by
observations of wind-drift currents in lakes (Bye, 1965; and Bhowmik and
Stall, 1978). Field and laboratory data (summarized in Stolzenbach et al.,
1977-) also indicate that the wind factor (the ratio of the surface drift
current to the wind speed) varies over the narrow range of .approximately
1 to 6 percent, and that the drift current is deflected by no more than 15
degrees from the wind direction.

These observations should be replicated in the results of mathematical
circulation models. The simplest of those models, the classic analytical
solution by Ekman for an infinitely deep ocean and constant vertical eddy
viscosity, predicts a wind factor of 3% but a surface deflection angle of 45
degrees. The development of more complex eddy viscosity formulations
has largely been a reaction to his poor prediction of the deflection.
Results using two of the more complex formulae are compared with those
of the constant viscosity and with laboratory findings by Stolzenbach et
al. (1977). They consider two cases: wind-driven flow in an infinte
channel, and in a closed finite channel. They conclude that the constant
eddy viscosity (Figure 3.3a) and the linear eddy viscosity (3.3f) produce
unrealistic results, while the parabolic form (3.3k or I) yields a velocity
profile similar to the laboratory findings. Madsen's formula (Figure 3.3h)
also duplicates the log velocity profiles and predicts a deflection of rough-
ly 10 degrees. Interestingly, the very dissimilar equation proposed by
Fjeldstaad (discussed in Neumann and Pierson, 1966) was developed
empirically by matching observations at a 22 meter deep location in the
ocean, and thus agrees with at least one set of field data.
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Representations of the vertical eddy viscosity
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Representations of the vertical eddy viscosity
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The comparisons by Stolzenbach et al. also illustrate that the choice of
the eddy viscosity form cannot be isolated from the other parameters of
the model. For example, consider the situation at the bottom boundary.
If the fluid velocity is taken to be zero at the bottom, the velocity profile
should be characterized by the steep velocity increase of a narrow loga-
rithmic layer. (See Figure 3.4.) Such a velocity structure is impossible,
however, if a depth-constant eddy viscosity is specified, and therefore
the velocity will be underestimated. If instead, the velocity is permitted
to take on some finite value at the bottom, a constant eddy viscosity may
lead to a reasonable approximation of the current.

Recommendation

It is clear from our review that the vertical eddy viscosity will be a
problematic parameter for the circulation model. Neither field data nor
theory offer a definitive viscosity form. The viscosity function- should
vary with the model formulation, however the correct form may be very
uncertain for the more complex models. Accordingly, our recommendation
for circulation modeling is to follow the procedure employed by Shanahan
et al. (1981): use theory and the literature as a guide to develop alterna-
tive viscosity functions and then test those functions in calibration runs
against field data. Although this procedure leaves much to be desired, it
is the most practical alternative in our opinion, given the disarray in the
literature.

3.6.2 Wind Stress on the Water Surface

The specification of the surface boundary condition (Equation 3.6)
requires the determination of the stress on the free surface due to the
wind. This is generally given in the form:

= c .P a (3.22)
s z a z

where T is the surface stress exerted in the same direction
s as the wind,

C z is the drag coefficient for a wind measured at height
z above the water surface,

W is the wind speed measured at a height z above the
water surface (usually 10 meters), and

pa is the density of the air.

Many investigators have proposed formulae for the 10 meter drag coeffi-
cient, and these are summarized in Table 3.4 and Figure 3.5. Wu's (1969)
formulae, which are approximations of more complex theoretical formulae,
are probably the most frequently used, but are based on measurements in
the deep ocean rather than in shallow lakes.

A recent, but not yet fully confirmed finding concerns anomalously low
drag coefficients over shallow water (Hicks, Drinkrow and Grauze, 1974;
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and Hsu, 1975). Hicks hypothesizes that this may be due to the absence
of high frequency surface waves in shallow water, producing an aero-
dynamically smooth suface. He qualifies this hypothesis, however, by
noting the possible influence of a biological film on the water surface, a
factor which is probably also present in Hsu's study. Despite this possi-
ble interference, Hicks proposes a relation for shallow water based on an
aerodynamically smooth surface:

C K
z In (Bu~z/v)

where

(3.23)

K is von Karman's constant, 0.41,
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Table 3.4

Wind stress drag coefficients

Reference

Wu (1969)

Wilson (1960)

Ottesen-Hansen
(1975)

Banks (1975)-

Ruggles (1970)

Hsu (1975)

Van Dorn (1953)

C1 0 , Drag Coefficient

1. 25 x 103

0.5 x 10

2.6 x 10-3

1.66 x 10-3

2.37 x 10-3

0.8 x 10

1.0,x 10-3

9.0 x 10

3.8 x 10-3

0.7 x 10~4

1.6 x 103

0.7 x 10-3

1.11 x 10-3

1.11 x 103
-3

2.06 x10 (1 -

-1/5
W
1 0

W10

W 10

+

5.6/W )2

Wind Speed Range

W10 m/s
1 < W10 < 15 m/s

W10 > 15 -m/s

Light winds

Strong winds

W10 < 7 m/s

W10 > 7 m/s

"Small" winds

"Medium" winds

"Large" winds

2 <.W10 < 10 m/s

W10 < $ m/s

W10 < 5.6 m/s

W > 5.6 m/s
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Surface drag coefficients as a function of wind speed
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B is a constant, equal to 9,
v is the kinematic viscosity of water, and
u* is the wind friction velocity.

Hicks' formula is implicit since u* is a function of C z and thus it must be

solved iteratively. Hicks had insufficient data to specify an exact range
of applicability, but roughly estimated the formula to be appropriate for
water shallower than 3 to 7 meters.

Decreased drag in shallow water is not a universal finding, however.
The very careful studies by Van Dorn (1953) in a two meter deep pond
led to drag coefficients not substantially different from Wu's open-ocean
results. Van Dorn makes but one peripheral reference to marine growth
in the pond, so we are unable to assess the likely influence of a biological
surface film. Most likely, such a film was present, though perhaps to
only a limited extent. In any case, the conflicting findings of Van Dorn,
Hicks et al. and Hsu do not permit a final conclusion as to the value of
the wind drag coefficient on shallow water.

3.6.3 Bottom Friction

One may specify the boundary condition at the lake bottom in terms of
the velocity or the shear stress. When velocity is specified, it is taken to
be zero at the point of contact with the bottom. This is the no-slip condi-
tion:

u =v= 0 at z h (3.24)

The shear condition is given as:

-pA u - Y (3.25)AV az Tb AV Z T b'

where the shear at the bottom may be determined in a number of ways
which we explore below.

The choice of the boundary condition will depend largely on the situ-
ation being modeled, the model formulation, and the values of other
parameters, in particular the lake depth and the eddy viscosity. For
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example, Lien and Hoopes (1978) state that the solution for mass trans-
port in deep lakes is not influenced by the bottom condition. They define
a deep lake as one having a mean depth, H, such that:

24D
H >4 -fv2~ 7 r2 (3.26)

where D is the Ekman depth defined previously.

The choice of bottom boundary conditions carries greater influence in
shallow water. For example, Murray (1975) found that a no-slip boundary
led to unrealistically low current predictions when compared with field
observations. His findings may result partially from his use of a constant
vertical eddy' viscosity as well, however. In any event, the shear bound-
ary condition is favored by most modelers.

Cheng, Powell and Dillon (1976) describe the possible forms for the
shear boundary condition in terms of the general relation,

Tb X BU T - BV (3.27)
b b

where U and V are the mass transports in the x and y hori-
zontal directions, and,

B may take on a number of forms.

They define three possible forms for B, which will be described in turn.

Linear friction laws define B = k/h where k is a constant. We may
broaden their definition somewhat to include as well linear relations of the
form:

T = cu T = cv (3.28)
b b% b byb

where ub' vb are the velocities at or near the bottom in the
x and y horizontal directions, and

cb is a constant.
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Linear relations of the form of Equation 3.28 are used by Nelson (1979)
and Lien and Hoopes (1978). These linear forms are sometimes called slip
conditions, since they permit a slip velocity at the bottom. In the limit
that k or cb approaches infinity, the linear forms converge to a no-slip
condition. The linear laws lead to a weak dependence of friction on the
depth or current strength.

In quasi-linear friction laws, B takes the form,

B k/h2 (3.29)

These. forms remain linear with respect to the mass transport, keeping the
computation simple, but include higher order depth dependence. They
show strong influence due to depth, but not currents.

The most rigorous friction laws are based on the Chezy or Manning
relations of open channel hydraulics. For these non-linear, or quadratic,
friction laws, B takes the form:

k /UL + VZ- (3.30)
B - hi4

which includes strong dependency on both current and depth.
Leendertse (1970) employs this form in his model, using the Chezy coeffi-
cient, C:

b cz Tb P V3LT~ U VZ(3.31)
T c T 9c

The quadratic is considered the most accurate friction law, but carries a
substantial computational burden due to the non-linear dependence on
current. The additional computation is needed since the current must be
determined by an iterative solution, rather than the direct solution possi-
ble with linear and quasi-linear friction laws.

In computer simulation of transient flow (or in an iterative computation
of steady flow), the non-linear friction law may be approximated quite
effectively. When the computation time step is short, or when the veloci-
ty is changing slowly, it is possible to linearize Equation 3.31 by using
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the most recently computed values of U and V. Under proper conditions,
this approximation will preserve the non-linear character of the bottom
friction with little error and at greatly reduced computation expense.

85



86



4 LAKE BALATON: MODELING BACKGROUND

Our discussion of shallow lake dynamics in the preceding chapters has
been, for the most part, in general terms. It is meaningless to continue
on to the topic of model development in such terms, however. A substan-
tive examination of modeling requires the reference point of a real applica-
tion, satisfied in this research by participation in a case study of Lake
Balaton, Hungary. That study, conducted by the International Institute
of Applied Systems Analysis (IASA) of Laxenburg, Austria, enjoys the
cooperation of scientists from Hungary and has included participation by
dozens of researchers. In this chapter, we give a brief overview of Lake
Balaton's characteristics, drawing largely from the data base built at
IIASA (van Straten et al., 1979; and van Straten and Somlyody, 1980).
The information presented here will be used in subsequent chapters as
the source of input, calibration and verification data for the Lake Balaton
model.

4.1 General Characteristics of Lake Balaton

Lake Ba-laton, the largest lake in central Europe, is located in western
Hungary. The lake is long and narrow (75 km by 8 km) with a surface
area of roughly 600 square kilometers. It is an extremely shallow lake,
particularly in relation to its large horizontal extent. The average depth
of the lake is only 3.1 meters, and it is everywhere less than 5 meters
deep except in one very small area. In this one deep section, where the
Peninsula of Tihany nearly divides the lake, the width is less than 2 km
and the depth reaches 11.7 meters. A map of the lake showing. depth con-
tours is included as Figure 4.1.

Lake Balaton and the surrounding countryside are a major tourist.
attraction for both Hungarian and foreign visitors. Pleasant weather and
good water quality make the lake a particularly popular summer resort.
Unfortunately, increasing population and development are apparently tak-
ing their toll on the lake, a fact demonstrated by the deterioration of the
lake water quality over many years of measurements. This deterioration
has been particularly rapid during the last decade, and indicates an
accelerati.ng eutrophication of the lake.

The climate of the Balaton region is temperate with an average annual
air temperature of 10.7 C. The average monthly temperature drops below
freezing in winter (-1 .0 C in January) and ice covers the lake for roughly
two months each year. A maximum mean monthly temperature of 21.4 C
occurs in July. Water temperatures vary similarly, from a low monthly
average temperature of 0.7 C in January to a high of 24.1 C in July. The
shallowness of the lake, and its consequent strong response to summer
radiation input, is responsible for the high July temperature.

Wind is an important factor in the behavior of Lake Balaton, owing to
the large response of the shallow waters. Strong winds occur on several
stormy days each month in a roughly uniform annual distribution. The
prevailing wind direction is from the Northwest, passing across the width
of the lake.
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4.2 Circulation in Lake Balaton

Although the existing data base is far from complete, sufficient infor-
mation exists to construct an approximate description of Lake Balaton's
circulation. The circulation is a composite produced by hydrologic flow
through the lake, wind-induced currents, seiching, and other lesser
influences. The major unknown aspects of water motion in the lake are
the character of spatial variations in the current over both horizontal and
vertical space, and the response of the circulation to changes in wind
forces over short time periods.

4.2.1 Hydrologic Flow

We define hydrologic flow as that produced by the inflow of water to
the lake from streams, runoff and rainfall, and the outflow from the lake
by evaporation and stream discharge. In Balaton, such flow is dominated
by the mean flow established by the stream and river inflows concentrated
at the southwestern end of the lake, and the sole outlet at the Sio Canal
at the lake's opposite end. The largest inflow is that from the Zala River,
which drains roughly half of the watershed contributing to the lake.

The mean* annual flow quantities due to the various hydrologic compo-
nents are 18 m 3/s due to streamflow and runoff, 12 m 3/s from precipi-
tation, 17 m 3/s removed by evaporation, and the discharge of 13 m 3/s at
the Sio Canal (va-n Straten, et al., 1979). The total lake volume is 1860
million cubic meters, so that the mean hydraulic residence time is roughly
four years. The longitudinal transport velocities associated with these
hydrologic flows are small, on the order of 0.05 cm/sec.

Analyses of Balaton's hydrology have often been based upon a subdivi-
sion of the lake into four basins (Baranyi, 1973a; van Straten, et al.,
1979). These are not basins in the usual sense -- that is, as drainage
basins or watersheds. Rather, they are portions of the lake volume dis-
tinguished for the calculation of water balances, residence times and
long-term exchange flows. The four basins are identified on the map of
the lake in Figure 4.1 as Kezsthely (or Basin 1), Szigl.iget (Basin 11),
Szemes (Basin Ill), and Siofok (Basin IV). The conception of the lake as
four basins has influenced subsequent studies of all aspects of the lake --
for example, the basins appear in the water quality models discussed in
Chapter 2.

4.2.2 Wind-Driven Flows

The influence of the wind overwhelms the slow hydrologic flow in
establishing the pattern of flow in Lake Balaton. The shallowness of the
lake permits a circulation response to even mild winds, producing cur-
rents one or two orders of magnitude greater than those due to the
hydrologic flow.

Surrounding hills, and the geography of the lake itself, exert a major
influence upon the circulation caused by the wind. The hills produce
local effects by blocking and deflecting the wind, leading to a spatially
non-uniform wind field. Keszthely Bay, for example, typically experi-
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ences lighter winds than most of the lake (Figure 4.2). The circulation is
further modified by the constraints imposed by the lake boundaries.
Although comprehensive field observations of the lake circulation have not
been .made, a rough picture of the circulation is found in the work of
Gy6rke (1975). Gy6rke used a physical hydraulic model of the western
part of the lake to model circulation and sediment transport under artifi-
cial steady winds. Owing to a severe vertical scale distortion-in the model
(a factor of 20), the results must be considered qualitative. They do
show, nevertheless, a complex system of flow gyres greatly influenced by
the lake geometry and spatial variation of the wind field (Figure 4.3).

The vertical structure of wind-induced currents in the lake were the
subject of recent field measurements conducted as a. part of this study.
The theory of wind-driven circulation predicts, for steady conditions, a
profile such as that shown in Figure 4.4, where currents at the surface
align with the wind, but an opposing return current is found along the
bottom (Plate, 1970 or Liu and Perez, 1971). Although derived for steady
winds and idealized geometry, a generally similar velocity profile could be
reasonably anticipated in a lake.

In our field. studies, we sought a qualitative description of the actual
vertical velocity profile in Balaton, to be contrasted with the profiles giv-
en by theory and model results. We employed a simple electromagnetic
current meter (Marsh-McBirney Model 201) capable of measuring speeds
between 2 and 300 cm/sec in a single direction to an accuracy of 26. The
me+er is equipped with a velocity probe which is connected by 12 meters
of cable to an electronics case with a visually read meter. Observations
were made by lowering the probe, attached to a measured metal pipe, to
various elevations in the water and rotating the pipe until the direction of
maximum velocity was found. A complete description of the field studies,
including tables and figures of the observed currents, :is included as
Appendix *A of this report. In brief, the observations adhered to the
theoretically predicted profile only occasionally. More typical was a high-
ly transient velocity structure, with increasing variability as the
measurement depth increased. Apparently, the currents experience the
conflicting influences of the lake-wide seiche motion and the 'local
wind-driven motion as well as the inherently transient process of turbu-
lent momentum transport. One exception to this picture of transience and
variability was in the Strait of Tihany where our observations of strong,
unidirectional currents in the upper five meters corroborate Muszkajlay's
(1973) observations discussed in the following section.

4.2.3 Seiches

A seiche is the pendulum-like motion of the lake water surface after
the cessation of a force which has displaced the surface from its equilib-
rium, level position. The most common forcing agent causing seiches is
the shear force of a sustained wind. Such a wind will cause a set-up, the
superelevation of water level on the downwind shore above the level,
undisturbed position. When the wind stops blowing, the superelevated
waters will flow downward, initiating the periodic seiche motion. Seiches
may be especially significant in shallow lakes, since the magnitude of
set-up increases as mean water depth decreases (Sibul, 1955).
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The seiche is a well observed phenomenon in Lake Balaton, with differ-
ent seiche periods arising according to the direction and location within
the lake. Hutchinson (1975) cites work done by Cholnoky at the turn of
the century which found a longitudinal seiche period of between 10 and
11.5 hours, whilc the transverse seiche is but 40 minutes. Other seiche
periods have been distinguished for the portions of the lake to the east
and west of Tihany Strait (1 hour and 2.5 hours respectively). The more
recent work of Muszkalay, cited by Somly6dy (1979), found a range of
seiche periods from 10 minutes to 1 day, with a mean longitudinal seiche
period of 5.5 hours.

The most detailed studies of Lake Balaton's seiche are those of
Muszkalay (1973). Muszkalay collected nearly a full decade of water sur-
face elevation observations at up to ten stations around the lake. Simul-
taneous measurements of wind speed at three stations and of water
current in the Strait of Tihany complete his data base. The measurements
show the lake to be in seemingly constant motion. A strong wind, of only
a few hours duration, can lead to observable seiches; a typical
month-long record from Muszkalay clearly shows frequent events with
both longitudinal and transverse modes evident (Figure 4.5).

With his observations as a basis, Muszkalay (1966) determined empir-
ical formulae relating the wind strength, duration and direction to the
resulting denivellation. His formula for longitudinal slope due to winds
directed within 22.5 degrees of the lake's long axis is:

= 0.038 T (WL - 2.8) (4.1)

Le

where J is the slope of the water surface (cm/km),
T is the wind duration (hours), and,
WL is the longitudinal wind component (m/s).

In this relation, J is determined from the difference in the extreme stages
at Keszthely and Balatonkenese. It is a fictitious quantity in the sense
'that these stages may not, in fact, occur at precisely the same time; how-
ever, the time lag is not large. The maximum observed longitudinal
denivellation (that is, the net difference from one end of the lake to the
other) is roughly one meter. In the transverse, which is the more com-
mon direction for strong winds, a denivellation of 0.4 meter has been
observed.

The creation of a set-up, and subsequent seiche oscillation, is accom-
panied by the transport of considerable quantities of water. This is par-
ticularly obvious where the lake narrows at Tihany. Muszkalay took
advantage of this geometry and deployed four current meters in the
Tihany Strait, placing the meters along a single vertical mooring line.
Unfortunately, only intermittent records of these measurements are pub-
lished, and then as the plot of a single velocity history at one meter below
the water surface. Muszkalay reports that his measurements were virtual-
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ly always unidirectional throughout the water depth; thus, the 1 meter
observation is probably a good indicator of velocity for the entire water
column. The maximum velocity observed by Muszkalay was 1.4 meters/sec
(reported in Somlyddy, 1979). Figure 4.6 shows a typical set of meas-
urements relating wind, water surface motion, and velocity at Tihany.
The event of Figure 4.6 is caused by a wind transverse to the lake, the
predominant direction for storm winds and the type of event comprising
most of Muszkalay's published examples.

A significant factor in the behavior of seiches is the force of friction,
an influence magnified by the shallowness of Lake Balaton. The effects of
friction are to lengthen the observed oscillation period to greater than
that predicted by frictionless theory, and to quickly attenuate the seiche
amplitude (Hutchinson, 1975). Frictionless theory predicts the period,
T, to be:

T 2L//g4

where L is the lake length,
g is the acceleration of gravity, and
H is the mean lake depth.

This computes to 7.3 hours in Balaton, well below the commonly observed
period of 10 to 11.5 hours. According to Hutchinson, such a marked
decrease in the period is a phenomenon unique to shallow takes, with Bal-
aton and Lake Okeechobee in Florida the only observed examples.

The seiche motions caused by trans;ent winds on Lake Balaton are very
complex and tend to obscure the underlying basic behavior. Some of this
complexity may be eliminated by invoking simple models of the lake which
can be solved analytically. The simplest such model is to consider the
lake as two connected oscillating basins, each with a level water surface,
and presuming that all frictional energy losses are concentrated at the
Strait of Tihany. With this model, we can address two fundamental
aspects of the lake's seiche behavior: the free response and the forced
response. Seiches are primarily free oscillation responses, the actions
occuring in the absence of forces: that is, after the wind has stopped. If
the equations of the two-body system are solved for the free oscillation
problem we find that either of two major system responses may occur
depending upon the geometrical and frictional characteristics of the lake.
With the first response type, that of a heavily damped system, any initial
displacement of the system from equilibrium simply decays exponentially,
without any subsequent oscillatory motion. The. second response is the
lightly damped system, in which the system exhibits a sinusoidal oscil-
lation, but with an exponentially decreasing magnitude.

The forced response of the lake concerns behavior under imposed wind
forces of various frequencies. The two-body model yielded credible
results for Kenney (1980) in an analysis of the forced response of Lake
Winnipeg, Canada. Winnipeg is remarkably similar to Balaton in its geom-
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etry: it is relatively shallow (12 m), long and narrow (440 by 55 km),
and consists of two distinct basins separated by narrows. As in Balaton,
the narrows are the location of the greatest depth in the lake (roughly 37
m) and experience strong currents (up to 90 cm/s) due to seiche motion.
Kenney employed the two-body oscillator as a conceptual model to explain
the lake's frequency response behavior, which he had determined statis-
tically by analysing time series of water surface elevation about the lake.
Although his methods proved useful, and demonstrated the validity of the
two-body system as a simple lake model, Kenney failed to relate the model
parameters to the physical characteristics of the lake; he relied instead
upon his considerable statistical information. Thus, it is not possible to
extend his findings to Balaton without a similar statistical analysis.

A more physically-based study of seiching is Platzman's (1963) math-
ematical model of Lake Erie. Platzman solved the simplified
one-dimensional equations of motion to relate the seiche response to the
lake characteristics. The characteristics are represented by the
Proudman number, which is related to the ratio of the viscous decay time
to the seiche period, and is defined as:

A 2
V

Pr k

where k is the wave number equal to r/L for the uninodal
seiche.

Platzman found from his simplified analysis that the seiche motion will be
heavily damped if the Proudman number exceeds a critical value of 0.53.
Only below this critical value will oscillatory motion be found.

Platzman also investigated the nature of the decay in seiche amplitude
and found it to be constant in time for his linear system. In contrast,
attenuation of the seiche in Lake Balaton depends upon the seiche magni-
tude. Figure 4.5, for example, shows large initial damping of the seiche
of April 22, 1966, although residual motions persist through the 23rd and
24th despite very light winds. The different rates in attenuation of high
and.low amplitude waves is contrary to Platzman's linear theory, and sug-
gests that non-linear frictional forces are important in Balaton.
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4.3 Water Quality and Eutrophication

4.3.1 General Characteristics

Although the water quality of Lake Balaton is generally good, signs of
increasing eutrophication have alarmed many. Such problems are worst in
Keszthely Bay, at the southwest end of the lake, with progressive
improvement along the length of the lake as one proceeds eastward. Much
of this water quality deterioration is attributed to phosphorus and nitro-
gen nutrient loadings from agricultural runoff and domestic sewage dis-
posal. The Zala River is an especially prominent source of input
loadings, and is the major cause of Keszthely Bay's problems.

The shallowness of the lake allows the wind to prevent any long-term
stratification, although intermittent weak stratification has been observed
in. vertical temperature profiles (Entz, 1976). Similarly, dissolved oxygen
is mixed throughout the water column by the wind. The high biological
oxygen demand of the input loadings has, on rare occasions, led to
anaerobic conditions in Keszthely Bay during periods of low winds (van
Straten, et al., 1979).

Lake Balaton is a hardwater lake, owing to the predominance of the
mineral dolomite (calcium magnesium carbonate) in the drainage basin. It
is characterized by high concentrations of calcium and magnesium, a high
alkalinity, and a high pH. Suspended solids are always high due to
resuspension of bottom material by wind action, imparting a milky color to
the lake water.

Phosphorus in the lake is predominantly in the particulate form, mostly
of organic origin. Orthophosphate levels are always very low -- on. the
order of 5 pg/z and phosphorus is generally believed to be the limiting
nutrient for algal growth. Phosphorus constituents exhibit significant
concentration gradients along the lake, decreasing with distance from
Keszthely Bay where the Zala River discharges to the lake (Figure 4.7).
These gradients persist despite the mixing and circulation produced by
the wind.

Biological productivity measures exhibit longitudinal gradients similar
to those of phosphorus. They also indicate the deterioration of water
quality; biomass, for example, has increased steadily for four years.
Very high primary production has been measured in Keszthely Bay: up
to a peak of 13.6 gC/m 2 day. The dominant algal species are diatoms in
the spring followed by mixed phytoplankton populations in summer.
Blue-green algae have started to prevail during the summertime in Kesz-
thely Bay. According to various criteria given by Wetzel (1975), the
lake's characteristics place it in a classification of eutrophic to
hypereutrophic.

4.3.2 Chemistry

Interactions between phosphorus, calcium carbonate and phytoplankton
appear to govern the productivity of Lake Balaton. Although the major
aspects of the phosphorus-calcium carbonate system are known, the inter-
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actions of the chemistry and biology are complex and have not been 'fully
explained.

The observea chemistry of the lake generally behaves as expected for
the calcium carbonate system. The average pH of Lake Balaton water is

about 8.4, consistent with water in equilibrium with calcite, CaCO3 ' and

with the atmosphere. Under the high.. pH and hardness in Lake Balaton,

calcite precipitates readily, driven by the removal of CO2 during algal -

and macrophyte photosynthesis (Miller, 1970 and 1971). As indicated in
Section 2.2.1, such biogenic lime formation is accompanied by the
co-precipitation *of phosphorus. The importance of phosphorus
co-precipitation in Lake Balaton is indicated by Jolinkai and Sz6llosi-Nagy
(1978) who believe that 72 percent of the phosphorus load to the lake is
immediately co-precipitated and deposited in the sediments.

Under the chemical conditions of Lake Balaton, the co-precipitated
phosphate is expected to form hydroxyapatite, either directly or by
adsorption to precipitating calcite with later transformation. A.dsorption
of phosphate on hydrous oxides or clays are less important
co-precipitation methods at the pH levels in Lake Balaton, but may never-
theless be significant phosphorus sinks. At the mean pH and calcium
concentrations in the lake, the solubility of hydroxyapatite predicts an
equilibrium orthophosphate concentration of 4 pg/e, which is consistent
with observations.

4.3.3 Biology

Unfortunately, the observed response of Lake Balaton's phytoplankton
population is less consistent with our expectations than the observed
chemistry. Under the equilibrium chemistry hypothesized above,
orthophosphate concentrations will always be very low. The plentiful
calcium carbonate insures this even for increased phosphorus loadings.
Since orthophosphate is believed to be the only form of phosphorus the
algae -are able to assimilate, the increase in loading should not lead to a.
significant change in eutrophication. Observations in Lake Balaton have,
of course, been to the contrary and, thus, other supplies of phosphate
must be hypothesized and tested. In this section, we will examine what is
known of the interactions between biological activity and phosphorus in
Lake Balaton.

The relative importance of algal uptake on orthophosphate concen-
tration was the topic of experimental work by Dobolyi and Herodek
(1980). Their experiments determined the fate of isotope-labeled
orthophosphate added to a plexiglass enclosure designed to isolate an
in-situ culture of lake water. The. enclosure was roughly. one meter
square in area, and was placed in the lake in water of about one meter
depth. The box was equipped with an electric stirring paddle to maintain
sediment suspension. The strength of this mixing is not clearly stated
however -- it may have been insufficient to cause continued resuspension
of bottom material.
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Dobolyi and Herodek hypothesized three possible controls on the
orthophosphate concentration: algal uptake, biogenic lime formation, and
adsorption on suspended sediments. Through various procedures, they
isolated the influence of the first two controls and measured their effect
when labeled orthophosphate was added to the enclosure. They found
that elimination of biological activity by chlorination ceased all
orthophosphate uptake; hence, adsorption to suspended sediment was
concluded a minor influence in the enclosure. Addition of EDTA to the.
box to prevent lime formation led to essentially the same orthophosphate
uptake as without EDTA; thus, co-precipitation was also concluded a
minor influence. Together, these results showed the major
orthophosphate removal mechanism in the experiments to be uptake by
phytoplankton.

Two likely sources of orthophosphate to sustain algal uptake have been
identified (van Straten and Somly6dy, 1981). The first is a rapid recycl-
ing of organic phosphorus to the inorganic form. As seen above in Figure
4.7, total dissolved phosphorus constitutes a major fraction, one third to
one half, of the total measured phosphorus. Orthophosphates are a very
small part of this dissolved fraction; dissolved organic phosphorus and
polyphosphates make up most of it. Lean's findings, discussed in Chap-
ter 2, show bacterial remineralization of these dissolved forms may be
rapid and substantial. Such remineralization is probably an important
source of orthophosphate in Lake Balaton.

The second hypothesized source of phosphorus for algal growth is that
r aleased from the lake's sediments. Since Balaton is so shallow, even
moderately strong winds can cause motion throughout the water column,
leading to a stirring and suspension of bottom sediments. Observations
have confirmed a correlation between wind events' and high suspended
sediments concentration (Hamvas, 1966), and with high total phosphorus
levels as well (Somlyddy, 1980). The connection with orthophosphate
release is less certain, however. Measurements have not shown high
orthophosphate levels coincident with wind-induced total phosphorus
increases. This does not rule out the release of sedimentary
orthophosphate, however, since it could be consumed rapidly by algal
uptake or adsorption to sediment particles. On the contrary, the
liklihood of orthophosphate release is supported by measurements of the
sediment made by Dobolyi (1980). He found orthophosphate concen-
trations on the order of 100 pg/e in the interstitial water of the sediment
-- a level at least twenty times higher than in the lake water. The thick-
ness of the oxidized microzone of the sediments is only about 1 to 4 cm
(Olah, cited in van Straten et al., 1979), and thus could be disturbed by
strong mixing. However, further research is necessary to clarify the role
of wind mixing and of diffusion in sedimentary orthophosphate release
before such release can be concluded an important nutrient source.

Still another possible source of phosphate has been suggested by
Hemond (personal communication). He proposes that the extensive reed
belts in the shallow shoreline areas of the lake may serve as nutrient
pumps, removing phosphorus from the sediments and excreting
orthophosphate to the water column. (See Section 2.2.2.) Reeds cover
about three percent of the lake's surface (van Straten et al., 1979) and

101



thus could make a potentially large orthophosphate contribution. To our
knowledge, this possibility has not been investigated, although the effi-
ciency of the reeds for phosphate removal has been studied (Tdth, 1972).

4.3.4 Nutrient Loading

Ultimately, the cause of Lake Balaton's eutrophication must be the
entry of nutrients into the water column. Although these nutrients may
originate from internal sources -- that is, sources within the lake itself
such as bottom sediments -- external sources outside of the lake are likely
more important. This is demonstrated by Somlyd*dy (personal communi-
cation), who shows that the increase in algal biomass in the lake coincides
with a number of external factors known to increase nutrient loads: rising
population and tourism, and expanding use of chemical fertilizers for
example. Clearly, an understanding of Balaton's water quality requires a
knowledge of the nutrient load entering the lake. In this section we will
briefly examine the origin and magnitude of various loads drawing our
material from a recent report by Jolankai and Somlyddy (1981).

Nutrients enter the lake via either point sources or non-point sources.
Point sources are those for which a specific point of discharge into the
lake may be identified -- river or stream inflows or sewage discharges.
Non-point sources' include all other nutrient sources, such as that settling
from the atmosphere or carried by groundwater seepage. In practice, the
division between point and non-point sources is indistinct and the numer-
ous diffuse small point, sources such as urban stormwater and rainfall
runoff flowing directly to the lake are included as non-point sources.

Jolankai and Somlyddy (1981) have collected and analyzed field data
from a number of sources to develop a loading classification and estimate.
This is summarized in Table 4.1 as the quantities of total phosphorus,
orthophosphate, and available phosphorus due to various sources. Avail-
able phosphorus is an estimate of the phosphorus which can be utilized by
algae for growth -- that is, "available" to the algae. It includes
orthophosphate plus unbound organic compounds from the remaining
phosphorus inflow. This latter part of the load will vary between ten and
thirty percent of the total phosphorus load exclusive of orthophosphate;
the uncertainty of the availability percentage implies the approximate
character of the .available phosphorus estimate. Nevertheless, available
phosphorus is' a convenient indicator of the eutrophication potential of the
nutrient load.

Table 4.1 includes three major loading classes which are further bro-
ken down by sub-classes. The point sources, tributary inflows plus sew-
age discharges, comprise the greater portion of the loading. Of the point
source load, fully one-third is due to the Zala River inflow at the lake's
western extreme. All other tributary loads must be taken together to
arrive at a load equal to that of the Zala. The tributary loading appears
in 'time as a series of brief high-load periods coinciding with flood events
of at most a few days duration. The distribution of the load shows no
regular pattern from month to month, with the monthly average load vary-
ing by no more than a factor of two. Less uniform is the spatial
distribution of the tributary loads. As may be seen in Figure 4.8, the
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Table 4.1

Phosphorus loading estimate for Lake Balaton

(Based on JolAnkai and Somlyddy, 1981, Table 11)

Total P Ortho P

(kg/day) (kg/day)

Available P
(kg/day)

Tributary Loads

Zala River

Other streams

Sewage Loads

Direct.sewage

Ponded sewage

Non-Point Source Loads

Urban stormwater
Direct runoff
Atmospheric

Total

104
104
208

128
133
261

225
248
473

105
26

131

161
79

171
411

1015

105
26

131

47
24
89

160

552

19
11
68
98.
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26.7 29.4 4.3 1.2 0.6 1.2 0.5 0.7 1.1

136.4 44.6 10.9 1.7 4.4 3.7 2.6 4.2 1.5

Figure 4.8

Spatial distribution of annual average available
phosphorus loads (kg/day) due to tributary inflows

(based on Jol'nkai and Somly6dy, 1981)
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8.5 21.2 74 1.3 34.4

Figure 4.9

Spatial distribution of annual average available

phosphorus loads (kg/day) due to sewage and sewage pond inflows

(based on Jolnkai and Somly6dy, 1981)
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largest tributary inflows are heavily concentrated in the western part of
the lake.

Sewage effluents, which make up the final third of the point source
load, fall into two categories: direct discharges and ponded discharges.
The ponded discharges do not flow directly into the lake during the sum.-
mer months. Rather, they are retained for those months in fish breeding
ponds in a form of tertiary sewage treatment which removes roughly fifty
percent of the phosphorus nutrients. These ponds are drained over
about a ten-day period in early autumn, after which sewage flows directly
to the lake until the ponds are reestablished the following summer. The
drainage period causes a very intense nutrient input of short duration --
a significant transient point load. The remaining sewage loads are those
which discharge directly to the lake without interruption. These loads
exhibit a significant increase during the summer tourist season, peaking
in July and August at three or four times the loading rate of the
off-season. The spatial distribution of sewage loads along the lake is
indicated in Figure 4.9.

Non-point sources, by their very nature, are less easily quantified.
than the point sources. Jolankai and Somlyddy were able to estimate the
major non-point sources other than groundwater infiltration. These esti-
mates, which are based on scarce data and literature values, are given in
Table 4.1. The very little information available suggests groundwater
seepage is probably a negligible load.

The variation of the non-point source loadings in time and space is
largely unquantified. Urban stormwater and direct runoff loads are
directly caused by rainfall events and will vary in time accordingly.
Atmospheric loads, for lack of better information, are assumed constant in
time. The distribution of atmospheric and direct runoff loads is likely to
be nearly uniform over the lake, while stormwater loads originate in cities
and villages near enough to the lake to discharge directly to the lake
rather than to a tributary stream.
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5 A LINKED WATER QUALITY MODEL OF LAKE BALATON

5.1 Defining the Model

A preliminary analysis of the requirements for a water quality model
can simplify its application and better its possibilities for success. In
this section, therefore, we attempt to define the model characteristics in
as systematic and rigorous a fashion as possible. The factors determining
the model characteristics are the goals and purposes the model is to
fulfill, the physical, chemical and biological processes governing the
lake's behavior, and the availability of field data to confirm the model
results. We evaluate these factors in Section 5.1 .1 as a first step in fix-
ing. the model formulation. Then, in the remaining part of Section 5.1, we
refine the model definition through more detailed examination of the indi-
vidual model components.

5.1.1 Preliminary Model Definition

To define the desired water quality model we must first establish the
purposes and goals of the modeling program. Ultimately, the model must
be able to compare and evaluate possible water quality control alternatives
for Lake Balaton. Though the root of Balaton's water quality problem is
known to be the introduction of the algal nutrient phosphorus into the
lake, there is less certainty over the most effective means to limit nutrient
influx. Nutrients are carried into the lake by such disparate sources .as
the single large inflow of the Zala River and the many small stream, local
runoff, and sewage inflows scattered around the lake. These inflow
sources vary greatly in time -- for example, sewage inflows change with
the seasonal tourist population, while the Zala River fluctuates with the
annual variation of streamflow, and local runoff and streams respond to
the episodic occurrence of rainfall storms. The seasonality of farming
leads to still more variation in the quantity of nutrients originating from
agricultural fertilizers. These various nutrient sources, which differ so
much in their spatial and temporal distribution, require very different
control strategies. The water quality model must distinguish the mech-
anisms and consequences of these controls by recognizing their spatial
and temporal character.

The water quality model must also capture certain essential features of
the biogeochemical system. In particular, since eutrophication is our main
concern, some measure of algal biomass must be an output of the model.
Moreover, we know from field data that algal concentration changes great-
ly along the lake and also that it can increase rapidly during one or two
growth periods, or blooms, during the year. Therefore, the model would
be most useful if it showed these concentration variations in time and
space.

Finally, we would -like the model to indicate the major causes of Bala-
ton's problems. Although we have established this in general terms --
namely, the introduction of the nutrient phosphorus -- we cannot current-
ly distinguish external from internal nutrient sources, nor can we identify
the dominant mechanism removing orthophosphate from the water column.
To satisfy these information needs, the model requires explicit formulation
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of water-sediment interaction, biogenic lime precipitation, and nutrient
uptake by phytoplankton.

With the water quality modeling goals identified, we can proceed to a
broad definition of the model characteristics. Chapters 2 and 3 present a
wide spectrum of possible water quality transport models. At the most
complex end of this spectrum lies the transient three-dimensional water
quality and transport model. At the simplest is the lake modeled as a ful-
ly mixed tank, operated on very long time steps and neglecting completely
all internal transport. Possible model alternatives for Lake Balaton are
shown in such a spectrum in Figure 5.1. Working water quality models of
the lake lie near the lower end of this spectrum since they use one or
four-box formulations (Csaki and Kutas, 1980; Leonov, 1980; and van
Straten, 1980). The critical factor in selecting a particular model from
this spectrum is the model's ability to properly couple the major processes
affecting water quality: hydrodynamics and biogeochemistry.

Hydrodynamic processes in the lake interact with the biogeochemical
processes by transporting and mixing the state variables. Only by coupl-
ing hydrodynamic and biogeochemical model components can the crucial
description of advective and diffusive transports be provided. The suc-
cess of such a coupled model depends, however, upon the consistency of
the components with each other, with the processes within the lake, and
with the goals set for the modeling program. A good indication of this
consistency is supplied by an examination of the length and time scales
important in the lake's behavior.

The magnitudes of the length and time scales of the major physical and
biogeochemical processes in Lake Balaton are depicted in Figure 5.2.
Though approximate, the time and length scale diagrams point ou.t some
important considerations for modeling. For example, we can see that
wind-driven circulation corresponds with horizontal concentration gradi-
ents at a length scale on the order of a kilometer and a time scale of one
or a few days. Vertical processes occur over somewhat shorter time
scales with a length scale on the order of a few meters. Long-term eutro-.
phication proceeds slowly at lake-wide length scales in rough
correspondence with the hydrologic through-flows. These correspond-
ences of physical and biological scales illustrate clearly those processes
which we can expect to interact strongly, and those- which we can assume
to be essentially independent. For example, hydrologic through-flows will
not affect the vertical variation of nutrient and organism concentrations,
which respond instead to the wind-induced vertical mixing and the cre-
ation and destruction of temperature stratification.

We can add substance to these qualitative comparisons with a quantita-
tive example from Lake Balaton: an evaluation of the relative importance
of hydrologic through-flow and seiche currents. For estimates of the
hydrologic through-flow, we draw upon van Straten et al. (1979)..
Through water balance calculations, they compute inter-basin flows .for.
the four Balaton basins. Translating their results into volume transports
over various time periods produces the quantities given in Table. 5.1. For
comparison, the volume of water transported by a typical amplitude seiche
can be estimated. Assuming a difference in water surface elevation of
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Figure 5.1

Water quality models possible for Lake Balaton

one-half meter between the ends of the lake and a linear water surface
profile, the amount of water transported across the seich.e nodal line is on
the order of 75 million cubic meters in a time period of about 6 hours.
This volume is . roughly twice that transported in a -month by the
hydrologic flows, and two orders of magnitude greater than the monthly
flows scaled down to six hours. Yet, over a year, the seiche motion
produces no net flow into or out of the lake, while the hydrologic flows
replace roughly 50% of the to+al lake volume. Our conclusion is clear:
over - short time scales of less than the seiche period, the seiche
dominates; over long time periods on the order of the lake residence time,
the hydrologic flow governs.

This analysis of length and time scales illustrates some important con-
cepts which the modeler must consider. First, the water quality model
must account not only for the particular biogeochemical processes of
interest, but also the corresponding physical processes as well. And, to
represent these processes and their interaction successfully, the model
must operate at the correct length and time scales. This has been empha-
sized by.Ford and Thornton (1979):

The ... conceptualization of any process, such as turbulent
mixing or phytoplankton growth, constrains the ... pred-
ictions from this formulation. The conceptualization of
some processes such as turbulent mixing on a daily time
scale, in general, would not be appropriate to describe
how that process occurs on a micro-second time scale.
The conceptualization of phytoplankton production on a
seasonal basis would not be expected to predict diurnal
production cycles.

They further state:

It is also important to recognize that many processes con-
ceptualized on a micro time scale cannot simply be inte-
grated over time to describe daily or seasonal processes.
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Table 5.1

Volume transports between the Balaton basins
(from van Straten, Jolinkai and Herodek, 1979)

Keszthely to Szigliget to Szemes to
Szigliget Szemes Si6fok

Annual 297 439 444

Summer 133 197 200
Half-Year

Winter 164 242 244
Half-Year

Monthly 25 37 37
Average

Maximum 42 58 53
Monthly

Minimum 16 25 28
Monthly

All quantities are in million cubic meters.

This last point has been demonstrated in an extensive modeling study of
Lake Ontario conducted by the Canadian Centre for Inland Waters (Simons
and Lam, 1980). Simons and Lam coupled hydrodynamic and biogeochemi-
cal models to develop a multi-layer model of Lake Ontario's transient water
quality. The lake was simulated over a number of years using a time step
on the order of a day and a spatial grid of roughly 5 kilometers. Signif-
icantly, the authors conclude that the model, though able to predict
seasonal and shorter term trends, is unable to model trends over a few
years with high accuracy. Despite this pessimistic conclusion, the water
quality model may still be able to capture the short term manifestations of
eutrophication in algal blooms even if very long term trends are missed.
This still permits very effective 'comparisons and evaluations of alternative
lake water quality control schemes. Further, we believe that as experi-
ence in this type of modeling accumulates, predictive ability will improve
to the point that long-term trends are successfully captured.

We qualify this length and time scale analysis by cautioning that it
should be considered only as a rough, though essential, guide for model
design. In this process, the modeler first decides the type of information
he desires from the model: for example, long-term trends in eutrophica-
tion or day-to-day changes in algal population. This modeling goal
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implies certain length and time scales, as illustrated in Figure 5.2. Once
these scales are known, the lake processes likely to be influential can be
identified for inclusion in the model, and rough magnitudes of the model
time and space intervals can be reckoned. Thus, the scale analysis pro-
vides a systematic framework for model design, leading to general bounds
on the- model specifications. It should not be construed as a rigorous
means to exact model definition, but rather as a convenient framework for
initial model planning and design.

Superimposed upon the time and scale analysis is one last factor to be
considered when selecting the water quality model: the availability of field
data with which to verify the model results. Model predictions which can-
not be substantiated by field observations are of little value; an unveri-
fied model cannot be used with confidence to design water quality
controls. In Balaton, there are regular field measurements of water quali-
ty constituents at only nine stations along the lake ten times per year.
(See van Straten et al., 1979.) And, these measurements do not evaluate
concentration variations in the vertical or transverse directions. This
effectively limits the model resolution to differences along the lake over
time periods on- the order of a few days.

We can now bring our preliminary model selection to its conclusion.
The goals set for the model, and the limitations imposed by the available
data, determine these bounds on the model characteristics: the model must
be able to predict variations in algal abundance along the lake's long axis
and over time periods as short as weeks. From our time and length scale
analysis, we can see that these bounds fall below the regime dominated by
hydrologic flows alone, so that the model must include the transport due
to seiche and wind-driven circulation. Thus, a coupled model, which
includes both a hydrodynamic component to predict circulation and a bio-
geochemical component to simulate phosphorus reactions, is needed. The
framework for coupling the components is suggested by the rough bounds
stated above; the simplest possibility is a transient, longitudinally
one-dimensional water quality model. We proceed in the remainder of this
section to weigh the simplifications and approximations implied by this
formulation, and to examine the model components in greater detail.

5.1.2 Water Quality Transport in the Coupled Model

Development of a one-dimensional water quality transport model
requires that the longitudinal velocity be obtained by integration of the
velocity over the width and depth of the lake cross section. This process
is also the basis to develop one-dimensional models of stream water
quality, a field in which a substantial body of literature exists. For
either the lake or stream, integration over the cross section causes all
vertical and lateral variations in velocity to be eliminated, giving rise to
the longitudinal dispersion coefficient to capture the effects of such vari-
ations on longitudinal transport. The dispersion coefficient is defined as
a function of the stream velocity, as well as geometrical and other proper-
ties. The literature of stream pollution modeling cites a number of
problems in this approach, including lateral velocity variations which are
greater than the theoretical, dead zones in the flow, secondary circu-
lations due to lateral and vertical velocities, and multiple flow paths
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around islands and bars. These stream characteristics all lead to large
increases in the dispersion coefficient above the value predicted by theo-
ry.

Although the analogy with stream modeling is instructive, Lake Balaton
has many striking differences from the stream situation. While stream
flow is generally unidirectional throughout the cross section, field and
hydraulic model studies have shown flow reversals. in vertical and lateral
space in Lake Balaton. Further, the common transverse winds lead to a
significant lateral circulation in the lake. As will be shown below, these
flows, which correspond to secondary circulations in streams, can be
quite significant in Balaton. Thus, the cross-sectionally averaged longi-
tudinal velocity will be far less representative for Balaton than it will be
for streams. This implies a relatively larger contribution due to
dispersion. than would typically be found in stream modeling.

Variations of the longitudinal velocity with time are also important in
Ba-laton due to the frequent and strong seiche motion. This type of
motion is similar to that found in a tidal estuary -- suggesting an analogy
between our modeling task and that of estuarine water quality. Two
types of estuarine water quality models exist: the real-time model, which
considers the variation of longitudinal velocity over time scales much
shorter than the tidal period, and the non-tidal model, which assumes a
velocity d.ue only to the net freshwater flow into the estuary. The
non-tidal model depends upon averaging over the tidal period to simplify
the velocity term, whose temporal variations must then be accounted for
in the longitudinal dispersion coefficient. The consequent dispersion
coefficient is much greater than the corresponding coefficient for the
real-time estuary model. Harleman (1971) cites severe difficulties in
defining t-he dispersion coefficient for non-tidal models and recommends
the real-time model for all serious estuary modeling efforts.

The experience in estuarine modeling offers an important lesson for
our study of Lake Balaton. Clearly, averaging over sufficient time peri-
ods to eliminate seiche motion is possible, but would create considerable
difficulties in the determination of the proper longitudinal dispersion coef-
ficient. This recommends the real-time solution of the seiche motion over
time steps no longer than about an hour. (In fact, use of an explicit
non-rigid-lid computation scheme will impose stability constraints limiting
the time step to the order of minutes.) The output from this model may
then be averaged or sampled in time if it is desired to reduce the time
step frequency in a linked biogeochemical model.

5.1.3 Hydrodynamic Model Component - Part I

The analysis of Lake Balaton's circulation in Chapter 4 allows us to
identify the likely major hydrodynamic influences upon the water quality.
The back and forth motion due to the seiche is the most obvious. This
motion is primarily translational: it moves parcels of water along the lake,
first in one direction and then back. Accompanying this translational, or
advective, motion is dispersion, the differential movement of neighboring
water parcels due to non-uniformities in the lateral and vertical velocity
distributions. This mechanism will act to smear differences in the concen-
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tration of water quality constituents along the lake -- it is an important
hydrodynamic factor which should be determined as accurately as possi-
ble. Finally, there is the net hydrologic flow through the lake. Although
this factor acts much more slowly than those above, it is nevertheless
important since it acts to remove and replace water within the lake.

Hydrologic through-flow may be determined by long term water
balance, however a more dynamic model is necessary to give the
seiche-related transports. Thus, we are led to a hydrodynamic model
component to determine the advective and dispersive transports required
by the biogeochemical component. The advective transport is fairly easily
supplied to a one-dimensional water quality model. The cross-sectional
mean velocities can be found directly in a 1-D flow model or by averaging
the results of 2-D or 3-D circulation models. Our discussion of stream
and estuary modeling disclosed a possible pitfall in the use of
one-dimensional models, however. Such a one-dimensional model would
incorporate all the complexities due to lateral variations in the longitudinal
velocity and due to transverse circulations into a single parameter, the
longitudinal dispersion coefficient. Experiments with the four-box
SIMBAL model have shown significant sensitivity to the magnitude of
exchange flows between the boxes (van Straten, 1980). Though the
exchange flows are not identical to the dispersion mechanism, they are
sufficiently similar to suggest problems. In particular, the use of a
time-constant dispersion coefficient as done in river and estuarine model-
ing may be inadequate in Balaton. In the lake, the situation is
complicated by significant lateral velocities due to highly transient wind
forces, reversing, unsteady seiche motion, and the influence of a finite
length. It would be far better to determine a dispersive flux directly
from a two or three-dimensional flow field prediction based on the
wind-driven circulation.

Dispersion can be computed directly from the cross-sectional velocity
distribution using methods developed by Fischer. If variations in the
vertical velocity distribution are the major cause of dispersion, then the
dispersion coefficient is given as (Fischer, 1966):

Dh dz u' ) z ZIdz" u'(z") (5.1)

0 0 0

where Dh is the dispersion coefficient due to vertical
velocity variations,

h is the depth,
u'(z) is the deviation of the velocity at elevation z

from the vertically averaged velocity, and

E z is the vertical turbulent diffusivity.
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Here, Dh is determined for particular values of x and y, that is, for a

particular horizontal position in the lake. A rough estimate of Dh can be

determined as:

2 2
h U,

D h h (5.2)
h E z

where u h is the maximum deviation of the velocity from the
vertical mean velocity.

Where lateral variations in velocity are dominant, the dispersion coeffi-
cient is given by an equation developed in Appendix D. This equation is
similar to that of Fischer (1967), except that it assumes lateral advection
to be a more important transverse mixing mechanism than turbulent dif-
fusion.

W y

DW = - dy q'(y) dy' qI Y() (5.3)

0 0

where D is the dispersion coefficient due to lateral velocity
variations,

A is the cross-sectional area,
W is. the width,
V is the lateral flow per unit width, and
q' is the deviation of the flow per unit width from the.

lateral mean flow per unit width, determined as a
function of distance across the stream.

In this equation, Dw is a function of x, the distance along the lake. It

may be taken as roughly proportional to:
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2
W u

D e W (5.4)

where u is the maximum deviation of the velocity from the
w lateral mean velocity, and

v is the lateral velocity.

We can evaluate the relative importance of lateral and vertical velocity
variations by the ratio of Equation 5.4 to 5.2:

2
D W u e

~ w z(5.5)
D2 2

h h uh v

To determine this, we will first make the reasonable approximation that

uw ~U h -- this is certainly accurate within an order of magnitude. The

length scales are known from the lake geometry: W = 8000 m, and

h = 3 m. The vertical diffusivity Ez can be estimated by measurements

given in the literature to be about 30 cm 2/sec, while the lateral velocity v
can be taken as roughly 5 cm/sec from measurements described in Appen-
dix A. With these values, we can give an order of magnitude estimate for

the dispersion coefficient ratio, Dw/Dh 50.

Our analysis is not yet complete, however, since we have not
accounted for one assumption implicit in the formulae given above. That
assumption is that there has been sufficient time after the dispersant has
been introduced into the flow for that material to have mixed throughout
the cross section. Holley, Harleman and Fischer (1970) show that this is
often not the case in the oscillating flow of estuaries since the oscillation

period may be less than the time for mixing. The time for mixing, Tc' is

given .by Holley et al. as:

2
T =(5.6)

C E

where X is the distance over which mixing must occur, equal
to the distance from the boundary to the point of
maximum velocity in the cross section, and'
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E is the diffusivity in the direction corresponding to
X.

The vertical mixing time is small compared to the seiche period in Balaton
and the assumption of sufficient mixing time holds for .Dh. For horizontal
mixing due to lateral velocity, the mixing time is:

T W
C V

T is thus on the order of twenty hours, or a few times the seiche period.

Holley et al. (1970) present a theory relating the effect of insufficient
mixing time on the dispersion coefficient. Although the theory is not
strictly applicable to lake environments, we may use it as an approxi-
mation. For the ratio of seiche period to mixing time determined above
(T/Tc ~ 0.4), the realized dispersion will be roughly half that predicted
without considering the mixing time. Thus, dispersion due to variations
in the lateral velocity distribution will still dominate those due to vertical
velocity non-uniformities by roughly an order of magnitude.

This analysis of dispersion allows us to select an adequate hydro-
dynamic model component as a horizontal two-dimensional circulation model
-- the single-layer model identified in Section 3.4.2. The single layer
model determines the distribution of flow both along and across the lake.
The latter information supplies the resolution in lateral space necessary to
determine dispersion. Summation of the lateral fluxes across- the lake
gives the advective flux.

5.1.4 Hydrodynamic Model Component - Part 11

The single layer circulation model, as explained in Chapter 3, offers
both advantages and disadvantages. By far its greatest advantage is its
simplicity and consequent low simulation expense. This is made possible,
however, by a number of assumptions and approximations which may limit
the use of the model. Therefore, before we can employ such a model with
confidence, we must first examine its assumptions in light of the criteria
given in Chapter 3 and the physical characteristics of the application
lake.

In Section 3.5 we presented the assumptions possible in circulation
model formulation; these include the shallow water assumptions, neglect of
convective acceleration, the rigid-lid and small amplitude approximations,
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and neglect of horizontal frictional forces. These approximations will be
examined in turn below using as a basis the physical parameters gathered
from various sources in Table 5.2. In this table, the value of the hori-
zontal eddy viscosity has been assumed based on similar data published
for other lakes. Although the value used is reasonable for Lake Balaton,
it is not, in fact, determined by actual measurements. Also included in
Table 5.2 are the various dimensionless numbers (force ratios) computed
from the physical parameters.

The shallow water assumptions are permitted if the lake depth is suffi-
ciently small. In Balaton, the ratio of depth to length is on the order of
10- 4 . As well, the Ekman friction depth, which indicates roughly the
depth to which wind surface stress will be influential, is at least 14
meters. This is sufficiently greater than the average lake depth that the
lake may be classified as "very shallow" under criteria given by Lindijer
(1979). Finally, field measurements reveal that the lake's vertical strat-
ification is weak and intermittent (Entz, 1976). These data safely assure
the propriety of using the shallow water assumptions.

Neglect of convective acceleration is permissible if the Rossby number,
the ratio of inertial to Coriolis forces, is small. As seen in Table 5.2,
this ratio lies within the range of 0.02 to 0.2, sufficiently small to permit
neglect of the convective terms. Even smaller is the horizontal Ekman
number, easily allowing the neglect of viscous effects in the horizontal
plane.

The condition to impose a rigid lid condition is that the square of the
seiche period be much less than the square of the inertial period. This
criterion is- easily satisfied in Lake Balaton for transverse seiches, but
only marginally for longitudinal. Since the rigid lid approximation may
greatly distort predicted transient motions, it would be unwise to employ
it given its small safety margin for Lake Balaton.

According to the free surface boundary parameter, it is safe to employ
the small amplitude approximation and apply boundary conditions at the
undisplaced free surface location. However, the parameter in Table 5.2 is
based upon the lake's average depth and is clearly inappropriate in the
shoreline regions where the displacement may exceed the depth. Thus, it
may be wise to base computations on the actual free surface, rather than
the undisplaced level.

Unfortunately, the data of Table 5.2 do- not give a complete picture of
the lake's behavior since important local effects are ignored. Along the
shoreline, and at Tihany Peninsula, local influences can be expected to
produce significant divergence from the general behavior outlined above.
At Tihany, for example, convective accelerations may be important and
possibly frictional influences as well (large Rossby and horizontal Ekman
numbers, respectively). In this local region, therefore, a linearized mod-
el may not be able to reproduce the lake circulation with great accuracy.
As long as this error is confined to a small region, however, such a model
remains useful for the lake-wide circulation. needed as input to a water
quality model.
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Table 5.2

Physical parameters for

Length

Width

Depth

Velocity (due to seiche)

Coriolis parameter

Horizontal eddy viscosity
(assumed value)

Vertical eddy viscosity

Froude number

Rossby number

Surface boundary parameter

Horizontal Ekman number

Vertical Ekman number

Ekman friction depth

Critical bottom slope

Longitudinal seiche period
(computed)
(observed)

Transverse seiche period
(computed)
(observed)

Inertial period

Proudman number

H:

U =

AH

Lake Balaton

75 km

8 km

3.. 2 m

0.20 m/s

10-4 rad/s

4 2
= 10 cm /s

AV = 15 cm2/s

Fr = U/vg i = 0.025

Ro = U/fL = 0.02, or
Ro = U/fW = 0.2

Fr /Ro = 0.035 or 0.0035

2 -6
EH = AH/fL2 = 1.8 x 10 ,or
EH = AH/fW = 1.6 x 10-4

EV = A/fH2 =1.5

D = 7 2A./f = 17 m

s = HE/LVE = 0.04
c V H

= 2L//if = 7.5 hr
= 10 to 11.5 hr

Tt = 2W//gii = 48 min

Tt = 40 min

T = 2w/f = 18 hr

2 2
Pr = A /(ff/L) gH = 0.4

V
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Local effects must also be considered in the form of frictional influ-
ences along the shoreline. (See Section 3.5.4.) It is reasonable to neg-
lect horizontal frictional forces in the shoreline regions if the bottom

slope, s, is less steep than the critical slope, s . From Table 5.2, the

critical slope is at most 0.04, corresponding to a very steep slope. Thus,
this criterion is satisfied in all but a few locations, most obviously the
deep channel at Tihany.

To summarize the findings of this and the last section, we have deter-
mined that a two-dimensional horizontal circulation model would be a prop-
er hydrodynamic component for our water quality model. This component
can supply the dynamic advective transport due to seiche motion, as well
as resolve the associated dispersive transport. An analysis of Lake Bala-
ton's physical properties found that the circulation model could safely
employ an assumption of shallow water and could be linearized by neglect
of convective acceleration. However, it was found that the motion of the
free surface required cautious treatment, preventing use of a rigid lid
assumption and small amplitude approximation.

5.1.5 Biogeochemical Model Component

Our approach in specifying a biogeochemical model component differs
from our approach to the hydrodynamic model. Unlike the hydrodynamic
model, of which a working transient version for Lake Balaton did not
exist, the three Balaton biogeochemical models described in Chapter 2
preceded our work. Considerable knowledge and experience on Lake Bal-
aton was a key contribution to the development of the earliest of the mod-
els, BEM, and carried through to the subsequent BALSECT and SIMBAL
models. All of these models include the phosphorus interactions which we
deemed essential in Section 5.1 .1. Thus, our task was simplified for the
biogeochemical model, requiring only that a model be incorporated with
our transport model and hydrodynamic component. In this section, we
-very briefly review the selection of the biogeochemical formulation incor-
porated into our model.

The choice of the phosphorus cycle formulation depends as much on a
philosophy of modeling as anything else. A basic problem is the level of
detail desired -- that is, the number of phosphorus compartments. Mod-
els with few compartments take, in effect, a lumped parameter approach,
in which the more numerous compartments of complex models are aggre-
gated. Though a more complex subdivision may be pleasing from a
theoretical viewpoint, the lumped component approach, is probably more
economical and useful for practical engineering studies. The user of the
simplified' model must be satisfied with a more empirical, less theoretically
grounded model, however.

A further factor in deciding model complexity is the availability-of field
data for model calibration. As indicated in Section 2.4, calibration data
should increase roughly as the square of the number of state variables --
thus, data needs grow very rapidly as complexity increases.
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With these factors in mind, we chose van Straten's formulation of the
phosphorus cycle for use in our model. His model, SIMBAL, is the sim-
plest of the Balaton models, yet it shares the theoretical basis of the BEM
model and thus much of the understanding of Balaton's water quality
processes. The model simplicity is an important attraction, since we will
be employing much greater spatial detail in our model of the lake, and
thus making many more repetitions of the solution procedure. The
savings in computer time by using a simpler model can therefore be sub-
stantial.

Further, SIMBAL is perhaps the most rigorously calibrated of the Bala-
ton models. Its simpler structure requires fewer data for calibration,.but
also, van Straten (1980) has used an objective criterion to judge the cali-
bration. A robust calibration is important if the model is to be extended
to greater spatial detail without serious problems.

In -summary, SIMBAL was selected as our biogeochemical model compo-
nent since it was designed to address Balaton's problems specifically and
has. proven reasonably successful in reproducing historical data; since it
is the simplest of the available models; and, since it has been calibrated
in a rigorous manner.

5.2 Formulation of Water Quality Transport

The preceding discussion has emphasized the role of the hydrodynamic
and biogeochemical components as the major parts of the water quality
model. However, the model does not exist as isolated, unconnected parts;
a vehicle is required to join the components as a coupled water quality
model. - This vehicle is the water quality transport model: the
conceptualization of the lake as a group of individual volumes or locations
where water quality constituents react and between which the constituents
move. The t ransport model is virtually independent of what the water
quality constituents are and how they react -- this is the business of the
biogeochemical component. It is further independent of the means used to
determine the mass transport fluxes which move the water quality constit-
uents - this task belongs to the hydrodynamic model component. The
water quality transport model merely accepts the computations of the mod-
el components as inputs for its solution of the distribution of constituent
concentrations within the lake. In this section, we describe the formu-
lation of the water quality transport equations and their numerical
solution.

5.2.1 Transport Equation

In formulating the water quality model, two approaches were followed
simultaneously. The first, which we will call the finite difference model,
approximates the continuous functions and derivatives of the governing
differential equation. As such, it views the lake as a continuum. In con-
trast,. the second approach is a lumped parameter multiple-box model. It
is this second approach which has been used in the existing Lake Balaton
models as well as most other lake water quality models.
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The finite difference model is a direct approximation of the partial dif-
ferential equation of mass transport. The equation represents the
changes with time in the concentration of phosphorus at a point along the
lake due to advection, dispersion and biological or chemical reaction.
Phosphorus includes more than a single species and must thus be shown
in the equations as a vector. The equation, in vector form, is:

+ F+ N + L (5.7)at A ax A ax

where c is a vector of phosphorus component concentrations,
t is time,
Q is the cross-sectional mean flow,
A is the cross-sectional area,
x is the distance along the lake,
F is a dispersive flux vector,
N is a biogeochemical reaction vector, and

' is a vector of loading per unit volume.

Two transport mechanisms are included in the equation: advective mass
flux, equal to Qc, and dispersive mass flux, represented by F in our
notation. Usually, dispersion is computed using the dispersion coefficient
D, so that the dispersive flux is given as:

F = DA. (5.8)
- ax

For now, however, we will retain the more general notation that F is the
dispersive flux vector.

Also included in the equation is a generalized expression for all
reactions and transformations affecting the phosphorus component concen-
trations. This is the reaction vector N, which is a function of the con-
centration vector, as well as environmental factors which vary with time.
As will be seen in Section 5.4, N represents a complex set of interre-
lationships taken from the SIMBAL model of Lake Balaton.

Finally, the equation includes the influx of nutrients due to external
loads. This is represented by the loading vector L', which varies with
both time and space. The loading vector includes nutrient flows from the
various external sources identified in Section 4.3.4. Internal sources due
to release from the sediments, however, are included as a part of the
reaction vector rather than the loading vector.

A mathematically less formal approximation than Equation 5.7 is also
possible. This method, similar to the finite section approach of Thomann
(1972), conceives the lake as' a series of fully-mixed tanks or boxes.
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Treating each tank as a control volume and applying the principle of mass
conservation is a conceptually direct route to a numerical formulation.
Applied to the ith tank in a series, the approach leads to the following
finite section equation which is analogous to Equation 5.7:

dc.
V = Q C 1  Qi+1 + Xi+1 (C.+1 ~ C.)

-X. (C. .-c) + V.N. + V.L. (5.9)

where C. is the concentration in section i,

V. is the volume of section i,

Q. is the flow from section i-1 to section i,

X is the equal and opposite dispersive exchange flow
between sections i-1 and i,

N is the rate of increase in concentrate mass due to
reaction, and

L. is the mass influx to the section.

In this equation, flow is presumed to go from section i-1, to section i, to
section i+1; were the flow reversed, the signs on the flow terms would be
changed accordingly. Equation 5.9 is the form used in the current models
of Lake Balaton. It will also be used in this study for comparison with
the-finite difference method.

5.2.2 Numerical Solution

For practical problems, Equations 5.7 or 5.9 must be solved numer-
ically on the digital computer. Equation 5.9 is already in a discrete form
amenable to computer solution. However, Equation 5.7 must be replaced
by an analogous but approximate difference equation (Leendertse, 1971).
In the difference equations, the terms of Equation 5.7 are replaced by
approximations in which finite differences in x and t take the place of
partial derivatives. For example, in space the lake is subdivided into a
number of small spatial increments of length Ax to form a finite difference
grid. The equations are solved to give the concentration at a finite num-
ber of grid points as an approximation to the continuous function which
satisfies Equation 5.7.

Before showing the numerical approximation of Equations 5.7 and 5.9,
it is convenient to first discuss the procedure for solving the equations
through time. This procedure was developed as an extension of the Frac-
tional Step Method proposed by Verboom (1976). Verboom demonstrated
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that it is possible to solve the advective-dispersive equation as a series of
sub-problems while. preserving the accuracy and other properties of the
whole problem. Rather than solve the entire equation at each time step,
Verboom solved portions of the equation in fractional steps: solving first
for the advective term and then for the dispersive term. The procedure
is advantageous since it is usually easier to solve a series of simple prob-
lems than to solve one large problem, and because individual solution
schemes appropriate to each part of the equation may be developed.

In our extension of the fractional step method, described more fully in
Appendix B, we have subdivided Equation 5.7 or 5.9 into three portions:
advection, dispersion, and reaction and loading. These processes may
show very different behavior in time -- some varying rapidly while others
change only slowly. Therefore, we have added to the fractional step
method a mixed time step procedure. Under this procedure, different
solution step time increments may be used for the different fractional.
steps according to their individual stability and accuracy requirements.
For example, suppose the reaction and loading processes are less con-
straining than the advective, and a much larger time increment may be
used for the reaction computation. Since the reaction calculation is com-
plex, substantial savings in computer time occur when the time increment
is increased. Without .mixed time steps, all parts of the computation must
be done at the time increment of the most limiting process -- that is, at
the shortest time step.

The numerical equations are shown in Figure 5.3. - The approximation
for each of the three fractional steps is shown separately, and a different
time increment At is presumed for each step. As explained in Appendix
B, the intermediate solutions c* and c** have no physical significance;
the solution is not meaningful until it has been completed through the full
cycle of steps.

In constructing Equations 5.10 and 5.11 (the advective and dispersive
step equations of Figure 5.3) an effort was made to generalize the
equations as much as possible. This has the unfortunate side effect of
making the equations appear as confusing as possible, and some explana-
tion of their form is due. Firstly, the equations employ what is sometimes
termed theta-weighting to control the degree of implicitness in the
equations (Hornbeck, 1975). Consider the following simple example of.
this technique:

t+At t t t
c. c. + At 0 fc. + gc, 1 ] +

11 -

t+At t+At
(1 - 0) [fc + gc. ]
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Advective step

At 

t

i [+ (1 a i + ( )c *) + ( - yi+H a i+ + (1 - 6 a) c*i)+ 1)

i0 a -i + a )i-1 + (1 - y )(ea - (1 - a ci out'i [ a c + (1 - a )c i

(5.10)

Dispersive step

Atd .t
c.** = c.* + -- {X [e (c.* - c.*) + (1 )(c** c.**)]

-1 V i+l d -1+1 -i d -i+l -i

t
- x 6 * C* ) + (1 - )( -c*d - -i - -171

Reaction- step

t+At t (t+At C* Atr t
C.a c.** + At N (c. c.**) + L

- - r -i -i -3.-

Notation

t
c.

At

V.

A.

Ax,

t
Q.
1

tX .

Y.

t
N.

t
Qout, i
t
L.

concentration vector for grid or section i at time- t

time step increment (differs for advective, dispersive and reactiv

generalized volume: V = V for finite section i

VS. 1(A + A 1 )Ax. for finite difference

volume of finite section i

cross sectional area at upstream face of grid i

length of grid or section i

flow from grid or section i-l to grid or section i at time t

dispersive exchange flow between grids i and i-l at time t

implicit-explicit weighting parameter

spatial centering parameter for upstream face of grid or section i

reaction rate vector at grid or section i at time t

outflow from grid or section i at time t

mass influx (or loading) vector at grid or section i at time t

(5.11)

(5.12)

e steps)

grid i

Figure 5.3

Steps in numerical solution of mass transport equation
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If 0 =1, the equation is explicit; c.t+ may be solved entirely from the

t tknown values c. and c . Explicit solutions are usually limited to short

time steps in order to be well behaved numerically (stable). If e is less

than one, ci tAt is an implicit function of itself, as well as of the unknown

t+At t+Atc. . Due to this latter dependency, it is impossible to solve for c.

t+Atwithout simultaneously solving for c. at all other locations j. Although

this requires an expensive matrix solution, the solution is stable for large
values of At. Substitution of a few, large implicit time steps is often less
costly than many, short explicit steps. In general, accuracy increases as
O approaches 1 while stability increases as 0 goes to zero. A value of
B = 0.55 is an effective compromise, used in these studies.

Additional solution parameters are included in Equations 5.10 and 5.11
to permit either the finite difference or multiple-box approach to be used.
The parameter X controls the spatial weighting of the flow between a grid
and its upstream and downstream neighbors. For the multiple-box
approach, conservation of mass requires the following:

Y = 1 if Q >0

y. = 0 if Q. < 0

In contrast, these values are rarely appropriate for.the finite difference
approach, in which continuous derivatives of Q with x are represented.
In this study, I will be taken as one-half for the finite difference model;
as shown by Leendertse (1971), this is equivalent to centered finite dif-
ferences. Using values of X other than one-half .leads to upstream differ-
encing, a technique which improves numerical stability at a cost in
accuracy (due to numerical or artificial dispersion).

Also differing between the multiple-box and finite difference
approaches is the value of the generalized volume parameter ". For a
single box in the multiple-box model, the value may be unambiguously
taken as the box volume. In a finite difference equation, the volume
parameter is part of the approximation to the continuous functions and
derivative of the advective term. A number of approximations are possi-
ble -- one is the average cross-sectional area times the grid length:
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= - (A + A )Ax.
2 i 1+1 i

For most geometries, and particularly those without off-channel storage,
this approximately equals the grid volume.

The dispersive step, Equation 5.11, also uses a generalized notation
employing the exchange flow, X. This term derives from a conceptual
model of dispersion as an equal but opposite exchange of mass between
neighboring parcels of water -- a model which must be squared with our
previous explanations that dispersion arises from spatial averaging.- In
its most basic form, the dispersive flux is expressed in terms of devi-
ations from the spatial average:

F fu"c"dA (5.13)

A

where A is the cross-sectional area,
u"? is the local deviation of the velocity at a point in the

section from the mean velocity in the section, and
c" is the similar deviation of the concentration.

Usually, dispersion is specified in the diffusion form, Equation 5.8, so
that the dispersion term appears in the. mass conservation equation 5.7
as:

A 3 (DA )
A 9x ax

This may be represented in finite difference form, using the notation of
Figure 5.3, as:

1+ i+ l 1

-(A. +A ) Ax -(Ax +x.
2 i i+1 2 +1 iC. -C.]c C-

D.A. -x
(x. + X. )

where D. is the dispersion coefficient between grids i and i-1.
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Upon rearrangement, this expression is:

1D. A.D i+1 +1+1 C
V-. 1 i+1

1 2 (AX i+1 + AX )

D.A.

- c.) - 1c.Ax C. )

( + )

Comparison of this equation with the mass balance model in Equation 5.9,

reveals a perfect equivalence to the exchange flow, X. -- the dispersion

coefficient of the finite difference model and the exchange flow of the mul-
tiple-box model are related by:

D.A.

(Ax + Ax.)
(5.14)

In the multiple-box approach, the exchange flow may be specified directly
rather than using a dispersion coefficient. For example, van Straten
(1980) defines a return velocity as a parameter in the SIMBAL model to
capture a dispersion effect. With this parameter, the exchange flow is:

X. = v A.
1 ret i

where v ret is the return velocity parameter.

The relation between the dispersion coefficient and the exchange flow
is convenient for formulation of a single computer model capable of employ-
ing either of our two model approaches. As we have seen in Chapter 2
however, there is at best a very indirect physical relation between
exchange flows and dispersion coefficients.
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5.3 Formulation of the Hydrodynamic Component

5.3.1 Description of the Model

General specifications for the hydrodynamic component of the water
quality model have been presented in Section 5.1. A model conforming to
these specifications was developed, using as a guide a three-dimensional
model previously applied to Lake Balaton (Shanahan, Harleman and
Somlyddy, 1981). (A concluding discussion on the 3-D model is included
as Appendix C.) The newly developed model is a fully transient,
two-dimensional model based upon the linearized equations of motion. The
model solves for mass transport in the two coordinate directions and dis-
placement of the water surface as functions of time and horizontal space.
The model permits a time-varying wind field to be specified for determi-
nation of the transient forces upon the water surface, and accounts for
the non-linear force of friction at the lake bottom as well. An explicit
finite difference technique is employed to solve the equations.

Model Equations

The equations of motion upon which the 2-D model is based employ the
shallow water approximation and omit both the convective acceleration
terms and the horizontal shear terms. The simplified conservation of
momentum equations, after integration over the lake depth are thus:

x x

= - g(h+n) + x v b + (5.15a)

Y Y

S (h-+ n) ! f - - + -(5.15b)at y P P

where the notation is the same as in Chapter 3. The vertically integrated
mass conservation equation is employed:

au-+ a- =a (5.16)
ax 3y at

In these equations, the mass transports U and V are the variables repres-
enting water motion as the discharge per unit of horizontal length:
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= udz

h

V vdz

h

U and V have the units of area per unit time.

The water of the lake is subject to shear forces at the water surface
and lake bottom. These appear as the surface and bottom shear stresses,

,s and rb' in Equations 5.15. The wind-induced surface stresses are cal-

culated from Equation 3.22:

T = C P IWI Ws 2 a x (5.18)

1= c p Iwl w
S 2 a y

where the notation is the same as used in Chapter 3 with the exception

that we have broken the wind vector, W, into its x and y components, W
x

and W . The two-meter wind drag coefficient, C 2 , is either fixed as a
y2

constant or calculated from one of the formulae in Table 3.4.

At the lake bottom, the shear stress is taken as a non-linear function
of the depth-average velocity:

x
T b

T y
* b

- 9 U Y U2+ 7
C 2

c2

(5.19)

The depth-average velocities are defined as:

- U - V

U h+n h+n

The other terms are the Chezy coefficient, C, and the water density, p,
as defined in Chapter 3.
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Finite Difference Solution

Simulation of transient wind-driven c.irculation events requires solution
of Equations 5.15 and 5.16 in time and horizontal space. This is accom-
plished in the 2-D model using an explicit finite difference scheme, alter-
nately solving the momentum equations and the continuity equation.

Application of the finite difference scheme requires the division of the
lake into a grid of discrete rectangular areas. A square grid, or more
precisely, two square grids are used in the model. The two grids arise
from the use of a staggered grid scheme on which velocity components are
determined on the grid mid-sides, while water surface displacements are
found at the grid center points. (See Figure 5.4.)

An explicit solution technique is employed, first solving the momentum
equations for the current velocities at full time steps, then using those
velocities in the continuity equation to solve for the water surface ele-
vation at half time steps. From the surface elevations, surface slopes can
be determined for substitution into the momentum equation, which is
solved at the next time step. This cycle is repeated until the simulation
period is completed.

In solving the equations, the solution proceeds along the rows of the
finite difference grid from left to right, solving for all columns in a row
before moving up to the next row. This sequence is followed until all
rows have been completed, and is repeated for first the momentum and
then the continuity equation each time step. The particular sequence
employed implies that the solution at a grid depends upon a mixture of
variable values determined at the current and preceding time step. This
is permitted by a short computation time step, as discussed briefly below.

The explicit solution scheme employed for the hydrodynamic model is
conditionally stable, requiring certain conditions be met in. order to
achieve a solution. The stability conditions are defined by the
well-known Courant condition, which limits the solution time step to the
time required for a surface gravity wave to traverse a grid square:

At < Ax (5.20)
Sg (h+n)

where At is the solution time step increment, and
Ax is the finite difference grid spatial increment.

This limit arises since the model employs a free surface formulation, rath-
er than the rigid lid approximation.
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Finite difference solution procedure

Although the limit imposed on the time step by stability conditions is
stringent, it is not without its advantages. Since the resulting time step
is quite short, we can make a number of simplifications in the solution,
confident in our knowledge that changes in mass transport will be small
over a single time step. For example, stepping the solution over space in
the row by row fashion described earlier is permitted by the small time
step. Also, the non-linear friction term can be linearized for computation
by using velocities found at the previous time step. This is linear in the
computational sense since an iterative solution for U and V is not
required. However, the small change in velocity over a time step insures
an essentially non-linear dependence of bottom friction on velocity.
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5.3.2 Application to Lake Balaton

Application of the 2-D model to Lake Balaton proceeded in two phases.
Lacking a concensus from the literature on the value and form for the
important parameters, the first phase consisted of a series of model sensi-
tivity studies. Through trial and error, reasonable values for the param-
eters were sought, simultaneously determining the sensitivity of the
results to the various parameters. After this step was completed, and a
reasonable set of input parameters was available, the second phase was
possible: verification of the model results against actual historical events.
The procedure closely parallels that employed in the previous 3-D model
application (Shanahan et al., 1981).

Model Input Data

Execution of the circulation program requires the specification of such
inputs as the model parameters, the lake geometry, a wind history, and
various execution and output controls. Of the program inputs, the sur-
face and bottom friction coefficients constitute the major unknowns, to be
determined by calibration. These parameters, as well as the wind histo-
ries employed, will be described in the sections to follow.

The geometry of the lake must be represented in the model via the
finite difference grid. The modeler is free to choose the finite difference
grid size, Ax, so long as he then chooses a compatible At using Equation
5.20. Usually, the choice of Ax is a trade-off between a small grid size to
accurately capture the lake's bathymetry and a large size to reduce com-
putation expenses. For Lake Balaton, we constructed and tested two
grids. The first, denoted as the coarse grid, uses a grid size of 1900
meters and is shown in Figure 5.5. This grid size is the largest able to
reasonably approximate the geometry of Tihany Strait. An alternative
grid, the fine grid, employs a grid spacing of 950 meters, one half that of
the coarse grid. The fine grid is shown in Figure 5.6. The effect of the
grid size was tested in sensitivity runs described below.

Model Calibration

Calibration of the model was accomplished using a simple hypothetical
event as a standard simulation. This simulation was designed to exercise
the model under uncomplicated conditions which would reveal the basic
behavior of the model. The standard calibration simulation was a simpli-
fied seiche event which supposes the following situation. A steady wind

of speed WL blows along the long axis of the lake, directed from the west-

ern end (Keszthely) to the eastern end (Balatonkenese). The lake is
initially still and level, but responds to the wind with a set-up at Bal-
atonkenese and set-down at Keszthely. The wind blows steadily during
the first part of the simulation; then decreases linearly in two hours time

to a value of zero at time T. The notation WL and T is employed here to

be consistent with Equation 4.1.
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Model performance was evaluated using predicted water surface ele-
vation at Keszthely and Balatonkenese as an indicator of seiche behavior.
These model results were examined for conformity with the following crite-
ria:

1. Oscillatory behavior.- Field data show that the longitudinal
seiche, though heavily damped, nevertheless persists for
at least three perceptible cycles.

2. Seiche period - Frictional forces are known to lengthen the
longitudinal seiche period beyond the 7.5 hours predicted
by inviscid theory.

3. Wind set-up - Muszkalay (1966) gives empirical formulae to
determine the set-up in Lake Balaton as a function of wind
speed and duration; we have shown his relation for
longitudinally directed winds in the previous chapter as
Equation 4.1. Muszkalay's relation is based upon field
data which necessarily show significant scatter about the
empirical formulae.

These criteria, though approximate and incomplete, served as a consistent
and reasonable test of the model's ability to reproduce the system behav-
ior and enabled the selection of a set of. parameters judged to credibly
represent the system.

The calibration runs varied two parameters: the Chezy bottom friction
coefficient and the wind drag coefficient. Typical simulation results are
shown in Figure 5.7 to illustrate the sensitivity of the seiche amplitude to
these parameters. Comparisons with Muszkalay's relation are shown in
Figure 5.8. The parameter set found to do best was a fixed wind drag

coefficient, CD = 0.0013, and a Chezy coefficient of C = 60. Although fa.r

from a perfect match to Muszkalay's results, the agreement was acceptable
given the approximation inherent in his empirical results. The findings
were corroborated in similar work by Somlyddy (personal communication)
to calibrate a one-dimensional longitudinal model of Lake Balaton.

Sensitivity Testing

In addition to the parameter sensitivity tests completed with the cali-
bration runs, two further factors were considered: the effect of the finite
difference grid size and of variation in the wind speed over space. Both
the transient seiche simulations described above and steady state circu-
lation predictions were compared in these tests. The steady state situ-
ation is, however, a highly artificial one -- wind on Lake Balaton varies
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Muszkalay formula
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Figure 5.8
Comparison of model results (with C = 60, C 2 = 0.0013)

with Muszkalay's (1966) empirical formula
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VELOCITT SCALE: 10.0 CM/S

WIND SPEED 15.0 M/S GRID SPACING 1900 METERS

a. Coarse grid

VELOCITY SCALE: 10.0 CM/S

WIND SPEED= 15.0 M/S GRID SPACING = 950 METERS

b. Fine grid

Figure 5.9

Effect of grid size on steady-state
horizontal circulation
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more rapidly than the time for the longitudinal seiche to damp out, so that
steady conditions are rarely, if ever, approached.

Neither the transient nor steady-state simulations differed remarkably
when produced using the coarse grid versus the half-size fine grid.
Minor differences occurred, but not enough to cause concern. This also
proved the case in further tests, described in Section 7.2. The results
of the steady state simulations are otherwise of interest as an indicator of
the degree of horizontal circulation in the lake. Plots of the steady state
circulation, included as Figure 5.9, show a relatively complex horizontal
flow pattern which includes numerous gyres.

Other sensitivity tests evaluated the influence of spatial variation in
wind speed. As might be anticipated, model results proved very depend-
ent upon these variations in the force driving the system. Two factors
were found particularly critical. The wind direction, when it is in the
north to northwest range, is nearly perfectly transverse to the lake's
long axis and can lead to very different longitudinal currents and seiches
with only small changes in direction. Unfortunately, this is the typical
direction of travel for storm systems and thus the stronger wind events.
Horizontal non-uniformities in the wind speed, known to exist in the pro-
totype system, proved to be a relatively minor factor in the model
response provided that the average wind strength (speed) over the lake
is roughly correct. For example, winds are typically much lighter at
Keszthely than over the rest of the lake. Therefore, if the wind record
from Keszthely is used in a simulation, the wind speed must be scaled up
to a value which better reflects the higher lakewide average wind. The
procedure followed is described by Shanahan et al., 1981.

Model Verification

To verify the 2-D circulation model we repeated the historical event
simulations described by Shanahan et al. (1981). Three events were sim-
ulated and they are briefly described in turn below.

The event of July 4 and 5, 1961 was produced by winds with a signif-
icant component along the lake's long axis. The consequent strong longi-
tudinal seiche was well-captured in the simulation, as shown by the
comparison of stage at the two extreme ends of the lake in Figure 5.10.

The event of July 8 and 9, 1963 produced a longitudinal seiche with
comparable displacement to the July 1961, but with much. stronger simul-
taneous transverse seiching. Model results are compared with observa-
tions in Figure 5.11. Prediction of the stage at Keszthely is poor, while
that at Balatonkenese is generally good. Missing from the model pred-
ictions are most of the high frequency oscillations seen in the observation
record as a result of transverse seiching. This is likely due to the
smooth wind record (hourly averages) relative to the forty minute trans-
verse seiche period. Also contrasted in Figure 5.11 is the observed and
predicted discharge. through Tihany Strait. The observation record is
based on a single velocity recorder but is probably accurate within about
twenty-five percent according to Muszkalay and Somly6dy (personal com-
munication, 1981). In our earlier analysis of this event (Shanahan et al.,
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1981) we suggested a possible error in the direction shown for the obser-
vation data, since the flow is in opposition to the simultaneous changes in
water level at the lake ends. A review of the original recordings by
Muszkalay and Somlyddy showed there is no error, however, so that the
match between prediction and observation is quite poor. Nevertheless,
the field data show sustained flows in Tihany Strait opposite- that neces-
sary to cause the water surface changes observed -- see Figure 4.6.
There thus remain serious questions about either the field data or the
lake's behavior.

The final event considered is that of October 5, 1963. Unlike the two
previous events, which began with longitudinal winds, the storm of Octo-
ber 1963 brought only transverse winds. In fact, during the entire event
the wind is nearly perfectly perpendicular to the lake. Under this situ-
ation, small changes in the wind direction lead to great changes in the
magnitude of the longitudinal wind component including frequent reversals
in longitudinal direction. Under such conditions, local modifications of
the wind field and errors in the wind data critically influence the model
results making accurate predictions virtually impossible, This is con-
firmed by the comparisons of predicted and observed transverse seiche
and Tihany Strait discharge in Figure 5.12.

The preceding comparisons of model results with observations of actual
historical events show a general ability to capture the character of trans-
port in Lake Balaton -- particularly longitudinal transport -- but an ina-
bility to duplicate the fine structure of the seiche behavior and the flow
through Tihany Strait. The model's ability to reproduce the character of
large scale transport is sufficient for water quality predictions, partic-
ularly over time periods of about a week or more. The model's failures
can be ascribed to uncertainties in the data available to drive and test the
model. For example, wind data to drive the model is available from at
most three stations on the lake, two of which are on the southern shore.
However, the northern shore of the lake is quite hilly, and the northerly
winds which typify most storm events are significantly deflected and modi-
fied in their passage over the hills. These local non-uniformities in the
wind field are important -- for example, they possibly explain the obser-
vation of flow in Tihany Strait against the recorded wind. Unfortunately,
local variability in the wind field cannot be detected by the sparse meas-
urement network, and is thus unavailable as model input data.

5.3.3 Hydrologic Flow Computation

The hydrodynamic model considers only the influence of the wind in
establishing transport in the lake; inflows and outflows are not included
in the model. Thus, there can be no lakewide change in water surface
elevation nor any replacement of lake water due to inflow and outflow. In
fact, however, the lake elevation is controlled by releases at the Si6
Canal: it is drawn down in winter and generally refills through the rainy
period during the first four months of the year (van Straten et al.,
1979). Typically, the average water surface elevation varies over a range
of 30 centimeters during the year; however, larger ranges, up to even 1
meter, are possible. Besides changing the lake water surface elevation,
inflows and outflows establish the hydrologic through-flow of the lake
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which can significantly influence water quality. For example, the annual
spill from Lake Balaton at the Si6 Canal releases roughly one-fifth of the
lake's, volume each year: a net transport important to water water quality.
Clearly, the hydrologic through-flow and changes in surface elevation
imply transport fluxes which should be included in the water quality com-
putations.

A few assumptions were made in computing the hydrologic flow. First,
it was assumed that the hydrologic flow changed sufficiently slowly that
monthly values of the flows were adequate. This assumption was necessi-
tated by the data available to us for the Si6 Canal release and for precipi-
tation ancl evaporation. A second assumption was that the hydrologic
through-flow could be superimposed upon the transport determined by the
hydrodynamic circulation model, the combination thus forming the total
transport. This is consistent with the linearity of the hydrodynamic mod-
el, however it neglects any contribution that the hydrologic through-flow
may make to the dispersive transport. The low velocities of the
through-flow insure that these contributions to dispersion will be small.

The principle in computing the hydrologic through-flow is a simple
water balance. The net change in the lake water surface elevation during
a month is computed by summing the Zala River, tributary and precipi-
tation inflow, and subtracting the outflow due to discharge at the Sid
Canal and evaporation. These inflows and outflows are available from the
Lake Balaton data base; contributions due to water withdrawal, sewage
inflows and local runoff are neglected. Once the net change in surface
elevation is known, the flow between the grids or basins to be used in the
water quality transport model may be found. These are calculated so that
the water surface change for each grid will be the same, maintaining an
equal mean level throughout the lake. The method is the same as that
used by Baranyi (1973a): the outflow from one basin or grid to the next
downstream is the total inflow to the upstream basin, less the total outflow
and less the change in storage, with inflow, outflow and storage all
expressed as water surface elevation changes (that is, normalized by the
surface area of the upstream basin). The water balance equation for the
ith grid over a time period is:

A.
Ah = P+ I. + E -o. (5.21)

1 A1 1

where Ah is the lake-wide elevation change,
P is the precipitation,
E is the evaporation,
I. is the inflow to grid i,

0 is the outflow from grid i,

Q. is the flow from grid i to grid i+1, and

A is the surface area of grid i.
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All terms in Equation 5.21 are expressed in units of length -- for
example, precipitation in millimeters. Flow quantities, such as the inflow,
are determined by summing the total inflow over a period to get an inflow
volume, and then dividing by the surface area of the grid to convert to

length units. The equation is solved for Qi, proceeding stepwise through

the grids from i=1. The lake-wide elevation change is computed before
the individual grid water balances are done:

(5.22)Ah = P + ASI - E - AjQj
t t .

where At is the total take surface area.
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5.4 Formulation of the Biogeochemical Component

5.4.1 Description of the Model

The selection of SIMBAL as the biogeochemical model component of our
water quality model is discussed in Section 5.1 and its general character-
istics are presented in Section 2.4. The discussion here will be a detailed
look at the mathematical relations employed in the model and their
solution. The information presented is taken from van Straten (1980),
van Straten and Somly6dy (1980) and the source listing of the SIMBAL
computer program. We have adopted a modified notation in presenting the
model, using the more systematic notation of Najarian and Harleman (1975)
as a guide.

Phosphorus Transformation Equations

The element cycles employed in SIMBAL are shown in Figure 5.13,
which depicts the phosphorus compartments, the reactions linking the
compartments, and relations controlling the reactions. The phosphorus
compartments are:

P - summer phytoplankton phosphorus

P2 - winter phytoplankton phosphorus

P3 - detritus phosphorus

P4 - dissolved inorganic phosphorus

The chemical forms included within each compartment are described in
Section 2.4.

The controlling relations for the two phytoplankton compartments are
similar:

dPR pP
dt 41 4K + p -R 1 3 1  (5.23)

R 4 1
dt 42 K + P4 - R23 2 (5.24)
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Here, R 41 and R42 ' which are the growth rates of the algae, are the con-

trol rates for transformation from P4 to P1 and to P2 . Similarly, R 13 and

R 23 ' the algae mortality rates, control transformation from P.1 and P 2 to

P3 . K4 is the half-saturation constant for the uptake of P4 . The reaction

rates R4 1, R4 2 ' R 13 ' and R23 include dependencies on the water temper-

ature and incoming light. These are shown in Figures 5.14 and 5.15.

Detrital phosphorus behavior is modeled by the equation:

dP3

dt= R1 3 P 1 +R 2 3 2 ~R 3 4 3  3  3  (5.25)

According to this equation, detritus increases with the influx of dead
phytoplankton but is reduced by two processes. First is the transforma-
tion of detritus to dissolved inorganic phosphorus -- controlled by the

mineralization rate, R34 . In addition, a fraction of the detritus settles

from the water column and is lost to the sediments, at a rate modulated by

the settling loss rate, R3s. These terms are defined in greater detail in

Figure 5.16.

The final compartment, dissolved inorganic phosphorus, enters into
reactions with the other three compartments and in three reactions with
the sediments. Its equation is:

dP R P P PP2 R P
dt 41 K4 + P4  42K + P 34 43

-R 4 b P4 + Ls4 - R4 s 4 - 4 eq) (5.26)

The first two terms of the right-hand side are the uptake of dissolved
inorganic phosphorus by the algae; the third term is the mineralization of

detritus. Biogenic lime precipitation is controlled by R 4b at a rate pro-

portional to the growth of phytoplankton. Interaction with sediments is
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dP1 P4PI
dt = R4lK + P 13 1

R = growth rate = 41,max g(I) f 1(T)

R 41,=max maximum growth rate

g(I) = Steele light limitation function

- e I
= [exp(- - exp(-k h)) - exp(- -)]kh I e
e s S

k = extinction coefficient = k + k (P + P )e 0 si1 2

k = natural extinction coefficient
0

k = self-shading extinction factor

I = incident radiation

I = optimal radiation = I + I T
s sm se

InI = coefficients
sm se

T = water temperature

f 1 (T) = temperature dependency for P1

( T -T T -T
( l exp 1 - T for T < Tcl

cl *1 cl *1

=0 for T > TT ci

Tcl = ritical temperature

T = optimal temperature

K = half-saturation constant

Figure 5.14

Transformation relations for summer algae, P1

148



= mortality rate = R13,20 13(T-20)

= mortality rate at 20 C

= temperature factor

Figure 5.14

continued
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R4 P + K - R P
42 P + K 23 2

4 .4

= growth rate = R4 2 ,max g(I) f2(T)

R42,max = maximum growth rate

g(I) = Steele light limitation function (see Figure 5.14)

f2 (T) = temperature dependency for P 2

. T - T T - T
c2 c2

= T - T epT - Tc2 *2 c2 *2

Tc2 critical temperature

T= optimal temperature

T = water temperature

= mortality rate = R13 (see Figure 5.14)

Figure 5.15

Transformation relations for winter algae, P 2
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dP
3

dt = 13

R 3 4
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h

1 + R23 2 - 34 3
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= mortality rate for summer algae (see Figure 5.14)

= mortality rate for winter algae (see Figure 5.15)

= mineralization rate = R34,20 34 (T-20)

= mineralization rate at 20 C

= temperature factor

Vs3 (-y 3)
= settling loss rate = h

= detritus settling velocity

= dissolved fraction of detritus

= water depth

Figure 5.16

Transformation relations for detritus, P3
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dP P P4P2
dt =-R - R + R P -R RP + L - R (p - p )dt 41 P4+K 42 P4+K 343 4b4 s4 4s 4 4eq

R = growth rate of summer algae (see Figure 5.14)41

R = growth rate of winter algae (see Figure 5.15)

K = half-saturation constant

R = mineralization rate (see Figure 5.16)

R = biogenic lime precipitation rate
4b

= R R + R 42
4b 41 P4 +K 4 42 P +K4

R = biogenic lime formation rate related to algal growth
4b rate

L s (T-20)

L = sediment internal load =

L s4, = release rate at 20 C

0 = temperature factor

h = water depth

R4 = first order absorption/desorption rate

P = equilibrium dissolved inorganic phosphorus concentration

Figure 5.17

Transformation relations for dissolved inorganic phosphorus, P4
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via a temperature dependent release, L 4 ' and by adsorption/desorption

to the sediments. This last interaction is modeled assuming an equilibrium
level of dissolved inorganic phosphorus. Dissolved inorganic phosphorus
is adsorbed to sedimentary matter and lost if its concentration in the
water rises above this level, it is released back to the water when concen-
trations fall below the equilibrium level. For further information on this
portion of the model, refer to van Straten (1980). A full specification of
the dissolved inorganic phosphorus transformation equations is given in
Figure 5.17.

Solution of the Equations

Within any one grid, Equations 5.21 through 5.24 constitute a set of
coupled ordinary differential equations to be solved for four unknown
phosphorus component concentrations as functions of time. We solved
these equations numerically using a fourth order Runge-Kutta method
integrating over three hours in a time step. A lake-wide mass balance
checked the computation accuracy (as ability to conserve mass) over a
simulation duration.

5.4.2 Application to Lake Balaton

As with the hydrodynamic component, the biogeochemical model
required calibration to determine model parameters for Lake Balaton. The
calibration of SIMBAL was performed by van Straten (1980) using the
Monte Carlo simulation procedure described previously. In the work
reported here, we accepted van Straten's calibration without modification,
using the mean parameter values determined in his calibration. It is
worthwhile, however, to review his calibration procedure to point out its
assumptions and possible weaknesses.

van Straten's calibration employed his four-box model of Lake Balaton
with data for the year 1977. Field data for the same year allowed him to
specify boundaries on the model results to delimit acceptable agreement
with the lake's observed behavior. This evaluation was possible only for
field data directly comparable to the model compartments, however. Sig-
nificantly, algal abundance, measured in the field as chlorophyll-a
concentration, was not comparable.

The calibration procedure selected a portion of the least certain model
parameters as calibration parameters. Values for these parameters were
sampled at random from within prescribed ranges and a simulation of the
year 1977 was performed. The results from the simulation were then
checked against the acceptable ranges determined from field data to
determine if the parameter set was va-lid -- that is, yielding acceptable
results. This sequence of random parameter sampling, simulation and
evaluation was repeated hundreds of times to find sets of acceptable
parameters. The average of these sets are what we employ as the cali-
brated parameters. The parameters, both determined by calibration and
fixed with literature values, are given in Table 5.3.
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Parameters

K 4

(13

R 34,20

VS
3

L S4,20

R 4

P4,eq

Vret

Table 5.3

SIMBAL model parameter values

found by calibration

Half-saturation constant

Mortality rate temperature factor

Mineralization rate

Detritus settling velocity

Sediment release rate

Sorption rate

Equilibrium concentration

Exchange flow velocity

Fixed parameters

K Natural extinction coefficient
0

K Self-Shading extinction factorS

I Optimal light intensity factor
sm

I Optimal light intensity factor
se

Tl Critical temperature - summer algae

T, Optimal temperature - summer algae

TC2 Critical temperature - winter algae

T*2 Optimal temperature - winter algae

R Maximum growth rate - summer algae
41 ,rax

R Maximum growth rate - winter algae
42 ,rax

R13,20 Mortality rate

034 Mineralization rate temperature 
factor

Y 3 Dissolved detritus fraction

R4b Biogenic lime precipitation

0 S Sediment release temperature factor

10.2

1.14

0.035

0.036

0.38

0.16

5.8

0.0016

2.5

0.015

96.0

9.6

30

26

10

8

6

2

0.13

1.18

0.4

0

1.18
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Comparisons of SIMBAL predictions with field data
(from van Straten, 1980)
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As stated, evaluation of the model results against field data was possi-
ble for only a part of the model output. A portion of van Straten's (1980)
comparisons are reproduced as Figure 5.18. Compared were total
phosphorus, observed orthophosphate (against predicted dissolved inor-
ganic phosphorus), and observed total dissolved phosphorus (against dis-
solved inorganic plus forty percent of the detrital phosphorus). The
comparison for total phosphorus is included as Figure 5.18a. Although
there is order of magnitude agreement between predicted and observed
values, the time trace of the predictions differs significantly from the
observations. The predicted summer peak in particular is much too high.
Predicted algal phosphorus could not be directly compared with field data,
although observed chlorophyll-a was taken as an indicator of the change
in algae during the year. (An approximate conversion that the
chlorophyll-a concentration equals twice the algal phosphorus concen-
tration is implicit in van Straten's comparisons in Figure 5.18b.)
Although certain trends are seen in both the field data and model results,
there are some significant discrepancies. For example, spring and sum-
mer algal blooms are correctly predicted -- however, the summer bloom is
far too low in the Keszthely Bay predictions. Unfortunately, this is
probably the single most important model output from the standpoint of
water quality management in Lake Balaton.

Despite misgivings about the predictions, our opinion is that the model
is probably as well calibrated as can be expected. Improvement of the
model predictions requires, we believe, improvements in the model formu-
lation -- an effort which awaits more field data and basic research, par-
ticularly on the behavior of the sediments as phosphorus sources or
sinks. In the meantime, we have employed the SIMBAL model as cali-
brated by van Straten as our biogeochemical model component.
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5.5 Coupled Hydrodynamics and Water Quality

5.5.1 Introduction

In Section 5.3.1 we identify three major components of water motion in
Lake Balaton: hydrologic through-flow, back-and-forth advection due to
seiching, and dispersion due to lateral velocity variations. Hyd.rologic
through-flow varies slowly and is determined by the monthly water bal-
ance computation described in Section 5.3.3. The seiche-driven advection
is far more dynamic, and is computed by the 2-D circulation model as the
net discharge across a lateral section of the lake. This advection is high-
ly transient due to the oscillatory nature of the seiche, reversing
direction each half-seiche period. The seiche-driven advection leads to
much greater flow velocities than the hydrologic through-flow, and can
thus cause much greater dispersion. In fact, we will make the assumption
that dispersion due to the hydrologic flows is negligible.

In the remainder of this section we will discuss the character of the
dynamic wind and seiche-driven flows and how these flows may be linked
to the water quality model.

5.5.2 Advection

An important characteristic of the seiche-driven advection is the fact
that it causes no net motion along the lake. Over long periods of time,
the time-average velocity due to this motion is zero: the seiche will cause
parcels of water to move back and forth, but in the absence of a net
through-flow the parcels will return to their original position after the
seiche has completely dissipated. Accordingly, if a pulse of some concen-
trate is introduced into a parcel of water, it will behave similarly. The
concentration profile will retain its initial distribution (in the absence of
mixing due to diffusion or dispersion) and this distribution will oscillate
back and forth.

We can estimate the distance the seiche travels back and forth rather
simply. The distance between the two extremes of its travel is the seiche
excursion, determined as the integral of the advective velocity over
one-half seiche period. In Balaton, the seiche excursion, e, for a typical
amplitude seiche is on the order of a few hundred meters. (See Section
6.2.)

The small excursion creates problems in numerical modeling. Clearly,
oscillations of a few hundred meters are small perturbations relative to the
total 75 kilometer length of the lake. To properly capture the influence of
such small excitations upon the observed water quality, the water quality
model requires a spatial increment, Ax, which is many times smaller still.
Consider the effects of Ax much greater than the seiche excursion. In
the absence of dispersion, reaction and loading, the water quality model
should cause no change in an initial concentration distribution other than
to advect it up and back the distance of the seiche excursion. In fact,
however, the distribution will be smeared by the model if Ax is not suffi-
ciently smaller than the seiche excursion. We can see this conceptually
through a simplified picture based on fully-mixed tanks (Figure 5.19).
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Over the first half of the seiche cycle, flow will be from cell i-1 to cell i,
and cell i to cell i+1. Assume at the end of the seiche cycle the cells mix
fully, and the flow is then back from cell i+1 to i and cell i to i-1. The
change in concentration in cell i will be:

T o 2 0 0 0
C. - C =) -)(c+ - 2 c. + c

Twhere c. is the concentration in cell i at the end of the seiche

period,

c 1 0 is the concentration at the start,

a is the ratio of volume outflow to the tank
volumes = TQ/2V,

Q is the average flow over the seiche half-period,
T is the seiche period, and
V is the tank volume, assumed equal for all tanks.

The form of this equation is suggestive. If we divide by T and take the
limit that T and the cell length become difference quantities, At and Ax,
the equation becomes the finite difference approximation to:

(AxU AtU 2)2

at 2 ~ 2 ax~2

Under pure advection, the concentrate should have returned to its ori-
ginal location unchanged so that ac/at = 0. The non-zero term above is

the numerical dispersion due to the average velocity, UT' determined

over one-half seiche period. It is given as 2Umax /, where U is the

maximum seiche velocity. The numerical dispersion found above is iden-

tically that given by Equation 2.17 with Y. = Yi+1 = 1, suggesting that

there is no numerical dispersion peculiar to oscillatory flow other than
that due to advection errors. Nevertheless, the cumulative effect of this
error over many months of simulation is substantial.

Elimination of numerical dispersion is a thorny problem. The error
cannot be curtailed by a simple change in the numerical formulation of the
advective term since the value of Ax will remain large relative to the
seiche excursion. (The seiche excursion can be taken as the wave length
of the system disturbance as employed in the Fourier or von Neumann
method to study stability and accuracy -- see Verboom and Vreugdenhil,
1975). Although the formulation used in Equation 5.10 to solve the
advective term is known to be dispersive, substitution of a low dispersion
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formulation by Holly (1975) yielded no improvement. For another low
dispersion method,. the Stone and Brian (1963) formula, it is possible to
estimate the desired value of Ax using relations developed by Dailey and
Harleman (1972). The value found, which is independent of the model
time step, is 67 meters, or 1125 grids to cover the length of the lake!
This sort of detail is obviously impractical. To our knowledge, there are
no treatments of the advective term which will operate accurately in the
range of Ax we require for practicality.

There does remain one easily implemented alternative, however. The
desire is to find a method which will allow the seiche advection to, in
essence, do nothing. That is, over the time periods of. interest in the
lake, there should be no net effect due to seiche advection. The
dispersive effects of seiche motion will, of course, be felt, but advective
effects will not. The obvious solution, therefore, is to isolate the
dispersive effect and entirely neglect the oscillatory advection. The pro-
cedure we will follow is thus to consider the influences of advection due to
hydrologic through-flow and of dispersion due to seiche motion, and to
neglect the minor perturbation of seiche-driven advection.

It is important to consider the approximations entailed by this proce-
dure. Neglect of the advection will lead to the minor loss of some mixing
effects at the ends of the lake and where geometry changes abruptly, as
at either side of Tihany Strait. This approximation will be minor since
dispersion is generally large at these locations. A more important factor
may be the neglect of the dispersing action which occurs in oscillatory
flow as lake water advects back and forth next to a shoreline nutrient
discharge. The influence from such a load will be spread over the dis-
tance of the seiche excursion causing an effect somewhat like dispersion.
This will be lost in the non-oscillating model -- however, the approximate
effect can be captured if Ax is on the order of the typical seiche oscil-
lation. This will fail to capture the effects of the occasional event with
large excursion, but such events are rare and the error will be minor.
For the typical event, the load is mixed within the grid square and thus
over roughly the same distance as the seiche excursion.

5.5.3 Dispersion

With the realization that the seiche excursion is too short for
seiche-driven advection to be influential, dispersion becomes the critical
link between the hydrodynamic component and the water quality transport
model. In this section, we explore a method to determine dispersion from
the hydrodynamic model predictions.

The concept of the dispersion coefficient is introduced in Chapter 2.
Dispersion arises when a multi-dimensional transport process is modeled in
an approximation of fewer dimensions -- in this case, one dimension.
Non-uniformities in the velocity and concentration distributions trans-
verse to the major axis lead to an apparent smearing, or dispersion, of
the 1-D concentration profile. The origin of this effect may be deter-
mined mathematically by averaging the full three-dimensional equation of
mass transport over the lateral and vertical dimensions -- this derivation
is done in Appendix D. Proceeding from such a derivation, Fischer
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(1967) presents an equation to determine the dispersion coefficient from
the observed velocity distribution. Presuming lateral velocity and con-
centration non-uniformities dominate those in the vertical, the dispersion
coefficient is:

W y y'

D = .dy q' (y) f . dy" q (y") (5.27)

000

where A is the cross section area,

y is the lateral space coordinate,
h is the depth (a function of y),
q' is the deviation flow per unit width,
W is the width, and

y is the lateral turbulent eddy diffusivity,

This equation may be approximated as (Fischer, 1969):

2 2
D 1(U) W (5.28)

y

where u' is the local deviation of the depth averaged velocity
from the cross-sectional mean (= q'/h), and

I is a constant equal to about 0.1.

The overbars in the equation indicate averages over the cross section.
Fischer constructs Equation 5.28 by non-dimensionalizing the terms within
the integrals in Equation 5.27, to leave the value of the integral I
dependent only upon non-dimensional cross-sectional distributions of u',

h and Ey . Proceeding with reasonable assumptions for these

distributions, he determines I.

Effect of Oscillating Flow

The predicted dispersion coefficient in Equation 5.27 or 5.28 is predi-
cated upon an assumption of a steady velocity profile. In oscillating flow,
this assumption will, of course, be violated. Holley, Harleman and
Fischer (1970) show that the effective dispersion in oscillatory flow is
often less than that predicted.by Equation 5.27 or 5.28. In steady flow,
dispersion is controlled in part by the time required for mixing transverse
to the flow. Consider the interaction of the flow period and the lateral
mixing time in a simple example. Suppose that a curtain of tracer dye is
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somehow placed through the water column lateral to the flow axis. As the
seiche flowed in one direction, it would sweep the dye along, carrying
different parts at different velocities. If lateral mixing were very, very
slow, there would be no communication between these displaced dye par-
cels -- upon return of the seiche, the dye would be carried back to its
original location with no change. If lateral mixing were faster, however,
the differentially convected dye parcels would mix across the lake, moving
to sectors of the flow field with different velocity. Upon return of the
seiche, these laterally mixed parcels would be convected back at different
velocities than the velocities which originally carried them away. They
would thus return to different longitudinal positions than they held ori-
ginally. The net effect would be a smearing, or dispersion, of the
original line of dye along the axis of the flow. The magnitude of the
dispersion depends upon the lateral mixing: the greater the distance of
lateral communication by the displaced dye parcels, the greater will be the
dispersion. In oscillating flow, the rate of lateral mixing is -not important
in an absolute sense, but as a rate relative to the oscillation frequency.
Holley et al. capture this relation through the ratio of the oscillation peri-
od to a representative cross-sectional mixing time, and develop formulae
to compute the reduction in dispersion as a function of the time scale
ratio.

The preceding paragraphs indicate the important part played by
transverse mixing in the computation of dispersion. Such mixing enters

into Equations 5.27 and 5.28 through the lateral diffusivity, E .

Further, transverse mixing is particularly crucial in the special computa.-
tions necessary to account for oscillating flow conditions.

The character of lateral mixing is a key assumption required to derive
Equation 5.27 or 5.28 from the three-dimensional equations of mass con-
servation, repeated here as Equation 5.29:

ac + a c ac +Wac
at +Uax ay a

a ac ~a c a (e C
ax x ) + T-(C =1 _-) +~ (e 7z ) (5.29)

For open-channel flows, one can assume as Fischer that the lateral
advective term,

cay
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is negligible compared to lateral diffusion,

- - (E~ -C
Dy y Dy.

This is tantamount to assuming negligible secondary currents. A scaling
analysis based on typical magnitudes for Lake Balaton shows that the
opposite is the case there: lateral advection dominates diffusion. This
change has far-reaching impact on the resulting analysis. Consider, for
example, the cross-sectional mixing time based on diffusive transport:

w
2

(-)
T 2

C C
y

Assuming, as in Section 5.1.3, that sy = 10* cm 2 /sec, this predicts a mix-

ing time of almost 200 days in Lake Balaton. This is clearly a high esti-
mate, given the likely strength of wind-driven circulation. If we instead
estimate a time scale for lateral advection, using 5 cm/s as the typical
velocity observed in our field studies (Appendix A) we find:

W
2_T = 1 day

C

Even with a more conservative velocity of 1 mm/sec, Tc is still only 50

days. This is much shorter than the diffusion-based mixing time and will
lead to a much greater value of the dispersion coefficient than if the dif-
fusion-based theory of Fischer were employed.

For complete consistency in the determination of the dispersion coeffi-
cient, we must rederive Equations 5.27 and 5.28 proceeding from our
revised assumptions. The complete derivation is given in Appendix D.
The result, after following similar steps as Fischer (1966) is:
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W y

D = . dyqI dy' IL. (5.30)

0 0

where q' is the deviation flow per unit width as defined for
Equation 5.1, and

V is the lateral flow per unit width.

Equation 5.30 is approximated in the same fashion as Equation 5.27:

D IW (U')
D = (5.31)

V

where V is the mean lateral velocity in the cross section.

Using reasonable assumptions for the distribution of V and q' in the cross
section, I is found once again to be about 0.1.

The dispersion coefficient given by Equation 5.30 or 5.31 does not
account for the reduction due to oscillating flow. Following Fischer's
(1969) arguments still further, the reduction factor, f(T'), is found to
depend upon the dimensionless ratio of the oscillation (seiche) period to
the lateral mixing time:

T T

C 
2

where T is the uni-nodal seiche period.

Holley, Harleman and Fischer (1970) give a formula and plot of f(T'). For
T' < 0.1 they give the following relation:

f(T') = 1O(T') 2

According to Holley et al., f(T') is a reduction factor used to find the
average dispersion over an oscillation period from the equivalent steady
flow dispersion:
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Dosc

steady

where D is the average dispersion coefficient over an
osc oscillation period, and

D is the integral over the oscillation period of
steady the instantaneous steady dispersion

coefficient.
The instantaneous steady dispersion coefficient is the coefficient which
would be computed from the velocity distribution at any instant, treating
the distribution as though it were steady.

To apply the methods of the previous paragraph to lake circulation is
clearly speculative. The reduction factor was not determined for lake
conditions, although it was derived for prismatic and natural
open-channel conditions as well as for pipe flow, finding variation within
an order of magnitude. (Holley, Harleman and Fischer, 1970, and
Chatwin, 1975). The robustness of the theory over this range of condi-
tions, as well as the lack of any alternative method, has prompted us to
employ it in this application. Nevertheless, use of Holley's method should
be clearly understood to be an extension beyond the purposes for which
they were originally intended. Until more research has been done on
dispersion in oscillatory flow we can only assume it appropriate to employ
the theory as we have done.

Summary

To summarize our procedure, the dispersion coefficient will be com-
puted at selected time intervals during the seiche period employing a new
formula (Equation 5.31). This formula was developed following similar
derivations by Fischer, but proceeding from the assumption that second-
ary currents dominate lateral mixing. The values of the dispersion coeffi-
cient will be averaged through the seiche cycle, and then reduced by a
reduction factor given by Holley et al. (1970). The argument of this
function, the dimensionless ratio of the seiche period to the lateral mixing
time, T', will be based upon the average of the absolute value of lateral
velocity over the seiche period. These procedures are consistent with
those of Holley et al., although it should be understood that the applica-
tion of the method to lakes is an extension beyond Holley et al.'s original
intentions.
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Structure of the linked water quality model
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5.6 Summary of the Model Construction

The linked water quality model consists of three main parts. The basic
framework of the model is established by the water quality transport mod-
el. This model determines the changes in constituent concentrations due
to the hydrodynamic influences of advection and dispersion and due to
biogeochemical reactions. Our model incorporates two alternative trans-
port model approaches: the finite difference model, founded on a concept
of the lake as a continuum, and the multiple-box model, which divides the
lake into discrete volumes with lumped parameters for each.

The two other main parts of the model are the hydrodynamic and bio-
geochemical components. The biogeochemical component is a model of the
biological phosphorus cycle. It determines the reactions between dis-
solved inorganic phosphorus, detrital phosphorus and two algal popu-
lations subject to transient meteorologic and phosphorus loading
conditions. The rates of these reactions are transmitted to the water
quality transport model to construct the reaction terms of the transport
equation.

The hydrodynamic component is a transient, single-layer circulation
model which determines the two-dimensional horizontal transport in the
lake. This component employs the time-varying record of observed wind
over the lake in a continuous simulation of depth-averaged water motion
and water surface displacement.

The hydrodynamic component is linked to the water quality transport
model via the dispersion coefficient. Only dispersion is employed in the
linkage since longitudinal advection participates only as seiche motion of
short excursion which has minor influence on the net mass transport.
Dispersion is computed as the average value over the seiche period using
formulae which account for the reducing effect of oscillatory flow. The
dispersion coefficient is computed from the instantanteous flow field at
frequent intervals within the seiche period assuming lateral advection to
be the dominant source of lateral mixing. The average of the summed
instantaneous coefficients is then reduced by the procedure of Holley et
al. (1970). This average reduced dispersion coefficient, determined over
the seiche period, is supplied as a function of time to the water quality
transport model.

In addition to the circulation model, there is the water balance calcu-
lation to determine the hydrologic through-flow. Using simple budgeting
of inflow and outflow, th.is program computes monthly average flows along
the lake which are linked to the water quality transport model through the
advective term.

Figure 5.20 summarizes the model components and their linkage in a
schematic diagram.
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6 LINKED MODEL SIMULATION OF LAKE BALATON

6.1 Introduction

Evaluation of the modeling strategies and study of water quality
dynamics in Lake Balaton was accomplished through simulations of the
year 1977. This particular year was dictated by the availability of data
necessary as input to the model components. In addition, water quality
field data was available and permitted the model results to be evaluated
while the work of other researchers on the same year allowed
comparisons. All of the data employed were generously supplied by HIASA
from their Lake Balaton Data Base.

The simulations were approached with the philosophy that they were to
be experiments to evaluate the influence of hydrodynamics upon the water
quality predictions and to compare the one-dimensional finite difference
and box model formulations. Insufficient data and resources precluded
the possibility of detailed calibration (and perhaps reformulation) of the
biogeochemical model in an attempt to duplicate field data with the model
results. Further, the data base to provide true verification simply does
not exist. Uncertainties in wind data and model verification further trou-
ble the hydrodynamic component. The approach taken was thus to
produce a plausible model of the lake's behavior and exercise it under dif-
ferent -hydrodynamic assumptions. This freed our time to concentrate on
the important questions which concern the formulation of lake water quali-
ty models and the development of procedures to link hydrodynamic and
water quality models.
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6.2 Hydrodynamic Simulation

The wind-driven circulation model served as the hydrodynamic compo-
nent of the water quality model, determining the dispersion coefficient as
a function of time and space. In this section, we describe the procedures
followed in accomplishing this task for the simulation of Lake Balaton's.
water quality for 1977. In addition, the circulation model stands as a
simulation model of its own, and we report selected results from the model
to indicate the character of motion in the lake.

6.2.1 Modeling Procedures

The necessary input data to execute the circulation model are outlined
in Section 5.3.2. To simulate 1977, we employed the coarse model grid
with the parameters found by calibration -- a Chezy coefficient of C = 60

and a fixed wind drag coefficient, C 2 = 0.0013. For wind data, a contin-

uous record of three-hourly averaged wind speed and direction measured
at Keszthely was used. The wind speed was adjusted to account for the
generally lower wind speed observed at Keszthely in the manner described
by Shanahan et al. (1981).

The hydrodynamic model was run once to prepare a transfer data file
for repeated use in the water quality simulations. For the sake of econo-
my, we took advantage of the nearly uniform pattern of wind with time
and simulated the circulation for only July and August as a typical
period. Longer periods were simulated in the water quality model, and
for those, the July-August hydrodynamic history was repeated contin-
uously to create an artificial record spanning the entire simulation period.
Execution costs are substantial for the circulation model program: roughly
350 CPU seconds of computer time were required to simulate one month on
MIT's IBM 370/168 computer.

6.2.2 Simulation Results

Typical results from the circulation simulations for 1977 are plotted in
Figure 6.1. In Figure 6.1 we show the longitudinal water motion found
for the months of July and August at a mid-lake section near
Balatonboglar, a location corresponding roughly to the Basin II - Basin
IIl boundary in the four-box model. Figure 6.1 shows both the advective
flow and what we will term the dispersive flow. The dispersive flow is
shown as an indicator of the non-uniformity of the velocity distribution.
It is computed as follows. First, the average velocity in the cross section
is determined. Then, in each grid across the section, the difference
between the grid velocity and the section average is found. This differ-
ence is multiplied by the grid width and depth to convert to a flow rate.
All such flows found to be positive are summed to give the dispersive
flow. The similar quantity found by summing negative flows is equal, but
opposite in sign. We have called this flow "dispersive" since, as a meas-
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ure of the velocity profile non-uniformity, it is indicative of the
magnitude of dispersion. However, as shown in Chapter 2, such flows
cannot be directly related to dispersion or model exchange flow.

Both the advective and dispersive flow components are highly
transient, responding to episodic wind events. The advective motion's
oscillatory character is striking, but it should be clear that there is no
net translation of water over long time periods due to this component.
This can be seen in Figure 6.2, which shows the cumulative seiche excur-
sion determined from the predicted advective flow as a function of time.
The results are for a location midway through Basin 111, roughly the
nodal point of the uni-nodal seiche. The nodal point is the location along
the lake at which the discharge due to the seiche is greatest. The small
excursions seen in Figure 6.2 confirm our decision in Section 5.5.2 to
neglect seiche advection.

The dispersion coefficient was computed from the velocity profile fol-
lowing the procedure described in Section 5.5. In employing this proce-
dure, instantaneous dispersion coefficients were computed at intervals of
one-half hour and then averaged over the model seiche period (8.5 hours),
consistent with Holley et al.'s procedure. The average transverse speed
over the same period was then used to compute the reduction factor for
oscillatory flow. The computed dispersion coefficient is shown in Figure
6.3 at Sections 6 and 18. The general trends observed in the dispersive
flow (Figure 6.1b) are preserved in the dispersion coefficient (Figure
6.3). During most of the time, dispersion is low -- strong mixing occurs
on an occasional but fairly regular basis due to wind events. The spatial
distribution of the average dispersion coefficient over the two-month simu-
lation period is shown in Figure 6.4. A constant value of D = 1.0 m 2 /s is
also shown as a reference point. Dispersion is highest as the locations of
greatest change in geometry due to the larger seconcdary currents at
those sections. Also, a somewhat higher dispersion is maintained in Kesz-
thely Bay and the Sidfok basin (Basin IV) where, as we will show below,
there is a greater tendency to gyre motion.

6.2.3 Analysis of an Event Simulation

Besides serving as the water quality model's hydrodynamic component,
the circulation model is a tool which we can use to study the motion within
the lake. Of particular interest for the Lake Balaton study are those
motions which will significantly affect the water quality within the lake.
In this section we will examine selected results from our simulation of the
July 8 and 9, 1963 event to illustrate the spatial and temporal character of
-motion within the lake.

The motion within the lake during one-quarter of a seiche cycle is
shown in Figure 6.5. This sequence of vector plots shows the predicted
depth-averaged current at one hour intervals from the time of maximum
flow towards Keszthely to the time immediately after the seiche current
reverses direction. In the central portion of the lake, strong
unidirectional currents dominate the motion, while flow gyres are more
evident in the.eastern Si6fok basin and in the western Keszthely and
Szigliget Bays. The character of the bulk motion in time is indicated in
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Wind-driven circulation from simulation of July 8-9, 1963 event
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Figure 6.6 in time plots of the discharge at three sections along the lake.
The sections selected correspond to the boundaries between the four lake
basins, defined in Section 4.2. The flows are shown to be large, exceed-
ing the hydrologic through-flow by two orders of magnitude. However,
they are of the same magnitude as the flows shown in Figure 6.1, thus the
seiche excursion will be comparable to that found in Figure 6.2.

The transports shown in Figure 6.6, being net transports, ignore all
variation in the current across the lake section. Such variations are, of
course, responsible for dispersion and are thus very important to the
water quality predictions. The magnitude of such current variations are
shown in Figure 6.7 and 6.8 for two locations along the lake. Shown are
the lateral profiles of the depth-average velocity at intervals of one-half
hour. The locations of these profiles are Section 18, typical of the middle
of the lake where unidirectional flows dominate, and at Section 36, midway
in the Sidfok Basin, where gyre motion is more in evidence. The velocity
profiles at this latter section are considerably less uniform than those at
the mid-lake location. At either section, flow variations in time are great-
er than those in the lateral direction.

We also experimented with different grid sizes in simulating the July
1963 event to examine the influence of the grid size on the model results.
Section 5.3 previously discussed the grid size and showed the alternative
coarse and fine grids in Figures 5.5 and 5.6. Figure 6.9 contrasts pred-
ictions of water surface elevation, advective flow and dispersive flow made
using the coarse and fine grids. Water surface elevation and advective
flow differ inconsequentially, and the difference in the dispersive flow is
very small. Hence, the decision to employ the coarse grid in the 1977
simulations is justified.
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Lateral velocity profiles at Section 18
from simulation of July 8-9, 1963 event
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6.3 Water Quality Simulation

6.3.1 Data for the 1977 Simulations

Data needs for the water quality model include the lakes's bathymetry,
the spatial and temporal distribution of phosphorus loads, the biogeochem-
ical model parameters, and meteorological forcing functions. In addition,
the hydrodynamic inputs from the water balance and wind circulation mod-
els are also necessary. Finally, field data to permit comparisons with
observed behavior are helpful. We discuss a portion of this data else-
where: the biogeochemical model parameters are determined by van
Straten (1980) by calibration and are given in Section 5.4, and the out-
puts from the wind circulation model are discussed in the section above.
We will briefly outline the preparation of the remaining data in this
section.

Physical Data

A forty-element one-dimensional finite difference grid for the water
quality model was constructed to correspond with the longitudinal grid
boundaries of the hydrodynamic coarse grid, Figure 5.5. Cross-sectional
areas were required for the faces which separate neighboring grids.
These were determined by trapezoidal integration over the depth contours
in the bathymetric map of the lake. The surface areas of the grids were
found from the map by planimetry, and the grid volumes were determined
from the grid length and the average of the bounding cross section areas.
Tha data employed are given in Appendix E. The four-box model charac-
teristics were chosen to agree With those used by van Straten (1980);
they are also included in Appendix E.

Monthly average hydrologic flows were computed by water balance
based on the measured inflow of the Zala River and outflow to the Si6
Canal, evaporation and precipitation, and tributary inflows. Tributary
data were available only as lake-wide sums and were disaggregated by
tributary based on average flows given by Jolankai and Somly6dy (1981).
They were further distributed by month, correlating with the Zala-River
inflow distribution. The results of the water balance calculations are giv-
en in Appendix E for both the finite difference grid and four-box models.

Phosphorus Loading Data

The input phosphorus load was prepared with information from Joiankai
and Somly6dy (1981) and with additional instructions and data given by
Somlydy (personal communication). Five sources were considered: the
Zala River inflow (daily values), other tributary streams, sewage inflow,
sewage pond inflows (all monthly values), and atmospheric deposition
(constant in time). Neglected were urban runoff and direct non-point
sources. For consistency with the model compartments, it was necesary
to subdivide the load into detrital phosphorus and dissolved inorganic
phosphorus. Following the references cited above, we assumed dissolved
inorganic phosphorus to consist of the measured orthophosphate plus any
polyphosphate compounds. The portion of the remaining load allocated to
detrital phosphorus includes any unbound organic phosphorus "available"

182



for algal growth, as explained in Section 4.3.4. For sewage inflows, the
total measured phosphorus was assumed to consist entirely of dissolved
inorganic phosphorus. However, the tributary inflows (including the Zala
River) required the load to be subdivided. To do this, the measured
orthophosphate fraction of the load was allocated to dissolved inorganic
phosphorus, while twenty percent of the remaining portion of the meas-
ured total phosphorus was assumed biologically active and taken as
detrital phosphorus. The time variation of the summed input loads is
shown in Figure 6.10. Atmospheric deposition, not included in Figure
6.10, is specified as a constant rate per unit surface area which sums to a
total phosphorus load of 85 kg/day distributed uniformly over the lake.

Water Quality Field Data

Measurements of phosphorus and chlorophyll-a, obtained from the
IIASA data base, were employed to check model performance and to
determine initial conditions. Since calibration was not attempted in these
studies, the field data were not used for detailed comparison with model
results. They did prove useful, nevertheless, as indicators of the type
of behavior the model should be producing and for order of magnitude
checks on the predictions. Data for total phosphorus and orthophosphate
are shown in Figure 6.11 as a series of profiles. The total phosphorus,
excluding particulate (sedimentary) inorganics from the field
observations, is comparable to the model total phosphorus results. The
orthophosphate, which is near the limits of accurate measurement, corre-
sponds to dissolved inorganic phosphorus in the model. Figure 6.12
shows the profiles of measured chlorophyll-a concentration along the lake.
These data cannot be directly compared with model results; however the
total algal phosphorus concentration predicted by the model should mirror
the spatial and temporal trends observed in chlorophyll-a in the field.
The data of Figure 6.11 and 6.12 show the trends seen in the long-term
averages (Figure 4.7) to be fairly constant over the year. On the other
hand, the data for March 28 and 29 in Figure 6.11 dramatically illustrate
the possibilities for individual data to be erroneous or unrepresentative.
A storm with winds of 12 m/s (measured at Keszthely) separates the
measurements on March 28 and 29.

6.3.2 Simulation Procedures

The simulations were started on February 25, 1977 with initial concen-
tration profiles based on field data (Figure 6.13). Simulations were run
through the summer and on to October 31 (and in some runs to December
31).

The cost of simulation depends upon the number of grids. The CPU
time for program execution on the MIT IBM 370/168 is roughly one-half
CPU second per grid per month. This cost does not include the circu-
lation model execution time which is reported earlier.

Some general. checks on model performance were built into the computer
program to detect possible errors. Predictions of negative concentrations
in the biogeochemical component were monitored but never detected. A
lake-wide mass balance over the simulation determined if program errors
or accumulated round-off led to loss or gain in phosphorus mass: the
error was always below one percent.
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6.4 Water Quality Simulation Results

The simulations performed were designed to compare the multiple-box
and one-dimensional finite difference model approaches, to evaluate the
importance of hydrodynamic influences on the model results, and to study
the relative effects of different factors upon the model predictions. Since
there is an enormous quantity of output produced by simulating four
phosphorus components over many months in as many as forty grids, we
must be selective in the material we show. Spatial concentration profiles
of total and algal phosphorus are shown for August 4, a period of low flow
when phytoplankton are near their peak summer concentration. The pro-
file results illustrate the influence of dispersion and other hydrodynamic
influences clearly, as well as show the differences in spatial detail
between the forty-grid continuum model and the four-box model. In addi-
tion, time plots of phosphorus constituents and total phosphorus are
shown for Keszthely Bay for selected simulations.

6.4.1 Results with the Forty-Grid Model

Hydrodynamic Influences

The influence of the hydrodynamic component upon the water quality
predictions was evaluated in a series of runs in which the representation
of the dispersion was varied. As our base case simulation for this and all
subsequent comparisons, we will employ the simulation in which the
dispersion coefficient is computed from the lateral velocity distribution in
the method described in Section 5.5. The predicted August 4 profiles
from this simulation are shown in Figure 6.14.

Also shown in Figure 6.14 are the simulation results from a run in
which the only hydrodynamic information used is the monthly average
hydrologic flow. This is equivalent to the plug flow reactor described in
Chapter 2. These results show a very jagged profile in which each local
peak corresponds to a tributary or sewage nutrient inflow. Without the
influence of dispersive mixing, the inflowing phosphorus simply collects
near the source. The effect is particularly striking at the lake's eastern
end which is out of the main flow path between the Zala River and the Si6
Canal. The large sewage discharge from the city of Balatonkenese accu-
mulates in the end grid of the model to reach extreme levels.

The results of the run with only hydrologic flow are obviously unreal-
istic -- mixing will be an important influence on water quality and must be
captured in the model. The contrast between the base case run with
dispersion and the no dispersion run in Figure 6.14 clearly shows this
influence. Although local concentration peaks occur -- most prominently
near the Zala River source at Keszthely -- there is a distinct tendency for
dispersion to smooth the profiles.

For comparison with the base case simulation, in which dispersion
varies in both time and space, two simulations with fixed dispersion coef-
ficients were run. The August 4 profiles, for fixed dispersion coeffi-
cients of 1 m 2/sec and 10 m 2/sec, are shown in Figure 6.15. The run
with D = 1 m 2/sec shows fair agreement with the base case run employing
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the computed dispersion coefficient: the D = 1 run is perhaps too high at
the lake's western end, too low in the eastern part, but overall the
agreement is good. The simulation with D increased by an o-der of mag-
nitude shows the importance of the dispersion coefficient to the model
results. The higher dispersion smooths the predicted profile substantial-
ly, removing all local concentration peaks. The portion of the lake east of
Tihany (Basin IV) is much more thoroughly mixed, virtually eliminating
the concentration gradients seen in the base case simulation.

Figure 6.16 addresses the temporal character of the model predictions
by comparing concentration histories for Keszthely Bay from various simu-
lations. Significantly different predictions result according to the hydro-
dynamic component employed. The simulation employing only hydrologic
flow (Figure 6.16a) gives results strongly dependent upon the monthly
variation in mean flow. During the high flow spring months, the Zala
River inflow is advected more strongly downstream into the lake, leading
to a higher spring concentration peak than in the other simulations. A
lower peak occurs during the low flow summer months. The constant
dispersion (D = 1 m 2/s) simulation in Figure 6.16c is similar to the vary-
ing dispersion coefficient run (6.16b) except that the curves have been
smoothed by the elimination of the temporal dispersion variation. The
increased dispersion run with D = 10 m 2/s (Figure 6.16d) shows much
lower concentrations than the other runs -- a consequence of dilution
caused by mixing with lower concentration waters to the east. Too large
a dispersion coefficient can thus lead to underprediction of the water
quality problems in Keszthely Bay.

Influence of Reaction and Loading

The predicted water quality is a consequence of the competing influ-
ences of hydrodynamic advection and mixing, biogeochemical reaction, and
the distribution of loading in space and time. We can see some of the
effect of loading and reaction in model simulations from which they have
been eliminated. For example, in Figure 6.17 we contrast concentration
predictions on August 4 using the varying dispersion coefficient model
with and without the biogeochemical component. The simulation without
biogeochemical reaction treats the phosphorus components as conservative
tracers subject to the same initial conditions and the same loadings as the
reactive phosphorus components. Although the absence of reaction leads
to large differences in algal and total phosphorus concentration at Kesz-
thely, the differences throughout the lake are not as large as we would
have anticipated. In fact, the discrepancies are generally of a similar
magnitude to those due to the different dispersion hypotheses shown in
Figure 6.15. A surprising conclusion one may draw from the results of
Figure 6.17 is that there is a relatively narrow band of variation possible
in model results due to modification of the biogeochemical component.
Hence, calibration of the model by modifying reaction rate constants can-
not be used as the sole control on model performance: the influence of
the hydrodynamic component cannot be neglected, as it has in many bio-
geochemical models, if a correct calibration is to be achieved.

Of considerably greater impact is the elimination of all nutrient loads,
as shown in Figure 6.18. Again, the base case run with a varying
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dispersion coefficient is included for comparison. The run without load-
ing employs the varying dispersion coefficient as well, so the simulations
are identical except for the inclusion of nutrient loads. The cessation of
loading can be seen to have had a great impact on the lake's water quality
in just the few months between the February 25 starting date and the
August 4 predictions in Figure 6.18. Almost all of the dominant west-east
concentration gradient has disappeared and there remains only a residual
indication of the initial conditions. The results without the nutrient loads
make-clear that the observed longitudinal gradients in phosphorus concen-
tration (Figure 4.7) are sustained almost entirely by the spatial
distribution of the loading. Hydrodynamic influences may affect the pro-
file significantly at local points, but on a lake-wide basis they are
dominated by the loading distribution.

Finally, in Figure 6.19, we consider the situation in which the Zala
River nutrient load has been cut in half. Reduction of the Zala River load
is a prime water quality management strategy for the lake (van Straten et
al., 1979), so this simulation is similar to those which might employ the
model in a predictive mode. Comparison with the base case simulation in
Figure 6.19 shows that, other than in Keszthely Bay, the elimination of
one-half the Zala load causes little change in the predicted profile.
Changes beyond Keszthely Bay are insignificant since neither advection
nor mixing is sufficiently strong to make the loading changes felt beyond
the immediate area of the discharge point within the five and one-half
months simulated. Comparison of the half-load simulation with the full
load runs based on the different dispersion hypotheses is also
instructive. The half-load run with the computed dispersion coefficient
predicts a concentration in Keszthely Bay very similar to that predicted
with a full load using the increased dispersion coefficient, D = 10 (Figure
6.15). An implication of this result is that mixing can be as effective as
loading reduction in ameliorating Keszthely Bay's problems. A more trou-
bling implication is that improper mixing in a water quality model can
completely mask the predicted effects of water quality controls.

Conclusions

The water quality model simulation results support the following con-
clusions:

o The use of the dispersion coefficient computed from the lateral veloc-
ity profile leads to predicted behavior much alike that observed in
Lake Balaton.

o A constant dispersion coefficient of D = 1 m2 /sec is a fair approxi-
mation to the dynamically varying dispersion coefficient.

* The hydrodynamic component holds comparable influence upon the
model results as the biogeochemical component, and hence both com-
ponents will influence the calibration of water quality models.

e The primary determinant of the lake-wide phosphorus distribution is
the spatial distribution of the nutrient sources. The local character
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of the distribution, as well as the response to loading changes, are
strongly affected by hydrodynamic influences.

A reduction in loading, as would be likely in prognostic simulations,
can be masked if incorrect hydrodynamics are employed in the model.

6.4.2 Results with the Four-Box Model

Comparison with the Forty-Grid Model

The discussion of multiple-box models in Chapter 2 makes clear that
there are several impediments to their use as successful models of lake
water quality. The model hydrodynamics are clouded by the hidden influ-
ence of implicit dispersion, to the point that mixing becomes a parameter
of the model to be determined by calibration along with a multitude of bio-
geochemical model constants. In this section, we will use the base case
forty-grid finite difference model as a comparison standard against which
to evaluate the four-box model predictions, with particular attention to
the problems in capturing hydrodynamic influences.

Let us begin with a preliminary analysis based on the conceptual mod-
els of Section 2.5.4. From Equation 2.9, we can compute the Peclet Num-
ber of the forty-grid model as an analog of the dispersed flow reactor. In
applying Equation 2.9, we employ the following parameter values: Q =
10.4 m 3/s (annual average hydrologic flow), L = 65 km (Keszthely to
Sidfok distance), A = 24,000 m2 (average over the lake) and D = 1 m 2/s
(determined in Section 6.4.1). The computed Peclet Number is roughly
30, implying rather small longitudinal mixing. From Figures 2.10 and
2.11, the tanks-in-series model (with no exchange flow) with roughly
equivalent mixing should consist of seventeen or eighteen tanks. The use
of only four boxes -- in fact, of essentially three boxes (see Figure 2.11)
-- in the Balaton model necessarily implies considerably greater mixing.
Using Equation 2.14, a three-box model is equivalent to a Peclet Number
of 4.75, or using the parameters above, a dispersion coefficient of about 7
m 2/s. If we also add the influence of the exchange flow employed by van
Straten (an average of 23 m 3/s between boxes 2, 3 and 4) the Peclet
Number from Equations 2.15 and 2.16 is about 1.1. For this situation,
the equivalent dispersion is about 30 m 2/s. Thus, both with and without
exchange flow, the four-box Lake Balaton model includes much greater
dispersion than determined in the forty-grid model.

In Figure 6.20 we compare four-box model predictions with the
forty-grid base case simulation. The loss of spatial detail in the four-box
model is, of course, immediately obvious: local concentration peaks can-
not be predicted and only a rough outline of the concentration profile
along the lake is possible. Also evident are considerably lower pred-
ictions for Keszthely Bay as a result of the greater mixing in the four-box
model. Addition of exchange flows between the boxes only decreases the
Keszthely Bay concentrations further. The predictions at Keszthely are
particularly important, since this is the location of greatest water quality
problems in Balaton.
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In time, the phosphorus constituent concentrations (Figure 6.21)
behave somewhat similarly to those seen in the forty-grid model run with
only hydrologic flow (Figure 6.16a). Compared with the base case simu-
lation (Figure 6.16b), total phosphorus concentrations are higher in the
spring but lower in summer, with an overall tendency to be low. Algal
phosphorus concentration predictions are closer between the two models,
although the summer peak is lower in the four-box results.

Returning to Figure 6.20, comparison of the four-box model without
exchange flows with the base case reveals a passable ability by the
four-box model to capture the lake-wide longitudinal gradients. The
inclusion of a small box for Keszthely Bay is probably particularly fortu-
nate in this respect. Were it combined with the second box, the pred-
ictions in Basins 11 through IV would likely change little, but
concentrations in Keszthely Bay would probably be underpredicted.

Predictive Ability

I-n Figure 6.22 we show results of a four-box model simulation in which
the Zala River nutrient load is reduced by one-half. This is the same
simulation as reported above for the forty-grid model and we have
included its predictions, shown originally in Figure 6.19, in Figure 6.22
as well. This simulation may be viewed as a test of the model used in a
predictive mode.

The relative comparison of four-box and forty-grid results differs lit-
tle from full-load to half-load. In the half-load runs, concentrations are
again underpredicted for total phosphorus and, to a lesser degree, for
algal phosphorus. The loss of spatial detail remains considerable and this
becomes increasingly important as the Zala River load decreases. As seen
in the forty-grid predictions in Figure 6.22, the local peaks immediately
east of Keszthely Bay assume greater significance as the Keszthely Bay
water quality improves. Szigliget Bay is already considered an area of
relatively low water quality and predictions of its response to loading
changes would be valuable. The four-box model cannot supply this
information to any detail however. Particularly for local water quality'
problems outside of Keszthely Bay, the four-box model is ineffective.

Conclusions

Evaluation of the results from the four-box model leads to the following
conclusions:

* Predictions by the four-box model are low in Keszthely Bay and are
unable to show spatial detail in the phosphorus concentration dis-
tribution. The box model predictions are only able to capture the
broadest trends in the lake-wide concentration distribution.

e The four-bcx model includes far greater mixing than that determined
by the calculation of dispersion coefficients for the forty-grid model.
This is due to the dispersion implicit in the box formulation. Addi-
tional dispersion via an exchange flow should certainly not be
included.
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* The loss of spatial detail in the four-box model reduces its effective-
ness as a predictive tool. Particularly if local problems are of con-
cern, the more detailed finite difference model should be used.

6.4.3 Summary of Results

The model evaluations show the results to be significantly sensitive to
the model formulation and to the model hydrodynamics. The results most
similar in character to observations in the lake are produced by the
forty-grid model with the dispersion coefficient computed as a function of
time and space by the hydrodynamic component. The four-box model is
able to show only a rough outline of the concentration distribution in the
lake, and its predictions tend to be low.

The simulations have also shown that the hydrodynamic component can
influence the model results on a par with biogeochemical influences.
Thus, calibration of the biogeochemical model component can be invali-
dated by improper or incorrect hydrodynamics. This can be a particular
problem with box models where artificial mixing is an implicit consequence
of the model formulation.
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7 CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions on the Use of Lake Water Quality Models

In this report we have offered the proposition that lake water quality
modeling can be improved if the influence of lake hydrodynamics is prop-
erly incorporated in the model. This proposition is a challenge to the
school of thought that biogeochemistry alone dominates lake water quality
and that a. state-of-the-art water quality model can employ a highly com-
plex and sophisticated biogeochemical model in the framework of a
multiple-box formulation.

We have supported this idea in a theoretical analysis of the properties
of the tanks-in-series reactor, equivalent to the multipl.e-box model.
That analysis shows that multiple-box models carry within their formu-
lation a large implicit dispersion, controllable only if the fundamental
character of the model is changed by varying the number of boxes. Fur-
ther mixing can be added to the multiple-box models by incorporating an
equal but opposite exchange flow between the boxes. However, this
exchange flow cannot be determined directly from observation or simu-
lation of the lake hydrodynamics. Rather, it is a model-dependent
parameter which will vary as the number of boxes or the box sizes vary.
It must thus be determined by calibration, compounding the already diffi-
cult problem of biogeochemical model calibration. In short, use of box
models is confounded by their confusion of hydrodynamics and
biogeochemistry.

In contrast to the multiple-box model, there are higher dimensional
finite difference models which seek to closely approximate the continuum
solution of the mass conservation equations. In these models artificial
dispersion is reduced to an insignificant level, thus allowing the explicit
specification of the dispersion coefficient, D, as the determinant of the
mixing properties of the model. A one-dimensional model is developed in
this thesis for application to Lake Balaton in Hungary.

Application of the developed model and comparison with results from a
four-box model of Lake Balaton further supports our proposition. The
simulations illustrate that hydrodynamic mixing can significantly affect the
model predictions, to a degree comparable to that of the biogeochemical
model. Comparison of available field data with model results shows that
the finite difference model employing a dispersion coefficient computed
from simulated lake hydrodynamics is best able to capture the character of
the observed water quality in the lake. The box model is found to under-
predict the concentration of phosphorus as a consequence of too large an
implicit dispersion and a lack of spatial detail.

Our conclusion is unequivocal: the multiple-box model is in fact a
"black-box" model, based largely on empiricism rather than physics. In
contrast, the finite difference model permits a rational and direct determi-
nation of mixing in the model, correctly isolating the influence of hydro-
dynamics from biogeochemistry. As a consequence, this model can be
more soundly calibrated and more effectively used as a predictive tool
than the box model. In sum, the directness and clarity of the finite dif-
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ference model approach recommends its use over the box model
formulation.

In the remainder of this chapter, we expand upon our experience to
suggest a rational procedure for the development of linked hydrodynamic
and biogeochemical water quality models. We go on to summarize the major
findings of our work, with special attention to our model development and
what it has revealed about the character of Lake Balaton. Finally, we
close with recommendations for future research.
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7.2 Recommendations for Design of Lake Water Quality Models

7.2.1 Introduction

In this section we will review the assumptions and structure of the
Lake Balaton water quality model as an example of rational model design.
In a sense, this will be a repetition of the process described in Section
5.1, but with new insight gained from the results of our work. Further,
the implications of the analysis as a general process for lake water quality
model design will be discussed.

Our analysis of the model structure and assumptions will be organized
around a length and time scale diagram, as used previously in Chapter 5.
Our procedure will be to gather as exhaustively as possible the various
length and time scales which appear in the model. The majority of these
are explicit in the model formulation and can be determined directly from
the model parameters. Others are implicit in our modeling decisions and
will be more subtle in their influence -- it is these length and time scales
which we particularly wish to uncover and scrutinize. For all of these
length and time scales, we will seek as accurate quantification as realistic,
to refine the approximate definitions made in Section 5.1.

7.2.2 Detailed Length and Time Scale Anialysis

Physical Processes

The physical processes with the most impact on lake water quality are
those associated with the advective and dispersive terms of the equations
of motion. Long-term advection may be characterized by the hydraulic
residence times, given by Baranyi (1973a) as 14 months, 4 years, 6 years
and 9 years for the four Balaton basins defined in Chapter 4. For the
entire lake, a residence time of about 5 years may be computed from data
in van Straten et al. (1979). This last residence time may be viewed as
the endpoint of a continuous relation between length and time defined by
the hydrologic through-flow. Using the long-term hydrologic flow and
average cross-sectional area to find an average through-flow velocity, U,
we define the linear length-time relation x = Ut indicated as hydrologic
flow in Figure 7.1.

Mixing times may be computed to characterize dispersion. The mean
lateral mixing time can be estimated as the average lake half-width, 4 km,
divided by a characteristic transverse velocity, roughly 3 cm/sec from
our model results. This yields about one and one-half days as the mean
lateral mixing time, shown in Figure 7.1 as one point in the continuum of
mixing time-transverse distance relations. The vertical mixing time is

given by H 2/AV' equal to about two hours using parameter values from

Table 5.2. Again, a continuous relation between length and time is shown
in Figure 7.1.
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Other physical length and time scales will also influence water quality.
Most obvious is the uni-nodal longitudinal seiche period, 8.5 hours in the
circulation model simulations. This is also the averaging period for the
dispersion coefficient in the method of Holley et al. (1970). For water
quality, the length scale associated with the seiche period is the seiche
excursion, which can be seen in Section 6.2 to be on the order of a few
hundred meters.

The paragraphs above have dealt primarily with the time scales of the
physical processes. The length scales are, however, quite obvious as the
length, width and depth of the lake and the lengths of the four lake
basins. The length and time scales are used together to plot the domains
of the physical processes in Figure 7.1.

Biological Processes

To define the time scales of the biological processes, we can draw upon
the various model rate constants given in Table 5.3, taking the inverse of
a rate constant as the time scale of the process. From the rate constants
defined in Table 5.3, we can determine that the shortest growth time for
summer algae is roughly 0.2 day and for winter algae, 0.5 day. (Under
the typically less than ideal conditions algae experience in the lake, maxi-
mum growth rates will not be achieved and growth times will be longer.)
The mortality rate determines a life span on the order of 8 days for both
algal varieties. Mineralization responds on a scale of about 30 days at 25
C, while sorption/desorption requires only 6 days. Finally, settling of
detritus proceeds very slowly, requiring time periods of roughly eighty
days.

Length scales for the biological processes are less obviously defined.
Although the individual cells clearly experience very small distances,
homogeneity of populations and environmental conditions is reasonably
expected over much wider areas. For lack of better information, we have
assumed length scales on the order of the lake width to be representative.
The biological processes are also included in Figure 7.1.

Field Data

The.dependency of the modeling process upon availability of field data
was stressed in Section 5.1. The frequency of sampling in both time and
space suggest time and length scales to be considered in our analysis.
For the phosphorus components, measurements are made every other week
at nine stations along the 75 km length of the lake. These time and
length scales for field data are so indicated in Figure 7.1.

Modeling Decisions

In the preliminary model design process, described in Section 5.1, a
less detailed space and time scale analysis led us to a general outline of
the model characteristics. Can we not determine specific aspects of the
model structure and linkage using the detailed. information of Figure. 7.1?
To a reasonable degree, we can.
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We go into this analysis with some preconceptions of various aspects of
the model, and we will examine these first. Implicit in the selection of a
one-dimensional model is the assumption that mixing in the vertical and
lateral directions will be sufficiently rapid to allow variations in those
directions to be neglected. There is clearly no difficulty posed by the
vertical mixing scale for this assumption. For lateral mixing, the prob-
lems are minor. At its very fastest rate, algal growth will proceed
somewhat faster than lateral mixing, thus leading to lateral concentration
variations. The discrepancy between growth and mixing is small
however, particularly since light, temperature and nutrient limitations will
prevent the fastest growth rates from being achieved on all but rare occa-
sions. Therefore, this is an occasional and not terribly serious mismatch
in time scales.

The lateral mixing time also exceeds the longitudinal seiche period.
Thus, transport by the seiche could interact with, for example, shoreline
nutrient discharges to violate the assumed one-dimensionality. This might
happen if the seiche acted to carry away an influent nutrient discharge as
a nearshore plume before it could be mixed laterally. The short length
scale of the seiche excursion shows this will not be a problem, however,
except very locally. The decision to average out seiche advective trans-
port is thus sound.

One of the most pertinent modeling decisions is the choice of the spa-
tial increment, Ax. The obvious suggestion for Ax is that used in the
linked hydrodynamic circulation model, 1900 meters. For that value of Ax
to be consistent in the water quality model depends to a great degree
upon the time scales it implies for longitudinal advection and mixing.
Advection due to hydrologic through-flow will traverse 1900 meters in
about 4 x 10' seconds -- well above the time necessary for cross-sectional
mixing, and thus within the limits posed by the one-dimensional assump-
tion. Time scales for longitudinal mixing may also be determined from the
selected grid size if a dispersion coefficient, D, is known. To not violate
the one-dimensional assumption, the longitudinal mixing time, equal to
(Ax)2/D, should not be significantly less than the transverse mixing time.
Using the average transverse mixing time as a guide, a choice of
Ax = 1900 meters is consistent if the dispersion coefficient is less than
about 22 m 2 /s. As we have seen in Chapter 6, dispersion in Lake Balaton
is generally much lower than this, so that the time for longitudinal mixing
will safely exceed that for lateral mixing. A final matter concerning the
choice of Ax is its magnitude relative to the seiche excursion. The deci-
sion to average out seiche advection implicitly defines the excursion as
the, minimum length scale realistic for the model. The typical seiche
excursion is smaller than 1900 meters by about five times, so again this
particular choice of Ax is realistic.

Time scales must also be chosen for the 1-D water quality model,
although we have considerably less latitude here than we had in selecting
the space scale. Having fixed Ax and solution procedures, accuracy and
stability characteristics of the numerical solution will largely dictate the
computational time steps to be used in the fractional step solution. The
minimum time steps can be found analytically (Verboom and Vreugdenhil,
1975) or by trial and error, for example successively halving the time
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step until the solution no longer changes as At changes. To a large
extent, the computational time steps reflect the speed of the physical
processes being modeled and thus should not differ drastically from the
time scales found in Figure 7.1. For the linked finite difference model of
Lake Balaton, the following time steps were determined by trial and error:
advection - 8.5 hours (the seiche period), dispersion - 4.25 hours, and
reaction - 2.125 hours. The integral relation of the time steps is a
requirement of the fractional time step method (see Appendix B).

At a broader level, the time scale question affects our treatment of the
model results. The scale analysis can offer insights into the consistency
of the model in its temporal characteristics, and suggest those time ranges
at which model results cannot be expected to be very realistic. A crucial
question for the model concerns its ability to capture the lake's behavior
on the time scales of loading changes -- this is the model's goal as a tool
for water quality management. Some feeling for the important time scales
in this behavior is supplied by van Straten (1981). He constructs analyt-
ical models of the lake phosphorus cycle that are simple enough to be
solved analytically. Analysis of the solutions identifies the lake response
times as approximate functions of loss and reaction rates. The response
time is determined as the time scale in which the lake concentration
changes as the result of a step change in input loading. van Straten
gives results for total phosphorus responses in Basins I and 1I as 25 and
75 days respectively, and for algal phosphorus in Basin I as 15 days.
Though clearly based on very approximate methods, van Straten's esti-
mates of system response times are nevertheless useful as indicators of
the order of magnitude of the time to respond to changes in loading.
Length scales to accompany the time estimates may be determined from the
sizes of Basins I and II, to allow plotting of the loading response on the
length and time scale diagram. This is done in Figure 7.1, and shows
good consistency between the loading response times and the model time
scales.

In summary, the collection of model length and time scales in Figure
7.1 shows a comforting degree of consistency between the various model
components. There are no glaring incompatibilities, and van Straten's
basin response estimates lie right in the middle of the various time and
length scales.

7.2.3 Discussion and Conclusions

The previous section suggests a method of greater generality for mod-
eling decisions than its use above. In particular, the selection of the
model space increment, Ax, appears as the major decision made. In select-
ing Ax, we follow a procedure in which Ax is suggested and then justified
with the biological and physical properties of the lake. What of the con-
verse process -- given no preconception of a grid size, can a time and
length scale analysis specify one? Such a process, if possible, is of a
generality which transcends the specific case of Lake Balaton. Indeed,
we will see that this process is central to model identification and defi-
nition.
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Examination of Figure 7.1, rather than simply suggesting a grid size,
reveals three alternative ranges of spatial representation, as we show in
Figure 7.2. The range of shortest space scales are those less than the
lake depth. Selection of such a scale implies that the model must neces-
sarily include both the longitudinal and lateral dimensions as well, unless
a very local area is of interest. If somewhat longer space scales are
employed, variations with depth become negligible. However, the associ-
ated time scales for longitudinal advection are still less than or comparable
to transverse mixing time scales, and a grid of length Ax cannot be
assumed fully-mixed laterally. These conditions define the regime for 2-D
modeling, as indicated in Figure 7.2. The next range is that in which we
have chosen to operate, where the transverse mixing time is so much
shorter than the longitudinal advection and dispersion times that a 1-D
simplification is permissible. The spatial increment we have selected is
near the lower limit of the 1-D range and much greater spatial detail is
not reasonable in a 1-D model. A larger grid size is entirely possible,
and we show a rough upper limit to the range for the 1-D model.

Between the ranges defined above we have shown ranges where con-
sistent modeling is not possible due to conflicting scale requirements for
the important processes. Consider, for example, a one-dimensional model
with Ax = 67 meters. This is the grid size suggested in Section 5.5.2 by
numerical modeling requirements when seiche advection is included.
According to those findings, 67 meters is the maximum grid spacing able
to capture the influence of seiche oscillation properly. However, consider
the implications of the cross-sectional mixing time for such a model, as
shown in Figure 7.3. Longitudinal mixing times are included in Figure
7.3 for a family of reasonable values for the dispersion coefficient in Lake
Balaton. Only at the very smallest values of dispersion does a
one-dimensional assumption approach rationality for Ax = 67 m. In all
other cases, the grid will mix much faster longitudinally than it will lat-
erally -- thus deviating from the assumption of one-dimensionality.
Larger values of Ax will approach one-dimensionality, but will run afoul of
the seiche excursion requirements. Hence, there is no suitable modei in
the range above 67 meters until Ax becomes sufficiently larger than the
seiche excursion to allow neglect of seiche advection.

Figure 7.2 suggests the possibility of a two-dimensional model of Lake
Balaton's water quality. Such a model could afford certain conveniences
not possible with the one-dimensional model. Most significantly, it elimi-
nates the necessity for computing the one-dimensional dispersion coeffi-
cient. There are, however, practical complications in using a
two-dimensional model due to the length scale for seiche advection. As we
have shown in Figure 7.2, there are only certain ranges of allowable Ax
values. A grid size below 67 meters is permitted, but would be prohib-
itively expensive for computation. Above roughly 1100 meters, a
two-dimensional model may be employed instead of the simpler
one-dimensional model also possible in that range. However, at this
length scale, seiche advection must necessarily be averaged out for either
the one or two-dimensional model. An effective diffusion coefficient would
thus be required in the two-dimensional model to account for the effects
of this temporal averaging. This would lead to essentially similar calcu-
lations as required to compute the one-dimensional dispersion coefficient,
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eliminating much of the advantage sought from the two-dimensional model.
In short, two-dimensional modeling of Lake Balaton offers no practical
advantage over one-dimensional modeling at longer length scales, and it is
computationally infeasible at short grid sizes.

Finally, there is the range of Ax larger than about 8000 meters. Box
models, such as the four-box Lake Balaton models, fall within this range.
However, Figure 7.3 illustrates an inconsistency in these models due to a
mismatch of mixing and advective time scales. To assume that each box in
a box model behaves as a fully-mixed tank, the time scale for mixing
should be less than the time for through-flow. However, this assumption
becomes less valid in Balaton as the length scale increases. For example,
the twenty kilometer length scale of Basins 11, Ill and IV in the four-box
Balaton model is reasonable only if the dispersion coefficient exceeds 10
m 2 /s. Conversely, the box model carries approximately this level of
dispersion due to the implicit dispersion we defined in Section 2.5. How-
ever, our modeling investigations of Lake Balaton have revealed much less
dispersion to be appropriate. We are thus lead to the same conclusion as
in Section 2.5: the box model is a reasonable formulation only if the size
of the box (and its accompanying implicit dispersion) fortuitously reflect
the mixing processes within the actual lake. Our determination of the
dispersion coefficient, as reported in Section 6.2, shows that dispersion
will be much less than that implied by the box models, and thus the box
models are inappropriate.

Although the analysis performed above was done for the specific case
of Lake Balaton, we believe the method of analysis to be applicable to iake
modeling in general. That is, a thorough and careful analysis of model
space and time scales will identify the alternative model structures feasi-
ble for a problem as well as indicate the ranges of space and time scales
where one should not model. The alternative model structures arise in
those "windows" of length and time scale space where underlying proc-
esses can be safely averaged or neglected without incurring fundamental
inconsistencies with the processes retained. These windows will differ
from application to application, but the method to discover them -- careful
delineation of time and space scales -- is general.

7.2.4 Implications for Data Collection

In the length and time scale analysis presented above, the available
field data are accepted as a given. However, the length and time scale
analysis can be used profitably inithe converse process: to design a field
data collection program based upon the lake characteristics and the likely
modeling format.

There are many issues to be addressed in a comprehensive field data
program. Not the least consideration is the fact that the program must
serve many different modeling, management and analysis purposes. We
will ignore this complexity here, and examine only those data necessary
for water quality modeling. Even within this single discipline, the data
collection program has many facets which must be considered. We will
concentrate here on the issues of spatial coverage, and frequency and
duration in time.
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The spatial coverage of the program should be no less than that neces-
sary to support the selected modeling scheme. Better still, it should be
sufficiently comprehensive for at least an initial period to permit an
appropriate modeling scheme to be selected. Consider this in the context
of Figure 7.2. For each of the modeling regimes shown, there is an
appropriate spatial scale for the data collection program. This is the low-
er space scale delimiting the regime -- a sufficient quantity of data should
be collected at this spatial increment to permit evaluation of the modeling
alternative. For example, in Lake Balaton such data exist in sufficient
quantity for the 1-D model only. Lateral transects of algal concentration
would be necessary to evaluate the need for 2-D modeling; a considerably
greater quantity (duration) of such data would be needed to calibrate and
verify a 2-D model. Clearly, a well-designed data program would supply
data at various increments over the different dimensions to examine alter-
native models. Limited funding, manpower and equipment would constrain
the coverage of the data program; however the program should be
designed to maintain a continuous base level supplemented with occasional
detailed samplings. For example, a basically longitudinal sampling net-
work could be established for phosphorus measurements (as done in
Balaton) but enough resources should be reserved for occasional detailed
sampling transects made between and lateral to the regular stations.

The sampling frequency and duration can similarly be planned using
the space and time scale analysis as a guide. As above, the program must
strike a compromise between all possibly useful data and the limitations of
finit- resources. Sufficient frequency must be achieved within the pro-
gram to analyze the various possible influences, and sufficient duration is
needed to identify trends over time. The question of frequency is proba-
bly most troublesome. For example, consider the data required to
properly evaluate the influence of seiche advection. As indicated in Fig-
ure 7.1, data measurements at roughly hourly intervals at a number of
locations would be necessai y to detect the influence of the seiche. This
would be a substantial exercise to conduct for one or two days -- it would
be virtually impossible to continue for any length of time. Accordingly,
our recommendation for the treatment of temporal scales follows that made
above the spatial scales: establish a base sampling frequency but sup-
plement the base program with occasional periods of intensive
measurements. These intensive periods should be designed to analyze the
processes identified in Figure 7.1. For example, sampling at a single sta-
tion at a frequency of one hour could be conducted over a few days to
investigate the dynamics of algal growth. Daily sampling at a number of
stations across the lake would be needed to investigate transverse mixing,
and the more extensive program outlined above would be necessary to look
at longitudinal advection and mixing. Careful design of a field data pro-
gram would maintain continuous bi-weekly sampling as a base, but reserve
resources to permit occasional intensive measurement periods. The inten-
sive measurements investigate the transient processes identified above,
while the base sampling rate is designed to observe changes due to nutri-
ent loading as characterized by the basin response times in Figure 7.1.

Finally, the duration of the program must be determined. For Balaton,
the hydraulic residence times in Figure 7.1 are long, mandating a program
continuing for decades. In general, data collection lasting over a few
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hydraulic residence times is the minimum necessary to track long-term
trends. To investigate individual phenomena identified in Figure 7.1, the
same general rule can be followed: the program will be most useful if it
lasts long enough to observe at least several repetitions of the process.
The information in Figure 7.1 lends naturally to the determination of the
necessary program duration.

This brief analysis has led to a general recommendation for field data
collection planning and shown by example how space and time scales of
specific processes may be drawn from the space and time scale analysis to
plan specific measurements. Our general recommendation is to design a
base program with a frequency and spatial detail that will show the tran-
sient response of lake basins. Beyond this base level, occasional
supplementary measurements should be planned to investigate particular
shorter scale phenomena. The design of these intensive supplementary.
programs can be based upon the specific information found in Figure 7.1.
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7.3 Conclusions from the Lake Balaton Model

An indication of how much we have learned about Lake Balaton is the
degree to which our conception of the lake has changed in the course of
this research. As this study was begun, it was thought that the domi-
nant longitudinal gradient observed in phosphorus concentration was
largely determined by the hydrologic through-flow combined with loss
mechanisms. The model has demonstrated that it is, in fact, more imme-
diately due to the distribution of nutrient inflows. Concerning modeling
of the lake, as we began to study the lake's seiche motion, we hypothe-
sized that the lake behaved and could be modeled much as an estuary.
However, the seiche excursion in the lake is so much shorter than the
estuarine tidal excursion that a practical distinction arises. Not only does
it become very difficult from a computational standpoint to model the
seiche advection, from a practical point of view it becomes unnecessary:
the seiche excursion is too short to materially affect the predicted water
quality. Our view of mixing in the lake has changed considerably as well.
The lake is commonly believed to be quite well-mixed, at least within the
defined basins. However, our calculations have shown, with the support
of field data, that the mixing is in fact fairly weak, that nutrients intro-
duced to the lake will be transported away fairly slowly.

What we have learned about the lake's water quality is that there are
many processes which materially influence it. Clearly, the dominant
influence is the spatial distribution of the inflowing nutrient loads. Less-
er, but nevertheless important factors are biogeochemical reaction,
hydrologic advection, and dispersive mixing. None of these three factors
can be singled out as dominating the others: all must be considered
important. Finally, we determined the back-and-forth seiche advection to
be a minor influence which could be neglected so long as its influence on
dispersion was cdptured.
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7.4 Recommendations for Future Research

The findings of this study suggest an immediate path for continuing
research. This is the recalibration of the biogeochemical model within the
framework of the one-dimensional finite difference model. Our findings
have made clear that the change from a four-box model is accompanied by
changes in hydrodynamic transport which can alter the calibration. A
suggestion for this future work would be to investigate the codrser grid
suggested in Section 7.2.3 as a means to lower computation costs while
still operating in an acceptable range of space and time scales. Also
worthwhile may be the disaggregation of tributary nutrient inflows from
monthly data to daily data by correlation with the daily Zala River data.
The importance of the nutrient loading to the model results suggests the
greater temporal detail may change the character of the results.

Data needs suggest longer range goals for the research as well. Per-
haps the greatest limitation on this study was the lack of basic data. To
unequivocally verify the circulation model much more information on water
motion in the lake is necessary and better resolution of the spatial wind
field is essential. To confirm the dispersion coefficient calculation, field
data on the origin and fate of tracer constituents are required. To cor-
roborate the predicted water quality profiles, measurements with greater
spatial resolution must be taken. To validate the biogeochemical model
calibration and formulation, many more data in time and space are needed

The lack of data leaves many gaps which can be filled by future
research. Here we recommend two which we see as particularly
necessary. First is the crucial need to resolve uncertainties in the bio-
geochemical model -- most specifically the part of the model dealing with
sediment interaction. To do so requires basic experimentation to deter-
mine if sediments are a source of phosphorus which can be utilized by
phytoplankton. Chapter 2 suggest. possible contributing factors in such
phosphorus release: disruption of the sediments by wind action and
chemical modification during intermittent anoxic conditions. A second
research need is an independent test of the model linkage mechanism.
This would entail gathering data on a conservative substance measured in
Lake Balaton to be used as a tracer in model simul-ation tests. van
Straten et al. (1979) show data from the lake for a number of conservative
substances, however none show distinct gradients within the lake and we
do not know if data for any of these substances has been taken for the
Zala River or other tributaries. Baranyi (1973b) reports on studies using
tritium as a tracer, and the original references and data from that work
may be helpful.
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APPENDIX A FIELD STUDIES OF LAKE BALATON CURRENTS

A.1 Introduction

Field studies were made as a part of this research on four different
days, July 11, 1980 and August 11, 12 and 15, 1980. The measuring pro-
gram sought a qualitative picture of the vertical velocity profile at various
locations in the lake and under various wind conditions. A map showing
the approximate locations of the measuring stations is included as Figure
A.1.

The basic tool for the measurements was a Marsh-McBirney Model 201
Electromagnetic Current Meter. This instrument consists of a sensor
probe which is attached by 12 meters of cable to an electronic processor
with a visually read panel meter. The processor and panel meter are
housed together in a portable electronics case. When the probe is
immersed, water flowing past it interacts with the probe's magnetic field
to induce a small voltage in the water about the probe. This voltage,
which is related to the water velocity, is sensed by electrodes on the
probe and then processed to produce a velocity read-out.
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A.2 Measurement Results

The following describes the conditions and results for each study day
in chronological order. At the end of this Appendix, a list of all collected
data is included as Table A.1.

July 11

These studies were made with the assistance of the Hungarian Academy
of Sciences Biological Institute at Tihany. The Institute's research boat,
the Loczy Lajos, was used to make measurements at Stations 1 through 4
about the peninsula of Tihany. Since this was the first use of the cur-
rent meter in Lake Balaton the studies were intended to test the utility of
the meter as well as gather some data.

Wind conditions were variable,, but generally light during the morning.
During the first two sets of measurements, the winds were from the east
and quite light. Later, as we proceeded to Station 3, the winds shifted to
the north and grew stronger, almost stormy. These winds died out by
the time of our final measurements, however. Stations 3 and 4 were in
the wind shadow of the hills on the western side of the Tihany Peninsula
during the north winds.

The measurement apparatus consisted of a 5 meter iron pipe, roughly 2
cm in diameter, to which the current meter probe was attached at the
end. Tape strips were positioned at one half meter intervals from the
probe to mark the length of the pipe, and cross marks were also placed to
show the direction in which the probe was pointed. The pipe was lowered
into the water to various depths and the velocity was read from the
read-out meter on the boat. Since the probe only senses current velocity
in a single direction, the pipe was rotated until the direction of maximum
velocity was found. The speed was then recorded, along with the direc-
tion as estimated by comparing the directional tape marks on the pipe with
a compass. The meter velocity reading was quite steady and showed no
large influence due to boat motion. The boat was anchored at each stop.

The single exception to this procedure was made at Station 4 during
the readings beginning at 1215. Here, the probe was moved about two
meters from the end of the pipe and the pipe was pushed into the lake
bottom to remain stationary for about 15 minutes at a depth of 2.5 meters.
During that time the current reading remained essentially constant. The
readings at 2, 1.5 and 0.5 meters were then made in the fashion described
above.

The data collected are shown in Figures A.2 through A.5 following the
text of this Appendix. With the exception of the nearly constant profile
in the Strait of Tihany (Station 2), the currents were variable in both
speed and direction. At Station 3 at 1245 hours, for example, the current
appeared particularly transient, shifting direction and varying speed con-
siderably at the 2.5 meter depth. The Station 3 measurements at 1130
hours are clearly unreasonable physically -- most likely they reflect
unsteady conditions and measurement error.
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August 11 and 12

These studies were made using the Biological Institute's research boat
in the same fashion as reported above. The only significant change in
procedure was the use of VITUKI's stream gaging rod rather than an iron
pipe for holding the current meter velocity probe. The metal gaging rod
was scored at 10 cm intervals, enabling more accurate depth placement of
the probe.

The procedure used in these studies was to position the boat (with
three anchors) and remain in place for repeated measurements. On the
11th the wind was very light at first, but accelerated by mid-afternoon to
3.5 m/s. Wind direction was generally from the east with the exception of
a brief period around 1500 hours when the wind came from SSW. Six pro-
files at Station 1 and two at Station 3 are included as Figures A.6 and
A.7.

One variation on the measurement procedure was employed at Station 1
to evaluate the steadiness of the current. The probe was aligned with the
approximate wind direction (80 degrees) and held stationary at four
depths for 2 or 3 minute durations. During these periods, readings were
made continuously at an interval of about 3 seconds (the time to read
aloud and write down a measurement). The results are shown in Figures
A.8 and A.9.

Measurements were made only on the morning on August 12 and, as we
typically found in the morning, winds were light. Three profiles at Sta-
tion 3 were taken and are included as Figure A.10.

August 15

Using the VITUKI research boat, Laszl6 Somlyddy made measurements
off Balatonszemes on the 15th. The VITUKI boat is larger than the
Biological Institute's and proved less suited for the measurements. Keep-
ing the boat stationary was particularly troublesome and prevented taking
useful measurements during the morning. By afternoon, a procedure was
devised to collect useful data and three detailed profiles were made under
fairly brisk onshore winds. The collected data are given in Figures A.11
and A.12.
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A.3 Conclusions

The collected data lead to the following conclusions:

* Strong, unidirectional currents were found in Tihany Strait, in
agreement with Muszkalay's (1973) earlier measurements.

This conclusion is qualified by the fact that it is based upon a
single measured profile.

* Currents in other parts of the lake are highly transient, apparently
responding to an unsteady turbulent transport of wind shear verti-
cally into the water column, as well as to other apparently strong
influences such as seiching.

The continuous measurements made at Station 1, shown in Fig-
ure A.8, are particularly revealing in this respect. Visual
inspection of Figure A.8 indicates increasing unsteadiness with
depth - compare, for example, the trace for 0.5 meter with that
for 2.5 meters. This is confirmed by the statistics plotted in
Figure A.9. The mean velocity falls more or less into the type
of profile predicted by theory. The increasing standard devi-
ation with depth confirms our observation that unsteadiness
increases with depth. Significantly, these measurements indi-
cate a fundamental difficulty in accurately measuring the
velocity profile with a single meter in the relatively slow proce-
dure used in our studies.

e The currents rarely, if ever, behave as predicted by theoretical
arguments such as .Plate's (1970).

Few of the profiles conform with classic theory in which the
surface current aligns with the wind and in which there is a
return current along the bottom in the reverse direction. The
series of six consecutive profiles at Station 1 on August 11
under progressively stronger winds could be expected to show
the development of such a flow profile. But, as seen in Figure
A.6 such is not the case with any consistency. In general, the
profiles show unidirectional flow, implying that seiche motion or
horizontal flow gyres dominate the flow, preventing establish-
ment of vertical return circulation. Only a synoptic
measurement program would be able to prove or disprove this
hypothesis, however.
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Table A.1

Collected current data

Hour Depth
(n)

Current Measurement
Speed Direction *

(cm/sec) (degrees)

Wind at Szemes
Speed Direction
(km/hr)

July 11, 1980

10.5
2.5
17

16
18.5
1P.5
20.5
16
15
15

12.5
17
18

13.5
8.5
15

20.5
15.5
14.5

variable
25 max.

9.5

14
12
13
10

5 to 10

A
3.5
I
5

180
300
30

230
230
230
230
230
230
230
230
230
220

230
100
2r0
270
80
270

230

230
230
230
70
230

highly variable
readings

light wind
from east

light wind
from east

north wind-
increasing in
speed during
measurements

north wind-
now decreasing

north wind180
230
?30
20

* Direction from which current flows in degrees counterclockwise from magnetic north

Date,
Station Comments

1015

1045

1130

3
2
1

5
4.5

4
3.5

3
2.5

2
1.5

1
0.5

3.5
3

2.5
2

1.5
1

0.5

1
(depth
3.5 m)

2
(depth
10.6 m)

(depth
3.9 m)

4
(depth
3.3 m)

4

1145

2.5
2

1.5
1

0.5

2.5
2

1.5
0.5

1215



Hour Depth

(m)

Current Measurement
Speed Direction *

(cm/sec) (degrees)

Wind at Szemes
Speed Direction
(km/hr)

230
230
20
230
120

sequential readings
made in roughly

ten minutes

August 11, 1980

0
3
7
5
4

0
0
0

0-4
7

6
6
6
5

6.5
7.5
2.0
5.5

1
(depth
3.8 m)

1
(depth
3.8 m)

1
(depth
3.9 m)

1
(depth
3.9 m)

1
(depth
3.9 m)

1
(depth
4.2 m)

3
(depth
3.7 m)

320
320
320
120

180
180

130
130
150
270

145
80
90
260

80
80.

100

60

60
30

100
90
90
90

0.5
at 1100

3.0
at 1200

10.5
at 1500

10.5
at 1500

13.0
at 1600

13.0
at 1600

7.0
at 1700

S

north wind

observed wind
from east to
northeast

S

observed wind from
approx. 210 deg.

1130

1155

1445

1515

1530

1530

1540

Date,
Station

3 1245 3.5
2. F
2.5
2.5
1.5

14.5
10
3-5
5-6
14

Comments

NA)

6.5
2.5

variable
2.5

variable-
approx. 6

5-6
12

3.5.
4

6.5
11

observed wind
from east

increasing
wind speed

observed wind
from east

1615

1650

1'00

3.5
3
2
1

0.5

3.5
3
2
1

0.5

3.4
3
2
1

3.4
.3
2
1

3.4
3
2
1

3.7

1.5
0.5

3.2
2.2
1.2
0.2



Hour Depth
(m)

1702

1715

3.2

2.2
1.2
0.2

Current Measurement
Speed Direction *

(cm/sec) (degrees)

variable
7 max.

5
5
8

90
70
70

Wind at Szemes

Speed Direction
(km/hr)

7.0 -
at 1700

August 12, 19P0

1015 3.5
2.5
1.5

1030 0.25

1115 3.5
2.5
1.5

1125 0.25

1142 3.5
2.5
1.5

0.25

2
3
3
7

3.5
3
3
7

3.5
3
3

7.5

320
300
32(
310

170
180
1PO
310

180
190
230
310

1.5
at 1000

5.0
at 1100

5.5
at 1200

observed wind
from 280 deg.

August 15, 1980

18.0
at 1300

observed wind
from NNW

-.',

Date,
Station

3
(depth
3.7 m)

Comments

3
(depth
4 m)

3
(depth
4 m)

3
(depth

4 m)

5
(depth
3.5 m)

1300 0.1
0.3
0.5
0.7
1.0
1.5
2.0
2.5
3.0
3.3

7
7

4-5
7
5
0
5
4
2
0

330
330
330
330
330

330
330
330



Hour Depth

(m)

1425

1555

0.3
0.5
0.7
1.0
1.2
1.5
2.0
2.5
2.7
3.0
3.3

0.3
0.5
1.0
1.5
2.0
2.5
3.0
3.3

Current Measurement
Speed Direction *

(cm/sec) (degrees)

6
8
8
8
6
6
2
3
7

5
2.5

4.5
3
8
0
5-6
5
1
1

285
285
285
285
285
285
285
285
240
240
240

310
310
240

240
240
40
40

Wind at Szemes
Speed Direction
(km/hr)

17.0 -
at 1400

7.0 -
at 1600

Date,
Station

5
(depth
3.5 m)

5
(depth
3.5 m)

Comments
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Figure A.2

Current measurements at Station 1, 11 July 1980

a) Current vector diagram

b) Velocity component along lake longitudinal axis versus depth
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Current measurements at Station 2, 11 July 1980
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Figure A.4

Current measurements at Station 3, 11 July 1980

a) Current vector diagrams

b) Longitudinal velocity profiles

a)

Approximate 2 a
Wind Direction

2.5 m

_.5 1.5
im .. 5

b)

10n

Wind

5 0 5 10 15 cm/s

A- 1 m

2 m

_3 m - , . - - - - 11-7-80
1145

Approximate
Wind Direction

2.5 m

2 m

1.5

.5 m

Wind

5 0 5 cm/s

-i1m

2 m

3 a 11-7-80
1215

Figure A.5

Current measurements at Station 4, 11 July 1980

a) Current vector diagrams

b) Longitudinal velocity profiles
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Figure A.6

Current measurements at Station 1, 11 August 1980

a) Current vector diagrams

b) Longitudinal velocity profiles
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Figure A.6 Current measurements at Station 1, 11 August 1980
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Current measurements at Station 3, 11 August 1980

a) Current vector diagrams
b) Longitudinal velocity profiles
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Continuous measurements at Station 1
11 August 1980 1619 to 1631 hours
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Current measurements at StAtion 3, 12 August 1980

a) Current vector diagrams

b) Longitudinal velocity profile
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Current measurements at Station 5, 15 August 1980, 1300 hours
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Current measurements at Station 5, 15 August 1980

a) Current vector diagrams

b) Longitudinal velocity profile
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APPENDIX B A FRACTIONAL STEP METHOD USING MIXED TIME STEPS

The fractional step method (or time splitting) is a numerical method to
solve equations of the form:

ac 
atL

where

(B.1)

L is a differential operator in one or more space vari-
ables.

The key element of the method is to decompose the operator L into a sum-

mation series of component operators, L = L1 +L2+. . . Lk. Justification for

such a procedure arises by considering a finite difference representation
of the time integration required to solve Equation B.1. We assume a
temporal discretization into intervals of length At counted by the index n
and determine the unknown c(t+At) by Taylor expansion about the known
value c(t):

c(t+At) = c(t) + At
t

(At)2 a 2C
+ ! a

att

+(At) 3 3c
3! 

t t

DFAt 2 2 (A)3 a3
11 + At + (A ) + C (t)

1 2 at 3 at J
(B.2)
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where the term in brackets is a differential operator in time. This equals
exactly:

ac (t+At) =exp (At =)c(t)

From Equation B.1, a/at = L and thus,

c (t+At) exp (AtL) c (t)

Clearly, if L = L 1
4L2 +. . . k' then

c(t+At) = exp (AtL1 ) exp(AtL2) --- exp (AtLk) C(t)

The notion of fractional steps derives from the solution of Equation B.5 in
a step-wise fashion. For simplicity, consider two terms only, L = L 1+L 2 'Then,

c(t+At) = exp (AtLI) exp (AtL 2 ) c(t)

We may solve this in two steps:

c* = exp (AtL 2) c(t)

c(t+At) = exp (AtL ) c*

where the intermediate solution, c*, has no physical significance. In

practice, exp(AtLI) and exp(AtL2 ) are replaced by finite difference
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approximations accurate to some power of At. The advantage of the meth-
od, aside from the convenience involved in separating a complex operation
into a series of simpler steps, owes to its consistency, stability and accu-
racy characteristics. It can be demonstrated that the method preserves

the consistency and stability of the individual steps if the operators LI

and L2 commute (that is, if L1 L2 = L2 LI). If L and L2 do not commute

(the usual case) Equation B.7 must be alternated with:

c**= exp (AtL) c (t+At)

(B. 8)
c(t+2At) = exp (AtL 2) c**.

This is the same process as equation B.7 with the order of the operations
reversed. This preserves the accuracy of the individual steps to order
(At) 2 . Thus, consistency and stability, as well as accuracy to order
(At) 2 , may be guaranteed if the individual steps are consistent and
stable, and accurate to order (At) 2 .

Time splitting methods have received wide usage in two-dimensional

problems where L = Lx +L separates operations into the two directional
xy

components. The alternating direction implicit (A.D.I.) and locally
one-dimensional (L.O.D.) techniques are examples of time splitting
applied in this fashion (Verboom and Vreugdenhill, 1975 and Gourlay and
Mitchell, 1969a, 1969b, and 1972). Verboom (1976) has illustrated an
application to the one-dimensional advection diffusion equation. This is
an example of the fractional step method where the operator L is split not
according to coordinate directions but simply into convenient step oper-
ations.

Here we consider an extension to Verboom's method to increase the
efficiency and decrease the cost of the solution. The problem to be
solved is represented by a set of coupled advection - diffusion - reaction
equations in one dimension:

= -U + DA - =P (B.9)t x A 3x x) - -BP

where P is a vector of reactant concentrations,
U is the advective velocity,
A is the cross-sectional area,
D is the longitudinal dispersion coefficient, and,
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N is a reaction vector specifying the interaction of the
various reactants.

For simplicity the following analysis will employ the analogous equation for
one constituent,

ac Lc = aC + Lc + Lrc (B. 10)
at a cLdCL rB1O

where L is an operator in x which is subdivided into three
separate operators:

La for advection,

Ld for dispersion, and

Lr for reaction.

Suppose finite difference approximations to solve the three operations in

time are developed so that the La operation is limited by stability or accu-

racy requirements to a time step At, while the Ld operation is limited to

EAt , k > 1, and the Lr is limited to kAt, k > 1. Suppose for now k

exceeds X and is an integral multiple of z such that k = 2m'.. The sol-
ution method we propose would then be to solve for c(t+kAt) as a function
of c(t) as follows:

c(t+kAt) = exp (kAtLr) [exp (AtLa)] exp (LAtLd)

exp (IAtLd) ep(t a) C(t) (B. 11a)

This is alternated with:

c(t+2kAt) = expression above) exp (kAtLr) C(t+kAt) (B. 11b)
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The steps in this solution are:

1) Solve for advection Z times sequentially
2) Solve for dispersion over one time step of length zAt
3) Repeat 2
4) Repeat 1
5) Repeat the sequence 1-4 another (m-1) times
6) Solve for reaction over one time step of length kAt

This sequence must then be followed by:

7) Repeat 6
8) Repeat the sequence 1-4 m times.

It can be shown (after considerable algebra) that this procedure pre-
serves the accuracy of the individual steps to order (At) 2 . That stability
is preserved is easily shown. A scheme will be stable if it solves

c (t+At) = exp (AtL) c (t)

such that

c (t+At) < Jexp (AtL) c (t)

or

Iexp (AtL)| < 1 (B.12)

In our proposed method, exp(AtL) is
cient condition for Equation B.12 is:

given by Equation B.11. A suffi-

exp(k&tL r ' 1

exp(AtLa) < 1, and

exp(Z&tL d ) '1

This is simply a statement of the stability of the individual steps. The
property that the characteristics of the individual steps is preserved is
extremely useful. With this property, more troublesome components
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(e.g., the advective term in Equation B.10) may be treated with higher
accuracy than less difficult terms. The accuracy of the individual treat-
ments carries through to the scheme as a whole.

Advantages of the mixed time-step fractional step method include those
of the single time-step version:

1. The ability to break a complex problem into a number of simpler
steps.

2. The ability to develop individual solution schemes appropriate to
each of the steps.

3. The ability of the scheme to preserve the accuracy (to order
(At) 2 ), stability and consistency of the individual steps.

The mixed time step scheme adds a further advantage:

4. Computational requirements are greatly reduced for some parts
of the solution.
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CLOSURE OF 3-D CIRCULATION MODEL STUDY

In previous work (Shanahan, Harleman and Somly6dy, 1981) a
three-dimensional circulation model was developed and applied to Lake
Balaton. Since publication of that report, additional study has revealed
significant flaws in the model and its results which should be clarified.

The problem arises due to an error in the model computer program with
insidious consequences. The error, which was inherited from the precur-
sor program, affects simulations using only particular forms of the verti-
cal eddy viscosity -- namely those with zero slope at the surface and
consisting of more than one linear segment. For these particular cases, a
special form of the Galerkin statement is required since the eddy viscosity
function parameter a goes to zero. (See Appendix B of Shanahan et al.)
Failure to program this special form for one term of the statement, a term
derived from the vertical momentum transport term in the governing
equation, led to a misaccounting of the momentum transport. The result
of this error was an effective, but artificial, non-linear friction at the
bottom boundary.

Although the model, including this error, was able to be calibrated,
the inappropriateness of this eddy viscosity is clear. This is suggested
in Section 3.6.1, where the inseparability of the eddy viscosity and bot-
tom friction choices is discussed. The 3-D circulation model employed as
its bottom friction a linear law in which the velocity at the bottom has a
significant finite value. Such a bottom friction formulation must necessar-
ily be accompanied by a constant viscosity near the bottom. Otherwise, a
steep velocity profile will be. specified which, on top of the already finite
bottom velocity, will lead to far too large velocities in the interior of the
flow. The error contained in the program prevented this from happening
in our earlier results.

Correction of the program error eliminated the artificial non-linear bot-
tom friction, leaving only the linear friction relation. Unfortunately, this
proved inadequate in Lake Balaton where friction is such an important
influence.: it was simply impossible to achieve simulation behavior with the
damping characteristics of the actual lake. Further, the Galerkin formu-
lation proved incompatible with an explicitly non-linear friction law
without creating an unreasonably expensive program to execute. The 3-D
model was thus abandoned, the apparently successful calibration being
considered fortuitous at best, without sufficient theoretical backing to be
reliable.
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APPENDIX D DISPERSION RELATIONS IN THE 1-D MODEL

D.1 Derivation of the 1-D Dispersion Equation

In this section we proceed from the three-dimensional equations of con-
servation of mass to derive the analogous equation for one dimension.
Holley and Harleman (1965) give a similar derivation, however the deriva-
tion presented here employs the equations of continuity (conservation of
mass of water) and the kinematic boundary condition to achieve the same
results in a more direct fashion.

We begin with the 3-D conservation of mass equation:

3C ac ac ac a ac a ac 3 ac
-+ U - = x + ( E -- 7 --at ax ay az ax Xax ay y Dy 3zz az

where the notation is that used in Chapter 5. To make the equation
one-dimensional, we must integrate it over the cross-sectional area. For
any function $ of y and z, the integration is:

z2 (x,t) 
dA I(X dz

y 2 (x, t)

dy $

y1 (x,t)

are the surface and bottom vertical coor-
dinates, and

are the lateral coordinates of the right
and left banks.

Before integrating, we add:

C (a + Lv + aW)ax Dy az -0

to Equation D.1. The expression above is
equation. Equation D.1 thus becomes:

derived from the continuity
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a C + a(uc) + a(v) +
at a x ay

a(wc)
az

a (E +) + (e c ) (D.2)

We now integrate the left-hand side of Equation D.2 term-by-term.

Term 1:

j' acdA

A

= a (AE)
dz 

1+ 2 
Y2 (z )

y 1

c(z 2 ) dz2

where we define the overbar to denote a cross-sectional average, as in:

1
if cdA =c

A

fa (Uc) dA = a
ax ax

ffucdA +

A

Y2  dz 2I (C(z1 )u(z 1 ) d - c(z2 )u(z2 ) ) dy

y1

Term 3:

ff a~vc)z2(y2)S(VC) dA =
J ay d2
A z1 y2)

v(y2) c(y2) dz -

z2 (Y2

z ) (

v (y)c (y1)dz

2 dz dz2
1 )V(Z ) - C(Z2)V(Z ) dy
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Term 2:



ff3(wc)

A
=f

2

y1

(w(z 2 )c(z 2 ) - w(z1)c(z )) dy

In arriving at these integrals, we make repeated use of Liebnitz's rule in
the manner described by Holley and Harleman (1965). If we gather
together the expressions above, we have:

(Ac) + ucdA + 2C(z ) + z )++Uv(Z ) -y w(z1  - t y- + a fI1) + v dy
A y1

rdz dz2  dz2  1 \
CLZ2J + u(z2) + v(z 2)- - w(z2

By the kinematic boundary condition, the two bracketed terms are zero,
so that the integration of the left-hand side reduces to:

(Ac) + a ucdA)

A

We now integrate the right-hand side terms:

Term 5:

(L~D u _a(facJ~~X )dA a J dA + 2(C3C )z 1f 1 1 3_) 1dz 1
(E c dz 2 d
ac 2

Since the bracketed term is small, this equals to good approximation:

(C -) dA =

A

a
ax (f4CE 3CdA)Xax

A

Terms 6 and 7
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By Stoke's Theorem:

ff~ a fr , a)+- (E2C AC 2Cd Cd
A1 yW 5 ~ (%Y_2 Y 3Y ZZ Z az ja

where B denotes the boundary of the cross-section.

The right-hand integral is the dispersive flux across the boundary, which
is zero, so Terms 6 and 7 drop out of the equation.

The one-dimensional equation of mass conservation is thus:

a +
a.(Ac) + ax ucdA = X(f x dA)

(D. 3)

We define u and c as the sum of a cross-sectional average and a derivative
function, as for example:

c (x, y, z, t) = c(x, t) + c"(x, y, z, t)

C 1 A

A

and,

I4 c"dA = 0
A

Substituting these expressions into Equation D.3, using the fact that
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r"udA = cu'dA = 0

A A

and assuming

S Ac" dA

Xax

the equation becomes:

(Ac) + (Auc) (D.4)= aE ac -

A

where E = fi

A

By one-dimensional continuity

aA a (AU)
Tt+ -aX

so Equation D.4 simplifies still further to:

ac a a
-_t+ U AT

(AE c) - (D.5)( ffIC#I)

X(A

The last term in this expression is the longitudinal dispersion arising from
deviations in the cross-sectional concentration and velocity distributions.
By analogy with Fickian diffusion, it is assumed to take the form:
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usIcI ) DA

or

DA = - fu "c"dA
axA

A

where D is the longitudinal dispersion coefficient.

Therefore, we have

ac - c
~ x (A (D+E) ax))

Usually, D is much larger than E, so that

a+ - a1 a~-t- U ax IAT (AD a) (D.7)

This is the one-dimensional equation for conservation of mass in its most
common form.
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D.2 Equation for the Dispersion Coefficient

In this section, we follow a derivation similar to Fischer's (1967) to
derive an expression for the one-dimensional dispersion coefficient. We
begin by returning to the original equation of three-dimensional mass con-
servation, Equation D.1, and transform to a moving coordinate system.
Using the relations T = t and , x - ut, Equation D.1 becomes:

+ u"- + a + a =
aT 3E ay 3z

a ac a c a a
(e ) + (s-)+ -( -) (D.8)

a5 x a y y az z az

If we make the assumption that c varies only slowly with z, a reasonable
assumption for a shallow lake, and integrate Equation D.8 over the lake
depth, we have:

c) + ( )(D.9)a h aE h ay BE x a ay y 3y

where h is the lake depth,

0 0

q" = u"dz V = vdz

-h -h

0

x ~ dz

-h
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Equation D.9 can be made non-dimensional using the following scaling
quantities:

= C

F* =
L

U* "=
HUd

E*
x

where C
T
L
W
H
E
ud' Vd

* =
T

y* =
;W

V* V
HVd

E

y E

E
x

E

h* = h
H

is a reference concentration,
is a reference time period,
is the lake length (75 km),
is the lake width (8 km),
is the mean lake depth (3 m),
is a reference dispersion coefficient, and
are reference velocities.

We define the reference velocity ud as the root-mean-square fluctuation
velocity:

ud= (u") 2

where the overbar indicates a cross-sectional average. The value of ud

in Lake Balaton is very roughly 0.1 m/s. The lateral velocity vd may be

taken as the average lateral velocity over the cross-section, 7 ~ 3
cm/sec. The reference dispersion will be assumed to be 1 m 2/sec.
Selection of a reference time is based upon a typical water quality trans-
port time or residence time. The smallest applicable time is the time for
lateral transport, T = W/V = 3 days. Substitution of the scaling quanti-
ties into Equation D.9 leads to the following non-dimensional equation with
indicated order-of-magnitude for each term:
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[L c* *c* E 3 [ 1 - =c*\ + [EL 3 (E*c*\ 2 + u*--- + i - -UdL-- a -J +a L- *uT * at* U ad y* ud T*x(* uW W y YW

3 1 1 3 1 x 10~4 0.01

The scaling analysis establishes that the lateral advective term, , will

dominate lateral diffusion, , in Lake Balaton. This is a signif-

icant departure from stream and estuarine situations where the reverse is
usually assumed. As a result of this scaling analysis, it is justified to
replace Equation D.9 with the simplified equation,

+c,"+ -c- = ac (D.10)

The derivation continues following Fischer's (1967) general develop-
ment, adapted to the form of Equation D.10. First, c is replace by C + c"
in Equation D.10:

7p 3C" ac" aC acI
-- l --+ " -+ " -v -- v--

aT 'a 1 a+ ay ay

This can be simplified by assuming, as Fischer,

3c" ac
Dt T <

-«""a" -- << u"e ac
- , and

ac
a"t-
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Finally, by definition a = 0.
Ty

The remaining equation is:

U, to
u = -ay (D.11)

We integrate D.11 over the depth, assuming c" varies slowly with z to
get:

ac = "
a" = -ay

Solving for c":

c " y) = D

0
;!dy

By definition (Equation D.6)

DA JU"c"dA

A

Substituting Equation D.13 for c" and rearranging:

D = u"fiq dy dA

A 0
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Recognizing that only u" is a function of z, this can be simplified to the
following expression for the dispersion coefficient D:

b y

D dy q" dy (D.14)

0 0

where b is the lake width.

This expression is directly analogous to that of Fischer (1967), but it
proceeds from the assumption that advection rather than diffusion domi-
nates lateral mixing.

We can construct a non-dimensional version of Equation D.14 in the
same fashion as Fischer (1969) employing the following definitions:

f (y)
h (u") 2

g=b

9 V

h /2

Substituting into Equation D.14 and gathering terms:

D = I (D.15)

where the term I is defined by the non-dimensional velocity distributions f
and g:

251



I =

0

y

dy* f (y*) dy* )

0

The value of I is approximately 0.1 for typical velocity profiles.
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APPENDIX E

INPUT DATA TO THE WATER QUALITY MODEL
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GRID AND SECTION PROPERTIES FOR THE 40-GRID MODEL

GRID VOLUME
NUMBER (MIL M**3)

SURFACE
LENGTH AREA
(M) (MIL SO M)

DEPTH
(M)

SECTION
SECTION AREA
NUMBER (K SQ M)

23.10

26.50

24.20

25.30

38.60

54.20

62.50

58.40

51.20

44.60

2 14.15 6200.

3 13.84

4 11.64

5

6100.

5200.

15.39 5200.

2900.

1900.

1900.

1900.

1900.

1900.

1900.

1900.

1900.

1900.

12. 1.88

12. 2.25

11. 2.18

11. 2.39

12. 3.27

16. 3.43

19. 3.36

20. 2.96

16. 3.26

15. 2.97

8 34.19 10700.

9 27.32 9600.

10 26.60 9100.

11 20.37 6600.

1900. 11. 3.37

TOP
WIDTH

(M)

2

3

4

5

6

U, 6 25.56

7 31.51

7700.

9300.

8

9

10

11 36.10



GRID AND SECTION PROPERTIES FOR THE 40-GRID MODEL

GRID VOLUME
NUMBER (MIL M**3)

SURFACE
LENGTH AREA
(M) (MIL SQ M)

DEPTH
(M)

SECTION
SECTION AREA
NUMBER (K SQ M)

17.58 5700.

12. 2.85

11. 2.96

11. 3.15

12. 3.00

10. 3.36

10. 3.52

12. 3.45

15. 3.56

16. 3.59

13 18.11 6300.

14

15

16

17

18

16.50 5800.

19.05 6500.

18.77 6000.

17.32 5200.

19.77 5800.

12

13

14

15

16

17

18

19

20

1900. 16. 3.51

TOP
WIDTH

(M)

12

U,

33.90

32.90

33.70

35.70

34.30

35.20

42.40

52.40

57.40

1900.

1900.

1900.

1900.

1900.

1900.

1900.

1900.

1900.

19 24.91 7100.

20 30.30 8300.

21 30.13 8600.

21 54.80



GRID AND SECTION PROPERTIES FOR THE 40-GRID MODEL

GRID VOLUME
NUMBER (MIL M**3)

SURFACE
LENGTH AREA

(M) (MIL SQ M)
DEPTH

(M)

SECTION
SECTION AREA
NUMBER (K SO M)

22 27.66 8000.

14. 3.56

13. 3.63

14. 3.56

14. 3.31

14. 2.56

7. 2.92

9. 2.37

16. 2.88

16. 3.47

23 25.33

24 25.48

25 25.38

26 25.02

22

23

24

25

26

27

28

29

30

50.20

48.30

48.10

47.60

36.40

21.30

20.90

44.60

55.-60

1900.

1900.

1900.

1900.

1900.

1900.

1900.

1900.

1900.

30 27.35 8400.

31 31.69

1900. 16. 3.86

TOP
WIDTH

(M)

N)
0n

27

28

16.55

4.30

29 21.02

7300.

7200.

7200.

7600.

7200.

1800.

7300.

9600.

31 62.20



GRID AND SECTION PROPERTIES FOR THE 40-GRID MODEL

GRID VOLUME
NUMBER (MIL M**3)

SURFACE
LENGTH AREA
(M) (MIL SQ M)

DEPTH
(M)

SECTION
SECTION AREA
NUMBER (K SQ M)

32 33.92

16. 4.04

18. 3.78

19. 3.95

23. 3.85

24. 4.12

28. 3.61

21. 3.83

15. 3.18

33 34.65 9200.

34 36.92 9500.

35 41.96 10600.

36 50.10 12500.

37 53.55 13900.

38 51.69 14300.

39 33.68 9300.

40 16.87 5400.

32

33

34

35

36

37

38

39

40

TOP
WIDTH

(M)

9400.

(3,N-)

65.10

68.00

74.70

87.40

98.40

99.40

80.90

47.00

13.90 1500. 5. 2.78

1900.

1900.

1900.

1900.

1900.

1900.

1900.

1900.



MONTHLY FLOW AND LOADING DATA FOR THE 40-GRID MODEL

JAN.

GRID I
INFLOW 15.4
OUTFLOW 0.0

FACE 2
MEAN FLOW 15.7

GRID 2
INFLOW 0.0
OUTFLOW 0.0

FACE 3
MEAN FLOW 16.0

GRID 3
INFLOW 0.0
OUTFLOW 0.0

FACE 4
MEAN FLOW 16.3

GRID 4
INFLOW 0.0
OUTFLOW 0.0

FACE 5
MEAN FLOW 16.6

GRID 5
INFLOW 3.4
OUTFLOW 0.0

FACE 6
MEAN FLOW 20.3

GRID 6
INFLOW 0.0
OUTFLOW 0.0

FACE 7
MEAN FLOW 20.7 24.2

FEB. MAR. APR.

20.2 11.6 12.9
0.0 0.0 0.0

20.1 11.8 12.4

0.0 0.0 0.0
0.0 0.0 0.0

20.1 12.0 11.9

0.0 0.0 0.0
0.0 0.0 0.0

20.0 12.1 11.4

0.0 0.0 0.0
0.0 0.0 0.0

19.9 12.3 11.0

4.4 2.6 2.8
0.0 0.0 0.0

24.3 15.0 13.3

0.0 0.0 0.0
0.0 0.0 0.0

15.2 12.6

MAY

5.0
0.0

4.9

0.0
0.0

4.8

0.0
0.0

4.6

0.0
0.0

4.5

1.1
0.0

5.5

0.0
0.0

5.3

JUNE JULY AUG.

2.8
0.0

2.8

0.0
0.0

2.7

0.0
0.0

2.7

0.0
0.0

2.6

0.6
0.0

3.2

0.0
0.0

3.1

2.4
0.0

2.3

0.0
0.0

2.2

0.0
0.0

2.1

0.0
0.0

2.0

0.5
0.0

2.5

0.0
0.0

2.4
0.0

2.3

0.0
0.0

2.2

0.0
0.0

2.1

0.0
0.0

2.0

0.5
0.0

2.5

0.0
0.0

2.3 2.3

SEPT OCT.

2.1
0.0

2.1

0.0
0.0

2.1

0.0
0.0

2.1

0.0
0.0

2.1

0.5
0.0

2.6

0.0
0.0

3.6
0.0

3.5

0.0
0.0

3.4

0.0
0.0

3.3

0.0
0.0

3.3

0.8
0.0

4.0

0.0
0.0

2.6 3.9

DEC.

rco

NOV.

5.1
0.0

4.9

0.0
0.0

4.8

0.0
0.0

4.7

0.0
0.0

4.5

1.1
0.0

5.5

0.0
0.0

5.3

5.6
0.0

5.5

0.0
0.0

5.5

0.0
0.0

5.5

0.0
0.0

5.4

1.2
0.0

6.6

0.0
0.0

CMS
CMS

CMS

CMS
CMS

CMS

CMS
CMS

CMS

CMS
CMS

CMS

CMS
CMS

CMS

CMS
CMS

6.5 CMS



MONTHLY FLOW AND LOADING DATA FOR THE 40-GRID MODEL

JAN. FEB. MAR. APR. MAY JUNE JULY AUG. SEPT OCT. NOV. DEC.

------------------------------- ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- -------

GRID 7
INFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS

OUTFLOW 0.0 0.0 0.0 0.0. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS

FACE 8
MEAN FLOW 21.2 24.1 15.5 11.8 5.2 3.1 2.2 2.2 2.6 3.7 5.1 6.4 CMS

GRID 8
INFLOW 5.4 7.1 4.1 4.5 1.8 1.0 0.8 0.8 0.7 1.3 1.8 2.0 CMS

OUTFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS

FACE 9
MEAN FLOW 27.1 31.1 19.9 15.5 6.7 4.0 2.9 2.9 3.3 4.9 6.6 8.3 CMS

GRID 9
INFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS
OUTFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS

FACE 10
MEAN FLOW 27.5 31.0 20.1 14.9 6.6 3.9 2.8 2.8 3.3 4.7 6.4 8.3 CMS

GRID 10
INFLOW 1.0 1.3 0.7 0.8 0.3 0.2 0.2 0.2 0.1 0.2 0.3 0.4 CMS

OUTFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS

FACE 11
MEAN FLOW 28.9 32.1 21.1 15.0 6.7 4.1 2.8 2.8 3.5 4.9 6.6 8.5 CMS

GRID 11.
INFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS

OUTFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS

FACE 12
MEAN FLOW 29.2 .32.1 21.2 14.6 6.6 4.0 2.7 2.7 3.5 4.8 6.4 8.5 CMS

GRID 12
INFLOW 1.1 1.4 0.8 0.9 0.3 0.2 0.2 0.2 0.1 0.3 0.4 0.4 CMS

OUTFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS

FACE 13
MEAN FLOW 30.6 33.4 22.2 15.0 6.8 4.2 2.8 2.8 3.6 4.9 6.6 8.8 CMS

GRID 13
INFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS
OUTFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS



MONTHLY FLOW AND LOADING DATA FOR THE 40-GRID MODEL

JAN. FEB. MAR. APR. MAY JUNE JULY AUG. SEPT OCT. NOV. DEC.

FACE 14
MEAN FLOW 30.9 33.4 22.4 14.5 6.7 4.1 2.7 2.7 3.6 4.9 6.5 8.8 CMS

GRID 14
INFLOW 0.4 0.5 0.3 0.3 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 CMS
OUTFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS

FACE 15
MEAN FLOW 31.5 33.8 22.8 14.4 6.7 4.1 2.7 2.7 3.7 4.9 6.5 8.9 CMS

GRID 15
INFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS
OUTFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS

FACE 16
MEAN FLOW 31.8 33.7 23.0 13.8 6.6 4.1 2.6 2.6 3.7 4.8 6.3 8.8 CMS

GRID 16
rs INFLOW 0.3 0.3 0.2 0.2 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 CMS
C OUTFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS

FACE 17
MEAN FLOW 32.3 34.0 23.3 13.6 6.6 4.1 2.5 2.5 3.7 4.8 6.3 8.9 CMS

GRID 17
INFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS
OUTFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS

FACE 18
MEAN FLOW 32.6 33.9 23.5 13.2 6.5 4.1 2.5 2.5 3.7 4.7 6.2 8.8 CMS

GRID 18
INFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS
OUTFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS

FACE 19
MEAN FLOW 32.9 33.8 23.7 12.7 6.4 4.0 2.4 2.4 3.7 4.6 6.0 8.8 CMS

GRID 19
INFLOW 0.5 0.7 0.4 0.4 0.2 0.1 0.1 0.1 0.1 0.1 0.2 0.2 CMS

0.0 0.0 0.0 0.0 0.0 0.0 0.0OUTFLOW 0.0 0.0 0.0 0.0 0. 0 CMS



MONTHLY FLOW AND LOADING DATA FOR THE 40-GRID MODEL

JAN. FEB. MAR. APR. MAY JUNE JULY AUG. SEPT OCT. NOV. DEC.
------------------------------- ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- -------

FACE 20
MEAN FLOW 33.8 34.5 24.3 12.5 6.4 4.1 2.3 2.3 3.8 4.6 6.0 8.9 CMS

GRID 20
INFLOW 0.5 0.6 0.3 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 CMS

OUTFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS

FACE 21
MEAN FLOW 34.7 35.0 24.9 12.2 6.4 4.1 2.3 2.3 3.8 4.6 6.0 9.0 CMS

GRID 21
INFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS

OUTFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS

FACE 22
MEAN FLOW 35.1 34.9 25.1 11.5 6.2 4.0 2.1 2.1 3.8 4.5 5.8 8.9 CMS

GRID 22
INFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS

N) OUTFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS

FACE 23
MEAN FLOW 35.5 34.8 25.3 10.9 6.1 4.0 2.0 2.0 3.8 4.4 5.6 8.9 CMS

GRID 23
INFLOW 0.3 0.4 0.2 0.3 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 CMS

OUTFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS

FACE 24
MEAN FLOW 36.2 35.1 25.8 10.7 6.0 4.0 2.0 2.0 3.9 4.4 5.5 8.9 CMS

- GRID 24
INFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS
OUTFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS

FACE 25
MEAN FLOW 36.5 35.0 26.0 10.1 5.9 3.9 1.9 1.9 3.9 4.3 5.4 8.9 CMS

GRID 25
INFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS

OUTFLOW 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS. . . .



MONTHLY FLOW AND LOADING DATA FOR THE 40-GRID MODEL

FACE 26
MEAN FLOW

GRID 26
INFLOW
OUTFLOW

FACE 27
MEAN FLOW

GRID 27
INFLOW
OUTFLOW

FACE 28
MEAN FLOW

GRID 28
INFLOW
OUTFLOW

FACE 29
MEAN FLOW

GRID 29
INFLOW
OUTFLOW

FACE 30
MEAN FLOW

GRID 30
INFLOW
OUTFLOW

FACE 31
MEAN FLOW

GRID 31
INFLOW

JAN. FEB. MAR.

36.9 35.0 26.2

0.4 0.6 0.3
0.0 0.0 0.0

37.7 35.4 26.7

0.0 0.0 0.0
0.0 0.0 0.0

37.9 35.4 26.8

0.0 0.0 0.0
0.0 0.0 0.0

38.1 35.3 26.9

0.0 0.0 0.0
0.0 0.0 0.0

38.5 35.2 27.2

0.0 0.0 0.0
0.0 0.0 0.0

38.9 35.1 27.4

0.2 0.2
OUTFLOW 0.0 0.0

0.1
0.0

APR.

9.5

0.4
0.0

9.2

0.0
0.0

8.9

0.0
0.0

8.5

0.0
0.0

7.9

0.0
0.0

7.2

MAY

5.7

0.1
0.0

5.7

0.0
0.0

5.7

0.0
0.0

5.6

0.0
0.0

5.4

0.0
0.0

5.2

JUNE

3.9

0.1
0.0

3.9

0.0
0.0

3.9

0.0
0.0

3.9

0.0
0.0

3.8

0.0
0.0

3.7

0.1 0.0 0.0
0.0

JULY

1.8

0.1
0.0

1.7

0.0
0.0

1.7

0.0
0.0

1.6

0.0
0.0

1.5

0.0
0.0

1.3

0.0

AUG.

1.8

0.1
0.0

1.7

0.0
0.0

1.7

0.0
0.0

1.6

0.0
0.0

1.5

0.0
0.0

1.3

0.0 0.0 0.0 0.0

SEPT OCT.

3.9

0.1
0.0

4.0

0.0
0.0

4.0

0.0
0.0

4.0

0.0
0.0

4.0

0.0
0.0

4.0

4.2

0.1
0.0

4.2

0.0
0.0

4.1

0.0
0.0

4.1

0.0
0.0

4.0

0.0
0.0

3.9

NOV.

5.2

0.1
0.0

5.1

0.0
0.0

5.1

0.0
0.0

4.9

0.0
0.0

4.8

0.0
0.0

4.6

DEC.

8.8

0.2
0.0

8.9

0.0
0.0

8.9

0.0
0.0

8.9

0.0
0.0

8.8

0.0
0.0

8.7

CMS

CMS
CMS

CMS

CMS
CMS

CMS

CMS
CMS

CMS

CMS
CMS

CMS

CMS
CMS

CMS

0.0 0.0 0.0 0.0 0.1 CMS
0.0 0.0 0.0 0.0 CMS



MONTHLY FLOW AND LOADING DATA FOR THE 40-GRID MODEL

JAN. FEB. MAR. APR. MAY JUNE JULY AUG. SEPT OCT. NOV. DEC.

FACE 32
MEAN FLOW 39.5 35.2 27.8 6.6 5.1 3.7 1.2 1.2 4.0 3.8 4.4 8.7 CMS

GRID 32
INFLOW 0.2 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 CMS
OUTFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS

FACE 33
MEAN FLOW 40.1 35.3 28.1 6.1 5.0 3.7 1.1 1.1 4.0 3.7 4.3 8.7 CMS

GRID 33
INFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS
OUTFLOW 44.5 35.0 30.7 0.0 3.6 3.2 0.0 0.0 4.1 2.7 2.5 8.2 CMS

FACE 34
MEAN FLOW -3.9 0.2 -2.3 5.3 1.2 0.4 1.0 1.0 -0.1 0.9 1.5 0.4 CMS

GRID 34
INFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS
OUTFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS

FACE 35
MEAN FLOW -3.4 0.1 -2.0 4.5 1.0 0.3 0.8 0.8 -0.1 0.7 1.3 0.3 CMS

GRID 35
INFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS
OUTFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS

FACE 36
MEAN FLOW -2.9 0.0 -1.7 3.6 0.8 0.3 0.7 0.7 -0.1 0.6 1.0 0.2 CMS

GRID 36
INFLOW 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS
OUTFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS

FACE 37
MEAN FLOW -2.2 -0.1 -1.3 2.6 0.6 0.2 0.5 0.5 -0.1 0.4 0.7 0.2 CMS

GRID 37
INFLOW 0.4 0.5 0.3 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 CMS
OUTFLOW 0.0 0.0 0.0 0.0 0.0 00 0 0 n n n n ru0 . . . . . . .



MONTHLY FLOW AND LOADING DATA FOR THE 40-GRID MODEL

JAN. FEB. MAR. APR. MAY JUNE JULY AUG. SEPT OCT. NOV. DEC.

FACE 38
MEAN FLOW -1.1 0.2 -0.6 1.7 0.4 0.2 0.3 0.3 0.0 0.3 0.5 0.2 CMS

GRID 38
INFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS
OUTFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS

FACE 39
MEAN FLOW -0.5 0.1 -0.3 0.8 0.2 0.1 0.2 0.2 0.0 0.1 0.2 0.1 CMS

GRID 39
INFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS
OUTFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS

FACE 40
MEAN FLOW -0.1 0.0 -0.1 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 CMS

GRID 40
INFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS

N) OUTFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS
cy)



GRID AND SECTION PROPERTIES FOR THE 4-BOX MODEL

GRID VOLUME
NUMBER (MIL M**3)

SURFACE
LENGTH AREA
(M) (MIL SQ M)

DEPTH
(M)

SECTION
SECTION AREA
NUMBER (K SO M)

38. 2.16

2 413.00 22000.

3 600.00 23000.

4 802.00 23000.

144.

186.

228.

2 15.40 5200.

3 17.30 5200.

2.87

3.23

3.52

4 4.30 1800.

82.00 7000.

TOP
WIDTH

(M)

L,



MONTHLY FLOW AND LOADING DATA FOR THE 4-BOX MODEL

JAN. FEB. MAR. APR. MAY JUNE JULY AUG. SEPT OCT. NOV. DEC.

GRID I
INFLOW 15.4 20.2 11.6 12.9 5.0 2.8 2.4 2.3 2.1 3.6 5.1 5.6 CMS
OUTFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS

FACE 2
MEAN FLOW 17.1 19.7 10.7 11.5 8.2 6.3 6.6 3.6 3.6 4.6 6.5 5.3 CMS

GRID 2
INFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS
OUTFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS

FACE 3
MEAN FLOW 30.2 31.0 19.5 13.4 10.4 8.1 7.6 4.2 5.1 6.0 8.1 8.1 CMS

GRID 3
INFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS
OUTFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS

FACE 4
MEAN FLOW 37.7 34.1 25.2 8.2 7.9 6.4 4.7 2.6 4.9 4.8 6.1 8.5 CMS

GRID 4
INFLOW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CMS
OUTFLOW 44.5 35.0 30.7 0.0 3.6 3.2 0.0 0.0 4.1 2.7 2.5 8.2 CMS
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