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ABSTRACT

The Instantaneous Unit Hydrograph (IUH) is derived as a function of

the basin's geomorphological and physiographic characteristics. Inherent

in the basin IUH is the response of the individual channels composing the

basin. The response of the individual channels is derived by solving the

continuity and momentum equations for the boundary conditions defined by

the IUH. Both the effects of upstream and lateral inflow to the channels

is taken into account in the derivation of the basin's IUH. The time to

peak and peak response are used as a basis for comparison between the re-

sults produced by this model and those produced by a model where the chan-

nel's response is assumed to be an exponential distribution. The compari-

sons indicate that if the approach taken in this paper is indeed accurate,

for example, the assumptions used do not invalidate the model, then the type

of channel response used for the basin's IUH is significant, and future ef-

forts must be directed towards parameter estimation.
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Chapter 1

INTRODUCTION

1.1 Motivation of Study

Many regions throughout the world lack the hydrologic data required

for a detailed analysis of a basin's response to rainfall. Typical

examples of this situation are the many wadis, or ephemeral streams, in

Egypt. These basins respond to sporadic rainfall events, frequently

causing considerable damage to villages and other developments in their

surroundings. Effective planning and protection of these, and similar,

sites require estimates of expected discharges from rainfall events of

different magnitudes. Traditional estimation techniques are not

feasible due to the lack of available hydrologic data. Limited

watershed data is available from aerial photographs or survey maps.

Both climatic and physiographic factors influence runoff from a

drainage basin. The climatic factors include the effects of various

forms and types of precipitation, interception, evaporation and

transpiration, all of which exhibit seasonal variations in accordance

with the climatic environment. The physiographic factors include the

basin's and channels' characteristics. Geometric factors such as size,

shape, slope, orientation, elevation and stream density; and physical

factors such as land use and cover, soil type and topographic

conditions, characterize the basin. The channels are characterized by

the channels' slope, roughness, length, and the size and shape of the

channels' cross section.
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Common practice in applied hydrology is the use of linear systems

theory to determine the discharge from a river basin. The response of a

continuous linear system to an arbitrary input, I(t), is the result of

the familiar convolution equation,

t

Q(t) = I(T)h(t-T)dT

In hydrology, Q(t) is the discharge at time t and I(t) is the effective

precipitation rate as a function of time. The function h(t) is the

characteristic response of the river basin and is commonly called the

Instantaneous Unit Hydrograph (IUH). If the IUH is known, it is then

possible to obtain the discharge hydrograph corresponding to any

arbitrary rainfall input. The functions I(t) and h(t) can be regarded,

respectively, as the integral expressions of the climatic and

physiographic factors that govern the discharge from the river basin.

.Linear system theory, as represented by the convolution equation,

has also been used to study the behavior of particular channels within a

basin. In that case the input becomes upstream inflows and/or lateral

flows from adjacent overland segments.

Various conceptual models have been proposed to delineate the IUR

of channels and basins. One of the simplest conceptual channel IUHs

13



results from the assumption that a channel or basin behaves like a

linear reservoir. A linear reservoir is defined by its storage

discharge relationship which is given by

S(t) = KQ(t)

where S(t) is the storage in the reservoir at time t, K is a

proportionality constant and Q(t) is the discharge from the reservoir.

In essence, the storage in a linear reservoir is proportional to the

discharge at all times. By solving the continuity equation for an

instantaneous input of unit volume (Dirac Delta function) the resulting

IUH is given by

h W 1 e-t/Kh (t) = 1-t/K
c K

A popular conceptual model of a basin results by suggesting a

configuration of n linear reservoirs operating in series. The output

from each upstream reservoir being the input to the one immediately

downstream. Such a model is shown in Figure 1.1. The functional form

of the model is obtained by carrying out the convolution operation n

times; the result of the first convolution being the input for the

second convolution and so on. The results for an instantaneous input at

the first channel is the Nash model which is given by

14



h (t)= IeO(th e)h t 1 -t/k

IM-C1 C2 -- . Onm

Q1(t)= I(T)h1 (t-T)dT
) t

0 pr
2p)z I(T)h2(t-T)dT

0 ~Qn~x I 0On-,(T)hn(t-T)dT

0

Figure 1.1: Schematic representation of a basin modeled as a series
of n linear reservoirs.
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h(t) = 1 tn-i 1 -t/K
B M K K F(n)

where r(-) = Gamma function

K = time constant of the linear reservoirs

n = number of linear reservoirs added in series

In contrast to the previously stated conceptual model, recent

studies by Rodriguez et al. (1979) and Gupta and Waymire (1980)

demonstrate that the basin's hydrologic response can be determined from

the basin's geomorphologic structure. The technique utilizes easily

accessible geomorphologic and geometric basin parameters to obtain an

analytical expression of basin response. These parameters relate to the

several physiographic factors which affect discharge such as basin area

and stream density. The model assumes that the individual channels

behave as a linear reservoir, and using concepts from probability theory

and geomorphology an expression is derived for the basin's response.

This work will study the importance of the linear reservoir

assumption for channel response in the geomorphologic IUH theory. In

doing so, use will be made of a general linear solution to the equations

of motion in wide prismatic channels as suggested by Harley (1967).

These results yield the theoretical linear response function (IUH) of a

channel as a function of several physiographic factors (slope and Froude

number, F) and the parameters required for linearization. The

determination of the basin's response will be based on the recent work

by Rodriquez et al., and Gupta and Waymire.

16



1.2 Scope of Study

A major focus of the forthcoming analysis is the relationship

between runoff and the geomorphology of the basin, and thus Chapter 2

describes recent developments in hydrogeomorphology. The concept of the

geomorphologic IUH is presented along with an analytical derivation of

the basin 1IUH used to determine the discharge hydrograph. An example of

the geomorphlogic basin IUH is presented using the assumption that the

channels respond as linear reservoirs.

Chapter 3 presents a linearized solution to the continuity and

momentum equations for the boundary conditions imposed by the definition

of an IUH. The solution defines the upstream inflow IUH for the indi-

vidual channels and is used to determine the lateral inflow IUl which

accounts for an input occurring anywhere along the channel. A sensi-

tivity analysis is performed on the input parameters and reference

parameters used for linearization.

Chapter 4 presents the basin IUH obtained using the theory of the

geomorphologic IUH presented in Chapter 2, where the channel response

functions are as derived in Chapter 3. Both the upstream inflow and

lateral inflow channel IUHs are used to enhance the hydrogeomorphology.

A sensitivity analysis is performed on the input parameters.

Chapter 5 presents the discharge hydrograph determined in accordance

with the IUH theory where the basin IUH is as derived in Chapter 4.

Several hypothetical streams are used as input. Hydrographs for different

basins are presented and compared to the time to peak and peak discharge

determined by a rainfall-runoff model. The hydrographs are also compared

to hydrographs determined using the assumption that the individual channels

17



respond as linear reservoirs, i.e., the channel IUH is given by the

exponential distribution.

Finally Chapter 6 presents conclusions and recommendations for

further research on the subject of determining runoff from ungaged river

basins.

18



Chapter 2

THE GEOMORPHOLOGIC IUH

The ultimate aim of this study is to derive an analytic expression

of the basin response in terms of the basin's geomorphological

characteristics and channel properties which affect runoff. This

chapter will outline the recent developments by Rodriguez et al. (1979)

and Gupta and Waymire (1980) in hydrogeomorphology to estimate basin

response. The technique presented utilizes easily accessible

geomorphologic and geometric basin characteristics to obtain an

analytical expression of basin response. Several concepts are utilized

throughout, such as the quantitative analysis of a drainage network in

terms of Horton's empirical laws and the idea of the IUH as the

probability density function (pdf) for the travel time of a drop of

water landing anywhere in the basin. Inherent in the expression is the

response of the individual channel, the channel's IUH. This will be the

subject of the subsequent chapter.

2.1 Quantitative Analysis of a Drainage Network

The quantitative analysis of channel networks began with Horton's

(1945) method of classifying streams by order. Strahler (1957) revised

Horton's classification scheme such that the ordering scheme is, unlike

Horton's, purely topological, for it refers to only the interconnections

and not to the lengths, shapes or orientation of the links comprising a

network. A hypothetical channel network with Strahler's ordering scheme

is presented in Figure 2.1. The ordering procedure is based on the

following rules:

19
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i) channels that originate at a source are defined to be first

order streams;

ii) when two streams of order w join, a stream of order w+1 is

created;

iii) when two streams of different order join, the channel segment

immediately downstream has the higher of the orders of the two

continuing streams;

iv) the order of the basin is the highest stream order, W.

The first step in drainage network analysis is the counting of the

streams of each order, N , w=1,2,...,W. This is followed by thew

determination of each stream length, L , and stream area, A , i = 1,
w w

... N , w=1, ... , W, where A is the area of runoff contributing to thew w.
1

ith stream of order w and its tributaries of lower order. (Note: A
w.

I

is the area that drains directly into the ith stream of order w plus the

area contributing from the stream's tributaries). Figures 2.1 and 2.2

present the necessary information for the analysis of a drainage

network.

Given the ordering scheme, Horton demonstrated several empirical

laws; the law of stream numbers, and the law of stream lengths; Schumm

(1956) proposed a Horton-type law for drainage areas, the law of stream

areas. The law of stream numbers states that the total number of

streams of different orders in a given drainage basin closely

approximates an inverse geometric series in which the first term is

unity and the ratio of the series is the bifurcation ratio, RB. The

quantitative expression of the law is given by:

21
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Order Number fog NW
[ )w N
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(0.50-
0
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Stream order, w

Figure 2.2: Verification of Horton's law of stream numbers.
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=WRW(W) w- (W-1) W 1= R + + ... R B(2.1)
W=1

For a given river basin, the law is easily verified by constructing

a plot of the log of number of streams, Nw, versus stream order, w. The

plot should be a straight line with very little scatter as shown in

Figure 2.2. The anti-logarithm of the slope of the line is R. Another
B*

interpretation of RB is obtained from Equation 2.1. From the equation

we obtain

N Ww w=1,2,...,W (2.2)

and therefore

N _=RB (2.3)

which shows that RB is the number of streams of order W-1. By

substituting the result of Equation 2.3 in Equation 2.2 and rearranging

the expression, the following is also obtained:

N1

B N
w

We can therefore interpret Horton's law as ascertaining that the ratio

N W-1for w= 1,...,W approaches a common value given by RB. The concept
N
w

23



of the laws of stream lengths and stream areas is the same as the law of

stream numbers, the ratios of the series being the length ratio, RL, and

the area ratio, RA, respectively. RL and RA are calculated using the

following quantities: the average stream length of each order, L , is
w

given by:

Nw

w Nw i=l

where L is the length of
w
i

area of each order, A , is

N
- 1 w

w N .w i=l

L
wi

a stream of order w, and the average stream

given by

A
Wi

where A is the area contributing runoff to a stream of order w and its
wi

tributaries. For example, AW is the total area of the basin. The

quantitative expressions of Horton's laws are summarized below:

Law of stream numbers:

Law of stream lengths:

Law of stream areas:

Nl"W-1 R
N B
w

I
= RL

L lw-K

w R
A

A
W-

24



Empirical results indicate that for natural basins the values for

R normally range from 3 to 5, for RL from 1.5 to 3.5, and for RA from 3

to 6. (Smart 1972). In this study the geomorphologic characteristics,

RB, RL, and RA will be the descriptive parameters of the basin on which

its response will be based.

25



2.2 Probabilistic Interpretation of the IUH

By definition the IUH is the response to a unit volume of water

instantaneously but uniformly applied to a basin. Its volume (the area

under the curve) is equal to 1. The abscissa has units of time and the

ordinate units of inverse time. All of the properties are similar to

those commonly attributed to a probability density function (pdf). In

fact, Gupta and Waymire (1980) clearly prove that the IUH of the basin

is the probability density function of the amount of time that an

individual drop of water, starting at a random point in the basin, takes

to travrel to the outlet of the basin. A similar interpretation is valid

for the response function of a single channel. The channel IUH gives

the probabilistic distribution of the travel time of a drop randomly

entering at a point along the channel.

The next section will present how the desired pdf, or basin IUH,

can be obtained from the geomorphologic laws of the basin. The

development follows Gupta and Waymire's (1980) work as well as

Rodriguez et al. (1979). The travel times in a channel are assumed to

be exponentially distributed. The subsequent chapter will suggest a

different form for the channel IUH.

2.3 Derivation of the Geomorphologic IUH

In order to determine the basin IUH, let's consider the input as a

unit volume composed of an infinite number of drops. The following

analysis will focus on the travel of one drop, chosen at random, through

26



the basin. The drop travels throughout the basin making transitions

from streams of lower order to those of higher order. A transition can

be referred to as a change of state where the state is the order of the

channel where the drop is traveling. Rodriguez et al. (1979) agreed

that the travel of the drop through the river basin can be modelled as a

semi-Markov process. The process is semi-Markov because the time

between transitions is dependent on the state presently occupied.

The states of the process are defined to be the overland region or

stream of order i where the drop is located at time t. The set of

states will be denoted by A = (1,2,...,W+l). The travel of a drop is

governed by the following rules.

Rule 1: When the drop is still in the overland phase, the

state is the order of the stream to which the land

drains directly.

Rule 2: The only possible transitions out of state w are those of

the form w + j for some j > w, j = w+l, ... ,W+l.

Rule 3: Defining the outlet as a trapping state, W+l, the final

state of the drop is W+l, from which transitions are

impossible.

The above set of rules defines a finite set of possible paths that

a drop falling randomly on the basin may follow to reach the outlet.

For example, suppose that the basin of interest is of order 3 (see

Figure 2.1), then the path space, S = (sls2,s3,S4) is given by

27



path SI: 01 + 1-+ 2 + 3 + 4

path S2: 91+ 1 + 3+ 4

path S3: : 2 + 2 + 3+ 4

path S4: 93 + 3 + 4

where i=1,2,3 are as previously defined, 4 represents the basin outlet

and 90 represents the overland phase. Figure 2.3 is a convenient

schematic representation of all the alternative paths, the numbered

circles representing the elements of a given order.

Following Gupta et al. (1980), the cumulative density function of

the time a drop takes to travel to the basin outlet is given by

P(TB <t) = I P(Ts < t)p(s) (2.4)

ses

where P(-) stands for the probability of the set given in parenthesis;

TB is the time of travel to the basin outlet; Ts is the travel time in a

particular path s; p(s) is the probability of a drop taking path s; S is

the set of all possible paths that a drop can take upon falling in the

basin.

The travel time, TS, in a particular path, a0 + a .. + ak*

a e(l,...,W+l), must be equal to the sum of travel times in the elements

of that path;

T = T + T + ... + T (2.5)
s a0 1y a k
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Figure 2.3: Schematic representation of the possible paths for
a drop falling in a third order basin.
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where T is the travel time in an overland region or stream of order

a.,a c(l,...,W+l) and k is the number of transitions that the drop
1 1

undergoes. Given the many streams of given orders and their various

properties, T must be a random variable with a given probability
.1

density function f (t). Furthermore, there is no reason to suspect
a i

that the T are anything but independently distributed random

variables. The probability density function of Ts must then be the

convolution of probability density functions, fa (t), corresponding to
ai

the elements of path s. The cumulative density of T is similarly the

convolution of individual cumulative density functions, F (t).

Therefore,

P(T < t) = F (t)*F (t)*...*F (t) (2.6)

where a-0 +> a ak is path s and * stands for the convolution

operation. For example for path s2' 01 + 1 + 3 + 4, P(Ts2< t) is

given by:

t t"t

P (Ts - t) = .0 0Fj (t')Fl(t"-t')dt'F 3 (-t")dt"

= Fi(t)*F1 (t)*F3(t) (2.7)

where F (t) represents the probability function corresponding to the

time the drop spends in the overland region draining into streams of
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order 1. Equation 2.7 says that the probability that a drop travels

path s2 in a time less than time t is given by the probability that the

drop travels from the overland region to the first order channel in a

time less than t'; times the probability that the drop travels through

the 1st order streams in time t" - t', where t' can range from 0 to t";

times the probability that the drop travels through the 3rd order .stream

in the remaining time given by t - t", where t" can range from 0 to t.

The average time that the drop spends as overland waiting time can

be inferred from F (t); however, this time will be considered to be

negligible when compared to the overall time that the drop spends in the

basin. Rodriguez et al. (1979), justify the relative insignifiance of

the overland waiting time by the following explanation:

The importance of the overland waiting time appears to be
rather smaller than that of the stream waiting time under the
framework of analysis taken in this paper. When one considers
drops traveling through a stream of order w, most of them will
come from the two streams of order w-1, which make up for the
stream in question, or from tributary streams which drain along the
route of our stream of order w. The only drops affected by
overland waiting time will be those draining directly by overland
flow into the stream of order w. These drops are in number
considerably fewer, in general, than the above ones, and thus we
feel that in average terms the mean waiting time in state w will be
the streamflow waiting time. Only for streams of order 1 would one
expect that most of the drops, except for channel precipitation,
are affected by overland waiting time; because of the smaller size
of the order 1 areas, this time is nevertheless considered to be of
minor importance in the overall IUH.

The above assumptions simplify equations 2.5 and 2.6 to:

T =T + ... + T (2.8)
s a1  a k

P(T <t) = F (t)*F (t)* ... F (t) (2.9)
s- a1 2 a k
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The probability of following a given path s, p(s), is a direct

consequence of the Markovian nature of Strahler's ordering scheme and is

given by:

p(s)= 0a0 (0 ) pa0a Ia1a2 ''' Pak-lak (2.10)

where 9 a(0) is the probability that the drop starts its travel in an

overland segment draining into a stream of order a0; p is the

transition probability from streams of order a. to streams of order a..

Remember path s is a0 + a1 +0-2 + . + ak, where a c(l,...,W+1) and

ak will be equal to the state which represents the outlet, W+l. The

reader should also note that due to rule 1, a drop initially falling in

an area which drains to a stream of order i, goes to a stream of order

i, thus a= a = i and p = 1. Also the transition probabilities
01

pW-lW and pW,W+1 are equal to 1.

Rodriguez et al. (1979) show that the initial probabilities,

9 a(0) and the transition probabilities, pa a are functions only of the

geomorphology and geometry of the river basin. Only general expressions

for 9 a(0) and p will be presented in this paper, and the reader

should refer to Rodriguez et al. (1979) for a more detailed discussion.

The physical interpretation of the probabilities is as follows:

9 (0) = total area draining directly into streams of order w
w total basin area

(2.11)

number of streams of order i draining into
steams of order j

ij total number of streams of order i (2.12)
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The transition probabilities can be derived as a function of RA and

RB using the following general expression given by Gupta and Waymire

(1980):

(N. - 2N. 1) E(j, W)

pij w
XI E[k,W] N.

k=j

2Ni+1

N i i+lj
1< i <j <W

(2.13)

where 6 i+lj = 1 if j = i+1 and 0 otherwise. E[i,W] denotes the mean

number of interior links of order i in a finite network of order W, an

interior link being the segment of the channel network between two

successive junctions or between the outlet and the first junction

upstream. The expression is given by

i (N. 1- 1)
E[ij,W] = N II 2N~-1 i = 2, ... , WEI~,W N 2N. - 1

j=2 3 (2.14)

Similarly, the probability that a drop falls in an area of order w is

derived using the following general expansion

NSA

91(0) = _

AW
(2.15)

N
9 (0) = w -

AW

w-1

j=l
A.(N. p. /N )]
33 jw w
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Table 2.1 presents a complete list of the initial and transition

probabilities for a 3rd order basin. As can be observed, all the

probabilities are functions of only RA and R . Appendix A presents a

summary of the theoretical development of these probabilities.

The probability function for a drop's travel time in a basin,

P(TB < t), is now fully defined in terms of the geomorphologic basin

properties and the probability functions Fa (t), corresponding to the

travel time of a drop in a given channel, T . As previously stated,

the IUH is defined to be the pdf of TB, and therefore

dP (T < t)

hB(t) = dt

= 1 f (t) ... *f (t) p(s) (2.16)
s a ak

where f (t) is the pdf of the travel time, T .

In summary, the IUH is a function of the probability that a drop

initially falls in an area which drains to a channel of order w, the

transition probabilities to channels of higher order, w+j (jl, ... ,

W-w), and the pdf of the time spent in a channel of a given order. The

initial and transition probabilities are functions of the basin's

geomorphologic characteristics, RA and RB. These transition

probabilities provide a probabilistic description of the drainage

network and a link between quantitative geomorphology and hydrology.

The next section presents an example of the geomorphologic IUH.

The input parameters and mathematical computations will also be

presented so that the reader can gain a better understanding of the

geomorphologic IUH.
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Table 2.1 Initial and transition probabilities for a

3rd order basin.

9 (0) = R -2

= RB R
92 RARA

(0) =1 - RB
3 A

+ 2R -2RB B B
2

RA( 2 RB -1)

RB(R2 - 3RB + 2)

2
RA(2RB - 1)

R + 2R - 2
B B

12 2R~ - RB

R - 3R + 2

P 132R 2-R
B B
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2.4 Example of the Geomorphologic IUH

As the example, consider a basin of third order, and assume, as is

commonly done in hydrology, that each channel responds as a linear

reservoir. The response for a stream of order w is therefore given by

-y t
f (t) = yw ew (2.17)

The parameter yw is the mean travel time of a drop in a stream of order

w, and can be considered to be equal to the mean travel velocity of any

drop in the basin, divided by the average stream length. Thus

V
yw -

w

where V = average flow velocity

L = average length of streams of order w.
w

The response of each stream of order w is now defined. The basin

response is determined using Equation 2.16:

hB(t) = f a(t)*fa (t) ... f(t)p(s)
SES 1 2 k

The derivation of a closed form solution for the basin response is

greatly simplified by the use of Laplace transform techniques. The

Laplace transform of the convolution operation is the product of the

Laplace transform of each function within the integral, so that if the

product of the Laplace's can be inverted, a closed-form solution can

easily be obtained. For the example, the Laplace of the channel

response is given by
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yw
L[f s yw s +y (2.18)

Recalling that there exists four possible travel paths for a drop

falling on a third order basin, the hB(t) is derived as follows:

hB(t) = p(s1)f1 (t)*f2 (t)*f3 (t) + p(s2)f1(t)*f3 (t) +

p(s3)f2 (t)*f 3 (t) + p(s)f3(t)

p(s )L [ s+ 2 s2Y3 ]+ p(s2)L-1[sy s+3 ]+
1 S~y2 S~ 3 2 s+yl s+Y3

p(s3)L 1[ sY2 Y s+ ]+ p(s )L [ s+ 3 (2.19)

Evaluating the inverses and substituting the probabilities for each path

yields:

hB t) =

91(O)p12y1y2y3 [
(Y2 Y3)e-Yt + (y3. l)eY2t +(yl-y 2)e Y3

(y2~ l (2 3 (3 1l

S () e-Y 1t _ -y 3 t + MYy Ie 2 t - y3t +
o 1 (O)p13 y1y3 y3  +92 2 [e3 Yet2

9 3 (O)y3e
3 t

(2.20)

where p1 2 ' P1 3, 01(0)92(0) and 03(0) are defined in Table 2.1.
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For the example assume that the geomorphologic parameters of the

basin are as follows:

RB = 4.0, R = 5.6, RL = 2.8

Ll = 1.56, L2 = 4.38, L3  12.25 Km

A = 3.3, A2 = 18.4, A3 = 103.0 Km2

The mean flow velocity will be assumed to be 2 m/sec which gives the

following result for each y :

Y, = 4.62/hr y2 =1.64/hr y3 = 0.59/hr.

A plot of the response of each channel is presented in Figure 2.4.

As can be observed, the area under each response is one. Figure 2.5

shows the basin IUH as given by Equation 2.20. Notice that the IUH does

not start at zero. A discussion of this will be deferred until later

but the reader should note that it differs from the results of Rodriguez

et al. (1979) which argued that it should start at zero and devised a

scheme to force the result to do so.

The previous results depend on the exponential assumption for the

channel IUH and on the "dynamic" parameter which takes the form of a

velocity required to compute mean travel time. Notice that following

Rodriguez et al. (1979) it was assumed that this velocity is the same

for streams of all orders. Next chapter will suggest a different form

for the channel IU and a somewhat different parameterization.
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Chapter 3

THE RESPONSE OF A CHANNEL

3.1 Introduction

Flood routing procedures provide a means of estimating the shape

and timing of a flood wave as it progresses along a channel. The

procedures are classified according to the following criteria: the

physical principles and equations used as the theoretical basis for

flood routing, methods used for solving the basic differential

equations, specific assumptions and approximations used in treating the

flood wave movement, the type of problem to be solved. In this chapter

the one-dimensional equations of motion for unsteady flow of an

incompressible fluid, in a wide and uniform rectangular channel, will be

solved for the conditions imposed by the definition of an IUH. The

mathematical treatment of problems concerning unsteady flow is difficult

due to the many variables that enter into the functional relationships,

and closed form solutions cannot generally be derived for the relevant

nonlinear partial differential equations.

We are interested in a flood routing procedure to determine the

response of a channel, or equivalently the pdf corresponding to the time

of travel of a drop, chosen at random, in a stream of order w. The

solution procedure we will use is based on the linearization of the

continuity and momentum equations as proposed by Harley (1967). The

channel's response to an input at the channel's most upstream point will

be derived, and from this closed form solution, the channel's response

to a uniform input along the channel's length will be obtained.
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3.2 Linear Solution to the Equations of Motion

The one-dimensional equations of motion for unsteady flow in an

open channel without lateral inflow are given by:

Continuity: D + ay = 0 (3.1)
ax at

Momentum: + V 1 av -S(3.2)
ax g axo gSf

where g = gravitational acceleration

v = mean velocity

y = water depth

q v= y = discharge per unit width

S0 = slope of the channel bottom

Sf= friction slope

x = space coordinate, measured along the channel axis

t = time coordinate

The frictional effects will be described by the Chezy equation,

thus:

2

C2R

where R = hydraulic radius

C = Chezy coefficient
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which for a wide rectangular channel yields:

2
S =

C y

The momentum equation can be rearranged to be a function of only

two dependent variables, y and q, by substituting the relation for v:

v = q/y. Substituting the expression for S and rearranging yields:

(gy3 - q2 + 2yq +y2 3 3) (3.3)
C y

Combining the continuity and momentum equations, which are two first

order partial differential equations in q and y, to give a single second

order equation in the same two dependent variables q and y, requires

differentiating Equation 3.1 with respect to x, and Equation 3.2 with

respect to t. Assuming the Chezy coefficient to be a constant, the

result is:

3 23 2 3 2
(gy3 _ 2)2q - 2yq - y2d = 3g (S -

a2 axat a 2 g( 0  ax' ax
ax at

+ agq a-2 ay - - )q (3.4)2 at ax at at ax

The above equation is highly non-linear. In order to linearize Equation

3.4, the following equalities and assumptions are established:
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q q0 + 6q q 0>>6q

(3.5)

y=yO + 6Yy0 > 6 y

where q0 and y0 are the steady state reference parameters and 6q and 6y

are perturbations about these values. In other words, the steady state

uniform flow is perturbed by an input whose response is given by small

deviations or perturbations from the steady state reference values.

Substituting Equation 3.5 into 3.4 and elminating less significant

terms, yields the following linearized equation in terms of 6q:

2 2 2
3 2 2q6q a q 2 3 26q=_ y2"6_I 2_&q 6q
ogy o9 x 2 - o0atax o t2 - 0gooax+2 oat

(3.6)

The value chosen for the Chezy coefficient is that at steady state, thus

assuming that Sf~ S0 at steady state yields:

2

C 2 v 0
y

2= 00

Substituting the above expression into Equation 3.6 and expressing the

result in terms of y and v yields:
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2 2 2 22g
(gy -v2)32 6q - 2v 6 a 6q= 3gS + o 36

0 o 2axx2t -0a2 =x 0  v0  atx(307)

The above linear equation can now be solved for various initial and

boundary conditions. The analytic solution of Equation 3.7 is the

response of the channel to an input causing a small disturbance of the

initial and boundary conditions.

In this study we are interested in the response of a channel to a

drop landing anywhere along the channel's length. We will first

consider the response of a channel to an input at the channel's most

upstream point, and then generalize the results such that the point at

which the input occurs is random.

3.3 Channel's Response to an Upstream Input

The previous section presented a partial linear differential

equation (3.7) dependent on the perturbation 6q. This section will use

this equation to determine the response of a channel to an input at its

most upstream point. The implied upstream boundary condition is

6q(O,t) = 6(t)
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where 6(t) is the dirac delta function which represents a pulsed

upstream inflow.

One initial condition is given by

6q(x,O) = 0

which means that there exists no perturbation about the reference

discharge prior to the application of the input. The other initial

condition is:

D6q(x,t)
at t=O

= 0

Harley (1967) solved Equation 3.7 with the above conditions and

obtained:

6q(x,t) = 6(t - x/cI)exp(-px) +

exp(-rt+zx)(x/c 1-x/c2)h
1 1 [2hv(t-x/cI)(t-x/c 2 )]

V(t-x/c 1)(t-x/c 2)

u(t-x/cI)dt

(3.8)

where 6q(x,t) is the response of a channel to an instantaneous input at

the channel's most upstream point, with parameters
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c 2 V / gyoC2 o 0

S
0

2y
0

S v
0 0

r- 
2y

0

S
- 0
2y0

S v
h = 00

2y
0

2 - F
F(1+F)

2 + F 2

F2

(4-F2 )(1-F )

2F2

V

F= 0

-9 

modified bessel function of order 1

u(-) is the unit step function

A detailed description of the solution procedure is presented in

Appendix B. Also presented is the calculation of the area underneath
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the curve, Sq(x,t). The area is proved to be 1, which is a property

of any pdf.

Equation 3.8 is the response of a channel to an instantaneous

upstream input and can be interpreted as the pdf corresponding to the

travel time of a drop landing at the channel's most upstream point, and

travelling a distance downstream given by x. Recalling the derivation

of the geomorphologic IUH, the pdf of the travel time of a drop falling

anywhere in the channel and travelling to the outlet is required. This

pdf will be referred to as ra (t), where ai is the order of the channel

where the drop is travelling. The next section presents the derivation

of r (t) as a function of the upstream input, 6q(x,t).

3.4 The Lateral Inflow Case: the pdf of Travel Time of a Drop

Entering the Channel Anywhere Along its Length

The definition of the geomorphologic IUH as the pdf of a drop's

travel time in a basin or order w requires the pdf of a drop's travel

time in each stream of order ai,(ai = 1,...,W). We are interested in

the travel time of a drop landing anywhere in the channel and travelling

to the channel's most downstream point.

The landing spot, X , of the drop must belong to the interval

Z = (x: 0 < x < L ) where La is the mean channel length of order a ;
i ai

therefore the pdf, f (x), must be 0 outside of Z. Furthermore since
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the drop is equally likely to fall in any equal subinterval in Z,

regardless of the location of these subintervals in Z, it follows that

fx (x) must be constant throughout Z. Since the pdf, f (x) must
a i a.

integrate to 1 over the interval Z, fx (x) is given by:

L

a.

1 0O< x <
- a.

La.

fX(x) =1(3.9)

a 0 otherwise

The distribution of the random variable X is called the uniforma.

distribution on the interval (0,L ).

The previous section presented the pdf, 6q(x,t), which

corresponds to a drop's travel time over a distance x. Since the drop

that we are interested in will fall anywhere on the channel, it will

travel a distance anywhere between L to 0 to reach the channel's most

downstream point. Therefore the determination of the pdf of the drops

travel time, r (t), requires that each point of landing be considered.

Since there are an infinite number of landing points, in order to obtain

the pdf, r (t), of the drops travel time in a channel of order a , we

must integrate the upstream inflow IUH, 6q(x,t), over all possible

travel distances x. This operation yields:
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r (t) =
a.L

11

L

0 6qa (x,t) dx

where 6qa (x,t) is the upstream inflow IUH defined by Equation 3.8 with
ai

parameters corresponding to those of a stream of order a . The pdf,

r (t), corresponds to a drop landing anywhere along the channel's
a i

length and will be referred to as the lateral input IUH. The response

of a drop entering at the channel's most upstream point will be referred

to as the upstream input IUH and is defined as:

u (t) = 6q (L ,t)a a a

Substituting in the expression for 6qa (x,t) into Equation 3.9,

the following integral is obtained:

a1

ra.(t) = --
r La 

a 0

6(t-x/c )exp(-px) +

exp(-rt+zx)(x/c 
11 2h V(t-xfcI)(t-x/c 2 )]

v(t-x/c 1 )(t-x/c 2 )

u(t-x/c 1 )d x

(3.10)

where all the parameters correspond to those of a channel of order a .

The integration of the first term in equation 3.10 (see Appendix B,

Section B.4) yields,
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Cl
exp(-ptc1 )

a

A closed form solution to the second term integral cannot be found. The

rearranged expression for ra (t), shows that the upper limit of

integration for the second term is dependent on the time, t,

c1
r t) = - exp(-ptc1 )

aj L
ai

+ exp(-rt+zx)(x/c1-x/c2)h I1[2hV (t-x/c1)(t-x/c 2)] dx

0 / (t-x/c1 ) (t-x/c2 )

(3.11)

where
c t for t < L/c1

=1
a.

L. t > L a /Ca.
1i

Since a closed form solution to the above integral does not exist, the

integral must be evaluated numerically.

Up to now, this chapter has presented the derivation of r at)

based on the equations of motion. Inherent in the parameters of r (t)

are the physiographic factors relating to the channel's characteristics,

which affect the discharge from the channel, and therefore the basin.

The next section of this chapter will present a physical interpretation

of r (t) and u (t).a a
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3.5 Physical Interpretation of u (t) and r (t)

Examination of the parameters of Equations 3-.9 and 3.11 indicates

that the channel responses will be significantly influenced by the

Froude number. Actually the solution is valid only for a Froude number

less than 2. In most regions, the Froude number is usually less than 1

which corresponds to subcritical flow. A Froude number greater than 2

indicates that a bore will form and, as indicated by Equation 3.8, the

solution breaks down. For Froude numbers between 1 and 2 the first

order modified Bessel function of the first kind, I('], will change to a

first order Bessel function of the first kind, J[-]. The solution will

contain imaginary terms which imply oscillations in the discharge and

water surface.

A plot of u (t) for channels with all the same characteristics
a i

except for channel length, is presented in Figure 3.1 The spike given

by the first term of Equation 3.8 represents the dynamic part of the

wave and occurs at time x/c . At that time the wavefront, moving at the

dynamic propagation speed, c = v + /gy , reaches the outlet. The
1 0 0

magnitude of the spike is influenced by the parameter p and provides an

indication of the dissipation of the wave along a distance x. The

magnitude of the spike can be interpreted as the following ratio:

exp(-px) =volume under the head of the wave
total volume of the complete wave

where

S
o 2-F

P= -- F(+F) x = channel length
20 F1
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Figure 3.1:. Upstream inflow response for different channel lengths.
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The term p lumps the flow characteristics into one parameter, as p is a

function of S0, y0 and F which are interdependent parameters in the

sense that changing one parameter causes at least one of the other

parameters to change. For example increasing S0, increases v0 , which

increases F, and assuming y 0 is unchanged, one cannot conclude whether p

increases or decreases.

The second term of Equation 3.8 represents the kinematic part of

the wave which dissipates more slowly than the dynamic part. The

dynamic wave travels at the speed v + /g7, whereas the mean velocity

of the center of mass of the kinematic part is 1.5 y0 . This is obtained

from the expression of the time lag, tL, which is the interval between

the centroid of effective rainfall and that of direct runoff. In

Appendix B tL is shown to be

t x (3.12)
L 1.5 v

0

The kinematic wave velocity is always smaller than the dynamic since

v0 /V gy (the Froude number) is always less than 1 for the cases

considered in this study.

In contrast to the upstream inflow IUH, u (t), the lateral inflow

IUH, ra (), exists for all time. The response at t=O, is given by

C 1 v 0+ gy0
... + 0(3.13)

T L
a a
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where c = v + Vgy is the dynamic velocity of the wave. The
0 0

numerator represents the steady state reference condition, and since

there is a i/L chance that the drop will land at the outlet, the
a.

initial response is given by the above expression.

Consider the response r (t) as the summation of two terms,

aa
c ILa exp(-pc t) t < La./cy

r (t) = (3.18)

0 t > L /c
a. 1

c: .

-rt [ /
e -(x,t)dx t < /c

01
2

r (t) = (3.19)
a.

e H(x,t)dx t > L /ca./cl
0

where

1 [2h V(t-x/c I)(t-x/c 2)]
H(x,t) = ezx (x/cI - x/c 2 )h

(t-x/c
1) (t-x/c2

ra (t) can be interpreted as the channel's response to an input

consisting of an infinite number of waves originating at each point

along the channel. The response due to the wave fronts and to the

bodies of the waves originating along the channel, are given by the

Equations 3.18 and 3.19,. respectively.

The first term is zero after L /c as all the wave fronts have
a. 1

responded.. Recall that ra (t) is the pdf corresponding to the time at
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which a drop, falling anywhere in the channel reaches the channel

outlet; therefore the possible times at which a wave front could reach

the outlet is between times 0 and La /c where c is the dynamic wave

front velocity (c = v + / ). For example, consider the two extreme

cases: case (i): the drop lands at x=O; case (ii): the drop lands at

x L . In the first case the wave front would reach the channel
a.
1

outlet at t = L /c and in the second case at time 0. These two cases
ai 1

establish the time interval during which wave fronts reach the outlet.

The abrupt change in slope at t = L /c is due in part to the fact that
a 1

all wave fronts have responded so that r (t) equals zero.
a.

Concerning the second term, the limit of integration changes as the

limit cannot exceed the distance travelled by the body of a wave. The

first limit, cIt, for t < La /c , represents the distance from the most

downstream channel point, to the point where a wave can originate and

contribute to the response at time t. Those waves originating beyond

distance cIt have not yet contributed to the response at the end of the

channel. For t > L /c all waves originating along the channel are
1

contributing to the response, and the limit changes to L , which is the

greatest distance a wave will travel to reach the most downstream point.

Plots of r (t) for channels of different lengths, are presented in
a.
1

Figure 3.2. As can be observed, the ordinate of each curve starts at

c /L., remains relatively constant and then rapidly decreases at time
1a.

L /c1 . The abrupt change in slope the time t = b/c1 is due to the
1 1

previously mentioned facts concerning the response of the wave fronts

and wave bodies. The response due to wave fronts and wave bodies are
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Figure 3.2: Lateral inflow response for different channel lengths.
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plotted separately in Figures 3.3 and 3.4 for channels of length 10 and

20 km. As can be observed, the longer the channel, the less significant

are the effects of the wave fronts, vice versa for shorter channels.

3.6 The Effect of the Input Parameters on the Channels' Response

As previously presented, both the upstream and lateral input

channel IUHs are expressed as functions of the channels' physiographic

characteristics, and the reference parametersi v and y 0 . This section

will present a sensitivity analysis in otder to determine the effects of

the input parameters on the shape of the upstream and lateral input

IUHs.

3.6.1 The Upstream Input Channel IUH

The upstream input IUHs for different parameter sets are presented

in Figures 3.5 to 3.6. Figures 3.5 and 3.6 have channel lengths of 10

to 20 km, respectively. The channel IUH in Figures 3.5.1 and 3.6.1

have the same velocity (v ), and Figures 3.5.2 and 3.6.2 have the same
0

Froude number (F). As can be observed the translation of the IUH is

affected by both a change in velocity and Froude number. A more

interesting observation is that the attenuation is relatively

independent of the velocity for a given F. For in Figures 305.2 and

3.6.2, the IUHs have the same F and different velocities, yet the

attenuation of the wave is approximately the same in each case.

For a constant velocity, the reference parameter, y , determines

the Froude number, and for these cases of constant velocity, the time to
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peak and peak response both increase with decreasing y0 and increasing

F. The time to peak is influenced by the dynamic wave speed, c1; c1

decreases with y0 and thus the time to the initial response, x/cl,

increases, and the time to peak occurs later for cases where y0 is

smaller. The peak response also increases. Even though the time to the

initial response is delayed, the greater F implies a faster response

once the channel begins to respond.

The effect of the channel's slope on the upstream input channel

response is exhibited in Figures 3.7.1 and 3.7.2. For each case the

velocity and Froude number are equivalent. In Figure 3.7.1 the slope

ranges from 0.15 to 0.35 m/km, but the overall change in the IUH is

negligible. However, in Figure 3.7.2 the slopes vary by factors of 10,

and the variation in the IUHs is signficant between the different cases.

Thus the slope must be within a reasonable range of the actual slope.

3.6.2 The Lateral Input IUH

In contrast to the upstream input IUH, the lateral input IUH is

only significantly dependent on the reference velocity, v . The lateral

input IUH is presented in Figures 3.8 and 3.9, where 3.8 and 3.9 have

channel lengths of 10 and 20 km respectively. Figures 3.8.1 and 3.9.1

have the same velocity, and Figures 3.8.2 and 3.9.2 have the same Froude

number. The insignificance of F can be observed in Figures 3.8.1 and

3.9.1. In these Figures the Froude number ranges from .45 to .90, yet

the responses are similar. The significance of v0 can be concluded by

observing the difference between the responses presented in Figures

3.8.2 and 3.9.2.
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Figures 3.10.1 and 3.10.2 present the difference in the lateral

inflow IUH due to changes in the channel slope. In Figure 3.10.1 the

slope ranges from 0.15 to 0.35 m/km, with the steepest channel

responding the fastest. In Figure 3.10.2, the slopes vary by factors of

10, yet the responses are quite similar. Compared with the other

parameters, the channel IUH is the least sensitive to the slope

parameter.

3.7 Summary

This chapter presented the derivation of analytical expressions for

the response of a channel. The channel responds according to where the

input originates along the channel. The response to an input at the

channel's most upstream point is denoted by u (t), and that to an input

originating anywhere along the channel by r (t). The responses

describe the flood wave's movement along the channel as the pdfs

corresponding to the time a drop, whose travel begins in the channel of

order a1 , takes to reach the channel's most downstream point. Inherent

in the pdf is the physics of the flood wave movement as functions of

channel slope, acceleration due to gravity and the reference parameters,

v0 and y . The expressions for ua (t) and r (t) and their
i

corresponding Laplaces are summarized below.

ua (t) = 6(t-x/c1)exp(-px) +

I [2hV(t-x/c )(t-x/c 2

exp(-rt+zx) (x/c1 -x/ c2)h-_1_1_ 2_ u(t-x/c1 )

((t-x/c 
)(t-x/c2

(3.20)
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2
L[u a t] expll(-V'as +bs+c +es+,f)L a

exp(-pc t) + e-rt

a1

e-rt j i H(xt) dx

0

H(x,t) = ezx (x/c x/c 2 )h

H(x,t)dx t < LI /c

(3.22)

t > Ta /c 1

1 [2hv (t-x/c1 ) (t-x/c2 )

(t-x/c1 ) (t-x/c2 )

L[r (t)] =a [exp(L (-Vas2+bs+c +es+f))-1]
a(

(3.23)
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r (t) =
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where

L . - as 2+bs+c +es+f)
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cy v + g-

c2 0 09

so (2-F)

o F(1+F2)

Sovo 2 + F2

r= 2y0 F2

S90Z 2y0

S v
h = 00

2y0

/ (4-F2 )(1-F 2

2F2

V
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The following chapter will present several geomorphologic IUH's,

and a sensitivity analysis will be conducted to decipher the significant

parameters which influence the shape of the IUH. The results will be

summarized in terms of the time to the peak response and the peak

response of the basin IUH.

69



Chapter 4

THE RESPONSE OF A RIVER BASIN

4.1 Introduction

The ultimate aim of this study is to determine the runoff from

ungaged river basins. Estimation of runoff is based on a wide variety

of approaches, both empirical and theoretical. This study specifically

investigates a theoretical approach which focuses on the relationship

between runoff and the physiographic and geomorphologic characteristics

of the river basin.

The response of a channel has been derived as a function of its

physiographic characteristics and the origin of the input. This chapter

presents how both the upstream input response, ua (t), and the lateral
i

input response, ra (t), are used to determine the basin IUH. A sensitivity
i

analysis will illustrate how the channels' physiographic and the basin's

geomorphologic characteristics affect the shape of the basin IUH.

4.2 The Basin Instantaneous Unit Hydrograph

The upstream input and channel responses discussed in the previous

chapter can be used to enhance the hydrogeomorphologic theory. Referring

to the hypothetical basin presented in Figure 2.1, the flow contributing

to some higher order streams is mainly due to flow from the intersection

of the lower order tributaries which form these higher order streams.

Streams of this type respond according to the upstream inflow channel

response. River basins with bifurcation ratios approximately equal to

2 would have streams where most of the contributing flow is from the
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upstream lower order channels and where there are few tributaries

contributing along the stream.

Basins with bifurcation ratios much larger than 2 will have high

order streams heavily dependent on lateral tributaries inflows. The

lateral inflow stream IUH would then be important in these cases.

Differentiating between the possible configurations of the streams

(e.g., whether the lower order streams flow into the higher order

streams' most upstream point or along the streams' length) requires

reevaluating the possible paths a drop can take.

According to Strahler's ordering procedure, two streams of lower

order combine to form a stream of higher order, thus the paths containing

a transition of the form, ... i + i+l ... , can be further divided into

two paths. One path represents those drops that enter along the channel

laterally, and the other path represents those drops that enter at the

channel's most upstream point. For a third order basin, the possible

paths are:

s1: e 1 + rl + r2 + r3 + r4

s2: 61 + rl + u 2 + r3 + r4

s3: e 1 + rl + r2 + u 3 + r4

s4: 01 + rl + r3 + r4 (4.1)

s5: 62 + r2 + r3 + r4

s6: e2 + r2 + u3 + r4

S7 03 + r 3 + r4

s8: e1 + rl + u 2 + u3 + r4
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where 01 (i=l, ... , W) refers to the overland phase, ri refers to the

drop entering anywhere along the channel's length, ui refers to the

drop entering at the channel's most upstream point, and rW+l refers to

the basin outlet. In order to account for the additional paths, the

transition probabilities previously presented need to be modified and

the transition probabilities of the form ri + ui+l and u + ri+l need

to be determined.

Two streams of order i are required to form a stream of order i+l,

thus the probability of a transition from a stream of order i to the
2Nj+1

upstream point of a stream of order i+l, is the fraction N
i

Using Equation 2.13, the transition probabilities are given by:

(Ni - 2Ni+l) E[j,WI

Pr r
i j

Pr u
i i+1

1 4 i < j <W
w
E

k=j

(4.2)

E[k,WINi

2Ni+j

Ni
1i <W (4.3)

Pu r Pr r
ii1+l ii1+l

Pu u Pr u
i i+l i i+l

1< i < W

li < w
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where Pr r is the transition probability for a drop going from a stream
i j

of order i to a point along a stream of order j, Pr u is the
i i+1

probability that a drop from a stream of order i goes to the upstream

point of a stream of order i+l, and E[k,WI is given by Equation 2.14.

A drop following this path travels along the stream that forms the

stream of higher order. Transition probabilities of the form

Pu r and Pu u are equivalent to Pr r and Pr u
i i+1 i i+1 i i+l i i+1

respectively, as the drop's transition from a stream of order i is

independent of where it originally entered the stream of order i.

Taking into account the 8 paths, the initial and transition

probabilities for a 3rd order basin are presented in Table 4.1 as

functions of RA and RB- The result that the transition probabilities

of the form, Pr u , are always equal to 2/RB is a consequence of
i i+1

Horton's law of stream numbers. The transition probabilities account

for the fact that the lower the bifurcation ratio, the greater the

number of streams which respond according to the upstream input channel

response. For as RB decreases, Pr u and pu u increase, and the other
i i+1 i i+1

transition probabilities of the form, Pr r and Pu r (j>i), decrease;
i j i j

thus paths defined by one or more upstream inflow channel responses will

have more influence on the overall basin IUH, in accordance with the

basin's configuration.

The more detailed classification of the paths requires two types

of pdfs for a drop's travel time in a stream of order ai. Recall that

the expression of the basin response function is given by:
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Table 4.1: Initial and transition probabilities
for a 3rd order basin.

9 (0) = RB RA2

RB RB + 2RB - 2RB
T2 R 2
A RA (2RB ~ )

9 (0) = 1
RB

RA

RB + 2RB - 2RB

R ( 2 RB - 1)

(RB - 2R B
r 1r2  RB( 2 RB-1)

2

r u2 RB

R - 3R + 2
P-B B

r 1r3 RB(2RB ~ 1)

RB - 2

r2r3 RB

2
R B

u2r3 r2r3

U2u3 
r2u3
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hB(t) = E fa (t)* ... * f a (t) p(s)
1 k

seS

where fa (t) represents the pdf of travel time for a drop travelling a
i

a stream of order a1 . Depending on the particular path, fa (t) Vill be
i

defined as ra (t), if the drop enters laterally along the stream, or
i

Ua (t), if the drop enters at the most upstream point of the stream.
i

The expressions for ua (t) and ra (t) are given by Equations
i I

3.20 and 3.22, respectively. Substitution of the expressions into

Equation 4.6 for each path given in Equation 4.6 leads to an extremely

complicated expression for which no closed form numerical solution

exists. Noting that the Laplace of a convolution operation is the

product of the Laplaces of each term, Equation 4.6 can be more readily

solved using Laplace transform techniques. The Laplace of the expression

representing a path in Equation 4.6 is given by the product of the

Laplaces of fa (t), ai = al ... ak, and is inverted numerically using
i

a mathematical routine available on the Honeywell 6180, Multics operating

system. (See Crump, 1976, for details concerning the mathematics.)

The next section will present examples of the geomorphologic basin

IUH and will discuss the effect of the geomorphologic parameters and

the reference parameters, y0 , v0 , and So, on the shape of the 1UH.
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4.3 The Effect of the Input Parameters on the Basin IUH

The basin response is expressed in terms of the channel responses

and the geopmorphological parameters, RA, RB, and RL. This section will

demonstrate how the initial response, hB(O), time to peak, tp, and the peak

response, qp, vary due to both changes in the geomorphologic parameters

and in the reference parameters vo, yo, and So. The analysis will use

a third order basin for the case study.

4.3.1 Geomorphologic Parameters

Examples of the geomorphologic basin IUH are presented in Figures

4.1 to 4.3. In all cases the linearizing velocity is 2.5 m/sec for all

streams, and the linearizing depths are 0.80, 0.85 and 0.95 meters for

streams of order 1 through 3, respectively. First order streams are

2.78 km in length, implying a small basin. Average channel slope is

0.3 m/km. The figures differ only in the geomorphological parameters.

The time to peak, tp, peak discharge, qp, and initial response, hB(O),

are summarized in Table 4.2.

The significant difference in all three basin IUs presented in

Figure 4.1 is due to the shorter distance a drop must travel to reach

the basin outlet as RL decreases. The cases with the shorter higher

order streams have greater peaks and the time to peak occurs earlier.

Obviously the shorter distance a drop has to travel to reach the outlet

the faster the response, and thus this change in the IUH as RL decreases.

As can be observed in Figures 4.2 and 4.3, the time to peak, tp,

is insensitive to changes in RA and RB for a given RL, and only the

initial response hB(O), and the peak, qp, vary. Recall that for a

76



1.40 -

1. 20 ..

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

t i me Lhour sI

Figure 4.1: Basin IUHs for different length ratios,

RA- 3 . 5 Par ame ter st
Ra-3. 0
RL-2 .5

RA-4. 0

Rn-5. 0

-t I I I

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

time [hours]

Figure 4.2: Basin IUHs for different area ratios, RA*

77

RL-i. 5 parameters-
R - 6 .0
Re-04.. 0

RL-2. 0

. 00 -

. 80-

r,

L

-CQj 0

c
0
D..0
LA,

L

c 0

(0
0 0

0. 00

0 .80 -

0. 70 -

0

R .

. 60 J

-

LJ

CL

0.50 -

0.40-

S0
L

c
0

- 0
<.0

30-

20-

.10 -

0.00

60-

40._.

.



0. 70

Parameters-,
Rrq-4. 0 RR- 5 . 0

0.60 Rr:3 RL- 2 . 5
'-I T-4 Re-3. 0

0.50

a 0.40

CL 0. 30..0

L

c 0.20-

0 0.10

0. 00

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

tine LhoursJ

Figure 4.3: Basin IUHs for different bifurcation ratios, RB'

1. 20

t 1.00.
U,

L.
..C
L-j

0.80.
U)

( 0.60.

0.40LA-

0
a3 0 .20-
LA

0.00 0.50 1.00 1.50 2.00 2.50 0.o0 3.50 4.00

time Lhours]

Figure 4.4: Response of path s7.

78



Table 4.2: Characterisitics of the basin IUH for different
geomorphological parameters.

RA RB RL hB(O)

hr 1l

6.0 4.0 1.5
6.0 4.0 2.0
6.0 4.0 2.5

3.5 3.0 2.5
4.0 3.0 2.5
5.0 3.0 2.5

5.0 4.0 2.5
5.0 3.5 2.5
5.0 3.0 2.5

0.75
0.42
0.27

0.05
0.20
0.40

0.07
0.24
0.40

tp qp

hr hr'l

0.35
0.61
1.31

1.36
1.36
1.36

1.36
1.36
1.36

1.35
0.82
0.58

0.75
0.68
0.58

0.66
0.62
0.58
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3rd order basin there exists 8 possible paths that a drop can take.

Each path response is a function of the individual channel responses,

both upstream and lateral input responses, which compose the path.

(See equations 4.1 and 4.6 for the list of possible paths and the

general expression for the basin response.) The relative -contribution

of each path response is given by the probability of each particular

path which change only with RA and RB; thus the change in the basin

IUH's shape.

Figure 4.2 presents the basin IUH for different values of RA. As

RA decreases the peak increases and the initial response decreases. A

decrease in RA implies that the area draining into lower order streams

increases, thus there is less probability for a drop to drain directly

to the highest order stream, which is the only stream contributing to

the initial response, and so the initial response decreases. Physically,

the increase in the peak can be attributed to the fact that more drops

are entering the mainstream from the lower order streams, and thus the

peak is greater as more drops coincidentally reach the outlet. The

increase in peak can also be understood exploiting the property that

all IUHs must have a volume of 1. If the initial response decreases,

then one way of preserving an area of 1 is to increase the peak.

The basin's response to decreasing bifurcation ratios, RB, is

opposite to that for decreasing area ratios, RA. The smaller RB implies

that the basin has few lower order steams in comparison to the higher

order streams. Thus the initial response is greater for smaller RB as

80



most drops drain directly to the highest order stream. The peak

increases with RB as there exists a greater number of contributing

streams to the mainstream.

The behavior of the initial response due to different values of RA

and RB is also depicted in the initial probabilities given in Table

4.1, As can be determined, the greater RA or the smaller RB, the

greater 03(0) and correspondingly a greater initial response will

result. The initial response is due to path s7 , which is plotted in

Figure 4.4.

In some cases, path s7 has a significant effect on the overall

shape of the basin IUH. As can be observed in Figure 4.4, there is a

higher initial response, and then the response rapidly decreases,

remains relatively constant and then gradually decreases. The dominance

of path s7 is reflected in the less well defined peak for higher RA or

lower RB. In some cases the probability of path s7 is so high that the

basin IUH decreases immediately after the initial response, as does

path s7. Several cases where this occurred are shown in Figures 4.5,

4.6 and 4.7. The corresponding parameters and path probabilities are

presented in Table 4.3. This type of behavior would occur for basins

which have most of the tributaries to the main channel in the upper

regions of the basin. Thus initially the basin responds according to

the highest order stream's response, leading to a sharp rise and fall.

As the upper tributaries response reach the outlet, this basin IUH

again increases.

The extent of the initial decrease is dependent on the length of

the first order streams and RL. Figure 4.5 corresponds to a case
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Figure 4.5: Case where the basin IUH initially decreases.
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Figure 4.8: Basin IUH with no initial decrease in the response.
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Table 4.3 Parameters Corresponding to Figures 4.5, 4.6, and 4.7:

Stream Characteristics:

Yo V0 S

m m/sec m/km

1st order streams
2nd order streams
3rd order streams

0.80
0.85
0.90

2.5
2.5
2.5

m/sec ml/2/sec

0.3 0.89
0.3 0.87
0.3 0.84

Difference between figures:

Ll(km)
Geomorphological Parameters
RA; RB; RL

Initial Probabilities:

61(0); 62(0); 63(0)

Transition Probabilities:

Pr r ; Pr u
1 2 1 2

Pr u ; Pr r
1 3 2 3

Pr u Pu r
2 3 2 3

Pu u
2 3

Figure 4.5

2.8

5.0; 3.0; 2.0

0.36;0.29;0.35

0.20; 0.67

0.13; 0.33

0.67; 0.33

Figure 4.6

15

5.0; 3.0; 2.0

Same as
Figure 4.5

Same as
Figure 4.5

0.67

Figure 4.7

15

4.0; 3.0; 2.5

0.56;0.26;0.18

0.20; 0.67

0.13; 0.33

0.67; 0.33

0.67

Path Probabilities:

p(s3); p(s2)

p(s3); P(s4)

p(s5); P(s6)

P(s7); P(s8)

0.02; 0.08

0.05; 0.05

0.10; 0.19

0.35; 0.16

Same as
Figure 4.5

0.04; 0.12

0.07; 0.07

0.09; 0.18

0.18; 0.25
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F Cl C

5.30
5.39
5.47

161
156
152



where L1 = 2.8 km, and Figures 4.6 and 4.7 correspond to cases where

l = 15 km. In each of these cases the IUH initially decreased.

Figure 4.8 presents a case where Ll = 2.8 km, and the geomorphological

and reference parameters are the same as those in Figure 4.7, yet

there is no initial decrease in the response.

4.3.2 The Reference Velocity, v, Reference Depth, y., and Slope, So

For the following examples, the reference velocities and slopes

for each order stream are assumed equal. These assumptions are obviously

not true for all basins, especially in mountaineous regions, but they

are used to reduce the number of parameters.

Figure 4.9 shows three possible responses of a basin with RA =

4.0, RB = 3.0, RL = 3.5, and L, = 2.78 km. Linearizing velocities are

3.0, 2.5, and 2.0 m/sec with Froude numbers being kept relatively

constant (i.e., linearizing depths increase with velocity). As the

reference velocity increases, the initial response and peak response

increase. Table 4.4 presents the parameter used to calculate each

response.

Figures 4.10 and 4.11 present several basin IUHs for different

reference depths and slopes, respectively. The difference between the

parameters is quite substantial, 1 meter for the reference depths, and

a factor of 10 for the slopes. Comparing Figures 4.9, 4.10, and 4.11

and recognizing that representative slopes can be obtained from
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Figure 4.9: Basin IUHs for different reference velocities, vo.
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Figure 4.10: Basin IUHs for different reference depths.
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Figure 4.11: Basin IUHs for different channel slopes.
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Table 4.4: Parameters for Figure 4.9

yo v 0
so

m m/sec m/km

1st order streams
2nd order streams.
3rd order streams

1st order streams
2nd order streams
3rd order streams

1st order streams
2nd order streams
3rd order streams

1.1
1.6
2.1

0.7
1.0
1.5

0.5
1.0
1.5

Geomorphlogical Parameters:

3.0
3.0
3.0

2.5
2.5
2.5

2.0
2.0
2.0

0.3
0.3
0.3

0.3
0.3
0.3

0.3
0.3
0.3

km m/sec

2.8
9.7

34.0

2.8
9.7

34.0

2.8
9.7

34.0

6.3 0.91
7.0 0.76
7.5 0.66

5.1 0.95
5.6 0.80
6.3 0.65

4.2 0.90
5.1 0.90
5.8 0.52

RA= 4 . 0 RB= 3 .0 RL= 3 .5

Initial Probabilities: ei(O)=0.56 02(0)=0.26 63(0)=0.18

Transition Probabilities:

Pr r =0.20
1 2

Pr u =0.67
2 3

Pr u =0.67
1 2

Pu r =0.33
2 3

Pr r =0.13
1 3

Pu u =0.67
2 3

Pr r =0.33
2 3

Path Probabilities:

p(sl)=0.04

p(s5)=0.09

p(s3)=O07

P(s7)=0.18

p(s4)=0.08

P(s8)=0'25

88
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Ml/2/sec

165
136
119

172
144
117

163
115
94
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topographic maps, one can conclude that the basin IUH is most sensitive

to the reference velocity. Thus the reference depths and slope can be

approximated, but a procedure must be developed to determine the refer-

ence velocity.

4.4 Summary

The basin IUH is now fully defined in terms of the basin's

geomorphological and channel's physiographic characteristics. The

actual configuration of the streams which compose the basin is accounted

for by the initial and transition probabilities which are dependent on

the geomorphological parameters. The probabilities determine the

relative contribution of each path, where the paths are indicative of

tributaries joining a stream at its most upstream point or along the

streams' length.

The input parameters required to determine the basin include RA,

RB, RL, and for each order stream, the average length, slope, reference

velocity and depth. A sensitivity analysis showed that the basin IUH

is most sensitive -to the velocity.

The next chapter will present a means to estimate the velocity

given the previously mentioned parameters and the properties of the storm.
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Chapter 5

THE DISCHARGE HYDROGRAPH

5.1 Introduction

For a given drainage basin the discharge hydrograph due to a given

period of rainfall reflects all the combined physical characteristics of

the basin plus the surrounding hydrometerological effects. For the model

presented in this work, the basin IUR reflects the effects of the basin's

physiographic and geomorphologic characteristics on the runoff, and the

the time distribution of the effective rainfall reflects the hydro-

meterological effects. These effects are combined through the convolu-

tion equation which determines the discharge.

As an example, consider a storm of constant intensity, i, for a

duration, td, with a uniform spatial pattern over the catchment. Thus

the time distribution of effective rainfall is given by:

I(t) = i{u(t) - u(t-td)l (5.1)

where u(t) = 1 if t>0 and 0 otherwise.

The discharge hydrograph is given by:

t

Q(t) = f i(t--r)hB(t)dT (5.2)
0

which for the I(t) given in Equation 5.1, can be divided into two components:
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t

0(t) = f ihB(T)dr t<td (5.3)
0

t
Q(t) = f ihB(T)dT t>td (5.4)

t-td

In this work the effective rainfall will be assumed to be uniform in

space and in time as implied by Equation 5.1.

This chapter presents the discharge hydrographs for several different

basins. Prior to presenting the hydrographs, a way to calibrate the

model and estimate the input parameters is suggested. The peak discharge,

QP, and time to peak, Tp, are used to compare the discharge hydrograph

with the results of a rainfall-runoff model. The hydrograph is also

compared to the hydrograph determined using the assumption that the

channels respond as linear reservoirs.

Based on the suggested method to estimate the input parameters, an

analysis of a basin in Egypt is presented. The basin consists of wadis

which are valleys that remain dry except during the rainy season. A

description of the rainfall and basin characteristics will be presented.

5.2 Model Calibration

The parameters required to determine the hydrologic response or

runoff from a basin can be divided into three classes: the parameters

representing the physiographic characteristics of the basin and individual

channels, the dynamic component of the response, and those representing

the input characteristics. This section will discuss the issues relating

to the estimation of these parameter sets.
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The physiographic characteristics of the basin are expressed in

terms of the geomorphological parameters, RA, RB, and RL, defined by

Rorton's laws. The characteristics of the individual channels are lumped

according to the order of the channel. The average channel length and

slope for each stream order are used to represent the channel's physiographic

characteristics. Note that when calculating the average channel slope,

the geometric mean rather than the arithmetic mean, should be used. All

these parameters are easily accessible from a topographic map, aerial

photograph or satellite imagery.

The most difficult parameters to estimate are the reference depth

and reference velocity used to linearize the continuity and momentum

equations. Recalling the derivation of the upstream inflow IUH (see

Chapter 3), the IUH represents the perturbation about these reference

parameters (q = vy, thus 6q = Sv-6y), which in an ideal situation

are the steady state conditions. In fact, due to the nonlinearities in

the rainfall-runoff process, there does not exist an individual,

characteristic basin IUH which when convolved with any given input will

produce a representative discharge hydrograph. The IUH is actually a

function of both the input and geomorphology (see Rodriguez et al., 1981),

and thus there exists no one set of steady state parameters, yo and v0 ,

which can be used to represent a unique basin's IUH. Incorporation of

the storm effects into the IUH is beyond the scope of this work and the

procedure taken to estimate yo and vo is similar to the one used by

Rodriguez et al., 1979.
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In Rodriguez's et al., 1979, work they used the peak velocity of

flow during an event to determine the parameter for the exponential

distribution, which was assumed to be the channels' IUH. In this work

there are two possible velocities which could be calibrated to the peak

velocity, the reference velocity, v0 , or the dynamic velocity, ci, where

ci = v0 + Vgyo. As will be shown in the following section, equating

the dynamic velocity for each order stream to be approximately equal to

the peak velocity, produces a representative hydrograph for several

different storms.

The following section presents the discharge hydrographs for several

basins and various storms. The hydrographs are calibrated as described

in this section where the peak stream velocity is that determined by a

rainfall-runoff model for each particular storm.

5.3 Discharge Hydrographs for Several Subbasins

In this section several discharge hydrographs are presented, and the

peak and time to peak are compared to that determined by a rainfall-runoff

model. The results indicate that equating the dynamic wave speed to the

peak velocity determined by the rainfall-runoff model produces peaks and

times to peak similar to those determined by the rainfall-runoff model.

In their paper, "Discharge Response Analysis and Hydrologic Similarity:

The Interrelation Between the Geomorphologic IUH and the Storm

Characteristics," Rodriguez et al., 1979, present the peak discharge,

* * *
0p, time to peak, T, and peak velocity, vp determined by a
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rainfall-runoff model of basins in Puerto Rico for several storms. They

used a rainfall-runoff model originally developed by Schaake (1971),

where every stream segment is modeled as an individual segment. The

model is based on the continuity equation an4 the kinematic wave

approximation to the equations of motion. Throughout this section the

results obtained from Rodriguez's et al. paper will be denoted by * ,

* *
T ,and v and are used to compare to the peak discharge, Q , and

p p p

time to peak, Tp, determined by the discharge hydrograph where the dynamic

*
wave speed, cl, is set equal to v*.

The basins to be investigated are subbasins of the Indio River basin

located in Puerto Rico. Each subbasin is of order three, as presented in

Figure 5.1. The Unibon and Morovis basins are characterized by the

following parameter sets, respectively: RA = 5.6, RB = 4.0, RL = 2.8,

LW = 8.6 km, AW = 23 km , and RA = 5.0, RB = 3.2, RL = 2.7, Lw = 8 km,

- 2AW = 13 km2 . The slope of each channel segment was obtained from

topographic maps, and the geometric mean slope for each stream order was

determined and is presented in Tables 5.1 and 5.2, along with the other

* * *
input parameters and corresponding Q*, T* and v*.

The discharge hydrographs corresponding to storms of 3 and 2 hours

durations with an intensity of 3 cm/hr are presented in Figures 5.2.1

through 5.5.1. The corresponding gcnmorphologic IUH used to determine

each hydrograph are presented in Figures 5.2.2 through 5.5.2. As can be

observed, the results are excellent and thus equating the dynamic wave

speed ci to the peak velocity provides a hydrograph whose Tp and Qp are

representative for these particular storms. However, there does exist
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Figure 5.1: Indio basin (Puerto Rico) with the Morovis and the
Unibon subbasins (from Valdes et al., 1979).
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Table 5.1: Parameters used to determine the discharge
hydrographs for Unibon basin.

Storm Properties: duration = 3 hours; intensity = 3 cm/hr

Rainfall-runoff Results: v* = 4.1 m/sec; Q* = 194 m3/sec; T* =
p p p

Stream Characteristics:

1st order stream:

2nd order stream:

3rd order stream:

v
0

(m/sec)

0.80

0.90

1.00

yo
(M)

1.00

1.13

1.20

So
(m /km)

82.7

46.6

23.3

L
(km)

1.1

3.1

8.6

ci
(m/sec)

3.8

4.1

4.3

Storm Properties: duration = 2 hours; intensity = 3 cm/hr

Rainfall-runoff results: v* = 4.0 m/sec; Q* = 188 m 3 /sec; T =
rrpCp

Stream Characteristics:

1st order stream:

2nd order stream:

3rd order stream:

Yo
(M)

0.50

0.70

0.80

v
0

(m/sec)

1.25

1.38

1.50

So
(m/km)

82.7

46.6

23.3

L
(km)

1.1

3.1

8.6

ci
(m/sec)

3.5

4.0

4.3

Geomorphologic Characteristics: RA

Initial Probabilities: 01(0) = 0.51

Transition Probabilities:

Pr r = 0.286 Pr u =0.500
.1 2 1 2

Pr u = 0.500
2 3

Path Probabilities:

P(si) = 0.073

p(s5) = 0.157

Pu r = 0.500
2 3

P(s2) = 0.128

P(s6) = 0.157

= 5.6; RB = 4.0;

02(0) 0.31;

Pr r = 0.214
1 3

Pu u
2 3

RL = 2.8

03(0) = 0.18

Pr r
2 3

= 0.500

= 0.500

p(s3) = 0.073

p(s7) = 0.176

p(S4) = 0.109

P(s8) = 0.128

100

3 hours.

F

0.36

0.38

0.38

2 hours

F

0.56

0.53

0.54



Table 5.2: Parameters used to determine the discharge hydrographs
for Morovis basin

Storm Properties: duration = 3 hours; intensity = 3 cm/hr

* * 3 * orRainfall-runoff Results: v= 3.0 m/sec; Q= 112 m /sec; T 3 hours

Stream Characteristics:

1st order stream:

2nd order stream:

3rd order stream:

yo V0

(m) (m/sec)

0.34 0.85

0.41 1.00

0.48 1.10

so
(m/km)

71.9

32.1

39.2

L
(km)

1.1

3.0

8.0

ci
(m/sec)

2.7

3.0

3.3

F

0.47

0.50

0.51

Storm Properties: duration = 2 hours; intensity

Rainfall-runoff Results: v = 2.9 m/sec; 0 = 1

Stream Characteristics:

1st order stream:

2nd order stream:

3rd order stream:

YO
(m)

0.34

0.37

0.44

v0
(m/sec)

0.90

1.00

1.10

So
(m/km)

71.9

32.1

39.2

= 3 cm/hr

03 m3 /sec; T

L
(km)

1.1

3.0

8.0

cl
(m/sec)

2.7

2.9

3.2

Geomorphologic Characteristics: RA =

Initial Probabilities: 01(0) = 0.41;

Transition Probabilities:

Pr r 0.222 Pr u = 0.625
1 2 1 2

Pr u = 0.625
2 3

Pu r = 0.375
2 3

5.0; RB = 3.2;

02(0) = 0.29;

Pr r = 0.153
1 3

Pu u = 0.625
2 3

RL = 2.7

03(0) = 0.30

Pr r = 0.375
2 3

Path Probabilities:

p(si) = 0.034

p(s5) = 0.110

P(s2) = 0.096

P(s6) = 0.183

p(s3) = 0.057

P(s7) = 0.297
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p(S4) = 0.063

p(s8) = 0.160

2.2 hours

F

0.49

0.52

0.53



*
many com'liations of y0 and v0 such that c 1 is equivalent to vP, and

for all the hydrographs, both v0 and yo were varied until the peak and

time to peak given by the rainfall-runoff model were obtained. Obviously,

another parameter is needed to define the shipe of the hydrograph and

corresponding IUH.

The Froude number is an indicator of the type of flow in free-surface

flow, and if used properly within this model could provide additional

information concerning the flow situation for different storms. A detailed

study of the incorporation of the Froude number into the model calibration

is beyond the scope of this work; but given a Froude number, F, and

dynamic wave speed, cl, there would exist only one combination of yo and

vo satisfying F and cl and the IUH would be completely defined in terms

of three parameters. For the cases investigated in this work, the Froude

number was restricted to be less than 1.

Although the results of this section are encouraging, the mathematics

involved in the solution procedure are rather complex and may limit the

use of the model in practice. A common assumption by many hydrologists

is that the response of each channel is given by the exponential

distribution. Mathematically the exponential distribution is easier to

work with than the channel IUHs derived in this study, and the following

section compares the discharge hydroBraphs determined by the two different

types of channel IUHs.
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5.4 Comparison of the Discharge Hydrographs Determined Using Different
Channel IUHs

A common practice in hydrology is to assume that the channel's

response is given by the exponential distribution, and in this section

the discharge hydrographs determined using the response functions derived

in this work, namely ua (t) and ra (t), given by Equations 3.20 and 3.22,
i i

and that determined using the exponential response function, Equation

2.17, will be compared.

The assumption that the channels' IUH is given by the exponential

response functions limits the number of paths that a drop can take to

reach- the basin outlet as this type of channel IUH does not differentiate

between the response for a drop entering at the stream's most upstream

point and for a drop entering anywhere along the channel. The possible

paths for a drop whose response is assumed to be an exponential distribution

are given below as presented in Chapter 2:

path s: a1 + 1 + 2 + 3 + 4

path s2: 82 + 1 + 3 + 4

path s3 : 03 + 2 + 3 + 4

path s4 : 4 + 3 + 4

where i + j represents a transition from a stream of order i to a stream

of order j. Initial and transition probabilities are as given in Table 2.1.

Both the basin IUHs used in this section to determine the discharge

hydrograph are based on the theory of the geomorphologic, IUH as presented

in Chapter 2. The difference between the IUHs is in number of possible.paths

that a drop can take to reach the channel outlet and in the response
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of the individual channels which are indicative of the drop's travel time

in a particular stream.

The basins to be used for the comparison are the ones presented in

the previous section, and thus only the discharge hydrographs using the

exponential assumption will be presented in this section. The dynamic

component, i.e., the velocity parameter, required for the exponential

distribution is determined as suggested by Rodriguez et al., where the

velocity is equated to the peak stream velocity associated with a particular

storm.

The discharge hydrographs for different storms and corresponding

basin IUHs for Unibon and Morovis basins are presented in Figures 5.6.1

to 5.7.2 and 5.8.1 to 5.9.2, respectively. The peaks and times to peak

* *
approximate those determined by the rainfall-runoff model, Q and T,,

presented in Tables 5.1 and 5.2. Comparing these discharge hydrographs

with those presented in the previous section, the peaks and times to peak

are approximately equal, but the majority of the hydrograph volume is

positioned differently. As can be concluded by comparing the two different

types of basin IUHs, the assumption of the exponential channel response

implies a much faster response than that determined by solving the momentum

and continuity equations. Thus although the peaks are almost equal for

each basin and for each storm, in the case where the exponential asusmption

is used, more of the total volume is discharged prior to the peak, whereas

for the cases where the response is that derived in this work, more volume

is discharged after the peak.
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exponential assimption.

1.00

0.901

0.80

L 0.70

0.60

C 0.50
0
C.
tn 0.40_

L

C 0.30.

'n 0.20-

0.10.

0.00.
II I i i p

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

time [hours]

Figure 5.6.2: Geomorphologic IUH used to determine hydrograph
in Figure 5.6.1.
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Figure 5.7.1: Discharge hydrograph for Unibon basin using
exponential assumption.
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Figure 5.8.1: Discharge hydrograph in Morovis basin using

exponential assumption.
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Figure 5.8.1.
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Figure 5.9.1: Discharge hydrograph for Morovis basin using
exponential assumption.
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in Figure 5.9.1.
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This discrepancy between the hydrographs' shape could be significant.

For example, in designing protective measures against floods, the hydrograph

shape provides useful information to the planner. The hydrograph shape

is a function of both the individual basin and the climate, and thus no

generalized conclusion can be made concerning the shape of all the

hydrographs for a particular basin. Nor can a conclusive statement be

made concerning the shape of all the hydrographs determined using a

particular channel IUH, as too many factors, such as channel configuration,

channel slope and length, influence the shape of the hydrograph. This

work has focused on obtaining a basin IUH which is indicative of both the

basin's geomorphologic characteristics and the channels' physiographic

characteristics, and thus one would expect that the IUH derived in this

work provides more of a representative IUH for the particular basin than

that obtained using the exponential assumption. However a more detailed

investigation is needed before such a conclusion can be made.

The next section presents a case study where the choice of the basin

IUH makes a significant difference in the discharge hydrograph.

5.5 Discharge Hydrographs for Wadi Umm Salam

In the last few years, some areas close to the Nile Valley in Upper

Egypt have been subjected to occasional flash floods which cause considerable

damage to the villages downstream. At the the outlet of these wadis are

vast plain areas where villages have developed and people have cultivated

the lands from which they obtain their major source of income. The severe
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losses ove. the past few years has prompted the government of Egypt to

develop a master plan to provide protection to the surrounding villages.

The wadis are quite large in size and extend to the mountainous regions

alongside the Nile. Discharge estimates are obtained from the people in

the village or are estimated from the flood level water marks. The

rainfall for a year is obtained from stations located along the Nile.

Thus no rainfall measurements are available for locations within the

wadis, nor are direct measurements of the discharges. The model presented

in this work provides a feasible way to estimate the discharge due to a

given storm. With just a topographic map or aerial photograph and an

estimation of the storm properties, the discharge can be estimated.

As an example of the use of the model, Wadi Umm Salam has been

selected for study. Wadi Umm Salam is a subbasin of Wadi Abbad which is

one of the largest wadis in Upper Egypt. Wadi Abbad has an area of 5700

km2 . Its mouth is located to the east of the city of Idfu (see Figure

5.10). The basin extends up to the Red Sea mountains. Wadi Umm Salam is

located in the northern part of Wadi Abbad and has an area of 39 km 2, see

Figure 5.11.

The geomorphologic parameters corresponding to Wadi Umm, Salam were

obtained from a topographic map, and are presented in Table 5.3, along

with the physiographic characteri.7L, 3 of the channels. The only rainfall

data available consists of the maximum daily rainfall at the city of

Idfu, for different return periods. For this investigation the maximum

daily rainfall with a return period of 100 years is used. No hyetographs
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Characteristics of Wadi Umm Salam

Stream Characteristics:

1st order stream:

2nd order stream:

3rd order stream:

Geomorphologic Characteristics: RA = 3.1; RB = 2.4; RL = 2.8

Initial Probabilities: 61(0) = 0.59; 02(0) = 0.21; 03(0) = 0.20

Transition Probabilities:

Pr r = 0.105
12

Pr u
2 3

= 0.833

Pr u = 0.833
12

Pu r = 0.167
2 3

Pr r 0.061
13

Pu u
2 3

Pr r = 0.167
2 3

= 0.833

Path Probabilities:

p(si) = 0.010

p(s 5) = 0.036

P(s2) = 0.082

P(s6) = 0.178

p(s3) = 0.052

p(s7) = 0.195

p(s4) = 0.036

P(s8) = 0.410
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YO
(m)

v0
(m/sec)

0.55

0.65

0.75

0.60

0.70

0.80

so
(m/km)

8.0

7.0

6.5

L
(km)

1.3

3.6

10.0

cl
(m/sec)

2.98

3.27

3.55

Table 5.3:



are availab"le and thus the rainfall intensity is assumed to be constant

throughout the storm's duration.

The discharge hydrographs for storm durations of 2.0, 1.5, 1.0 and

0.5 hours are evaluated which for the total daily rainfall of 36.6 mm

(from Mobarek et al., March 1981) yields the following storm intensities:

1.8, 2.4, 3.7 and 7.3 cm/hr, respectively. Only the average stream

velocity of Wadi Umm Salam is available, and thus this velocity is used,

instead of the peak velocity, to determine the required input parameters.

The average velocity is determined from the estimated discharge to be

3.27 m/sec (from Mobarek et al., March 1981).

Using this average velocity, the total maximum rainfall with a 100

year return period, and the basin and channel characteristics, the

discharge hydrographs for the different storm durations are determined.

(See Table 3.3 for a summary of the input parameters.) The discharge

hydrograph determined using the upstream and lateral inflow channel IUHs

derived in this work, and the hydrograph determined using the exponential

assumption for the channel response are both evaluated. The different

geomorphologic IUHs and the associated discharge hydrographs are presented

in Figures 5.12 to 5.16 and Figures 5.17 to 5.21, respectively. Comparing

the two basin IUHs, Figures 5.12 and 5.17, the peaks are close, but the

time to peaks differ significanci). Similarly, comparing the two types

of discharge hydrographs for the same storm, the peaks are approximately

equal, but the basin IUH using the channel IUHs derived in this work,

produces hydrographs with significantly delayed time to peaks.
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Figure 5.12: Geomorphologic IUH for Wadi Umm Salam.
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Figure 5.13: Discharge hydrograph for Wadi Umm Salam.

180
WadI Umm SaIam

160- Storm duration- 1.5 hours
Storm Intensity- 2.4 cm/hr

140-

120.

E 100 _

o,80 .
L
(a

-C 60 -
U

40

20 -

0

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00

tine [hours]

Figure 5.14: Discharge hydrograph for Wadi Umm Salam.
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Figure 5.15: Discharge hydrograph for Wadi Urnm Salam.
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Figure 5.16: Discharge hydrograph for Wadi Umm Salam.
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Figure 5.17: Geomorphologic IUH for Wadi Umm Salam
using exponential assumption.
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Figure 5.18: Discharge hydrograph for Wadi.Umm Salam

using exponential assumption.
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Figure 5.19: Discharge hydrograph for Wadi Umm Salam
using exponential assumption.
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Observing the overall shape of Wadi Umm Salam, shown in Figure 5.11,

the basin is rather pear-shaped and one would expect that for a uniform

rainfall over the whole basin, the initial response is due to the flow in

the mainstream near the wadi's mouth. Then the flow from the lower order

tributaries located in the upper regions of the basin begin to contribute

to the discharge at the outlet, and thus the long delay for the peak.

This type of behavior is also reflected in the low bifurcation ratio, RB,

of 2.4. For on the average there are less than 3 streams draining into

the next higher order stream, but 2 of these 3 are required to form the

stream of higher order. The transition probabilities, Pr u and
i i+l

pu u , are high and the upstream inflow channel IUH will contribute
i i+l

more to the overall basin IUH than the lateral inflow channel IUH.

This example illustrates the major contribution of the channel IUHs

derived in this work to the geomorphologic IUH theory. The exponential

assumption of the channel response only considers the average travel time

of a drop along the channel, but the travel time for a drop traveling

along the stream which forms the higher order stream, is a lot greater

than the average. Due to the concept of random channel networks, the use

of the exponential distribution to represent the flow from tributaries

which enter laterally along the channel is reasonable as there is an

equal probability of the tributary entering anywhere along the channel's

length and thus the drop's travel time can be represented by the average.

However, in cases where it is known that the tributary enters at a

channel's most upstream point, a more representative channel IUH of the
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actual travel time should be used. As presented in this work, the upstream

and lateral inflow channel IUHs provide additional information such that

the channel IUH can be chosen in accordance with the drop's path. Due to

the lack of actual rainfall-runoff data, no conclusion can be made as to

which model is more representative of the actual situation.
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Chapter 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

The discharge from river basins is a function of both the particular

storm and basin characteristics. This work is based on the linear In-

stantaneous Unit Hydrograph theory and the theory of the geomorphologic

IUH (Rodriguez et al., 1979). Modifications now make the response of

channels of a given order dependent on the location of inputs. Responses

are derived for inputs occurring at the stream's most upstream point and

for inputs occurring anywhere along the channel's length. Both responses

were determined by solving the linearized continuity and momentum equations

for the corresponding boundary conditions. Inherent in these channel

responses are the effects of the slope, length, and stream velocit-'.

The comparison of the hydrographs produced using the exponential

assumption for the channel's response (Rodriguez et al., 1979) and those

using both of the channel responses derived in this work, indicate signifi-

cant differences in the overall shape of the hydrograph. Although for

some cases the peaks and times to peak are approximately the same, the

volume of water discharged before and after the peak differs. In other

cases the peaks agree but the times to peak disagree. Due to the complex

relationship between the variables which influence runoff, no general

statement can be made concerning a relationship between the hydrographs
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produced using the different channel responses. However, it is to be

noted that the upstream and lateral inflow channel response functions

are more representative of the actual flow situation.

This work is still fairly inconclusive since many experiments and

attempts to calibrate known basin responses remains to be done. It is

apparent, though, that a careful look at the assumed time distributions is

required. The whole issue of calibration methods will have to be revisited

if in fact the proposed methodology is believed adequate.

6.2 Recommendations

Given the results present in Chapter 5, of foremost importance is the

estimation of the dynamic parameters which influence runoff. Using the

exponential assumption, the dynamic effects are given by a peak stream

velocity. For the upstream and lateral inflow IUHs, the dynamic effects

are defined by the reference velocity, Froude number and dynamic wave speed,

cl; further research is needed to determine a relationship between these

three variables and the climatic properties of the region such that the

IUH is a function of both the physiographic and climatic characteristics

of the area being investigated.

Further research on the influence of the overall drainage network on

the hydraulic factors which determine runoff is suggested. In particular

the effects of overland flow and infiltration should be investigated.
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Appendix A

SUMMARY OF THE THEORETICAL DEVELOPMENT OF THE
TRANSITION PROBABILITIES AND INITIAL PROBABILITIES

A.1 Transition Probabilities

The derivation of the transition probabilities, p , uses results

from Smart's(1968) random link length model. Referring back to Figure

2.1, an exterior link is a segment of channel network between a source

and the first junction downstream, and an interior link is a segment of

channel network between two successive junctions or between the outlet

and the first junction upstream. Smart (1968) assumed that the lengths

of interior links in a given network are independent random variables.

The assumption implies that the distribution of interior link lengths is

independent of order or any other topologic characteristic. Smart also

used the assumption, originated by Shreve (1967), that all topologically

distinct networks with a given number of sources are equally likely. An

example of topologically distinct networks formed from 6 sources, is

presented in Figure A.l. Using these two assumptions and the conditions

imposed by Strahler's ordering scheme, Smart derived a general result

for the mean number of interior links of order w in the complete network

of order W:

w N -l

E[w,W] = N I --- - 1 w=2,3,...,W
a=2 Na

(A.1)
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where the order of an interior link is given by the order of the channel

of which the link is a segment. The mathematical development of

Equation A.1 utilized concepts from probability theory and combinatorial

mathematics (Smart 1968).

The transition probabilities are defined as follows:

_ number of streams of order i draining into order j
ij ~ total number of stream of order i

= 1.(A.2)

j = i+1, ..., W+1

By Strahler's ordering scheme two streams of a lower order are required

to form a stream of the next order, thus there exists N -2Nw+1 streams

remaining to be tributaries of streams of order w+l, ... , W. Since the

interior link lengths are independent of order and any other topological

characteristics the remaining Nw-2N w+ streams join the highei order

streams of w+l, ... , W according to

(N - 2N ) number of links of order i
w w+1 total number of links of order w+l,...,W

i=w+1,...,W (A.3)

Combining Equations A.1, A.2, and A.3 yields:

(N - 2N i+) E[jW] 2Ni+1
p = . l (A.4)

ij W N i+ij

k E[k,W]N.
k=j
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where 6 +lj is 1 if i+1=j and 0 otherwise. As an example consider the

transition probability p1 2 for a 3rd order basin.

Using Equation A.l

E[2,W] = N2

(N1 - 1)

2N - 12
(A.5)

and

E[3,W] = N3

3 N -l

2N -aa=2 a

NN - 1 N2 2-1
= N3  2N2 - 2N3 - 1

Recalling that N3 = 1 and substituting Equations A.5 and A.6 into A.4

yields:

(N - 2N 2)N 2N2

12  - 2 - +12 (2N 2 -1)N 1 N1
(A.7)

Substituting in the expression for RB:

NW+1
RB "N

w

and rearranging yields:

2
RB + 2RB - 2

12 RB(2RB - 1)

Thus p1 2 is only a function of the geomorphological parameter RB'

(A.8)
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A.2 Initial Probabilities

The derivation of the initial proabilities follows a similar

procedure as the transition probabilities. The initial probability for

a stream of order i is defined as

9 (0) area draining directly into a stream of order w (A9)
w total area of the basin

For w=l, the result is simply:

NA 

91(0) = _ (A.10)

where A is the average area directly contributing to a stream of order

1, and AW is the area of the basin. For a third order basin, the above

is equivalent to

(0) R R-2 (A.ll)1 B A

where RB and RA are the bifurcation and area ratios. The derivation of

92(0) is a bit more complicated. Equation A.9 can also be interpreted

as

area of order w minus area of order w

9 (0) = contributing directly to lower order streams (A.12)
w total area of the basin

The area draining into the tributaries of the stream of order w is

determined by evaluating the average number of links of order i, for
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i=l,...,w-1, draining into streams of order w and then multiplying each

value by its corresponding average area of order i. For example

consider 92(0) for a third order basin. The number of streams of order

1 available to be tributaries of orders 2 and 3 is N1 - 2N2, and of

these the number going into second-order streams is written as:

(N - 2N ) number of links of order 2 (A.13)
1 2 total number of links or orders 2 and 3

Substituting Equation A.1 and simplifying yields:

(N1 - 2N2) 2N 2 (A.14)
2

Thus on the average a stream of order 2 has

(N1 - 2N2) 2N21_ 1 + 2

streams of order 1 that drain into it, where the second term represents

the two streams of order 1 which form this stream of order 2. The

average area draining directly into a second order stream is then

N - 2N2
A2 - 11 2N - 1 + 2]

2

and

2 2  1  2N - 1
A 3 2

Rearranging the above equation and substituting in RB and R yields:

3 2
RB B+ 2 RB 2 RB 

9 (0) = - (A.16)
2 R A R 2(2RB 1)
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Noticing that the second term of A.15 is A N1  an equivalent1 -9 P12 9
2

expression for 2 is

92(0) 2 1 N 2 (A.17)
A3 2

Generalizing the above result for all initial probabilities yields:

N w-1
9 (0) = W [A - X A. (N. p. /N )] (A.18)

w W i 3 jw w

w=2,..,w

In summary, the following general results determine the initial and

transition probabilities:

(N - 2N i+)E[j,W] 2N

i + N 6 i+j

I E[k,W]N

k=j

N A
9w(0) 11

W

N w-1
9 (0) = -w [ A - A. (N. p IN )]
w - w i jw w

AW j=j

where

N = number of streams of order w
w

A = average area draining into streams of order w.
w

The general results can then be rearranged to yield expressions in terms

of the bifurcation ratio, RB and the area ratio, RA*
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Appendix B

MATHEMATICAL PROPERTIES OF THE UPSTREAM AND LATERAL INPUT CHANNEL IUHS

Appendix B is divided into three sections. The first section

presents the solution of the linear partial differential equation given

in Chapter 3. The second section presents the proof that the area under

the upstream and lateral input response functions is one, the third

section presents the derivation of the time lag expression for 6q(x,t),

and the fourth section presents the evaluation of the first term of the

lateral input channel IUH.

B.1 Analytical Solution of the Upstream Input IUH

The linear partial differential equation to be solved is, as

presented in Chapter 3, Equation 3.7,

2 2 2 22g
(gy -v2 a 2q - 2v 3 6q _ a 6q = 3gS  a$l o q .(B.1)

o 0 2 o axat at2 o ax v 0 t

Taking the Laplace transform of each term with respect to t and imposing

the boundary conditions given in Chapter 3, yields

2
2 2 Q(xs) aQ(x,s) _ 2

(gy0-v9) 2 - 2vs a s Q(x,s) =
ax

3gS aQ(x,s) + 2gSo sQ(xs) (B.2)
o ax vs
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where by definition

Q(xs) = exp(-st) 6q(x,t)dt

0

is the Laplace transform of the output resulting from the unit impulse

of the upstream input. Combining similar terms in Equation B.2 yields:

2~s 2 Qxs 2gS
(gy 0 - v ) 2 ) - 2v s + 3gS ) 3 xs) _ (2+ - s 0 s)Q(x,s) = 0

0 x20 axv0

(B.3)

The above equation is a second order homogeneous ordinary differential

equation in x, whose solution is of the general form:

Q(x,s) = a(s) exp[X(s)x] (B.4)

where s(s) and X(s) are unknown functions of s.

The expression for X(s) is given by the characteristic equation of

B.3, which is:
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[X(s) -

(2v s + 3gS )-(2v s + 3gS) 2 -4(gy - v 2 )(s 2 + 2gS 0)
(g -00 V 

2(gy -v 2

[X(s) 2 2v s + 3gS ) + [ 2 2 2 2gS0
[(2vs + 3gS) 4(gy-v)(s + 0 s) ]

= 0 (B.

Referring to Equation B.4, the general solution is:

Q(xs) =

I.

5)

C1 exp{[(2v0s+3gS - (2vs + 3gSO)2 - 4(gy0

)( 2gS0 ) I
0- v2 )(s 2 + gs)x

C2 exp{[(2v s+3gS ) + (2v0+ 3gS0)
2 2

- 4(gy0 - v)(s +

For any Laplace transform,

lim Q(xs) = 0
s+0

Thus C2 = 0.
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The value for C is determined using the initial condition

6q(0,t) = 6(t)

which in the transform space is

Q(0,s) = L[6(t)] = 1

Thus,

Q(0,s) = C1 exp(0) = C = 1

and

Q(xs) =

exp(2vS + 3gS - /(2v s + 3gS )2 - 4(gy - v2)(s 2 + Zs)
0 0 0 0 0 0 v90

(B.7)

The determination of 6q(x,t) requires the inversion of Equation B.7.

In order to simplify notation, Equation B.7 will be rewritten as:

2
Q (x. s) = exp -x a s +bs+c +esx+fx } (B.8)

where the expressions for the constants are given below:
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1

gy (1-F )

S 2
b= -o 2 + F2

q0 (1-F2 )2

9 =(0)2

o

v
0

eO F 2

f = 3
2

S
0

YO

1

(1 - F2 )

V

F =0

gy

Equation B.8 is now rewritten as a sum of Laplace transforms whose

inverses can be obtained from tables of Laplace transforms. Q(x,s) is

rewritten as:

exp[-(/a -e)xs - b - f +
2/T

exp[exs + fx] {exp(-x as2+bs+c ) - exp(- b xs)
2 Fa

(B.9)

The inversion of Equation B.9 requires the use of the shift formula:
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L~1 le-MS f(s)] = u(t - m) F(t-m)

where

f(s) = est

u(t) =

F(t - m) dt

0 t < 0

1 t > 0

To determine the inverse of the second term of B.9, we also use the

fact that the expression

/2 -bexp (- X/ asa+bs+c )-exp( Y- x - va xs) (B.10)

is given as the Laplace transform of

Vd/a x exp(- bt)2a t

I [V d/a t2 _ 2

t2-2

u(t - a x)

where

d = (b/2) - ac

The inverse of each term is derived as follows:

exp[- b x L [exp- - e)xs)]

= expl-( b - f)x] u(t-(i -e)x) F(t-(/a -e)x)
2 Ya

= exp[-( b - f)x]u(t-(VW -e)x)6(t-(/a- -e)x)

- expl-( b - f)x] 6(t-(Fa -e)x)
2 va
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-1 / 2 -b
L [exp[exs+fx]{exp(-x as +bs+c) - exp( x - -bxs)}]

2 Za

exp(fx) /d/a x exp(- (t+ex) 1 /a
2a(

(t+ex) 2- ax2

t+ex)2 - ax2

u(t+ex-Va x)

(B.13)

The sum of the inverses can be rewritten as:

6(t - x/c1 ) exp(-px) +

exp(-rt+zx)(x/c 1-x/c2)h
11[2h /(t-x/c 1 )(t-x/c 2)]

V (t-x/c1 )(t-x/c 2)

(B. 14)

where

1 v +  /gy0 0

S
0

-2yf=

b S 0
r = 2 = 2y 0

2-F
F (1+ F)

2+F 2

F2

f be _ o
2 a =y 0
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h = - Svo (4-F2) 1-F2)
2a 2yO 2F2

2 S 2 /4 F2y
d b2 -ac 0) /4)

T 9(1-F )

= first order modified Bessel function of the first kind

u(-) = unit step function

B.2 Area of 6q(x,t) and r (t)

The following section presents analytical proofs that the area of

the pdfs, 6q(x,t) and r (t), are equal to 1.

B.2.1 Proof that the area of 6q(x,t) is 1

The area of 6q(x,t) equation B.13, is determined using the

definition of the Laplace transform and its moments. 6q(x,t) is a

function of x and t, where x is the distance the drop travelled. In

this study x is the channel length, and the upstream response is written

as a function of t only .

The nth moment of a function around the origin is given by:

m'(t) = f(t)tn dt (B.15)
n f

The nth derivative of the Laplace transform is given by
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dn

dsn 0 0

s=0

-n -st 6q(x,t)dt

= (-. 1 )flJ tfl -st0 6q(x,t)dt

From B.16, at s = 0,

dnQ(xs)

dsn

= (-l) n

n f 0 tn

m' (t)n

6q(x, t)dt

(B.17)

Thus the area under 6q(x,t) is given by:

m (t)= Q(x,s) s=0

Using Equation B.8,

m 0 (t) = expfx(- as +bs+c

= exp[x(-Jc + f)]

= 1

as f = /c (see Equation B.7).
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B.2.2. Proof that the Area of r (t) is 1
a.

As in Section B.2.1, using the functional relationship between

moments and Laplace transforms, the area of r a(t) is given by:

ai~ gve y

L[r (t)]
aI s=O

(B.19)

Substituting in Equation 3.15 into the above equation yields:

(- as2+bs+c +es +f)

[exp(L a- as2+bs+c +es+f)) -1 s=O

i

(B.20)

Since the denominator equals zero at s=0, in order to evaluate B.20,

L'Hopital's Rule is used, and the area of r (t) is given by:

area of r (t)

L [- (as2+bs+c) (2as+b)+e]exp(L (- as 2+bs+c +es +f))

= lim - ai-
S+ L a.[-(as +bs+c) (2as+b) + el

-- 2
a. (- as +bs+c + es + f

= lim e
s-O

= 1
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B.3 Time Lag for 6q(x,t)

The time lag is the time between the centroid of the effective

rainfall and that of the direct runoff. For rainfall which is symmetric

with respect to time, the time lag, tL, is given by:

tL Ft Q-B tdt - (B.21)

T0QB t)dt

where QB(t) is the outflow hydrograph and td is the duration of the

effective rainfall. The above expression can be shown to be equivalent

to:

t = fth(t)dt (B.22)
0

where h(t) is the IUH.

Using the relationship between moments and Laplace transforms:

tL = m (t) = dQ(x,s) (-1) (B.23)
s O (-1) (E i B)

and substituting in the epxression for Q(x,s) (Equation B.8) yields:
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m1 (t) = x (- (as +bs+c) (2as+b)+e)exp(x(- as2+bs+c +es+f) ) (-l)

s=0

= x(- b + e)ex( Y' +f)(- 1 )
/rd~

b
-x(-e)

2/c
(B.24)

Substituting in the expression for b, c, and e (Equation B.8) yields:

(B.25)
tL =m(t) = 1. 5v

B.4 Evaluation of the First Term of Equation 3.10

The first term of Equation 3.10 is given by

jLa.
S ai 6(t-x/c1 )exp(-px)dx

La0
(B.26)

Since 6(t-t/cI) is non-zero only for (t-x/c1 ) > 0, the upper limit of

integration is c1t, and Equation B.26 is

1

(B.27)
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Upon a change of variables for y=t-x/c1 , dy = -dx/c1 , we obtain:

1 f 6(y)exp(-p(t-y)c 
1 )(-c1 )dy

L t
ai

Simplifying B. 28 yields:

l 6 (y) exp(-p(t-y)c1 )c1 dy
L 0

Equation B.29 is only non-zero for y=0 , yielding the following

expression for Equation B.26:

-- exp(-ptc1 )

a.
I
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