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ABSTRACT

A one-dimensional, physically based, station precipitation model is

proposed and tested. The model state variable is the liquid water equiv-

alent mass in a unit area cloud column. Model inputs are the air tempera-

ture, dew-point temperature, and pressure at the ground surface. The

precipitation rate at the ground surface is the model output. Simplified

cloud microphysics give expressions for the moisture input and output

rates in and from the unit area column. Parameterization of the model

physical quantities: updraft velocity, cloud top pressure, and average

layer cloud-particle diameter is proposed, so that parameters, will re-

main reasonably constant for different storms.

Conceptual soil and channel routing models were used together with

the proposed precipitation model in formulating a general Rainfall-Runoff

model.

Hourly data from eleven storms of different types and from two dif-

ferent locations in the US, served as the data-base for the station pre-

cipitation model tests. Performance in predicting the hourly precipita-

tion rate was good, particularly when a sequential state estimator was

used with the model.

The general Rainfall-Runoff model formulated, complemented by a

sequential state estimator, was used with six-hourly hydrological data

from the Bird Creek basin, Oklahoma, and with six-hourly meteorological

data from the somewhat distant Tulsa, Oklahoma, site. Forecasts of both
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the mean areal precipitation rate and the basin outflow discharge were

obtained. Performance indicated the value of the precipitation model in

the real-time river flow forecasting.
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unit volume of air due to particles of
diameter in (D, dD + D) 4.2

X (d) Normalized mass of liquid water equivalent
per unit volume of air due to particles
of diameter in (D, dD + D) 4.5

x(t) Vector state at time t 7.1

0 Initial vector state 7.7

Z Height above ground surface 4.8

Zb Height of cloud base above ground 4.9

Zc Cloud depth 4.8

Zt Height of cloud top above ground surface 4.9

z(t ) Observation vector at time tk 7.2

z Accumulated precipitation volume dur-
ing the observation interval 6.22
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Symbol Description

Greek Alphabet Symbols:

1(v,X)

Y

6

6(t)

kj

,1 2' 39 4

Constant coefficient in the linear
expression for the particle terminal
velocity

Parameter in the expression for the
cloud base and top updraft velocity

Complementary Gamma function

Ratio of the average layer particle
diameter at cloud base to the average
layer diameter at cloud top

Factor introduced due to the non-
uniform height distribution of the
average layer particle diameter

Dirac delta function of t

Kronecker's delta

Station precipitation model parameters

Equation No.

4.7

5.43

5.5

4.13

4.16

7.3

7.4

5.34,
5.39,
5.42

Mass reduction factor due to sub-cloud
diffusion

Potential temperature

Equivalent potential temperature

Dynamic viscosity

Innovations sequence vector at time tk+l

Factorial: 1.2.3... (v-1)

Binary function taking only the values
0 and 1

Mass density of air

Height averaged cloud air mass density

Cloud particle mass density

Liquid water mass density
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C(D)

0

0
e

Sk+l
(Vk1) 
(v-l)!

( (y)

4.39

3.5

3.14

4.27

7.23

5.6

5.30

4.28

3.18

4.23

4.2

pm

pp

pW



Symbol Description Equation No.

2(t) State covariance matrix at time t 7.6

-o Initial state covariance matrix 7.8

T Time constant of ith channel reservoir 6.27
c.

T Time constant of the station precipitation
model 6.24

$(u,ao) Unit area column precipitation rate func-
tion of the meteorological input and
parameters 5.28

w0 Scale constant 6.23
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Chapter 1

INTRODUCTION

1.1 General Framework and.Scope of Study

In a recent review of the status of the operational precipitation

forecasting procedures, the Panel on Precipitation Processes, National

Research Council, underlines the significance of development of effective

short-range precipitation and flood forecasting and warning procedures to

the US safety and economic welfare (NRC, 1980). The importance of the

development of probabilistic models for the real-time, local-site, short-

term forecasting of floods, based on quantitative precipitation forecast-

ing and multiple sensors (e.g., raingauge, meteorological and flow sensors)

observations, is indicated in the same reference.

It is the purpose of this study to develop stochastic models of the

precipitation and drainage basin processes suitable for use in the real-

time forecasting of precipitation and flow rates.

This study draws heavily on the scientific methods and techniques

developed for:

1. the operational forecasting of precipitation,

2. river flow forecasting in real-time, and

3. the optimal blending of system models with observations of the

system input and output variables by the use of modern estima-

tion theory.

Considerable work has been done in all three of the above areas with

useful, in many ways, results. A brief account of the work, as related to

this study, follows.
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Operational forecasts of precipitation quantity and time of occurence

over a certain area are based: 1) on the input of large scale models that

simulate the atmospheric dynamics, with spatial resolutions of the order

of 150 km grid-size and greater (e.g., the Limited area Fine Mesh model,

LFM, documented in NWS, 1978), 2) on the use of regression models (Multi-

ple Output Statistics model, MOS, Glahn and Lowry, 1972, and Lowry and

Glahn, 1976) that correlate the predictions of the atmospheric models with

observations on a smaller scale, and 3) on the experience of local fore-

casters with local weather patterns.

Recent evaluations (Charba and Klein, 1980, and NRC, 1980) of opera-

tional quantitative precipitation forecasts show relatively poor perfor-

mance.

Large scale atmospheric models fail to adequately consider the meso-

scale aspects of precipitation, NRC (1980).

The use of regressions to compensate (at least partially) for system-

atic errors in the large scale numerical models involves difficulties such

as: 1) the identification of all the relevant meteorological variables

that will be used as "explanatory" variables for each location, and 2) the

absence of high linear correlation in the station precipitation records.

In addition, no guarantee is provided regarding the invariance of the re-

gression parameters for different storms, due to the absence of the pro-

cess physics in the regression.

The process by which local forecasters combine information from dif-

ferent sources to issue operational forecasts varies with each case. They

often, however, rely heavily on the LFM and MOS forecasts.

29



In addition to the procedures described above for the dissemination

of operational precipitation forecasts, numerical models simulating some

of the convective cloud processes exist in the meteorological literature

(e.g., review in Rogers, 1979). Their focus is on the identification of

the microphysical cloud processes. Their spatial and temporal scales are

significantly finer than those of interest in this work. In addition,

their interest is on the moving storm rather than on the effects of the

storm processes at a fixed location on the ground.

Recently, advances in satellite technology have given rise to a new

group of precipitation models (e.g., review in Iaraham, 1981). Satellite

infrared pictures of cloud systems are used to infer storm properties as

they develop in space and time (e.g., updraft velocities in clouds, spatial

extend and movement characteristics of storm systems). Then, regression

models are used to relate these properties with precipitation data from

ground observation stations. Although this type of models look promising,

they do not avoid the regression parameters calibration problem and they

need high quality (and cost) satellite data.

In the past, procedures that combine results in the second and third

problem areas have been developed. Conceptual, physically based catchment

models and observations of hydrologic variables have been combined, through

the use of modern time-domain estimation theory results, to produce im-

proved forecasts of the catchment outflow. Along these lines, the spati-

ally lumped, non-linear, conceptual, soil-moisture accounting scheme of

the National Weather Service River Forecast System (NWSRFS) (description

in Peck, 1976) together with linear (e.g., Kitanidis and Bras, 1980b, and

Restrepo-Posada and Bras, 1982) or non-linear (Georgakakos and Bras, 1982)
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channel routing schemes have been successfully used for simulating catch-

ment response. The extended Kalman filter (Kitanidis and Bras, 1980a),

and a Gaussian linear filter operating on a statistically linearized model

(Georgakakos and Bras, 1982), have been utilized to extract the informa-

tion contained in the available system observations. The improvement, evi-

dent when estimation theory results (filters) are involved, makes the tech-

niques attractive for real time forecasting purposes.

Due to the absence of precipitation models compatible in mathematical

structure, and spatial and temporal scales to the hydrologic models of the

conceptual type, no work has been reported on the real-time coupling of

precipitation and streamflow forecasting models.

1.2 Program of Study

A physically based non-linear precipitation model in the state-space

form is formulated first. Based on the meteorological variables (tem-

perature, pressure, and dew point temperature) for a certain ground sta-

tion, it produces as an output, the precipitation rate at the station lo-

cation.

The state variable of this model is the liquid water content of the

storm clouds at a certain time at the station location. The inflowing and

outflowing moisture to the cloud are based on simplified cloud microphysics.

The dynamic equations of the precipitation model are coupled together with

an improved state-space representation of the stochastic soil moisture ac-

counting model (Kitanidis and Bras, 1980) of the NWSRFS and with the sta-

tistically linearized non-linear channel model of Georgakakos and Bras

(1982).
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Verification of a simple representation of the proposed precipitation

model is done with hourly precipitation and meteorological data for Boston,

Massachusetts, and Tulsa, Oklahoma. A total of eleven storms of differing

severity and type were studied. An application of the full Rainfall-

Runoff model developed is also reported for the Bird Creek basin, Oklahoma.

Due to the lack of meteorological data in the Bird Creek basin, the Rain-

fall model utilized information from the somewhat distant Tulsa, Oklahoma,

site.
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Chapter 2

STATION PRECIPITATION MODEL OVERVIEW

2.1 Introduction

This chapter presents the basic ideas and formulation of the con-

ceptual station precipitation model. It avoids mathematical details,

but sets the foundation for the more complete discussion of the next

chapters.

2.2 Model Hypothesis

The following were the most important considerations in formulating

the model:

1. Time series of variables that were either operationally fore-

casted or observed should be used as model inputs.

2. The model output should be the precipitation rate at a certain

location. A forecast lead time of a few hours is of interest.

3. The model equations should be formulated in a state-space

form amenable to modern estimation theory techniques.

4. The structure of the model components should be indicated by

well established theories and observations, while being as

simple as possible.

The fundamental model hypothesis is that the surface temperature

(T ), dew point temperature (Td), and pressure (p0) of a certain location
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contain considerable amount of information about the concurrent volume

precipitation rate (P v) at the same location.

Accepting the stated hypothesis, the operational precipitation

forecasting problem becomes one of forecasting To, p0, Td. However,

the characteristic high linear correlations among those three variables

(e.g., hourly auto-correlations of 0.9 are usual) in contrast to the

low auto-correlations of the precipitation rate, suggest that simple

linear statistical predictors of T0, po, Td (similar to the ones

presently in use by the NWS in the Multiple Output Statistics model)

are possible.

2.3 Model Overview

The storm system is conceived as a storage reservoir of condensed

water. Its input is the water condensed during the pseudo-adiabatic

ascent of moist air. It is depleted 1) through the cloud top by the

action of the storm updrafts that carry away the small diameter cloud

particles which subsequently evaporate totally in subsaturated air,

and 2) through the cloud bottom by the precipitation of the larger

particles.

The mass of water in the storm storage varies with time. The

formulation is based on the liquid water equivalent mass in the

storm clouds; therefore, both rain and snow are treated by the model.

As inevery physically based model, a spatial scale should be

defined so that the model parameters can be interpreted and associated

with observations. Due to the storm movement, a measure of the model
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scale is the distance travelled by the storm in the forecast lead

time. For example, if the average horizontal storm velocity is 15 km/hour,

and the forecast lead time is 1 hour, the horizontal scale is 15 km.

The slower the storm and/or the shorter the forecast lead time, the

closer the model scale is to the characteristic turbulence scale, that

is the storm cells diameter, 0(1 KM). Due to the nature of the nodal

points on the ground surface where observations or predictions of the

model input and output variables are available, the characteristic model

scale will actually be taken equal to the maximum distance between adja-

cent nodal points.

The characteristic vertical scale is equal to the cloud height.

The more vigorous the storm is, the larger this scale becomes.

Storm dynamics are examined within the vertical atmospheric

column. The important assumption is that the vertical column is

isolated from condensed water transport from the surrounding areas.

It is expected that the larger the horizontal scale is the better

this assumption becomes.

Within the vertical column of unit horizontal area, there are two,

in general, regions of different water particle states. Above the 0*C

(320F) isothermal surface and up to the cloud top, there are ice

particles and supercooled rain droplets. As the temperature falls

in the upward direction, the ratio of the number of ice particles to

the number of the rain droplets increases. There are mainly raindrops

under saturated conditions of the ambient air between the melting
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level and the cloud base. In the unsaturated layer below the cloud

base, falling drops partially evaporate. Depending on the

storm type, the season of the year and the geographical location of

the storm, some of the layers described above may not exist.

Given time scales of the order of a few hours, this work does

not differentiate between the ice and liquid water layers. The

storm column is modeled as a single storage reservoir. Evaporation,

however, of the water drops or ice particles in the sub-saturated

layer is taken into account,

Conservation of mass leads to the following equation for condensed

liquid water equivalent in column,

dX(r,t)

dt = I(r,t) - O(rt) (2.1)

where,

r: the 2-dimensional vector of horizontal coordinates

with respect to a coordinate system that is stationary.

t: the time variable.

X(r,t): mass of liquid water equivalent in the conceptual storage

of the unit column at time t (MASS/M2 ).

I(r,t): input mass rate due to the condensation of the water

vapor in the column at time t (MASS/M /TIME).

O(r,t): output mass rate through the top and through the bottom of

the unit area column at time t (MASS/M 2/TIME).
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Of interest in hydrologic applications is the portion of water

particles leaving the cloud base which reach the ground. For sub-

saturated air below the cloud base, the falling drops undergo a

reduction in mass from evaporation.

It should be noted that the quantities in Eq. (2.1) depend both

on the horizontal coordinate vector r of the unit column and on time t.

For simplicity, dependence on r or t is not shown when dealing with the

unit area column.

Clearly, a complete mathematical description of the whole physical

process that produces precipitation would involve statements for the

coupled conservation of mass, momentum and heat laws corresponding to

the condensed water, the water vapor, and the dry air. For reasons of

model simplicity and model compatibility with conceptual hydrologic

models (e.g., the National Weather Service River Forecast System (NWSRFS)

model, Peck, 1976) the conservation law of Eq. (2.1) is used, while

approximations of the heat conservation law for the moist air are used

to find expressions for the rates I and 0. Comparison of the model

predictions with observations will demonstrate the usefulness of this

approach given the temporal and spatial scales of the available input

data.

The input term I is determined from information on the water vapor

content of the inflowing air. Pseudo-adiabatic rising of the air parcels

from the cloud base is assumed.
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Use of the microphysical structure of the storm clouds (i.e.,

particle size distribution) and of the terminal fall velocity of the

precipitating particles, gives expressions for the output mass rate

per unit area 0 and for the precipitation mass rate per unit area P at

ground surface. These quantities are functions of the mass of water

in storage: X. Throughout this development it is assumed that the

precipitation produced in the unit column reaches the ground within its

unit area projection.

Figure 2.1 is a schematic representation of the unit column

(shaded regions) and related physical quantities in the storm system.

The upper part of the figure is a plan view of the storm clouds moving

with horizontal velocity u(t) relative to the ground. The

0 0
stationary coordinate system has horizontal coordinates r1 , r2 and verti-

cal coordinate Z. It is assumed that the origin of the coordinate

system stays at ground level at all times. dA is the unit area of the

column located at (r, r2).

The lower part of Figure 2.1 represents a vertical cross-section

in the storm system along the dashed line a-a. All the quantities shown

are functions of the coordinate vector r and of time t. The variables

X, I have been defined in Eq. (2.1). The output mass rate 0 has been

divided into 0t and 0b to denote output from the top and the bottom

of the clouds in the unit area column, respectively. P is the ground

surface precipitation mass rate per unit area. The cloud height averaged

updraft velocity is denoted by v. The normalized particle size distri-

bution n(D)/N0 is also shown as a function of the liquid water equivalent
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diameter D. The inflowing air at the ground level is characterized by

pressure p0 , temperature T and dew-point temperature T . The pressure

and temperature at cloud base are p and T . The same quantities at the

cloud top are pt and T . The quantities ps s are those resulting

from heat adiabatic ascent, while pt' t are those resulting

from further pseudo-adiabatic rising. The cloud bottom is at elevation

Z b, while the cloud (and column) top is at Z . The unit column model
b t

related input variables are: p0, T , T The physical model parameters

are: v, pt, c. The quantity c is the characteristic scale of the

assumed exponential particle-size distribution.

The updraft velocity is assumed to vary as in Figure 2.2 along

the vertical, reaching a maximum v at the elevation where the averagemax

of top and bottom pressures occurs. Its values at the cloud top and

bottom are equal to a portion of its vertically averaged value v. The

value of v is the value of the updraft velocity at the height defined

by the pressure level p - 1(p - p

A parameterization of v, pt and c will be proposed so that they are

functions of the input variables T0, p and T This is done in an

effort to obtain a model with parameters that are reasonably constant

for different storms. The details of the model formulation are given

in the next three chapters.
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Chapter 3

WATER VAPOR CONDENSATION

3.1 Introduction

The water mass supply of the vertical unit area column is the

moist-laden inflowing air that rises in it. This work assumes conserva-

tion of heat of the air masses, as they rise. There is no heat exchange

between rising air parcels and the ambient air. The parcels are warmed,

however, by the release of the latent heat of condensation when they are

above the cloud base. The relevant theory is well established in the

literature and pseudo-adiabatic charts have been constructed to

facilitate the calculations. It is the purpose of this Chapter to de-

rive an efficient numerical algorithm for the computation of the con-

densed water mass rate input I. Appendix A gives the definitions of

the relevant meteorological terms used.

3.2 General Description of Condensation

Moist, unsaturated air with temperature T0, pressure p and dew

point temperature Td is lifted in the storm. As it ascends, it immediately

adjusts to the pressure reduction with height and expands. Given that

the atmospheric moist air follows closely the ideal gas law, it cools

adiabatically. Since the saturation vapor pressure is an increasing

function of temperature, and the saturation mixing ratio is an increasing

function of the saturation pressure, at some point during its rise, the
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air becomes saturated. This is the lifting condensation level (LCL).

Further lifting will result in supersaturated air (supersaturations up

to 1% have been observed). However, the excess vapor condenses onto

the atmospheric nuclei, suspended in the air, to form water droplets.

Within the storm clouds the air is saturated with water vapor.

Below the lifting condensation level, the air rises heat-adiabatically

with constant potential temperature. Above the level of condensation

the rising air is warmed by the latent heat of condensation and it is

assumed that it follows the pseudo-adiabatic rate, with constant

equivalent potential temperature up to the level of pressure pt where

the condensation ceases.

The next two sections derive the set of equations that define

the input mass rate I per unit horizontal area. The last section discusses

some of the assumptions involved.

3.3 Water Mass Rate Condensed per Unit Mass of Moist Air

What is the mass of liquid water equivalent condensed per unit

mass of dry air, when an air parcel with initial temperature T0, initial

pressure p and dew point temperature Td is lifted up to a terminal

pressure level p?

The initial mixing ratio w is known from the input parameters

es(Td)
w = w (T ) = E - (3.1)
o s d' o p - e (T )Osd
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where ws Td p) is the saturation mixing ratio at temperature Td

and pressure p and

s = 0.622

e sd(T = saturation vapor pressure over

a plane surface of pure water.

The saturation vapor pressure es is a nonlinear convex function of

temperature (solid linesin Figure 3.1). It is convenient to fit a

nonlinear function of the type

e (T)= A1 - (T - 223.15)3.5 (3.2)

since:

c /R = 3.5
P

with

R = 287 [JOULE/(KG.0 K)]

c = 1004 [JOULE/(KG.0K)]
p

A value of 8 x 10~4 [KG/(M-SEC 2.oK 3.5)] for A1 gives the fit shown in

Figure 3.1 (dashed line). It is seen that the function of Eq. (3.2)

provides an excellent fit to the observed data (Mason , 1971, pg. 615)

for values of temperature in the range: -300C < T < 100C.
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FIGURE 3.1
Observed (solid lines) saturation vapor pressure over a plane
surface of water (es (T)) or ice (es (T)) vs. temperature T.

Fitted es(T) in dashed line.
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From Eqs. (3.1) and (3.2) it follows that (p0 >> e (T d)),

A -(T - 223.15)3.5
w = e (3.3)

Similarly, the saturation mixing ratio at temperature T and

pressure p (i.e., if the air were saturated at T ) is,

A -(T - 223.15)3.5
w (T ,p ) = - (3.4)

If w < w (T ,p), equivalently if Td < T , the air is not saturated.

During the ascent, the temperature and pressure will follow the dry

adiabat that originates at T0,p . When the air becomes saturated, the

pseudo-adiabat, passing through the level at which saturation was first

reached, will be followed for the rest of the ascent.

If w0 = ws T0,po), equivalently To = Td, the air is saturated and

the pseudo-adiabat will be followed throughout the rising.

During the dry-adiabatic rising, the potential temperature e

of the air stays constant at the value given by the Poisson's equation

(Wallace and Hobbs, 1977),

G=T T n R/c (3.5)

where pn = 10 [KG/(M-SEC2 )]
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Along the 0 adiabat given by (3.5), temperature T and pressure p

change according to,

1 0.286
T = 0.286) - p (3.6)

pn

since, R/c p= 0.286.

The dry adiabatic rising continues until the air parcel becomes satu-

rated. The point (T ,ps) where this takes place is the solution of

the system of Eqs. (3.6) and

T - 223.15 = (A_- 0.286 (3.7)
1 -s

Eq. (3.7) has been inferred from Eqs. (3.2) and (3.1).

The system of equations leads to

(-) 0286 )0.286 + 0] = 223.15 (3.8)
pn A -0

The solution of Eq. (3.8) depends on whether the function

f (T ,p ,Td) = 0 - (n-wo) 0.286 (3.9)

is equal to zero or not.
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By virtue of Eqs. (3.3) and (3.5)

f 1 ,pTd 0.286 -T 0 - Td + 223.15) (3.10)

By definition, for all values of T and Td the function fI in

Eq. (3.10) is different from zero.

Substitution of Eq. (3.10) in Eq. (3.8) results in,

Ts _ s 0.286 1 (3.11)
T p T - T
So o d+

223.15

So the lifting condensation level pressure ps and temperature T are

given by

p 1 3.5 . p (3.12)
s T - T d

223.15

T =( )-T (3.13)
s T - T d

o d +0
223.15

It should be noted that the choice of the exponent in Eq. (3.2) is

responsible for the simple form of Eqs. (3.12) and (3.13)

Ascent of the air parcel above the level (Tsp s) results in the

condensation of the water vapor to liquid water. The released latent

heat of condensation will warm the air parcel. Consequently, further

rising will not be heat-adiabatic. It is assumed that the latent
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heat released does not cross the boundaries of the ascending air mass,

and that the condensate is liquid water and it precipitates immediately

so that the heat content of the condensed material (small compared to

the heat content of the air mass) need not be considered when calculating

temperature changes.

Under the above assumptions, the characteristic equivalent potential

temperature e of the pseudo-adiabat followed is (Wallace and Hobbs,

1977),

L(Ts )w s(Tps s6 = - ep{ (3.14)
e c -T

p s

where L(T) is the latent heat of condensation, which depends weakly on

the temperature. Eagleson (1970) suggests a linear function for L(T)

of the type

L(T) = A - B-(T - 273.15) (3.15)

where A = 2.5-106 [JOULE/KG] and B = 2.38-103 [JOULE/(KG-0 K)].

Expressing 0 in terms of p and T using Eq. (3.6) and substituting

in Eq. (3.14) leads to the following description of the variation of

T and p along a constant 0 , pseudo-adiabatic rising

p0286 L(T)-w (T,p)
0 = T(-) exp).c } (316)
e p c pT
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Given a terminal pressure level, pt, it is then possible to obtain

the corresponding temperature Tt, using Eq. (3.16). The final saturation

mixing ratio can be computed and is ws T). The difference

Aw =w - w(T ,p) (3.17)
0 st t

is the mass of liquid water resulting from the condensation during the

pseudo-adiabatic ascent of a unit mass of dry air. Since the specific

humidity qh is related to the mixing ratio w by (Eagleson, 1970) w = qh'

it follows that Aw is also approximately equal to the mass of liquid

water resulting from the ascent of a unit mass of moist air.

The steps outlined above are in fact an analytical version of the

pseudo-adiabatic chart used in meteorology.

Due to the nonlinearity in Eq. (3.16) with respect to the tempera-

ture T, Aw cannot be found explicitly. Rather, it must be obtained

using iterative methods of root determination (e.g., the Newton-Raphson

method). The necessary derivatives and starting value are given in Appendix B.

3.4 Input Mass Rate Per Unit Area

Assuming that the water content of a volume of air entering the

cloud base vertically per unit time will not leave the unit area column

from the sides, the input mass rate of condensate is

I = Aw - PM - v - dA (3.18)
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P : a vertically (from pressure ps to pressure pt

averaged density of moist air,

v: the vertically averaged updraft velocity of the

inflowing air,

dA: the unit area measure (=1).

Eq. (3.18) can be written as,

I = f(u, a ) (3.19)

where u is the vector of input variables

T
u = [T p T d]

and a is a parameter vector

T
a = [pt vI

with the symbol "T", when used as an upperscript, defining the

transpose of a vector or matrix quantity. A discussion on the parameters

Pt and v is given in Chapter 5.

An important conclusion is that the input rate I is not (in

general) a linear function of the water vapor mass content of the

inflowing (in the storm) air.
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3.5 Discussion of Assumptions in the Unit Area Column Condensation Equation

Several assumptions have led to the form of the unit area column

condensation equations presented in Sections 3.3 and 3.4. When possible,

the effect of each assumption on the model behavior is assessed in terms

of existing observations of the physical process. It should be kept in

mind, however, that the model equations will be verified as adequate, if

a good fit of the model output with observed data gives physically rea-

sonable (observed) values for the model state and parameters.

Due to the large spatial extent and time duration of the storms

of significance to hydrologic basins (areas of 1000 km 2), very few

(mostly radar based) observations of the characteristics of the storm

dynamics are available (e.g., discussions in Rogers, 1979, Fletcher,

1962). For the past years, observations of the storm dynamics have been

almost exclusively in small scale convective storms. The discussion

of the model assumptions based on these observations is justified, by

evidence of existence of convection regions within large scale strati-

form cloud development (Hobbs and Houze, 1976, Fujiwara, 1976, Rogers,

1979).

Observations of the liquid water content of convective clouds by

aircraft, summarized by Byers (1965), showed that it is significantly

less in most cases than the value realized by pseudo-adiabatic parcel

ascent. The ratio of observed to theoretical water content ranged

from 0.1 for observations on West Indian hurricanes to 0.4 for observa-

tions on trade-wind cumulus in the Caribbean, decreasing with height
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in the cloud. This was explained by the supposition that dry environ-

mental air mixes into the cloud, thus reducing its water content. The

extent to which entrainment is important to the types of storm systems

of interest in this work cannot be determined based on existing observa-

tions. Nevertheless, it can be stated that if entrainment is important,

the model will tend to over-estimate the precipitation rate.

Byers (1965) discusses the use of the pseudo-adiabatic ascent to

describe the dynamics of condensation. He concludes that the mutually

exclusive assumptions:

1. water is precipitated as fast as it is condensed

(the process is irreversible),

2. water stays in the parcel during ascent (the process

is reversible),

lead to similar numerical results.

Direct deposition from the vapor phase to the solid phase is not

taken into account during condensation, therefore the latent heat of

sublimation is not used in Eqs. (3.14), (3.15), and (3.16). Observations

of large numbers of supercooled liquid water droplets at -150C or

colder (Rogers, 1979) render this assumption reasonable. Nevertheless,

even for very low temperatures, the latent heats of condensation and

sublimation differ by less than 10% (Byers, 1965).

In using adiabatic transitions it is implicitly assumed that the

air below the cloud base is well mixed. That is, the temperature lapse

rate is the dry adiabatic and that the cloud base is at the lifting

condensation level (Rogers, 1979). Coulman's and Warner's (1976)
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aircraft observations in convective clouds indicate that this assumption

is reasonable.

Condensation of the water vapor at saturation conditions, not

allowing supersaturation, is supported by 1) the presence of hygro-

scopic nuclei in the atmosphere in vast quantities and sizes, and

2) the long time intervals of interest in this work (of the order of a

few hours).

The errors due to considering the dry air and the water vapor in

moist air, as ideal gases are rather small. Dufour and Defay (1963)

prove that, in humid air at pressures less than 1000 [MBAR], the error

for the dry air is less than 0.1%, and that for the water vapor is

less than 1%.

In some cases the so-called virtual temperature is used in place of

the ordinary one, so that the properties of the dry air as an ideal gas

can be used when dealing with moist air. The correction is a function

of the mixing ratio. For mixing ratios observed in the earth's atmos-

phere (less than 0.04), the correction adds less than 1% to the tempera-

ture (Byers, 1965).

Eq. (3.18) utilizes vertically averaged values of pm and v. Given

the uncertainty associated with estimates of v in the unit area column,

the increased complexity introduced by using

w (T t p)

I = v(p)-p(pT)(dA)dws (pT)

ws(Tsp s)
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was not considered necessary. Integration in the above is for values

of p, T along the pseudo-adiabat. p(p, T) is the air density at pres-

sure p and temperature T.
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Chapter 4

STORM PRECIPITATION FORMATION AND EVOLUTION

4.1 Introduction

It is the next task to obtain expressions for the unit area

column output mass rate 0 of Eq. (2.1) and for the precipitation mass

rate, P, per unit area, that reaches the ground. Expressions for

these quantities are obtained by examination of the cloud micro-

physical structure.

Theories of precipitation formation and evolution are reviewed

to establish a working background. It should be noted that due to the

immense variety of temporal and spatial scales involved in the dynamics

of precipitation, observations are difficult to obtain and even more

difficult to interpret (Mason, 1971; Braham, 1965; Pruppacher and

Klett,1978). Consequently, the following is a brief account of the

contemporary theories on precipitation, based on currently available

instrumentation which is far from being adequate for all purposes.

The macroscale processes accompanying forced lifting of moist

air masses, described in the previous chapter, result in an amount of

liquid condensed water. This is in the form of minute hydrometeors of

various sizes created by the adherence of the H 20 molecules onto small

(<1,10 pm) particles (condensation nuclei) that are available in vast

quantities and different sizes in the lower atmosphere. Various growth

processes, to be described in section 4.2, lead to a broad spectrum

of drop sizes in the cloud. A portion of the drops, those big enough
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to fall toward the ground against the updraft of velocity v, precipitate

through the cloud base at some terminal velocity. Given unsaturated

conditions below the cloud base, evaporation reduces the precipitating

mass.

Following a brief account on the in-cloud growth of the precipi-

tation particles, observations on the distribution of particles with

size are presented in section 4.3. Next, observations on the terminal

velocity vT, are used to establish the vT versus particle diameter D

relationship. Evaporation is dealt with in Section 4.5.

4.2 Precipitation Formation

Detailed reviews of the theories of precipitation formation

can be found in Braham (1965), Sulakvelidze (1969), Mason (1971) and

Pruppacher and Klett (1978). All of those authors summarize observations

of cloud systems that support, for the most part, the following.

The dominant precipitation generating mechanism in clouds whose

tops extend in regions of freezing temperatures is the growth of

ice crystals at the expense of the existing supercooled water droplets.

It is hypothesized that the water vapor pressure in such clouds assumes

an intermediate value between the saturated vapor pressures over ice

and over water. Therefore, freezing takes place on ice crystals while

the droplets evaporate. This process continues until the liquid phase

disappears completely. In the mean time, large ice crystals begin

to fall, coalesce with smaller particles and grow in volume. Generally,
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if surface temperatures are above 00C, ice particles melt on their

way down the atmosphere, resulting in rainfall on the ground. The

first ice crystals in a supercooled liquid-droplet cloud are formed on

minute freezing nuclei, active in temperatures from -10 0C to -20 0C.

For clouds whose tops are below the level where active freezing

nuclei can be found, precipitation formation is explained by the

so-called chain reaction theory. Droplets grow in a cloud by gravi-

tational coalescence. When the drops reach a critical diameter above

which they become aerodynamically unstable, or due to collisions with

other drops, they splinter to form a few large drops and many small

droplets. Each of the large drops generated grow by gravitational

coalescence until the critical diameter is reached or a collision

occurs, when it splinters and the cycle is repeated. The chain

effect leads to the formation of the raindrops in precipitation.

Houghton (1968) suggests that the precipitation mechanism in

stratiform, cyclonic systems is largely based on the ice crystal growth.

He used the observed exponential increase of ice crystal concentration

with decreasing temperature to explain the height uniformity of the

level of precipitation initiation, over the spatial and temporal storm

extent. This uniformity and the high efficiency of the ice crystal

process to remove the products of vapor condensation or deposition,

is used to explain the steady, highly efficient, precipitation observed

in stratiform clouds.
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The same author suggests that convective storms are the result of

high liquid water presence due to the strong updrafts, and the chain

reaction process. He explains the low precipitation efficiency (ratio

of precipitation to condensate, expressed as a percentage) of convective

clouds using the hypothesis that the accretional growth process is

incomplete in those clouds.

4.3 Size Distribution of Hydrometeors

Since a hydrometeor (also referred to as a cloud particle) will

start falling toward the ground if its terminal velocity is greater

than the updraft velocity, and since the terminal velocity depends on

the hydrometeor size (subject of section 4.4), it is necessary to have

a description of the hydrometeor size spectrum in order to find the

number of particles large enough to precipitate.

Conclusions on hydrometeor size distribution are shaded by the

characteristics of existing data collection methods (Mason, 1971).

A few important drawbacks are:

1. Calibration of instruments is difficult.

2. Measurements of particles with sizes of lengths less than

about 5 pm are not reliable.

3. Instantaneous measurements of different locations in the

storm cloud are not feasible with present day instrumen-

tation.

4. Observations in clouds containing ice particles are troubled

by icing on the instruments.
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Observations summarized by Mason (1971), and Pruppacher and Klett

(1978) from a wide range of storm cloud types and locations throughout

the world, reveal a common characteristic of the particle size dis-

tribution as expressed by the number of particles, n(D), of water

equivalent diameter D, per unit volume, per unit diameter range

(D, dD + D). That is, n(D) increases steeply for small D to reach a

maximum and possesses a very mild slope for large D.

Log-normal, Pearson Type III (Mason, 1971), and the so-called

Khrgian-Mazin (Pruppacher and Klett, 1978) distributions have been

proposed and used to describe the observed characteristics of n(D),

in cloud physics research.

A simpler, exponential function of the type:

-c - D
n(D) = N - e (4.1)

0

is adopted in this work. N 0 and c are parameters.

The reasons for such a choice are:

1. It is a much simpler function.

2. The exponential shape for relatively large D has been

established from observations of precipitation particles.

For example, the raindrop distribution in Marshall and

Palmer (1948) and snowflake distribution in Gunn and Marshall

(1958) are of the type in Eq. (4.1) with Noc parameters

possibly depending on the precipitation rate. Those dis-
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tributions have been shown to fit rather well observations

of precipitation, for a variety of storm types and meteoro-

logical conditions (e.g., observations by Dingle and Hardy

(1962) and by Ohtake (1965)).

3. There is uncertainty as to the shape of the distribution

for small D due to errors in the sampling of the smallest

particles. In addition, there is some evidence (Eldridge,

1957) that droplets with diameters less than 1 pm occur in

much greater proportions than have been detected by ordinary

methods.

4. Droplets with small diameters are carried away due to the

action of the updraft in the model developed in this work.

Small droplets predicted by the exponential in Eq. (4.1)

will then play a minor role in the actual precipitation

rate.

Given the size distribution of Eq. (4.1), the water equivalent

mass X(D) due to particles of diameters in the interval (D, dD + D), per

unit volume is:

X(D) = p n(D) D 3  (4.2)
w 6

The precipitation mass rate P(D) due to the same particles is:

P(D) = & -n(D) - D3 (v (D) - v) (4.3)
w6 T
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where,

p : liquid water density [KG/M 3],

v T(D): terminal velocity of particles of diameter D [M/SEC],

v: updraft velocity [M/SEC].

The relative importance of the different diameters to n(D),

X(D) and p(D) can be readily seen in Figure 4.1. There, the normalized

variables:

n (D) = n(D)/N0  (4.4)

X(D) = X(D) - c3 (4.5)

n -. -N 06 w 0

4
P (D) = P(D) - c (4.6)

n N -
6 w 0

are plotted together in a common scale. It has been assumed that

v T(D) is of the type:

v T(D) = a - D (4.7)

and v is equal to zero. The next sub-section will justify the use

of a linear function for v T(D) and will determine the constant a.
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Normalized number concentration n , water mass content

X and Drecipitation rate P due Po hydrometeors of
diameter in the range (D, Dn+ dD) vs. the normalized

diameter cD.
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Figure 4.1 shows that the diameter that contributes the maximum

water equivalent mass is equal to 3/c, while the one that contributes

the maximum water equivalent mass precipitation rate is equal to 4/c.

In addition, the proportion of the water equivalent mass contributed

by particles less than 1/c in diameter is 0.019 and the portion of

the water equivalent mass rate contributed by particles less 1/c in

diameter is 0.0037.

The proportions are respectively 0.1429 and 0.0527 for particles

of size diameter less than or equal to 2/c.

The parameter c in Eq. (4.1) is equal to the inverse of the

average diameter. The parameter N reflects the number of small

diameter droplets that have a small contribution to the precipitation

rate (e.g., Figure 4.1). For simplicity it is taken to be a constant

throughout the height of the column. A simple linear function of

height is adopted for c:

c = c. + - (c - c (4.8)
Z Z c u Z
ic

with Z given by:

Z = Z - Z (4.9)
c t b

and where c,, cu, Z are shown in the definition sketch in Figure 4.2a.

Figure 4.2b represents the resultant height variation of the inverse
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of c, that is the average particle diameter D, given by:

D = (4.10)

Zc D Zc DU

Figures 4.2a and 4.2b indicate that larger particles are expected as

one moves from the top of the cloud toward the cloud base. This is

consistent with the growth processes of collision and coalescence.

The mass of liquid water equivalent in storage, X, in the column

is given by:

Z -Z D
t Cz b D max -D[c + Z (c - c

X - 1w P N 0 { D - e 9 Zc u - dD} - dZ
f 6 "'w 0

0 D.min
(4.11)

where Zt, Zb are the heights of the top and the bottom of the unit

area column cloud, and D min D are the minimum and maximum diametersmn max

in the cloud.

For D. , D taken as 0 and > respectively, Eq. (4.11) gives:
mn max

2 3
1 c c c

X =-T -r N 0  c ( -- +(--) +(---) ) (4.12)
3 w c 4 c U. c Ucc u u u

Denoting by y the ratio of the average diameter at cloud base

to the average diameter at cloud top, or equivalently:
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cU = y - C ; y > 1 (4.13)

results in:

X = 7 - p - N -z Z -L - {- ( -- + --- + I)}
w 0 c 4 3 y 2 3

C y y
(4.14)

with c replaced by c for notational convenience. For a uniform c

distribution with height, the result is:

(4.15)X = -p N * Z -
w 0 *c 4

c

The effect of a linear variation of c with height is the intro-

duction of the factor 6 given by:

6= (1+i 16 = - ( -!+ IY + -)
3 y Y2 Y3

(4.16)

Some values for 6 are:

y= 1

y = 2

y = 10

-- 6 =

-- 6 =

-- 6 =

1

0.291

0.037

Eq. (4.14) relates the microphysical cloud structure as repre-

sented by the parameters N0, c, y to the macrophysical state of the
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system, the mass of liquid water equivalent in the unit area column

X.

At this point, a choice has to be made as to which parameter,

N0 or c, one should keep in the model equations. The decision is

between possibly easier parameter estimation but non-linear model

versus harder estimation with a state-linear formulation. Marshall

and Palmer's (1948) observations of rainfalls support a dependence of

c on the precipitation rate and no precipitation rate dependence

for N0 . This would argue for keeping N0 in the formulation since it

might be easier to estimate. On the other hand, eliminating N0

and keeping c in the formulation leads to a convenient linear equation

for the state X. In the following presentation, both the linear and

non-linear formulations will be shown; however, in application, the

linear model choice will be made.

From Eq. (4.14), N0 can be expressed in terms of c as:

4
N = - X (4.17)
0 1T p -Z*-6

w c

with corresponding size distribution:

n(D) = e-cD - X (4.18)
'rrp c

Expressing c in terms of NO, Eq. (4.14) is written as:

r p N - Z - 6 4

c =[ w 0 c (4.19)
X
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with corresponding size distribution:

7r P -ON - Z - 6 -1-

- X -D
n(D) = N * e (4.20)

4.4 Terminal Velocity of Hydrometeors

The fall velocity of the precipitation particles (hydrometeors)

of a certain size is the means by which the discrete mass flux of

particles is transformed to the observable continuous precipitation

rate (see Eq. (4.3)).

Pruppacher and Klett (1978) present experimental evidence that

justifies the assumption of a constant terminal velocity during the

fall of isolated cloud particles in quiet air.

Determining the motion of a particle during free fall in the at-

mosphere are the gravitational force corrected for buoyancy and the

drag force. Due to difficulties of the solution of the Navier-Stokes

equations for Reynolds number greater than 1, approximate numerical

solutions and field or laboratory observations have been used to

determine the terminal velocity of an isolated cloud particle as a

function of its size and shape.

Beard (1976) compiled observations of the free fall of liquid

water drops of a wide range of diameters (from 1 vM to 7 MM) and pre-

sented expressions for the terminal velocity vT as a function of the

diameter D, the particle density pp and the temperature and pressure,

T and p, of the ambient air. The high accuracy of the suggested
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expressions depends on the diameter range. Based on Beard's expressions,

the terminal velocity of liquid water drops was calculated for a

variety of conditions and diameters. For illustration purposes, the

0 0results for T = 273.150 K, p = 800 MB (curve 1) and T = 293.15 K,

p = 1013 MB (curve 2) are shown in Figure 4.3. Intermediate conditions

lie between the two curves in such a way that vT decreases as the

pressure and temperature increase. This variation of T,p is repre-

sentative of the conditions expected in the sub-cloud layer where

the precipitation rate is sought. A simple linear approximation to

the function vT(D) is fitted to the results of Beard shown in dashed

line in Figure 4.3 (curve 3). The fitted curve represents vT reason-

ably well for diameters in the range of 1 to 2 MM, which is the size

of most raindrops. It underestimates vT for diameters in the range

of 0.2 to 1 MM (maximum percent error less than 20%), and it over-

estimates vT for diameters greater than 2 MM. The approximation takes

the form of Eq. (4.7) with a given by:

a = 3500 [1/SEC] (4.21)

Contrary to liquid precipitation drops, solid precipitation particles

of same mass display a wide variety of terminal velocities. For the most

part this is due to their highly irregular shape. Spherical ice parti-

cles of densities 100 to 900 KG/M and highly irregular aggregates

of dendritic crystals can be found in precipitation. The interested
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FIGURE 4.3

Observed and fitted terminal velocity as a function of
hydrometeor diameter
Curve 1: Raindrops, T = 273.15[OK1, p = 800[MBAR] - Beard (1976)
Curve 2: Raindrops, T = 293.15 [OK], p = 1013 [MBAR] - Beard (1976)
Curve 3: Raindrops, fitted - Eqs. (4.7) and (4.21)
Curve 4: Ice sphere, p = 500[KG/M3 ], T = 273.15 [OK], p = 1013
[MBAR] Beard (1976)
Curve 5: Lump graupel - Locatelli and Hobbs (1974)
Curve 6: Ice sphere, p = 100 [KG/M3 ], T = 273.15 [OK], p = 1013
MBAR] Beard (1976)
Curve 7: Hexagonal groupel - Locatelli and Hobbs (1974)
Curve 8: Aggregates of dendritic crystals Locatelli and Hobbs (1974)
Curve 9: Snow, fitted - Eqs. (4.7) and (4.22)
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reader is referred to Magono and Lee (1966) for a classification of

the snow crystals, and to Hobbs, Chang and Locatelli (1974) for a

discussion of the dependence of shape and size spectra on the con-

ditions prevailing in the place of formation.

Locatelli and Hobbs (1974) fitted observations of terminal

velocity and mass of precipitating solid particles on the Cascade

Mountains of Washington with simple power laws. The scatter of the

data is considerable and no trend was obvious for many classes of

shapes.

Figure 4.3 depicts the regression relationships given in Loca-

telli and Hobbs (1974) for "lump graupel" (curve 5), "hexagonal graupel"

(curve 7) and aggregates of dendritic crystals (curve 8). Curves 4

and 6 are Beard's (1976) results for solid spheres of densities

500 and 100 (KG/M ) respectively. The results of Locatelli and Hobbs

(1974) shown are those for which the regression correlation coeffi-

cient was higher than 0.69. The dashed line (curve 9) was "fitted"

to all curves corresponding to solid precipitation particles. All

curves represent function v T(D) where D is the diameter of the liquid

water drop with the same mass as the solid precipitation particle.

The dashed line is a reasonable approximation to conditions

found in 1) dendritic aggregates for D in the range 0.5 to 1.5 MM,

2) "graupel" particles for D in the range 1.5 to 2.5 MM, and 3) ice

spheres of densities 100 to 500 KG/M for D greater than 2.5 MM. For

D smaller than 0.5 MM, the dashed curve approximates the low density
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ice spheres, curve 6. It is expected that the approximation is better

than suggested from Locatelli and Hobb's (1974) curves in Figure 4.3

since they correspond to low air density conditions (observations at

altitudes 750 and 1500 m above sea level). Thus, they tend to over-

estimate the terminal velocities of the snow crystals at lower alti-

tudes.

The dashed line for solid precipitation is of the type in

Eq. (4.7) with a given by:

a = 1500 [1/SEC] (4.22)

Based on Eqs. (4.21) and (4.22), the terminal velocity of snow

particles appears to be about one-third that of the liquid water drops

with equal mass.

Due to insufficient data in the literature, the velocity of

isolated particles is assumed equal to the velocity of a system of

particles. Experiments documented in Sulakvelidze (1969) show,

however, an increase of fall velocity for a system of particles of

common dimension as compared to an isolated particle of the same

dimension.

The increase depends on the distance of the particles expressed

in number of diameters, the Reynolds number, and the total number of

particles. For Reynolds number of order 10 1, for particle center

distances of the order of 15 diameters, the increase is about 25%.
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As the distance between the particle centers increases, the difference

in velocity between the system of particles and a single particle

drops rapidly to zero (its value for a distance greater than 30 to

35 diameters). Using the single isolated particle velocity, therefore,

would tend to underestimate the precipitation rate especially during

high intensity periods.

Determination of the type of precipitation (rain/snow) is based

on the surface temperature T0, such that snow occurs when T is less

than 274.500K (Eagleson, 1970).

4.5 Steady-State Diffusion of Precipitation Particles Falling in
Subsaturated Air

Consider a spherical precipitation particle of diameter D0 at

the cloud base (corresponding to the lifting condensation level LCL).

Denote by Zb the height above ground of the cloud base (Figure 2.1).

Assume that the particle undergoes an isothermal and isobaric free

fall at its terminal velocity vT(D). The ambient temperature is

T0, the ambient pressure p0 and the ambient water vapor pressure is

es(Td) with Td the dew point temperature (Td < T).

The particle will lose a portion of its mass due to the difference

in the water vapor pressure at the surface of the particle and es(Td )

Steady-state diffusion from a motionless particle, assuming that

the particle surface vapor is at the wet-bulb temperature T , gives

(Byers, 1965):
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dD 4D es Td es(T )
p dt R T T (4.23)

v 0 w

where:

D = particle diameter during free fall [MI

t = time [SEC]

3
p particle density [KG/M ]

R = gas constant for water vapor = 461 [JOULE/(KG - K)]
V

D = diffusivity of water vapor in air [M 2/SEC]

Pruppacher and Klett (1978) give:

-T 01.94 (*(.4
D = 2.11 - 10 (4. 24)

p0

with

T* = 273.15 [OKI

p* = 101325 [KG/(M- SEC )

and D in [M 2/SEC]

Eq. (4.24) is valid for temperatures between 233.15 0K (-400C) and

313.15 0K (+400 C).

For a particle of diameter D falling freely in air with terminal

velocity vT(D), diffusion is enhanced due to the ventilation effect

on the moving particle.
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Denote by fv(D) the mean ventilation coefficient (>1), defined

as the ratio of the water mass fluxes from a moving and a motionless

particle. Then, the differential equation of vapor diffusion becomes:

4D * f (D) e (T ) e (T )
p -D - = AB v s d sW) (4.25)
p dt R T 0 T

v 0 w

Experimental studies published by Beard and Pruppacher (1971)

for spherical particles suggest that f v(D) depends on the Reynolds

number R as:
e

2/3 1/3 1/21 + 0.108 N - F ; N - R < 1.4
sc e sc e -

f(D)1/3 
1/2 1/3 1/2

0.78+0.308 N - ]R ; N IRe > 1.4
se e sc e -

(4.26)

with
D - v T(D ) -p a2 

)=R T a (4.27)
e u

and

N = (4.28)
sc Pp-

where

pa: air density at temperature T0 and pressure p0 [KG/M ]

pa: air dynamic viscosity at temperature T0 [KG/(M- SEC)]
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For p, Rogers (1979) gives the empirical relationship:

T3/2
1 = 1.72 - 10-5 T 20 )3 (4.29)

0
with T in [ K], P in [KG/(M- SEC)].

If the subcloud layer average updraft velocity is negligible,

as is the case of most storms with appreciable precipitation, then the

kinematic equation for particle movement is:

dZ -v (D) (4.30)
dt T

where Z is the vertical axis coordinate whose origin is at ground

level with upwards positive direction (Figure 2.1).

Elimination of dt between the diffusion and the kinematic equation

results in:

D- v T(D) 4D e (T ) e (Td
Pp --(D) - dD= s w _ s )-dZ (4.31)

v R T

Denote by DF the particle diameter, when it reaches the ground. Then:

D0 D- vT(D) r 4D es(T ) es (T

p f T~(D) dD R T T dZ

D v 0 v w 0

(4.32)
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Due to the nature of the functions v T(D) and f v(d) as they are

given in Beard (1976) and Beard and Pruppacher (1971), respectively,

it is not possible to analytically solve Eq. (4.32) for the diameter

DF when D is given. Nevertheless, a closed form explicit solution

is desirable for the computation of the precipitation rate that reaches

the ground. Therefore, some approximation is in order.

It is only necessary to approximate the integral F(D*) given by:

D -vT(D)

F(D*) = p --T -dD (4.33)
P J f (D)

0 v

since Eq. (4.32) can be written as:

z
rb 4 D e(T ) e (T )

F(D0 ) F(DF) = J AB ( s d )-dZ (4.34)

0 v w 0

The temperature and pressure dependence of F(D*) is established in

Figure 4.4 for liquid water. There, results of numerical computation

of F(D*) are displayed for selected temperature T0 and p0, to be

expected in the subcloud layer. Curve 1 corresponds to T0 = 273.15 0K,

p0 = 1013 MB; curve 2 corresponds to To = 293.15 0K, p0 = 1013 MB;

curve 3 corresponds to T0 = 273.15 0K, p0 = 800 MB. Also F(D*) is

displayed for a low density ( pp = 100 KG/M ) particle when T = 273.15 0K

and p0 = 1013.

It can be stated that F(D*) increases as temperature increases or

as pressure decreases. For values of D in the range of 0.5 to 1.5 MM,
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of interest in precipitation, the dependence of F on T0, PO is weak

relative to its dependence on D and it is ignored in this work.

A cubic relationship of F on D* is adopted. That is, in general,

F(D*) = c2 + c - D*3 (4.35)

with c2, c1 constants.

Then, Eq. (4.34) becomes:

Z
3rb 4D e (T ) e (T )

C (D 3 - D 3 _ AB e s w _ s d ) dZ (4.36)
1 0 F R T T

0 v w 0

Assuming isothermal and isobaric free fall, Eq. (4.36) takes

the form:

4D A e (T ) e (T )
D3=D3_ __A (5W _ s d )-(4.37)

DF D0 R T -T Zb(.7
c 1 ) b

The wet-bulb temperature can be obtained, under equilibrium

conditions (Byers, 1965) from:

L(T )
T T - w (ws(T p - w (Td )) (4.38)
w 0 c s wO0 sd0

p

through the use of iteration techniques. In Eq. (4.38) L(T ) is the

latent heat of vaporization (Eq. (3.15)), c is the specific heat of

dry air, and w s(T,p) is the saturation mixing ratio at temperature
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T and pressure p (Eq. (3.4)). Usually, in surface meteorological

stations Tw is observed through a wet-bulb thermometer.

The final versus initial mass ratio for a particle, C(D0), is

D
c(D DF

(-) (4.39)

By means of Eq. (4.37), this gives:

D 3
r(D0  = 1 D C) (4.40)

0

with

14D e (T) es dT) 1/3
D =-- -D AB s - sd (4.41)c c R b T Tc1  v w 0

It can be observed that D represents the diameter of the particle

that leaves the cloud base and evaporates completely when it is just

reaching the ground. Particles of diameter less than or equal to D

at the cloud base do not contribute to the precipitation rate at

ground level.

Use of Eq. (4.40) requires estimation of the constant c . An

estimate of c1 is obtained from published data corresponding to

Eq. (4.37) with the assumption T ~ T (reasonable during a storm

period). Under this condition, Eq. (4.37) gives:
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4D -*e(T ) 1/3
D = [D 3 AB s 0 -(1 - r) - Z ] (4.42)

F 0 c R T b
1 V 0

with the fractional relative.humidity r given by

e (Td)
r = d (4.43)

es T 0

The value of c adopted is the one that gives the best fit of

the diameter DF, computed from Eq. (4.42), to the results in Pruppacher

and Klett (1978) shown in Figure 4.5a. DF is presented as a function

of the distance, -Zb, of the ground surface below cloud base. In

this figure, the cloud base is located at the 0 mark of the ordinate

axis. Therefore, at this level DF = D The fitted c1 value was

7- 105 [KG/(M - SEC)].

The behavior of D in Eq. (4.42) is shown with dashed lines in

Figure 4.5b for different TO' P0 , r values. There, the value of DF

is set equal to 0.2 (MM] and Eq. (4.42) is solved for D with c1 at

its estimated value. In this case, the 0 mark in the ordinate axis

represents the ground surface. The solid lines are the results of

numerical computation of D from Eq. (4.32) with Tw T0, published in

Beard and Pruppacher (1971). The approximation is rather good,

particularly when the cloud base is low. There is, however, a ten-

dency to overestimate the mass loss due to evaporation, especially

for small initial diameters D 0
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Numerical integration results in Pruppacher
and Klett (1978) used to determine the con-
stant c in Eq. (4.42). T = 278.15 [*K]
and p0 = 800 [MBAR].

FIGURE 4.5b

Initial diameter at cloud base D as a func-
tion of Zb for different values of r. Solid
lines are for numerical integration results in
Beard and Pruppacher (1971). Dashed line are
for Eq. (4.42) with D = 0.2 [MM]. To = 273.15
[*K] and p0 = 765 [MBKR].
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The results presented correspond to liquid water drops. A valu

of c1 for snow particles can be obtained as follows.

Denote by RF the ratio of the integral of type F for liquid

water particles to the same one for ice particles of low density,

100 [KG/M ] . Then, Eq. (4.35) and Figure 4.4 give, for small c2

a value of RF equal to 5. This results in a value of cl equal to

1.4- 105 for snowfall. Clearly, this is but a rough estimate of cI

for snowfall and fitting to input-output data is required to give an

accurate c -snow value.

Summarizing, the value of c is given, in SI units, by:

7- 10 -- RAIN

4 = 5(4.

1.4 - 10 -- SNOW

44)

The dependenceofD on Zb and r (Tw = T0 ), for an isothermal and

3
isobaric descent of liquid water (p = 1000 [KG/M 3) and snow

p

(p = 100 [KG/M 3) spherical particles is shown in Figure 4.6. For

raindrops the variables are T0 = 293.15 [*K], p0 = 1013 [MBAR]. For

snow particles they are To = 273.15 [ K]and p0 = 1013 [MBAR].
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Chapter 5

STATION PRECIPITATION MODEL EQUATIONS

5.1 Introduction

Based on the results of the three previous chapters, the equations

corresponding to the unit area atmospheric column are formulated in

sections 5.2 through 5.4. In order to arrive at a physically meaning-

ful model form, two dimensionless numbers, N and N , are identified,
v D

related to the updraft strength and to the magnitude of the sub-cloud

evaporation, respectively. They play a crucial role in the present

formulation. The updraft velocity v (v < v) at the top and bottom

of the cloud column (see Figure 2.2) is used in the derivation of

the output mass rates 0b and 0t'

Section 5.5 expresses the model physical parameters c, v and

pt as functions of the input variables To' po and T such that a

storm invariant parameterization results.

5.2 Unit Area Column Output Rate

The output mass rate per unit area through the storm cloud

base, in the diameter interval (D, D + dD), is:

0 (D) - dD = - D30 p (v (D) - v ) n(D)- dD (5.1)

Therefore, the total mass rate per unit area through the cloud base

is:
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D
max

0b
D_

(5.2)SPw - D3 (vT(D) - v) n(D)- dD

where

Dmax, D1, are the maximum and minimum liquid water diameters

found among the particles that fall to the ground.

Due to the basic exponential decay of n(D) with increasing D,

Dmax is set equal to +o. D is such that the difference (v T(D) - v )

is non-negative for all D in Eq. (5.2).

Therefore, substituting for vT(D) and n(D) from Eqs. (4.7) and

(4.1), respectively, one obtains,

0b

v
SP - N - D3 (a - D - v) e cD - dD (5.3)

Direct integration yields:

N cv cv
0 = -[ -r(5, ) - v r'(4, )b 6 Pw 4 c a O

c
(5.4)

where the complementary Gamma function (v,y), for X a real number, is

defined by:

+00

r(v,x) =

X

-t v-1e -t -*dt
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and, for V an integer, is computed by:

2 v-i
F(v,X) = (v-1)! e X ( +x+ + ... + X (5.6)

The output mass rate per unit area due to the action of the

updraft velocity v on the smallest water particles in the interval

(D, D + dD) is:

0 (D) - dD = 0- p - (v - v (D)) n (D) - dD (5.7)
t 6 w 6 T t

with n t(D) the size distribution at the cloud top, where the parameter

of the size distribution takes the value y-c (see also Eq. (4.13)).

Setting the lower limit of integration equal to 0 and the upper

to , to prevent negative (v - v(D)), the total output mass rate
S T

per unit area is:

v

0t p No - D3 (v - a - D) e-YcD - dD (5.8)

0

Direct integration yields:

P N 0v 
-C

0 t w 4 5 6 [P(5,y a
c c-y

V c v - C v -C

- (y ) r(4, ) + c -4 (5.9)
Cl. CL
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The total mass output rate 0 per unit area is then given by:

0= 0b + 0 t (5.10)

5.3 Surface Precipitation Mass Rate

Due to evaporation in the subcloud layer, the precipitation rate

at ground level is generally only a portion of 0 b. Denote by P

the mass precipitation rate per unit area of liquid water equivalent

at ground level. It is given as:

+00

P =3

P =r 0 P D 3 (D) (v (D) - v ) n(D) - dD (5.11)
Dk

where the limit D is now defined as:

v
D = max {D, } (5.12)

with G(D) and Dc given in Eqs. (4.40) and (4.41), respectively.

Substitution of i(D), v T(D) and n(D) in Eq. (5.11) andinte-

gration yields:

N
P = - No [a - r(5,c D ) - v r(4,cD

3 2 3 3 -cD
- D - a - c - F(2,cD ) + D - v - c - e 1 (5.13)

c 2, c S
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5.4 Mass Rates Expressed as Functions of the Dimensionless

Numbers N and N
v D

Define N , N and v as:
v D p .

N = Se c (5.14)
v a

ND = c- D (5.15)
D c

v = 4- a - - (5.16)
p c

The number N is indicative of the updraft strength at the cloud
v

base since it is the ratio of the diameter ( ) of the particles

that possess terminal velocity equal to v,, to the average diameter

(-) of the cloud particles. As N increases, the updraft strength
c v

increases.

The number ND is a measure of the relative strength of the

diffusion process (Eq. (4.41)) in the sub-cloud layer. Diffusion

losses increase with increasing ND'

The velocity v corresponds to particles of diameter ( ) which
p c

are the ones that contribute the maximum rate to the total precipi-

tation rate (Figure 4.1).

Use of Eqs. (5.14), (5.15) and (5.16) in Eqs. (5.4), (5.9)

and (5.13) results in:
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o 2 X v -[r(5,N ) - N
b 246 -Z p v v

= 4 -6 - Z p 5 6 -[r(5,Nv

+ yNv - 4}

- r (4,N v)] (5.17)

y) - y Nv - F(4,yNv )]

(5.18)

P =24 - 6 - Z

+ Nv - ND

3
vp r(5,N )D N P (4,N D N D F r(2, N D)

-ND
I ; ND - Nv

P= X - v r[(5,N ) v * N *(49N)
24 -6 -z p v v

C

-N

+ Nv -*ND ; Nv > ND

3
- N D.r(2,N )

(5.19b)

Further simplification is possible through the use of Eq. (5.6).

Then,

0= x [b 6 - Zc p

3N2 N3N N
1+- N + +4 V 4 24

Nv
e
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FIGUP.J 5. 1

Reduction factors mb, mt and m as functions of the number
Nv. Nd and Y are parameters of the plots. Curve 1 is for

mb. Curves 1, 2 and 3 are for mp, for ND equal to 0, 2,
and 4 respectively. Curves 4 an 5 are for mt for y equal
to 1 and 2 respectively.
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0= X 1
Ot 6*-Z p5 [

C y

3 (yN )  (yNv 3

+ W(yN)+--- 4v + 24
yN

v

yNv

+ -4 1]

(5.21)

P= 6 - Z p I

'6-Z p
C

N N 2 N
(1- ) (1 + ND + ) +

4~ ~ N- N D> N
ND D- V

2 3 3
N N N

(1+ N +- + v
4 v 4 24 24

N
v

e

; N > N
'v- D

Denote by 0 R the reference mass rate per unit area defined by:

0 = X (5.23)
R 6 - Z p

C

Then one can define the reduction factors mb, mt and m as

the ratios of the rates 0 b, 0t and P to the reference rate 0 R*

Figure 5.1 shows plots of mb , mt, mp as functions of N , ND5

and y. Curve 1 represents mb as a function of N v. Curves 1, 2, 3

represent m as a function of N , for N equal to 0, 2 and 4,
p vD

respectively. The reduction factor mt is represented in curves

4 and 5 for y equal to 1 and 2, respectively. Based on Figure 5.1:
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1. Losses through the cloud top (i.e., 0t rate) become

significant for N > 3 if y is equal to 1 or 2. The
V

larger the y, the smaller mt becomes.

2. For low ND numbers (ND < 1) the precipitation rate

that reaches the ground is practically equal to the

output rate, 0 b, through the cloud base (curves 1 and

2).

3. As Nv decreases, the precipitation rate P increases

reaching a maximum as N tends to 0 (no updraft at the

cloud base).

4. For instances of insignificant diffusion losses and

for small Nv numbers (Nv < 0.5), the precipitation

rate P is given by:

X
P - v (5.24)

c

The rates 0b, 0t and P are functions of c and not of N0 in

Eqs. (5.20), (5.21) and (5.22). Therefore, if c is retained as a

model parameter, those equations are linear in the state variable X.

In this "convenient" case, the results of this section can be put

in the following format.

0 = h(u, 0) - X (5.25)
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where 0 is the total output rate from the unit area column and the

nonlinear function h(-) is defined as:

h(u, A) =

2 3

v 1+- N + +
p 4 v 4 24

z - 6 Nv
c e

2 3
3 (yN ) (yN )

+ 4 v 4 24 +
5 YN, v

y *e

with u defined in section 3.4 and a defined by:

T

Nv 
1 14 54 -Y Y

(5.26)

a = [p v c]
-o t

Dependence of the function h(-) on the parameter pt comes from

the definition equations for Zc in a hydrostatic atmosphere. The

height Z above a fixed pressure level p0 and the pressure p at that

height (Z) are related through the hypsometric equation (Wallace

and Hobbs, 1977):

(5.27)Z = R - T . ,n (-O)
g p

with T the average temperature in the layer of height Z, R the dry

air gas constant, and g the gravitational acceleration.
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The precipitation rate P is:

P = #(u, AO) - x

with the function $(-) given by (Eqs. (5.22)):

v N D

$(u, a ) Z - N
c v

2 3
NN N

(1 ) (I + N + D ) + D
4 D 2 8

ND
e

+ (1 - ))
v

3 1 2 1 3 1 3
1 + - N +- N + -- N - -- N

4 v 4 v 24 v 24 D
N

V
e

1 (5.29)

The step function C(-) is defined by:

1 if y > 1

((y) =
0 if y < 1

Usually, the input to hydrologic soil moisture accounting

models is the water equivalent volume rate Pv of precipitation.

The mass rate P can be converted to volume rate Pv by the trans-

formation:

P = P
v pW

where pw is the density of liquid water.
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Then, the dynamics equation describing the evolution of moisture

in the column is:

dX f(u, a) -h(u )- X (5.32)
dt -'-I -- -

and the output equation is:

(u, La)
P =X (5.33)
v PW

In the case when one wants to retain N instead of c as a

model parameter, the functions h(-) and f-) become dependent on the

state X due to the substitution of c by the expression in Eq. (4.19).

For computational convenience the linear formulation in Eqs. (5.32)

and (5.33) is used in this work.

An important conclusion that follows from Eq. (5.33) is that the

precipitation rate is directly analogous to the average liquid water

content - of the cloud.z
c

5.5 Unit Area Model Parameters

The following have been identified as model physical parameters:

the vertically averaged updraft velocity in the unit area column v,

the terminal pressure level of the column pt and the average water

1
equivalent particle diameter - at the cloud base. Nevertheless, it

c
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is desirable to express the model equations in terms of parameters

that are storm invariant so that robust parameter estimates can be

obtained.

5.5.1 Updraft Velocity and Terminal Pressure Parameterization

Work presented in Sulakvelidze (1969) indicates that v obeys

a law of the type:

v = c1 - c -AT (5.34)
Sp

where:

AT = T - T ' (5.35)
m s

In the previous equations, E1 is a constant parameter, c is
p

the specific heat of dry air under constant pressure [JOULE/(KGo - K)],

T is the cloud temperature [ K] ata certain level p' [MBAR] assuming
m

pseudo-adiabatic ascent and T ' is the corresponding ambient air
s

o 2 .
temperature [K. The quantity e is analogous to the ratio of

kinetic to thermal energy per unit mass of ascending air, at the

level p'. Therefore, 6 is dimensionless.

Due to the difficulty of obtaining radiosonde data for the

locations of interest in real time, T ' is taken as the temperature
5

at level p' that results from dry-adiabatic ascent. The pressure

level p' is taken where the updraft velocity is equal to the height
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averaged v. Given the assumed vertical distribution of updraft

velocity (Figure 2.2), p' becomes:

p = p5  s . (5.36)

with ps and pt defined as the pressures at the cloud base and

cloud top, respectively.

Using the results of Chapter 3, Eqs. (3.6) and (3.16), expressions

for T ' and T can be obtained. These are:
s m

TT 0 3 1 0 .2 8 6

s 0.286 4 s + pt)(5.37)

and

p 0.286 L(T ) w (T ,p')
Te(_{ m s m } = 5.)m p c -T e (5.38)

p m

Equation (5.34) and the definitions, Eqs. (5.35) through (5.38),

provide an implicit relationship between pt and v.

Independently, and based on observations of the development of

storm clouds, another equation relating pt and v is suggested. It

is based on the well-known fact that the stronger the updraft, the

more vigorous the storm clouds development and consequently the

lower pt is. However, the value of pt also depends on the past

history of the storm. Thus, as the storm persists for several hours,
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even for low updraft velocities, p is expected to be relatively

low (e.g., in precipitation processes from stratiform clouds).

Since no information of the lifetime of the storm system before

reaching the drainage basin boundaries is assumed, the new pt

versus v relationship is parameterized as follows:

Pt __ 9 _ 1 (5.39)
E2 P9  + 3 - v

where p is the lowest value that pt can attain, and 2, 3 are

constant parameters.

Parameter p can be set equal to the pressure value at the

troposphere-stratosphere boundary since very few storms penetrate

into the stratosphere. That is:

p = 200 [MBAR]

Parameter 2 has dimensions of pressure and depends on the history

of the storm before it reaches the basin boundaries. Parameter 3

has dimensions of inverse velocity and controls the pt versus v

relationship. Note that as v tends to zero, pt tends to E2, and as

v tends to infinity, pt tends to p in agreement with the qualitative

arguments described above. Simplification of the set of Eqs. (5.34)

through (5.39) is possible by substitution of the velocity v from

Eq. (5.39) into the expression for Tm resulting from Eqs. (5.34)
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through (5.37). Thus, one obtains:

1 2 - pt 2 _0 3 1 0.286
T 2 ) +(p+-p)
m 2 t -p 0.286 s 4 t

c 1  0 (5.40)

The set of Eqs. (5.38) and (5.40) define the terminal pressure

Pt in terms of e2' pp 9 s1 9 E:3, and the model inputs. Due to the

nonlinearity in Eq. (5.38), iteration methods are utilized for the

determination of its pt root. The necessary derivatives and the

starting value of pt for use with a Newton Raphson method, are given

in Appendix B. Use of those results is made to examine the behavior

of the solution p t when el, E 2, E 3, T0 and Td change, for a nominal

pressure p0 equal to 1000 [NBAR]. In this case, T is equal to the

potential temperature 0.

Figure 5.2 presents the function pt (T0), solid lines, for

p0 = 1000 [MBAR], and for different values of :2, r and (6 - 3

r is the fractional relative humidity defined by Eq. (4.43). The

parameter 6 2 takes the values 700 [MBAR] and 500 [MBAR], r takes

the values 0.7 and 1 and the product (c1 - 3) is set to 0.01 and 0.05.

In the same figure, the potential thermal energy Q per unit

mass of air at pressure p' (dashed lines) is plotted against T for the

same values of the parameters and r. QTH is defined by:

Q = c (T - T ') (5.41)
TH p m s
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The range of temperatures used in the figure is from 250 0K to

290 0K and includes the freezing point. The pressure pt took values

in the range from 600 [MBAR] to 200 [MBAR] (left ordinate), while

Q varied from 500 [JOULE/KG] to 7500 [JOULE/KG] (right ordinate).

Figure 5.2 supports the following comments:

1. For the range of input and parameter values examined,

Pt is closer to the lower limit p ( = 200 [MBAR]) for

lower c2, higher r and higher (c1 - 3 ).

2. For constant parameters E2 and (Fe- C3), the higher the

vapor content of the air, the lower pt becomes for all T 0

3. The lower the pressure parameter c2 is, the more insen-

sitive to T0 9 pt becomes.

4. The pressure pt is much more sensitive to changes in the

parameters e2 and (E - 3), than it is to changes in the

input variables, T0 , Td'

5. In response to variations in e2' (E1 3 T0 and r,

QTH displays the same behavior as the pressure pt does.

For T at the freezing point, Q ranges from 2200 [JOULE/KG]

to about 4500 [JOULE/KG] .

The terminal pressure pt for given T is a function of the

product ( 1 3) for different values of e2 and r, as shown in Figure

5.3. There the quantity pt, which is the value of pt for the average

temperature 266.15 [K0 in the temperature range of Figure 5.2,

is plotted against (c1 - E3), for the same pairs of values of e2 and
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r used in the previous figure. A low value of the parameter e2

and a high value of r push pt closer to p, ( = 200 [MBAR]). It can

also be seen that with decreasing 2, the sensitivity of pt on

(E 0 - 3) is reduced. It is important to note that figures like

5.3, with perhaps more values for p0 5 2, and r, can be valuable in

parameter estimation, when observations of pt are available together

with observations of T0 ' P0 and Td. Thus, given T0 P0  T d, curves

of equal T0 ' p0 and r (since r is obtained from T and Td) can be

constructed; for example, curves (2) and (3) in Figure 5.3, with

only varying parameter: . Then, the pairs of [( ; - 3 ' 2 that

correspond to the observed pt can be identified by the crossings of

a parallel to the abscissa at pt - observed value and of curves

similar to (2) and (3) in Figure 5.3. This way, a relationship

between 2 and (E1 - 3), that the feasible 1, E25 3 should obey,

is constructed which will serve as an additional aid in the parameter

estimation.

Once pt' m and T s' are expressed in terms of parameters E,

2 and 3 (Eqs. (5.40), (5.38), and (5.37), v is obtained directly

from Eq. (5.34). Given pt, the terminal temperature Tt, necessary

to determine Aw from Eq. (3.17), is obtained by the Newton-Raphson

method from Eq. (3.16) for p = p and T = T .
t t
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5.5.2 Parameterization of Average Hydrometeor Diameter at Cloud Base

Several processes contribute to determine the parameter c. Based

on past work, Pruppacher and Klett (1978) identify as most important:

the condensation; the collision-coalescence and; the collisional

breakup of the larger particles. They indicate that the stronger

the updraft velocity is, the larger the number of the larger particles

is. That implies increasing the average diameter ( ) as v increases.
c

In addition, based on theoretical work they suggest that even a mild

updraft (e.g., of v equal to 0.10 m/sec) has a pronounced effect on

the particle distribution. For the purposes of this work, it is

assumed that c is solely determined by v from a relationship of the

type:

1 -E vm (5.42)
C 4

where E4 and m are constant parameters. The dimensions of 4 are:

(SEC)m
(ml)m ,while m is dimensionless.
M(M-1) '

In summary, the storm invariant model parameters are: cl, 2'

E3' E4 and m. In addition, the values of y and defined by Eq.

(4.13) and

v = 6 -v (5.43)

have to be determined. Parameter estimation based on physical

arguments and input-output data is undertaken in Chapter 8.
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Chapter 6

A CONCEPTUAL RAINFALL-RUNOFF MODEL

6.1 Introduction

This chapter formulates the equation of a general rainfall runoff

model in state space form. The model is suitable for use in operational

river flow forecasting. It couples the storm, soil and channel states in

an extended state vector, and produces as an output flow rates at the

drainage basin outlet. The soil moisture accounting scheme of the National

Weather Service River Forecast System (NWSRFS) is utilized as the soil

response simulator. The precipitation model developed in the previous

chapters and the channel routing model of Georgakakos and Bras (1982) are

used to provide the input and to propagate downstream the output of the

soil model, respectively.

The proposed general rainfall-runoff model uses, as its input, real

time forecasts of the meteorological variables To, po, Td and of the

evapotranspiration potential ue. It produces as outputs the precipitation

rate for the area corresponding to the forecasted To, po, and Td, and the

discharge output at the drainage basin outlet.

Formulation of the model equations for the case of a headwater basin

with no upstream inflows is undertaken in Section 6.4.
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Discussions on the coupling of the model components and on the

relevant spatial and temporal scales are presented in Sections 6.5 and 6.6.

6.2 Equations of the Soil Moisture Accounting Model

The soil moisture accounting scheme of the NWSRFS has been successfully

used with modern estimation theory techniques for the real time forecasting

of river flows (Kitanidis and Bras, 1980a-b, Georgakakos and Bras, 1979,

Georgakakos and Bras, 1982, Restrepo-Posada and Bras, 1982). It is a

conceptual model of the reservoir type that monitors the volume of water

in the different soil layers. Description of the deterministic model is

given in Peck (1976). Armstrong (1978) gives the physical interpretation

of the model components in terms of the observable soil characteristics.

The differential equations for the time evolution of the model states,

which are the contents of each conceptual reservoir, have been formulated

in Kitanidis and Bras (1980a). A more complete formulation is given in

Georgakakos, Restrepo-Posada and Bras (1980).

Characteristic to all up-to-date formulations is that they represent

outflow from certain conceptual reservoirs as a discontinuous function of

their contents. For instance, the upper zone tension water reservoir,

modeling upper soil layer and interception storage, produces zero outflow

until its contents reach its capacity. Once full the reservoir output is

equal to its net input. This type of behavior is very difficult to handle

within the linear framework of the most powerful modern estimation

techniques. Kitanidis and Bras (1980a), in their formulation of the
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linearized system, use describing function techniques to avoid the problem,

while keeping the discontinuous formulation when computing the system

response.

This work substitutes the threshold type behavior of the reservoir

outflow (wherever applicable in the model) with a nonlinear reservoir

response. This way the reservoir produces outflow even if it is not

full, and its outflow depends on the degree of saturation. From a physical

point of view, this is consistent with the spatially lumped nature of

the model given the soil-property inhomogeneity of the basin. Thus,

even if each soil column behaves as a threshold-type reservoir, the basin

produces continuous outflow to groundwater and to the channel due to the

spatial variation of the threshold value. In this work, the model

parameter that defines the threshold (reservoir capacity) is considered

to be a basin wide maximum capacity of the soil columns. The substitution

of threshold-type reservoirs by a nonlinear power law-type one is

illustrated in the following.
x

Denote by g(xo , uO) the outflow function of the reservoir for a non-

x
negative input uO. Then g(xo , uO) given by

x
-u0 if xo = 1

x

g(xo , u0 ) = (6.1)
0 otherwise

109



x
is a function of (xo) of the type shown with thick line in Figure 6.la.

Note the discontinuity in x=xo.

The approximation in Figure 6.lb is used in place of Eq. (6.1).

That is,

x x

ga(x0 , u0 ) = -uo(xo)m (6.2)

x
The higher the value of m the closer ga(xo, uO) approximates

x
g(xo, uo). Note that the domain of definition of x for the approximation

is still the closed interval [O,xO].

Apart from the removal of the discontinuities, the following were

important model modifications.

The moisture input to the soil moisture accounting scheme is taken

from the precipitation model output (Eq. (5.33)), written in the form

P = p-X (6.3)

with Pv the volume rate per unit area and X the volume in cloud storage.

The dependence of p on u and as has been omitted for notational convenience.

The distribution function for allocation of the percolating water

between the lower zone free water reservoirs has been substituted with a

numerically better behaving one. Use of the function in the original NWS

model within a state estimation algorithm is liable to produce incorrect

results (TASC, 1980). The modification is presented in Georgakakos,

Restrepo-Posada and Bras (1980), and the result is:
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X5 X4
Portion allocated to primary storage: (C2 * xO 1) xo + 1

5 4

X5 X4
Portion allocated to secondary storage: (1 - C 2 * xo) - xo

5 4

with C 2 defined by,

d x0

C2  ' t " 0 (6.4)

d -x4 +d 'x5

Table 6.1 is a list of symbols used in the soil moisture accounting

equations together with their description. It is mostly based on the

notation introduced by TASC (1980) (see also Kitanidis and Bras, 1980a).

A difference between the present formulation and the one published

in Kitanidis and Bras (1980a) is that the equations to follow include the

surface runoff outflow from the additional impervious area. In this

aspect the present formulation agrees with the one in Georgakakos,

Restrepo-Posada and Bras (1980). Depending on the hydro-geomorphologic

characteristics of the basin under study, this component of outflow may

or may not be significant.
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Table 6.1

SOIL MOISTURE ACCOUNTING MODEL VARIABLES

Symbol Description

States:

xi upper zone tension water content [MM]

x2 upper zone free water content [MM].

x3 lower zone tension water content [MM].

x4 lower zone primary free water content [NM].

x5 lower zone secondary free water content, [MM].

x6 additional impervious storage [MM].

Inputs:

ue instantaneous evapotranspiration demand [MM/HOUR].

Parameters:

x0 upper zone tension water capacity [MM].
1

x upper zone free water capacity [MM].

x lower zone tension water capacity [MM].

x0 lower zone primary free water capacity [MM].
0

x0 lower zone secondary free water capacity [MM].

du upper zone instantaneous drainage coefficient
[1/HOURS].

d' lower zone primary instantaneous drainage coeffi-
cient [1/HOURS].

d"s lower zone secondary instantaneous drainage coeffi-
cient [1/HOURS].
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Table 6.1 (continued)

Symbol Description

E: parameter in percolation function

b exponent in percolation function

Pf fraction of percolated water assigned to the lower
zone free water aquifers

y fraction of base flow not appearing in river flow

fraction of basin that becomes impervious when tension
water requirements are met

2 fraction of basin permanently impervious

ml exponent of the upper zone tension water nonlinear
reservoir

m2 exponent of the upper zone free water nonlinear
reservoir

m3 exponent of the lower zone tension water nonlinear
reservoir

114



To facilitate notation define the quantities y and C1 as

x3 + X4 + X9
y =1-xO + xO + xO5

3 4 "5

C1 =d' xo + d*' *o

3

The applicable differential equations are then:

Upper zone tension water element:

dx,
dt ~ [1 -

xl m1

(0u)
x

xl

] - U 0

x
(6.7)

Upper zone free water element:

dx x m

dt 0
1

- C (+ -ye . - 0
x 2

x m

2 u 2
x
2

(6.8)
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(6.5)

(6.6)
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Lower zone tension water element:

dx
3

=t C-1
+ 6-y ). . (1

0
x 2

- p )[1 -

x 3
- u (- 3-

e o o + x0
1 1 3

Lower zone primary water element:

x + C - + Ey X 2

4 x
[l - (1 - P ).[l

x x

2 0 0
5 4

Lower zone secondary water element:

,, 0
- d -x + C (+ Ey

91 5 1

x 2
[(1 _ (

0 f l
x
2

(x3 m 3_ (-) II.0
x 3

x x
(1 - C - ) x (6.11)

2 0' 0
x 5 x45 4

Additional impervious area water element:

dx x-x x m x1  x6-x16= [1 -( ) 2.(1) 1] - - X - u (1 - )-( )

x3 1 3 1

x 1 - [1
e 0

x1

x 2 x2 m2 x m
( 6 ) 2 2( ) .( ) - - X

x3 x2 x 1
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dx4 1

dt 91

x m
-(-) I

0
x 3

(6.10)

dx
5-

dt

(6.12)



The output uc from the soil moisture accounting model, referred to

as total channel inflow per unit time, is given by,

d -x4 + d -x5
uc = (d * 2 + + P 1 -2

X6  1l2 lm
+ X' 2 + ( 0 ) ) +

2 00
x 3 x1

x m

11

x m

0 1 2
x
2

(6.13)
x -x 12 x 2m 2 x 1m1

+ [1- 612 2  2  x1 i 1 $
3 x2 1

The following constraints determine the definition domain of the state

variables x0 .
i

(6.14)o < xi < x0 ; i = 1,2,...,5
i

It should be noted that Eqs. (6.7) and (6.8) are mathematical approxi-

mations in that the nonlinear reservoir outflow does not depend on the

current net input, but rather on the non-negative portion of it. This
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may result, for example, in a situation where the filled upper zone

tension water element will be depleted by evapotranspiration even though

the current precipitation rate might be greater than the actual

evapotranspiration rate. -Given, however, the small time increments in

which the integration of the differential equations will proceed, the error

introduced will be well within the overall model structure errors.

6.3 Equations for Channel Routing

Georgakakos and Bras (1982) presented a conceptual, nonlinear

reservoir-type channel routing model, which when tested with the soil

moisture accounting scheme of the NWSRFS, showed improved performance

over linear black-box type models. Their model is simple to implement

on a digital computer and it does not require high quality and quantity

input data, as the models based on the full momentum and continuity

equation do.

The idea is to represent the channel as a collection of n reservoirs

in series. Let Si(t) be the volume of water in storage at the ith

reservoir and uc(t) the total channel inflow per unit time (for example,

the output of the soil moisture accounting scheme presented in Section

6.2). Then for a headwater basin with no upstream inflows, the model

differential equations are

d S.(t) (6.15)

dt I uc(t)+ a 1_ S (t) - a. m (t) ,n (6...,

Aa =0
0
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and the instantaneous discharge Qn(t) at the basin outlet is given by:

Qn(t) = an . Sm(t) (6.16)
n

Parameters of the model are: pi, aj, i=l,2,...,n, m and n. Georgakakos

and Bras (1980) give the details of model formulation as well as ways of

estimating model parameters from 1) the basin observable hydro-morphologic

characteristic, and 2) input-output time series data.

6.4 Rainfall-Runoff Model

The differential equations of Chapter 5 for the station precipitation

model together with the equations of Sections 6.2 and 6.3 of this chapter

constitute a general rainfall-runoff model. Based on the current and

local moisture content states of the atmosphere, soil and channel, and on

forecasts of the meteorological variables To, Td, Po and ue (evapo-

transpiration potential), the model equations are capable of producing

rainfall and runoff forecasts for the basin of interest.

The general model equations are presented next, for a headwater

basin (with no upstream inflows). It is assumed that the basin is

characterized by one set of forecasts To, po, Td and ue at each time.

Present day operational atmospheric models with spatial scales of grid

sizes 200km and greater, render this assumption reasonable.
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The rainfall-runoff model equations, in the notation of Table 6.2, are:

d
dt (xp) = fp(xpu;2ap) (6.17)

d
dt (x) = f(xp,,,uue; ap,a ) (6.18)

d
dt (ic) = fcCxpxs>Xc,uue;2p,3a ) (6.19)

The concurrent precipitation and basin-outlet discharge rates are

the instantaneous model outputs, given by

zp = hp(xpu;2p) (6.20)

Zc = hc (ec ) (6.21)

Current observation networks give measurements of the instantaneous

V
discharge rate zc' However, the accumulated precipitation volume z over

a time interval At is sampled instead of the instantaneous rate zp.

Given the time-discrete nature of the input forecasts, Eq. (6.20) is

V
utilized, with the instantaneous rate z p related to the volume Z p by
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Table 6.2

HEADWATER BASIN RAINFALL-RUNOFF MODEL SYMBOLS

Symbol Description

Functions:

f ) Function to represent the right hand side of Eq. (5.32)

fs( - ) Vector function whose ith component represents the right
hand side of the differential equation for xi(i=1,2,...,6)
in Section 6.2.

fe( - ) Vector function whose ith component represents the right
hand side of the differential equation for Si (i=1,2,...,n)
in Section 6.3.

h ) Function to represent the right hand side of Eq. (6.3).

hc( ) Function to represent the right hand side of Eq. (6.16).

States:

xp Precipitation model state

x2s Vector of the soil moisture accounting model states.

2c Vector of channel states

Input:

u Precipitation model input: T0 , p0, Td

ue Potential evapotranspiration rate.

Parameters:

ap Vector of precipitation model storm invariant parameters.

2s Soil model parameters.

a. Channel routing model parameters.
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Table 6.2 (continued)

Symbol Description

Output:

zp Precipitation rate per unit area in the drainage basin.

zc Discharge rate at the drainage basin outlet.
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v
Zp

Zp = At (6.22)

Equations (6.20) and (6.21) are valid for discrete times t, t+At,

t+26t, ... , t+k-At,.

The relevant equations for a large river basin with several tributary-

basins are given in Appendix C.

6.5 Precipitation, Soil and Channel Models Coupling

The previous formulation presents the coupling of the equations

corresponding to three different models of the storm-basin system. Thus,

consideration of the set of Eqs. (6.17) through (6.19), shows that the

state of the precipitation model, xp, directly affects the equations of

time-evolution of the soil states, xs. Both xp and x, affect the channel

states differential equation (Eq. (6.19)). Coupling is due to the enforce-

ment of the conservation of water-mass (or volume) law at the boundaries

of each model. Note, however, that it is a one-way coupling. That is,

the states of the channel or the soil models do not affect the precipitation

state. Therefore, information on those states cannot be passed, with the

present deterministic formulation, to the precipitation model. It is

this open link in the overall rainfall-runoff model that modern estimation

theory techniques close, using observations on all the model outputs

(Eqs. (6.20), (6.21)). Statistical filters will effectively couple the

state variables of the soil and channel models with those of the

precipitation one. This is a different coupling than the one due to the
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conservation of water-mass law. The effect that each state variable has

on the overall storm-basin model outputs, is monitored through the filter

equations. Each state variable is updated, from the system observations,

based on the degree of its correlation to the model outputs and to the

rest of the model variables. In this way, the errors in predicting the

discharge at the catchment outlet have a bearing on the specification of

the initial conditions of the precipitation model variables. Similarly,

observations of the precipitation state variables and parameters have an

effect on the determination of the drainage basin related state variables.

This assures co-ordination in the operation of the coupled storm and

basin models in real-time. Chapter 7 develops the formulation of the

stochastic rainfall-runoff model in a linear statistical filter framework.

6.6 The Spatial and Temporal Scales of the Rainfall-Runoff
Model Components

The specification of the applicable scales of a mathematical model

and of its inputs is of primary importance in the determination of the

maximum forecast lead time and maximum forecast area up to which reliable

forecasts can be expected. In many cases, effective model simplification

results by comparison of the scales of its components. For example,

components with small time or space constants compared to those of the

overall system, can be substituted by their time or space average behavior.

The model input scale specification, in addition, determines the spatial

and temporal averaging that the observations of the input variables have

to undergo before they are suitable for use with a particular model.
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If the equation describing the evolution of a system state x in time

or space w, with no external inputs, is

dx(co) 1 (6.23)
- x(W)

01

with wo a positive constant and with initial condition xo, the scale of

the x(w) variations in the time or space w is oo.

It is very seldom, however, that physically based hydrologic models

have the form of Eq. (6.23). They usually are nonlinear differential

equations both in the system state x(w) and in the external inputs.

Therefore, the concept of scale, as defined in Eq. (6.23) is not directly

applicable. An estimate of the system scale can result from linearization

about a nominal trajectory x0(w). Then, wo is the inverse of the

coefficient of linearization and it is a variable dependent both on the

nominal xO(w) and on the system inputs. In this case the range of possible

w can be obtained based on representative values of x
0(w) and on the

range of possible inputs.

The characteristic spatial scales of the precipitation model have

been given in Chapter 2. The horizontal scale depends on the characteristics

of the storm movement and on the discretization interval of the

meterorological To, po, Td input observations. This scale is bounded

above by the horizontal storm scale given in Table 6.3 (Holton, 1979) for

different types of storms. In the same table, additional spatial scales

of atmospheric motions are included for comparison. The vertical
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Table 6.3

SPATIAL SCALES OF ATMOSPHERIC MOTIONS
(After Holton, 1979)

Type of Motion

Molecular mean free path

Minute turbulent eddies

Small eddies

Dust devils

Gusts

Tornadoes

Cumulonimbus clouds

Fronts, squall lines

Hurricanes

Synoptic cyclones

Planetary waves

Horizontal Scale [M]

10-7

10-2 to 10-1

10-1 to 1

1 to 10

10 to 100

102

103

104 to 105

105

106

107
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precipitation model scale is equal to the average storm clouds depth

during the storm passage. They range from 4-5 [KMI to more than 10 [KM] for

the most vigorous storms.

An estimate of the response time of the precipitation model is given

by the inverse of the function h(u, 2,) given in Eq. (5.26). Neglecting

the small (see discussion of Figure 5.1) cloud top contribution, the

response time estimate, Tp, is given by

N2 N3
N N

Z '6 1 + - N + V +
T C 4 v 4 24 -1 (6.24)
p v Nv

For (c) of the order 10~1 [MM] at cloud base and for a Zc of about

6 [KM] (at the 500 (MBAR) level), Eq. (6.24) gives ( 6 =1),

N2 N3N N3
1 + - N + +

T = 1.2- 4 v 4 24 -1

e

Thus, Tp ranges from a value of about 1 [HOUR] during intense

precipitation activity (low updraft, Nv =0, at the cloud base due to the

existence of downdrafts), to a value of about 10 [HOURS] for a strong

average updraft of 2 [M/SEC] at cloud base.
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The horizontal scale of the soil model components is equal to the

scale length LB of the drainage basin. Thus, if the basin area is denoted

by A,

LB = / (6.25)

For A = 10 3 [KM2 i, LB = 31 [KM].

The vertical scale of the soil model extends from the soil surface

down to the bottom of the groundwater aquifers and is of order 10 2 [MJ.

The time constants of each one of the soil models of Section 6.2,

with respect to their contribution to the channel input uc, range from

near zero (e.g., the rainfall on impervious areas is instantaneously

routed downstream) to a maximum equal to the inverse of the linear

coefficient of the lower zone primary water element (order of 102 days).

The horizontal channel routing model scale is equal to the channel

length, Lc, given by, Eagleson, (1970),

Lc [MILES] = 1.40 {A[MILES2I 0.568 (6.26)

with A the catchment area. For A = 103 [KM2 ], Lc = 70 1KM]. The vertical

channel scale ranges from a few meters for the first order streams to

several tens of meters for the highest order streams.

The response time of the channel routing model of Section 6.3 is the

sum of the time constants T of its nonlinear reservoirs. To a first
ci

order approximation, T is given by
ci
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T = (6.27)c0 (M-1)
m.a..S.

1 1

0

with Si a nominal value for the state Si. Using n=3, m=0.8,

ai = 10-3 [M3 (1-m)/SECI (Georgakakos and Bras, 1982) and for a nominal

outflow discharge equal to lOO[M3/SECI, use of an Eq. (6.16)-type
0

relationship gives Si = 2 x 106 [M3 ]. Then, Eq. (6.27) results in a value

of T of the order of 6[HOURS].
ci

Table 6.4 summarizes the rainfall-runoff model component spatial and

temporal scales estimates for a typical drainage basin of area 10 3 [KM21.

The meteorological storm input, T0, p0 , and Td, scales should be

comparable to the precipitation model ones. The evapotranspiration

potential spatial scale should be the characteristic length of the basin,

while the corresponding time constant is of the order of 1 day (equal to

the period of the radiation forcing).
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Table 6.4

SPATIAL AND TEMPORAL SCALES OF RAINFALL-RUNOFF MODEL COMPONENTS

Description

Precipitation
Model:

Soil Model
Components:

Channel Model
Components:

Horizontal Scale

1 - 102 [KMI

10 - 102 [KM]

10 - 102 [KM]

Vertical Scale

1 - 10[KM]

1 - 102 [M]

1 - 10 [M]

Temporal Scale

1 - 10 [HOURS]

O - 102 [DAYS]

1 - 10 [HOURS]
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Chapter 7

THE STOCHASTIC RAINFALL-RUNOFF MODEL

7.1 Introduction

It is well-established that the use of modern estimation theory

techniques to process system output observations improves the per-

formance of the hydrologic deterministic models (e.g., Kitanidis

and Bras, 1980b, Georgakakos and Bras, 1982). In addition, techniques

to handle the nonlinearities present in the physical hydrologic

systems, which are not directly amenable to estimation theory pro-

cessing, have been successfully used with conceptual models in real

world applications. The extended Kalman filter (Gelb, 1974) and a

Gaussian filter based on statistical linearization (Georgakakos

and Bras, 1982) depend on the linearization of the system nonlinear

function. The first uses a Taylor's series expansion about the

current best estimate of the system states, keeping the linear terms

in the series. The latter develops generalized least squares linear

approximations to nonlinear functions of the states. Both assume

implicitly or explicitly Gaussian probability distributions for the

system states. The first is easier to derive and implement, especially

for multidimensional functions. The second, however, has the advantage

of producing unbiased estimates, if the underlying probability

distribution is known.
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A general linear filter formulation is presented in the next

section. The formulation accommodates both the extended Kalman filter

and the one based on statistical linearization. Section 7.3 gives

the linearized equations for the station precipitation, the soil

moisture accounting and the channel routing models. As a first step

towards the development of a stochastic hydrologic system, the simpler

linearization procedure (by Taylor's series expansion) is used for

the precipitation and soil models. The formulation of Georgakakos and

Bras (1982) is given for the channel routing model, where statistical

linearization is used. Throughout the development it is assumed that

the meteorological input and the potential evapotranspiration are

Gaussian random processes with known first and second moments.

7.2 General Linear Filter for Nonlinear System Equations with

Random Inputs

It is assumed that the system random variables are approximately

Gaussian. Further, it is assumed that the system vector state obeys

a first order differential equation while observations of the system

vector output are available in discrete time.

The system dynamics equation is written as:

dx(t) F(x(t), u(t), t) + w(t) (7.1)
dt-
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and the observation equation as:

z(tk) = G(x(tk), u(tk t k) + v(tk) ; k = 1, 2, 3 ...

(7.2)

where:

x_(t): vector state at time t, (n- 1)

u(t): vector of random inputs to the system which are

uncorrelated to the state and noises, (p- 1)

Note that u(t) includes the evapotranspiration

potential.

z(tk): vector of observations of the system output,

(m- 1)

tk: discrete time

F(-): nonlinear vector function, (n -1)

G(-): nonlinear vector function, (m -1)

w(t): a continuous time white noise process of mean

zero and covariance parameter (time varying

spectral density) (t)

v(tk): a discrete time white noise sequence with

covariance matrix R(tk) and mean zero

T
E {w(t) -w (T)} =Q(t) -6(t--[) (7.3)

133



T -
E {v(t) - (t )} = 6

kj -~ k kj 74

6kj: the Kronecker's delta, nonzero at k=j where

it takes the value 1

6(t): the Dirac Delta function being zero everywhere

except at t=O where it becomes infinite

E{-}: the expectation operator

In general one needs a prediction estimate (to be used for the

hydrologic forecast) x(tltk) with associated covariance matrix

X(tltk), for times after the observation time tk and before the one

at time tk+1* A so-called filtered estimate (tk+1 tk+1) is obtained

at time tk+1 when the new observation becomes available. The

associated covariance matrix is denoted by X (tk+1 tk+1). The current

mean of x(t) is obtained from:

(t = E {x(t)} (7.5)

where depending on the available measurements, the expectation is

over the appropriate conditional density. Also:

(t) = E{(x(t) - x(t)) (x(t) x(t))T} (7.6)

with the same convention for the expectation operator.
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The filter equations are given in recursive form and require

initial conditions both for the state estimate and for the state

covariance. Set:

x (t0jt0) 0 (7.7)

(t0 t 0 ) = (7.8)

0

It is also assumed that the system noises w(t) and v(tk) have

known second moment matrices Q(t) and R(t . Also, the mean vector

and the covariance parameter matrix of the continuous input vector are

denoted by u(t) and Q(t), respectively.

In order to use the powerful linear filter developed by Kalman

and Bucy (1961), one needs linear system equations. In the following,

a general linear representation of the system is assumed and the

filter equations are derived based on it. Then, reference to the

ordinary linearization and to statistical linearization is made and

the associated linear coefficients and constants are given.

Let a general linear representation of F(-) and G(-) be:

F(x(t), u(t), t) = F _ d(t)' d (t) , t)

+ N (d d , t) (x(t) - _(O)
-F -x(t) - u(t) -

+ M (d ,d , 0) (u(t) - u(t)) (7.9)
--F -x t) -(t)
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and

G(x(t ), u(t), t ) =G (d , d t )
k k k - k-x(t)

-k kk

-Gd ~x(t k) -u(t k) k ) Xtk X(tk

+ M (d , d , t ) (u(t) - U(t )) (7.10)

-G -x(tk)' ,u(tk) k - k - k

where d , d represent the vectors of the parameters of the
-x(t) -u(t)

probability contributions of the random processes x(t) and u(t),

respectively, at time t. For instance, for ordinary Taylor's series

expansion d (t)' du(t) will be the mean vectors x(t) and u(t).

In statistical linearization and for Gaussian distributions they

will include the elements of the respective second moment matrices,

provided they exist. For statistical linearization with non-Gaussian

distributions, higher order moments will be added to the vectors

d X(t)and d (t Depending on the kind of linearization procedure,

different expressions for the vectors F (-), G (-) and the matrices

N ) (-), N (-), M (-) will result. Later in this section,
--F '-F _-G '-

expressions for those quantities are derived for Taylor's linearization

and statistical linearization.

At this point, one should distinguish between the continuous

process u(t) and its discrete counter part u(tk). Even though they

are both uncorrelated in time they have, in general, different means

and covariance matrices. The mean of u(t) can be obtained at each

time t with tk < t < tk+1, Vk, from:
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t - tk
u(t) = u(t ) + (t k ) (u(tk +) - u(t )) (7.11)

- - k k+1 tk -k+ -k

where u(tk u(tk+1) are equal to the mean vectors of the time-

discrete process u. In the case of the rainfall runoff model pre-

sented they will be meteorological forecasts of u at times tk and

t k+. Note that Eq. (7.11) expresses a linear interpolation between

(tk), u(t k+1) for times t in the interval [tk, tk+1]

It is assumed that (u(t) - u(t)) is a continuous white noise

with covariance parameter Q(t). If the corresponding discrete time

covariance matrix is (tk), then (Gelb, 1974):

(t) At* - (t ) (7.12)

with ~t) - t---

with At = tk+1 - tk, assumed constant.

Note that by making the assumption of no time correlation for

u(tk), one is assuming that one obtains the mean vector u(tk) by a

forecast procedure with time-uncorrelated prediction residuals.

Since most of the meteorological forecasts of temperature and pressure

are based on linear regressions, (i.e., Multiple Output Statistics

Model) the assumption is reasonable for the case of the rainfall-

runoff model of the previous chapter.
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Due to the assumption of no correlation between the input and

the system states, the terms:

Wil(t) =F(dt)' d(t), t) (u(t) - (t)) + w(t) (7.13)

and

V(tk x(t)' du(t) tk) (u(tk) -u(tk)) + v(tk)
k G X~.k -t k k k kk

are white noises, with zero means and second moments defined by:

E {W(t) W ()' ( ) - Q()

T
M (d )d , ) + Q(t)}- 6(t-1)

= Q'(t)- 6(t-T)

(7.14)

(7.15)

and
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E {V(t ) vT(t) = [ (d d , t) - (t)
k j G(tk) ~u(t k k-utk

T

(t ) d(t ), tk) + .R(tk1 6kj-k - k

= '(tk) 6 kj
(7.16)

In addition, since u(t), w(t), v(tk) have been assumed Gaussian for

all times, linear combinations of them, like W(t) or V(tk), are also

Gaussian.

The filter equations for the interval [tk'

the form:

Linear Filter Equations:

t k+1] then

State Estimate Propagation

d (x_(t Itk,
dx~t ( )(d ) d t) ; tE [tk, tk+1]

k

Error Covariance Propagation

T
d( (tt 

-F 
dt -=NF (t t k)

(7.18)
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State Estimate Update

(tk+1 Itk+1) _ (tk+ Itk) + k+1

-(z(tk+1 _ (t ) + (t k+(
k+1 - k+1

Error Covariance Update

X (tk+lltk+1) I Kt k+1 ) _) (tk+1 Itk) - (tk+1 Itk

T -T

-[I- k+1) - N(tk+1 tk)] + (tk+1) - (tk+1) - (tk+1

(7.20)

Filter Gain

K(tk+l)

-[I(tk+1 tk)

(tk+1 1 tk)

T

Y-N (tk+1 tk)

where I is the n - n unit matrix.

With the initial conditions of Eqs. (7.7) and (7.8) the set of

Eqs. (7.17) through (7.21) is solved recursively in time, until
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all available observations have been processed.

The following are some comments regarding the filter equations.

1. Due to the dependency of F (-) and NF() on the best avail-

able estimate of the system state, Eqs. (7.17) and (7.18)

are coupled differential equations.

2. Care should be exercised to prevent the covariance matrix

(tjtk) from becoming negative at the propagation step.

Positive definiteness should be enforced.

3. To ensure the positive definiteness of I (tk+ltk+1)'

Eq. (7.20) is used, rather than the simpler expression:

(tk+lltk+1) = [- K(tk+1) - (tk+Itk)V- (tk+l Itk)

(7.22)

4. The linearization vectors F (-), G (*) and matrices

N (-), N (-) always use the parameter of the current
--F 'GC

probability distribution for the vector x(t). This is

made explicit through the notation.

5. The vector v(t k+1) defined by:

v(t-k+1 Z(tk+1 _0X(t ) U(t ), tk+1) (7.23)
-k+1 - k+1

is called the innovations sequence vector. Under

optimal filter performance with correct noise statistics,
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it is an uncorrelated sequence of zero mean Gaussian

variables with variance Q (tk) given by:
-vk+1

=t N (t t (t N (t11 tT) +R'i,(t )
k+1 +-G k+1 kk+1 tk) - G k+1 k k+1

(7.24)

Comparison of the statistical properties of the residuals

of the type in the right-hand side of Eq. (7.23) during

actual filter operation, with the theoretical properties

of the innovations sequence, just described, is used to

make assessments about the optimality of the filter per-

formance. Note that the inverse of the expression in

Eq. (7.24) appears in Eq. (7.21).

6. The number of basic calculations necessary to compute

3
the state mean and error covariance varies as: n .

In the following, expressions for the vectors F (-), G (-) and

for the matrices N F (-) N ()3 M (-) are presented for the
-z:F '-F '-G '-

following linearization procedures: 1) linear Taylor's series

expansion, and 2) statistical linearization.

7.2.1 Linear Taylor's Series Expansion

The idea is to expand the nonlinear functions about the current

best estimates of the relevant random variables and then keep the

first two terms in the expansion.
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Then:

F(x(t), u(t), t) = ((t), _(t), t)

-F-?(t), U(t), t) (x(t) - (t))

+ MF(x(t), u(t), t) (u(t) - u(t))

with the ijth element of F ,F(-) given by:

{ F W St), u~) t)}

{M6 (Wt) (t), W))

3F.(xWt) u(t), 0)

ax.(t)
x(t) = x )

u(t) = i(t)

aF.(x(t), u(t), t)

au.(t)
x(t) = X(t)

u(t) = ^(t)

(7.26)

(7.27)

where -- denotes partial derivative, F.(-) is the ith element of

th
the vector function F(-), x.(t) is the j element of the state

J

vector x(t), and u (t) is the jth element of the input vector u(t).

The right-hand side of Eqs. (7.26) and (7.27) implies that the

derivatives are evaluated at the current mean value (best estimate)

of the state and the input vectors.
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Also:

-0- ,(t), t) F( (t), (t), t)

Similarly:

G(- (tk k 0k. .

{M( (tk),.Utkt )}

DG (x(tk),2 u(tk),1 tk)
ax. (t k)

3G.(x(tk), u(tk), tk)

Du.(tk)
I k

x(tk) = x(tk)

u(tk) = u(tk

(7.29)

x_ tk)(t )X(tk) = -(tk

u(tk) = k(tk

(7.30)

G4(~t, (tk) tk G(X(tk), i(tk), tk(-0 -(k) k' k -k' - k k

The important features of the linearization procedure are:

1. The linearization matrices and vectors are only functions

of the state and input mean vectors. That is:

d (t) (t) (

dU(t) - (t) (
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d =(t) u(t k) (7.34)

2. When used with the filter equations (the so-called extended

Kalman filter, Gelb (1974)) they produce biased estimates

due to the fact that in general:

E {F(x(t), u(t), t)} F(x(t), U(t), t)

3. Taylor expansions are easy if the nonlinear functions of

interest are differentiable. If not, this procedure

cannot be applied.

7.2.2 Statistical Linearization

The idea in this case is to assume a general linear approxi-

mation of the type in Eqs. (7.9) and (7.10) and then obtain the

constant and coefficient matrices by minimizing the expected value

of the weighted, squared deviations from the nonlinear function.

In this case, the equations for the N F-) N ()2 () matrices
-F '-G = G

and (-), G (-) vectors are:

_-1

N(d d ,t) = E {F(x(t), u(t), t) - r T(t)} (t)
-F -x(t) -u(t)- -x

(7.35)
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-1

-Gx(t k)' u(t k tk) E{G(x(tk), U(tk, tk x (tk)} - (tk

(7.36)

T
M (xd t ) 'dU(t , t) = E{G(x(tk) , u(tk) ,tk) -r U(t)} Q (tk)

(7.37)

F (d (t) d ,M t) = E{F(x(t), u(t), t)} (7.38)

.go (d ,t d U(t, tk) = E{G(x(t k), u(tk), tk)} (7.39)
- k) u-k)

Due to the white noise nature of the continuous process u(t),

its covariance matrix does not exist, therefore MF(-) is defined as

in Eq. (7.27).

For this linearization procedure, it is important to note the

following:

1. The linearization matrices and vectors are functions of

the state and input first and second moment properties

given the Gaussian assumption. In general they are functions

of all the parameters of their probability distributions.

2. Equations (7.17) and (7.19) together with Eqs. (7.38) and

(7.39) show that this procedure used with a linear filter

produces unbiased estimates. This fact may be of crucial

importance when one is doing parameter estimation through

state augmentation (e.g., Georgakakos and Bras, 1982).
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3. An assumption about the underlying probability distribution

is necessary to compute the linearization matrices and

vectors. Usually a Gaussian assumption suffices for good

performance, while providing the state mean and covariance

recursively if this procedure is used with the linear filter.

4. To avoid the burden of multidimensional integral evaluation

necessary for the computation of the expectations, Georgakakos

and Bras (1982) devised an approximate analytical procedure

for the determination of the expected value of general multi-

dimensional nonlinear functions. Their solution is parti-

cularly useful when one has to compute the linearization

matrices and vectors recursively, as in a filter operation.

5. No assumption regarding function differentiability is

made for the statistical linearization procedure. Kitanidis

and Bras (1980a) show an example where a nondifferentiable

nonlinear function was statistically linearized.

7.3 Linearization of the Rainfall-Runoff Model Equations

Linearization is based on the Taylor's series expansion (section

7.2.1) for the precipitation and soil models and on statistical

linearization (section 7.2.2) for the channel routing model. The

state vector corresponding to the precipitation, soil and channel

models is such that the storm water content state X is the first

element, and the soil states x , ... , x 6 follow in the order presented
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in Table 6.1. The channel states occupy the last positions in the

state vector. The input vector u is defined as:

u = [T 0 p0 Td ue]

In the derivation of the linearized equations for the channel,

the input uc is linearized through an ordinary Taylor's series

expansion. Appendices D, E and F determine the necessary derivatives

corresponding to the precipitation, soil and channel models, respectively.

Tables 7.1, 7.2, 7.3, and 7.4 indicate the a priori non-zero elements

of the matrices NF , N, and [ , respectively. In those tables

and for the ijth element of a matrix, the corresponding state, input

or output variable to i and j are also presented.

The present formulation utilizes the set of equations presented

in section 6.4 for a headwater basin.
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Table 7.1

NON-ZERO ELEMENTS OF MATRIX F

i/j 1,X 2,x 3,x2 3 5x4 6 ,x 5  7x6 8,S . 7+n,S

1,x

2, x

3,x 2 V

4,x 3

5,x 4

6, x 5

6x 6

89S I

7+n, S / / / V/ /
n _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ __ _ _
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Table 7.2

NON-ZERO ELEMENTS OF MATRIX MF

150

i/j 1, T, 2 ,p 0  
3 ,Td 4 ,u

1,X

2, x

3, x2 /

4, x3

5, x4

6, x5

7, x6

8,s

7+n, S n /



Table 7.3

NON-ZERO ELEMENTS OF MATRIX N
-C

Table 7.4

NON-ZERO ELEMENTS OF MATRIX M

1,T 2,p0 3,Td 4,u

1,P v

2, Q
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i/j 1,x 2,x1 3,x2 4'x3 5,x4 6,x5  7' 6 8,Si ... n

2,P9

2, Q



Chapter 8

CASE STUDIES

8.1 Introduction

This chapter documents tests of the station precipitation and of

the full rainfall-runoff models. Hourly meteorological data (TopoTd)

and hourly precipitation data from Boston, Massachusetts, and Tulsa,

Oklahoma, corresponding to several storms of different types were the

basis of the precipitation model tests. The full rainfall-runoff model

runs used 6-hourly hydrological data (mean areal precipitation, evapo-

transpiration and instantaneous discharge) for the Bird Creek basin,

near Sperry, Oklahoma, together with meteorological data from Tulsa.

The next section discusses some important characteristics of

the data used as an input to the station precipitation model. Section

8.3 presents the parameter estimation procedures. Runs of the

deterministic precipitation model (the precipitation model developed

using as an input observed To, P0 , Td) are presented in Section 8.4.

The stochastic precipitation model (the precipitation model together

with a filter) operation is illustrated in Section 8.5, Sections 8.6,

and 8.7 show the full rainfall-runoff model operation for the Bird

Creek basin, for the excessively wet month of May 1959, with meteoro-

logical input from Tulsa.

8.2 Station Precipitation Model Input Data Characteristics

The National Climatic Center (NCC) in Asheville, North Carolina,

is the source of the meteorological and precipitation data in the
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United States. The meteorological data are archived in the tape-

series TDF-14. They are based on airways surface observations.

Hourly data exist for periods prior to the year 1965. Currently a 3-

hourly observation interval is in use. The hourly precipitation data

are archived in tape-series TD-9657. Both meteorological and

precipitation data can also be found in the Local Climatological Data

sheets published once a month by the National Oceanic and Atmospheric

Administration (NOAA), Environmental Data and Information Service.

The Boston-data used were taken from the Local Climatological

Data sheets. The Tulsa-data are from the tape archives in NCC under

the code numbers TD-1440, 13968 for the meteorological data, and TD-

9657, 34-8992 for the hourly precipitation data. The Fortran program

documented in Restrepo-Posada and Eagleson (1979) was used for the

interpretation of the hourly precipitation data.

Eight storms at the Boston area and three storms at Tulsa were

studied. The storm dates, storm number and comments regarding their

nature and the meteorological conditions at the time of their occurrence

are given in Table 8.1. The same Table also gives the identification

characteristics of the observation locations. For the purpose of

processing the data and in view of the presumed storm-invariance

property of the precipitation model parameters, the storms were

grouped in five groups (also indicated in Table 8.1) with the number

of data points (i.e., hourly values) ranging from 60 to 100. The

storms in each group have similar characteristics. In the following,

each group is referred to by the group number.
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Table 8.1

CASE STUDY STORMS

STORM INITIAL DATE FINAL DATE DURATION GROUP

NO. (YYMMDDHH) (YYMMDDHH) (HOURS) NUMBER COMMENTS

1. 62092707 62092818 36 1 Convective line-storm with
heavy rains and damaging
northeasterly gales. --
BOSTON

2. 62100506 62100721 64 1 The combination of a coastal
storm on the 5-6th of October
immediately followed by

tropical storm Daisy, passing
distantly offshore on the
7th, yielded 7.01 inches of
rainfall. This was the 3rd
greatest storm total of record.
-- BOSTON

3. 63110619 63110906 60 2 Low pressure followed by per-
sistent rainfall. The surface

wind direction shifted from

Southeast on the 6th of Novem-
ber to North on the 9th. This
November was especially wet.
Rainfall was the greatest for
November since 1895. -- BOSTON



Table 8.1 (continued)

CASE STUDY STORMS

STORM INITIAL DATE FINAL DATE DURATION GROUP
NO. (YYMMDDHH) (YYMMDDHH) (HOURS) NUMBER COMMENTS

4. 63012600 63012715 16 3 Snowstorm. This January was
the 7th consecutive colder
than normal month. Wind di-
rection shifted from East to
North East. -- BOSTON

5. 63030117 63030211 19 3 Snowstorm, heaviest of the
season. It yielded 8.7 inches

Un of snow. Wind direction shifted
from East to North East.
-- BOSTON

6. 63032004 63032110 31 3 Snowstorm. Wind direction
shifted from East to
North East. -- BOSTON

7. 62120508 62120620 37 4 Low pressure system in a
6th consecutive colder than
normal month. Wind direction
shifted from a North Easterly to
an Easterly direction. -- BOSTON



Table 8.1 (continued)

CASE STUDY STORMS

STORM INITIAL DATE FINAL DATE DURATION GROUP
NO. (YYMMDDHH) (YYMMDDHH) (HOURS) NUMBER COMMENTS

8. 63112906 63113004 23 4 Caused by a deep low pressure
center which traveled north-
ward through western New Eng-
land during the morning of the
30th. Excessive and flooding
rains and high southerly winds
caused widespread damage inland
while erosion and flooding
from high waves and abnormal
tides added to coastal losses.
Wind direction shifted from
North-East to East to South.
-- BOSTON

9. 50050913 50051106 42 5 Heaviest of the season. Wind
direction shifted from North to
North East. -- TULSA

10. 50070909 50071015 31 5 Showers with long no-rain hours
in between. Wind was from a
South Easterly direction.
-- TULSA

11. 50072106 50072208 27 5 Showers with long no-rain hours in
between. Wind direction shifted
from North to North East.
-- TULSA



Table 8.1 (continued)

CASE STUDY STORMS

OBSERVATION AREA

Boston, Massachusetts
Logan International Airport

Tulsa, Oklahoma
International Airport

LATITUDE

420 22' N

360 12' N

LONGITUDE

710 01' W

950 54' N

ELEVATION[M]

5

200
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The selected storms include different types (convective, frontal,

snowstorms) of hydrologically significant (large amounts of rainfall)

storms. The Boston climatological precipitation record offered

several examples. The dates prior to 1965 were used because of the

1-hour time resolution.

Typical in the Tulsa record were short periods of significant

amount of rainfall with long dry periods in between. Pronounced

rainfall activity in Tulsa takes place from May to September. Rainfall

for the Boston area is uniformly distributed throughout the year.

The following parameters were available for all storms:

1) the hourly precipitation rate [INCHES/HOUR]

2) the air temperature [OF]

3) the dew point temperature [OF]

4) the wet bulb temperature [OF]

5) the surface pressure [INCHES of Hg]

The units were converted to [MM/HOUR] for the precipitation rate,

[oK] for the temperatures and [Pascals] for the pressure. These

units are used throughout this chapter.

Errors of 0.01 [INCHES] for the precipitation rate, l[OF] for

the temperatures and 0.01 [INCHES Hg] for the pressure are expected

because of truncation during data recording. No estimate of the

observation error was available for the recorded variables. However,

the following are generally applicable (Linsley, Kohler and Paulhus,

1975):
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1) The tipping-bucket and weighing rain and snow gages in use

for the precipitation rate recording underestimate light

precipitation (especially snow) in the presence of wind.

2) Measurement of the dew point and/or wet bulb temperatures is

one of the least accurate instrumental procedures in

meteorology.

The average precipitation rate expressed in [MM/HOUR] of water

equivalent is shown in Table 8.2, for each group. Also shown in the

total accumulation of precipitation in [MM] for each group. The

convective group 1 had the highest average precipitation rate and the

highest accumulation. The snowstorms, group 3, had the lowest

corresponding figures.

The coefficient of variation and the skewness coefficients are

shown in Table 8.3. Table 8.4 gives the cross-correlations of the

temperature and pressure variables to the concurrent precipitation

rate. The hourly auto-correlation coefficients for each variable,

for each storm group, up to lag 6 hours are given in Table 8.5.

Tables 8.2 to 8.5 indicate the following:

1) The scale of fluctuations of the precipitation variable,

as it is expressed by the coefficient of variation

(ratio of standard deviation to the mean), is at least two

orders of magnitude greater than those of the temperature

and pressure variables for all storm groups.
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Table 8.2

STORM DATA STATISTICS

Average Precipitation
Rate [MM/HOUR]

2.59

1.585

0.950

2.193

1.831

Accumulated
Precipitation [MM]

259

95

62.7

131.6

183.1
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Storm
Group No.

1

2

3

4

5



Table 8.3

STORM DATA STATISTICS - II

Coefficient of Variation Skewness Coefficient

Storm
Group No.

To po Td

0.008

0.007

0.009

0.009

0.002

0.007

0.003

0.006

0.011

0.010

Po Td

H

1

2

3

4

5

0.005

0.002

0.005

0.012

0.012

Pv

0.006

0.002

0.005

0.011

0.010

1.066

1.157

1.266

1.418

1.609

-0.216

0.139

-0.489

1.707

-0.141

-0.710

1.125

0.746

-0.614

-0.034

-1.106

-0.578

-0.547

1.205

-0.221

-0.460

-0.467

-0.483

1.590

-0.198

1.691

1.303

2.926

3.061

2.53



Table 8.4

STORM DATA STATISTICS -- III

Storm
Group No.

1

2

3

4

5

H
a'

Cross-Correlations to Precipitation Rate

To po Td TW

-0.066

0.315

0.185

0.253

-0.474

0.087

-0.101

0.204

-0.228

0.161

0.170

0.392

0.340

0.337

-0.394

0.086

0.347

0.283

0.303

-0.431



Table 8.5

STORM DATA STATISTICS - IV

Lag (HOURS): 1

0.928

0.976

0.914

0.928

0.641

Group 1

2

0.840

0.945

0.814

0.837

0.441

Auto-Correlations

3

0.738

0.908

0.706

0.746

0.313

4 5

0.626 0.513

0.867 0.823

0.611 0.525

0.656 0.554

0.188 0.066

Variable

Po

Td

Pv

6

0.411

0.775

0.460

0.473

0.031



Table 8.5 (continued)

STORM DATA STATISTICS - IV

Group 2 Auto-Correlations

Lag (HOURS): 1 2 3 4 5 6

0.839

0.954

0.804

0.831

0.408

0.719

0.898

0.703

0.744

0.174

0.625

0.838

0.587

0.636

0.110

0.491

0.775

0.492

0.517

0.104

0.383

0.713

0.490

0.469

-0.008

0.263

0.646

0.413

0.400

-0.180

Variable

H
0'
4S

Po

Td

Tw

Pv



Table 8.5 (continued)

STORM DATA STATISTICS - IV

Group 3 Auto-Correlations

Lag (HOURS): 1 2

0.831 0.550

0.861 0.706

0.804 0.578

0.836 0.559

0.600 0.400

Variable

PO

Td

U1

Pv

3

0.292

0.540

0.400

0.324

0.269

4

0.134

0.380

0.284

0.172

0.194

5

0.128

0.234

0.206

0.134

0.082

6

0.145

0.096

0.074

0.116

0.002



Table 8.5 (continued)

STORM DATA STATISTICS - IV

Group 4 Auto-Correlations

Lag (HOURS): 1

0.938

0.883

0.876

0.931

0.372

2_

0.839

0.750

0.750

0.826

0.119

3

0.718

0.601

0.652

0.709

0.092

4

0.600

0.449

0.539

0.589

0.132

Variable

H-

T
0

P
0

Td

T
w

p
V

5

0.485

0.306

0.431

0.473

-0.153

6

0.373

0.183

0.327

0.364

-0.152



Table 8.5 (continued)

STORM DATA STATISTICS - IV

Group 5 Auto-Correlations

Lag (HOURS): 1

0.939

0.926

0.943

0.949

0.609

2

0.872

0.852

0.894

0.899

0.361

3

0.806

0.775

0.843

0.846

0.166

4

0.740

0.707

0.785

0.788

0.084

Variable

TO

H Po

Td

TW

Pv

5

0.693

0.638

0.753

0.749

0.087

6

0.655

0.565

0.729

0.721

0.066



2) Strong positive skewness is characteristic of the

precipitation rate. The skewness coefficient of the other

variables were both negative and positive.

3) Low cross-correlations of the temperatures and of the

pressure to the concurrent.hourly precipitation rate were

observed, ranging from 0.066 to 0.474 in absolute value.

This highlights the difficulty of using the temperatures and

pressure as explanatory variables in a linear regression for

the precipitation rate prediction.

4) Characteristically high lag-l (1 hour) auto-correlations were

obtained for the temperatures and the pressure variables.

They ranged from about 0.8 to about 0.98, suggesting that the

current value of those variables contains considerable amount

of information on their value 1 hour later. Therefore, simple

linear regression predictors can be used to forecast those

variables at least for 1 hour lead time. In some cases,

groups 1, 2 and 5, the correlations are of a high value

even for lags of 6 hours (up to about 0.77). In group 3,

the snowstorms group, correlations dropped relatively

fast with lag.

5) Auto-correlations of the precipitation rate were lower than

those of the other variables for all lags and for all groups.

One hour auto-correlations lag ranged from a value of about

0.6 (groups 1, 3, and 5) to a value of about 0.37 (group 4).

The auto-correlations dropped fast at higher lags and became

negative in some cases (groups 2 and 4).
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6) A variety of intrinsic statistical character can be observed

for the different groups. Therefore, none was considered

redundant for the purposes of the precipitation model tests.

Most importantly, this indicates that the optimal parameters

of linear, purely statistical, predictors of those variables

based on past values of the same variables, would be

calibration period dependent. This holds true especially when

predictions of the precipitation rate are sought.

7) No significant difference of statistical character was ob-

served between Boston and Tulsa storms. The relatively strong

negative cross-correlation of the temperatures to concurrent

hourly precipitation rate in Tulsa hold some promise for

linear regressions at this site.

The use of simple linear predictors of the temperature and pres-

sure variables of the type in Table 8.6 is illustrated in the next two

Figures. Figure 8.1 displays plots of the observed (solid lines) hourly

dew-point temperature together with the corresponding one-hour lead time

predictions (dashed line) for the snowstorm group 3. This is the worst

case in terms of dew point prediction among the different groups.

Analogous plots are shown in Figure 8.2 for the surface pressure of

group 3. Again, shown is the worst case among all the different groups.

Table 8.6 gives the explanatory variables for the regression together

with the associated optimal parameters and standard errors. It is

stressed that the parameter estimates were obtained for the periods
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FIGURE 8.1 Dew point regression hourly predictions (stars) vs. observations
(solid line) for storm group 3.
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Table 8.6

DEW POINT AND SURFACE PRESSURE REGRESSION PARAMETERS
FOR STORM GROUP 3

Td(k) = AI.To(k-1) + A2.Td(k-1) + A 3 -po(k-1) + A4 .Tw(k-1)

+ A5.Pv(k-1) + A0

Hourly Dew Point Temperature

Explanatory
Variables

Temperature (1 HOUR LAG):

Dew Point
Temperature (1 HOUR LAG):

Surface
Pressure (1 HOUR LAG):

Wet Bulb
Temperature (1 HOUR LAG):

Precipitation
Rate (1 HOUR LAG):

Constant of Regression:

Parameter

Estimates

-0.07546

0.67435

0.00029

0.30341

0.15549

-2.4044

Standard Errors
in Parameter Estimates

0.49409

0.29255

0.00014

0.77911

0.10542

33.242
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Table 8.6 (continued)

po(k) = A1 .To(k-1) + A2.Td(k-1) + A3 -po(k-1) + A4.Tw(k-1)

+ A5.Pv(k-1) + Ao

Hourly Surface Pressure

Explanatory
Variables

Temperature (1 HOUR LAG):

Dew Point
Temperature (1 HOUR LAG):

Surface
Pressure (1 HOUR LAG):

Wet Bulb
Temperature (1 HOUR LAG):

Precipitation
Rate (1 HOUR LAG):

Constant of Regression:

Parameter
Estimates

-29.097

-120.09

0.87747

164.19

-45.452

8155.9

Standard Errors
in Parameter Estimates

201.54

119.33

0.0565

317.80

43.

13559.
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of Figures 8.1 and 8.2. Variation of optimal parameters for different

calibration periods is expected. The magnitude of the standard errors

indicates large parameter uncertainty, for some of the explanatory

variables. Nevertheless the behavior of the models is good.

The performance of a linear regression of the type in Table 8.7

in predicting precipitation is illustrated in Figures 8.3 to 8.7 for

storm groups 1 through 5 respectively. Again, shown are the calibra-

tion periods in each case. The parameter estimates and the associated

standard errors are given in Table 8.7.

Characteristic to this set of regressions is the great variation

of the parameter estimates (indicated also by the high standard errors)

from one calibration period (storm group) to the other. The fit is

best in storm groups 2 and 3. However, the predicted curve lacks the

large fluctuations about the mean that characterizes the observed

values. Due to the unconstrained nature of the regressions, unrealistic

negative values of precipitation rate were also predicted. The

predictions in dashed lines in Figures 8.3 to 8.7 will be compared

to the predictions of the deterministic station precipitation model

developed in this work. Both the regression and the physically based

model use the same variables as their input.

The performance during the calibration period of a second set

of regressions of the type in Table 8.8 is presented in Figures 8.8

to 8.12. The precipitation rate lagged by one hour was added to the

list of explanatory variables for this set of regressions. The

corresponding parameter estimates and standard errors are given in
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FIGURE 8.3 Precipitation rate hourly predictions (stars) based on the

linear model of Table 8.7 vs. observations (solid line).
Storm group 1.
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FIGURE 8.4 Precipitation rate hourly predictions (stars) based on the

linear model of Table 8.7 vs. observations (solid line).

Storm group 2.
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FIGURE 8.5 Precipitation rate hourly predictions (stars) based on the
linear model of Table 8.7 vs. observations (solid line).
Storm group 3.
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FIGURE 8.6 Precipitation rate hourly predictions (stars) based on the
linear model of Table 8.7 vs. observations (solid line).
Storm group 4.
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Table 8.7

REGRESSION PARAMETERS AND STANDARD ERRORS
REGRESSION OF PRECIPITATION RATE ON TEMPERATURES AND PRESSURES

Py(k) = AI.To(k) + A2.Td(k) + A3 -po(k) + A4.Tw(k) + A0

Storm Group 1

Explanatory
Variable

Temperature:

Dew Point
Temperature:

Surface
Pressure:

Wet Bulb
Temperature:

Parameter
Estimate

-0.67677

1.18

-0.00028

-0.66274

Constant of Regression: 77.420

Standard
Error

0.70792

0.72597

0.00045

1.3217

62.888
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Table 8.7 (continued)

Storm Group 2

Explanatory
Variable

Temperature:

Dew Point
Temperature:

Surface
Pressure:

Wet Bulb
Temperature:

Constant of Regression:

181

Parameter

Estimate

0.81306

-1.6129

0.00001

2.3238

-433.66

Standard
Error

0.79902

0.9228

0.00029

1.4324

113.44



Table 8.7 (continued)

Storm Group 3

Explanatory
Variable

Temperature:

Dew Point
Temperature:

Surface
Pressure:

Wet Bulb
Temperature:

Constant of Regression:

Parameter

Estimate

-0.95569

-0.06964

0.00059

1.1979

-105.55

182

Standard
Error

0.59705

0.36834

0.00016

0.95236

38.139



Table 8.7 (continued)

Storm Group 4

Explanatory
Variable

Temperature:

Dew Point
Temperature:

Surface
Pressure:

Wet Bulb
Temperature:

Constant of Regression:

183

Parameter

Estimate

-2.3187

-0.98358

-0.00052

3.5262

-8.8449

Standard
Error

1.1131

1.0464

0.00072

2.0683

119.03



Table 8.7 (continued)

Storm Group 5

Explanatory
Variable

Temperature:

Dew Point
Temperature:

Surface
Pressure:

Wet Bulb
Temperature:

Constant of Regression:

184

Parameter

Estimate

-0.21898

Standard
Error

0.65217

1.7385 1.044

-0.00046

-1.8472

143.63

0.00112

1.6473

117.37
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FIGURE 8.8 Precipitation rate hourly predictions (stars) based on the
linear model of Table 8.8 vs. observations (solid line).
Storm group 1.
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FIGURE 8.9 Precipitation rate hourly predictions (stars) based on the
linear model of Table 8.8 vs. observations (solid line).
Storm group 2.
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FIGURE 8.10 Precipitation rate hourly predictions (stars) based on the
linear model of Table 8.8 vs. observations (solid line).
Storm group 3.
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FIGURE 8.11 Precipitation rate hourly predictions (stars) based on the
linear model of Table 8.8 vs. observations (solid line).
Storm group 4.
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Table 8.8

REGRESSION PARAMETERS AND STANDARD ERRORS
REGRESSION OF PRECIPITATION RATE ON TEMPERATURES
PRESSURE AND 1-HOUR LAGGED PRECIPITATION RATE

Pv(k) = AI.To(k) + A2.Td(k) + A3 -Po(k) + A4.Tw(k)

+ A5.Pv(k-1) + Ao

Storm Group 1

Explanatory
Variable

Temperature:

Dew Point
Temperature:

Surface
Pressure:

Wet Bulb
Temperature:

Parameter
Estimate

0.14092

0.55297

0.00009

-0.7196

Precipitation
Rate (1 HOUR LAG):

Constant of Regression:

0.6186

-1.0403

190

Standard
Error

0.57909

0.58901

0.00036

1.0611

0.0842

51.602



Table 8.8 (continued)

Storm Group 2

Explanatory
Variable

Temperature:

Dew Point
Temperature:

Surface
Pressure:

Wet Bulb
Temperature:

Precipitation
Rate (1 HOUR LAG):

Constant of Regression:

191

Parameter

Estimate

0.63004

-2.2879

0.000005

2.8935

0.38864

-351.70

Standard
Error

0.73828

0.87435

0.00027

1.3309

0.11737

107.42



Table 8.8 (continued)

Storm Group 3

Explanatory
Variable

Temperature:

Dew Point

Temperature:

Surface
Pressure:

Wet Bulb

Temperature:

Precipitation
Rate (1 HOUR LAG):

Constant of Regression:

Parameter
Estimate

-0.2361

0.02507

0.00033

0.22086

0.53395

-35.513

192

Standard
Error

0.54064

0.32011

0.00015

0.85250

0.11535

36.373



Table 8.8 (continued)

Storm Group 4

Explanatory
Variable

Temperature:

Dew Point
Temperature:

Surface
Pressure:

Wet Bulb
Temperature:

Precipitation
Rate (1 HOUR LAG):

Constant of Regression:

193

Parameter

Estimate

-1.9360

-1.1063

-0.00025

3.2149

0.29207

-21.357

Standard
Error

1.0909

1.0139

0.00071

2.0061

0.13298

115.30



Table 8.8 (continued)

Storm Group 5

Explanatory
Variable

Temperature:

Dew Point
Temperature:

Surface
Pressure:

Precipitation
Rate (1 HOUR LAG):

Constant of Regression:

Parameter
Estimate

0.24412

1.4350

-0.00031

0.48477

89.642

194

Standard
Error

0.58033

0.92043

1.4496

0.09007

103.77



Table 8.8. Examination of the parameter estimates of Table 8.8

shows considerable differences from one storm group to another. The

figures show improvement over the previous set of regressions, al-

though some prediction delays are still observed. Some negative

values were also predicted. This set of predictions will be compared

to the predictions of the stochastic station precipitation model.

8.3 Station Precipitation Model Parameter Determination

For the purposes of this work and as a first step toward the

testing of the precipitation model developed, uniform vertical velocity

profile with height is assumed. Similarly, the distribution of the

parameter c (inverse average level diameter) with height was taken

to be uniform. Under those assumptions I = 1 (Eq. 5.43), and y = 1

(Eq. 4.13). No dependency of the parameter c on the updraft velocity

was considered, m = 0 (Eq. 5.42). This implies constant average

level diameter for all storms and at all times. The value of parameter

E3 (Eq. 5.39) was taken equal to 1 [SEC/M] which is the order of

magnitude of the inverse updraft velocity v. Parameter C2 (Eq.

5.39) was set at the 700 [MBAR] level. Therefore, the cloud top was

allowed to vary from the level of 700 [NBAR] to a level of 200 (NBAR]

for all cases. For all the model runs to follow, the initial condition

Xo of the state (mass of condensed liquid water equivalent in cloud

storage) was taken equal to 1 [KG/M2]. With those values for 0,

Y, c33 62, and Xo, the model was used with input-output data
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to determine the values of the remaining two parameters: s (Eq.

5.34) and C4 (Eq. 5.42). Storm group 2 consisting of only one

storm, was selected as the calibration period.

Three model performance criteria were considered. The average

error in predicting the precipitation rate, the residual standard

deviation and the cross-correlation coefficient, E3, between the model

prediction and the observations. The first indicates the extent to

which the model produces the volume of precipitation observed. The

second is the standard least squares criterion. The third was included

to indicate undesirable lags between observations and predictions.

Its value ranges from -1, for worst performance, to 1, for perfect

performance. Normalized quantities for the first and second criteria

were used for calibration. Those were the absolute proportional

average error El and the proportional standard error E2. El is

obtained by dividing the residual mean by the observed mean

precipitation rate mean and taking the absolute value of the ratio.

Perfect performance leads to a value of El equal to zero. E2 results

by division of the residual standard deviation with the observed

precipitation rate standard deviation. Perfect performance yields a

value of E 2 equal to zero. Figures 8.13 to 8.15 present contours of

E1, E2, and E3, respectively, in the space of the parameters el

(ordinate) and 64 (abscissa). Parameter 61 ranged from 104 to

1.5 x 10-2, while parameter C4 ranged from 10-5 [M] to 10-4 [M].

The computational discretization intervals, corresponding to the
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estimation accuracy in this case, were 1.4 x 10-3 for ei and

9.8 x 10- 6 [M] for 64 . Note that given m = 0, 64 is the average

diameter, assumed constant.

Examination of Figures 8.13 to 8.15 reveals that different

parameter sets optimize the different criteria for the selected

calibration period. Thus, good least squares performance does not

guarantee equally good performance in the cross-correlation coefficient

E3 '

Notable is also the fact that changes in the value of one of

the parameters result in drastic changes in the gradient of the

performance index El with respect to the other parameter. Thus, a

value of about 2 x 10-3 for El gives regions of very mild E1

gradient with respect to E4 . For El near 9 x 10- sharp

changes in El occur by changing E4. Multiple optima occur for

El and possibly (for high values of el) for E2 - Index E3

was used to decide between these optima. For example, the

depressions in the lower left part of Figures 8.13 and 8.14 were

excluded due to their lower value of E3 -

Even with the exclusion of the lower left part of all figures

as a possible optimum, a choice between the parameter sets that

optimize the different performance indices has to be made.

El was heavily weighted due to the importance of preserving

total precipitation volume and due to its sensitivity to parameter

1. The region of the limited el, 64 space that gives both

good performance with respect to El and to E 2 is the one defined by
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61 in the range 1.5 x 10-3 to 2.5 x 10-3 and 64 in the range

3 x 10-5 [M] to 5.5 x 10- 5 [M]. A choice of el = 2 x 10-3 and

S 4 = 4.5 x 10-5 [MI in the prespecified region was arbitrarily made.

The sensitivity to the value of the ill defined constant c, for

snow diffusion losses (Eq. 4.41). was studied next for the case of

the snowstorm group 3. Two values of c1 , the one obtained in Section

4.5 for rain, c (= 7 x 105 [KG/(M SEC)], and the one estimated

for snow, c1 (= 1.4 x 105 [KG/ 3SEC)] were examined. Contours of E

and E2 for el in the range 10~4 to 1.3 x 10-2 and 64

in the range 1.2 x 10- 5 to 10-4 were obtained for both values of

cl. Those are shown in Figures 8.16 through 8.19. The computa-

tional discretization inverval was 2.6 x 10-3 for ei and 1.8 x

10-5 [M] for 64.

No significant changes are observed among the different plots

corresponding to El and E2 other than a shift to a higher optimal

value of 4 when c1 changes from 7 x 105 to 1.4 x 105 [KG/(M3SEC)].

Choosing a value of cl = 1.4 x 105 for snowstorm, group 3, leads to

parameters el and 64 similar to the ones already obtained using

group 2 (rainfall) data.

In summary, cl was taken as 1.4 x 105 for group 3 and 7 x 105

for all other groups. Parameters el and 64 took values of

2 x 10-3 and 4.5 x 10- 5 , respectively, for all groups.
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8.4 Deterministic Station Precipitation Model

The precipitation model developed in the first five chapters

was used to forecast the hourly precipitation rate for all storm

groups, with the parameters obtained in the previous section. The

input at all times was equal to the -current observed value for the

meteorological parameters. Performance is judged by the values of

the following measures:

1) residual mean

2) residual standard deviation

3) lag-l correlation coefficient of residuals

4) coefficient of efficiency

5) coefficient of determination

6) coefficient of persistence

7) coefficient of extrapolation, and

8) comparison to the regression runs of section 8.2 that used

the same input and were locally calibrated for all storm

groups.

The residual at each time is equal to the difference between

the predicted precipitation rate and the observed one. The performance

indices (4) through (7) were introduced in hydrologic forecasting by

Kitanidis and Bras (1980b). The coefficient of efficiency is a

measure of the residual squared error, as it compares to the squared

error of the quantity to be forecasted. A perfect value is 1.

Negative values indicate large residuals relative to the scale of the

observations. The coefficient of determination compares the residual
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squared error to the squared error of the observations after the

linear trends have been removed from the residual time series by

regression. Comparison of the coefficients of efficiency and

determination allows assessment of the possible model systematic

errors. The coefficient of persistence compares the model prediction

to a simple model that predicts the previous observation. Thus,

negative values of this measure indicate that in the least squares

sense the model is worst than no-model persistence. The coefficient

of extrapolation compares the model predictions to the observations

of a linear extrapolator using the latest observations (in this work

the latest two).

The residual mean multiplied by the number of storm time-steps

gives the accumulated volume error in predicting precipitation.

Figures 8.20 to 8.24 show the 1-hour lead forecasts of the

precipitation rate [MM/HOUR], in dashed lines, together with the

corresponding observations, in solid lines, for storm groups 1 to 5,

respectively.

Table 8.9 gives the residual mean, standard deviations and

three auto-correlation coefficients for each storm group together

with the residual standard deviation of the regressions discussed in

Section 8.2. Keep in mind that those regressions were calibrated to

each group individually, therefore representing the best possible

linear fit. Table 8.10 gives the least squares performance measures

[items (4) to (7)] for each storm group.
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Table 8.9

DETERMINISTIC PRECIPITATION MODEL
RESIDUAL STATISTICS FOR STORM GROUPS 1 TO 5

Statistic

Mean [MM/HOUR]:

Standard Deviation
[MM/HOUR]:

Lag-i Auto-Correlation:

Lag-2 Auto-Correlation:

Lag-3 Auto-Correlation:

Group: 1

1.09

2.49

0.56

0.34

0.21

Regression
Residual Standard
Deviation:

2

-0.23

1.701

0.46

0.22

0.12

3

0.28

1.10

0.57

0.36

0.26

4

0.82

2.91

0.41

0.20

0.16

5

0.31

2.68

0.47

0.31

0.13

1.63 1.08 2.94 2.602.64



Table 8.10

DETERMINISTIC PRECIPITATION MODEL
LEAST SQUARES PERFORMANCE MEASURES FOR STORM GROUPS 1 TO 5

Description Group: 1 2 3 4 5

Efficiency Coefficient:

Determination Coefficient:

Persistence Coefficient:

Extrapolation Coefficient:

0.02

0.19

-0.39

0.44

0.10 0.12 0.03 0.15

0.12 0.17 0.13 0.16

0.23 -0.12 0.23 -0.10

0.71 0.55 0.70 0.54

k)
H



Examination of Table 8.9 indicates that the deterministic model

performance, with parameters estimated only with data of group 2, is

comparable in the least squares sense, to the locally calibrated

regressions. In some cases, groups 1 and 4, the precipitation model

had better performance. The value of the residual means of Table 8.9

implies that in all cases volume preservation was satisfactory. The

relatively high correlation values are indicative of possible

improvement when the precipitation model is complemented by a filter.

The performance measures of Table 8.10 point to the low efficiency

of the deterministic model. The difference between the coefficient of

determination and the coefficient of efficiency indicate systematic

errors in some of the predictions. Some cases had negative persistence

coefficients, implying poor performance at a 1-hour lead forecast relative

to a simple persistence model. The extrapolation coefficient was

large for most storm groups, indicating better performance than linear

extrapolation.

It should be noted that the precipitation model proposed can

predict the beginning and ending of the precipitation based on the

temperature and pressure input. Therefore, when the forecasts of no-

rain or no-snow are taken into consideration for a continuous period

of record, performance is considerably improved.

Characteristic to the deterministic model is its

deficiency predicting excessively high precipitation rates. It

does a rather good job in predicting the no rain periods. This

suggests the examination of values of m, , and y,other than the
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ones arbitrarily selected in this calibration. The diffusion losses

part of the model seems to respond properly to observed input.

8.5 Stochastic Station Precipitation Model

The station precipitation model performance in a stochastic

feedback mode was studied next. The linear Gaussian filter of Chapter

7 was utilized. The input error standard deviation for temperature

and dew point were set to 1 [0KI, while no error was assumed for the

pressure input. Zero correlation in the errors of the different input

variables was assumed. The observation error standard deviation took

the value 1 [MM/HOUR], while the model error spectral density was set

equal to 0.01 [(KG/M)2/SEC]. This spectral density adds about

0.01 x 3600 = 36 (KG/M)2 to the state variance at each step when the

order of magnitude of X is about 10[KG/M]. Such a high value of the

model error spectral density was considered necessary in order to

avoid filter divergence. The initial state standard deviation was

0.3 [KG/M2 ]. No sensitivity analysis was performed for any of the

filter parameters.

Performance was judged as in the case of deterministic model

forecasts. Now, however, the filter predictions are compared to the

set of individually fitted regressions in Figures 8.8 to 8.12, that

use the previous precipitation value. Figures 8.25 to 8.29 show the

model forecasts (dashed line) together with the corresponding hourly

precipitation rate (solid line).
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FIGURE 8.25 Stochastic precipitation model hourly predictions (stars) vs.
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Table 8.11

STOCHASTIC PRECIPITATION MODEL
RESIDUAL STATISTICS FOR STORM GROUPS 1 TO 5

Group: 1 2 3 4 5

Mean: 0.58

2.01Standard Deviation:

Lag-i Auto-Correlation:

Lag-2 Auto-Correlation:

Lag-3 Auto-Correlation:

Regression
Residual Standard Deviation:

-0.15 0.104 0.49 0.06

1.43 0.96 2.20 2.4

0.058 0.01 -0.003 0.16 -0.12

0.009 -0.07 -0.058 0.07

0.1

0.09

-0.05 0.04 0.10 -0.04

1.51 0.94 2.90 2.30

Statistic

2.12



Table 8.12

STOCHASTIC PRECIPITATION MODEL
LEAST SQUARES PERFORMANCE MEASURES FOR STORM GROUPS 1 TO 5

Description

Efficiency Coefficient

Determiniation Coefficient

Persistence Coefficient

Extrapolation Coefficient

Group: 1

0.36

0.41

0.10

0.63

2

0.33

0.33

0.43

0.78

3

0.28

0.35

0.08

0.63

4

0.38

0.46

0.50

0.81

5

0.28

0.30

0.07

0.61



Tables 8.11 and 8.12 correspond to the deterministic forecasts

Tables 8.9 and 8.10. Considerable improvement is noted for all

storm groups.

The values of the residual mean have all been reduced such that

preservation of precipitation volume is even more successful in this

case. The standard deviations of the residuals and the auto-

correlations confirm good filter preformance.

Comparison of the filter forecasts to the locally calibrated

regression forecasts (see also standard deviations in Table 8.11)

support the robustness and reasonableness of the storm independence

of the suggested rainfall model.

Considerable improvement (Table 8.12) in the efficiency measures

is observed, relative to the deterministic case.

All persistence coefficients are now positive and the efficiency has

risen an order of magnitude in some cases. Examples of the model

performance for longer forecast lead times using observed

input are given in Tables 8.13 and 8.14. Model forecasts up to a

maximum lead time of 6 hours were considered for storm groups 1 and

5. The drop of efficiency is more pronounced in the Boston data

(group 1) than in the Tulsa data (group 5). Increase of the persis-

tence coefficient from the low 1-hour lead time value to values of

0.48 and 0.57 supports the forecasting ability of the precipitation

model. Table 8.14 suggests that the stochastic model will have good

performance with precipitation data from Tulsa for relatively long

forecast lead times.
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Table 8.13

LEAST SQUARES PERFORMANCE MEASURES FOR
STORM GROUP 1. MAXIMUM LEAD TIME 6-HOURS

Description

ul Efficiency Coefficient

Determination Coefficient

Persistence Coefficient

Extrapolation Coefficient

Lead Time (HOURS): 1

0.36

0.41

0.10

0.63

2

0.17

0.36

0.26

0.53

3

0.08

0.31

0.33

0.48

4

0.04

0.30

0.40

0.45

5

0.02

0.29

0.47

0.44

6

0.02

0.30

0.47

0.43



Table 8.14

LEAST SQUARES PERFORMANCE MEASURES FOR STORM
GROUP 5. MAXIMUM LEAD TIME 6 HOURS

Description

Efficiency Coefficient

Determination Coefficient

Persistence Coefficient

Extrapolation Coefficient

Lead Time (HOURS): 1

0.28

0.30

0.07

0.61

0~'

2

0.26

0.37

0.41

0.60

3

0.18

0.33

0.43

0.55

4

0.34

0.40

0.59

0.45

5

0.22

0.30

0.54

0.35

6

0.21

0.30

0.56

0.35



8.6 Deterministic Rainfall-Runoff Model

The formulation of the general rainfall-runoff model presented

in Chapter 6 was used with hydrologic data from the Bird Creek basin

and meteorological data from Tulsa in an initial attempt to assess

performance. It is not intended to be a definite test.

The outlet of the Bird Creek basin is located about 20 km

Northwest of Tulsa with the rest of the basin to the north of it. No

temperature and pressure data were available for any location in the

basin (2344 km2). The forecast lead time was 6 hours and average

temperatures and pressure values over 6 hours, at Tulsa, were used

for the prediction of the 6-hour rainfall in the basin. The

excessively wet month of May was used as the forecast period. Sharp

hydrographs of up to 250 [M3/SEC] are characteristic in this month.

The calibration and initial conditions given in Georgakakos and

Bras (1979) for the soil model parameters were used. In addition, ml

and m 2 took a value equal to 4. The channel model was calibrated as

in Georgakakos and Bras (1982). The calibration of the precipitation

model, based on hourly data, was that reported in the previous section.

The rainfall predictions (Figure 8.30) from the rainfall-runoff

model imply that the precipitation model with Tulsa meteorological

input does a poor job in representing mean areal conditions in the

Bird Creek Basin as computed by the NWS. The large peak at about the

eighth time step of the event has been missed completely. Similarly,

the precipitation rates at about the 20th time step have been badly

underestimated. The next 2 significant peaks (at 35 and 41 periods)

are produced by the model with Tulsa meteorological data, but shifted

by about 4 periods. Clearly, the storm movement with respect to the
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FIGURE 8.30 Deterministic Rainfall-Runoff model precipitation rate 6-hourly
predictions (stars) vs. observations (solid line). Bird Greek,
May 1959
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point of meteorological observations and with respect to the basin

has an effect on the predictions of basin average conditions.

The corresponding deterministic outflow hydrograph is shown in

Figure 8.31. The floods of the 13th and 46th time step of the run

appear to be shifted in time. The early peak at about the 4th period

is mostly due to the assumed initial conditions of near saturation in

the soil model upper reservoirs. No peak was produced to correspond

to that observed at the 30th period of the run.

Examination of the daily potential evapotranspiration rates,

computed by the NWS for the whole month of May 1959, revealed high

rates for the periods prior to the occurrence of the second peak in

Figure 8.31. Values ranging from 5 to about 6.5 [MM/DAY] were

reported. This fact and the low precipitation activity predicted

by the precipitation model, contributed to the low forecasted flows for

this period. The relatively low peak flow forecasted by the

Rainfall-Runoff model for the 47th time step of the run, in spite of

the large precipitation activity predicted (time steps 38 and 45 in

Figure 8.30) is mainly due to the reported high evapotranspiration

values for this period. The values ranged from a low of 5 to a

high of about 8.5 [MM/DAY]. The evapotranspiration potential values

used are based on pan evaporation observations adjusted by empirical

coefficients. The distribution of the daily to 6-hourly values was

done based on weights provided by the NWS, Office of Hydrology.

Those are 0 for the first and last 6-hour periods in the day and 0.5

for each of the intermediate periods. The timing of evapotranspira-

tion potential is important due to the dependence of the model re-

sponse on the time of near saturation conditions for the upper soil
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reservoirs. Shifts in the precipitation forecasts could then have a

pronounced effect on the model response.

8.7 Stochastic Rainfall-Runoff Model

The purpose of the stochastic rainfall-runoff model runs is to

establish the influence of the stochastic precipitation model on

overall system performance. At first, a base run with the very low

model errors of Table 8.15 was made to establish improvement over the

deterministic model behavior. No input error was assumed and the

observation error vector statistics of Table 8.16 were utilized. The

state initial variances of Table 8.15 served to initiate the filter

iterations. The model, observation, and initial covariance matrices

were diagonal.

The rainfall-runoff model was then used with data corresponding

to the same period, but with increased precipitation model error.

This allows the study of the effect of rainfall forecasts uncertainty

on streamflow predictions. A value of 25 [MM2/6-HRS] was used in

place of the value 2.5 x 10-3 [MM2/6-HRS] of Table 8.15.

The residual statistics for both the mean areal precipitation

rate and the outflow is given in Table 8.17 for the two stochastic

model runs respectively. For comparison, the corresponding statistics

for the deterministic (no update) run of Section 8.5 are also given

in Table 8.17. The cross-correlation coefficient of the precipitation

and discharge residual errors is also given.

Examination of Table 8.17 supports the following conclusions:

1) A small increase in the forecasting ability of the

precipitation model, as the precipitation model error was increased,

was accompanied by considerable increase in the ability of the Rainfall-
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Table 8.15

RAINFALL-RUNOFF INITIAL STATE VARIANCES AND MODEL ERROR
SPECTRAL DENSITY MATRIX DIAGONAL ELEMENTS

Initial Variance [MM2]

10-3

10-1

Model Error
Spectral Density

[MM2/6-HRS]

2.5 x 10-3

10-6

10~4

10~4

10-1

10-1

10-2

10-2

10-6

10-6

10-6
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X

xi

x2

x3

x4

x5

x6

S3

S2

S3



Table 8.16

RAINFALL-RUNOFF MODEL OBSERVATION ERROR COVARIANCE MATRIX

Mean Areal Precipitation Discharge Outflow

Mean Areal Precipitation:

Discharge Outflow:

1 + 0.01 - z2
1

0 0.05 + 0.01 - z2
2

zl: Current observation of mean areal precipitation

z2 : Current observation of the discharge outflow.
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Table 8.17

RAINFALL-RUNOFF MODEL RESIDUAL STATISTICS

Low Precipitation High Precipitation
Deterministic Model Error Model Error

1) Mean Areal Precipitation

Mean [MM/6-HRS] 0.74 0.70 0.70
Standard Deviation [MM/6-HRS] 5.84 5.83 5.82
Lag-l Auto-Correlation 0.206 0.204 0.201
Lag-2 Auto-Correlation -0.052 -0.050 -0.052
Lag-3 Auto-Correlation -0.170 -0.168 -0.167

2) Outflow Discharge

Mean [MM/6-HRS] 0.32 0.26 0.05
Standard Deviation [MM/6-HRS] 0.74 0.73 0.70
Lag-l Auto-Correlation 0.872 0.869 0.864
Lag-2 Auto-Correlation 0.586 0.579 0.560
Lag-3 Auto-Correlation 0.249 0.237 0.209

Residual Cross-Correlation
Coefficient -0.261 -0.256 -0.356



Runoff model to predict the outflow discharge rate. This holds true

in particular for the preservation of total outflow volume (residual

mean).

The improved performance in the prediction of outflow can be

seen in Figure 8.33. There, the model predictions (dashed lines) are

compared to observations (solid lines) of the outflow discharge for

the case of high precipitation model error. Improvement on magnitude

and times of occurrence of the first and last peaks was observed.

The second peak was again badly forecasted. This points to the fact

that bad performance for this case is not dependent on the precipitation

model errors.

Figure 8.32 gives forecasted discharges when low precipitation

model errors were assumed. There is still an improvement over the no

update, deterministic case (Figure 8.31). The precipitation forecasts

in the stochastic cases were similar to the deterministic results in

Figure 8.30. This is supported by the statistics in Table 8.17.

This suggests that improvement in the outflow discharge prediction

was due to the propagation of uncertainty rather than to more accurate

precipitation rate forecasts.

2) The model error spectral density used was not high enough to

account for the abrupt changes of orders of magnitude in the

precipitation rates (solid line in Figure 8.30). The relative

improvement of the outflow forecasts, however, suggests caution when

using excessively high values for this density, if the objective is

the accurate prediction of outflow.
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FIGURE 8.32 Stochastic Rainfall-Runoff model outflow discharge 6-hourly
predictions (stars) vs. observations (solid line), for a model
error of low intensity. Bird Creek, May 1959
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3) Due to the difference in the characteristic time constants of

the precipitation and drainage-basin processes, the auto-correlation

structure of the residuals is drastically different between the two

model outputs. Low correlations, of 0.2 and lower for 6-hour lags

and longer, prevail in the mean areal precipitation output residuals.

Correlations of 0.8 and lower are characteristic to outflow. This

difference of order should be taken into consideration when judging

filter performance (e.g., discussion in Kitanidis and Bras, 1980b).
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Chapter 9

CONCLUSIONS AND RECOIM4ENDATIONS

9.1 Summary of Results

This work developed a stochastic, state-space form, station precipi-

tation model, and formulated the equations for a general rainfall-runoff

model suitable for use in the real-time simultaneous precipitation and

river flow forecasting.

Tests of the precipitation model involved examination of the deter-

ministic and stochastic model behavior under a variety of meteorological

conditions. A set of eleven storms of different type and severity from

Boston, Massachusetts and Tulsa, Oklahoma, was the hourly data base for

the model tests. Several performance indices were used to quantify be-

havior of the developed model. Thus, mean, standard deviation and auto-

correlation structure of the residual process, together with efficiency,

determination, persistence, and extrapolation coefficients were utilized.

In addition, the model predictions were compared to the optimistic pre-

dictions of linear regressions of same input, calibrated for each storm

period separately. In contrast, the physical model parameters were man-

ually calibrated with data from a single storm and remained unchanged

during all model tests.

Characteristic to all tests of the deterministic precipitation model

was inadequate representation of excessively high precipitation rates and

the successful prediction of the no-precipitation periods.
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Improved model behavior was observed when the stochastic formulation

was used. The filter parameters were based on a priori considerations and

remained unchanged for all the stochastic model runs. Again, the model

predictions were compared to locally calibrated regression model predic-

tions with rainfall in the last time step as well as meteorologic paramet-

ers as explanatory variables. The high extrapolation coefficients indi-

cate superiority of the developed model over linear predictors using the

previous two precipitation rates. The low auto-correlations of the resi-

dual process suggested near optimal filter performance.

Good stochastic model performance is also confirmed by the positive

persistence coefficients. Positive persistence short-range predictions

are rather difficult to attain (e.g., Kitanidis and Bras, 1980b).

No significant difference between the Boston and Tulsa hourly

forecasts was observed. Nevertheless, when the extended forecasts (up to

six hours maximum forecast lead time) performance coefficients were ex-

amined for storms of the two locations, the Boston forecasts showed a

much more pronounced drop in efficiency with lead time. Efficiency was

almost constant for all the lead times for Tulsa.

240



The full Rainfall-Runoff model was tested with hydrologic data from

the Bird Creek basin and with meteorologic data from Tulsa. The basin is

of area 2344 [KMxKM] and it is located in the nothern part of Oklahoma.

Tulsa is located outside of the basin and in a distance of about 20 [KM]

to the south of the basin outlet. The outlet is the closest basin loca-

tion to Tulsa.

Evapotranspiration potential, outflow discharge and computed six-

hourly mean areal precipitation data, for the excessively wet month of

May 1959 were used. Average temperature and pressure data for the cor-

responding six-hour periods were computed from observed hourly data.

The deterministic rainfall-runoff model predictions were poor in

terms of the basin mean areal precipitation rate and of the outflow dis-

charge. A possible explanation is that the meteorological conditions in

Tulsa are not representative of the mean areal precipitation rate computed

for the Bird Creek basin.

Two runs of the stochastic rainfall-runoff model were made. In the

first, the model error corresponding to all of the states was set equal to

a relatively low arbitrary value, simulating perfect model behavior. The

results showed improvement over those of a deterministic model with no

updating. The effect of the precipitation rate prediction on the dis-

charge forecasts was studied by increasing the error corresponding to the

precipitation model while keeping the rest of the model errors small. The

results indicated that the coupling of the precipitation to the hydrologic

models by the filter is of considerable value to river-flow forecasting.

For relatively small improvement in the precipitation forecasts, consider-

able improvement of the outflow forecasts was observed.
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9.2 Future Research

The good behavior of the stochastic precipitation model developed,

permits several extensions of this work. They can be grouped as 1) rela-

ted to the precipitation forecasting per se, and 2) related to the use of

the general rainfall-runoff model.

9.2.1 Related to Precipitation Forecasting

Automatic calibration methods of all the model parameters should be

used to establish optimal parameter values. The maximum likelihood meth-

odology (Restrepo-Posada and Bras, 1982) and the unbiased sequential es-

timator in Georgakakos and Bras (1982) are two possible alternatives. The

fact that there is only one state, permits the use of elaborate parameter

estimation procedures and many data sets. Caution must be exercised, how-

ever, to avoid the local optima indicated by the parameter space mapped in

Section 8.3. During this effort, all parameters including, m, , and y

should be calibrated.

The calibrated model, complemented by a filter, should be used with

several data sets from different locations and for different storms in a

sensitivity analysis of the effect of the filter parameters on model per-

formance. The nonstationarity of the model error should be examined in

detail. Similarly, the observation error structure needs examination.

Related to this, the theoretical framework in Sharon (1980) will be use-

ful. The extent to which the error in the input variables improves model

performance should also be evaluated.
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Due to the physical interpretation given to the model components,

observations of cloud tops, upper cloud divergence from satellite images,

droplet spectra and updraft velocities can considerably improve the sto-

chastic model performance when used in additional observation equations.

Perhaps more important will be observations of the model state (cloud mois-

ture) of the type described in Bunting and Conover (1976).

The low order of the precipitation model permits probabilistic fore-

casts based on the use of the Bayes law and initial probability distri-

butions of the model state. Formulations in Ho and Lee (1964) can be used.

This type of forecasts are particularly useful in decision making.

Slight modifications in the model structure can be done to incorpor-

ate the effect of the time variation of some parameters. For example, as-

sume a one-parameter Markov model for the time evolution of the average

level diameter 1/c. Estimating the additional parameter from storm data

permits evaluation of the resultant precipitation for varying initial con-

ditions for 1/c. This can be done in a filter framework with observations

of the precipitation rate and possibly of other physical quantities as de-

scribed above. This type of research can be valuable in assessing the ef-

fects of cloud seeding on the precipitation rate in real time.

9.2.2 Related to River Flow Forecasting

Of primary importance is the collection of a consistent set of data

for the applications of the Rainfall-Runoff model. Preferable are situa-

tions of drainage basins containing meteorological observations. In the

absence of meteorological stations, nodal points of temperature and pres-

sure prediction by the MOS technique (Glahn and Lowry, 1972) can be used,

given the high linear auto-correlations of those variables. In the absence

of those nodal points, nearby meteorological stations can be used. How-
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ever, in this case, re-calibration of the precipitation model might be

necessary for good performance. In addition to the meteorological data,

hydrological data of high time resolution (six-hours) for the same test

basins should be obtained.

Sensitivity analysis of the filter parameters must be performed. It

is conceivable that for the short forecast lead times some of the states

need not be filtered. The time trace of the filter gains will clarify

this. In case only a portion of the state vector needs filtering, the

results in Sims (1974) will be of use. An important aspect of the work

along this line is the specification of the observation error statistical

structure corresponding to the mean areal precipitation. The work of Bras

and Iturbe (1976) will provide the guidelines.

Provided that the examination of the Rainfall-Runoff model behavior

is complete for a head water basin, as described above, extension to a

network of tributary-basins logically follows. The formulation is given

in general terms in Appendix C. The major problem and research area in

this case is the numerical burden associated with the uncertainty propa-

gation between the different sub-basins. Decomposition theory techniques

are unavoidable in this case. The formulations in Noton (1971) and Sims

(1974) are relevant. Propagation of uncertainty can also be accomplished

with reduced cost by ignoring the model components correlations between

different sub-basins, preserving only correlations in each sub-basin,

and correlations in the precipitation model states of different sub-

basins. Clearly, the effect of each methodology assumptions on model

performance should be established.

244



The precipitation network design methodology of Bras and Iturbe

(1976) is applicable. Location and number of meteorological stations

or MOS predictions nodal points can be obtained with the stochastic

Rainfall-Runoff model developed, for varying accuracy restrictions on

the outflow discharge. Consideration of the spatial statistical struc-

ture of the input meteorological variables is necessary. It is expected,

however, that due to the higher spatial and temporal correlation of

those variables compared to the precipitation rate ones, cost efficient

designs will result.
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Appendix A

GLOSSARY OF METEOROLOGICAL TERMS USED

Adiabatic or (dry adiabatic) ascent: Rising of air packets that

are thermally insulated from their environment.

Dew point temperature, Td: It is the temperature to which air of

temperature T must be cooled at constant pressure (and water content)

in order for it to become saturated with respect to a plane surface of

water. It holds Td < T.

Entrainment: Mixing between the cloud and the environmental air.

It results in the cooling of the cloud air mainly due to the evaporation

of part of the condensed water that saturates the dry environmental air.

This way the buoyancy of the rising air is reduced.

Equivalent potential temperature, 0 e: It is the temperature a

parcel of air would have if, expanded pseudo-adiabatically until all

the vapor was condensed and fallen out, it was compressed dry adiabati-

cally to the standard pressure of 1000 [MBAR].

Hydrostatic atmosphere: Atmosphere where the upward force

acting on a thin slab of air, due to the decrease in pressure with

height, is generally very close in balance with the downward force

due to the gravitational field.

Irreversible condensation process: Rising of air parcels during

which all condensation products immediately fall out of the parcel.

This implies rain and no cloud.
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Isobaric process: Process under constant pressure.

Isothermal process: Process under constant temperature.

Melting layer: The cloud layer in which melting of the falling

ice particles occurs. It corresponds to the upper boundary of the

high reflectivity region on a weather radar image of the vertical

cloud cross-section.

Mixing ratio, w: It is the ratio of the mass of water vapor in

a certain volume of air to the mass of the dry air in the same volume.

Potential temperature, 0: It is the temperature an air parcel

would have if it were expanded or compressed dry adiabatically from

its existing temperature and pressure to a standard pressure of 1000

IMBAR].

Pseudo-adiabatic ascent: Rising of air parcels with simultaneous

condensation of the water vapor forming particles that immediately fall

out of the air parcel (irreversible process). The parcel is warmed

by the latent heat of condensation which remains in the parcel during

the ascent.

Radiosonde observations: Routine temperature observations taken

from unmanned balloons carrying relatively inexpensive instrument

packages that radio their observations to earth stations. Modern

radiosonde systems are capable of making observations up to about

40 km (Wallace and Hobbs, 1977).

Relative humidity in fraction, r: It is the ratio of the actual

mixing ratio to the saturation mixing ratio at the same temperature

and pressure.
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Reversible condensation process: Rising of air parcels with all

condensation products retained in them. This process implies cloud

and no rain. It is referred to also as a saturated-adiabatic process.

Saturation mixing ratio, w s(T,p): It is the ratio of the mass of

water vapor in a given volume of air'saturated with respect to a plane

surface of water, and with temperature T and pressure p, to the mass of

the dry air.

Saturation vapor pressure, e (T): The pressure exerted by the
-5-I

water vapor under equilibrium conditions (balanced rates of evaporation

and condensation of the water molecules) with air of temperature T.

A plane surface of water is assumed.

Specific humidity, qh: It is the ratio of the mass of vapor in a

certain volume to the total mass of air and vapor in the same volume.

Supercooled rain drops: Drops in a cloud region where the air

temperature is below the freezing point, 273.150K.

Supersaturated air: Cloud regions where the water vapor pressure

is higher than the saturation vapor pressure under the same temperature.

Supersaturation can be with respect to liquid water or ice.

Wet bulb temperature, T : It is the temperature to which a parcel

of air is cooled by evaporating water into it at constant pressure

until saturation of the air occurs. Due to the fact that the mixing ratio

of the air saturated by the above described process is greater or equal

to the initial mixing ratio (which is equal to the saturation mixing

ratio at temperature T d), it follows that T > T .tepeatr w-d
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Appendix B

SOLUTION OF THE STATION PRECIPITATION MODEL
NONLINEAR ALGEBRAIC EQUATIONS BY THE

NEWTON-RAPHSON ITERATIONS METHOD

Suppose that the nonlinear algebraic equation that a quantity

Y obeys is:

F(Y) = 0 (B.1)

with F(-) a general nonlinear function with continuous derivative.

Then, the root Y* of Eq.(B.1) can be found iteratively from:

F(Y )k- (

k k-1 dF(Y) (B.2)
~dY

k-1

using a starting value Y . In the previous equation, k is the iteration

indicator and Yk is the current approximation to the root Y*.

Use of this procedure, called the Newton-Raphson iterations

dF(-)
method, requires specification of F(-), dY and of Y . Those

dY 0*

quantities are determined next for 1) the pseudo-adibatic Eq. (3.16),

2) the wet bulb temperature definition Eq. (4.38), and 3) the terminal

pressure pt definition Eq. (5.38).
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1) Pseudo-adiabatic equation

The T-root of Eq. (3.16) is sought, for a given pressure p. In

this case:

p 0. 286
F(T) = T ( 0

p

L(T) - w (T,p)

c - T e
p

with 0 independent of T.

Denote by E(T) the exponent in Eq. (B.3). Then the derivative

of F(T) with respect to T is:

dF(T)
dT

= [0 + F(T)- 1 + dE(T) 1e T dT
(B.4)

with T in [0K1, to assure its positiveness.

The derivative of E(T) is:

dE(T) Ws ' , dL(T)
dT c T dT

p

L(T) dw (T,p) 1
c T dT T
p

E (T)
L(T) - w (T,p)

c *T
p

Determination o dE(T)
dT

requires:

dL(T) = B
dT
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with:

(B.5)

(B.6)

(B.7)



dw (T,p) - A - 3.5 (T - 223.15)2.5

dT 1 p (B.8)

Eq. (B.7) and (B.8) follow from Eq. (3.15) and Eq. (3.4) with

Tog P0 replaced by T and p respectively.

Application of the Newton-Raphson procedure requires a starting

value for the temperature T. The value of T resulting from dry-

adiabatic ascent to level p (Eq. (3.6) for constant 0 taken from

Eq.(3.5)), can be used to initialize the iterations.

2) Wet-bulb temperature definition

The function F(-) is now defined as:

L(T )
F(T)=T - T + c w (T p- w (Tdpo)) (B.9)w w 0 c s w 0 s d

p

Its derivative is given by:

dF(T ) dL(T ) L(T ) dws(T ,p0
dT s+ (ws T ,p0 ws Td' c dT c dT

w p w p w

(B.10)

The derivatives of the right-hand side of Eq. (B.10) are obtained

from Eqs. (B.7) and (B.8) for T = T and p = p '
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The value of Td, the dew-point temperature at pressure p0, can be

used to start the iterations in Eq. (B.2).

3) Terminal pressure definition

In the case of Eq. (5.38), F(-) is given by:

p 0.286 L(T (p )) w (T (p ), P'(pt))
F(p) T T(pt n---,) exp c*T( ~

t 
tp mt m tt _

t m t p (pt) cp - T m(p t

(B.11)

where dependence on p of T , L and w is shown.
m s

The derivative of F(-) with respect to pt is:

dF(p ) 3F(p , T , p') +F(p , T , p') DT (p )t _ t m + t m , m t
dp ap aT apt t m t

aF(p , T , p') ap'(p )
+ ap, t -(B.12)

where the notation indicates that F(-) is an implicit function of pt

through T ,p'. Due to the fact that F(-) does not explicitly depend on
m

Pt, it holds:

DF(p t, T ,. p')
p m = 0 (B.13)
apt
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3F(p , T , p')
The derivative t m has been determined in (1) by

m
the set of Eqs. (B.4) through (B.8). In this case T = T , p = p'.

Use of Eq. (5.40) for TM t ) gives:

dT (p 2
dpt (c- - ) 2

P 1 3

+ 0.0715 0.286

P
0

2 t (E2 - Pk

(P - 9
t

31 0.714
(2 p + p4 s 4 t

Differentiation of Eq. (5.36) with respect to pt results in:

dp'(pt) 1 (B.1
dpt

Finally, differentiation of Eq. (B.11) with respect to p' gives:

DF(pt Tm , p) ws (T m, p)

apt = (F(p t + 0e p,

L (T - 0.286
c T P 1) (B.16)

The last derivative in Eq. (B.16) is given by:

aw (T , p')I
pstm = -w(Tp') 1

5p m Pt
(B.17)
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The necessary derivatives for the application of the Newton-

Raphson method on the terminal pressure definition equation have now

been determined. Use of Eq. (5.40) can be made to determine a

starting value pt, for the iterations, as a function of the parametersto0

(F 1 - E3 2 and the input variables. In this way, p takes the

form:

p = 2 + cp TO 1 3 )*r (B.18)

0

I +FC - T -(C - 6 )

with T a variable with dimensions of temperature. Experiments

with a wide variety of input and parameter conditions indicated

0fast convergence for T T T*
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Appendix C

EQUATIONS FOR LARGE RIVER BASIN NETWORKS

Consider N tributary-basins comprising a large river basin.

In this case, the equations for the jth sub-basin in the network

can be written as:

d ( = f (x -, uj; a ; j = 1, 2, .. , N (C.1)
dt p p p - -p

d j j j, u-$ u e,; a , a x) ; j = 1, 2, ..., N

(C.2)

dX j) j (X I x X , u u ; a , a A ) j=1,2,..,N
dt--c - e -p -s -c

(C.3)

with output:

z = h (x p, u ; a P) j = 1, 2, ... , N (C.4)
p p p - -p

z c = h (x c ; a c) ; j = 1, 2, ... , N (C.5)
c c -c -c

Notation in the previous set of equations follows Table 6.2

with upperscript j to identify the tributary basin under consideration.

In addition, the vectors X c and A c, that represent the influence
-c -
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of the upstream channels on the jth basin equations are defined

by:

T
[x'1 32 (C.6X = [x x ... x j I (C.6)-c -c -c -

A = [a 1 a 2 ... a jT (C.7)
-c -c -c

with T, as a superscript, to denote the transpose of a vector (or

matrix) quantity.

In Eqs. (C.6) and (C.7), the integers j , j2 1 '' . (M.1-1)

represent indices of the (M.-1) tributary-basins, upstream
J

of the j th one, whose output contributes to the input of the jth

basin. The indices j, j. (i = 1, 2, ... , M. and j = 1, 2, ... , N)

increase following the stream-order of the corresponding tributary.

Thus, wherever k tributaries of k different sub-basins, join to form

another one of higher stream-order, located in a new sub-basin of

index j*, each of the indices for the k joining tributary-basins is

less than j*.

For illustration purposes, Figure C.2 indicates the flow of

the computations related to the precipitation (PREC), soil moisture

accounting (SOIL) and channel routing (CHANNEL) models, for the river

basin of Figure C.1. In that case, N = 5, M = 1, M2 = 1 M3 = 1,

M4 = 3, M5 = 3.
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BASIN I BASIN 2

BASIN 4

BA SIN 3-

BASIN 5

FIGURE C.l

Hypothetical large river basin with five tributary-basins
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FIGURE C.2

Flow of

PREC I

SOI L I
PREC 2
SOIL 2

C

/Y/

PREC 3
SOIL 3

PRECo 4 te

SOIL__4

PREC 5

SOIL 5.

computation, indicated by arrows, for the tributary-
basin network of Figure C.L.
PREC j: Precipitation model computations for

basin j
SOIL j: Soil model computations for basin j
CHANNEL j: Channel routing model computations

for basin j.
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Throughout the previous formulation, each tributary-basin was

assumed characterized by one vector u of input variables TO, Td' P'

In cases with k(>1) different vectors u available for a single basin,

it is necessary to use k unit area precipitation models, for the areas

of influence of each u, within the basin. Each predicted precipitation

rate is then weighed by the applicable area to obtain the input

precipitation rate to the soil model for the basin under consideration.

Due to the relatively high sensitivity of the proposed precipitation

model to the input vector u, a priori averaging of the meteorological

input from different areas is not recommended.
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Appendix D

STATION PRECIPITATION MODEL LINEARIZED EQUATIONS

The first elements F and G of the rainfall-runoff model vector
1 1

functions F(-) and G(-) correspond to the dynamics (Eq. (5.32))

and observation (Eq. (6.3)) equations of the precipitation model,

respectively.

Omitting time dependence for notational simplicity, F and G1

can be expressed as:

F, = f(u)- h(u)- X (D.1)

and

G, = $(u)-X (D.2)

with f(-), h(-) and $(-) showing dependence on the input vector u

whose u1 , u2, u3 elements are T0, PO and Td, respectively.

Equations (D.1) and (D.2) are linear functions of the state X

but nonlinear functions of the input u.

The linearized equations for the precipitation model take the

form of Eqs. (7.9) and (7.10) with F N M' G N , M computed

from Eqs. (7.40) through (7.45).
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Define A. . as the ijth
-1J

th
i element of a vector B. Let B be the current estimate of a

vector B.

Differentiation of Eqs. (D.1) and (D.2) with respect to X

gives:

element of a matrix A. B denotes the

N

-1 1

N

Also:

F
-:01

G
01

= -h(u)

= f (i) -h(i) - X

= g (U) X

The elements of

differentiation as:

(D.3)

(D.4)

(D.5)

(D.6)

the matrices MF and M have to be obtained by
F --G

- 1 f(u)

-11 = 0
Bh(u)

- U~ .) X ; i = 1, 2, 3
10

= ( , )) -X ; i = 1, 2, 3dU.
3i

0
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and

(D.7)

M GN .
1i

(D.8)



with subscript "0" to denote evaluation of a derivative at the

current estimates of input and/or state.

D.1 The Derivatives of f(-), h(-) and 4(-) with Respect to u

D.1.1 Derivatives of Condensation Function with Respect to

the Input Variables

Define M by:
I.

- (f(i))
au. 0

; i = 1, 2, 3 (D.9)

By means of Eqs. (D.9), (3.18) and (3.19) it follows (dA = 1).

M = ((Aw))
f. au.

S 1 0

- p v + m) -Aw - V +
m au.1 0

+ (+ ( a.) - Aw -p
1 0m
10

=1, 2, 3

I) Differentiation of Eq. (3.17) and use of Eq. (3.1) results in:

- w (Td, p)
au.

I

- w (T t p )

au.
0 1 0

; i = 1, 2, 3
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Mf
i1

(D.10)

(a(Aw)
au.

(D.11)



A) In addition:

aw (T d, P
DT 

0

aw (Td" PO)

ap0  0

3Ws(Td' )

aTd 
0

with D1 given by:

D = 0.622- 8- 10-4

D (T - 223.15)

2
P0

2.5D 103.5- (T d- 223.15)

= 4.976- 10-4 [KG/M/SEC 2/ K 3.5

B) The second term in the right-hand side of Eq. (D.11) can

be written as:

Dws(Tt, Pt)

3u. 0
1 0

aw (T t, p) aT
st t t

aT )~
t 0 0

@w (T ,p) apt

+ p au
t

; i = 1, 2, 3

0 10
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(D.12)

(D.13)

(D.14)

(D.15)



1) It holds that:

( )
0

and

aw (Tb, p )

s -w S(T ,
t 0

2) The derivatives

from:

3.5- D 1(T - 223.15)2.5

Pt

P ) -
t Pt

apt

(au.
10

, i 1, 2, 3, can be obtained

= 0 ; i = 1, 2, 3

which gives:

F
at 0

; i = 1, 2, 3 (D.19)

The denominator in Eq. (D.19) was determined in Appendix B

(Eqs. (B.12) through (B.17)). The numerator in Eq. (D.19)

takes one of the following forms:
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(D.16)

(D.17)

+ ( Ft
t 0'0

,t)3u.
1

(D.18)

apt
au0

.0



a)

0.286
p

-T (LT--)
m I

L(T )-ws ( ,T ' L(T)
exp{ m s m m

c m c T
p Tm p Tm

30

DT (e)
0

, 1 3( s
- w (T , I) ;- - )

s m p 4 T0

( n) 0.286

0

3 3P
+ )- ( )

e 4 D

(D.21)
- 223.15 T-

223.15 + 1

0.286
p L(T) ws(T ,pS)

= () - exp{ 
PO cp Ts

a T D
+ ( ) - 1[

00

2 5
3.5 (T - 223.15) 2.

p
s

w (T, p
B s sP S )

c - Ts

L(T ) - w (T , PS)_ ( s s s s

c - T
p S

p L(T ) -w (T , p )
( 7j7-T 0 e'

0 p s s
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IFo
DT 0

+ ( 3)

m0

with

(D.20)

ap S

00

0

L(T )

c -s

(D.22)



Differentiation of Eq. (3.13) results in:

T T
s S 1

T0 223.15 TO.Td

223.15

(D.23)

The derivative ( ) is given in Eqs. (B.4) through

m 0

(B.8) with T = Tm, p = p' and all quantities evaluated

at their mean values.

aF
In order to complete the derivation of (-) , the

3T aT0
derivative (- ) is needed. 0

0

Differentiation of Eq. (5.40) with respect to T0 gives:

1 3 1 0.286

0 .286 " (W s + p) t
P0

+ 0.2145- 0.286

p0

-0.714 ap
(D.24).T( )

with the derivative ( S) given by Eq. (D.21).
3 0

A similar procedure was followed to obtain the

derivatives ( F) and (F ) . The relevant equations
3p0 3Td

0

are given next.
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3T0
(T s

0 0

- ( 3ps + Ipt)



b)

_ 0.286

p 0

3
4p

3

p
S>

P S

p0

0

(F+ 0 )e

+ a F

m 0

L(T )
-(F+ ). 

e cp. Tm

T

00

w s('' , pI)
sm

(D.25)

_ 0.286 A ̂

PO e e

0.286

p 0

T 0

A 0.286

P0

0. 2145 - T
+ 0.286
p0

L(T )- w (T s

c - T
p s

P0

(D.26)

3 1 0.286

4 s + pt

3 1 -0.714
4 s + pt P

(D.27)

c) The derivatives with respect to Td are:

1 ^=* , (F + o )-
pe

3 3s

4 aT d

L(T ) w (T ,
m s lf2

c - T
p m

_ 0.286 3 F A
A *-p * (F+O)

p e
0 (D.28)

3F

3p0 0

30e)

0

0

0 0

F

3T d

3e

d0

m

d 0
3FT7

m 0

3p

D )
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3T e
d 0

s

a® ee -

a50

aT

)aT d 223.15
d0

ap S 35
___ " 223.15

0

L(Ts )- ws (T

c - T
p s

1A
PS e

^ 2
T

s

T
s, s

T 0

T To 3A + I -0.714 ap
( m) 0.2145 2 - )aTd ^ 0.286 4 dp4 d

0 ~ PO0

At this stage, the derivatives ( F
At tis tag, te deivaive (B.) = 1, 2, 3

au.
10

in Eq. (D.19) have been determined. The derivative

(F) is given in Eq. (B.12) with all quantities
9p2t
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3a T a® 3-= e) DT s) e) s) D
3T DT p T

Sd d

A .^ - ^ ^T 5 2.5
- Bw(T, p) L(T ) (T - 223.15)

- - sS s + 3.5. D s
- c - T c - T 1 s

p s p s

L(T s W ws s' PS ^
- 0 e (D.

c a T
p s

29)

30)

(D.31)

(D.32)

(D.33)

(D.34)



evaluated at their current estimates. Therefore,
9pt

( ) follows from Eq. (D.19).

0

ITt
3) The derivatives (-) in Eq. (D.15), can be

au.
10

by differentiation of the function F' with:

0.286

F' = T
SPt)

L(Tt ) ws (T t P )
-exp { 5 T } - 0=c -*T e

p t
0

following the pseudo-adiabatic Eq. (3.16).

Differentiation of Eq. (D.35) gives:

(IF') + 1F' (at) + ( IF' t) 0 ;i=1,2,3
au. 3p au. 3T au.

0ol 0 0 t0 0

Solving for the last derivative one obtains:

aF' at
apt au 0
aF'
@Tt 

0

i=1, 2, 3

Next, expressions for the right-hand side derivations

of Eq. (D.37) are sought.
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obtained

(D.35)

(D.36)

F'
au.
i 0

DT t

au.
10

(D.37)



a) At first, concentrate on ( ) . It holds:
au.
10

e
au.

i=1, 2, 3 (D.38)

with the right-hand side derivatives given in

Eqs. (D.22), (D.26), and (D.29), for ul = T09

u2 = and u3 , respectively.

Differentiation of Eq. (D.35) with respect to

Pt gives:

.286 ^ 1 L( t -s t' t. -(F + ) -- -(F' + )
t Pt c T e

p t

(D.39)

Differentiation of the same equation with respect

to Tt yields:

F'+0 -.

= ( + (F' +0 e -
T e
t

w (T, P )
[-B S t t

c -T
p t

L(T ) - 3.5 - (t - 223.15) -D

c p- T t p P
t t 1

L(Tt ). ws (T

c
p

A2
-T

t

(D.40)

275

3F'%
u.

10

aF'
(-)

Q

+
Pt



Use of Eqs. (D.38), (D.39), (D.40) and (D.19) in

Eq. (D.37) gives an expression for the derivative
DT

t) for i = 1, 2, 3.
au.
10

a (Aw)At this stage, the derivative ( ) , for i = 1, 2, 3
au. 1 0

can be determined by use of Eqs. (D.11) through

(D.40).

II) Based on the definition of p and on the ideal gas law, one

obtains:

1 t s
P = - ( + p )m 2 R- T +R- T

t s
(D.41)

where R is the dry air ideal gas constant defined in Chapter 3.

Then, by differentiation of Eq. (D.41) one obtains:

(apt) A - ( t
Du. t t Bu.

1 0 1(m 
Lau. 2R[

10

+

n
^ 2

t

(-) - T - (-(au. s s Du.
S10

A 2
T

S

(D.42)J1
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3T
All the derivatives in Eq. (D.42), except ( s) and

appo 0
(a ), have already been defined. The remaining two ones are

given by:

DT

(-) = 0 (D.43)

0

3.5
ap , T

(s = (D.44)
00 T

0 0

III) In order to complete the derivation of M in Eq. (D.10) for

f.

i = 1, 2, 3, one needs to determine ( ). Use of the definition
au.
10

Eqs. (5.34) and (5.35) and differentiation results in:

av ) 1^_)
u p 2 m Ts

-- T T 'T
2 m s

0 10

i = 1, 2, 3

Equations (D.24), (D.27) and (D.34) define the derivative
3T

m) Differentiation of Eq. (5.37) with respect to the
au.
10

input variables gives:
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3T 0 T p

(37 )= 3- + D2 -S)

D 0 0 0

with D 2 defined for notational convenience as:

T

2 = 0.2145 ^ 0.286 4 ps + 4t)
P0

3Ts
(S)

ap
0

3T '

'3T )Td 0

(D.46)

-0.714
(D.47)

0.286 ^ pS
- -T ' + D -)

P0  s 2 Dp0

3p
= D )2 3T-

(D.48)

(D.49)

D.1.2 Derivatives of Model Output Function with Respect to the

Input Variables

Define Mh by:

ah(u)

Mh. Du. )
1 1 0

; i = 1, 2, 3

with h(-) given by Eq. (5.26).
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(D.50)



@h(u) ay

h av au 0

Dh(u)

aN
V

0

Dh(u) aZ

3Z au.
0 0

DN
Y)
au.
10

I) Differentiation of Eq. (5.26) with respect to v, Z and

N results in:
V

I

3 (+W(yv) +

^ 2 ^ 3
N N

1 + Ny + v+4 v 4 24

e

^ 2 ^ 3
(y - N ) (y - N )

4 + 24

5 YNv
y e

yN

+ 4+

N
+ V

4 . y4

1

y

(D.52)

(D.53)

^ 2 ^ 3
N N N

+ + +

Nv
e

S2
(yN)v

8

A 3
+ v

+24

YNV

I

- 0]
4, S

(D.54)
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Then:

(D.51)

Z c - 6

ah(u)

av
p 0

1

ah(u)

ah(u)

N 0v0

1
4

y

h( L)

zc

V

z *=C-

41



II) Equations (5.16) and (5.42) differentiated yield:

Dv
( =) 4a -c: -m - m-1) ( -)
1 0 10

i = 1, 2, 3

The derivative (-) , i = 1, 2, 3 has been determined inau.

Eq. (D.45).

I II) The hypsometric equation (eq. (5.27)) applied to the cloud

height Z gives:

T + T
Re- ( t 2s P

Z =n ()c g Pt

Differentiation of this equation results in:

R DT t_ R__ _ )_

2g (u
10

DT P
+ ( - n (-

10 Pt

R ^ A
+- *(T + T)

2g t s

ap

u P P1~s ~t

ap t
(-) Iau.

1 0

; i=1,2,3 (D.57)

Expressions for all the derivatives of the right-hand side in

Eq. (D.57) have been previously given in this Appendix.
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(D.55)

(D.56)

aZ
c)
u.

1 0



IV) In order to complete the evaluation of M , in Eq. (D.51),

DN
the derivative (-),

au.
1

0

Combining Eqs. (5.14),

N =-v(1-i)
v a Ce 4

Therefore:

i = 1, 2, 3 has to be determined.

(5.42) and (5.43) results in:

(D.58)

aN

au.
1 0

a (1-M) - av
O - 6 A m au.

4 v 1 0

; i = 1, 2, 3

D.1.3 Derivatives of Surface Precipitation Rate Output with Respect

to the Input Variables

Define the derivative M as:

M =( )

a 1 0

; i = 1, 2, 3

By means of Eqs. (5.29) and (D.60)

$(U) av
1 p (

0 0 O

$(u)

) 0

one obtains:

(c

au1 0

4(u) DN V() 3ND
+ ( ~ ) -(+) ( 3)

N 0 u. D 10
S0 0

; i = 1, 2, 3
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(D.59)

(D.60)

(D.61)



The derivatives of v , Z , N with respect to u. were determined
p C V1

previously. The rest of the derivatives are given in the

following.

I) The two cases corresponding to whether or not ND is greater

than Nv are treated separately. However, it is noted that at

the point u where ND = Nv, the function $(u) is continuous

and possesses continuous derivatives with respect to the elements

of u.

A) N > N
D - v

4P(u)

( )

P0

3$(u)
( )

Zc 0

3N
v 0

W$u(t))

( 
D

Z
c

^2 ^3
N N N

(1- ) (N D+ D 8

ND
e

z
c

^ 2 ^
A N -N

- -Z-(1 +N +-) De
4 D 2

^ 2 3 A 2
N + N - N - N

1 D D v D

8 ND
0 e

(D.62)

(D.63)

(D.64)

(D.65)

v

2
Zc

v

p

z p
c
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DL M)* -vm]
4

u.
1 0

i= 1, 2, 3 (D.66)

The derivative in Eq. (D.66) is expanded to the following:

S4

3D ^ M1 ac v m - m - - V

0 10
i2m
V

; i=1,2,3 (D .67)

1) It is necessary to determine the derivatives of the

characteristic diameter D with respect to the input
c

variables To, po, T d From Eq. (4.41):

3D 4 1 1 (@DAB

au. 3 A 2 C - R i i
1 D 1 v 0
0 c

3Z b
+ D -( ) .

AB 3u.
10

e (Tw)
(s ^w

T
w

A e (T)
s w

T
w

e (Td)
A s

0.0028 -(T -223.15)2.5 es w )
+D - Zb -^ 2 w)

ABT T u.b
w w 1

es Td
3( )

A A T

-D - Zb( 0 ) i=1, 2, 3
DAB 'b u.

I
0
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3N
D _
0u.

10

3N D
( )
au.

1 0

e ( T ds d
A)

(D.68)



a) Taking derivatives of Eq. (4.24) with respect to

the input variables results in:

3D AB

3T 0
0

0

= 4.0934 - 10 -5

T 0.94
T 0

T*'94 p0

(T ) = 0

b) The expression for Zb is (see also Eq. (5.27));

.R T0 + T p0
Z =-( s) kn - (-)
b g 2 pS

Differentiation results in:

aZb.
( )

0

R Ts ( 0= - [(1+ ( ) ) n - X)
2g T 00PS

A % A 1p S
- (T0  + T) - ( 3
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(D.69)

(D.70)

(D.71)

(D.72)

(D.73)

= - B

PO



DZAb_ R 1

0 P0

Zb R s 0  1
d 2g - T p 0 s p T0 d 0 s s d 0

c) For the linearization purposes and to avoid the

complications arising from the implicit function

T w O OT d) in Eq. (4.38), Tw is taken approxi-

mately equal to T . Then:

1

aT
(w) =0 i = 2, 3
au.
1 0

aD
d) Finally, to complete the derivation of c

u
0

e s (Td
(T 

e (T )

0 0 0
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(D. 74)

(D.75)

(D.76)

(D.77)

(D.78)

DT

3T
0 0



e (Td)

3( , )
( 0 )=0

ap0
0

e (Td

T( S 0.0028. (T - 223.15)2.5
0 d

DT - ) =
d 

T0

B) Nv > ND

( ) =av Z -6
0 c

- (

3 ^ I ^ 2 1 ^ 3
1 +N 4 N + - N

4v 4 v 24 v
1 ^ 3

24 ND

Ne

0

94(u(t))
( M)

0

^ 2 ^ 3 ^ 3
N N N

1 + N +V D
= v 2 6 6

4 Nv
e

A 2

v Z .6
e C

The rest of the necessary derivatives for this case, arising

from Eq. (D.61), are as determined in the case when ND > Nv
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(D. 80)

V
p

Z
c
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Appendix E

SOIL MOISTURE ACCOUNTING MODEL
LINEARIZED EQUATIONS

This Appendix presents the linearization, by Taylor's series

expansion, of the soil model given by Eqs. (6.5) through (6.12).

The matrix subscripts are such that the state of the precipitation

model is the first element of the state vector. The soil states

follow in the order presented in Table 6.1. The potential evapo-

transpiration rate input is the fourth element of the input vector

u(t); the first three input elements correspond to the precipitation

model. Only the non-zero elements of the linearization matrices

and vectors are given.

Define first:

K
0O 2

D = C (1 + -y) E0 (E.1)

x2

1D4 I 0 s y 0*( + 0 (E.2)
x x +

D4=C -0 - -y- ))E2

x2 53 + x4 + x5

Mx
D = (O-) 1 x2

D5 = 1y-e- 0 0 OI*3-P
x 3  +x +x 2

m
x 3
3

287



x^m3x 3 3
D(6 - ).[ -()

x
3

x x

D = (C2  - 1). + 1
x 5x4

5 4

D 8= D CD 6D7D8 4 6 7 )

D 9 = D4 .D6.( - 7 )

Equation 6.7,

x x1

F 2

x m

= -) ].
xl

-F2

A (mm x
=- 1.

0 m 1
x1

x^ m

F [1 - (1)
xl

-1)A

x e
0

xl

] .$.X - Ue. 0
x
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(E.4)

(E.5)

(E.6)

(E.7)

Then,

(E.8)

(E.9)

(E.10)

(E.11)



x [ 1 (X
; i = 1, 2, 3

with M , i = 1,
I2~

MF24

2, 3 defined in Appendix D.

x 1

0
x 1

From Eq. (6.8):

x2
- p X- [1 - ( 2

x2

I - du x 2 - C1 (1 +sy )

(E.14)

Then:

m
x

xl
- $~p [I.

Sm2
x2

x
2

(E.15)

(mi- 1)
m -x 1

= m
01m

(xi )

) X. [1- (E.16)

m2x2

2 f:O) I
x2

m (m1

xl -m20 2) 2  2 m d C ( + y ) -

x x 2 0 )2 x 2

(E.17)
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M2i xI

(E.12)

(E.13)

F=x
3 0

x I

x
2

0
x
2

3 1

-F
3 2

-F 3 3

m1



-F
3 4

-F3 5

-F
36

x
F =

3 x1

x
X - 2

x2

-x 1 2
MF . X [1 - )

3i x1  x 2

Eq. (6.9):

F C (1 + )y X
K

2

x1
-u (1 0)

x

M

Pf) [1

; i = 1, 2, 3

x 3

x 3

I

K
3

0 0
x 

x

x3
Ue y( x10 +3 )

(E. 18)

(E.19)

(E.20)

-d 2 - D3
(E.21)

From

(E.22)

Then:

(E .23)

NFF 4 2
(E.24)
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= D4

=D 4

= D 4

m



F (1 +E y - D
43 x2

-F =4 -D 3 (
44

x

ue
xl

-F
4 5

-F
4 6

4

(m3-

f) m - 3
f 3(x3

0 + 0
xy +x3

= - D5

=-D 5

= D3 * (1 - D6 ) - e
x I

x 3
x + x3

x I
= -(1- )

xl

x 3

0 3 0
x7 +x3

From Eq. (6.10):

F -d' x + C (1 + - (1 -p )) [1-
x
2

xx
(C 2- 1)- + 1]

5 4
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(E.25)

(E.26)

(E.27)

(E.28)

(E.29)

(E.30)

3

J]
x3

x
3

(E.31)

- D 5



+6 1
1 

C ( + y --D6 D7

x
2

m
3Q

= 3(1 ~Pf). z
54

= d 6' + D (
555

56 3x6

= -d ' 4

(m3-1
3m _ D7 - D 8

30 )3

c x5 1)
2

x5
0

x 4

x 
4

x
4

+ D3- D6 D7

From Eq. (6. 11) :

F6 = 5 + C1 (1 + Y

- ( -C2 - ) 5
5

x 
4

x
4

x2  x3

(E.37)
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Then:

N

5 3

(E.32)

NN-F

-F

4 5

(E.33)

(E.34)

(E. 35)

(E.36)

- D 8
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Appendix F

CHANNEL ROUTING MODEL LINEARIZED EQUATIONS

The formulation in Georgakakos and Bras (1982) of the statis-

tically linearized routing model is used with some modification in

the treatment of the channel input u . They treat u as a Gaussian
c c

random process with no time correlation. In the present formulation,

it is a function of the soil and precipitation model states (by means

of Eq. (6.13)). The ordinary Taylor's series expansion is used to

linearized u c with respect to the model states and inputs.

Note that the channel states occupy n positions in the state

vector, starting from the eighth element. Adopting the notational

convention of Appendix D, the component F8 of F for the first reservoir

in the series is written as:

F = p - uc - a S 1m(t) (F.1)

Then:

au
N = 1 (c (F.2)
-- F 81 1 aX 081 0

with the derivative given by (see Eq. (6.13)):
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"TF 8 7
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(x C
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2(A^ 6 1 I m1  2 2

2 X 0 0
(x3 x x2

For constant channel parameters, Georgakakos and Bras (1982)

give:

S(M-1)

=-a l [m * S +m -(n-1) (m-2)
2

2 ^ (m-3)
Si

with a denoting the standard deviation of the state S at time T,
1

for i=i12 2, ...,.n.

F p epu - al S m+ m* (r-) 2A(n2
-:0O8 1ic 1 1 2 S 1 1

Du
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1 0
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(F.15)

(F.16)

- P -( x I-)
60

S 1



=M - [X- 2 +
$.2

x
+ X - (-- O-

+

^ 2
( 6 - 1x -I

0 
X

x
.3

x
2

x
2

- (1 -

%2
x6 1

+ [ - ( 0 
X 1

x3

x2

X 2
x

X)
*X. i=1,2,3

(F.17)

The non-zero elements of the relevant linearization matrices,

regarding the j h 1 < j ! n) reservoir in the series are given next.

Define (see Eq. (6.15)):

F . = p. - u + a. - S m
7+j j c j-1 j-1

- a. - S. ; j = 2, ... , n

au
p ) j=2, ...,n
3 3Xo

= * c ) = 2, ... , n, i = 2, 3, ... , 7
3 x . 1 0
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= -a. [m - S.
j J

+ ' (m-1) (m-2) .
2 S.

J

2 ^ (m-3)s .]I
j

j = 2,

+ [ + m- (m-1) 2 ^ (2m-2)j-1 j-I 2 S j-1

-am m - (m-1) 2 ^ (m-2)- a - [S + 2 S. * j I
J J

; j = 2,

a j =2, ..., n, i = 1,

The outflow of the last reservoir is the second rainfall-runoff

model output (the first is precipitation rate). Define (see Eq.

G = a - S
2 n n
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