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ABSTRACT

The estimation of random fields from limited samples is an important
issue in most fields of geophysics, such as Hydrology and Meteorology.
Work by Matheron and others at the Paris School of Mines has popularized
Kriging techniques to estimate random fields at specified locations or to
get areal averages.

This work presents the theoretical and practical aspects of both
Linear and Nonlinear (Disjunctive) Kriging estimators, and provides a com-
parison of their performance in estimating point and areal values of gen-
erated fields. The experiments performed were designed to closely resem-
ble actual and practical situations.

The results show that small sample based inconsistencies lead to a
Disjunctive Kriging solution which does not give more accurate estimates
than the theoretically less precise Linear Kriging estimator. The results
also suggest the use of a multi-realization approach when using these
techniques in network design problems.
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Chapter 1

INTRODUCTION

1.1 Motivation and Objectives

Sampling in the physical sciences is by necessity finite, both in the

time and space domains. Nevertheless, it is often necessary to obtain

descriptions of the physical processes in points at regions where data is

not fully available. Such is commonly the case in measuring precipita-

tion, piezometric heads, soil properties, wind fields, and other processes

of interest to hydrologists. The theory of random fields, and specific-

ally the Linear and Disjunctive Kriging techniques introduced by Matheron,

1971, 1973; 1976a, are designed to allow a systematic solution to the

above problems, using the spatial structure of the quantity of interest.

Many authors have applied the Linear Kriging technique in Hydrology.

Applications include groundwater modelling as in Delhomme, 1979, Gambolati

and Volpi, 1979, Volpi et al. 1979, Rouhani, 1981; precipitation modell-

ing as in Delfiner and Delhomme, 1973, Delhomme and Delfiner, 1973, Delhomme

1976, 1978, Shaw and O'Connell, 1976, Shaake, 1978, Chua and Bras, 1980;

and water quality modelling as in Hughes and Lettenmaier, 1980, Doctor

and Nelson, 1981. Disjunctive Kriging, developed after the Linear Kriging

estimator, has not yet been applied, although as it will be seen its po-

tential is similar to that of the linear estimator.
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Although the theory of both estimators is well documented, compari-

sons of the Disjunctive and Linear Kriging estimators in practice have

been few. Among them the following works do compare them in mining ap-

plications: Marechal, 1976a, 1976b, Rendu, 1980. In all of them, how-

ever, many more data points than usually found in Hydrology were employed.

The goal of this work is to explore the advantages and disadvantages

of the Linear and Disjunctive Kriging estimators when they are calculated

using the number of data points and spatial structures found in hydrolog-

ical applications.

1.2 Report Outline

The theoretical basis and definitions of the Linear Kriging estima-

tor are given in Chapter 2 under different assumptions about the data sets.

The theory of Intrinsic Random Functions and the practical estimation of

generalized covariances are also reviewed there. In Chapter 3, the theor-

etical and practical aspects of the Disjunctive Kriging estimator are

presented. A description of the experiments that were performed together

with the results of the point estimation comparisons are given in Chapter

4. In Chapter 5, the results of the experiments made to compare perfor-

mance on block estimation are given. Results and conclusions, as well as

recommendations for further research, are given in Chapter 6.
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Chapter 2

OPTIMAL LINEAR ESTIMATION: LINEAR KRIGING

In this chapter the theoretical basis and definitions of the Linear

Kriging estimator are given, under various assumptions. The theory

of Intrinsic Random Functions and the practical application of

generalized covariances are reviewed. Treatment follows Delfiner,

1976; Chua and Bras, 1980; and Kafritsas and Bras, 1981.

2.1 Basic Definitions

Of interest is the modelling of a random field Z(u), given by

a family of random variables defined over points u in a region A of

the Eucledian space IR n. Associated to the random field there is a

family of cumulative distribution functions F(u) that allow the

definition of the mean or drift of the field as:

m(u) E[Z(u)] = Z(u)dF(u) (2.1)

A

If the mean does not depend on the vector location u, it is said that

the field is stationary in the mean.

The covariance function of the field is defined by:

Cov(u,u 2 ) = E(Z(u 1 ) - Z(u 2 )) - m(u )m(u 2 ) (2.2)

23



where the expected value of the product of Z(u ) and Z(u ), or
-1 -

correlation of the field, is given by:

E [Z(u,)Z(u2 )]

= Z (uI )Z(u2) dF (u 1 , 2 )A A

(2.3)

being F(u1 ,u2 ) the bivariate distribution of Z(u1 ) and Z(u 2).

When ui1 ' !2, equation (2.2) yields the variance:

Var(u) = Cov(u,u) (2.4)

If the covariance function depends only on the distance between

the points u and !2 , the field is said to be stationary in the covari-

ance, and then can be written as:

Cov(u1 ,u 2 ) = Cov(h) (2.5)

where h = u 1 - 2

If a field is stationary on the mean and in the covariance, it

is called second-order stationary.

If the covariance function is the same in every direction, the

field is called isotropic, which gives:

Cov(h) = Cov(htj) = Cov(h) (2.6)

24



where h = lhi.

The semivariogram function is defined as:

12 1 2
y( 1 ,u2) = E{(Z(u 1 ) - Z (2 2} - )- m (2)

= : Var{Z(u,) - Z(H2)}

Since,

Var{Z(u) - Z( 2)} Var{Z(u1 )} + Var{Z(u2 )} - Cov(u1 ,u2

(2.7a)

(2. 7b)

under stationarity on the covariance function, the semivariogram and

covariance function are related by:

(2.8)
y (u - 2) = ov(0) - Cov(ul - U2)

The random field Z(u) is said to satisfy the intrinsic hypothesis

if its first order differences Z(u1 ) - Z( 2) are stationary in the

mean and in the variance, i.e.:

E [Z(u1 ) - Z(u2)] = m(h) (2.9a)

and

Var [Z(uI) - Z(u 2))I = 2y(h) (2. 9b)

25



for any u1 - 2 = h. Clearly, second-order stationarity implies the

intrinsic hypothesis, but not vice-versa.

In later sections, the Linear Kriging estimator will be given

under second-order stationarity and intrinsic hypothesis assumptions.
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2.2 Problem Definition

Given a realization of a random field Z defined over a region A,

say Z(u1 ), Z(u) 212 , Z(u), or simply ZI, Z2 ..., Z, the purpose in

this work is:

Point Estimation: determine Z(u ), at an arbitrary point u on

the region A.

Block Estimation: determine the mean value of the field over an

area included in A.

SZ(u) du (2.10)

-0V

where V , denoted simply V, is for example a rectangle with u

10
as its middle point.

The general unknown will be denoted ..29(Z(uQ)) or 2-(ZO), because

the procedures, to be explained, can be applied not only to point and

block estimation, but also to more general linear functions of the field.
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2.3 Characteristics of the Linear Kriging Estimator

The usual Kriging estimator is characterized by the following

conditions:

1. Linearity: The estimator, ..2(Z0)* , is a linear combination
K

of the observed variables, Z., i=1, ... , N:

N

( = z
K i=1

(2.11)

where the weights X., i=1, ... , N are chosen such that

the next two conditions are satisfied.

2. Unbiasedness: The combination,97(Z )* , must be an unbiased
K

estimator of the unknown 2(Z0 ); this means:

K(Z E[. '(Z0 )]K

which gives the following condition on the weights:

N

X m(u.) =E[ Z)]

i= 1

(2.12)

(2.13)

3. Minimum variance: The estimator, .429(Z)* , is such that its
K

variance of estimation:

2
= Var0) 0(Z) K

(2.14)
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is minimized over all linear combinations that satisfy

equation (2.13).

If the variance of estimation is expanded and the unbiasedness

2
condition employed, it can be shown that a is also the mean square

error of estimation, MSE, or:

2
aK

2

= E{(Q9'(Z0) ~-'(Z0)*) }
K

(2.15)

This can be easily shown to be:

2
cK

N

= E[ Z 0 ) 2  
- 2Z X E[ ZO Zi

i= 1

N N

+ E EE[Z Zj]

i=1 j=1

or equivalently in terms of the covariance function:

N
2

(2. 16a)

= Gov(C RZ),2Z )) - 2 X Cov9 )Z Z

i= 1

N N

+ Cov(Z ,Z)

i=1 j=1

(2. 16b)
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Then, in summary, the Linear Kriging estimator is found from the

minimization problem:

N

min 2 = E'[f(Z) ] - 2 Z E[ Zo)Z,"K0
x1 3PO*** x N i=1

N N

+ Z E=. E[Z.Z.

i=1 j=1
(2.17)

N

s.t. S m(u.) = E[ Z)1

i= 1

In the following sections, the Linear Kriging estimator will be

given, for point and block estimation, under different assumptions on

the field.
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2.4 Kriging Under Second-Order Stationarity Assumptions

In this section, the equations that determine the optimal weights,

X., i=1, ... , N, are given for the case in which Cov(h) and the constant

mean m, are known.

The unbiasedness condition, equation (2.13), reduces to the condition:

N

m

i= 1

E [9(Z)I (2.18)

The variance of estimation can be written in terms of the covariance

function as follows:

N

2 E[Y(Z 2] 2 X i E (z0)z ]
i= 1

N N
2

+ X.X. {Cov(u. - u.) + m }
i=1-1 -J

i=1 j=1

(2.19)

In the following subsections, these previous two equations will

be specialized for the interesting cases of point and block estimation.

2.4.1 Point Kriging Under Second-Order Stationarity

For point estimation, the unknown is simply 52(Z) '

which reduces equation (2.18) to:
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N

i=1

= 1

The variance of estimation can be written as:

N
2

aK

(2.20)

2 2C%'.H ) +m 2
= _ov0 + m - 2 4 A. {Co'.v\u - u_)+m}

i= 1

N N

+ E E
i=1 j=1

2
X.X. {Cov(u. - u.) + m }

1J3 -1 -J
(2.21)

which gives, replacing the unbiasedness condition, the expression:

N

a = Cov(0) - 2 X Cov(u! - U)

i=1

N N

+ E 2 .X. Cov(u. - u.)

i=1 j=1

(2.22)

2
Recall that the Kriging estimator is found when a is minimized

subject to the unbiasedness condition (see equation (2.17)). This mini-

mization problem can be solved using the Lagrange multipliers technique.

The Lagrangian function becomes:

2
L( 1 N K +

N

2-p 1 (2.23)

32



which gives as the necessary conditions:

N
3L =-2 Cov(u - u.) + 2 , . Cov(u. - u.) + 2-p = 0 (2.24
3-.-1 E j - --J

j=1

i=1, .. , N

N
3L 2 ( . -1 = 0 (2.24

i=)

This simultaneous set of equations, on the unknown weights

1 ,...,XN and the Lagrange multiplier p, is called the Kriging system.

It can be written in matrix form as:

Cov(0)

Cov(u2-u)

Cov(-7u)

1

Cov(u -u 2 )

Cov(0)

Cov(j -u 2 )

1

... Cov(u
1 -!N)

... Cov(R2 --N)

... Cov(0) 1

0_. . 1

2

N

11

Cov(u -u1 )

Cov ( -u2)

Cov(- )

1

* * * *
This system will give a unique solution X1 , A2 ' '''X , X if the

left-hand matrixis non-singular, which clearly correspond to the minimum.

If the equations (2.24a) are multiplied by the respective optimal

*
A., and then added over values of i, the following expression is reached:

33
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N N N N
** * * *

Z A. Cov(u.-u.) = . Cov(u -u.) -

i=1 j=1 i=1 1=1

If this is replaced back on equation (2.22), the optimal minimum

variance of estimation is found to be:

N
2* *

a = Cov() - X Cov(u -u.)-
K - . -0-i

i= 1

(2.26)

Observe that if the point L0 coincides with some of the u., the

estimated value will be exactly the true value, with estimation variance

zero. The solution to the Kriging system will be zero for yi and all

X's except the one corresponding to the point in question, which takes

the value 1. This will be true for any Linear Kriging estimator.

Note that the Kriging system and the optimal variance of estimation

can also be expressed in terms of the semivariogran function, using

equation (2.8), valid under second-order stationarity assumptions. This

readily gives the system and estimation variance as follows:

0

-Y (2_2 u1

1

-y (u -2

0

-Y

1

0

-yU (_--N)

0 2uN

1

2

N

y '

-y u-i

-y - --

-y u0 -u

1

(2.27)
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and

2 N
2 K * (2.28),

a K =- ZX.YQ -u.) - y(.8

1=1

It is important to note that under second-order stationarity

conditions, the use of the semivariogram avoids the need of estimating

the actual value of the mean, which in any case would introduce bias

on the estimated covariance function. In the case of stationarity:

Y ) = E{ (Z (u - Z( 2)) } (2.29)

which indicates that the semivariogram can be estimated from the differ-

ences of the field, without the knowledge of the constant mean that has

been filtered out.

2.4.2 Block Kriging Under Second-Order Stationarity

For block estimation, the unknown, C9 (Z0), is the average

of the field over a region V, having u! as its middle point, i.e.:

Y(Z0 ) = Z(u) du

V

This replaced on equation (2.18) gives the unbiasedness condition:

N

M = m du

i=1 V
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which is clearly the same as:

N

= 1 (2.30)

i=1

Replacing the expression of (9;(Z ) on the variance of estimation,

2
equation (2.19), and using equation (2.30), the quantity a can be

written in terms of the covariance function, as:

N

a2 = - JJ Cov(u - v)du dv - 2 . Cov(u.-u) du
K V2 ffi V -f

Vv i=1 V

N N

+ . . Cov(u.-u. ) (2.31)

i=1 j=1

The optimal weights are found using, as before, the Lagrange

multipliers technique. This readily gives the objective function:

L(A 1 ,..., XN, ) = a + 2p X (2.32)

The conditions that should be satisfied by the optimal solution of

the minimization problem are in this case:
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N

-2 Cov(u.-u)du + 2 Cov(u.-u.) + 2P = 0

i=1, . ., N

N
= 2 = 0i=Z1~

(2. 33a)

(2.33b)

which represent the Kriging system of (N+1) equations on the (N+1)

variables X 1 , ... , XN and p . This system in matrix form is:

Cov (0)

Cov(u2 -u1 )

Cov(u -1U)

1

Cov(-) ... Cov(U -u

Cov(0) .. Cov(u 2 u

Cov(u -u2)

1

Cov (0)

1 0

-7
1

2

N

y

V Cov(u-u)du

4 Cov(u2-u)du

Cov(uN-u)du

1

(2.34)

Notice that the left-hand matrix is the same previously found for point

estimation, equation (2.25), and that the solution gives a unique

minimum if that matrix is non-singular.
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The optimal variance of estimation can be found in terms of the

* * *
optimal weights X , ... , N and Lagrange multipler Ii in the same

way that was done for the case of point estimation, i.e., taking

*
equations (2.33a) multiplied by its respective A. and then adding

over all i gives:

N N N

X. A. Cov(u.-u.) = Ai Cov(u.-u)du -i j 1- V -f
i=1 j=1 i=1 V

which replaced on the expression for a , equation (2.31), gives as
K

the optimal minimum variance:

N
if 1

a = Cov(u - v) du dv - Cov(u-u)duK V
V V i=1 V

(2.35)

The Kriging system for block estimation and the optimal variance of

estimation can also be written in terms of the semivariogram function,

using the equation (2.8), that links the semivariogram and covariance

function under second-order stationarity assumptions. As in the previous

case of point estimation, it is advantageous to use the semivariogram

because the constant value of the mean need not be known in the esti-

mation.

The equations (2.34) and (2.35) are transformed into:
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0 -y (u - 2)

-Y (ll2N7-u)-y(u2-u )

-N-i~)

1

Y (u -

... -y(2 "N0

-Y (u-u-2)

1

1

0

0

. . 1

N

1'

-' fyQr-u)du

-f Y Q2-u)du

V

- 1

J y(u -u)du

1

(2.36)

and

N

cr 2* = -+y u - v)dudv +

V V i=1
J y(u -u)du -
V

(2.37)
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2.5 Kriging Under the Intrinsic Hypothesis and Constant Mean Assumptions

In this section the equations that determine the optimal weights

of the Kriging estimator are given for the case in which the mean is

constant and the variance of the first-order differences of the field

is stationary.

The intrinsic hypothesis alone implies a linear drift, see Chua

and Bras (1980), that gives:

E{Z(u 1) - Z(u2)} a*(U1 - 2) (2.38)

This means the actual value of the constant a* is needed in the esti-

mation of the semivariogram function, see equation (2.7a). The

additional constant mean condition, which is clearly equivalent as

having a* equal to zero, is assumed to avoid the bias introduced in

the estimation of the semivariogram by the use of an estimated a*.

The intrinsic hypothesis does not quarantee the existence of

Var[Z(u)] and Cov(u.,u.). However, as it will be shown later, the variance

of estimation can be calculated considering differences with respect to any

*
reference value, Z(u ), using the following equation (see Chua and Bras,

1980):

* *
2y(u - u.) = Var[Z(u.) - Z(u ) - Z(u.) + Z(u )]

* *
= Var[Z(u.) - Z(u )] +Var[Z(u.)- Z(u )]

* *
- 2 Cov[{Z(u.) - Z(u )}{Z(u.) - Z(u)}]
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This gives:

* * *
Cov(u. - u , u. - u ) = y(u. - u ) + y(u. - u ) - y(u. - u.)

-I -j -' -j -1 -j
(2.39)

Notice that the above equation is valid because all the terms on the

right-hand side, being variances of differences, exist.

In the following subsections, the equations for point and block

estimation will be written in terms of the existing stationary semi-

variogram.

2.5.1 Point Kriging Under the Intrinsic Hypothesis and

Constant Mean

In this case (Z0)= Z0, and then the unbiasedness condition

gives, as before:

N

i= 1

= 1

Defining X0 = -1, this above condition can be rewritten as:

N

E x i
i= 0

= 0

(2.40)

(2.41)

and the variance of estimation, equation (2.14), can be expressed as:
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N
2/

Z 

Var Z (2.42)

i=0

N
* *

Subtracting A Z(u ) = 0, for an arbitrary location u , gives:

i=0
N

K = Var A[ - Z(u)] (2.43)

li=O

which can be expanded in terms of existing covariance terms as:

N N

a = AA. Cov(u - , u. - u ) (2.44)

i=0 j=0

Replacing the expression of the covariance in terms of the semi-

variogram, equation (2.39), gives for the variance:

N N N N

a =2 y(u. -u + Z A.X. y(u. - u*)
K =E -1- - - -

i=0 j=0 i=0 j=0

N N

- .A. y(u. - u.) (2.45)
1 J ~~1 -J

i=0 j=0

which, using equation (2.41) on the first two terms, and expanding

the last one, clearly gives the following equation independent of the

*
field at the location, u
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N N N

2= 2 Z .Y( - u.) - X. y(u. - u.) (2.46)
K -I i j --~I --J

1=1 i=1 j=1

The above derivation shows that linear combinations of the form

N
SX. Z. have finite variance if the weights X . sum to zero. Such

i=O
linear combinations are termed authorized linear combinations and

under the intrinsic hypothesis assumption are the only ones that have

a finite variance, Matheron (1971). In following sections the con-

cept of authorized linear combinations will be extended to the idea

of Intrinsic Random Functions.

The optimal weights are found, as before, using the Lagrange

multipliers technique. The objective function is:

N

L(N X c 2 i+2 (X. -1 (2.47)

i=1

and the conditions that the weights and Lagrange multiplier should

satisfy are:

N
3L = 2y( - u.) - 2 1 . y(u. - u.) + 2p = 0 (2.48a)
a . ( -i ) = -1 -J

1 j=1

NN
N

=A2- 1 = 0 (2. 48b)
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These equations written in matrix form give the same Kriging

system previously found under second-order stationary assumptions,

or:

0

-y (u 2 -U )

-y (u 

1

-y (u -u2)

0

-y (u-u2)

1

0

... 0 1 0

xl

X
2

XN

1'

-y uO
-Y u!-u

-Y (1o2)

1

(2.49)

The optimal variance of estimation is as before:

N
2* *
K Y -L0 - u

i= 1

(2.50)

* * *
where N1,. XN are the optimal weights and p is the optimal Lagrange

multiplier.

2.5.2 Block Kriging Under the Intrinsic Hypothesis and
Constant Mean

Using the constant mean assumption, the unbiasedness condition

gives for block estimation:
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N

i= 1

(2.51)du = 1

V

Define a measure, X(du), over the region A, where the field is

defined, as that which gives the operator:

N

Af X (du) = Z x . 6 .
A i=1 -

(2.52)- du
V 

-

the indicator function of the field at location u , i.e.:

6 (Z(u)) =Ku. - 0
-1'0

if u = u

otherwise

(2.53)

This allows the unbiasedness condition to be written in terms

of the extended combination:

J Z (u) X (du) =A

N

SXZ - f Z(u)du
1 V

E Z (u) A (du) = m X(du) = 0

A A

and the variance of estimation as:
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a = Var Z(u) X(du) (2.56)K
I A

I' * *
Subtracting J Z(u) X(du) = 0, for an arbitrary location u

gives for the variance:

2 *
a = Var (Z(u) - Z(u )) X(du) (2.57)

A

which can be expanded in terms of the existing covariance function

* *
of the terms Z(u) - Z(u ) and Z(v) - Z(u ), as:

2 * *
a = Cov(u - u, v - u) k(du) X(dv) (2.58)

K A A

Replacing the expression that gives the above finite covariances

in terms of the existing stationary semivariogram, equation (2.39),

gives:

aK = 2 y(u - u*) X(du) X(dv)

K fA vA

- yAf (u - v) X (du) (dv) (2.59)
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which readily reduces, as in the previously considered case of point

estimation', to:

2
aK = -j y(u - v) X(du) X(dv) (2.60)

N N N

a =y (u. - u. ) + 2,

i=1 j=1 i=1

i Jy ( - u)du

V

- 2, y (u - v)du dv

A 1A

As in the case of point estimation, the only extended combinations,

equation (2.54), that give finite variance are the ones that satisfy

J X(du) = 0 , Matheron (1971). These combinations are called
A

extended authorized combinations.

The minimization problem is solved as before using the Lagrange

multipliers technique. The objective function is:

(2.62)

N

L(A,...,XN, = + 21-1

=1

and the conditions that should be satisfied by the weights and

Lagrange multiplier are:

47
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N

L -2 . Y(u. - u.) + 2 - A y(u. - u)du + 2u = 0
3 A i3 -1 3 V -

j=1 V

i=1,..., N

(2. 63a)

N

2= 0
~i=1

These equations written in matrix form give, as in the case of

point estimation, the same Kriging system previously found under

second-order stationarity assumptions, or:

(2. 63b)

0

-Y

-Y (u!N7 1)

1

-y (u1 -u2) ...- uy-

0 .. . -v(u-u 
1

0

11.

1

0

2

N

y 1

) 

1-)du

V

V

-1 .N-u) du

V

(2.64)

The optimal minimum variance of estimation is also the same

as found under second-order stationarity assumptions. It is:
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N

Y = -- y'u - v)du dv +E X y(u - u)du-y

V f Vi=1 ' fV

(2.65)

* * *

where X x N are the optimal weights and -p is the optimal

Lagrange multiplier.
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2.6 Kriging Under a Stationary Covariance and Known Form of the

Drift: Universal Kriging

In this section, the equations that determine the optimal weights

of the Kriging estimator are given for the case in which the covariance

of the field is stationary and the mean is known to be of the form:

kl

m(u) = 6 f (u) (2.66)

Z=1

where the functions f are known and linearly independent, usually

taken as monomials.

It will be shown that the equations do not depend explicitly

on the values of the coefficients 6 . But certainly, the covariance

function depends on those coefficients, which must be estimated prior

to the estimation of the covariance.

2.6.1 Point Universal Kriging Under a Stationary Covariance

Under the stated conditions, the unbiasedness condition for

point estimation at the point ! , see equation (2.13), reduces to:

N kl kl

X 6 f (ui) = E k fQ (4) (2.67)

i=1 =1=1

Interchanging the order of the summations on the left-hand side

and using the linearly independent assumption on the functions f

gives the following kl conditions that are equivalent to the above
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equation:

N

f Z (u) f, () , Z=1,...,kl (2.68)

i= 1

As in previous cases, the minimization problem that determines

the optimal weights can be solved using the Lagrange multipliers

technique.

The kl conditions are taken into the objective function through

the use of kl Lagrange multipliers, as follows:

kl N

L(X1 ,...,AN' El''''kl) = E + 2 Xyfz(u.) -f (H) (2.69)

Z=1 i=1

2
where a K can be calculated in terms of the covariance function from

equation (2.16b) as:

N

r 2 Cov(O) - 2 Z . Cov(u - u.)
~K -_ -O -i

i= 1

N N

+ E.):1. Cov(u. - u.) (2.70)

i=1 j=1

The derivatives of the Lagrangian function, L, with respect to

the unknowns set to zero give the necessary conditions for the unknowns,

namely:
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N kl
3L= -2 Cov( -u.) + 2 X. Cov(u.-u.) + 2 11 f (u.) = 0

E% j i -1 -j E z z ~1
j=1 Z=1

i=1,..., N

(2.71a)

N
L = 2 A. f (u.) - = 0 , %=1,...,k1

i=1 1z()

(2.7 1b)

These equations lead to the Universal Kriging system of (N+kl)

equations on the (N+kl) unknowns X 1, ..., X N$ 1 9 1'kY

Cov(0)

COV(U-2 -1)

f 1(u )

fv2 (U 1 )

f I U

Cov(u 1-u 2)

Cov(_)

Cov(u -2)

fO (u )

f1 (-2)

f2(u2)

fki(!2

... Cov(uI-)N)

.. Cov(u
2 -

... Cov(O)

'k'1 "--N)

f (u )

1 -2

0

0

0

f 2 (U1 )

f2 (2)

0

0

0

'k. 1 

0

0

2

N

12

kI

(2.72)
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Multiplying equations (2.71a) by its respective X. and adding on

i gives:

N N N
* * *

X. A. Cov(u.-u.) = X. Cov(u -u.)
J -' -J O-

i=1 j=1 i=1

ki N

- Z Z f (u ) (2.73)

%,=1 i=1

Replacing this expression back on equation (2.70), and using the un-

biasedness conditions, equations (2.68), gives the optimal minimum

* *
variance of estimation in terms of the optimal weights X ,.. .N and

* *
optimal Lagrange multipliers U1y,...,kl, as

N kl

a = Cov(z) - * COVQu -u - y f ( ) (2.74)

i=1=1

Note that theUniversal Kriging system and the optimal variance

of estimation can be written in terms of the semivariogram function,

using the relation that gives the semivariogram in terms of the co-

variance function under the assumption of stationarity on the co-

variance. The expression are completely analogous to equations

(2.72) and (2.74) with the covariance replaced by the negative of

the semivariogram.
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2.6.2 Block Universal Kriging Under a Stationary Covariance

The unbiasedness condition for block estimation over an

area V are for this case, see equation (2.13):

N kl kl

Sf (U.) = S f (u)du (2.75)

i=1 2=1 V Z=1

Interchanging the order of the summations on the left-hand side

and integration and summation on the right-hand side, and using the

linearly independent assumption on the functions f gives the following

kl conditions:

N

Z 1 f (u ) = f2 u)du , =1,...,1 (2.76)

i=1V

As in previous cases, the optimal weights are found using the

Lagrange multipliers technique. Thekl conditions are taken into

the objective function using Lagrange multipliers y , .. , k1, to get:

kl N

L(X1,...,XN, 31' '') = a2 + 2 E E Xyfz(u.) - ff (u)du
K =1 (i=1 f z

(2.77)

where the variance of estimation in terms of the stationary covariance

function is found, using equation (2.16b), as:
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N

2 = Cov(u - v)du dv - 2 XV Cov(u Q-u)du
aK = V2 f 1 VJf

Vi=1 V

N N

+ X.X. Cov(u.-u.) (2.78)1 3 -3
i=1 j=1

The necessary conditions of the minimization problem readily

give the equations:

N kl
3L -2 i Cov(u.-u)du + 2 X. Cov(u.-u.) + 2 PZy fz(u) = 0

1x Vf j=1

i=1,. .. ,N (2.79a)

N

= 2 f (u) - (u)du = 0 , =1,. ..,kl (2.79b)

i= 1

which gives a Universal Kriging system with the left-hand side

exactly as in equation (2.72), but with the right-hand side replaced

by:

55



f ov(u -u)du

-f Cov(u2-u)du

f ov(u -u)du

f (u)duV V

V Vf2 (u) du

f (u) du

vV k -- (2.80)

The optimal variance of. estimation, in terms of the optimal

* * * *
weights X ,.., XN and optimal Lagrange multipliers u1,..., ykl

can be found using the procedure previously employed. It is:

N

a 2* Cov(u- v)du dv - Cov(u.-u)du
K -2 ffE

V V i=1 y

kl

- yf (u)du (2.81)

Z=1 fV

Once again, the Universal Kriging system and the optimal variance

of estimation can be written in terms of the semivariogram function.

The resulting expressions are the same with the covariance replaced

by the negative of the semivariogram.
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2.7 Intrinsic Random Functions of Order k

As was seen in the previous section, knowledge of the covariance

or semivariogram function and the form of the drift are needed in

order to calculate the Universal Kriging estimator. A practical

contradiction appears and is that of estimating the covariance or

semivariogram from the data points. Although in the Universal

Kriging equations the exact coefficients of the drift do not appear,

they are needed to calculate the covariance or semivariogram (except

if k1 = 1) function.

Even if the drift can be estimated without bias, Olea (1975a)

has shown that the resulting estimated covariance or semivariogram

function, after replacing the estimated drift, will be biased.

In fact, if the drift is linear, the bias will be quadratic in distance

lh[; if the drift is quadratic, the bias will be of fourth-order in

Ih', etc.

The Intrinsic Random Functions of order k theory, introduced by

Matheron (1973) and denoted IRF-k, provides a way of performing the

Universal Kriging estimator without calculating the drift and the

covariance function. This is done introducing the concept of generalized

increments and replacing the covariance function by the generalized

covariance function.

Instead of working with the random field Z(u), the attention is

focused on increments of Z(u). To illustrate the general idea, assume

the mean of the field to be a constant, say m. Then from equation (2.7a):
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E{(Z(u + h) - Z(u)) 2} = Var{Z(u + h) - Z()} = 2 Y(h)

which means that the semivariogram can be inferred without biasl from

2
the sample differences squared, (Z(u.+ h) - Z(u.)) , without knowing

the value of m. On the other hand, the estimated covariance function

*
will be biased because an estimate m will be introduced.

In the above example, the field was replaced by its 0th order

increment (first-order difference as in the intrinsic hypothesis) and

because the constant m was not needed, it is said that 0th order

increments filter out a constant mean, i.e., E{Z(u + h) - Z(u)} = 0.

A similar approach will be followed for more general forms of

the drift, the idea being to estimate a certain function, called

generalized covariance function, such that the drift is filtered

out and then not needed in the estimation.

The formal definitions of the above concepts are as follows.

For a random field defined in the Euclidean space Rn , a linear

N
combination X X. Z(u.) , u.=(u u. ), is a generalized

1 i -1 -i il in

increment of order k if:

N .1  ..
.

u u .. u = 0 (2.82)

i il 1 2  in
i= 1

1Note that this is no longer true if the drift is not constant.
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for all non-negative integers j 1 , j2 3 G..2 j n such that:

ii + j + ... + j < k

2
In particular in IR , denoting the coordinates u.=(u.,v.),

get 1 1

gives the following conditions:

N

k =0:

i= 1

N

k =1:

i= 1

N

N

i=1

N

i= 1

N

i= 1

x. = 0

i = 0

X. u. = 0 ;
1 1

N

1
(2.84)

N

=0 ; Z.u. 0

i= 1

. v. = 0
1 1

2
A.u. =0 ;

1 1

N z . u v. = 0
i= 1

N

. v. = 0

i=31

(2.85)
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It is easily seen that an increment of order 0 filters out a

constant drift, an increment of order 1 filters out a linear drift,

an increment of order 2 filters out a quadratic drift, and so on.

As an example, consider a generalized increment of order 1 and a

linear drift m(_u) = a + bu + cv, then:

N N

E Z(u i) = [a + bu. + cv.]

N N N

= a X.+ b E .u.+ c .v.

i=1 i=1 i=1

=0

for any values of the coefficients a, b, and c. Note however, that

if the drift is quadratic it is not filtered out by a first-order

increment.

An Intrinsic Random Function of order k (IRF-k) is a random

field whose generalized increments of order k are second-order

stationary. This means that for all sets of weights X. that satisfy
N

equations (2.82), X X Z(u. + h) has a mean and variance which do
i=-1

not depend on h, and a covariance function depending only in the

distance h.

Suppose that the kth increments of Z(u) produce a second-order

stationary field Zk(u). Since the coefficients of the drift could

be anything, the IRF-k Z(u) + Pk(u), with Pk(u) any polynomial of

degree less than or equal to k, will also result in Zk(u) after
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increments of order k. This means, when working with IRF-k one is

dealing with a class of fields and not with a unique field.

It can be shown (Matheron, 1973) that if Z(u) is an IRF-k,

there exists a function K(h) such that for any generalized increment

of order k:

N N N

Var( X. Z(u) = E Z A . j K(u. - u.) (2.86)

i=1 j=1

Because this expression has exactly the same form as if the function

K(h) were an ordinary covariance function, it is called a generalized

covariance function, GC. It plays the role, but is not the covariance

function of the IRF-k. Being K(h) characteristic of a class of random

fields, it is not unique but is defined up to an even polynomial of

degree less than or equal to 2k, Matheron (1973).

Note that IRF-k generalize the previously defined intrinsic

hypothesis: clearly generalized increments of order 0 are authorized

linear combinations and the generalized covariance function for the

IRF-0 reduces to minus the semivariogram function (see equations

(2.42) through (2.46)).

In the next sections, it will be seen how to apply the IRF-k

theory to find the Universal Kriging estimator for points and blocks,

and how to deal with generalized covariance functions in practice.
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2.8 Universal Kriging for Intrinsic Random Functions

In this section the Universal Kriging equations are rewritten

in terms of the generalized covariance function, for the cases of

point and block estimation.

2.8.1 Point Universal Kriging for Intrinsic Random Functions

The purpose is the estimation of the field at location u ,

from available information at points u ,..., . Recall that the

estimator is given by the linear combination of the data points:

N

Zo i Z i (2.87)
K .=

such that the following two requirements are satisfied. First the un-

biasedness conditions must hold, i.e.:

N

' Xf (u.) = f (u ) , =1,...,k1 (2.88)

j=1

where the k1 functions f determine the form of the drift. And

second, the variance of estimation must be minimized over all possible

combinations that satisfy equation (2.88).

If the functions f are taken as monomials, for example in

2
JR , u=(u,v), as:
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f I(u) = 1

f 2(u) = u

3 =(2.89)

f (u) = uv

f 5(u) = 2

f 6(u) = v2

and so on, and if X0 is defined as -1, then the unbiasedness conditions

(2.88) take the form:

N

E X if (u.) = 0 , Z=1,...,kl (2.90)

j=0

N
which say that the linear combination, E X. Z(u.), is a generalized

j=0 i -J
increment of a certain order k (see equations (2.83), (2.84), (2.85))

with k dependent on the number k1 of unbiasedness conditions considered,

i.e., in IR2 (see equations (2.89)) if kl=1 then k=1; if k1=3 then

k=2; if kl=6 then k=3, and so on.

But then the variance of the above linear combination can be

expanded in terms of an appropriate generalized covariance function

K(h), which gives for the variance of estimation:

N N N

C 2 = Var E XZ Z(u) = E_ X.X. K(u.-u.) (2.91)
K ' 3 - (2-91

j=0 i=0 j=0

or the expansion in terms of unknown weights:
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N N

a = N X K(u.-u.) + K(O)
K = : 11. h. i -1 -j

i=1 j=1

N

- 2 X. K(u.-u ) (2.92)1-i -
i= 1

Using Lagrange multipliers to impose the unbiasedness conditions,

2
the optimal weights and multipliers that minimize a K should satisfy:

N kl

Z X. K(u -_) = K( -u.) - Z f )(u),

j=1 Z=1

i=1,..., N (2.93a)

N

X f (u.) = f (u ) , =1,..., kl (2.93b)

j=1

Note that this has exactly the same form as the previously found

Universal Kriging system, equation (2.72), with the covariance

function replaced by the generalized covariance function.

The optimal variance of estimation, once the optimal weights

* * * *
S1 , . .,N and optimal Lagrange multipliers , ... , kl have been

found, is:
N kl

S2* K(_) - X. K(u-u *) f (40) (2.94)
K 1 --i -O Z

i=1 9=1
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2.8.2 Block Universal Kriging for Intrinsic Random Functions

Define a measure, X(du) as in section 2.5.2, such that

the following operator is defined over the region A, the domain of

the field:

N

Xf (du) = x .6

A i=1

with 6
-i

(2.95)
j du

the indicator function at location u ., i.e.:

Z (U-)

6 (Z(u)) =u. --

if U = U

otherwise

Then the unbiasedness conditions for block estimation, equations

(2.76), can be written in terms of the above operator as:

IA f (u) X(du) = 0 , Z=1,..., k1

(2.97)

which if the functions f are monomials, says that the extended com-

bination:

N

I Z(u) X(du) = . Z - Z(u)du

A i=1 V

(2.98)

is an extended generalized increment of order k (see equations (2.82)),

with the order k, dependent on the number kl of unbiasedness conditions

considered.
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The extension is indeed complete because the variance of an

extended generalized increment enjoys an expansion in terms of the

generalized covariance function (Matheron, 1973), which in particular

gives for the variance of estimation:

a = Var Z(u) =(du) K(u - v) X(du) X(dv)

A A A (2.99)

or simply:

N N N
2 17

2 = .X. K(u.-u.) -2 K(u.-u)du
i=1 j=1 i=1 1-V

+ I K(u - v)du dv (2.100)

V V

Minimizing this previous equation subject to the unbiasedness

conditions results in the system:

N kl

X K(u.-u.) = K(u.-u)du - Z f (U)

j=1 V Z=I

i=1,..., N (2.101a)

N

f (_ = f (u)du , =1,..., k1 (2.101b)

j=1 V
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that has exactly the same form as equations (2.79a) and (2.79b),

with the covariance function replaced by the generalized covariance

function.

The optimal minimum variance of estimation can be readily found

* *
in terms of the optimal weights X ,.., XN and optimal multipliers

* *
1,..., kl as:

N

S =* K(u -fv)du dv K(u.-u)du
K _ --f iVf -

V V i=1 V

k1

- Z f (u)du (2.102)

Z=1 V
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2.9 Generalized Covariance Functions in Practice

In the previous section it was seen how the Universal Kriging

equations can be found in terms of the generalized covariance functions.

This section deals with some generalized covariance models and their

estimation.

2.9.1 Polynomial Models of Generalized Covariance Functions

With the class of generalized covariance functions,

it is possible to model fields for which a covariance function do

not exist. For example, models with y(h) = jhf', 0 < a < 2, are

such that a valid covariance function cannot be found; nevertheless,

their generalized covariance is minus the variogram. Optimal estima-

tion is then possible.

Among the generalized covariance functions, the polynomial

models are convenient in applications. For an IRF-k, the function

(Matheron, 1973).

k+1 2P+P 2P+1
K(h) = (-1) 2P+ 1 2 + 2 (2.103)

(2P + 1)! - 2P + n + 1

is a valid isotropic generalized covariance function in ]Rn provided

the coefficients ca satisfy a conditionally positive definite con-

dition, i.e.:
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k

a2P+1X >0 V >0 .(2.104)

P=0

Since in applications one assumes the field to be locally

isotropic, the drift of interest is a slowly varying function,

and then quadratic approximations of it are usually sufficient.

This results in Table 2.1 of the common polynomial models, where the

term C6(h) stands for the nugget effect and 6(h) takes the value of

1 at h = 0 and 0 everywhere else.

Estimation of parameters in these polynomial models will be

explained in the following subsection.

2.9.2 Estimation of Polynomial Generalized Covariance Functions

For IRF-k with k < 2 there are twenty-five possible

polynomial generalized covariance model forms: three for IRF-0,

i.e.: K(h) = C6(h), K(h) = ailhj, and K(h) = C6(h) + alhj; seven

for IRF-1; and fifteen for IRF-2. This section explains a procedure,

proposed by Delfiner (1976), and implemented in the computer package

AKRIP by Kafritsas and Bras (1981), to select the best model for a

given data set.

First to be discussed is how to find the optimal coefficients

for any of the possible model forms. Then follows a procedure of

selection among the different admissible models, i.e., those that

satisfy the conditionally positive definite conditions, equation (2.104).
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k f in R 2

1 K(h) = C6(h) + a hl

1 1, U, V

2 1, u, v, uv

2 2
u, V

1, u, V, w

1, u, v, w

uv, uw, vw,

2 2 2
u ,V , w

K(h) = C6(h) + allhI + a3IhI

K(h) = C6 (h) + a 11hI + 0 3hc 3 + a 5 Ih5

Constraints
on the

Coefficients

2
In :ay<_1- a5 < 0

3 - 3 1 5

3
In lR: a < 0 ,a 5 0

13- 5- .
3- 1 5

Table 2.1

Polynomial Models of GC in R2 and IR3

(after Delfiner, 1976)

Constant 0 1

Linear

Quadratic

0

f x n R 3Drif t Models for GC



2.9.2.1 Parameter Estimation for a Given Polynomial GC Model Form

Recall that if the data set comes from an IRF-k, with

generalized covariance function K(h), any generalized increment of

order k, denoted Z(X), satisfies:

N N N

Var (Z(x) = Var X. Z.) = E X. i XK(u -u) (2.105)

1=1 i=1 j=1

To estimate parameters of K(h) the idea is to construct generalized

increments of order k, and select the coefficients C and a.'s such

that the difference between the left and right-hand sides of the

above equation is minimized.

The procedure starts giving an initial value to the parameters.

(Delfiner (1976) suggests the use of C = a3 = a5 = 0 and a' = -1 in

all the cases.) Then, if all the data points are estimated using

the Universal Kriging system with the initial K(h) and appropriate k,

employing N0 < N neighboring points1 , and if Z is the estimated

value at point u., i.e.:

N 0
Z = N . . , i=1,.., N (2.106)

j=1

then the linear combination of the data:

1By definition, point u is excluded when Z(u.) is estimated.
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N0

Z(X.) =

j=1

x.. Z. - Z. , i=1,..., N
1] j (2.107)

is by construction (see equations (2.82) and (2.93)), a generalized

increment of order k.

Replacing the form of K(h), equation (2.105) can be evaluated

at the ith constructed generalized increment as follows:

Var (Z(X i)) = E Z(X )2]

N0  k NN 0

= C (X.) 2 + 0 2P+1 0 it a 2P+1

a=1 P=0 a=1 3=1

(2.108)

NO0 N0 2
Defining T = E (X. ) and

a=1

NO NO
2P+1 0 02P+
T = -ui E x ictx $ I ua- 1 +

, P=0,1, ..., k

equation (2.108) reduces to:

k

E[Z(X ) 2 ] = P+1T

P=0

which is a regression equation of Z(% )2 on the unknown parameters.

Then the parameters can be evaluated using the N constructed generalized

increments solving the problem:
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N k 2

Q min E Z(X.)2 - C T0 - a T 2P+ (2.110)

C, a s i=1 P=O
P

The calculated regression coefficients will be, in general,

different from the initial coefficients used to calculate the generalized

increments. However, new generalized increments can be constructed

using the new K(h), which in turn will produce other regression

coefficients. The optimal K(h) will be found if the estimated co-

efficients by the regression match the coefficients of K(h) used to

create the generalized increments.

2.9.2.2 Selection of the Best Model

To avoid the computation of all the twenty-five models

of polynomial generalized covariance functions, the order k is first

selected as follows (Delfiner, 1976):

i) Estimate all the data points from its neighbors, using

the Universal Kriging system for the three models K(h) = -Ihi,

k = 0, 1 and 2.

ii) Compute, at each point, the absolute value of the differences

between the actual and the estimated value given by each of

the above models.
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iii) Find the rank of the models at each point, assigning a value

of 0 to the model with lowest absolute difference at that

point, 1 to the following model and 2 to the model with the

biggest absolute difference at that point.

iv) Find the rank of the above three models adding their point

ranks over all the data points.

v) Select the order k according to the model which gives

the lowest rank.

Once the order k is fixed, all the respective models are estimated

using the regression procedure explained in the previous subsection.

Note that for the optimal values of the coefficients, the variance of

2
estimation at each point, a , can be calculated from equation (2.94).

Because Z(X )2 is also a measure of the variance at point i, the best

model will be the one that has:

N

Z Z(X )2

r = (2.111)

2-

i=1

closest to 1.
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Because r is a biased estimator of:

N-

E Z(Xi)2

p = E[ ~
-N

Ei=2

(2.112)

Delfiner suggests to split the data set in two subgroups, J and

J2 of lengths N and N2, NI + N2 = N, and use the jackknife estimator:

A N r + N2 r2
p = 2r - N

(2.113)

Z Z(X )2

jEJJj F-J1
r 2

jEJ

Z Z(X ) 2

j 
2

r = 2

j 232

Then, in summary the procedure is:

1. Rank the models K(h) = -Ihi for k = 0, 1, and 2 and select

k according to the model which has the lowest rank.

2. Estimate the optimal models of the respective k and choose

the feasible one that has jackknife estimator closest to 1.
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2. 10 Summary

In this chapter the Linear Kriging equations for point and block

estimation of a random field have been presented under different

underlying assumptions. It has been shown how the theory of intrinsic

random functions generalize the intrinsic hypothesis, and how poly-

nomial models of generalized covariance functions should be selected

for fields with given forms of the drift.
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Chapter 3

OPTIMAL SEPARABLE ESTIMATION: DISJUNCTIVE KRIGING

In this chapter the theoretical and practical aspects of the

Disjunctive Kriging estimator are presented. The treatment follows

the original work by Matheron (1976a), and the lucid book by Journel

and Huijbregts (1978).

3.1 Characteristics of the Disjunctive Kriging Estimator

The Disjunctive Kriging estimator is a generalization of the

previously presented Linear Kriging estimator. It was proposed by

Matheron (1976a), as a practical substitute of the conditional

expectation. The estimator is characterized by the following con-

ditions:

1) Separability - The estimator,, (Z) is a combination of
DK

measurable single variable functions, f., of the observed

variables, Z.:

N

(ZOK f(Z (3.1)

i= 1

where the functions f. are found such that the next two
1

conditions are satisfied.
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2) Unbiasedness - The estimator, 9 (ZO)K, must be an unbiased

estimator of the unknown '(Z ), i.e.:

E[Y(Zo) DK = E (Zo)] (3.2)

which gives the following condition on the functions f.:

N

E[f.(Z.)] = E[Z)
i=1

3) Minimum Variance - The estimator ,(ZO)K, must have

2

(3.3)

minimum variance of estimation, aDK, over all the unbiased

estimators of the form given by equation (3.1).

2 *
a K = Var{f (Z - Z ) 

Using the unbiasedness condition and expanding gives the

variance to be minimized as:

2 = E Y(Z0 ) )Zo DKl

N

= E [(Z 02 - 2 { E [Y(Zf i(Zi)]

i= 1

N N

+ E E E[f.(Z.)fj(Zj)]

i=1 j=1

(3.4)

(3.5)
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2
Notice that a DK can be calculated if the bivariate distributions

of the pairs (Z.,Z ) and (Z , (Z0)) are known. This is considerably

more information than the required semivariogram or generalized

covariance function used in the linear Kriging estimator.

In fact, Linear Kriging is a particular case of Disjunctive Kriging.

in which f.(Z.) = k.Z.. Due to the added information, Disjunctive
1 1 1 1

Kriging has a theoretical increase in accuracy, i.e.:

2 < 2
DK -K

(3.6)

In summary the Disjunctive Kriging estimator is found solving

the minimization problem:

N

min
f 1 .0. fn

a2  =E9Z ) 2 - 2 E [Y(ZO i(Z )

i= 1

N N

+ E[f.(Z.)f.(Z.)]

i=1 j=1

N

s.t. E(f (Z )f = -W(Z0

i= 1

This problem can be solved

structure of the random field.

that will allow an approximated

if further assumptions are made on the

In the next section a model will be given

computation of the optimal functions.
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3.2 The Hermitian Model

It is assumed that the random field under consideration, Z(u),

can be obtained as a transformation of a second-order stationary field,

Y(u), which has univariate standard Gaussian distribution.

Z(u) = $(Y(u)) (3.8)

The function is called the anamorphosis and has to be estimated in

practice. Section 3.5 explains how to do this task.

Consider the Disjunctive Kriging estimation of the unknown

-1in terms of Gaussian variables, Y. = $ (Z ). As was seen in the

previous section, the estimator is:

Z0 (Z) DK

N

i i)

.26(Z 0

(3.9)

with the functions f., i=1,...N, being the solution of the problem:

min
f13 ''' Nf

N
2 =E L2(Z ) 2 - 2 E r(Zaiz

i=1

N N

+ E Erf.(Y.)f (Y)]

i=1 j=1

N

s.t. [ E[f (Y.)] = E;((Z
11=0

(3.10)
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Assuming that the bivariate distributions of the pairs (Y(u),Y(v))

are also Gaussian, the above problem can be rewritten in a way that

will permit the calculation of the optimal functions f., i=1, ... ,N.

Let G(du) be the distribution of a standard Gaussian variable,

i.e.:

2
U

G(du) - e du (3.11)

Assume the functions f., i=I,...,N satisfy the condition:

CO

f f 2(u) G(du) < ,i=1,...,N

Then they can be expanded in a series of Hermite polynomials as:

f (u) = f filk TIk (u) ,i1..N

k=Q

where rik is the kth standardized Hermite polynomial defined by:

2 2

2 dk -
n k(u) = e d e 

krk du

and the series coefficients, ik' are given by:

fik = /f.(u) I k(u) G(du) , i=1,...,N

k=0,1,...
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Similarly, assume the anamorphosis function satisfies:

I0 2 (u) G(du) < o

then it can be expanded as:

$(U)= Z $k nk(u)

k=O

with the coefficients $k given by:

= $(u) n k(u) G(du) , k=0,1,... (3.16)

Replacing the Hermite expansions into the defining expression

of the Disjunctive Kriging estimator, equation (3.9), gives the

following equivalent estimator:

(Z )DK

N 0

Ei,k )k i
i=1 k=O

(3.17)

Similarly, using the linearity of the function 2 'and of the

expectation operator, the minimization problem can be rewritten in

terms of the coefficients f as:
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fi D K k kE (Tk ("0. ) Y k' (7))
i,k k=O k'=O

i=1,.. ,N

k=O, 1,..

N 0 0

+ E E $k fi,kf E iy(-nk (Y0 ))nkt(i
i=1 k=Q k'=O

N N C O

fi,k j,k' E{nk( i)n k(Yj)} (3.18)

i=1 j=1 k=O k'=O

N 0

s.t. E 2 f ,k E{n k (Yi ) E kE tnk YOW

i=1 k=O k=O

The expectations above can be explicitly evaluated using the

factor representation of the bivariate Gaussian distribution,

G(du,dv), Matheron (1976a):

G(du,dv) = $(u,v) G(du) G(dv) (3.19)

with G(du) the univariate standard Gaussian distribution and the joint

density '(u,v) given by:

(u,v) = p (Y(u)) n k(Y(v)) (3.20)

k=0
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where puv is the correlation between the pair (Y(u),Y(v)) raised

thto the k -power, i.e.:

k
uv

= E[Y(u) Y(v)Ik

Using the orthonormality properties of the standardized Hermite

polynomials:

M if k=k'

f k(u) qk' (u) G(du) =

-O 0 otherwise

ina2the expectations in aDK are found as follows:

E[nk(Yi)n k(Yj J k'k )k ) (i,j) G(du ) G(du )
00 -C

(3.22)

= Ik (Y )k T j
-0 -

p. I (Y -n (Y)
ij Z i Z j

Z=0
G(du ) G(du )

k
p.. if k=k'

= (3.23)

0 otherwise

Replacing this back on equation (3.18), gives the estimation

variance of the estimator as:
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N 0

DK= $ Egnk( ) 2 - 2 Z Z $k ilk E;lk 0 k i

k=O i=1 k=O

N N

f. j k (3.24)

i=1 j=1 k=Q

The unbiasedness conditions written in terms of the coefficients

filk and $k give the simple condition:

N

Z fi,0 0 (3.25)

i=1

The above results from n (u) = 1,2(c) = c for any constant c for
0

either point and block estimation, and the fact that equations (3.14)

and (3.16) yield:

N CO N

E [Y(Z 1 K ) *1f f i(Y) 0i(Y.) G(du =,N

i=1 -i=1

and

E[. Z0(Z) =Y{ J p(Y0 0)(Y0 ) G(duQ 0= 2o() =

Substituting the unbiasedness condition into the expression for

2
aDK, equation (3.24), cancels all the terms with k=0. The weights,

f. i1,..,N, k=1,2,..., are then found solving the unconstrained
olek

problem:
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N 0
2 = E 2 2}--2 f E{ k (DK k k 0 E (y ik Z~ ( 0)))

k= 1 i=1 k=1

i=1,..., N

k=1, 2,...
N N

i k j
i=1 j=1 k=1

2The solution is found setting the derivatives of a DK with respect

to the unknowns f k equal to zero:

2 N

IFk2 i(Y4)} + 2 71 f Pk 0
i,k

j=1

i=1,. ..

k= 1, 2,... (27

These equations written in matrix form give the infinite set of

Disjunctive Kriging systems of N equations with N unknowns,

k

P11

k
P 12

k
' 1N

k k k
P21 p2 2 '.' P2N

k k k
PN1 PN2 ' NN

f1,k

2,k

Nk

kE (Tk 0 k (Y1)

kEYf(nk (Y0))k y2

kE Y(n k (Y0 Tk ()Y}N

for every integer k > 1.
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Substituting the optimality conditions, equation (3.27), into

2
the expression for aDK, equation (3.26), gives the optimal variance

of estimation as:

N c

DK= k EV(k( 2  Z ki,kE?(nk(O)k(i)} (3.29)

k=1 i=1 k=1

*
where f . represent the optimal values of the coefficients.

i,k

Notice that the conditional distribution of Y(u) given Y(v)

can be found from the factor representation of the bivariate Gaussian

distribution as:

Gulv(du) = i(u,v) G(du) (3.30)

This allows the calculation of the conditional expectation of

the Disjunctive Kriging estimator given a Gaussian variable as:

N C N oo

E f (Y ) Y filk k i) (u,u) G(du )

Li= 1 J - oo i=1 k=0

which, replacing the expansion for the density function and using the

orthonormality properties of the standardized Hermite polynomials,

gives:

E[N O ] N

EE f (Y ) Y f.~ j k j) (3.31)

_i=1 _ k=O i=1
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Replacing the unbiasedness and optimality conditions, equations (3.25)

and (3.27), give the above conditional expectation in terms of the

coefficients of the anamorphosis expansion as:

N 0

E f (Y ) Y = 1:$k EYf( k (YO )k (i)1T k jY
i=1 k=O

The term on the right-hand side is easily seen to be exactly,

in the same way as above, the conditional expectation of the unknown

(9$(MY )) given the Gaussian variable Y.. It then follows that the0 1

following relationship is valid under the Hermitian model assumption:

E[ (Zo )K Y = E[?(ZO)Y] , i=1,...,N (3.32)

In fact, it is true that these conditions are equivalent to the

requirements of unbiasedness and minimum variance imposed on the Dis-

junctive Kriging estimator (Matheron, 1976a). This means that the

functions f. are characterized by being those such that the estimator

preserves the conditional expectations of the unknown given the Gaussian

variables.

In the following sections, the generic Disjunctive Kriging

system and optimal variance of estimation, equations (3.28) and

(3.29), will be specialized for the cases of point and block esti-

mation.
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3.3 Point Disjunctive Kriging with the Hermitian Model

For point estimation, the unknown is simply 9(Z) = Z0

which gives the estimator:

N 0

DK ik nk i)
i=1 k=0

(3.33)

with the coefficients, f. i, satisfying the unbiasedness condition:

N

(3.34)fi,0o
i= 1

and the optimality conditions:

N
k

j=,k 13
j=1

k
= $k O , i=1,--., Nk Oi

k=1,12,... (3.35)

where p.. = E{Y. Y.}.
1J 1 J

Because the mean of the univariate distributions of the Gaussian

variables is zero, the optimality conditions can be written in matrix

form in terms of the stationary covariance function of the Gaussian

field, as:
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CovY(O)k CovY(u1 -u2 k ... CovY(u -HN) k

k k k
Covy (u.2- 1) Cov (O) . .. CovY (u2 uN)

Covy (.N~) k CoVy (u-2) k ... Covy (0)k

k YC 0 -u)k

IA~
2, k Tk

N, k k

k= 1, 2,...

f1,9k

In practice only a finite number of systems of equations are

solved. As will be seen later, the total number to be used depends

on the accuracy of the Hermitian fit of the anamorphosis function.

The optimal variance of estimation is found from equation

(3.29) using the fact that Y is standard Gaussian. It is:

00 N o

aDK k i,k ov(u-u
k=1 i=1 k=1

(3.37)

Note that if 4 coincides with some observation at u , the estimated

value will be the observation, with estimation variance equal to zero, because

the solution of the system of equations clearly reduces in that case to:

k

0 otherwise
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3.4 Block Disjunctive Kriging with the Hermitian Model

For the case of block estimation, the unknown is Z(u)du,

V e h
which gives the estimator:

*
0DK

(3.38)
S E ik 'k ()
i=1 k=0

with the coefficients, f. i, satisfying the unbiasedness condition:

N

fiz,0
i=1

(3.39)
0

and the optimality conditions:

N

f p k
k,k ij

j=1

= P - p . du k V u -

i=1,.. .,N

k= 1,2,...

k
where p ui

k
= E{Y(u)Y.}.

Using the standard Gaussian assumption on the variables Y 'S,

the optimality conditions can be written in matrix form in terms of

the stationary covariance function of the Gaussian variables as:
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k k k
Coy (0) Cov (u1 -32 ) . .. Coy (u -u)

Covy (U 2-1 k

Cov ( -u 1)kY --

Covy ( 0 )k

Covy (u -u2 )k

. .. Covy (u2 UN) k

. . . Covy (0)

f1, k

~2, k

ffN,1

0
k f Co uud

VC
k ov (u-u) kdu

1k ov (u-ukdu

k > 1 (3.41)

The optimal variance of estimation can be written in terms of

*
the optimal coefficients f using the standard Gaussian assumption

on the univariate distribution of the field:

CO

2 21 k
a = $ 2 oy (u-v) kdudv

k=1 V V

- Cov u-u) kdu
k= k j* = Vk
k=1 j=1 V

(3.42)
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3.5 Disjunctive Kriging in Practice: Determination of the Anamorphosis

The Hermitian model, described in this chapter, assumed the field

Z(u) came from a stationary field Y(u) with univariate standard

Gaussian distribution, through the anamorphosis function, i.e.,

Z(u) = 4(Y(u)). Because there is a one-to-one relationship between

the univariate distribution of the field Z(u) and the univariate

standard Gaussian distribution, -the anamorphosis can be found as

follows.

1. Calculate the univariate distribution function of the field,

and then find the correspondent Gaussian values, solving the

equation:

Prob{Z < Z } = Prob{Y < Y.} (3.43)

where the observation values have been ordered, i.e.,

Z < Z2 < .N. In Figure 3.1 this step is explained

graphically.

2. Take the pairs (Y., Z.) and plot the anamorphosis, interpolating
1 1

between known points as in Figure 3.2.

The quality of interpolation can be corroborated from the first

term of the Hermitian expansion of the anamorphosis since:

E(Z) = E($(Y)) = f(Y) n0 (Y) G(dY) =0 (3.44)

- O
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Linear Interpolation of the Anamorphosis Function
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If the mean of the field is not near the value $0 calculated from

the interpolation of the anamorphosis, then the interpolation used

was not appropriate, and another one should be employed. Appendix A

gives a simple form of the coefficients c k when linear inter-

polation of the anamorphosis is used.

The Disjunctive Kriging estimator is approximated in practice

by solving a finite number of systems of equations:

N ml

Z0 a.,k Tk a) (3.45)

a=1 k=0

It is assumed that the order of approximation needed to expand

the unknown functions f is the same that is needed to represent 5.

Because the variance of the field Z admits the following representation:

Var(Z) = $k fk(Y) G(dY) = k (3.46)

-co-.k=1 k=1

and the contributions $k decrease rapidly as k increases, the value of
ml 2

ml can be taken such that E $ is sufficiently near to Var(Z).
k=1

Although a finite expansion is used, it is important to realize

that the Hermitian finite representation is the best possible poly-

nomial approximation of order ml of a function, in the sense that:

O ml 2

I f (f(x) -Z k ) G(dx) (3.47)

-0 k=0
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is minimized precisely when:

ml ml

Z k xk E k k(x) (3.48)

k=O k=O
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3.6 Hierarchy of the Kriging Estimators

As has been seen in previous sections, the Linear and Dis-

junctive Kriging estimators are linear and separable combinations

of the data variables, such that unbiasedness is satisfied and such

that the estimation variance is minimized.

If the form of the estimator is taken as N variable measurable

functions of the observations, f(Z ,...,ZN), under the unbiasedness

and minimum variance conditions the conditional expectation

E((Z ) lZ'..1ZN) is reached. Because the linear and separable

forms of estimators are particular cases of the general N-variable

measurable functions, the accuracy of the conditional expectation

is better than that of Disjunctive and Linear Kriging, i.e.:

2 2 2
OK $DK -CE (3.49)

with:

2 2a = E{[QC(Z ) -E(q(Z)JZ ,..., Z)] } (3.50)CE -'-0' - 01 N

The accuracy of the conditional expectation is based on the

knowledge of the N+1-variate distribution function of ((Z ,.., Z)
0 1l~ N

Because this distribution function cannot be adequately estimated

from the observations of the field, the conditional expectation has

no practical applicability, and simpler, less accurate estimators,

such as the ones presented in this work, should be employed.
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Table 3.1 summarizes the different estimators together with

their requirements.
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Conditional Expectation

N

(Z)= z .Z
0k . 1

*

(Z 0)*
DK

N

i= 1

*
2Z0 )

CE
=f(Z )...,ZN

Requisites
0"
0

Drift Form
Covariance, Semivariogram
or Generalized Covariance
Function

Bivariate Distributions
of (Z ,Z ) and

(;4(Z 'i

(N+1) Variate Distribution
o f (f(z0) Z 1 .0.., Z )0' l'"N

Estimation
Variance

2
K

2
DK

Table 3.1

Hierarchy of Estimators of a Random Field

(after Huijbregts and Journel, 1978)

Form

2
CE

Disjunctive KrigingLinear Kriging



3.7 Summary

In this chapter the Disjunctive Kriging equations for point

and block estimation of a random field have been presented. Assuming

that the data comes from a second-order stationary Gaussian field,

via an anamorphosis function, the need of bivariate distributions

has been reduced to the knowledge of the covariance structure of

the Gaussian variables. Using Hermite expansions of the unknown

functions as well as the anamorphosis function, it has been seen

that an infinite number of simultaneous equations characterize

the estimator. It has also been shown how the Hermitian fit of the

anamorphosis function provides a way to determine a finite approxi-

mation of the estimator.
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Chapter 4

POINT ESTIMATION COMPARISONS

This chapter discusses and compares the performance of Universal and

linear Kriging at point estimation.

4.1 Experiments Description

In order to make an appropriate comparison of the different estimators,

a simulated field was used as the reality. The turning bands method, in-

troduced by Matheron 1973, was used to generate isotropic fields as well

as intrinsic random functions of different orders.

The fields were generated using the computer program TUBA, developed

by Mantoglou and Wilson, 1981, at points on a rectangular area of 30,000

Km2 with sides on proportion 2 and 1, on a 21x11 regular grid, which gives

a distance between points of 12.25 Km; see Figure 4.1.

Three different types of random fields were studied. Considered

first where isotropic fields with an exponential covariance structure of

the form:

Cov(h) = a2 exp(-bh) (4.1)

where a2 and b represent the variance and correlation parameter of the

field, respectively. Correlation increases as b decreases. The second

set are fields obtained by squaring isotropic random fields with the

above covariance function. Finally, intrinsic random functions with gen-

eralized covariance functions of the form:
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Figure 4. 1

Grid Used in the Point Estimation Comparisons

AX =AY = 12.25 Km
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K(h) = acihl + a3 lhI3 + a5 hI5  (4.2)

were considered. Appendix C includes plots of these fields.

Prior to the description of the different cases considered, the fol-

lowing definitions and remarks are in order. Following Matern, 1960, de-

fine the typical distance of a plane figure as the mean distance between

two points chosen randomly and uniformly in the figure. It can be shown,

Rodriguez-Iturbe and Mejia (1973), that for the previously defined rec-

tangle the typical distance, TD, is about 98.6 Kms. Define also the cor-

relation distance of a covariance function, CD, as the length at which

the covariance function has dropped to half of its value at the origin,

i.e.,

Cov(CD) = Cov(0)

22
For the isotropic fields, six different combinations on the parame-

ters G2 and b were studied: three different cases of spatial correla-

tion, and two levels of variability. The three cases of correlations

were taken such that CD = 2TD, CD = TD, and CD = TD, which gives values2

of the parameter b of 0.0035, 0.007, and 0.0141, respectively. For each

correlation structure the point variability parameter a was set to values

of 10 and 20; with the stationary mean kept constant in all the cases at

a value of 10. Table 4.1 summarizes these fields.

Zero mean fields, Z 1 (u), were generated using the same correlation

parameters discussed in the previous paragraph, and then were transformed

by:
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b a

0.0035 10

0.007 10

0.0141 10

0.0035 20

0.007 20

0.0141 20

Table 4.1

Structure of the Generated Isotropic Fields

Cov(h) = a2 exp(-bh)

Stationary mean = m = 10
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1 2
Z(u) = Z (u) (4.3)-30 1 -

to get fields summarized on Table 4.2. The constant 30 was used to have

the transformed fields and the previously defined isotropic fields of

about the same order to magnitude.

Eight different Intrinsic Random Functions, with the previously

described polynominal generalized covariance structure, were considered.

The parameters were taken such that these generated fields are of about

the same order of magnitude as the previously outlined isotropic and

transformed isotropic fields. Table 4.3 details the cases considered.

For each of the twenty fields, six sets of points were chosen ran-

domly from the 21x11 grid. Three of these sets of about fifty points

and the other three of about thirty points. The values of the generated

fields at these points defined the observations network from which struc-

ture identification for the different estimators was made. This subse-

quently allowed the estimation of the complete inner 19x9 grid, from which

comparisons of the different estimators were made by studying the differ-

ences between the true (generated) and estimated values.

The boundaries of 21xll grid were not considered to avoid biased es-

timates. The fifty and thirty points taken,represent precipitation net-

works of 1.6 to 1 station per 1000 Km , respectively. It should be

pointed out, however, that only the isotropic correlation parameter, b,

resemble observed precipitation records, Rodriguez-Iturbe and Mejia, 1973,

and that negative generated values were permitted.

1 In general less due to repetition during sampling
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b a

0.0035 10

0.007 10

0.0141 10

0.0035 20

0.007 20

0.0141 20

Table 4.2

Structure of the Generated Transformed Isotropic Fields
2

Covz (h) = a exp(-bh)

Stationary mean = m = 0

MZ 2
Transformation: Z(u) =1 Z230- Z1()
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IRF
Order Ct 3 a5

0 -1 0 0

0 -3 0 0

1 0 0.005 0

1 -0.005 0.005 0

2 0 0 -0.5x10-8

2 0 0.005 -O.5x10-8

2 -1 0 -0.5x10~ 9

2 -2 0.05 -1x10~ 9

Table 4.3

Structure of the Generated Intrinsic Random Functions

K(h) = c1 Ih| + a3 jhj 3 + a5 Ih15
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In the following sections, the different estimators and the measures

used in the comparisons are presented.
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4.2 Description of the Estimators

Not only the techniques but also different ways of estimating their

parameters were compared. This section discusses the various parameter

identification methods used with each technique.

4.2.1 Universal Kriging Estimators

Three methods for identifying and estimating the polynomial

generalized covariance from limited data were investigated.

The first method was previously described in Section 2.9.2 and was

introduced by Delfiner, 1976. The optimal polynomial model of generaliz-

ed covariance function is found by first finding the IRF order k by a

ranking scheme, then estimating all the models corresponding to that k by

an iterative procedure, and finally selecting the model with closest to

one jackknife estimator of the ratio of sampled and theoretical mean square

error.

The second and third methods considered all the twenty five possible

models applicable to IRF's up to order 2. Once all the models have been

estimated as in Section 2.9.2.1, the feasible ones, say m2 of the twenty

five, are ranked as in Section 2.9.2.1, letting the point ranks go from

0 for the best model up to m2-1 for the worst model. The second proced-

ure selects the model with lowest rank.
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When the optimal parameters of the generalized covariance models

are calculated, the optimal measure of the fit is also found, i.e., the

mean square error of the optimal regression, Q/N, with Q given by Equa-

tion (2.110). The third procedure selects among the feasible models the

one that has lowest mean square error.

In all the cases, the identification and estimation of the optimal

models was done using N = 16 neighboring points. Actual estimation of

field values in the 19x9 inner grid was done from the N = 8 closest

points.

4.2.2 Disjunctive Kriging Estimators

Two different models for the semivariogram function of the

Gaussian data were considered.

First a spherical semivariogram of the form:

3
C2 h 1 h3h<a

01 3 a 23 '0
Y(h) =o ah

C , h > a0

in which C represents the sill and a the range. This model was fitted

using the computer progam MAREC given in David 1977, and a weighted

least squares procedure with the sill constrained to be the sample vari-

ance of the Gaussian data.

The second model is a linear semivariogram:

y(h) = C6(h) + c 1 hj (4.5)
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This model, being the negative of a generalized covariance function of

an IRF-0, can be estimated using the iterative procedure explained on

Section 2.9.2.1. All the three alternative models given by Equation

(4.5) were estimated, and the best mean square model, i.e., the one that

minimizes Q given by Equation (2.110), was chosen.

For both cases, once the semivariogram has been estimated, the

covariance function, of the Gaussian data can be readily estimated from

Equation (2.8). As in the Universal Kriging cases, the field values in

the 19x9 inner grid were estimated using the N = 8 closest data points.

The anamorphosis function was interpolated linearly (see Appendix A) and

fitted using the finite Hermite expansions given by the first five stan-

dardized Hermite polynominals (see Equation (3.35)).

4.2.3 Universal Kriging of Transformed Data

The Universal Kriging estimator of the Gaussian variates was

also calculated, and then transformed through the anamorphosis function

to get an estimator of the actual field:

Z(u) = (Y(u)) (4.6)

with N

Y(u) = ). Y. (4.7)

and the function $ approximated by an order ml expansion:

ml

$(u) = E k fk(u) (4.8)
k=o
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All the 25 models of generalized covariance functions of the

Gaussian data were considered, and the optimal one was assumed given by

the least mean square error criterion.

The generalized covariance functions were estimated using N = 16

neighboring points, while estimation of the inner grid used the N = 8

closest points. The approximation order, ml, was taken as in the Dis-

junctive Kriging estimator at a value of 4.

Notice that although an estimate of the predicted variance of the

Gaussian values can be found at any point in the 19x9 grid, the predicted

variance of the actual field cannot be found, due to the non-linearity

of the anamorphosis function.

4.2.4 Local Mean Estimator

A simple local mean estimator was also considered. The esti-

mate at a point was taken as the average of the 5 closest data points.
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4.3 Description of the Measures of Comparison

In this section the different measures used to compare the perfor-

mance of the different estimators are described. The following attri-

butes were calculated for every case:

i) Mean Square Error, MSE, defined as

N1

(Z. - Z.) 2  (4.9)
N1i j=l

where Z. represents actual values (generated using Turning bands), and

Z are the estimated values. The number of points averaged, Ni, was not

necessarily 19x9 = 171 because unusual outliers were not taken into con-

sideration. Outliers were defined as those such that:

Z. > max Z. + 2(max Z - min Z.)
J 1 1 1

or Z. < min Z. - 2(max Z. - min Z.)
J - .1 . 1 . 1

i 1 1

They were not considered because their magnitude would give unrealistic

estimates of the overall performance of the estimators. Notice that in

any case N is also a measure of how the estimators work, with better

results if N is near 171.

ii) Correlation Coefficient, CC, between the actual and estimated

values, calculated using the same N1 points as above. Values

closest to one are indicative of good agreement.
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iii) Mean of Deviations, yiD, and the standard deviation of the de-

viations, aD, where the deviations are [Z. - Z.].
J J

iv) Mean Predicted Variance, MPV, over the grid - N1 points - and

the Maximum predicted variance, MaPV on the 19x9 grid.

v) Consistency Parameter, $ , defined as the ratio of the MSE

- -=MP- er-z -4m -of=Equat ion (2.111). Notice

that values of 1 near one indicate good agreement between

what happens in reality and what the employed estimator pre-

dicts.

Graphical representations of typical cases are also given in the

section that compares the different estimators, Section 4.6. They are,

mainly, plots of real versus estimated values that provide a visual idea

of how well the estimators work on a given field for a given set of his-

torical points. Points on a 45* line would indicate perfect agreement.
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4.4 Comparison of the Universal Kriging Estimators

In this section the different methodologies used in the determina-

tion of the optimal generalized covariance function are compared accord-

ing to the measures described in the previous section. The experiments

were performed using the computer package AKRIP, developed by Kafritsas

and Bras, 1981.

4.4.1 Isotropic Fields

The results of the thirty six isotropic field cases (six dif-

ferent fields sampled six times each) are summarized on Table 4.4.

First, the three methods (R for ranking procedure, M for least mean

square error procedure, and D for Delfiner's methodology) are compared

quantitatively according to the different measures, at different levels.

For example, in 29 of the 36 cases the ranking procedure gave a mean

square error that was either the lowest of the three methods or had a

value that differed from the lowest by less than 10 percent of that

value.

Following the comparative measures, there is a summary of the sel-

ected orders of IRF given by the three procedures, as well as the number

of cases in which the methods selected the same order and the number of

cases in which models given by different procedures coincide.

Finally, the table includes information concerning the consistency

parameter, Pl, i.e., the minimum and maximum values over all the cases;

the number of cases less than or equal to one; the number of cases
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MaPV CC

(25%) (5%)

20

27

13

32

35

21

Selected
IRF

0 1 2

9 15 12
13 16 7
16 10 10

Same Order

RMD-15
RM - 8
RD -11

D11 - 1

Same Values

RMD- 0
RM -20
RD - 2
DM - 0

CONSISTENCY

(p = ) (PRIOR)

Min

R 0.23(0.73)

M 0.26(0.73)

D 0.13(0.76)

Max

22.7(2.4)

19.5(3.2)

1.14(1.2)

10(11) 26(24)

11(11) 25(25)

34(28) 2( 8)

[0.8,1.2]
2i 41 I

ti ( 9!)

9 (22)

10(34)

P

2.05(1.2)

1.59(1.15)

0.62(0.99)

1.21(0.31)

0.23(0.06)

Table 4.4

Comparison of Universal Kriging Estimators

Isotropic Fields (36 cases) Point Results

MSE

(10%)

R 29

M 32

D 6

(25%)

34

9

MPV

(25%)

35

4

(10%)

30

29

1

MPV
1

(+0.5)

32

33

25

(10%)

30

33

11

(10%)

27

30

1

(25%)

35

4

R
M
D

H-
H-



greater than one; the number of cases between 0.8 and 1.2; and the mean

and standard deviation of p over all the cases. The prior information

of **, given by the jackknife estimator as in Equation (2.113) using the

historical N points, is also given in parentheses.

As is shown the three methods did not prefer any IRF order and al-

though they selected the same order in 15 cases, there was not three way

agreement on the same model. Ranking and least mean square error pro-

cedures coincided 20 times in selecting the generalized covariance model.

Only in two cases the Delfiner's methodology coincided with the ranking

or least mean square error procedures.

As is shown in Appendix B, when k = 0 the distance-independent model

K(h) = C6(h), gives a jacknife estimate value of one. That is why in

16 cases the Delfiner's methodology selected that model. Since in this

case the Kriging estimator weights are all equal to one over the number

of points used in the estimation, i.e., 1/8, the use of that model gives

a conservative estimate that will not capture the extreme values of the

field and will overestimate the variance of estimation. Figures 4.2 b,

4.3 b, and 4.6 b show typical outcomes using the above model.

Table 4.4 indicates that the ranking and least mean square error

procedures performed better than the Delfiner's methodology, as expres-

sed by lower MSE, MPV, MaPV, and GD, closer to one CC and closer to zero

1
iD . This is confirmed when the least mean square error and Delfiner's

method are compared at a 25 percent level on MSE and MPV: the first

1 This attribute was calculated defining an interval of equally good

performance by adding and subtracting 0.5 to the ID of the method

that deviated less from zero.
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method gives as good or better results in almost all the cases. Figures

4.2 a, b; 4.3 a, b; 4.4 a, b, c; 4.5 a, b; 4.6 a, b; 4.7 a, b; and 4.8 a,

b, c show comparisons of real versus estimated points for the Universal ,Krig-

ing Estimators for typical cases of isotropic fields and various model

identification approaches.

The consistency parameter table shows that the actual performance

deviates more from 1 than the prior jackknife estimator, for all the

three methods. The Delfiner's approach tends to have values of 1 less

than 1 which means that the model given by this method overestimates the

variance of estimation. On the other hand the ranking and least mean

square error procedures select models that tend to have values of 1

greater than one, which indicates that these procedures underestimate

the variance of estimation. It should be pointed out that very extreme

values of 1 (below 0.15 and above 6) were not considered in the calcula-

tion of the mean and standard deviation of the consistency parameter.

The MPV was corrected for all experiments using the prior estimator

of i, i.e., the jackknife estimator. This new index, MPV1 , (see Table

4.4) does not reveal additional insight and gives very close results to

those of the MPV: according to the MPV1 the performance of Delfiner's

method is not better than that of the other methods.

4.4.2 Transformed isotropic Fields

Table 4.5 summarizes the results of the 36 cases of transformed

isotropic fields considered. The general results are similar to those

of previously described isotropic field cases.
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MSE

(10%) (25%) (10%)

R 31

M 27

D 5

35

13

24

33

3

Same Orders

RMD-22
RM - 3
RD - 5
DM - 4

Same Values

RMD- 0
Rm -17
RD - 1
DM - 5

CONSISTENCY

A ) (PRIOR)
(P 1 PROR

[0.8,1.2]

R 0.33(0.66)

M 0.37(0.83)

D 0.18(0.83)

14.5(2.4)

14.5(2.4)

3.2(1.08)

13(13) 23(23)

11(12) 25(24)

26(34) 10(2)

11(26)

6(27)

10(36)

1.81(1.15)

2.23(1.2)

0.92(0.99)

1.67(0.34)

2.07(0.36)

0.65(0.03)

Table 4.5

Comparisons of Universal Kriging Estimators

Transformed Isotropic Fields (36 cases) Point Results

MPV

(25%)

36

5

MaPV

(25%)

20

32

15

cc

(5%)

33

28

4

1ID

(+0.5)

30

32

27

GD

(10%)

34

30

8

MPV1

(10%)

28

31

4

(25%)

36

6

I-A
I",
0

Selected
IRF

0 1 2

22 9 5
28 3 5
29 3 4

R
M
D

Min Max #<1 P1 G



The three identification methods tended to select an IRF of order

0 as the structure that best explained the given fields. Never did all

the methods give the same generalized covariance model. The ranking and

least mean square error procedures coincided 17 times. Again, Delfiner's

approach does not give better results than the other two methods, which

cannot be distinguished.

Delfiner's approach shows a slight tendency of overestimating the

predicted variance, while the other methods again tend to underestimate

it. Again, some very extreme values of pl were obtained indicating in-

consistent performance. However, plots of real versus estimated values

can still be very satisfactory as shown in Figures 4.9 a, and 4.11 a.

Figures 4.9 a, b; 4.10 a, b; c; 4.11 a, b; and 4.12 a, b show typical

Universal Kriging outcomes for the experiments with Transformed Isotropic

fields.

4.4.3 Intrinsic Random Functions

Tables 4.6, 4.7, and 4.8 summarize the results found with in-

trinsic random functions of orders 0, 1, and 2, cespectively. The re-

sults follow the same tendencies previously encountered on the isotropic

and transformed isotropic fields.

Although in 31 of the 48 cases (8 fields each sampled 6 times) all

the three procedures selected the same IRF order, only in 5 of them all

the methods coincided in the estimation of the model. As in previous

cases, the ranking and least mean square error procedures were the com-

bination that most often gave the same generalized covariance model.
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MPV MaPV CC

(10%) (25%)

R 0

M 11

D 4

12

4

(10%)

10

10

2

(25%)

11

3

(25%)

8

9

10

(5%)

10

12

3

(+0.5)

12

11

11

(10%)

11

11

4

(10%)

10

11

4

Same Order

RMD- 8
RM - 0
RD - 4
DM - 0

Same Values

RMD- 1
RM - 7
RD - 1
DM - 0

CONSISTENCY

= -)(PRIOR)
0 # PV

1 #>1 [0.8,1.2]

R 0.6 (0.85)

M 0.62(0.85)

D 0.4 (0.99)

3.28(1.87)

2.39(1.29)

0.89(1.03)

5(5) 7(7) 4(10) 1.29(1.11)

4(5) 8(7) 5( 9) 1.07(1.17)

9(6) 3(6) 3(12) 0.89(1.03)

0.86(0.27)

0.57(0.14)

0.49(0.06)

Table 4.6

Comparisons of Universal Kriging Estimators

Intrinsic Random Functions of Order 0 (12 cases) Point Results

(25%)

11

5

Selected
IRF

0 1 2

5 6 1
8 3 1
5 6 1

R
M
D

Min Max V

cjD MPV1MSE



MPV MaPV CC

(25%) (10%)

10

12

3

(25%)

12

2

(25%)

10

11

1

(5%)

12

12

12

aD MPV 1

(+0.5)

12

12

12

(10%)

11

11

4

(10%) (25%)

9

12 12

22

Same Order

RmD- 7
RM - 4
RD - 1
DM - 0

Same Values

RMD- 1
RN - 8
RD - I
DM - 1

CONSISTENCY

= ~) (PRIOR)

1 #>1 [0.8,1.2]

R 0.44(0.84)

M 0.48(0.85)

D 0.18(0.86)

43.2 (3.19)

43.2 (3.19)

1.14(1.07)

7(5)

5(4)

9(8)

5(7)

7(8)

5(9)

5(7)

1.2(1.26)

1.45(1.37)

3(4) 4(12) 0.63(0.98)

1.3(0.67)

1.26(0.68)

0.34(0.06)

Table 4.7

Comparison of Universal Kriging Estimators

Intrinsic Random Functions of Order 1 (12 cases) Point Results

MSE

(10%)

R 9

M 11

D 2

12

2

Selected
IRF

0 1 2

0 7 5
0 8 4
0 3 9

I-A

(4

R
M
D

Min Max P' a



MPV MaPV CC

(10%) (25%)

R 18

M 22

D 10

24

13

(10%)

14

20

4

(25%)

23

6

(25%)

16

21

5

(5%)

24

24

24

(+0.5) (10%)

23

24

20

20

24

12

Selected
IRF

0 1 2

R 0 7 17
M 0 8 16
D 0 2 22

Same Order

RMD-16
Rm - 3
RD - 3
DM - 2

Same Values

RMD- 3
RM - 8
RD - 5
DM - 1

CONSISTENCY

(p1 = ) (PRIOR)

R 0.12(0.58)

M 0.16(0.24)

D 0.10(0.66)

7.7(2.31)

9.65(3.58)

7.7(1.84)

9 ( 9) 15(15)

9 ( 8) 15(16)

21(12) 3(12)

5(12) 1.6 (1.2)

5( 9) 1.63(1.4)

6(20) 0.65(1.0)

1.19(0.47)

1.24(0.78)

0.37(0.21)

Table 4.8

Comparison of Universal Kriging Estimators

Intrinsic Random Functions of Order 2 (24 cases) Point Results

(10%)

17

18

6

(25%)

24

6

-

Min Max [0.8,1.2] P1 G

GD MPVIMSE



As is shown the procedures tended to select the IRF-order that

was used to generate the historical data. The least mean square method

was the most consistent in this respect. When the generated IRF-order

was 1 or 2 none of the method gave models with IRF-orders 0.

The overall performance of the ranking and least mean square error

procedure is better than that of Delfiner's methodology. For example,

the least mean square error method gave results that were best in MSE

at 10 percent in 44 of the 48 cases, while Delfiner's approach only gives

good results in 16 of the 48 cases. At 25 percent level, the least mean

square error procedure is best in 48 cases versus 19 for Delfiner's

method.

Fields corresponding to the two intrinsic random functions of order

1 and the first two and last of order 2 (see Table 4.3), were very well

estimated as can be seen in Figures 4.15 a, b; 4.16 a, b, c; and 4.18 a, b.

The correlation coefficient was on the order of 0.99 for all the methods

and cases. The figures also show that the model selected by Delfiner's

methodology gives a wider band around the 45* line, increasing the MSE.

The consistency parameter again shows the tendency of underestimat-

ing the variance of estimation by the ranking and least mean square error

procedures, with the actual values having a wider range than the prior

jacknife estimates. Delfiner's methodology again tends to overestimate

the predicted variance.

Typical results for the Universal Kriging estimators are shown in

Figures 4.13 a, b, c and 4.14 a, b for IRF-0, in Figures 4.15 a, b and

4.16 a, b, c for IRF-1 and in Figures 4.17 a, b and 4.18 a, b for IRF-2.
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It should be pointed out that in none of the IRF cases nor in the

other random fields considered, a generalized covariance model with more

than two parameters was chosen by any of the methodologies. This sug-

gests the use in practice of fewer than 25 models, discarding from the

beginning those that have three or four parameters. Of course, since

the 120 cases considered (36 + 36 + 48) do not include all the possible

random fields, the above point should be investigated further.
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4.5 Comparison of the Disjunctive Kriging Estimators

In this section the two methods for estimating the semivariogram

function of the Gaussian data to be used in the Disjunctive Kriging es-

timator are compared. In Tables 4.9 to 4.13 the final results are sum-

marized; L stands for the linear semivariogram and S for the spherical

semivariogram.

4.5.1 Isotropic Fields

As is shown in Table 4.9, the spherical semivariogram gave

better results in MSE, but the linear semivariogram did better on MPV.

A further check with the consistency parameter reveals a more coherent

Disjunctive Kriging estimator if the spherical semivariogram is used.

The MPV given by the linear semivariogram is lower than it should be in

reality which explains the apparent advantage it has according to that

measure.

In Figures 4.2 c, d; 4.3 c, d; 4.4 d, e; 4.5 c; 4.6 c, d; 4.7 c;

and 4.8 d some Disjunctive Kriging results for isotropic fields are shown.

4.5.2 Transformed Isotropic Fields

As in the previously described isotropic field cases, the Dis-

junctive Kriging estimator using the spherical semivariogram gave better

overall results than using a linear semivariogram. Both semivario2rams

underestimated variances of estimation as seen in Table 4.10. The spher-

ical semivariogram not only performed better with respect to the MSE but

also with respect to MPV, even though the use of the linear semivariogram

led to more serious underestimation of the predicted variances.
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MSE

(10%) (25%) (10%)

23

33

27

17

MPV
(25%)

29

21

CONSISTENCY

( SE )

#<1 #>1 [0.8,1.2]

L 0.49 3.95

S 0.22 3.72

13 23

20 16

12 1.43 0.89

12 1.11 0.74

Table 4.9

Comparisons of Disjunctive Kriging Estimators

Isotropic Fields (36 cases) Point Results

L 21

S 32

MaPV

(25%)

22

21

(+0.5)
Cc

(5%)

28

35

(10%)

I-i

32

32

22

33

Min Max P a



MSE

(25%) (10%) (25%)

20

22

23

26

CONSISTENCY

(= MSE

#<l #>1 [0.8,1.2]

5.79 9 27

12.16 13 23

5

5

2.09 1.62

1.8 1.6

Table 4.10

Comparison of Disjunctive Kriging Estimators

Transformed Isotropic Fields (36 cases) Point Results

(10%)

L 16

S 35

22

36

pDMaPV

(25%)

15

28

GDCC

(5%)

17

35

(+0.5) (10%)

32

33

20

35

Min

L 0.17

Max

S 0.21

PI a

MPV



Figures 4.9 c, d; 4.10 d, e; 4.11 c, d; and 4.12 c, d show some of

the Disjunctive Kriging results for the transformed isotropic fields.

4.5.3 Intrinsic Random Functions

The results of estimating intrinsic random functions using

Disjunctive Kriging are presented in Tables 4.11, 4.12, and 4.13 for

orders 0, 1, and 2, respectively.

When the order is 0, the spherical variogram gives better results

in all the attributes, as can be seen in Table 4.11. As in the pre-

viously described isotropic and transformed isotropic cases, the Dis-

junctive Kriging estimator tends to underestimate the variance of esti-

mation with both semivariograms, with the spherical one being slightly

more consistent than the linear semivariogram. Figures 4.13 d, e and

4.14 c show typical results of these cases.

The linear semivariogram gave better results, according to MSE, MPV,

and MaPV for intrinsic random functions of orders 1 or 2. As can be seen

in Table 4.12 and 4.13, both methods overestimated the variance of esti-

mation, with the linear semivariogram doing better. Figures 4.15 c, d;

4.16 d, e; 4.17 c, d; and 4.18 c, d show some of these results.

Notice from Equation (2.8) that using the linear semivariogram may

lead to negative covariance estimates if a neighbor point is far enough

such that the value of the semivariogram is greater than the sampled
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MSE

(10%)

L 1

S 12

MPV

(25%) (10%)

2

12

5

10

(25%)

5

10

MaPV

(25%)

2

11

CONSISTENCY

(p =L~)
H

#<1 #>1 [0.8,1.2]

L 0.85 5.84

S 0.77 3.18

4 8

4 8

4

3

1.96 1.49

1.53 0.87

Table 4.11

Comparisons of Disjunctive Kriging Estimators

Intrinsic Random Functions of Order 0 (12 cases) Point Results

lID GDCC

(5%)

4

11

(+0.5) (10%)

9

10

2

12

Min Max V' a



MSE

(25%)

12

10

(10%)

11

1

(25%)

11

1

MaPV

(25%)

10

2

CC

(5%)

12

12

yD aD

(+0.5) (10%)

10

12

11

9

CONS ISTENCY

0 MSE
1 PV

#<1 #>1 [0.8,1.2]

L 0.17 1.42

S 0.07 0.7

8 4

12 0

4

0

0.78 0.42

0.35 0.2

Table 4.12

Comparisons of Disjunctive Kriging Estimators

Intrinsic Random Functions of Order 1 (12 cases) Point Results

(10%)

L 11

S 6

Min Max P

MPV



MSE

(10%) (25%)

L 19

S 15

19

17

M1PV MaPV CC

(10%)

21

6

(25%)

21

6

(25%)

19

7

(5%)

22

21

pD cD

(+0.5) (10%)

21

21

20

18

CONS ISTENCY
=MSE

(0 MV

[0.8,1.2]

L 0.07 8.38

s 0.07 10.86

17 7

19 5

4

1

1.0 1.1

0.58 0.78

Table 4.13

Comparisons of Disjunctive Kriging Estimators

Intrinsic Random Functions of Order 2 (24 cases) Point Results

Min Max Vi a



variance of the Gaussian data. In fact, the linear semivariogram works

very well when many historical data points are available, but as the

number of points decreases the spherical semivariogram will give better

results, because by definition (see Equation (4.4)) it will produce non-

negative values of the covariance function.
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4.6 Comparison of the Different Estimators

The different estimators are compared in this section. The Univer-

sal Kriging estimator used is the one obtained by estimating the general-

ized covariance function employing the slightly better least mean square

error procedure. It was also chosen because its use requires less compu-

tational effort than the ranking procedure. The spherical semivariogram

of the Gaussian data was used to compute the Disjunctive Kriging estimator.

4.6.1 Isotropic Fields

Table 4.14 summarizes the results of the comparisons when esti-

mating isotropic fields. KM stands for Universal Kriging with its gen-

eralized covariance function estimated using the least mean square error

methodology. DKs is the Disjunctive Kriging estimator with its covar-

iance function obtained via a spherical semivariogram. KT stands for

the Universal Kriging estimation of Gaussian data and back transforma-

tion using the anamorphosis function. And M5 is the local mean esti-

mator calculated by averaging the closest five data points. Only the

MSE and MPV are given in the table, since they are the most sensitive

attributes.

Table 4.14 shows that Universal Kriging gave better results than

Disjunctive Kriging in both MSE and MPV at a 10 percent level. When

the level is increased Universal Kriging still performs better in MPV

but Disjunctive Kriging improves significantly. The consistency para-
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MSE

(50%)

35

31

(10%)

30

7

32

11

CONSISTENCY
( MSE

30

27

24

5

Max

19.5 11 25

3.72 20 16

1. 599

12 1.11 0.74

Table 4.14

Comparisons of the Different Estimators

Isotropic Fields (36 cases) Point Results

136

(10%)

KM

DK
s

29

18

(25%)

30

10

(50%)

32

14

(25%)

#>l [0.8,1.2]

KT 16

M5 3

Min

KM
DK

S
0.22

a
i. /L

M1PV



meter indicates an underestimated variance of estimation for the Uni-

versal Kriging procedure but this fact does not help to explain the

advantage this estimator has over the theoretically more accurate Dis-

junctive Kriging estimator at a 50 percent level on MPV.

It is important to keep in mind that a finite Hermite expansion is

being used in the Disjunctive Kriging estimator, but even more impor-

tant is the fact that the use of a finite amount of data results in

inconsistencies in the Hermitian model that permits a solution for the

optimal functions. Recall the procedure to obtain the Gaussian data

from the original observations, see Figure 3.1. Because of the sym-

metry of the Gaussian distribution, the Gaussian data will be composed

by plus and minus values. This means that when the sampled mean of the

Gaussian data is calculated, it gives exactly a value of zero. How-

ever, because the tails of the Gaussian distribution are sampled up to

a finite value, the sampled variance of the Gaussian data will be less than

one, in contradiction with what the Hermitian model assumes. The actual

variance of the Gaussian data depends only on the number of observations.

Some key values are given on Table 4.15. Notice that this inconsistency

will be present even if the anamorphosis function is perfectly fitted.

With about 30 and 50 data points, the Disjunctive Kriging estimator

leads to values of the sampled variance of the Gaussian data of

about 0.84 and 0.88, underestimating the theoretical value of one. This

inconsistency may explain why the estimated variance for Disjunctive

Kriging was not found smaller than that of the simpler and theoretically

less accurate Universal Kriging estimator.
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Number
of Points

10

15

20

25

30

35

40

50

70

100

120

150

200

250

300

Sampled
Variance

0.690

0.755

0.794

0.821

0.841

0.856

0.869

0.888

0.912

0.932

0.940

0.950

0.959

0.966

0.971

Table 4.15

Sampled Variance of Gaussian

Data as Function of the Number of Points
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The linear intropolation of the anamorphosis function as well as the

use of the five Hermite polynomials were found adequate in all the cases.

Less than 5 percent errors in the fitting of the mean, %pi, and in the

variance, %V, of the actual data were found in 35 of the 36 cases, see

Equations (3.34) and (3.36). This is confirmed in the Table 4.14 by

the performance of the KT procedure; i.e., this method gives very close

results to that of the Disjunctive Kriging estimator. See Figures 4.2 d,

f; 4.4 e, g; 4.5 d, f; and 4.8 g, f. In Figure 4.8 g, a typical fitted

anamorphosis function is shown.

It was found that when the number of historical points increases,

all the estimators perform better. As the field is more correlated (b

decreases) and the dispersion a decreases, also the estimators perform

better as should be expected. Figures 4.2 to 4.8 illustrate these re-

marks.

Universal Kriging, Disjunctive Kriging and Kriging of Transformed

data estimators gave a deviations histogram more concentrated around the

mean than the corresponding Gaussian density curve; however, the less

accurate local mean estimator tended to have deviation histograms of

Gaussian shape. This is illustrated in Figures 4.8 h, i, j.

4.6.2 Transformed Isotropic Fields

The results of the 36 cases of transformed isotropic fields are

summarized in Table 4.16. As can be seen both Disjunctive Kriging and

Universal Kriging gave better results than the local mean estimator, but

no apparent differences between them can be detected from the results.
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Figure 4.3

Point Estimation Comparisons. Isotropic Field

(b = 0.007, a = 10, m = 10, N = 26)
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Point Estimation Comparisons. Isotropic Field
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Figure 4.5

Point Estimation Comparisons. Isotropic Field

(b = 0.0141, a = 10, m = 10, N = 29)
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Figure 4.6

Point Estimation Comparisons. Isotropic Field

(b = 0.0035, a = 20, m = 10, N = 47)
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Figure 4. 6

Point Estimation Comparisons. Isotropic Field

(b = 0.0035, a = 20, m = 10, N = 47)
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Figure 4.7

Point Estimation Comparisons. Isotropic Field

(b = 0.007, a = 20, m = 10, N = 29)
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Point Estimation Comparisons. Isotropic Field

(b = 0.0141, a = 20, m = 10, N = 28)
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Point Estimation Comparisons. Isotropic Field
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(50%)
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15

(10%)

22

20

KWPV

(25%)

26

21

CONSISTENCY

(0 a MSE)

#<1 #>1 [0.8,1.2]

0.37 14.5 11 25

DK 0.21 12.16 13 23
S

6
5

2.23 2.07

1.8 1.6

Table 4.16

Comparisons of the Different Estimators

Transformed Isotropic Fields (36 cases) Point Results
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Both estimators tended to underestimate the variance of estimation

as expressed by 25 (for Km) and 23 (for DK s) of the 36 cases with con-

sistency parameter greater than one. Once again the Universal Kriging

estimator gave as good or better results than Disjunctive Kriging.

Figures 4.9 a, d, e; 4.10 b, e, f; 4.11 a, d, e; and 4.12 b, d, e

give a visual image of how the different estimators work with the trans-

formed isotropic fields as the reality. Because these fields have more

local variability than the isotropic fields, it is not expected to ob-

tain very good performance of the estimators at the extreme values. In

fact, the figures show that the estimators did not perform as well as

with the isotropic fields. Also, the anamorphosis fit was less adequ-

ate than in the isotropic field cases, with errors in the mean and var-

iance of the data that were less than 11 percent; see Figure 4.12 f.

4.6.3 Intrinsic Random Functions

Table 4.17 summarizes the results found with the 12 cases of

IRF of order 0. The Disjunctive Kriging and Universal Kriging esti-

mators performance was about the same with respect to MSE, but Disjunc-

tive Kriging gave better results with respect to MPV. The consistency

parameter, however, indicates better behavior of the Universal Kriging

estimator, i.e., Disjunctive Kriging underestimated values of the pre-

dicted variance more often. Figures 4.13 b, e, f and 4.14 a, c, d show

how similar the performance of the Kriging estimators was, and the advan-

tange the two of them have over the local mean estimator.
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Figure 4.9

Point Estimation Comparisons. Transformed Isotropic Field

(b = 0.0035, a = 10, N = 47)
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Figure 4.10

Point Estimation Comparisons. Transformed Isotropic Field

(b = 0.0141, a = 10, N = 29)
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Point Estimation Comparisons. Transformed Isotropic Field

(b = 0.0035, a = 20, N = 42)
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Point Estimation Comparisons. Transformed Isotropic Field

(b = 0.0141, a = 20, N - 30)

(continued)
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Table 4.17

Comparisons of the Different Estimators

Intrinsic Random Functions of Order 0 (12 cases) Point Results
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Point Estimation Comparisons. Intrinsic Random Function

(k = 0, a, = -1, a3 a 5 = 0, N = 48)

164

s -ea -s -IO

+ h

4 ~4+ +.+

+ + +

4+ + +. 4-.

+ + .
+44

++

++

4 4



I@

LO

w

-25

S
. +

-+ + +

- -+ -+ + 4-

++ + +

~4 + +

-2.5

.L-S

-s 0 S 2.0

REAL VALUES
OK.L..%L-0.20.-4V.2.90.N2-268.MSE-.2.66. MV-L4.76

aPV230.3.~Cc.7.j-0.Q3.6D-3.6A.0,-.s 96

d

La0

U)l
w

D
_j

C-

Lii

S

-S

.2.0

* 2.5

-20

.25

-Gs -to -as -Lo -6

-2s -ec -LS -t a

REPL VPLUES

M*PV-31.88CC-0.72.uo-0.267.CD-3.42.4,-2..

e

0

REAL VALUES
MS.N.-171.MSE-20.24.CC-4.510.D.+. OI4.+O

f

Figure 4.13

Point Estimation Comparisons. Intrinsic Random Function

(k = 0, a = -1, a3 = a5 = 0, N = 48)

(continued)
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Point Estimation Comparisons. Intrinsic Random Function

(k = 0, a, = -3, a3 = a 5 = 0, N = 26)
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Tables 4.18 and 4.19 show the results when the IRF had orders 1 and

2, respectively. As is seen, the Universal Kriging estimator gave as

good or better results in MSE and MPV than the Disjunctive Kriging es-

timator. While the Universal Kriging estimator tends to underestimate

the variance of estimation, the Disjunctive Kriging tends to overesti-

mate it. Figures 4.15 a, d; 4.16 b, e; 4.17 a, d; and 4.18 a, d shows

the very accurate performance of the Universal Kriging estimator and the

good looking approximation the Disjunctive Kriging estimator provides.

However, there is no doubt that the Universal Kriging estimator, which

adequately selected the IRF order in these cases (see Section 4.4.3),

best captured the structure of the given fields. The anamorphosis fit

of the Gaussian data used in the Disjunctive Kriging was found adequate

with fitting errors in the mean and in the variance of the field below

5 percent in 45 of the 48 cases. See Figure 4.18 f.

Figures 4.15 f, g, h show typical deviations histograms, which show

again the Gaussian like shape for the local mean estimator and the more

concentrated densities for the Kriging estimators.
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0

0

CONSISTENCY

(A = )

[0.8,1.2]

5 7

8 4

5

4

1.45 1.26

0.78 0.42

Table 4.18

Comparisons of the Different Estimators

Intrinsic Random Functions of Order 1 (12 cases) Point Results
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Table 4.19

Comparisons of the Different Estimators

Intrinsic Random Functions of Order 2 (24 cases)
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Point Estimation Comparisons. Intrinsic Random Function

(k = 1, a3 = 0.005, a, = a5 = 0, N = 24)
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Point Estimation Comparisons. Intrinsic Random Function
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4.7 Summary

Using generated fields as the reality, it has been shown the least

mean square error and ranking procedures gave better results than the

methodology proposed by Delfiner (1976) in identifying and estimating

the generalized covariance function of the fields. It was also found

that the spherical semivariogram gave better results than the linear

semivariogram when they were used in the calculation of the Disjunctive

Kriging estimators.

Although it was consistently found that the Universal Kriging es-

timator underestimated the variance of estimation, its performance was

as good or better than the theoretically more accurate Disjunctive

Kriging estimator. This is mainly attributed to small sample induced

biases in the estimation of the process variance.
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Chapter 5

BLOCK ESTIMATION COMPARISONS

The results of the experiments made to compare the block estima-

tion performance of Universal and Disjunctive Kriging are presented

in this chapter.

5.1 Experiments Description

As in the case of point estimation, generated fields were used as

the reality. The turning bands method was employed to generate values

2
on a 61x31 grid on the previously defined rectangular area of 30.000 Km

The dark area on Figure 4.1 was divided in thirty six squares of side

24.5 Kms and its average (block) value was calculated employing the

fourty nine generated values which lie inside or in the boundary of each

block, weighting each value by its respective area, see Figure 5.1

The three different types of random fields considered in point

estimation comparisons, see Tables 4.1, 4.2 and 4.3, were also used in

block estimation, but for every generated field not six but two cases

were studied: one with about 50 historical data points and the other

with 30 historical data points. To have these points spreaded evenly

over the area, they were sampled not from the 61x31 grid but from the

1
subgrid of 21x11 points as previously used in point estimation

Notice that these values do not necessarily are equal to the generated
grid on Chapter 4. because the values given by the Turning Bands method
depend on the total number of points to be generated. See Mantoglou
and Wilson (1981).
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Figur . 5.

Calculation of the True Block Values

Sides = 24.5 Kms.
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As in point estimation, the historical points were used to identify

and estimate the structures of the different estimators, which were then

employed to estimate areal averages of the fields on the 36(4x9) blocks.

Once the block values were found, comparisons with the true (constructed

from the generated results) values were made.

In the following sections, the results of comparing the different

estimators according to the measures defined on Section 4.3 are presented.
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5.2 Comparisons of the Universal Kriging Estimators

In this section the performances of the Universal Kriging estima-

tors, using the three previously described methodologies of selection

of the optimal generalized covariance function, are discussed.

The block estimator was calculated employing the eight nearest

points to the center of each block, approximating the required integrals

over each block (see Chapter 2) as summations over 25 equally spaced

points.

5.2.1 Isotropic Fields

Table 5.1 summarizes the results of the 12 cases (six fields

each, sampled twice) of isotropic fields. As is can be seen, the rank-

ing, R, and least mean square error, M, procedures have an advantage

over Delfiner's methodology, M, as expressed by lower values of MSE and

MPV over the thirty six considered blocks. As previoulsy found in point

estimation comparisons, generalized covariance models obtained using

Delfiner's method tend to overestimate the variance of estimation, although

prior point values of the consistency parameter l lie close to 1.

The consistency parameter does not show; however, the previously

found trend of underestimating the predicted variance with the general-

ized covariance models given by the ranking and least mean square error

procedures. On the contrary, now the tendency is toward overestimation,

with values of l greater on the average than the values of l given using

Delfiner's approach.
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M
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RMD- 5
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Same Values
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(p1 = ) (POINT PRIOR)

[0.8,1.2]

R 0.22(0.78)

M 0.22(0.92)

D 0.3 (0.97)

9.07(2.18)

3.2 (1.65)

1.56(1.10)

9(4) 3(8)

10(3) 2(9)

11(8) 1(4)

1( 9)

2(10)

0(12)

0.75(1.13)

0.86(1.13)

0.58(1.01)

0.53(0.36)

0.83(0.21)

0.33(0.03)

Table 5.1

Comparisons of Universal Kriging Estimators

Isotropic Fields (12 cases) Block Results

(25%)

MSE

(10%)

R 8

M 11

D 1

8

11

2

GD

(25%)

10

11

5

H"

Min Max P G



As in point comparisons, the three methods selected any of the IRF

orders, with Delfiner's approach not coinciding with the other methods

in any of the cases.

As should be expected, the block values give less extreme points

than the point values. This fact explains why the model selected by

Delfiner's approach gives a block estimate that performs reasonably in

the extremes, in contrast with the conservative point estimates that re-

sult with this method. Figures 5.2 a, b, c; 5.3 a, b, c; and 5.4 a, b

show typical results of the estimation of isotropic fields.

5.2.2 Transformed Isotropic Fields

Table 5.2 summarizes the results of the 12(6x2) cases of

transformed isotropic fields. The results follow the same pattern found

with the isotropic fields. Again, Delfiner's approach does not give

better results than the other two methods.

The three identification methods were inclined to select IRF of

orders 0 and 1. Again, Delfiner's model did not coincide with models

given by the other methods which, one the other hand, resulted in the

same structure in five of the twelve cases.

The consistency parameter show a tendency toward overestimation

for all the three methods, with more overestimation with Delfiner's ap-

proach. The ranking procedure gave better results than the least mean

square error method in terms of ^l. Overall, though, no significant dif-

ference between those two methods can be inferred.
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Table 5.2

Comparisons of Universal Kriging Estimators

Transformed Isotropic Fields (12 cases) Block Results
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Examples of the estimation of the transformed isotropic fields are

given in Figures 5.5 a, b, c; 5.6 a, c, b; and 5.7 a, b, c.

5.2.3 Intrinsic Random Functions

Table 5.3 summarizes the comparisons of the Universal Kriging

estimators when the original fields were intrinsic random functions. As

can be seen there is again an advantage of the ranking and least mean

square error procedures over Delfiner's approach, as expressed by lower

MSE, MPV, and MaPV.

The consistency parameter again shows a greater mean predicted var-

iance than the true mean square error for all the methodologies of esti-

mation of the generalized covariance function. Again, the lower values

of p were found with Delfiner's model which as before had better prior

consistency.

Figures 5.8 a, b; 5.9 a, b; 5.10 a; 5.11 a, b; and 5.12 a, b show

estimation results of intrinsic random functions. As is seen the perform-

ances of the ranking and least mean square error procedures are very

similar, although Table 5.3 suggests better results with the last method.

As found in point comparisons, when the IRF order is one or two, the

agreement reached is remarkable with correlation coefficients between

true and estimated values of 0.99.
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R 10
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D 8
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5

CC

(5%)
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pD GD

(+0.5) (25%)
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16

11

15
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11

R
M

Selected
IRF

0 1 2

1 5 10
2 6 8

D 1 4 11

Same Orders
RMD-l1
RM - 1
RD - 4
DM - 0

Same Values
RMD- 2
RM - 6
RD - 4
DM - 0

CONSISTENCY

E= )(PRIOR POINT)

1<1 #M [0.8,1.2]

R 0.16(0.58)

M 0.11(0.64)

D 0.05(0.73)

41.5(1.86)

41.5(2.03)

1.13(1.3)

11(7) 5(9)

10(7) 6(9)

13(7) 3(9)

3(12)

2(8)

4(14)

0.77(1.1)

1.2 (1.22)

0.59(1.0)

0.68(0.38)

1.47(0.41)

0.29(0.13)

Table 5.3

Comparisons of Universal Kriging Estimators

Intrinsic Random Functions (16 cases) Block Results

00
-_j

Min Max V' a



5.3 Comparisons of the Disjunctive Kriging Estimators

Following is the study of the Disjunctive Kriging estimator when

calculated with linear and spherical semivariograms.

As done with the Universal Kriging estimators, the calculations were

made using the eight neighboring points of the center of each block.

The necessary integrals over each block (see Chapter 3) were approxi-

mated from twenty five equally spaced points. As in point estimation

calculations, Disjunctive Kriging was performed using the first five

Hermite polynomials and assuming a linearly interpolated anamorphosis

function.

5.3.1 Isotropic Fields

Table 5.4 summarizes the results of the Disjunctive Kriging

estimators when the generated fields were isotropic. There is a slight

advantage of the spherical semivariogram with respect to the mean square

error over the thirty six blocks, while the use of the linear semivari-

ogram gave better results in the mean and maximum predicted variance.

The consistency parameter shows that both the linear and spherical

semivariograms tend to overestimate the predicted variance, with better

results for the linear semivariogram. See Figures 5.2 d, e; 5.3 d, e;

and 5.4 c, d.

The use of linear interpolation and finite Hermite expansion of the

anamorphosis led to less than 6.5 percent error in fitting the mean, %y,

and variance, %V, of the actual data, see Equations (3.34) and (3.36).
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11
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MaPV

(25%)

11

7
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MSE

#l [0.891.2]

L 0.20 1.80 9 3

S 0.17 1.05 11 1

0

2

0.77 0.6

0.43 0.29

Table 5. 4

Comparisons of Disjunctive Kriging Estimators

Isotropic Fields (12 cases) Block Results

MSE

L 7

S 12

CC

9

12

(+0.5)(5%)

10
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(25%)
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10

12

9

12
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5.3.2 Transformed Isotropic Fields

The results for the twelve transformed isotropic fields are

given in Table 5.5. Disjunctive Kriging gave better results when it

was calculated with the spherical semivariogram, as expressed by lower

values of mean square error, mean and maximum predicted variance and

closest to one correlation coefficient.

The consistency parameter shows that both semivariograms give re-

sults that tend to overestimate the predicted variance, with more con-

sistent results given by the spherical semivariogram. Figures 5.5 d, e;

5.6 d, e; and 5.7 d, e show typical outcomes of these cases.

Again, the linearly interpolated and finite Hermite expansion of

the anamorphosis gave adequate fits of the actual data, as expressed

by values of % and %V smaller than 6 percent in all twelve cases.

5.3.3 Intrinsic Random Functions

The comparisons of the the two Disjunctive Kriging estimators

when generated fields were given by intrinsic random functions are sum-

marized in Table 5.6. The spherical semivariogram gave better results

with respect to the mean square error, while the linear semivariogram

gave lower predicted variances.

The consistency parameter shows that both semivariograms gave mean

predicted variances that were larger than the mean square errors on al-

most all the 16 cases. The linear semivariogram, however, is more con-

sistent as expressed by more values on the interval [0.8,1.2] and greater

mean value of the parameter pl.
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1
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Table 5.5

Comparisons of Disjunctive Kriging Estimators

Transformed Isotropic Fields (12 cases) Block Results
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VD cVD
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= MSE)

Max #<l [0.8,1.2]

L 0.12 1.13 15 1

S 0.04 1.08 15 1

5

1

0.55 0.31

0.33 0.3

Table 5.6

Comparisons of the Disjunctive Kriging Estimators

Intrinsic Random Functions (16 cases) Block Results
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Figures 5.8 c, d; 5.9 c,.d; 5.10 b, C; 5.11 c, d; and 5.13 c, d show

typical outcomes of these cases.
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5.4 Comparison of the Different Estimators

This section compares the Universal and Disjunctive Kriging esti-

mators. As in point estimation comparisons, the Universal Kriging esti-

mator used was the one given by the least mean square error procedure,

although certainly the ranking procedure gave as good results. Simil-

arly, the Disjunctive Kriging estimator chosen was the one calculated

using a spherical semivariogram of the Gaussian data.

A local mean estimator was also compared to the Kriging estimators.

It was calculated by estimating twenty five equally spaced points inside

each block by averaging their nearest five observations, and then aver-

aging over the twenty five estimated values to get the block estimate.

5.4.1 Isotropic Fields

The more relevant results of the twelve cases of Isotropic

fields are summarized in Table 5.7. The table reveals better perfor-

mance for the Universal Kriging estimator in both mean square error

and specially in mean predicted variance. The local mean estimator per-

formed much worse than the others as can be seen in Figures 5.2 b, e, f;

5.3 b, e, f; and 5.4 a, d, e.

The consistency parameter, pl, shows a tendency of overestimating

the predicted variance by both estimators. The table suggests more con-

sistent results for the Universal Kriging estimator, however, a higher

standard deviation of "' exists.
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Table 5.7

Comparisons of the Different Estimators

Isotropic Fields (12 cases) Block Results
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5.4.2 Transformed Isotropic Fields

Performance in estimating the transformed isotropic fields is

summarized in Table 5.8. As is seen the Disjunctive Kriging estimator

gave as good or better results than the Universal Kriging technique:

they have about equal performance with respect to mean square error,

while Disjunctive Kriging holds some what of an edge on mean predicted

variance.

The consistency parameter also favors results of the Disjunctive

Kriging estimator, with both estimators showing a tendency toward over-

estimation.

Figures 5.5 b, e, f; 5.6 b, e, f; and 5.7 b, e, f show typical re-

sults. Both Kriging estimators clearly do better than the local mean

estimator.

5.4.3 Intrinsic Random Functions

Table 5.9 summarizes the results of the different estimators

when the true fields were generated by intrinsic random functions.

Again, the local mean estimator performed worse than the Kriging es-

timators.

When the IRF order was zero, Disjunctive Kriging was found as good

or better than Universal Kriging. The good scores of DK on Table 5.9

correspond to these cases, see Figures 5.8 a, d, e. However, when the

IRF order was one or two, the Universal Kriging technique gave better

results in both mean square error and mean predicted variance. The

excellence of the estimation is shown in Figures 5.9 a; 5.10 a; 5.11 a;
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Comparisons of the Different Estimators

Transformed Isotropic Fields (12 cases) Block Results
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Block Estimation Comparisons. Transformed Isotropic Field
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Block Estimation Comparisons. Transformed Isotropic Field

(b = 0.0035, a = 20, N = 47)

(continued)

209

U)
I-

U)wd

w

U)
Ud

.1
+

~1-

4-

44- -~

+

+

++

+

+ 4-

40 45

+-

.+
+ 



MSE

(25%)

15

4

2

Max

41.5

1.08

(50%)

15

6

(10%)

14

3

MPV

(25%)

15

4

(50%)

15

4

3

CONSISTENCY

('MSE=
0~1 M

#<1

10

15

[0.8,1.2]

6

1

2

1

P

1.2

0.33

a

1.47

0.3

Table 5.9

Comparisons of the Different Estimators

Intrinsic Random Functions (16 cases) Block Results
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and 5.12 b. The consistency parameter show the tendency of overestimating

the predicted variance by both methods, with Disjunctive Kriging overes-

timating more than Universal Kriging. See Figures 5.9 a, d, e; 5.10 a, c,

d; 5.11 a, d, e; and 5.12 b, d, e.
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Block Estimation Comparisons. Intrinsic Random Function
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5.5 Summary

It has been shown that the Universal Kriging estimator gives better

results when the generalized covariance function is identified using

the least mean square error or the ranking procedures.

Disjunctive Kriging did not show big differences when calculated

from spherical or linear semivariograms of the Gaussian data. For the

sake of comparison, the spherical semivariogram was used in Disjunctive

Kriging and the least mean square error procedure in Universal Kriging.

The Disjunctive Kriging estimator was found as good or better than

the Universal Kriging technique only in estimating transformed isotropic

fields. In all other cases Universal Kriging gave better results both

in mean square error and mean predicted variance, contradicting the

theoretical expectations.

In contrast with point estimation comparisons, both Kriging tech-

niques tended to overestimate the predicted block variance consistently.

Some experiments were made calculating the block integrals from summa-

tions of different sizes, but no different tendencies were found. The

contrast could be explained by the fact that using the eight neighboring

points of the center of each block does not capture well the field, es-

pecially near the block boundaries where other neighboring points are

expected to perform better.
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Chapter 6

SUMMARY, CONCLUSIONS, AND FURTHER RESEARCH

6.1 Summary and Conclusions

This work deals with the Linear and Disjunctive Kriging estimators of

a random phenomena. Taking into account the spatial characteristics of a

given realization, both techniques provide systematic procedures to find

estimates at specified locations (point values), as well as areal averages

(block values).

The relevant theory of stochastic processes and the Linear Kriging

estimator characteristics are given in Chapter 2. The Kriging equations

together with the optimal estimation variance are given for both the point

and block cases under different assumptions about the underlying field.

It is shown how the intrinsic random functions theory generalize the in-

trinsic hypothesis and how the Universal Kriging equations can be written

in terms of the generalized covariance function, which has the advantage

over the covariance function of filtering out the form of the drift.

Practical models of generalized covariances as well as their estimation

procedures are also presented in Chapter 2.

In Chapter 3 the Disjunctive Kriging equations for both point and

block estimation are presented. From the assumption that the field comes

from a second-order stationary Gaussian field, via an anamorphosis func-

tion, it is shown how the original need of bivariate distributions of the
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field is reduced to the covariance structure of the Gaussian variables.

It is seen how Hermite expansions of the anamorphosis and unknown func-

tions give an infinite set of simultaneous equations for the optimal esti-

mate, and how this infinite set can be reduced to a finite one by check-

ing at finite expansion characteristics of the anamorphosis function. The

chapter ends with an overview of the possible estimators and discusses the

theoretical higher accuracy of the Disjunctive Kriging estimator.

Chapter 4 compares the performance of the various point estimators

under "real world" situations. It is shown that the Universal Kriging

estimator gives better results when its generalized covariance function

is calculated from least mean square error and ranking procedures in con-

trast with the less expensive Delfiner's methodology (1976). The Disjunc-

tive Kriging estimator is better when a spherical semivariogram, versus

a linear one is used to model the Gaussian data. Both Kriging estimators

give better point estimates than a local mean obtained with the five near-

est data points to a given location.

The Universal Kriging estimator gives as good or better results than

the Disjunctive Kriging estimator which contradicts theoretical expecta-

tions. The reasons could be the use of finite expansions in the estima-

tion of the unknown and anamorphosis functions, and the fact that small

samples (as the ones usually found in hydrological applications) lead to

inconsistencies in the Hermitian model, necessary to have a Disjunctive

Kriging solution. Universal Kriging gave particularly better results when

the data came from Intrinsic Random Functions of order 1 and 2, this is

explained because Universal Kriging explicitly tracks the spatial varying
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drift while Disjunctive Kriging does not. Although better, it was found

that Universal Kriging consistently underestimated the predicted variance

of estimation; while Disjunctive Kriging, which tended to overestimate with

Intrinsic Random Functions of orders 1 and 2, gave slightly more consistent

agreement between true and predicted variances.

The results of comparing the block estimation performance of the dif-

ferent estimators are presented in Chapter 5. As in point estimation com-

parisons, Universal Kriging gives better results when its generalized covar-

iance function is calculated using the least mean square error and ranking

procedures. Disjunctive Kriging gives about the same results when the

spherical or linear semivariograms of the Gaussian data are used. As pre-

viously found, both Kriging estimators give better results than a local

mean estimator. A comparison of Universal Kriging with Disjunctive Kriging

show as good or better results with the former. Contrasting with point

estimation results, both block Kriging estimators tend to overestimate the

predicted variances. This was found independent of the number of points

used in the approximation of the block integrals and could be explained by

the lack of accuracy the estimates of points in the boundaries of the

blocks have.
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6.2 Possible Further Research

As the experiments show, good estimated values do not necessarily

imply correct predicted variances. Then, networks designed with these

variances may give more or less stations than needed in reality. This

stresses the multi-realization approach when performing network design as

opposed to a single-realization approach. In any case, research should

move toward the improvement of the Kriging estimators, under small samples

at hand, to get more consistent results from which properly based station

placement decisions could be made.

The Kriging estimators were calculated in this work under fixed con-

ditions such as five Hermite polynomials, eight neighboring points, fixed

block sizes, and so on. Research should be directed to study the sensi-

tivity in the estimators due to changes in those parameters.

The issue of how big the data set should be to avoid in practice the

small sample inconsistencies of the Hermitian model, used in the Disjunc-

tive Kriging estimator, should be also further investigated.
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Appendix A

HERMITIAN EXPANSION OF THE LINEARLY INTERPOLATED ANAMORPHOSIS

Let Z,,... , ZN be the ordered data observations and

y ,2'2 5 01' N the correspondent standard Gaussian values. 
Assume

the anamorphosis is linearly interpolated as in Figure 3.2, i.e.:

Zi

ak y + bk

, y < y'

, k=1,. . . ,N-1

ZN

(A.1)

with

a = k+1 k .
k yk+1 k

b
k

Zk Yk+1 -Zk+1 Yk

Yk+1 k

Recall that the Hermitian expansion is:

$(y) = Z ck (y)

k=O
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$ (y) =

and

(A.2)

(A.3)
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with

(A.5)k f Y)k(y) G(dy)

The coefficients k are found using the equations:

n (u) G(du) = (u) g(u) i > 1
- c-o

(A.6)

and

}u rl(u) G(du) = - .(u) g(u) - i.2(u) g(u)

i > 2 (A.7)

where g(u) is the standard Gaussian density function, and G(u)

the standard Gaussian distribution function evaluated at u, i.e.:

J'(xd

G (u) = x)d

-CO

(A.8)

The final expressions are:

N-I Yk+1 k+1

$= ZG(y ) + Z G(x) - b + g(x) * a + Z {l-G(y )}
11 k=1 yk k N

(A.9)
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N-1 Yk+1 Yk+1

Z g(y ) + E( g(x) bk +[x - g(x) - G(x)] aYk - N g N
k=1 yk )k

(A.10)

1 1 N

k+1 1k+)

g(x b + (x) n, 1  (x) - gx - ' .(1x ak

k v Ij-2) k

j > 2

b

g(x)

a

(A.11)

= g(b) - g(a)
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Appendix B

JACKNIFE ESTIMATOR FOR THE IRF-0 MODEL K(h) = C6(h)

Under the hypothesis stated, the Universal Kriging system,

equation (2.93) reduces to:

C

0

0

1

0

C

0

1

0

0

C

. . 1

1

1

1

0

i2

iN2

iN0

y

0

0

0

1

which clearly has as solution:

i = - , for any i.
N'

X. .
13 N

0
, j = 1, 2, ... , N0 and

Note that generalized increments Z(X ), equation (2.107),

produced by an IRF-0 with a generalized covariance function K(h) = C6(h)

do not depend on the value of C, i.e., the solution of equation (B.1)

gives the weights X. = -- independent of C. Therefore, the optimal
i N0

value of C can be found solving the problem, see equation (2.10):

N 0 2
Q=min Z(X C T i

C
(B.2)
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The optimal constant C should then satisfy:

N N

Q-= 0 2 E Z( ) 2 T. 0 + 2C E (T 0 2C1 2 Z( )
i= 1 i=1

with T 0, see equation (2.108), given by:

N
0 2

T. = 1 (X) 2

Ct=0

1
= 1+

N0

This together with equation (B.3) gives:

N

Z( ) = N (1 + ) C
N 0

The predicted variance of estimation for each point, see equation

(2.94), reduces in the present case to:

2
= C- =( + ) C

0
(B.6)

which then gives together with equation (B.5), see equation (2.111):

1
N(1 + -- ) C

r = =
N(1 + 1-) CN 0
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From equations (2.113) and (2.114) it is easily seen that the

jackknife estimator takes also the values of 1 because:

N r + N 2

N E Z(j )2
jeJ

N (1 + C
0

N 2 Z Z(X 2

N jeJ2
N2(1 + 1

0

N

+ Z(-) )2 = N

S 0 ) C j=1
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Appendix C

CONTOUR PLOTS OF THE FIELDS STUDIED

236



5'0

20

26-5 - L20"

25

20

30

Figure C. 1

Isotropic Field. (b.= 0.0035, a = 10, m = 10)
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(b = 0.007, a = 10, m = 10)
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Isotropic Field. (b = 0.0141, a 10, m =10)
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Figure C.4

Isotropic Field. (b = 0.0035, a = 20, m = 10)
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Isotropic Field. (b = 0.007, a = 20, m = 10)

Figure C.6

Isotropic Field. (b = 0.0141, a = 20, m = 10)
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Figure C.7

Transformed Isotropic Field. (b = 0.0035, a = 10)
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Transformed Isotropic Field. (b = 0.007, a = 10)

240



3

9.

3 3.

6 6 12/1 T 15

3

3,K

Figure C. 9

Transformed Isotropic Field. (b = 0.0141, a = 10)

C1
5

15

225

30 2

40353
45 4

55; ,1

50 25 10
120--

Figure C. 10

Transformed Isotropic Field. (b =0.0035, a = 20)
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Transformed Isotropic Field. (b = 0.0141, a = 20)
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Intrinsic Random Function. (k = 0, a,1 = -3,9 a 3 a C5 =0

243



Figure C.15

Intrinsic Random Function. (k = 1, a3 = 0.005, a = a5 = 0)
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Figure C.16

(k = 1, a, = -0.005, a3 = 0.005, a5 = 0)
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Figure C.17

(k = 2, a, = 0, a 3 0, C 5 = -0.5x10-
8)

Figure C.18
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(k = 2, ay = 0,3 = 0.005, a5 = -0.5x10 )
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(k = 2, a 1 -1, a3 =0, a = -0.5x109 )
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Intrinsic Random Function. (k = 2, a = -2, 3 0.05, a -- x L10 )
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