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ABSTRACT

Optimal irrigation control is performed. The control accounts for
the intraseasonal variation of the crop water requirements and for the
dynamics of soil moisture depletion process. The clustering dependence
structure of rainfall occurrences is explicitly accounted for. Stochas-
tic rainfall inputs to the soil-plant system are characterized by storm
intensities, storm durations, interarrival times, and number of storms
in a given period of time. Precipitation occurrences are modelled as a
Neyman-Scott cluster process; and using Palm-Khinchin theory conditional
distributions of the time to the next rainfall events are derived. These
distributions are conditional on part of the immediate history of storm
arrivals. The derived distributions are seen to possess characteristics
desired for short term forecasting of rainfall occurrences. Particular-
ly, they exhibit the ability to detect short term trends in precipita-
tion occurrences. ‘

The probabilistic description of precipitation is coupled with a
probabilistic description of cumulative infiltration from storms and a
Markov chain approach to the dynamics of soil moisture throughout the
growing season. Conditional probabilities of soil moisture are derived
and used within a Stochastic Dynamic Programming algorithm to obtain ir-
rigation decisions. The control is obtained in the form of decision
functions which yield the optimal irrigation depth as a function of soil
moisture content at the root zone, volume of irrigation water available,
and number of days since the last rainfall occurrence.

Case study results confirm the existence of a clustering dependence
structure in rainfall occurrences as well as the goodness of the Neyman- .
Scott process in its modelling. However, there appears to be no signi- .
ficant difference in expected maximum net benefits when comparing re-
sults obtained with the control model under the homogeneous Poisson as-
sumption and under the conditional Neyman-Scott model. Furthermore,
slightly lower expected benefits are obtained with the conditional Neyman-
Scott model than with the non-homogeneous Poisson model.
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Chapter 1

INTRODUCTION

1.1 General Description of the Problem

Irrigated agriculture is one of the largest consumptive users of
water in the world (Cérdova and Bras, 198l1). Increasing water
scarcity produced by ever increasing alternative demands, and a
steady rise in irrigation costs, such as water costs, and labér and
energy costs, require that greater attention be paid to developing
more efficient methods of irrigation water management, Optimal
management of irrigation water could eventually lead to significant
water conservation, to lower or steadier water cééts, and to more
reliable food supply in a world faced With forecasts of severe

world-wide food shortages.

The general problem to be addressed is the optimal allocation
of a finite amount of irrigation water throughout the growing season;
specifically the problem is determining the timing of applications
and the amount of water to be applied to a particular crop so as
to optimize a given measure of performance; this is commonly known

as the irrigation scheduling problem.

Considerable effort has been devoted to the study of the complex
interactions of the main factors affecting the irrigation schedulling
problem such as the characteristics of the climate-soil-plant system.

In this work, the main effort is devoted to the climate portion of
1



the climate-soil-plant system; specifically, to the modelling of the

precipitation process.

Stochastic rainfall inputs to the soil-plant system are charac-
terized by rainfall intensities, rainfall durations, inter-arrival
times and number of storms within a given period of time. The random
input to the soil, defined as the cumulative infiltration from a
given rainstorm, is determined not only by the dynamics of the soil
moisture depletion process, but also by the characteristics of the
precipitation process. Consequently, the modelling of the rainfall
is of primary importance in the échievement of efficient water use;
especially in regions where water is a limited resource but where

rainfall plays an important role as a water supply source.

In recent years, the mathematical theory of Point Processes
has played an important role in describing the precipitation process.
and other processes driven by rainfall inputs (Gupta and Waymire,
1981). Kavvas and Delleur (1981) have shown the ability of the so-
called cluster processes in modelling the statistical dependence
of rainfall occurrences in the time domain. In particular, these
authors apply the Neyman-Scott cluster process to model rainfall
occurrences in Indiana. The main appeal of the cluster models is
not only their ability to represent and preserve the statistical
dependence in the occurrence of rainfall but also their ability to
represent mathematically some recognizable basic physiéal structure
of precipitation; namely, the clustering of rainfall events in time

and space.



Storm arrivals have been often modelled as a Poisson process.
This assumes that the number of storms within disjoint time intervals
are independent. Within the context of the irrigation scheduling
problem, Cérdova and Bras (1979) used the Poisson model to obtain
optimal irrigation control. However, the probabilistic independence
of the Poisson assumption implies that the history of past rainfall
occurrences contains no valuable information about the future of

the process.

The existence of a dependence structure in the rainfall
occurrence process in different regions of the world has been
acknowledged by several authors in past years (Gabriel and Neumann,
1957, 1962; Smith and Schreiber, 1973; Kavvas and Delleur, 1975; and
others). More recently, Kavvas and Delleur (1975), Gupta and Waymire
(1981) and othersAhavé recognized that this dependence in precipi-~
tation is caused by the clustering of the rainfalls in time and space.
Consequently,-iﬁ this work, the Neyman-Scott cluster process is used
to model the occurrence of rainfall in the time domain. Doing so it
is possible to include into the decision process the conditional in-
formation contained in the history of storm arrivals as the growing
season progresses. In this way, as opposed to the work of Cérdova and
Bras (1981) and Bras and Cérdova (1981), the precipitation model be-
comes dypamic, changing throughout the growing season, according to

the immediate history of storm arrivals.

To summarize, the problem is to allocate a finite amount of
irrigation water during the growing season taking into account the

seasonal variability of the crop response to soil moisture stresses,

3



the dynamics of the soil moisture depletion process, and the random-
ness of the precipitation process. The allocation is carried out
optimally so as to maximize net benefits. The solution is obtained
in the framework of the general irrigation scheduling model presented
by Cérdova and Bras (1981) and Bras and Cérdova (1981). Storm
arrivals are modelled using the Neyman-Scott cluster model to account
for the clustering dependence of the rainfall occurrences. Con-
ditional inforﬁation, contained in the rainfall occurrence process,
is encoded in the model by deriving conditional distributions of

the time to the next rainfall event. Finally, using Stochastic
Dynamic Programming (SDP), a solution to the problem is obtained as
optimal decision functions thch yield the optimal amount of water to
be applied at each decision stage as a function of the soil moisture
content at the root zone, the volume of irrigation water available

and the immediate history of storm arrivals.



1.2 Literature Review

Recent trends in hydrologic research indicate that the modelling
of hydrologic processes starts by first recognizing their basic
physical structure and thén representing it mathematically. This
has been permitted by a better understanding of the physical processes
involved as well as by the use of mathematical tools adequate for
modelling the recognized physical structure (Gupta and Waymire, 1981).
In the following sections a brief literature review on precipitation

bmodelling and irrigation scheduling is presented. For more detéiled
reviews, the reader is referred to Gupta and Waymire (1981), and
Kavvas and Delleur (1975) on precipitation modelling; and to Cdrdova

and Bras (1979), and Rhenals and Bras (1981) on irrigation scheduling.

1.2.1 On Rainfall Occurrences Modelling

Point Processes in general, and Counting Processes in
particular, are naturally suited to describe the occufrence of rainfall
events in time. Rainfall occurrences are modelled by counting the
number of storm events in a given period of time. Depending on the
definition of a rainfall event, the counting is carried out either in
discrete time or in continuous time. However, it should be pointed
out that even though the definition of a storm event becomes obscure
(since storm events do not occur instantaneously), most descriptions
of the storm arrival process are carried out in continuous time.

Among the counting process descriptions, three different types of

models can be identified in the literature. First, there are the



models that assume that the sequence of rainy days and non-rainy
days has no dependence structure. This assumption leads to the well
known counting processes with independent increments. Second, there
are the models that assume that the dependence structure of the
sequence of rainy days and non-rainy days is Markovian. Finally,
there are the models that recognize that clustering is the basic
kinematic structure of space-~time rainfall, and that this structure
produces, in general, a non-Markovian dependence in the rainfall

counts.

The sequence of rainy and non-rainy days can be represented by
the binary sequence {Wi}, where Wi is equal to one if day i is rginy;
and equal to zero otherwise.. Models in the first of the above cate;
gories assume that the Wi's conform a sequence of independent and
identlcally distributed random variables, witﬁAPr[Wi=1] = p and
Pr[wi=O] = 1l-p. In discrete time, this assumption gives rise to the
Binomial model for the random variable counting the number of storms
ih a given time interval. In continuous time, the above assumption
leads to the well known and widely‘used Poisson models. Several
authors have used the Poisson assumption to model rainfall occurrences.
The complete spectrum of the Poisson models has been used; from the
simple homogeneous model, to the compound and inhomogeneous forms of
the Poisson model (Grant, 1938; Thom, 1959; Shane, 1964; Todorovic
and Yevjevich, 1969; Duckstéin, et al., 1972; Eagleson, 1978). The
widespread use of the models with independent increments stems out
from their simplicity, their manageability, and the ease with which

their complete stochastic description is achieved as a simple product



of marginal distributions. In the context of the irrigation scheduling
problem, Cérdova and Bras (1979) used the inhomogeneous Poisson model

to describe the process of storm arrivals.

Acknowledging the inherent drawback of the independence assumption,
some authors have resorted to assuming that the sequence of rainy days
and non-rainy days has a Markovian dependence structure. First order,
as well as higher order Markov models have been assumed to describe
rainfall oécurrences. As in the case of the Poisson model, both the
homogeneous and thé inhomogeneous forms of the models»have been used
(Gabriel and Neumann, 1957; Gabriel, 1959; Gabriel and Neumann, 1962;

Caskey, 1963; Wiser 1965).

One of the main drawbacks of the above modelling schemes is their
strongly localized applicability. In fact, for both the Poisson models
and the Markov models, there exists evidence in the literature to
support the fact that even though these models may describe, reasonably
well, certain sets of data, they fail to do so when tested using
different data (Wiser, 1965; Smith and Schreiber, 1973). With respect
to the Poisson model, even the definition of a storm event has a
bearing on how well rainfall occurrences can be described with the
model in a given region (Todorovic and Yevjevich, 1969). Furthermore,
some authors first assume the process to be Poisson, and then define

a storm event to fit the assumption (Restrepo and Eagleson, 1979).

A stochastic process can be completely described by defining
all of its finite dimensional probability distribution functions. In

the case of the Poisson model it is easy to do so, since the indepen-



dence assumption allows one to obtain the above distribution functions
as products of simple marginal distributions. However, the indepepdence
assumption constitutes the main drawback of the model. 1In the Markovian
case, only the marginal description of the counting process seems

possible.

Both the Poisson models and the Markov models have been shown
many times to be poor models for the rainfall occurrences (Wiser,
1965; Smith and Schreiber, 1973; Kavvas and Delleur, 1975). The
former because of the independence assumption and the latter because
the Markovian dependehce fails to account for the observed clustering
in the storm arrivals. Finally, both types of models can be con-
sidered as black box models in the sense that they are fitted to
particular sets of data. Thus, their components and parameters
lack physical meaning, and the models, as a whole, fail to represent

any physical structure of the dynamics of space-time rainfall.

In the last category of models are those that account for the

. clustering dependence of the rainfall occurrences in time and space.
The identification of certain physical features common to storm events
has been possible from systematic observations of diverse types of
storms (Petterssen, 1956; Houze, 1969; Austin and Houze, 1972).

Gupta and Waymire (1979) and Waymire and Gupta (1981) provide an
excellent description of the main characteristics of space-time
rainfall. With respect to the clustering dependence, Kavvas and
Delleur (1975) use thé Neyman-Scott cluster model to describe storm
arrivals in time. Rainfall occurrences in the form of clusters are

assumed to be triggered by some rainfall generating mechanism (RGM)

8



(cycloné.belts, fronté, thunderstorm clouds, etc.). These RGM's
coﬁstitute the primary level of the rainfall occurrence process;

The actual occurrence of storms, triggered by the RGM's, constitutes
the secondary level of the process. The observed dependence in the
rainfall occurrences is explained by the superpbsitiqn of storms

" triggered by different RGM's, or by the persistence of a certain

type of RGM, over a given area. They applied the model, successfully,
to describe rainfall occurrences in Indiana. Cluster models have
also been sﬁown to be adgquate for modelling the space-time evolution

of precipitation (Gupta and Waymire, 1979; Waymire and Gupta, 1981).

The édvantages of the cluster models can be summarized as'follon.
_First, they permit the definition of the complete stochasfié étructurg
of the process, a characteristic that is highly desirable for any

model. This is easily obtained by using the concept of probabiliéy
generating funétionals (p.g.fl.). Second, their dependence structure

is general enough to render the model generally applicablé. 'Third,

tﬁey are models phyéically based, in the sense that some éhysical
ﬁeaning can be assigned to the model components and to their péraméters.
And last, bﬁt mbgt important, they account for the' observed clusteriﬁg.

dependence of the rainfall occurrences.

1.2.2 On Irrigation Scheduling Problem

The irrigation scheduling prqblem can be viewed as a .
finite horizon, -stochastic, multistage decision process. The ultimate
'.objective in solving the scheduling problem is to findla sequence of
irrigatioﬁ deéisions that optimizes a pre—specified measure of

9



performance, under a given set of constraints and initial conditions.
This objgctive can only be achieved after a description of the comblex B
interactions taking place in the climate-soil-plant system. Several |
solutions to the irrigation scheduling probiem can be found in tﬁe
literature; all of them differing according to how the authors chose .
to model each subsystem of the climate-soil-plant system; and

aCcording to the solution algorithms employed.

Systems analysis techniques, such as simulation, linear pro-
grammiﬁg, and dynamic progrémming have all been used to determine
optimal policies. Simﬁlation has been used to defive transition
matrices for the soil moiéture content within decision»stagés. Linear
prograﬁming has been used to'obtain optimal cropping patterns,'as
well as optimal irrigation scheduling when the irrigation appli-~
cations are on fixed datesA(Blank, 1975; Matanga and Marifio, 1977;
AMatanga and Mariflo, 1979). Stochastic dynamic programming has aISO
feen widely used; especially when the irrigation appiications are. on
variéble détes'(De Lucia, 1969; Hall and Dracup, 1970; Dudley,'et al.,
1971; Métanga and Marifio, 1979; C6érdova and Brés, 1979; Rhenalé and |

Bras, 1981).

" The climate subsystem of the climate-soil-plant sjstem is encoded
in the models by describing potential evapotrénspiration and precipi-
tation. Potential evapotranspiration is often assumed deterministic
(De Lu;ia, 1969; Hall and Dracup, 1970). It has also been considered
asvdeterministic but varying throughout the growing season (Cérdova

and Bras, 1979) or considered stochastic and modelled as a first order

10



Markov process (Rhenals and Bras, 1981). The same comments can be
made about the modelling of precipitation. Some authors ignore it
all together (Rhenals and Bras, 1981), while some others consider
it stochastic (De Lucia, 1969; Dudley et al., 1971; Cérdova and

Bras, 1979).

In general, most authors describe yield as a function of actual
evapotranspiration. However, there exist discrepancies related to
the form of this relationship. Some authors prefer a multiplicative
form (Jensen, 1968; Minhas, et al., 1974; Hanks, 1974), others an
additive formulation (Hiller and Clark, 1971; Stewart, 1974; Blank,
1975; Cérdova and Bras, 1979). Finally, the soil system is generally
described in terms of the soil moisture content at the root zone. A
water balance in a conceptual soil column defines this state variable.
The water balance is carried out either analytically (Cérdova and

Bras, 1979) or by simulation (Matanga and Marifio, 1979).

11



1.3 Thesis Outline

Chapter 2 reviews some elemental but important concepts from
the theory of Point Processes. Probability Generating Functions (PGF),
probability generating functionals (p.g.fl) and cluster processes

are introduced.

The development of the Neyman-Scott cluster process is presented
in Chapter 3. First and Second order moments are presented. Finally,
the conditional distributions of the time to the next rainfall

occurrence are derived.

The general irrigation scheduling modellis-then described in
Chapter 4. The conditional distributions derived in Chapter 3 are
then included in the model and transition matrices for the soii
moisture state are derived. Finally, the irrigation scheduling
problem is formulated as a multistage decision process and solved

by stochastic dynamic programming (SDP).

Case study results and model calibration issues are presented
and discussed in Chapter 5. Finally, Chapter 6 gives a brief
summary of the work. Conclusions are presented and recommendations

for future research are made.

12



Chapter 2

BRIEF REVIEW OF SOME FUNDAMENTAL CONCEPTS OF THE
THEORY OF STOCHASTIC POINT PROCESSES

2.1 Introduction

This chapter presents a very brief and quick review of some of
the fundamental concepts of the Theory of Point Processes. It relies
heavily on the works of Neyman and Scott (1952), Jowett and Vere-
Jones (1971), Daley and Vere-Jones (1971), and Waymire and Gupta (1981).
The review is intended to be neither completé, nor mathematically
rigorous. Instead, its purpose is to provide an understandable
working basis, so that the reader may get a quick glance at the theory,
its computational tools, and its potential applications. Especially,
. the emphasis is on those concepts which play a major role in the
development of this study. For more detailed, more complete, and more
mathematically rigorous treatments, the reader is encouraged to study

the above papers and the references given therein.

As was presented in Chapter l,lthe main concern of this work is
the modelling of rainfall occurrences in time. The final objective is
the incorporation of the observed clustering dependence structure of
space-time rainfall occurrences into a decision model to optimize
irrigation decisions. To do so in the time domain, rainfall occurrences
in time are conceptualized as a point process. In the following
sections, some elemental concepts from the fheory of Point Processes

are presented. These concepts are needed in order to understand the
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description of rainfall occurrences as a point process and in the

development of the precipitation model.

Specifically, the first section defines a point process and
establishes the duality between its counting properties and its
interval properties. In the next section, probability generating
functions and functionals are introduced as a means to completely
define a point process in terms of its joint finite dimensional
multivariate distribution functions. Also, first and second-order
moments are introduced. Following, cluster processes are introduced
very briefly. 1In the last section, some concepts from the Palm-
Khinchin theory are presented. They are used in a later chapter to

derive conditional distributions from the precipitation model.
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2.2 Definition and Basic Properties

A stochastic point process is a mathematical abstraction which
‘arises when considering point occurrences of certain random phenomena;
for example, rainfall occurrences in time or in space-time, equipment
failure in time, customers arriving at a queueing facility, earthquake
occurrences, etc. Thus,,;o define a point process, a state space over
which the random phenomenon evolves, and a sequence of points in that
_space representing a possible realization of the phenomenon, are needed.
Two basic characteristics can be defined for a point process: first,
the counting properties which relate‘to the number of points faliing
within specified subsets of the state space; and second, the interval
properties which relate to the relative spacings between points.

For example, in the case of rainfall occurrences in time, the counting
properties refer to the number of rainfall occurrences in a given
period of time, while the interval properties refer to the relative
times between the occurrences. Both properties serve to uniquely
define a point process, and in that sense, both are equivalent.
However, the relationship between the counting properties and the
interval properties is not simple. This problem of expressing the

ones in terms of the others is addressed in Section 2.5.

The definition of a stochastic point process is most conveniently
given in terms of its counting properties. To do so, a counting
measure which counts the number of occurrences within sub-regions of
a given space is defined, and then the probability distribution of

these counts is studied.
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Let X be the state space over which the random phenomenon occurs.

X can be taken as the real line R;,

sional Euclidean space. A point process is, then, a collection of

or in general as any finite dimen-
non-negative integer valued random variables N(A), parameterized
(indexed) by subsets A of the state space X, and for which the
following conditions hold true:

N(§) = O (2.1)
where @ represents the empty set;

N(A) < o (2.2)

with probability one for bounded sets A; and

N D An = zw: N(An) ' (2.3)
n=1 n=1

with probability one for mutually disjoint sets Al’ AZ’ cee
Thus, the non-negative integer valued random variable N(A) represents
the number of occurrences of some random phenomenon within the interval

or region A C X.

Consider now Q as the family of all countable sequences of points

in X:
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w o= '{xn} ne z+é{1, 2, ...} (2.4)

where w represents a possible realization of point occurrences in X.

A fundamental theorem in the Theory of Point Processes states that
every point process, N(+), induces a unique probability measure,

Pr, on Q, and conversely (Waymire and Gupta, 1981; also see Moyal,

1962 for proof of theoreﬁ). The counting measure for the point process,

N(+), is defined for each possible realization w ¢ Q as:
N(A,w) = card{n: X € wNA} ,we Qg , ACX (2.5)

The counting measure of equation 2.5, counts the number of
occurrences of some random phenomenon in a region A C X, which were
produced by a particular realization w ¢ Q. Observe that in this
sense, the counting measure description of a point process, N(-),
is a function of each possible realization w, of the random phenomenon.
Thus, it should be clear that there is a one-to-one correspondence
between the probability space associated with the sampie‘space, , and
the space of non—negativé integer valued counting measures, N(-).
Consequently, a stochastic point process can be defined as a mapping
from the former space into the latter. With this in mind, and assuming
that w ¢ Q is mapped into N(.), with value N(A,w) on A C X, the con-

ditions 2.1 through 2.3 can be expressed as:
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a) Let {An}, nez,bea decreasing sequence of bounded

sets An’ such that as n + =, Au + (; then:

Priw: N(Ah,W) >0} = 1 (2.6)

b) Let A be any bounded set, then:

Pr{w: N(A,w) < »} = 1 (2.7)

c) For every pair of disjoint sets Al’ A2,

Pr{w: N(Alu A2 s W) = N(Al,W) + N(AZ,VO} =1 (2.8)

where w = {Xh} € Q is a possible realization, and A C X
represents subsets of the state space. N(-,*) is as defined

in equation 2.5,

According to equation 2.5, the counting measure, N(*), of a point
process is a function of w. However, for notational convenience
and unless otherwise stated, N(-) and N(-,+) are used interchangeably
in the sequel. But it should be stressed again that N(¢) = N(-,*) is
well defined only as a function of a realization of the random pheno-

menon. .

The complete mathematical definition of a stochastic point process,
as introduced above, is obtained by specifying its complete finite

dimensional structure. This can be accomplished by specifying all

18



of its joint finite dimensional multivariate probability distribufion
functions (Daley and Vere-Jones, 1971). In the next section, this
complete mathematical description is obtained straightforwardly

after the introduction of the probability generating functionals

(p.g.fl.).
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2.3 Moments and Probability Generating Functionals

The moments of a point process to be discussed in this section,

refer to the counting measure description of the point process.

The first moment or expectation measure:
Ml(A) = E{N(A)} - (2.9)

is said to exist when it is finite for all bounded sets A. In
equation 2.8, E{-} stands for the expectation operator. In general,

higher order moments can be defined as:
M (A,..., A) = E{N(4]) ... N(A)} (2.10)

It should be stressed that the second-order moment measure
MZ(') = E{N(Al) N(AZ)} can indicate dependence between N(AI) = N(Al,w)

and N(A,) = N(4,,w).

The probability generating functional (p.g.fl.), introduced
below, is a natural generalization of the probability generating
function (PGF), from a non-negative integér valued random variable to
an infinite family N(*) of non-negative integer valued réndom variables.

Let A “ee Ak’ be fixed but arbitrary subregions of X. The joint

1’
distribution of the random vector [N(AI)’ ""-N(Ak)] can be uniquely

described in terms of its multivariate PGF (Feller, 1968) as:
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| N(A) | |
gltys «oes £) =EJ [ £, ,0<t <1,1l<n<k (2.11)
n=1
or more explicitly: A
: ok . : :
g(t se sty ) = E E E IT t Pr{N(A )= Jl, (A )= =Jgyee N(Ak)=jk}
10 32-0 1 ~0 o=l .
0<t <1,1<n<k

(2.12)

A PGFvso defined is indefinitely differentiable with‘respect to
all of its arguments for 0 < t <land 1<n<k. The partial
derivatives of the PGF are related to the multivariate joint dis-
tribution of the random vector [N(Al)’ ooy N(Ak)], by:

B P P T :
1-2 |3
g(tl,...tk)

PI{N(A1)=J 1’...’N(Ak)=jk} = Jl jz jk
Btl 3t2 ...atk n=1

Moments of any order are also related to the partial derivatives
of the PGF. In particular, the first and second-order moments can be
expressed as follows. The expectation of the number of occurrences

of A is (Appendix A):
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Ml(A) = E{N(A)} = éf—(fl (2.14)
, t
t=1
- The variance of N(A) is (Appendix A):
. 2 2 )
M, (A,A) = var[N(a)] = 28(£) . 93 8(t) _ [ag(t) (2.15)
2 ot atz ot _ _
' : - t=1
Finally, the covariance between N(Al) and N(Az) is (Appendix A):
‘ ' Bzg(tl,tz)
MZ(A].’AZ) = COV[N(AI)’N(AZ)] = W
' . 1 2 t.=t =1
1 72
i dg(t;,t,) . dg(t;,t,) 2 -16)
ot 3t, ' ' :
t1=t2=1 t2=t1=1

Now, in order to define the p.g.fl., first define the stochastip
integral of ‘a real valued function f on X, with respect to the point

process N(+) as:

/f(x) dN(x,w) = Z f(xn) W= {xn} ’ (2.17)
X -~ n -

ne?Z = {1, 2, ...}

where N(*,+) is as defined in equation 2.4.

Equation 2.10 can be rewritten as:
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k

N(Ah)
g(tl,..., tk) = E exp[log I] t ]
n=1
k .
g(tl,..., tk) = E exp[z N(An) log(tn)] (2.18)

n=1

Keeping in mind definition 2.17, let £(<) be the function on X

given by:
: t , xeA l<n<k
n n - = : _
E(x) = " (2.19)
1, x¢ UAn
=1

then, using the stochastic integral defined in equation 2.17:

o k
/ logE(x) dN(x) = z N(An)log t:n (2.20)
X

n=1

Substituting equation 2.20 in equétion 2.18:

gltys.eesty) = E{eXp[f log (x) dN(x)1} (2.21)
X

From equation 2.21, it is clear that in order to represent the
entire finite dimensional structure of a point process N(*), and
consequently its complete probabilistic structure, it is only necessary

to consider the following functional (Waymire and Gupta, 1981):

23



G(E) = E{exp[[ logE (x) dN(x)1} (2.22)
X

for arbitrary real valued functions £(-) on X such as those defined in
equation 2.19. In general, the function £(+) has to satisfy only the

following conditions:
0< &x)<1l,xeX (2.23)

and, for a given x outside a defined subset of X:
E(x) = 1 ' ‘ (2.24)

The functional defined by equation 2.22 is referred to as the
probability generating functional of the point process N(+). The
p.g.fl. is a powerful; but simple, transform technique due to Moyal
(1962). Its development and use have beeﬁ expanded by Vere-Jones
(1968, 1970), and Westcott‘(1972). More recently, Waymire and Gupta
(1981) have also presented the p.g.fl. and used it in the contexf of
modelling physical random phenomena. The p.g.fl. is absolutely
hecessary if a complete stochastic description of a point process is
neéded. in a later chapter, it will be shown how, with suitable
choiées of the function £(x) defined by conditions 2.23 and 2.24, all
the joint finite dimensional multivariate probability distribution
functions of a point process can be obtained from its p.g.fl., thus

obtaining a complete stochastic description of the point process.

24



2.4 Cluster Processes

6ne of the most common types of dependence structure encountered in
naéuial phenomena is the so-called clustering dependence. In Chépter 1,
it was stressed that this kind of dependence has been determined to
exist in the occurrence of rainfall in time and space. 1In fact,
authors like Le Cam (1961), Kavvas and Delleur (1975, 1981), and
Waymire and Gupta (1981) have acknowledged this cluster structure in
the éontext of precipitation modelling. The spatial distribution of
gaiaxies has also been hypothesized to occur in clusters and modelled
as such by Neyman and Scott (1952)., Cluster dependence structure
has also been observed in the occurrence of earthquakes and their
after-shocks. Vere-Jones (1970) used cluster processes to model
éarthquéke occdrrence. In fact, the literature is full of examples of
various natural ﬁhenomena exhibiting clustering behavior. 1In the
hydrologic literature, this is true, especially during recent years,
when works by Kavvas and Delleur (1975, 1980), Kavvas (1982), and R
Waymire and Gupta (1979, 1981) have popularized the use of cluster

models.

One very important class of cluster processes is the so-called
Moyal Cluster Processes. They are the superposition of two different
point processes, and.can be constructed in the following manner.
Define on X, a point process N1(~) as the process of cluster centers.
Also, for each x € X, define NZ(-/x) as the point process of cluster

members. Then, the cluster process is given by:
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NG = D NGy (2.25)
xneN1(°)

The p.g.fl. of the cluster process defined in equation 2.25 is

(Waymire and Gupta, 1981):
G(E) = 6{C,(E/x)} , (2.26)

.where Gl(') is the p.g.fl. of Nl(-) and G2(°/x) is the p.g.fl.

of Né(-/x).

Among ' the members of the_class of cluster procésses defined by
equations 2.25, the one used in this work is the so-called Neyman-Scott
cluster process. This model was introduced by Neyman and Scott (1952)
to model the.spatial distributionvof the‘galaxiés. The cluster process
of equation 2.25 becomes a Neyman—Séott cluster process whenever the
process of cluster centers Nl(-) is‘Poisson and whéhever a random
number of points N2(~/x) are independently distributed about the
cluster centers according to a common distance distribution. When
cluster models of the kind presented above are.used for modelling
precipitation occurrence in time, one effectively assumes that rainfall
occurrence is a two-level process. In the primary level, or parent
process, there is the occurrence of rainfall generating méchanisms
(RGM's), N1(°), or cluster centers. In the secondary level, for each
ciuster center at x, there is the actual associated number of rainfall
events, NZ('/x), or cluster members. The RGM's can be, for example,

cyclonic belts persisting over a region, or fronts sweeping over a
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given area. The next chapter will deal more explicitly with the
modelling of precipitation occurrence in time as a cluster process.
Before closing this section, it should be made clear that the cluster
processes are just the result of operating on a simple point process
as defined in equations 2.1 through 2.8. Just as a given point
process can be operated on to transform it into a compound point
process by replacing each point in the original process N(*) with an
associated.random variable, it is possible to obtain a cluster
.process by replacing each point in the original process N(-) with a

cluster of points (Daley and Vere-Jomes, 1970).

The closing section of this chapter introduces some basic concepts
from the Palm-Khinchin theory. These concepts will allow the
derivation of the conditional probability distributions of storm
occufrence, that will later be used to obtain optimal irrigation’

decisions throughout the growing season.
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2.5 Some Concepts from the Palm-Khinchin Theory

Given that the precipitation occurrence process exhibits cluster
dependence and that, in general, this cluster behavior invalidates the
common assumption of independence between the rainfall counts by intro-
ducing a non-negligible correlation in the occurrence process, it is
highly desirable to be able to use this additional information in the
forecasting of rainfall occurrence. To do so, conditional probabi-
lity distribution functions are needed. The approach taken in the next
chapter to obtain conditional information is to derive the conditional
distribution functions of the time to the next rainfall event, con-
ditional on the immediate history of storm arrivals. Aé can be
inferred, noﬁ it is necessary to have either a description of the point
process in terms of its interval properties, or a way of obtaining
interval properties from a counting measure description of the given

process.

Restricting the discﬁssion to the real line or one~dimensional
Euclidean space, where the notion of an intervél is more easily com-
prehensible, and keeping in mind that the work to be carried out in
later chapters is in the real line, the interval description of a

point process is presented as follows.

Again, as in equation 2.4, consider the family ‘Q of sequences
w =‘{xn}. Equation 2.5, defined on subsets of X, allowed the
description of the point process N(-) for each possible w ¢ Q. All
that is needed now is to obtain the inverse description of equation

2.5. To do so, for each w = {xn} e Q define:
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X =y>0 such that N[0,y) < n < N[0,y]l , n=20, 1, ..

(2.27)

In equation 2.27, the argument of the set function N(¢) = N(-,-)
defined in equation 2.5 is an interval. However, instead of writing,
for example, N([a,b)), here and in the sequel, the outer parentheses
are omitted for notational convenience._ Consequently, N{0,y) counts
the number of occurrences in the semi-closed interval [0,y) and

N[0,y] counts the number of occurrences in the closed interval [0,y].
It is easy to observe that equation 2.27 is the inverse of equation 2.5.
-To construct a sample realization of a point process, it is required to
specify the points {xn}. According ;o the duality between equation

2.5 and equétiop 2,27, an equivalent construction is the specifi-
cation of.such quantities as {nn}E {xn - Xn—l}’ representing the
sequence of times (intervals) between successive events. Denoting by
H the space of all such sequences, by virtue of equation 2.5 and
equation 2.27,.there exists a one-to-one correspondence between {

and H.

Having defined the duality between equation 2.5 and equation
2.27, the so-called Palm Functions are now introduced. These functions
relate probability distributions Pr on @ (counting properties)
to probability distributions on H (intervél properties). The Palm

Functions are defined as:
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qk(y) = lim Pr{N(0,y] = k/N(-x,01>0} y >0, k¢ zZ, (2.28)
x>0

When the intensity of the process defined as:

A = lim Pr{N(O,x] > O}/x '(2.29)
x0

is finite, these limits are showﬁ to exist, for stationary Pr; in

the Qorks of Khinchin (1955), and Daley and Vere-Jomes (1970).
Observe that equation 2.28 simply yields the limit of the probability
that k events occur in an inferval (0,y1, given that at least one
evént has.occurred.in an arbitrary, immediately preceding interval,
(-x,01, aé the length of this interval goes to zero. Also, observe
that equation 2.28 expresses a relationship between a function of

an interval measure y, and a function of a counting measure, N(-).

One‘final result obtained by Khinchin allows the Palm Functions
of equation 2.28 to be obtained as derivatives of the probability
distribufion Pr of N(*) on © as follows. Khinchin (1955) proves that
for a stationary point process with single occurrences and finite

intensity A:

Pr{N(0,x] <kl =1- )\/ qk(u) du = }\/ qk(u) du (2.30)
0 X
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Denoting  Pr{N(0,x] < k} = Pk(x), equation 2.30 can be expressed

in differential form as:
D Pk(x) = -2 qk(x) (2.31)

Generalization of equation 2.30 leads ultimately to the highly
desirable one-to-one relation between the description of a stochastic
point process in terms of its counting properties and that in terms
of its interval properties (Daley and Vere-Jones, 1970). For the.‘

purposes of this work, equations 2.27 through 2.31 are sufficient.’
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2.6 Summary

Somé of the basic.concepts from the Theory of Point Processes
-havéAbeen reviewed. The duality between the counting measure
description and interval measﬁre.description of a point process
has also been introduced.l The p;g.fl. has been defined and presentéd
as a powerful tool in ;he definition of the complete stochastic
structure of a point process. Furthermore, cluster processes were
also defined as a wéy to model natural clustering behavior. Finally;
some basic functions establishing the relationship between the counting
deécription and the interval description of a poiﬁt process were
defined. The entire chapter, instead of pretending to be a deep
mathematical treatise of the theory, is intended to provide a quick
reference of the elemental concepts used in the following chapter in

‘developing the precipitation occurrence model.

32



Chapter 3

PRECIPITATION MODEL: FORECASTING RAINFALL OCCURRENCES USING
THE NEYMAN-SCOTIT CLUSTER MODEL

3.1 Introduction

‘The main goal of this work is the incorporation of the con- -
ditional information contained in the immediate history of rainfall
occurrencés, into a model of optimal irrigation control. 1Imn recent
years, several authors (see Chapter 1) have argﬁed that the observed
dépgndence structure in the precipitation process is due to the
clustering of the raiﬁfall occurrences in time.‘ It is then highly
desirable that this cluster dependence structure be correctly modelled.
This would allow, in some cases, the derivation of conditioﬁal'pro—
babilityAdistribution functions (CDF's) useful, for instance, in

obtaining optimal irrigation control.

In this chapter, the process of rainfall arrivals is modelled
as a Neyman-Scbtt (Nfs) cluster process. Using basic condepts.from
the theory of point processes, presented in the previous chaptér,
the complete mathematical stochastic structure of the N-S model is
obtainéd. First and second-order moments are also derived. Finally,
.using the Palm—ﬁhinchin theory, conditional distributions. of thé time
to the next rainfall occurrence, conditional on all or part of the
immediate history of thé pfocess, are derived}.”These'CDF's will then
be included into the general formulation of the irrigation scheduling

problem in Chapter 4. The probabilistic description of the.occurrence
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of pfecipitation effectively_éécounts for the observed clustering
.dependence,in the rainfall counts, and through the CDF's, yields a
dynamic model that changes according to the immediatevhistory of

the proceés. ‘It is then possible to use this information to predict

future behavior. \
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3.2 . The Neyman-Scott Cluster Model

The N-S cluster model is a particular member of the more general
class of Moyal cluster processes introduced in Section 2.4. It is
a two-level process in which the process of cluster centers is Poisson,
and in which a random number of cluster mémbers are identicaliy
distfibuged about each cluster center. The N-S éluster process was
ériginally introduced and derived by Neymaﬂ and Scott (1952),Aand
1used in modelling the spatial distribution of galaxies. More'reéently,
and in the context of precipitation, Kavvas and Delleur (1975,’1981),
»used it to moael rainfall occurrences in the time domain. The N-S
cluster model proposed by Kavvas and Delleur (1981) has the RGM's
'in_its primary level (parent process), and the actual occurrence_of

the rainfalls generated by each RGM in its secondary level.

Lg Cam (1961) used the Neyman-Scott cluster process for modelling
thg'areal clustering of precipitation. The basic element in Le Cam's
'ﬁgdel is the shower cell. These occuf in clusters which correqund
to fronts; and the fronts also occur in clusters called storms.
‘Vere-Jones (1970)lapplied.the N-S cluster process in the time domain

- to, model earthquake occurrences.

In the work of Kavvas and Delleur (1975, 1981), the RGM's'corres—:
pond to“the,fronts of Le Cam. In their work, they hypothesize that,
.fér the case of rainfall occurrences in Indiana, the.clustering
dependence in the rainfall counts is caused, not only by the persis-
tence of a given RGM over a region, but also by the actual super-

position of two or more RGM's. The clusters in their model are made
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up of the ;ainfalls generafed by the same RGM. The clustering behavior '
of the rainfall arrival procesé in Indiana is tested and detgrmined

b& observing the behavior of the estimated variance-time and log4_:
‘survivor functions. The convexity of the respective estimatedAfu@ctions
indicgtes.an o&efdispersion and clustering of the rainfall occurrences.
In Chapter 6, these functions will be analy;ed for the pafticular

case study under consideration.

3.2.1 Assumptions and Definitions

The fundamental assumption in constructing the N-S ﬁodel
for precipitatiqn is that the rainfall occurrence process exhibits
a cluster dependence structure in time. Effectiveiy, the N-S cluétér
modei assumes that precipitation events occuruin clusters.in the time -
domain. It also assumes that the occurrence of réinfall events in
any giyen period of time is notbonly caused by RGM's which oeccurred
in the given period, but may alsolbe caused by RGM'S which occurred
previously. Folléwing the original work of Neyman aﬁd Scott (1952),
the following so-called '"structural postulates" are essentiél to -the.

N-S modei:

a) . Precipitation evenfs occur in clusters in the time domain.
b) Cluster centers are determined by the times of«occurrencé.
of the RGM's. It is assumed that these cluster cgnters

are'randomly distributed according to a Poisson model..'
c) 'To each cluster center, there exists an associated group

of rainfalls forming the cluster. Each cluster is charac- -
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terized by the number of rainfalls within the cluster
(cluster sizes), and by their time of occurrence with
respect to the cluster center.

d) The cluster sizes are mutually independent and identi-
cally distributed and also independent of all other
variables in the process.

e) For any given cluster, the times of occurrence of
events within the cluster are independent, identically

distributed random variables.

4 Finally, the main assumption upon which the complete model rests
is simply that rainfall occurrences in time can be modelled as a Point
Process. Accepting the above assumptions, the N-S cluster model can

be constructed in terms of the following elemental random variables

(see Figure 3.1).

Let N(O,t) be the counting random variable, counting the number
of rainfall events in the interval (0,t). N(O,t) is as defined

throughout Chapter 2, and describes the following Point Process:
{N(O,t) , t>0, teT} , (3.1)

which is now to be modelled as a N-S cluster process.

Let Nl(a,b) be the counting random variable, counting the number
of RCGM's in time interval (a,b). As in Section 2.4, Nl(-) defines the

process of cluster centers:
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Figure 3.1
TWO LEVEL SCHEMATIC DESCRIPTION OF RAINFALL OCCURRENCES



{Nl(a,b) , —®o<a<b<w, abeT}. (3.2)

According to structural postulate b), Nl(-) is Poisson with parameter u.

Also, let NZ(X) be the random variable representing the number
of cluster members (rainfall events) in a cluster (RGM) centered at

time x; let its PGF be gy (z) = Z z" Pr [Nz(x) = n]..
2 n=1

Finally, let fT(c-x) denote the probability density function (p.d.f.)
of the time positions 6f‘the cluster members within each cluster. 1In
this way, d = § - x represents the time distance'between the occurrence
of the RGM at x, and the actual occurrence of the rainfall beiﬁg con-

sidered, at z.

According to these definitions and assumptions, the scheme
considered here to model precipitation arrivals is the same as intro- '
duced by Kavvas and Delleur (1981), in which RGM's constitute the
primary level of the process and in which each RGM generates a cluster
of rainfalls. The N-S cluster model is such that the random variable

N(-) is constructed in terms of Nl(-), Nz('), and T.

3.2.2 Complete Stochastic Structure of the Neyman-Scott Model

As was stated in Chapter 2, in order to completely define
a stochastic point process, it is necessary to determine all of its
joint finite dimensional multivariate probability distribution
functions (PDF). Moyal (1962),and later Vere-Jones (1968), developed

a powerful technique, the probability generating functional, that can
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be used to obtain the above definition of a stochastic point process.
In principle, and as defined in Section 2.3, the p.g.fl. can be used
to obtain the distributions of all random variables determined by

the point process. This is so since, in heuristic terms, the p.g.fl.
is an extension of the multivariate PGF, and it is well known that
'the latter uniquely determines the distribution of a given random
vector. However, in practice, the main disadvantage of the p.g.fl.
is that it may be impossible to obtain in closed form. Fortunately,
for the case of cluster procesées derived from the Poisson process,
such as the N-S cluster process, this closed form of the p.g.fl. exists
and consequently, these processes can be handled very nicely in terms

of their p.g.fl.'s.

Neyman and Scott (1952) first obtained the characterization of
the N-S cluster process in terms of its bivariate PGF; at this time
the technique used was somewhat primitive. Later, Kavvas and Delleur
(1975), using the same techniqué and following the derivation of
Neyman and Scott (1952), obtained again the univariate and bivariate
PGF for‘the N-S cluster process. In these two instances, only a
partial definition of the process was obtained. The first to have
suggested the use of the p.g.fl. in the context of the N-S cluster
process appears to héve been Moyal (1962). Later, Vere-Jones (1970)

derived its p.g.fl. in the context of modelling earthquake occurrences

in time.
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In general, the p.g.fl. of a point process, N(+), was defined

as (Section 2.3):

- GlEl = E{exp[ﬁOg (t) dN(t)1} (3.3)

" for a.given class of functions £(+). In equation 3.3, as well as
throughout the rest of this chapter, and unless otherwise stated,

all integrations are to be taken over a doubly infinite set.

The p.g.fl. for the general Moyal cluster process:

N(-) = Z 'N?_(l- £ ) (3.4)
: t € Nl(') :
was also introduced in Chapter 2 as:
GIE] = GIG,(g]t)] o (3.5)

Now, according to the assumptions and definitions of Section 3.2.1,
" the process of RGMfs, Nl(-), is Poisson with parameter u. The p.g.fl.

of the Poisson process is (Vere-Jones, 1970):
G &1 = eXP{lj/‘[E(t) - 1)dt} - (3.6)

The p.g.fl. of the process of cluster members, Nz(-), is (Vere-

Jones, 1970):
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G, Elt] = B, {J(.g(t + ) £,(0)de} e

where gy (¢) is the PGF of the cluster member procéss, NZ(').
2 . A

Substituting equations-3.6 and 3.7 into equation 3.5, the p.g.fl.

for the N-S cluster process is obtained as:

G[E]l = exp{uf g {fe(t +z ) £ (g)dz} - 11dt ' (3.8)
N, T

' Under suitable choices for the function £(*), equation 3.8
yields the comﬁlete finite dimensional structurelof the N-S cluster
process.>‘For éxampie, to obtain the univariate representation of the
N-S cluster process, and assuming that the PGF of the number ofArainfall
occurrences N(O,t,) is desired, define:

E(x) = 1-(1-2)1I lz| <1 (3.9)

(0, tl) x) ,

where I(+) is the indicator function such that:

1 if s ¢ (O,tl)

I(O,tl)(s) (3.10)
0 otherwise

Clearly, the function defined by equation 3.9 belongs to the class of
functions characterized by equations 2.23 and 2.24, and required in

the definition of p.g.fl.. 1In general, and substituting equation 3.9
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into the general definition of p.g.fl. of equation 3.3, the univariate

PGF of the random variable N(O,t.) is immediately obtained.

quently, substituting equation 3.9 into equation 3.8 yields:

t

1
g(z) = exp[u f {gN (1 -(1-2)p(B)] - l}dt]
2 .

- 0

where:

t

1
p(t) =/ £.(c - £)de

0

Conse-

(3.11a)

(3.11b)

Equation 3.1la is the univariate PGF of the N-S cluster process.

Kavvas and Delleur (1975) obtained the same result using more primi-

tive techniques.

Finally, to obtain the complete finite dimensional stochastic

structure of the N-S cluster process, and assuming that the multi-

variate PGF of the random vector:

[N(O, tl) 2 N(tl’tZ) 3* e N(tk_l’tk)}

is desired, where N(+) counts the number of rainfall occurrences

in the indicated non-overlapping intervals, select:

k
£E(x) = 1 - (1 —z,) 1 (x)
E L7y ety
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which, after substituting in equation 3.8 yields:

. tk k ‘
g(zl,...,zk) = exp[u / {gN2[1 —Z (1 - zi) pi(t)] - Udt]
- =1 ) (3.13a)
where:
t, .
i
p;(t) = / f£.(2 - t)dz . (3.13b)
-ti-l

Equation 3.13a represents the multivariate PGF for the above'
random vector when the raﬁdom variable N(+) is distributed according
to the N-S cluster model. In equations 3.11b and 3.13b, above, p(t)
and pi(t) represent the probability that a rainfall whose RGM occurred
at time t, falls within the time intervals indicated by the upper and
lower limits of the integral. Frém this definition, it is clear that
the nature of the p.d.f., fT(C),'determines the memory of the rainfall

process.

By defining the p.g.fif of the N-S cluster process in equation
3.8, it has been possible to obtain its complete finite dimensional
structure, in equations 3.11 and 3.13. However, in this case, and as
opposed to the Poisson process in which a complete stochastic description
is obtained at the expense of the independence assumption,>the N-S
cluster model renders a general cluster dependence structure. In fact,
the model expressed in equations 3.8, 3.11, and 3.13 has the Poisson

process as one of its particular cases. This is easily seen by
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realizing that the independent increments assumption establishes a
rainfall process with zero memory. For this case, the p.d.f,
fT(C - u) becomes a delta function, so that:

t 1 ifg=u

1
p(w = f £,(c - wdr = (3.14)
0 : 0 otherwise

Substituting equation 3.14 in equation 3.lla yields:

g(z) = exp{u t;[gy (2) - 11} : ) (3.15)
2 .

which is the PGF of the genetalized Poisson -process (Parzen, 1967).

Thus, a stochastic model has been devised, with a dependence
structure general enough to render it w;dely applicable. In addition,
the model acknowledges and represents the observed clustering behavior
of the rainfall occurrences in time. Ideally, its components and

parameters will have some physical meaning.

Up to now, all expressions presented for the N—S cluster process
are general in the sense that forms for the distributions of the
clusﬁer sizes, Nz(-), and of the times of occurrence of the cluster
members within each cluster, T, have not yet been specified. Explicit
forms of these expressions are presented in Section 3.2.4, for a

particular choice of distributions.
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3.2.3 General First and Second Order Moments

General expressions for the first and second-order moments
of the N-S cluster model are now introduced. Their derivation is
carried out in Appendix B, using the general expressions of Section 2.3
and very simple algebraic manipulations. For more sophisticated
derivations, using the p.g.fl. and its relation to the factorial
moment measures and the-factorial cumulant measures, the reader is

referred to Vere-Jones (1970).

The first moment of the number of rainfall events, N(O,tl),
in time interval (O’tl)’ is given in terms of the mean-time function
(Appendix B):

E(N(O,t;)] = nu - EN, ()] - ¢t (3.16)

1
The mean-time function of equation 3.16 is a function of the
length of the interval, but not of its origin. From equation 3.16,
the rate of rainfall occurrence under the N-S cluster process is
easily obtained as:
4 _ A A
= < = . )] .1
MED = G BINOED) = e B ()) (3.17)
The variance of the number of rainfall events in interval (O,tl),

N(O,tl), is given in terms of the variance-time function (Appendix B):
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t
1
var(N(0,t )1 = u - EMNy(6)] + £ + u+ EMN(6) = N,(6)] f p’(t)at

- 00

(3.18)
and where p(t) is as defined in equation 3.11b.

The covariance of the number of rainfall events in two disjoint
time intervals, r time units apart is introduced in terms of the

covariance function (Appendix B):

. t
. . 2
2
cov[N(0,t,) , N(ej+z, )] = u = E[N,"(£) = Ny(t)] / P, (Wrp,(uw)du

- OO0

(3.19)
tl ' ) .
where: pl(u) = f fT (x-u)dx (3.20)
0
o
and pz(u) = f fT(x—u)dx (3.21)
t1+C

The most important feature of these first and second-order
moments is exhibited by the covariance function. In fact, as can be
observed from equation 3.19, as long as fhe functions pl(u) and pz(u)
are different from zero, there exists correlation between the counts
in disjoint time intervals. It is in equation 3.19 where the influence
of the p.d.f., fT(-), on the dependence structure of the N-S cluster

model, is more easily grasped.
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Now, define a differential process as AN_ = lim N(O,t+At) - N(O,t).
At>0

Also, define the covariance density of the process ﬁNt as:

cov|AN,, AN
[ b t*“] (3.22)
(at)

g(u) = lim

At>0

The spectrum of counts is defined as the Fourier transform of the
covariance density, c(u), of the differential process, ANt, and is

given as (Vere-Jones, 1970):

glw) = 31; A+ /exp(-iwu) c(u)du (3.23)

- 00

where A is the intensity of the process.

For the N-S cluster process, the spectrum of counts is given as
(Vere-Jones, 1970):

c 2
/fT(C-u)elw(Cnu)du w>0

- 00

£, = ={u - EIN,(E) + 1+ BN (E) = Ny(£)]

(3.24)

The spectrum of counts will be used in Chapter 6 to calibrate
the model. Since the interest is to preserve the dependence structure
of the rainfall arrivals, nothing is more appropriate to fit the

data to than the spectrum of counts, which is the covariance density

after a change of basis.
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3.2.4 Explicit Forms of the Neyman-Scott Cluster Model

In the above development of the N-S cluster model, the
forms;xfthe'distributions for Nz(-) and T have been léf; undefined.
The only requirement is that they agree with the structural postulates
of,Section‘B.i.l.. To oBtain‘explicit forms for the equation defining
the'model, it is then necessary to hypothesize partiqular forms for
the above two distributions. It is noteworthy to observe that in
order to completely specify at least the first and second-order
moments of'Section 3.2.3, it is only necessary.to specify the b.d.f.
of T. In fact, in equations 3.16 through:B.éé, the random yariable
representiﬁg the cluster sizes, N,(t), enters only through its first
and seéond moments. It is also important tb observe again, that the
~specific form of the p.d.f. for T determines the memory oﬁ the clusfer
model and the structure of the clusters as can be seen from equations

3.18 and 3.19.

In this work, as in Kavvas and Delleur (1981), it is assumed
that the random variable characterizing the number of rainfalls‘in
a given cluster follows a geometric distribution with parameter, p.

It is well known that the PGF of Nz(t) is then (Parzen, 1962):

. pz ' o
gNz(Z) = T-U-pz ° lz] <1 . (3.25)

The distribution of the time positions of the individual rainfalls
within their respective clusters, T, is assumed to be negative éxpo-

nential with parameter o, so that:
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o expl-a(z - £)] if g -t >0 v
£.C -8 =1 | ~ (3.26)

0 otherwise

- The assumption of an exponential distribﬁtion for T, implies
that no matter how far in the future from the time of occurrence
of an'RGM; there alwéys exists a positive probability that a rainfall
occurring at that time has been generated by the RGM which occurred

in the infinite past.

Once the p.d.f.'s for N2(-) and T have been chosen as the geo-
metric distribution and the exponential distribution, the following
expressions'for the variance time function and the spectrum of counts

are obtained (Kavvas and Delleur, 1981):

| _ . 2 . u 2 -at
var [N(O, £)1 = u + EWN)"(0)] « t) + O EIN,"(£) = Ny(t)][e 1 - 13

(3.27)

and
» 11 2 az
g, ) =1 [u- EMy(0)] +u + EIN,%(t) = Ny ()] 5| , w> 0
a +w
(3.28)
' | ' 2 | 2

where: E[Nz(t)] = 1fp and E{Nz (t)1 = @ -pip

Explicit forms for the N-S cluster model p.g.fl. result by
substituting equations 3.25 and 3.26 in equation 3.8. For the

particular case of N(O,tl) the substitution is done in equations 3.11.
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Finally, for the random vector N(O,tll, N(tl’tzl""’ N(tk-l’tk]’

the substitution is done in equations 3.13.
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3.3 Torecasting and Conditional Probability Distributions

In Section 3.2 of this chaﬁter, the Neyman-Scott cluster model
has been developed. Its general dependence structure has been
acknowledged, and in particular, the covariance function between
the counts in disjoint time intervals has been shown to be non-zéro‘
in the general case. It would be very desirable then if it were
possible to obtain conditional distributions of some sort, so that
the model can be used to forecast the future of the process. For
the particular kind of N-S cluster model being considered in this
work, it turns out that explicit forms of these CDF's caﬁ be obtained.
In order to do so, the few concepts from the Theory of Palm funcfions

presented in Chapter 2 are used.

3.3.1 Assumptions and Definitions

Just as a point process can be described in two different
ways, either in terms of its counting propertieé, or in terms of its
interval properties, forécasting problems for point processes are also
of two different kinds. The first kind corresponds to the problem of
finding the distributions of the number of events in future time
intervals. The second kind corresponds to the problem of finding
the distributions of the time to and between various configurations’
of events. It is this last kind of problem that is dealt with in
this chapter. As can be easily inferred, the second kind of problem
leads naturally to a description of the process in terms of its

interval properties. The function under consideration is the CDF of
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the time to the next rainfall event, given some or all of the past of

the process. The immediate past, in particular the time which has

elapsed since the preceding rainfall event, is of utmost importance.

In order to use the Palm-Khinchin theory introduced in Section

2.4, the following assumptions are in order:

a)
b)
c)
d)

That the process being considered is stationary.

That the process being considered has single occurrences.

That the process being considered has finite rate of OCCurrencé.
That the complete stochastic structure of the process is

known.

All four assumptions hold true in the case of the N-S cluster model

developed in previous section. Before proceeding, denote the finite

dimensional distributions of the point process N(+) as:

P

i’j’k...(x,y,z,...)

=‘Pr{N(0,x) =i, N(x,x+y) = j, N(xty,x+y+z) = k,...} (3.29)

which are assumed to be known from the p.g.fl. of the N-S model.

Also, define X as the quantity being forecasted and described

as the

time to the next occurring rainfall event. Its distribution

is most conveniently characterized in terms of the survivor function,

defined as one minus the corresponding distribution function.

Finally, the information on which the survivor function depends,
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is taken in this work as the time elapsed since the occurrence of
the last rainfall event. With this in mind, denote the survivor

function as:
S(x;H) = Pr(X> x|H] = 1 - PriX < x|H] (3.30)

which gives the probability that the time X to the next rainfall event

is greater than x conditional on the history H of the process.

3.3.2 Conditional Distribution Functions and Palm-Khinchin Theory

In order to arrive at the desired CDF's, consider the
worst situation or simplest case, namely the situation when no in-
formation about the past of the process is available. According

. to this, equation 3.30 reduces to the unconditional probability:
S(x) = Pr[X > x] (3.31)

Using the duality between the counting properties and the interval

properties of a point process, equation 3.31 can be rewritten as:
S(x) = Pr[X>x} = PriN(0,x) =0] = Po(x) (3.32)
Now, consider the case when the available information about the

past of the process is that a period of time ¢ has elapsed without

any rainfall events occurring. For this case, equation 3.30 becomes:
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_ PriN(0,z) = 0, N(g,z+x) = 0]
Pr[N(0,%) = 0]

PriX > x|N(0,z) = 0] (3.33)

where use of the fact P(A[B) = P(A(\B)]P(B) has been made. Equation

3.33 can also be written as:

PriX > x|N(0,z) = 0] = DEIN0,E4x) = 0] (3.34)

Pr[N(0,z) = 0]
_ Substituting equation 3.32 in equation 3.34 yields:

S(x+r) PO(X+C)

s(@) Py (3.33)

So(x;c) = Pr[X > xIN(O,c) = 0] =

Equation 3.35 ylelds the CDF of the time to the next rainfall
event, conditional on having observed the process for a period of
time z, without any rainfall events occurring. The subscript O

indicates that no events were observed during the interval .

When actual rainfall occurrences start to appear in the history
of the process, the situation complicates, since by the assumption
of point occurrénces, the survivor func;ion would now be conditioned
on probabilities over infinitesimal intervals. To solve this problem
it is necessary to obtain the multivariate distributions of the time
intervals between successlve cvents (jowett and Vere-Jones, 1972).
The theofy of Palm Fqnctions, sketched briefly in Section 2.4,
asserts that a well defined set of multivariate distributions

for the intervals exists.
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Assume that the available information about the past of the
process is restricted to the time ¢ since the occurrence of the last
rainfall event (an actual rainfall occurrence was observed at the

beginning of interval ); the desired CDF is:

Slo(x;c) = PrN(z,z+x) = OlC time units have elapsed since last event]

(3.36)
It is clear that equation 3.36 can be rewritten as:
Plo(h,c+x)
S, (x3z) = lim ———F—r— (3.37)
10 h-0 Fio(m®)
From the definition of Palm Functions presented in equation
2.28, and for k = O:
4y(x) = lim Pr{N(0,x] = 0|N(-h,0] > 0} , x > O (3.38)
h~>0
Now, observe that equation 3.38 can be éxpressed as:
. Pr{N(-h,0] > 0, N(O,x} = 0} . o
q.(x) = lim 2. 2 (3.39)
0 b0 Pr{N(-h,0] > 0}
but, since Pr{N(-h,0} > 0} = 1 - Pr{N(-h,0] = 0}, equation 3.39
reduces to:
Plo(h,x) 40)
qn(x) = lim v—5—Fv (3.40
0 h0 1 Po(h)
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Here, using the Palm-Khinchin theory and recalling equation 2.31,

equation 3.40 becomes:

P. (h,x) dP _(x)
10 1 0
q,(x) = lim = = . (3.41)
0 h-0 1 - Po(h) A dx
Finally, using equation 3.41 in equation 3.37, it is easy to
obtain for the desired CDF:
Qg (x+2) [dPO(x+c) dPO(C)]
AT N ax dx (3.42)

All the desired CDF's have now been obtained in terms of the
survivor functions So(x;c) and Slo(x;c) given in equations 3.35 and
3.42, respectively. By an extension of the development presented
above, it is possible té define Palm-type functions of higher order
in which more complex situations for the past of the process can be

accounted for.

3.3.3 Explicit Form of CDF's for the N-S Cluster Model

In this concluding section, explicit expressions for
equations 3.35 and 3.42 are obtained for the particular case of the
N-S cluster process in which the cluster center process is Poisson
with parameter u, the distribution of the cluster size is geometric
with parameter p, and the distribution of the time positions about

cluster centers is exponential with parameter a.
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To do so, it is needed to have the following probability
Po(x) = PrIN(0,x) = 0]. This can be derived using equation 2.13

and equation 3.11 as follows:

Po(x) = Pr[N(0,x) = 0] = g(2) (3.43)
z=0
Substitution in equation 3.11 of the PGF for NZ(-) given in
equation 3.25 and of the p.d.f. of T given in equation 3.26, and

carrying out equation 3.43 yields (Appendix C):

o=

00X

Py(x) = [———L] ceTHE L o (3.44)
1 - qe :

where q = 1 - p.

For the first case, equation 3,35 is:

. _ S(x+r)

where S(+) = Po(-); so that substituting equation 3.44 in equation

3.45 yields:

1 - qe_OLg ’ ~-ux
S . (x;z) = = - e (3.46)
0 1 - qe a(z+x)

SO(x;;) is the conditional probability that the time to the
next rainfall X is greater than x, conditioned on the fact that the

process has evolved for a period of time 7 without any events occurring,
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and that storm arrivals follow the N-S model developed.

When one rainfall event occurs at the beginning of the interval

r, equation 3.42 yields:

: dPo(x+;)
qO(X+C) —ax
SIO(X,C) = —ESTEY— = ——Eggzzy—— (3.47)
dx

Differentiating equation 3.44:

dPO(X)

u
-A+ )
—aw (3.48)

= - - e“uX . pula [1 - qe"mx

Now, substitution of equation 3.48 in equation 3.47 after evaluating

equation 3.48 at (x+r) and ¢, produces:

L3
oz ] 1+ 0L)
1l - qe . o HX

1 - qe—a(x+§)

S,p(x30) = [ (3.49)

Slo(x;C) is the conditional probability that the time to the
next rainfall X is greater than x, conditioned on the fact that
¢ time units have elapsed since the last rainfall occurrence, and

that storm arrivals follow the N-S cluster model proposed.

Observe that for both equation 3.46 and equation 3.49, as the
time r increases (time without rain or time since last rainfall)
the probabilities So(x;c) and Slo(x;c) approach those of a Poisson

model with parameter u, meaning that in fact, the farther in the
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future an event is considered, the more it starts to look as indepen-

dent of the présent or past of the process. From equation 3.46:

lim Sy(x;0) = e HX (3.50a)

§ >

and from equation 3.49:

lim S, (x30) = e HX (3.50b)

C—)-oo

With the CDF's So(x;c) and Slo(x;c), the forecasting of future
events is now possible. Thus, conditional information conﬁained*in
the immediate history of the process can be used, for instance, in
. obtaining optimal irfigation control in regions of deficit irrigation.

This will be accomplished in the next chapter.
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3.4 Summary

This chapter has completely introduced the N-S cluster process.
For a particular choice of distributions, explicit expressions for
the model and its first énd second-order moments have also been
presented. Finally, with the use of the Palm-Khinchin theor&, CDF's
of the time to the next rainfall event conditional on the immediate
history of arrivalé were derived. The stage is now set for the
introduction of these CDF's into the general irrigation scheduling

problem.
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Chapter 4

IRRIGATION SCHEDULING MODEL

4.1 Introduction

In this chapter, the general irrigation scheduling problem,

presented by Cérdova and Bras (1979), is reformulated to include

the precipitation model described in the previous chapters. The
framework in which this reformulation is carried out is a genéral
conceptual soil column with only vertical flows considered. The
probabilistic behavior of the storm arrival process, encoded in the -
conditional distribution fﬁnctions, So(x;c) and Slo(x;E), is now
coupled with the probabilistic description of the cumulative infil-
tration volume from a given rainstorm. This coupling provides the
means to describe the random behavior of the soil moisture content

at the root zone.

The resulting irrigation scheduling model makes use of the
conditional information contained in the immediate history of rainfall
océurrences as the growing season progresses. In this sense, the
new model is improved with respect to the model used by Cérdova and
Bras (1975),who,by assuming independence in the rainfall arrival
process, neglect the observed statistical dependence in precipitation.
Finally, using SDP, the irrigation scheduling problem is solved.

The solution is presented in the form of optimal decision functions
which yield the optimal amount of irrigation water to be applied

at each decision stage, as a function of the soil moisture content
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at the root zone, the volume of water available for irrigationm,
and the number of days .that have elapsed since the last rainfall

occurrence.
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4,2 Climate-Soil-Plant Model

The general irrigation scheduling model has three main components
which represent each of the three subsystems in the climate-soil-plant
system. The climate subsystem is modelled in terms of the precipi-
tation process and of the potential evapotranspiration. The former
determines the contribution of nature to the soil moisture content at
the root zone as well as how this contribution is distributed through-
out the growing season. The climate controlled potential evapotrans-
piration is an upper bound to the rate at which moisture can be
extracted from the soil by evaporation and plant transpiration. It
determines the stress status of given vegetal species depending on
whether the actual evapotranspiration rate is equal to or less than

the potential.

The precipitation process can be completely described by describing
storm intensities, storm durations and number of storms in a given
time interval. Storm intensities and durations coupled with the
dynamics of the infiltration process determine the amount of water
contributed by each storm to the soil moisture content. In this
chapter, the modelling of the precipitation process is completed.
Probability distribution functions for storm intensities and durations
are hypothesized, and using a derived distribution approach, the
probability distribution function of cumulati?e infiltration from a

given storm is obtained.
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The soil subsystem is represented in terms of a conceptual soil
column in which the components of the soil water balance interact to
detefmine the soil moisture content at the root zone. Infiltration
freplenishes s0il moisture, while evapotranspiration and percolation
out of the root zone deplete it. The rates of infiltration, evapo-
transpiration and percolation are all expressed as functions of the

soil moisture content.

Finally, the plant subsystem is described in terms of a crop

function which relates actual evapotranspiration to actual yield.

The interface between the climate subsystem and the soil-plant
system is provided by the volume of water infiltrated and by the

actual evapotranspiration rate.

4.2.1 Components of Soil Water Balance

The processes which govern the soil water balance are
infiltration, evapotranspiration and percolation. Their description
is of primary concern in defining the dynamics of the soil moisture

storage process.

4.,2.1.1 Infiltration and Surface Runoff

Cérdova and Bras (1981), using results obtained by
Philip (1957) and Eagleson (1978), derived an expression for the
cumulative volume of water infiltrated from a given rainstorm,

under a given set of initial conditioms.

65



Assuming a rainfall of constant intensity i and duration tr’
the cumulative volume of water infiltrated, V(i,tr), can be expressed

as.
V(i,tr) = i tr - Rg(i,tr) (4.1)

where Rg(i,tr) represents the amount of surface runoff produced by

the given rainfall.

Using Philip's infiltration equation (Philip, 1957) and assuming
constant rainfall intensity, Eagleson (1978) derived the following
expression for the volume of surface runoff produced by a given rain-

fall:

Rg(i,tr) = 1 (4.2)

t
. r .
(l—A)tr - S("f‘) if tr > to

where S is the soil sorptivity, A is gravitational infiltration rate,

and t0 is the time from the beginning of the storm at which the soil

surface becomes saturated. They are expressed as (Eagleson, 1978):

05\ [5m K(1) ¥(1) $(d,0,/6 )
s = 2( - 5_-) v 3mw (4.3)
S
A = Trym+ /0 )% -w (4.4)
2 0'"s *
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ty = ;z;—:*z;i (4.5)

where:

n = porosity

K(1) = saturated hydraulic conductivity

P(1) = saturated soil matric potential

}¢(d,6 /GS) = infiltration diffusivity function

w = capillary rise from ﬁhe water table

m = pore size distribution index

d = diffusivity index

c = pore connectivity index

60 = 1initial soil moisture content (mm)

es = s0il moisture content at saturation (mm)"

Substituting equation 4.2 into equation 4.1, the volume of water

infiltrated from a storm of constant intensity i and duration t. is:

it ift_<t

r r 0

V(i,tr) = 3 (4.6)

t
T
Atr+S(2> iftr>t0

Assuming the water table elevation constant throughout the
growing season, the values of the parameters S and A depend only
on the soill properties and on the initial soilil moisture content, 80.
Thus, for a given soil, the volume of water infiltrated from a given

storm is a function of the soil moisture content at the beginning of
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the storm. Using a derived distribution approach, the probability
distribution function (PDF) of the random input to the soil system

V(+,*) can be obtained from the PDF of the random variables

storm intensity and storm duration (Cérdova and Bras, 1979).

4,2.1.2 Actual Evapotranspiration

The actual evapotranspiration rate represents the
combined rate at which water is being extracted from the soil by
plant transpiration and by evaporation of exfiltrated water. For
the transpiration proceés it has been experimentally corroborated
that for a given potential transpiration rate, there exisfs a
threshold average soil moisture content below which the actual rate
of transpiration is less than the potential (Denmead and Shaw, 1962;
Minhas, 1974; Hanson, 1976). Considering the evaporation process
to behave similarly, a threshold soil moisture can also be defined
below which the actual rate of evaporation is less than the potential.
In the general case, these two threshold soil moisture contents have

different wvalues.

To avoid the problem of defining both processes separately,
Cérdova and Bras (1979), following an approach proposed by Gardner,
et al. (1975) combine both processes defining a single soil moisture
threshold 6*. The actual evapotranspiration rate Ea(e), can then be

written as (see Figure 4.la):
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ET if 6% < ©

p
Ea(e) = 4.7
aeb if 0 < 6 < 6%
where:

Kc . E0
a7 b

(6%)
E?p = Kc . EO
KC = crop coefficient
Eo = potential evaporative fiux
b = coefficient

Throughout this work, the soil moisture content 6 is measﬁred
with respect to permanent wilting point (PWP). The parameters a, b,
Kc’ EO’ 8% and PWP depend on the growth stage of the crop as well as
on the soil, crop, and climate characteristics.

4,2.1.3 Percolation

Eagleson (1978) relates the percolation rate P(8) to the
soil moisture content by the following expression in which capillary

rise from the water table has been included (Figure 4.la):
c
P(®) = do - w (4.8)
where d = K(l)/nc; n is the soil porosity; c is the pore connectivity
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index and w is the rate of capillary rise.

It should be emphasized that the processes of infiltration,
evapotranspiration, and percolation are all dependent on the soil
moisture content at the root zone. In this way, the soil moisture
content becomes the state variable represénting the response of the

soill system.

4.,2.2 Conceptual Soil Column Model: Moisture Depletion Process

Cérdova and Bras (1979) consider the climate-soil-plant
system in terms of a conceptual'soil column model (Figure 4.1b). The
inputs to the system are the climate controlled potential evapo-
transpiration, the amount of water infiltrated from a given storm
and the irrigation applications. Actual evapotranspiration and
percolation out of the root zone constitute the system outputs.

The state variable describing and controlling the response of the
system is the soil moisture content at the root zone. The evolution

of the state of the system can then be described by:

de
—_— = <+ _P_ 4.
dt It ft Ea (4.9)
where It and ft are the irrigation and infiltration rates, respectively.

In equation 4.9 only vertical flows are considered.

Considering the storm duration t, only through the volume of
water infiltrated Vt(i,tr) and assuming that the storms occur

instantaneously in time, during which no evapotranspiration, percolation
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or irrigation occurs, the soil moisture content after the occurrence
of a storm event can be expressed as:
if 8 +V (i,t ) > 6
s £ t t( ? r) s
8 = (4.10)

+
et Vt(i,tr) otherwise

Equation 4.10 also holds for the irrigation applications if these
are assumed to be instantaneous and producing no runoff. In this

case Vt(-,-) becomes the volume of irrigation water applied.

The soil moisture storage process is then characterized by
moisture replenishment from irrigation and infiltration from storm
events and by moisture depletion from evapotranspiration and per-
colation. The former are assumed to occur instantaneously. Thus,
the soil moisture depletion process can be described by defining
the evaluation of the state of the system during the interstorm

period. ' This can be expressed as:

a0® + a6 -w  0<6 <o

e _ _ | (4.11)

dt c
ET +d60 - w g% < B < 6
P - — 8

The terminal soil moisture content at time t, et, and the total

actual evapotranspiration during the time interval (0,t], ETa(t),

can be obtained by integrating equation 4.11.
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Depending on the initial conditions, several cases have to be
considered (see Figure 4.1c). If at time tO =0 0 = 90 < 8%, then

6 at time t is the solution of the following equation:

./reo .
36
B = t (4.12)

6, ab +d6 - w

The total actual evapotranspiration during the time interval
(0,t] is:

8

0 b
6° 20
ET_(t) = ba = (4.13)
Bt ab” +do - w

Now, if the initial soil moisture content 60 atlt0 = 0 is

*
greater than 6 , 6, > 0%, the time required to deplete the soil

0
moisture from 60 to 6% has to be defined:
%0
9
ex =/ L (4.14)
6y ET +do -w |

where t* is the time required to bring the soil moisture to the
value 6%, Once t* is defined, there exist two possible cases. 1If
the time interval under consideration is smaller than t*, then the

terminal soil moisture content et is obtained as the solution of:

0
/ 36 - -t (4.15)
6 ET +d6 - w
t “p

and by definition:
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Figure 4.la

CONCEPTUAL SOIL COLUMN MODEL
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Figure 4.1b :
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Figure 4.1lc

SOIL MOISTURE DEPLETION CURVES
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ETa(t) = t ETp (4.15)

If the time interval (0,t] is longer than t*, then the terminal

soil moisture content et is obtained as the solution of:

g *

]
- 0 - = £ - t* (4.17)
et ab” +doe -~ w

and the total actual evapotranspiration is:

g%

. b
ET (t) = t* « ET + 028 (4.18)
a P o, a8 +do - w

4,2.3 Crop Model

Real time control of irrigation systems fequires knowledge
of the crop response to water applications throughout the growing
éeasoﬁ. The total yield and economic return from a given crop are a
function of the history of the distribution of water thrpughout the
growing season and not only of the total volume of water applied.
Stewart and Hagan (1974) emphasize this point, acknowledging the
existence of critical growth stagés for many crops, during which
adverse responses to moisture stresses are greater., Knowing the
crop response function for the different growth stages allows optimal
control of the irrigation water. This is performed by considering
the temporal variability of the random precipitation inputs together

with the temporal crop response to moisture stresses and the dynamics
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of the soil moisture storage process (Cérdova and Bras, 1979). The
surrogate variable that best describes the effect of moisture stresses
on actual yield is the evapotranspiration ratio, defined by Ea/ETp,.

(Stewart, et al., 1974; Morey, et al., 1975; Stewart, et al., 1977).

Cérdova and Bras (1979) consider the effect of moisture stresses
-on actual crop yield to be additive. The relationship between
crop growth and total actual evapotranspiration can then be expressedh

as (Blank, 1975):
Z A, E—fp— (4.19)

Qhere Y is the actual crop yiéld, YM is the species dependent maximum
yield, NP is the number of growing periods, and A is the moisture
stress sensit1v1ty parameter of the crop. Flnally, the stress

factor isbdefined as the ratio of thé total actual evapotranspiration
ETZ to the total éotential evapotranspiration ETPz during each

growing périod zZ.

4.2.4 Stochastic~Representation'qf Soil Moisture

‘The éoil moisture storage process is a dynamic pr&cess.
" Figure 4.2 illustrates the variability of soil moisture over time,
és different storms arrive to the sité. Dﬁring the duration of the
storms, t_, soil moisture gradually increases due to infi;tfation.
On the other hand, during the interstorm time, tb’ soil moisture

gradually decreases due to the action of the soil moisture depletion
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processes, namely, evapotranspiration and percolation.

The random input to the soil system, the volume of water in-
filtrated from a given rainstorm, depends on the soil characteris-
tics, the initial soil moisture content, the topographic conditions,
and the storm intensity and duration. Thus, it is evident that the
total amount of water infiltrated during a given time interval
depends both on the number, depth, duration and timing of the storm

events, and on the dynamics of the soil moisture depletion process. .

In making irrigation decisions throughout the growing season,
it is necessary to consider all the possible future soil moisturé
states, especially if the amount of available irrigaﬁion'watér is
limited. However, since the input to the soil system over a time
interval is random, future soil moisture states become uncertain. .
Consequently, making optimal irrigation deciéions‘requires a pfo-
babilistic descriétion of the general terminal soil moisture content.
This can be obtained by coupling the dynamics of the soil ﬁoisture
storage process with the probabilistic description of precipitation
in terms of the process of storm arrivals and the storm charac-
teristics, intensity and duration. The procesé of storm arrivals
has already been presented in previous chapters. For the storm
characteristics, intensity and duration, Grayman and Eagleson (1969)
observed that they could be closely fitted by exponential distributions.
Furthermore, data analysis for two locations in the continental
U.S., provided by Eagleson (1978), corroborate the goodness of fit
obtained with the exponential distribution. For storm intensity,

they found:
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(1) = e iso0 (4.20)

and for storm duration:

(4.21)

]
(o]
[¢:]
(a3

v
o

fT (tr)
r

where fI(-) and fT (+) are the probability density functions (p.d.f.)
r
‘for storm intensity and duration respectively; 1l/a is the average

storm intensity and 1/8 is the average storm duration.

When surface runoff can be considered negligible with respect
to total>storm depth, the p.d.f. of infiltrated volume is simply the
p.d.f. of storm depth. However, in areas where surface runoff is
important, the p.d.f. of infiltrated volume has to be derived from
" the p.d.f.'s of storm intensity and duration. Assuming that the
random variables i and'tr_are independent and using a derived
distribution approach, Cérdova and Bras (1979) obtained the pro-
bability distribution function (PDF) of the volume of water infiltrated
ffom a given rainstorm V(i,tr) as:

i*
*
FV(V) = Pr[V<v] =1 - exp[-ai¥* - Gto ]l - aj[ exp[—ai - %gi di (4.22)
0

where:

t ok = S (4.23)
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and

2 |
% - WA+S sz /8vA + 52 (4. 264)

It is easy to see from equations 4.22 through 4.24 that when

v-+0, then i*»~ and FV(O) = 0, Also, when Vo, i**A and FV(W) = 1.

In deriving equation 4.22 it is assumed that storm intensity
and duration are exponentially distributed according to equations
4.20 and 4.21. It is also assumed that the volume of water infil-
trated is related to storm intensity énd duration as expressed in

equation 4.6.

This completes the description of the general components of the
irrigation scheduling model. 1In the following sections the general
water balance elements are integrated with the probabilisticAdescription
of storm arrivals given in Chapter 3 and the probabilistic description
of infiltration fromstorms presented above. The resulting system
description of the irrigation scheduling problem acknowledges its
nature as a finite horizon, multistage, stochastic decision problem.
Once this nature of the problem has been recognized, its solution

by stochastic dynamic programming follows straightforwardly.
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4.3 Systems Description of Irrigation Scheduling Problem

In Chapter 3 the process of storm arrivals has been defined.
Rainfall occurrences in time have been modelled as a Neyman-Scott
cluster process. Consequently, the observed statistical dependence
in thé rainfall occurrences in time, caused by the clustering of
storms has been accounted for. This allowed the derivation of the
conditional distribution functions Slo(x;;) and So(x;g) which give
the conditional probability of the time to the next rainfall event,
conditioned on the immediate history of occurrences. Now, the goal
is ;o take advantage of the information contained in the history
of immediate past rainfall occurrences, encoded in the conditional
PDF's Slo(x;;) and So(x;;), to obtain optimal irrigation control..
The system description of the irrigation scheduling problem, given
in the following sections, incorporates this conditional information
to define the evolution of the state of the system throughout the
growing season. In general, the system is composed of the following
elements: a time scale T, a state space S, a control space C,
an output space Y, a state transition function'F;va.stochaétic law

of motion P, and an output function G.

4,3.1 Time Scale, T

The time horizon of the irrigation scheduling problem
is the length of the irrigation season. At the beginning of the
season, the farmer has a limited but known volume of irrigation water.

Thus, the objective is to manage this limited amount of water
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optimally, so that net profits at the end of the season are maximized.

The time scale can be expressed as:

T = {k:k=1,2, ..., N+ 1} (4.25)

where k represents days (decision stages) and N is the number of

days in the growing season.

4.3.2 State Space, S

A state space representation of a given system requires
that the state variable chosen contains all the necessary information,
besides the inputs, to determine future states of the system. Let

ik be the state vector, such that:
iﬁ eS,keT

and (4.26)

= (0,, &, 5 I)
X k* "k Tk

where:

0 = soil moisture content at the root zone at beginning
of decision stage (day) k
g = number of days, at decision stage k, since the occurrence

of the last rainfall
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r, = volume of irrigation water available at beginning of

decision stage (day) k

The element Ck

4.26, represents the knowledge the decision-maker has about the

of the vector state fk, as defined by equation

immediate history of the precipitation process. Due to the dependence
in the rainfall occurrences, this history contains valuable infor-
mation about the future of storm arrivals. This information is
encoded in the conditional distributions Slo(x;g) and So(x;c),

derived in Chapter 3, and that are to be included in the general

irrigation model.

4,3,3 Control Space, C

At each decisioﬁ stage (days, weeks) during the irrigation
season, the farmer (decision-maker) has to decide whether or not to
irrigate, and how much. It is by making irrigation decisions that the
farmer can control the soil moisture states. Thus, the control
variable is the amount of irrigation water Uk applied at decision stage
k, such that:

U €¢C,keT and 0<U

K <r, ¥ T (4.27)

k k 'k
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4.3.4 Output Space, Y

As has been stated before, the objective of the decision-
maker (farmer) is to maximize net profits at the end of the season.
Net profits are a function of crop yield. Thus, the output variable
chosen is the contribution of decision stage k to total actual crop
yield, Y, -

4.3.5 State Transition Function, F

The unforced or free motion of the system, expressed in

terms of the dynamics of the vector state Xk’ is given by the state

‘transition function:
X, = F&),keT RN

The state transition function is a composite function of three
different operators or dynamic equations, one for each element of

the state vector ik.

First, the soil moisture depletion operator, which yields the
soil moisture content at the root zone at the end of the current
decision stage,

ebdi&

ek_l_1 = g(ek, At) + Vk(ek, At) (4.29)

where Vk is the volume of water infiltrated from storm events during

decision stage k; At is the duration of decision stage k, taken as
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one day; and © is the soil moisture content at the end of the stage.

k+1
In equation 4.29, it is assumed that an irrigation decision has been
taken at the beginning of the interval. Consequently, ek in

4,29, is the soil moisture content after the respective irrigation

application.

‘'The first right-hand member of equati&n 4,29, g(ek, At),
‘repreéents ﬁhe deterministic part of the soil moisture state
transition from decision stage‘to decision’stage.l It is given by
'equations 4.11,_4.12, 4.14, 4.15 and 4.17, and describes tﬁe dynamics
of the»soil mdisture depletion pfocess. The second member of the
right-hand side of thé equation, vk(ek, At), represents the stochastic
volume of water infiltrated from storm events during time interval At.
Consequently, 6k+1 is random. 1Its probabilistic description is

presented later as part of the stochastic law of motion, P.

It is necessary to emphasize that infiltration, either from
storm events or irrigation applications, is assumed to occur in-
‘stantaneously. Thus, the dynamics of the soil moisture storageA
process is as presentéd in Figure 4.3.

Sécond, the elapséd'time operator, which yields thé value of
the variable ck+1 at the beginning of the qext decision stage as a
function of its p?esent value, gk, and of a random disturbance, Wk,

as follows:

. + 1 ifW =0, keT A
(4.30)

W ifw =1 ,keT
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where wk is a binary random variable that 1s equal to one if it rains

during decision stage k, or equal to zero. otherwise.

Finally, the irrigation water operator given as a simple
mass balance equation to guarantee that the volume of water used
for irrigation during each decision stage k, is less than or equal

to the available volume of irrigation water:

T = z(rk, Uk) , keT

k+1

such that:

k+1 k k

(4.31)
and

k+1

4,3.6 Stochastic Law of Motion, P

The stochastic law of motion P, is a family of conditional
ldistributioﬁ functions Pk(i£+l/§k’ Uk)’ which for each decision stage
k, yield the conditional distribution function of the state vector
§k+l’ conditional on its present value and the irrigation decision.
Only two elements of the state transition vector §£+1 are stochastic,
namely the soil moisture content ek+l and the time in days since the
occurrence of the last rainfall §k+l' The state transition function

for the available irrigation water, 2(+,-), is totally deterministic.
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Consequently, the stochastic law of motion involves only the description

of the joint stochastic behavior of © and ¢ . To do so, the

k+1 k+1
probability distribution function (PDF) of the terminal soil moisture

content, as well as the PDF of the time since the last rainfall

event have to be defined.

Soil moisture content (SMC) at the root zone is discretized,
in the state sbace, from saturation SMC to permanent wilting point
PWP. The discretization follows that of Cérdova and Bras (1979)
(Figure 4.4). It is a variable interval discretization whose index
ranges from one at saturation to m at PWP. The length of each
interval is such that, under unforced conditions (no infiltration
inputs), it takes one day for the depletion processés to drive the
SMC from(the upper bound to the lower bound of.each interval, and’
m &ays to drive it from saturation fo PWP. . According'to this, the
PDF of the termiﬁal soil moisture content, for all soil qoisture

states, can be expressed as a transition matrix:
2k) = {¢; ()} d5=1, ..., m (4.32)

where ¢ij(k) represents the probability that at the end of decision
stage k (or beginning of decision stage k+l) the soil moisture
content is in state j, given that at the beginning of the stage it is

in state i. The generic element of matrix ¢(k) is defined as:

(k) =P, (k) - Pr(W,=0|z 1 + P,
. k '

(k) - PriW =1lc, 1 (4.33)
5 .
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where Pij1w =0(k) is the probability that at the end of stage k,

the soil mo%sture content is in state j, given that at the beginning
of the stage it is in state i, and no precipitation occurs during the
stage. Pijlw =_1(k) is its.analogue for the case when precipitation
occurs duringkthe stage. Finally, Pr[Wk=Ol;k] and Pr[wkfllgk] are

the conditional probabilities of no rain and rain during the given

stage, respectively.

If there is no rain during decision stage k, then Vk(ek, At) =0
in equation 4.29. Thus, for At equal to one day and according to

the above discretization:

j . _ i
firr = 800y 8B)
and ' - (4.34)
j = i+1
Consequently,
1 if j=4+1

Pijlw _O(k) Pri6) 1 [P o 1) /048 [fio 1! 204 W, =0

k . 0 otherwise .

(4.35)

where the subscripts U and L stand for upper and lower bound of the

given soil moisture interval.
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When precipitation occurs during the time interval At,

equation 4.29 can be written as:

J —
ek+1 = g(Gk, At) + V (ek,

At) = ek

+ v, J

In equation 4.36, soil moisture is first depleted from 6; to 6

and then replenished up to the value 6

k+1°
the volume of infiltrated water (from rainfall) required to bring
the SMC from Bk to 6ﬂ+1 The upper and lower bounds of the jth

interval can be expressed as:

i+l

i ij
k1 = % %k
j - 1+1 ij
LOk+1 AL
Cénsequently,
, ) J .
Pij]w —1(k) Pr{e e[Uek, L k]/e Wy 1}
=
) 13 i . id ol ol
PripVi” < Vio < g% /0 0P 18!

Finally, and following Cérdova and Bras (1979):
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Thus, V J represents

and Wk=1}

(k, k+1],

(4.36)

(4.37)

(4.38)



=1 ij i ij ot -
Pij ) (k) T Pr{LVk Ve oY% /6k P 1L k]’ l}de
¥y agic J 4
ok
(4.39)
where:
i i i
Aek = PO - %% (4.40)

Expression 4.39 can be evaluated using equations 4.36 and 4.37
to calculate UVkJ and VkJ, and using equation 4.22 which defines

the PDF of the random variable VkJ, conditional on 6;.

In a previous chapter, the conditional distributions So(x;c)

and S 3¢) have been defined for a point process with single

10(%

occurrences and applied to model storm arrivals. Assume that the
time interval chosen, At equal to one day, between decision stages

is sufficiently small to guarantee that:
PriN(At) > 1] = O (4.41)
where N(At) counts the number of rainfall occurrences in interval At.

By definition,
So(x;;) = PriX > x|zl
and (4.42)

Slo(x;g) = Pr(X > x|g]

where X represents the time to the next rainfall occurrence.
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Also, because of the duality between the definition of a Point
Process as a Counting Process or as an Interval Process, equation 4.42

can be written as:

[+

Pr(X > x] = Pr[N(x) =01 =1 - j{: Pr[N(x) = n] (4.43)

n=1

When x equal one day, equation 4.41 holds. Consequently, sub-

stituting in equations 4.43 and 4.42:

So(x=1 day; £) = PrN(x) = 0|c] 1 - PrN(x) 1|z]

(4.44)

0]z] 1|z)

SIO(X=1 day; ) = Pr[N(x) 1 - Pr[N(x)

Thus, the PDF of the random variable Wk can be obtained from

eqution 4.44 as:

So(x=1 day; ck)

Pr[wk=0[gkj = (4.45)
Slo(x=l day; ck)

and

1 - So(x=1 day; ck)
pr[wk=1l;k] = (4.46)
1 - S1o(x=1 day; ck)

Expressions to evaluate So(x;;) and Slo(x;c) are given in Chapter 3.
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This completes the definition of the SMC transition matrices.
It should be noted that now, as opposed to Cdrdova and Bras (1979),
the transition matrices #(k) are conditional on the random variable
;k; Also, it should be observed that the conditional information
contained in the history of the precipitation process has now been

effectively accounted for.

To completely define the stochastic law of motion, it is neceséary
to define the PDF of the random varigble Ckfl’ conditional on the
value of Skt i; has already been stated that Tk iepresents time in
days since the occurrence of the last rainfall. However an upper
bound on the value of ;k has not been defined. In order to do so,
it is assumed th#t there exists a time lag in days beyond which the
dependence in the rainfall arrival process is sufficiently‘weak to

guarahtee that:

. . * ~ . *
So(x,H) # SO(X,H ) So(x,Hl) 0 < H< H* < H1
and ' (4.47)

R HEY ~ . .
S,oCGH) # S ((x3HY) = S, ((xsH) 0 < H < HY < H

In equation 4.47, H, H¥ and H represént the knowledge the

1
decision-maker has about the immediate history of the storm arrival
process. Thus, the previous assumption simply states that there

exists an upper bound, H*, to the conditional information contained

in the past of the process. According to this assumption, equatlon

4.30 becomes:
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min(Ck+1, H*¥) if W, =0, ke T

k
Ck+l h(;k, wk) = (4.48a)
W 1£W =1,keT
and
i _ . . " '
Ck € Ck if ;k iskeT,j 1, 2, ..., H (4.48b)

The conditional PDF of the random variable Ck+1’ conditional

on the value of Ck’ can be expressed as a transition matrix:
¥Y(k) = {wij(k)} i,j=1, 2, ..., H*  (4.49)

where wij(k) is the probability that at decision stage k+l, Ck+1 is

in state j, given that at stage k, Ek is in state i.
The generic element wij(k) can be expressed. as:

v..(k) =¢q

13 1 (k) « PrW, =0|g,] + Ai (k) - Priw=llzg, 1 (4.50)
|w =0 [W =1
. k k
where:
y = j i - ‘
Uy, (k) Pr{z, ;¢ §k+1/€k e g, and W 01 (4.51)
]wk—O ,
and
= 3 i -
qijlw =1(k) Prig, .. € Ck+1/ck € Ly and W, 1] (4.52)
k
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Expressions 4.51 and 4.52 represent the one stage transition
probabilities of the random variable f , conditional on whether or
k
not it rains during decision stage k. These probabilities are

evaluated using equations 4.48a and 4.48b. They are:

1 if j = i+l
944 (k) = (4.53)
iWk=0 0 otherwise
and
1 4if j=1
qij a(k) = (4.54)
Iwk=1 0 otherwise

The joint stochastic behavior of the random variables 6 and
¢ can be obtained in terms of the transition matrices ®(k) and ¥(k).
Assume that at the beginning of decision stage k, the SMC is in state
i, 9;, and the elapsed time is in state p, ;i; then the probability

that at the beginning of stage k+l, © is 1n state j and ck+1

k+1

is in state q can be written as:

i

P j q = . { 4=
Pr{ [ek’ Ck] > [ek.+1’ Ck"'l]} - ¢ij(k) wpq(k) 1’j-1, L m

p>q=l, ..., H*
(4.55)

where Pr{[*,*] > [*,*]} stands for transition probability.

Generalizing equation 4.55 for all feasible values of the

indexes i, j, P, q, ylelds the desired stochastic law of motion.
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4.3.7 Output Function, G

The contribution of decision stage k, to actual total
crop yleld has been defined as the output variable. According to
the crop model presented in Section 4.2.3, the output function can

be defined as:

e = 6o K B (4.36)
such that:
Yk = YM cAL E,—fé—; (4.57)
where:
Yk = contribution of decision stage k to total crop yield
YM = genetically determined maximum potential crop yield
Ak = sensitivity parameter of the crop to soil moisture stress
ETk' = total actual evapotranspiration during decision stage k
ETPk = total potential evapotranspiration during decision stage k

The systems description of the irrigation scheduling model

has now been completed.
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4.4 Stochastic Dynamic Programming Solution

In order to apply the Dynamic Programming algorithm to the

multistage decision problem defined in the previous sectioms, it

is necessary to define an objective function. In this study, and

accounting for the stochastic nature of the variables involved,

the measure of performance to be used is the maximization of the

expected value of the total net profits at the end of the growing

season:

and

where:

N+1

B* = MAX E Z R (X, X > U] - BC (4.58)
k=1 |

X,X ., U)=PY -gU - vyC(U) (4.59)
+1 k k k k* 'k

unit price of crop yield

contribution of decision stage k to total yield

unit cost of irrigation water

fixed cost of irrigation (labor cost)
volume of irrigation water applied at decision stage k
1 1£0 >0

k (4.60)

0 1if Uk =0
production costs different from irrigation costs

expectation operator
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With respect to the available irrigation water, two different
cases can be defined in studying the irrigation scheduling problem:
limited and unlimited water supply. The critical case is when the
irrigation water supply is limited. However, from an operational
point of view, the unlimited water supply case offers some advantages
that make it worth solving. On oﬁe hand, it has smaller dimension
since it is not necessary to account for the available volume of
irrigation water. This simplifies the problem and reduces its
solution cost. On the other hand, since the unlimited water problem
is a particular case of the more general limited water supply problem,
its solution constitutes an upper bound to the maximum net profits
attainable. Furthermore, by solving the unlimited water case, it
is possible to obtain a preliminary analysis of the effect of the
conditional information encoded in So(x;c) and Slo(x;c) on the solution

of the irrigation scheduling problem.

4.4,1 Unlimited Water Supply

When the available irrigation water, at each decision
stage, is unlimited, it is not necessary to include it as a state

variable. Thus, for this case:

X, = (@, 5)
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The SDP algorithm proceeds as follows:

a) Define

*

*
Ter1 B! = T [0y

N Syl =0 ¥, il o,m (4.61)

¥p, p=1, ..., H¥

b)  Proceed by induction as follows:

* — *
Jk[Xk] Jk[Xk’ Bl = UMAS ER (Xk Xk+1’ U+ Jk+l(xk+l)] (4.62)
k

where Qk is the set of feasible irrigation decisions at stage k and
*
Uk is the optimal irrigation decision at stage k. More explicitly:

P
J [9 J [Gk,C ,U 1

k.’ ;k]

= MAX {E[Rk(eli{ ,U )] +§:Z¢ (k) zp (k) Jk+1[e +1,ck+1]} (4.63)
Uker

o * *
Then, set r, (e k,c Py = U, . (4.64)

* .
where T (*,*) is the optimal decision function at stage k. It
yields the optimal amount of irrigation water to be applied at

. . B
declision stage k,-Uk, as a function of the state, Xk.

c) Proceeding by induction, obtain:
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*ip_*ip
Jl[el,cll =B [el,QI] + PC (4.65)

4.4.2 Limited Water Supply

The SDP algorithm proceeds as follows:

a) Define

F = _o* i ) _ . e
I ! = T Onerr Bgers T =00 ¥, 351 e m o (467D

¥p, p=1l, ..., H*
b) Proceed by induction as:
A~ _ %

= mx ERELUOT DY 6, ) b (0 Ig, B ) 4.68)
U, eQ i q

or more explicitly:
* i p
Jk [ek,ck,rk]

. 1 P .
= MAX {E[Rk(e;,gi,uk)] + :E:::E:: 955 ¥, (0 Jk+1[ei+1,c§+1.rk+ll}

Uy eQ i q
(4.69)
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and U

bl = %% T %

Then, set

*
U

* i p -
T (8 > 1) = Uy

K>k
c) Proceeding by induction, obtain:

%*

The SDP algorithm yields, not only the expected maximum net

i p L . S -
Jl[el, s r1] B [61, S r1] + PC

(4.70)

(4.71)

(4.72)

*
benefits, Jk[Xk], for each decision stage and state vector but also,

*
and most importantly, optimal decision functions, Pk(Xk), that give

the optimal amount of irrigation water to be applied as a function

of the SMC at the root zone, Gk, the time in days since the last

rainfall occurrence, Ck’ and the volume of water available for irri-

gation, rk.
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4.5 Summary

In this chapter, the irrigation scheduling problem has been
reformulated to include the conditional information available in
the history of the precipitation process as the growing season
progresses. A systems description of the problem has been presented,
acknowledging its nature as a finite horizon, multistage, stochastic
decision process. Finally, the solution of the problem has been

obtained using stochastic dynamic programming.
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Chapter 5

MODEL CALIBRATION AND CASE STUDY RESULTS

5.1 Introduction

The previous four chapters have developed the theoretic setting
necessary to formulate and solve the irrigation scheduling broblem,.
'considefing thé conditional information contained in the immediate .
history of rainfall occurrences. However, the main objecﬁive of this
Qork is not so much to develop a more or less qomplex model of>the
climate—soil—plant system interactions, but to devise a model capable.
of being used in real world.situations. In this chapter, the issues-
of model: calibration and case study results are discussed. Issues
regarding model calibration are presented.in two separate sections,
the first on the calibration of the plant-soil system model; the
second on the calibration of the climate subsystem model. Lastly,-

case study results are presented.
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5.2 Case Study Definition

The irrigation problem defined by Cérdova and Bras (1979)
constitutes the case study in this work. Cérdova and Bras (1979)
in turn, used parameters and data obtained by Blank (1975) from an

irrigation study in Colorado.

The parameters required by the soil-plant model were obtained
from field experiments conducted at Colorado State University, with
an early corn variety (Northrup King PX 20) in a uniformly deep

Nunn clay loam soil during the growing season of 1974,

Precipitation data was obtained from historical records at
Denﬁer, Colorado (N.O.A.A. Station Number 05-2220). Economic co-
efficients were obtained by Blank, from the economic study of the
Fort Morgan irrigation area.in Colorado, and performed by Conklin (1974).

The growing season starts on May 15 and ends on September 11.
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5.3 Soil-Plant System Model Calibration

The calibration of the soil-plant system is related to the
estimation of the parameters defining the additive crop model adopted,
as well as the elements of the soil water balance. In the definition
of the above parameters, it is also implied that parameters describing
the particular soil have to be defined; particularly with respect
to the soil water balance. Furthermore, as required by the crop

model, growth stages, and their characteristics have to be described.

5.3.1 Crop Model Parameters

For the additive crop model adopted in Chapter 4 and

expressed as (equation 4.19):

- NP
- z
X v Z A, TP (5.1

the parameters to be estimated are the crop sensitivity parameters Az’
These parameters represent the relative sensitivity of the particular
crop to water stresses in a given growth stage. Blank (1975)

considered the following three growth stages:

1. Germination through vegetative growth, from May 15 to

July 16.
2. Early silking, from July 16 to July 23.

3. Silking through maturity, from July 23 to September 1ll.
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The adoption of these three particular stages takes into account

the fact that the presilking period is critical for corn production.
Water stresses during this growth stage induce worse adverse effects
on the overall plant growth than on any of the other two growth

stages (see Figure 5.1). Using a standard stepwise linear regression,
Blank (1975) calibrated the model of equation 5.1 to experimental

data obtained for an early maturity corn variety (Northrup King PX 20).
Table 5.1 presents the values obtained for the parameter Az in each

.growth stage (see Cérdova and Bras, 1979).

5.3.2 Soil Water Balance Parameters

As presented in Chapter 4, the components of the sdil
water balance are infiltration from storm events or irrigation
applications,levapotranspiration, and percolation. All of these
processes are expressed as functions of the initial soil moisture

content at the root zone and soil parameters.

5.3;2.1 Soil Parameters

Cérdova and Bras (1979) estimated the required soil
pafameters necessary to account for the dynamics of the infiltration
and percolation processes from the description of the soil texture.
This was necessary since Blank's study neglected the processés of per-
colation and surface runoff and did not provide values for the soil.
parameters, The typical values for the parameters corresponding to a

clay loam soil are taken from Eagleson (1978) and presented in Table 5.2.
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Cumulative Crop Growth

]  cw - . = wa . —— o

Time from Emergence to Maturity

Potential Growth
—— s Stress on Growth Stage |

— — — — Stress on Growth Stage I|
......... Stress on Growth Stage il

'~ RELATIVE EFFECT OF WATER STRESS ON PLANT GROWTH
(taken from Anderson and Mass (1971))

Figure 5.1

THEORETICAL CROP GROWIH CURVES
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Table 5.1

CROP SENSITIVITY PARAMETERS FOR BLANK'S ADDITIVE MODEL

0.236 0.159 0.573 0.98

Note: R2 is the square of the correlation coefficient,
between measured and computed yield.

Table 5.2

SOIL PARAMETERS

Soil Type: Clay Loam

Porosity, n: 0.35

Saturated Hydraulic Conductivity, K(1): 30 ﬁm/day
Saturated Soil Matrix Potential, Y(1): 190 mm
Diffusivity Index, d: 5.5

Pore Size Index, m: 0.286

Pore Connectivity Index, c: 10

108



5.3.2.2 Actual Evapotranspiration Process

For the three different growth stages defined earlier,
it is nécessary to determine not only the potential evapotranspiration
rate, but also the corresponding crop root depth. The former is
required because it determines the evaporative demand of the atmosphere
or ma#imum water ektraction rate, and the latter because it defines
the.depth of the conceptual soil colﬁmn and consequently the‘total

volume of water available for evapotramspiration.

Adopting the assumption made by Yaron, et al. (1973), that the
gctual evapotranspiration is a linear function of the available
soil moisture content, equation 4.7 reduces to:

aé 0<8 < FC

E () = ’ o o (5.2)
ET FC < ©
P

where FC is field capacity and a = ETP/FC is called the Yaron
coefficient. The values obtained by Blank for FC, ETP, and root

depth for each growth period are presented in Table 5.3.

Using the values for FC, n, and root depth presented in Tables
5.2 and 5.3, and using typical soil moisture extraction curves-
f(EégleSon, 1978), valueé for the soil moisture content at saturation
- and permanent wilting point can be obtaiﬁed (Cérdova and Bras, 1979).
fhese values for the particulér case at hand are presented in Table

5.4.
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Table 5.3

* PARAMETERS OF EVAPOTRANSPIRATION FUNCTION

Growth Pefiod

I II III
ETp (mm/day) 3.1 6.3 4.6
FC (mm) 143.1 330.0 330.0
Root Depth (m) 0.91 2.13 2.13
Table 5.4

SOIL MOISTURE CONTENT AT SATURATION AND PWP

Growth Period

I. 11 III
8 (mum) 320 747 747
PWP (mm) 74 173 173
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5.3.2.3 Soil Moisture Depletion Process

In order to determine and quantify the soil moisturei
depletion forlthe case study, several assumptions are made. The
eﬁapotranspiration rate, as expressed in equation 5.2, is assumed
to be aklinear'function of the available soil moisture content.

In order to obtain a linear expréssion for the soil moistureldebletion
réte, the percolation function is also linearized. To do so, it is
>as$umed that the percolation rate is zero for soil moisturé contents
1’ 6* 5_91 5_95 is defined.' Béth

the linear evapotranspiration function and the linear percolation

below FC, and a neﬁ parameter, 0

function are shown in Figure 5.2. According to this the soil moisture

depletion rate can be defined as:

al + sle 61 <6 f_es
do :
av - _ * (5.3)
. dt a2 + 826 8 <6 5_61
0 <6 e*
836 : <6 <

Values for #he parameters of equation 5.3 are giVén by Cbrdova
and Braé (1979) (see Table 5.5). After linearization, equations
4.11 through 4.18 can be solved analytically. After solving these -
linearized equations, the resulting soil moisture depletioﬁ curves
fdr the case étudy as well as theif associated total actual evapo-
transpiration curves are shown in Figures 5.3 and 5.4, for each growtb

stage.
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Actual Evapotranspiration and Percolation Rates
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[~ P—

Soil Moisture Content

Figure 5.2

LINEARIZED EVAPOTRANSPIRATION AND
PERCOLATION FUNCTIONS



Table 5.5

PARAMETERS OF LINEARIZED MOISTURE DEPLETION RATE

Growth Period

1 i hasd
o -86.7 -89.15 -90.85
BlA 477 .215 .215
oy -10.9 -6.90 -8.60
By .098 040 - .040
By .0217 .0191 . .0139
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SOIL MOISTURE CﬂNTENT(Z)

TOGTAL ACTUAL EVAPATAANSPIRATION ()
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5.3.3  Economic Parameters

As introduced in Section 4.4, the objective is the maxi-
mization of expected net profits; this is expressed as (equations 4.58

and 4.59):
N+1 : B
B* = MAXE[Z Rk(ik, ’)Zkﬂ, Uk)] - PC (5.4)
- Fk=1 ,
where Rk(ik', EEkH,' ) =P Y, - BU, - vC, (U,) . : (5.5)

The crop model has also been defined in equation 5.1 as:

NP o NP - '
o= YME:AZ ETP ZYz ' (5.6)
Z R
z=1 z=1

where as before, NP is the number of critical growth periods;
thus, Yz represents the contribution of growing period z to total
actual crop yield. According to this, and from equation 5.6, Yz

can be expressed as:

ET

- Tz
Y Yy A, ETP (3.7)

However, because of the additive characteristic of the crop

model, Yz can also be expressed as:

ND ND
z YM Az z
= E = — E 5.8 :
Yz _ Yn,z ETPZ' ETn ( )A

=] - n=1
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where NDz represents the number of decision stages in growing period z;
and Yn 2 is the contribution of decision stage n in growing period z to
- ?

total actual crop yield. Substituting equations 5.7 and 5.8 into equation

5.6 yields:

NP ND_ N+l
Y = E E Yn,z = Yk o . ©(5.9)
z=1 n=1 =1
whére: NP |
N = 2 M, -1 . (5.10a)
z=1
and:
= Pl ’ 5.10b
Ve = A TF (5.100)
ETP,

is the contribution of the general decision stage k to total actual
, A o * -

crop yield, as it appears in equations 4.59 and 5.5; Ak and ETPk

are the crop sensitivity parameter and total potential evpotranspiration

for the growing period corresponding to decision stage k. Substituting,

equation 5.10b into equation 5.5 yields:

ET ‘
— — * K
R R Fppr U = B Y A ——5 - 80, - vG(T) (5.11)
~ ETPk :
Equation 5.11 can be rewritten as:
R (X X g5 U =a ET, -8U - yC (U) (5.12)

* * ' '
where: o = P YM Ak/ETPk represents the dollar value of one unit
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of actual evapotranspiration during decision stage k. In the previous

. % *
equations, Ak and ETPk are defined as follows:

*
Ak = A (5.13a)
'z
TP* = ' 5.13b)
ETP, = ETP, (5.1
and such that:
z z+1
ND < k < N, n=1,2,...,NP . (5.14)
, n— - n
n=1 n=1

| Blank (1975) eétimated.values for the parameters YM and P.
These are 140 bushels/acre and 2.5 U.S.$/bushel, respectively.l
Using the length of each growth period and the values for the poten-
tial,evapotranépiration rate, the parameter ak was calculated.
Tablé 5.6 shows the resulting values. The parameters PC, B, and Y
were estimated by Blank from the study of the Fort Morgan irrigation
area in Colorado, performed by Conklin (1974).  Assuming a fiftf
~ percent efficiency in the application of waﬁer yields a value
B = 0.016 U.S.$/mm, of water delivered at the root zone. Assuming
‘that labor cost pef irrigation is independent of the amount of water

"applied yields y = 2.5 U.S.$§/irrigation/acre. Finally, PC is-

estimated as 237.0 U.S.$/acre.
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Table 5.6

VALUES FOR PARAMETER o,

Growth Period
II ITT

I

a $/mm 0.44 1.15 0.94 -
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5.4 Climate Subsystem Model Calibration

~As defined in previous chapters, the climaﬁe subsystem is
modelled in terms of the potential evapotranspiration rate and the
preéipitation process. The potential evapotranspiration rate was
assumed deterministic but varying throughout the growing season,
and its values for the different growth periods were presented in
Section 5.3. Precipitation is modelled in terms of the process of
storm arrivals and the storm intensity and duration. As stated
earlier, these parameters were estimated from twenty-seven years

of precipitation data at Denver, Colorado (1949 to 1975).

The main issue to be resolved in the célibration of the complete
‘precipitation model is the definition of a storm event.: In the work
of Cbrdova and Bras (1979), and in order to justify the use of the
Péisson process for the storm arrivals, an independent storm.event
had to be defined. This was done by determining a minimum interstorm
time that would yield a coefficient of variation equal to-one in
the implied one parameter exponential distribution. Neglectiné
seasonality in the precipitation process throughout the year,
Restrepo and Eagleson (1979) determined that the minimum interstorm

tiﬁe was 17.7 hours for Denver, Colorado.

In this work, the objective is not to define a storm event
that fits the assumptions of a prespecified model; rather, a logical
storm event is defined, and then a precipitation model is fitted to
the resulting time series. The only condition requifed is that the

defined storm event effectively describes a point occurrence. This
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is a condifion required not only by the Neyman-Scott process, but
also by the Poisson process, and in general by the assumption that
the precipitation arrivals constitute a point process. This is true
as long as the duration of each storm event is not considered, since
for a point process the occurrences should be insténtaneoqs. Con-
sequently, an abstraction is needed so that storms of finite duratidn
are transformed into instantaneous occurrences in time. This trans-
formation is obtained defining a sampling interval so that an in-
stantaneous rainfall event is assumed to have éccurred in the middle
of the ihterval if certain coﬁditions are met. As the size of the
sampling interval decreases, each storm event starts to approximate
more and more an instantaneous occurrence. This size of the interQal
is determined not only by the requirement that the resulting storm
events should approximate as much as possible é point occurrence;

but also by the computer storage requirements, computer costs, etc.
Keeping this in mind, and the study of Restrepo and Eagleson mentioned
above, an interval size of twenty-four hours (one day) is used in
this work to define a rainfall occurrence. A storm event océurs in
the middle of the day whenever the total precipitation on the given

day is greater than 0.254 mm (0.01 inches).

5.4.1 Rainfall Intensity and Duration Parameters

The entire growing season (120 days) was divided into
fifteen consecutive eight-day long periods to carry out the rainfall
data analysis with respect to intensity and duration. The analysis

was performed for each eight-day period and frequency histograms

120



for storm intensity and duration were obtained (Tables 5.7 and 5.8):
first and second-order moments for intensity and duration, as well

as the number of storm events for each eight-day period were obtained.

Comparing the number of storms in each of the fifteen periods,
as well as the mean and variance of the storm intensity and duration,
five arbitrary statistically homogeneous precipitation periods weré
defined. These homogeneous precipitation poriods are as shown in
Table 5.9. This means, ﬁhatvalthough as stated in previous chapters,
the precipitation process is considered homogeneous (stationary) with
respect to the storm arrivals; it is considered inhomogeneous with
respect to the storm characteristics intensity and duration. Using
the method of moments, an exponential distribution waé fitteo to
storm intensity and storm duration in each homogeneous precipitation
period. Also, for the sake of comparison, a Poisson model ﬁaé fitted
to the process of storm arrivals. The parameters obtained for the

analyzed data are as shown in Table 5.10.

5.4.2 Rainfall Arrivals Model Parameters

Only three parameters need to be calibrated.when the
rainfall arrivals are modelled as a Neyman-Scott closter process of
the kind considered here. Namely, these parameters aré-the paraméter'
u of the Poisson distribution for the parent process or rate of
occurrence of RGM's; the parameter p of the geometric distribution
for the cluster sizes; and the parameter a of the exponential

distribution for the times of occurrence of the individual storms
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Table 5.7

HISTOGRAMS FOR STORM INTENSITY

STORM INTENSITY (MM/H)

P e e L L R R Y

HISTOGRAMS FOR EACH PERIOD *
INTERVAL 1 2 3 4 5 6 7 8 L] 10 11 12 13 14

2.- 3. 6. S5. 9. 4. 4. 4. 5. 5. 6. 7. S. 8. 8. 3.
3.- 4. 2. 2. 4. 6. 2. *1. 3. 3. 6. 4. 5. 5. 2. 4.
4.-. 5, 2. . 1. 4. 2. 1. 5. 3. s. 2. 2. t. 2. 1t
5.~ 6. 1. 0. O. 4. 3. 0. 0. 2. 3. 2. 1. 0. 1. oO.
6.- 7. 0. 0. 0. 0. ©O0. O0. t. 0. 3. O0. 1. o0 0. O.
7.- 8. 0. 0. ©O0. . 0. O0. ©0. ©O. 0. oO. oO. t. o. O.
8.- 9. 0. 0. 0. O0. 0. ©O0. 2. 0. 1. 1. oO0. 1. . oO.
9.- 10. 1. 0. O0. 0. ©0. ©0. ©0. 0. 2. O0. ©0. ©O0. O0. O.
10.- 11, 0. 0. 0. O0. 2. 0. t. 0. t. 1. ©0. oO0. O0. O.
1.~ 12, 0. 0. 0. O0. O0. ©O0. . ©0. O0. ©O0. ©0. 0. O0. O.
12.- 3. o. 1. ©O0. 4. ©O0. ©0. ©O. 0. ©O0. ©O0. $. o0. O0. O.
13.- 14. 0. 0. 0. O0. O0. O0. 4. 0. 4. ©0. oO0. O. 0. O.
14.~ 15, 0. 0. 0. 0. ©0. 0. O0. 0. 0. O0. ©O0. oO0. ©O0. O.
15.~ 16. 0. 0. 0. 0. O0. 0. 0. 0. ©0. ©0. ©O0. ©O0. ©O0. O.
16.~ 17. 0. O0. 0. O. 1. 0. O0. 0. O0. 0. O. 1. o. {.
17.- 18. 0. 0. 0. O0. ©O0. 0. 0. 0. O0. 1. ©0. ©O0. O0. .0
18.- 19. 0. 0. 0. ©O0. 0. O0. 0. O0. ©0. ©0. ©o0. oO0. O0. oO.
19.- 20. 0. 0. ©0. ©0. O0. ©0. 0. ©O0. 1. ©0. ©0. ©O. oO0. O.
20.- 21. 0. 0. 0. ©0. ©O0. 0. 0. O0. 0. ©0. ©0. o©O0. O. O.
21.- 22, 0. 0. 0. O0. O0. 0. ©0. 0. ©O0. ©O0. ©0. ©0. ©O. O.
22.- 23. 0. ©0. 0. ©O0. O0. 0. 0. ©0. 0. ©0. ©O0. ©O0. 0. O.
23.- 24. 0. 0. 0. 0. O0. ©O0. ©0. O0. ©O0. ©O0. ©0. ©O. ©O0. O
24.- 25. 0. 0. 0. ©0. ©0. ©O0. ©0. ©O. ©0. 0. ©0. ©O. ©O. oO.
25.- 26. 0. 0. 0. ©O0. 0. ©0. 0. 0. 0. 0. oO0. ©O0. ©O. O.
26.-~ 27. 0. 0. 0. ©O0. O0. O0. ©0. ©0. 0. ©0. ©0. oO0. ©O. oO.
27.- 28. 0. 0. ©O0. ©O0. O0. O0. O0. O0. 0. O0. ©O0. o0. O0. O
28.- 29. 0. 0. 0. O0. ©0. 0. O0. O0. ©0. ©O0. ©O0. o0. 0. O.
29.~ 30. 0. 0. 0. O0. O0. O0. 0. O0. 0. O0. ©O0. ©O0. 0. O.
30.-31. ° 0. O. ©0. 0. ©O0. ©O0. O0. 0. 0. ©O. O.. 0. 0. O.
31.~ 32. 0. 0. O. O. O. 0. ©O0. ©O0. O0. O0. ©o0. ©0. 0. O.
32.- 33. 0. 0. 0. ©0. 0. ©O0. 0. O0. ©0. ©O0. o0. ©0. O. O.
33.-3. 0. 0. 0. 0. O0. ©O. 0. 0. 0. ©0. ©O0. oO0. 0. O.
> 34. 0. 0. 0. 0. 0. 0. ©0. ©O0.. 0.. 0. ©O. ©O0. ©O0. O.
MEAN 1.2 1.3 1.1 1.5 1.8 1.0 2.2 1.2 2.5 1.7 1.4 1.7 1.4 1.4
STD. DEV. 1.4 1.7 1.0 1.9 2.8 0.9 3.0 1.3 3.3 2.6 2.0 2.5 1.6 2.4
NUMBER OF : , .
STORMS 81 66 80 81 63 40 S7 67 79 70 63 59 St 51
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Table 5.8

HISTOGRAMS FOR STORM DURATION
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Table

5.9

HOMOGENEOUS PRECIPITATION PERIODS

Precipitation
" Period

II
III

A

Table

May 15 - June 16
June 16 - July 18-
July 18 - Aug. 3
Aug. 3 - Aug. 19
Aug. 19 - Sep. 11
5.10

PARAMETERS OF EXPONENTIAL DISTRIBUTION FOR STORM
INTENSITY, DURATION, AND POISSON ARRIVAL RATE

Homogeneous Precipitation Periods

I
Storm Intensity Parameter  0.78
Storm Duration Parameter 0.24
Storm Arrival Rate ‘ 0.36

Poisson Model Parameter 0.294

II  III
0.65  0.48
0.44 0.36
0.26  0.34
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0.65
0.46

0.28

)

0.70
0.37

0.23



within their respective clusters. The calibration of these three
paraﬁeters is done by fitting the theoretical spectrum of counts

and log-survivor function for the N-S model to their estimated
counterparts. The estimation of the spectrum of counts, and of the
log—-survivor function is performed using the theory developed by

Cox and Lewis (1966) for the statistical analysis of series of events.
Before proceeding to the calibration of the N-S cluster model for

the twenty-seven years of rainfall data in Denver, a partial description
of the process in terms of the estimated mean rate of daily occurrence,
the estimated variancé—time function, the estimated log-survivor
function, and the gsfimated spectruﬁ of counts is obtained using

the theory for the statistical analysis of series of eventé (Cox

and Lewis, 1966).

5.4.2.1 General Description of Arrival Process

Figure 5.5 presents a plot of the cumulative number
of storm events versus cumulative time from an arbitrary origin.
From this plot it is possible to identify low frequency cycles or
non-homogeneities in the mean rate of occurrence. The slope of the
plot at any time yields the inverse mean rate of daily occurrence.
However, it is not at all clear from Figure 5.5 whether the slope is
increasing or decreasing or constant (or in other words, whether
the function is convex, concave or both). These characteristics are
important because they help to determine long-term trends or low

frequency inhomogeneities in the mean rate of arrivals. Imn order to
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do so, the Cramer statistic is calculated (Cramer, 1946). The Cramer

statistic is defined as:

U = __(__S—___']_:_/_Z_)_ (5.15a)
" T/V12n
whereé
n .
S = L t. (5.15b)
n i _
i=1

In equations 5.15a and 5.15b, T is the length of the period of
obsefvation, ﬁ is the number of events in T, and ti is the time

from the origin to the occurrence of the ith event. Cramer showed
that U is distributed N(0,1) as n+>~, If the centroid of the observed
times t; is greater than the midpoint of the period T, then U is
positive, indicating an increasing mean rate of occurrence. Using

the program SASE (for Statistical Analysis of Series of Events;

} Lewis, et al., 1969), the value of U obtained was 0.5, which indi-
‘cates no trends in the rate of occurrence at the five percént level

of significance. So that at this point, the assumption of a constant
méan rate of occurrence seems to be called for, as it would be

desired under the N-S model adopted, since as expressed in equation 3.17,
its rate of occurrence is constant. However, this conclusion is not
valid because both of the above tests serve only to determine low

frequency trends, and high frequency cycles are filtered out.
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To estimate the mean rate of occurrence of the storm arrival

process, the following estimator was used:

N(t, t+At)

XAt‘t) = it (5.16)

where At is an arbitrary interval of time.

This estimator was used by Kavvas and Delleur (1975) and proved
to be unbiased for stationary processes by Cox and Lewis (1966).
Figure 5.6 shows the estimated mean rate of occurrence. Since for
a stationary process, the mean rate of occurrence constitutes a |
horieontal straight line, it is evident from Figure 5.6 that the
rainfall data analyzed is not only non-homogeneous but possesses
a very marked yearLy periodicity. Many other significant cycles
may exist in the analyzed time series, but a complete trend and

cycle analysis is out of the scope of this work.

The nofmalized spectrum of counts was estimated ﬁsing the
computer program SASE by Lewis, et al. (1969). The estimated
spectrum of counts for the rainfall occurrences in Denver is shown
in Figure 5.7. As defined in an earlier chapter, the spectrum of
counts is the Fourier transform of the covariance density. It then
carries information about the dependence structure of the process.

For the homogeneous Poisson process, that is, under the independence
assumption, the theoretical spectrum of counts is (Kavvas and Delleur,

1975), g, (w) = A/m , w> 0, or a horizontal straight line. Figure 5.7
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also shows the normalized spectrum of counts and ninety-nine percent
confidence intervals for the Poisson process when it is fitted to

the data from Denver. It is evident that the estimated spectrum

of counts deviates greatly from the Poisson assumption of indepen-
dence, as shown by the many frequencies outside the confidence limits,
indicating a definite dependence structure in the rainfall arrival

process.

The variance time function, as well as the log-survivor function,
was.alsq estimated using the program SASE. For a Poisson process
the variance-time function plots as a straight iine with slope equal
to the rate of arrival. The comparison between the estimated variance-
time function and.the theoretical variance-time function under the
Poisson assumption is shown in Figure 5.8. It shows not only the
deviation ffom the Poisson case of the estimated variance-time
function, but also by appearing to be convex, indicates an overdis-
persion, and a clustering of the rainfall events (Vere-Jomes, 1970);
the upward deviation from the Poisson case implies a coefficient of
variation greater than unity. This is all clear evidence of the
clustering behavior in the occurrence of rainfall and of a significant

dependence structure.

Finally, the relative frequency histograms of the interarrival
times between daily occurrences, and the log-survivor function were
estimated using again the above-mentioned computer program (Lewis,
et al., 1969). The log-survivor function is defined as the logarithm

of the survivor function of the interarrival times. For the Poisson
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process, it is easily obtained as:
In Pr(X > x1 = =-2Ax (5.17)

Figure 5.9 shows the estimated log-survivor function. Again, it
not only deviates from the theoretical Poisson case, but its con-
vexity indicates once more the overdispersion and clustering of the
rainfall occurrences (Vere-Jones, 1970; Kavvas and Delleur, 1975);
However, the deviation from the Poisson log-survivor function is
not very marked, indicating that possibly, although there is some
clustering, it is not sufficient to cause a very long memory in the
rainfall counts, and the process at hand has a very weak dependence

structure.

From the above general statistical description of the fainfall
data used in the case study, three main features are of interest.
The first relates to the obvious non-homogeneity of the process of
rainfall occurrences. Neglecting the influence of the high frequency
cycles, the only significant periodicity appears to be the marked
yearly cycle. However, the N-S cluster model under consideration is
stationary. Obviously then, the N-S model cannot be used to model'
rainfall occurrences throughout the entire year. It can only be
used to model stationary sequences. For the purpose at hand, the
four—monthvlong irrigation season is a period of time short enough
to make pradtical the assumption of stationarity. Kavvas and Delleur
(1975) state that the model could be employed for small intervals

where stationarity of the process can be safely assumed. Thus, for
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this work, although the complete process is obviously non-homogeneous,

it is assumed stationary in the time interval under consideration

(growing season).

The second and third features relate to the dependence structure
and clustering behavior of the rainfall counts in the rainfall data
from Denver. It is observed from the variance-time, spectrum of
counts, and log-survivor functions that ﬁhe rainfall events, in Denver,
cannot be considered independent; and that the storm events have a
tendency to form groups around their RGM (clustering). Thus, it has
been indicated that tﬁe independence assumption of the Poisson process
is not valid and that a more general model that can account for the
dependence structure as well as for the clustering behavior is
needed. As 1n Kavvas and Delleur (1975), it is here hypothesized

that the N-S model is such a model.

For more details about the estimators of the variance-time
function, and the spectrum of counts, as well as the computer program
used in their evaluation, the reader is referred to Cox and Lewis

(1966); Lewis, et al. (1969), and Kavvas and Delleﬁr (1975).

5.4.2.2 Neyman-Scott Cluster Model Calibration

The main objective in modelling rainfall arrivals as
a N-S cluster process is to be able to account for the observed
dependence structure and clustering behavior of the storm counts.
The statistical analysis of the previous section has confirmed once

more that for Denver, Colorado, the process of storm arrivals also
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exhibits the cluster dependence structure found in Indiana by Kavvas
and Delleur (1975). In particular, this clustering behavior and
dependence sﬁructure is shown in the estimated spectrum of counts
and log-survivor function. The comparison of these functions with
the theoretic Poisson case invalidates the assumptioﬁ of indepen-
dence. The donvexity.of the log-survivor function has begﬁ shown to
indicate an ovgrdispersion of the rainfall events and consequently
~a clustering of storms. It is then only logical in order to preserve
the dependencg structure that the model be fitted to the estimafed
spectrum of counts; and in order to preserve the struéture of the
interarrival times and the clustering behavior, that it Ee fitted

to the estimated log-survivor function.

The theoretical nmormalized spectrum of counts fitted to that

estimated in the previous section is obtained from equation 3.28 as:

) , .
g, (W) . +[ EIN,"(£)] 1] . o2 , w>0  (5.18)
2
. o

TR E[Nz(t)] E[Nz(tn 4+ w2

The fit was perfofmed using a Non-linear Adaptive LeastASquares
| algorithm developed at the Sloan School of Management at MIT (Dennis,
et al., 1979).. Letting the parameters E[sz(')], E[N2(°)], and o .
free to be estimated by the algorithm, produced unrealistic values
fér E[sz(-)] and E[Nz(')]'in the sense that they yielded negative'
variance. Followiﬁgvthe approach used by Kavvas.and Delleur (1975)
wﬁo encountered the same problem, the ratio E[sz(')]/E[Nz(')] was

fixed equal to 2.44 as indicated by the unrealistic fit (Table 5.11).
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Equation 5.17 was fitted again producing a value of o as shown in

Table 5.11.

-With the ratio E[NZZ(-)]/E{NZ(-)] fixed at 2.44 and with the

‘ valué of o obtained, the resulting fit 1is shown in Figure 5.10,

which is quite acceptable. The value of o determined implies.a

rapid decay of the exponential distribution of T, indicating the
anticipated short memory of the process. Since the dependence in

the rainfall counts is produced in part by the superposition of
RGM's, the faster the exponential distribution for T decays, the less
likely it is that events from two or more RGM's superimpose, and

thé weaker the dependence in the rainfall counts'is.' This ié so since
the probability that a storm event occurs far in the future decreases
(Figure 5.11). From Figﬁre 5.11, H* in equation 4.47 was taken as

‘seven days.

in order to calibrate the other two parameters, namely, p and
u, and in order to preserve the cluster behavior and inferarrival
time structure, the theoretic log-survivor function for the N-S
-model is fitted to the estimated one. The theoretic unconditioﬁal
survivor function can easily be obtained from equation 3.49 By letting

tr = 0. This yields:

S10(x30) = PriX > x] =[————P—~——] . e HX (5.19)

1 - qe—ax

134



LOG-SURVIVOR FUNCTION

NGRMALIZED SPECTRUM OF COUNTS

-1.¢0
-2.C0

-3.00

~4. 00}

-5.C0
~-6. 00

-7.00

-8.C0

® POISSCN MODEL

. . ESTIMATED FUNCTION -
1 1 ! I
5 . 15 20 - .25
INTER-RRRIVAL TIME (BAYS)
Figure 5.9
ESTIMATED LOG-SURVIVOR FUNCTION
T T T T T
~ ESTIMATED BND CALIBRQ]TED FUNCT!UNS
= o PBISSON MODEL . -
X 897 'CUNF!DENQE INTERVALS
A /n \ L |
e -
- ! { ! 1
" 500 4 " 1000 -1500 2000 2500 3000

FREQUENCY INDEX (J)
- Figure 5.10 '

CALIBRATED NORMALIZED SPECTRUM OF COUNTS

135



Thus, the log-survivor function is:

1n SIO(X;O) = ln PrlX > xl = -ux + (g—+ D 1n?—~—~R—:;; - (5.20)
1 - qe ' '

Using again the Non-linear Adaptive Least-Squares algorithm
and the vélue of a previously calibrated (with ratio fixed at 2.44),
. values for the parameters u and p were obtained as shown in Table
5.12. However, observe that the value of p obtained differs gréatly
from that impliéd by the fixed ratio at 2.44; namély a value of p
equal to 0.58. 1In order to observe the behavior of thg fit and
expecting to oBtain i&entical values for p in both fits,‘an>iterative
procedurélwas implemented. The value of the ratio E[sz(-)]/E[NZ(')]
for which.identical'values for p were obtained was 1.99 (Table 5.13);
;he associated Mean Square Errors (MSE) and coefficients of variation
(CV) are also shown. Since the fit to the estimated spectrum of
couﬁts has the greater CV, it was assumed that the correct ratio was
tﬁe one that yielded the smaller MSE. Thus, the ratio assumed is
equal to 2.44,_meaning that the parameters used are those shown in
Tables 5.11 and 5.12. The fit obtained with thesé paraméters is
shown in Figure 5.12, which asvbefore, is quite écceptable.. This
fit is rather good for thé longer interarrival times, especially
when compared to the fif that would be obtained using. the Poiséon ‘
assumption which implies a straight line. vThe N~-S model is then able
to preserve the clustering indicated by the convexity of the estimated

log-survivor function.
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Table 5.11

FIT TO SPECTRUM OF COUNTS

I) Free Parameters: E[N22(°)] = 19.17
E[Nz(-)]' = 7.86
o = 0.755297
II) Fixed Ratio E[NZZ(.)]/E[NZ(-)] = 2.44
FreeAParémeter: a = 0.755296
Table 5.12

FIT TO LOG-SURVIVOR FUNCTION

Fixed Parameter: o = 0.755296
Free Parameters: p = 0.674060
u = 0.234509

137



Table 5.13

ITERATIVE MODEL FITTING

Spectrum of Counts

Log-Survivor Function

Fixed Ratio Fitted o Implied p MSE
2.44 0.755296  0.5814 10.7
1.99 0.996443  0.668 12.1

cV = 2.5
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a Fitted p MSE
0.755296  0.674060 0.226
0.996443  0.667 0.223

Cv = 0.12
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5.4.2.3 Calibrated Conditional Distribution Functions

Any model that pretends to make use of the conditional
information contained in the immediate history of rainfall arrivals
-shouid have at least the characteristic of being able to identify
localvshort—term trends in the process. For instancg, if during any
given perigd, several days have passed without any storm occurring,
the probability of rain should increase. However, when the nuﬁber
of days without rain keeps increasing, the model should be able to
interpret this information as an indication of a drought; thus, the

probability of future rain should decrease.

VIn the framework of the CDF's derived in Chapter 3 and expressed
in equations 3.46 and 3.49, the above characteristic can be interpreted
as follows. As [ increases, that is, as the number of days since
theAlast rainfall event increases, the model should detect a possible
drought and yield a decreasing probability of rain in the future.
This behavior can be observed clearly in Figure 5.13 by fixing the
value of x and vafying z. Ohserve that as ¢ increases, Slo(x;z)
also increases. On the other hand, for a fixed z, as x increases,'
Slo(x;c) decreases, meaning that the probability of rain in the
future increases as we look farther and farther ahead (Figure 5.13).
Thus, the simple model devised is capable of adequately modelling
and forecasting short-term trends in the process. However, its
simplicity neglects a great deal of valuable information by only
considering the time since the last rainfall event. In spite of

this, due to the short memory of the process expressed by the
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Figure 5.13

- CALIBRATED CONDITIONAL DISTRIBUTION FUNCTION '
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parameter o, the influence of the neglected information can probably

be considered negligible.
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5.5 Case Study Results

As in Cérdova and Bras (1979), this study considers a dynamic
root depth throughout the growing season. During each growth period,
the water balance is carfied out only in the soil column defined by
the corresponding root depth. When a new period starts with a different
root depth, there exists a newly available soil layer for which no
water balance has been carried out, and consequently, its SMC is
unknown. Assuming that percolation out of the root zone into the new
layer is equal to the percolation out of the new layer (Cérdova and
Bras, 1979), the initial SMC in this layer at the beginning of the
growing period can be assumed equal to the initial condition at the
beginning of the growing season. In this study, this occurs when
going from growth period I to growth period II. Following Cérdova
and Bras (1979) it is further assumed that the initial SMC in the new

available soil layer is FC.

The irrigation scheduling problem was solved using SDP. Twé
different cases were considered, the unlimited irrigation water supply
case, and the limited irrigation water supply case. For the unlimited
water case only two feasible irrigation decisions weré considered at
each decision stage: not to irrigate at all or irrigate up to field
capacity. For the limited water case, five feasible irrigation decisions
were considered at each decision stage: irrigate up to FC, to 3/4 FC,
to 1/2 FC, to 1/4 FC, or not to irrigate. The growing season was
divided in 120 decision stages (daily irrigation decisions). The

solution is given as optimal decision functions that yield the optimal

143



amount of water to be applied at each decision stage as a function of

the SMC and the number of days elapsed since the last rainfall occurrence.
For the limited water supply case, twenty cases with different total ir-
rigation water available during the growing season were considered. The
amount of water available ranged from 475.0 mm to 0.0 mm, and as implied
above, discrete intervals of 25 mm were used. In this case, the optimal
decision is also a function of the available irrigation water. Typical
decision functions for each case are presented in Appendix D and Appen-

dix E,.

The effect of the conditional Neyman-Scott model, encoded in the
CDF's SO(X;C) and Slo(x;C), on irrigation control is compared to results
from four other precipitation models. Namely, the unconditional N-S mod-
él encoded in the PDF Po(x), the homogeneous and non—homogengous Poisson
models wﬁose parameters are as presented in Tables 5.10 and 5.14, and
Cérdova's non-homogeneous Poisson model (Cérdova and Bras, 1979) whose
parameters are as presented in Table 5.14. It is necessary to make clear
that the latter model was fitted by Cordova and Bras (1979) to a trans-
formed set of data as explained earlier, so that the comﬁarison is not
valid. However, in extending Coérdova's model from weekly to daily irri-
gation decisions results are obtained which contradict previously ac-
cepted facts, stated by Blank (1975) and Cdrdova and Bras (1979), about
irrigation on fixed dates or variable dates. The inclusion of Cérdova's
model then serves the purpose of showing the effect of the particular

data transformation used on the results of the control algorithm.
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Table 5.14

TOTAL AMOUNT OF PRECIPITATION UNDER THE N-S AND POISSON MODELS

Poisson Model#*

Mean Storm Intensity (mm/h)
Mean Storm Duration (h/storm)

Mean Rate of Arrival

N-S Model

Mean Storm Intensity (mm/h)
Mean Storm Duration (h/storm)
Mean Rate of Arrival

Rate of Occurrence under N-S Model

Precipitation Period

I 11 111 v v Mean
1.28 1.54 2,27 1.52 1.47 1.62
6.67 2.33 3.13 2.33 3.70 3.63
0.262 0.228 0.308 0. 266 0.184 0.250

Precipitation Period

I II 111 v v Mean
1.28 1.54 2.08 1.54 1.43 1.57
4,16 2,32 2.78 2.17 2.70 2.83
0.356 0.263 0.345 0.282 0.225 0.294

u e E(NZ(‘)] = 0.348
= 1.31 mm/day

Average Precipitation for Poisson Model
Average Precipitation for Poisson Model* (Cérdova and Bras, 1979) = 1.47 mm/day

Average Precipitaion for the N-S Model

*
Obtained from Cordova and Bras (1979).

= 1.54 mm/day



Figures 5.14 through 5.19 summarize the results obtained with the
different models and different initial conditions. Observe that in gen-
eral, all models analyzed behaved very consistently. The conditional
form of the N-S model is compared first to the unconditional N-S model,
and then to the Poisson model. As expected, the conditipnal N-S model
yields greater expected net benefits at the end of the growing season
than the unconditional N-S model for all the cases considered (Figures
5.14b through 5.19b). This is obviously the result of water conservation,
obtained through improved irrigation water management made possible by
accounting for the conditional information contained in the precipitation
process.

Logical results are obtained with the unconditional N-S model; this
case always yields lower expected net benefits than any of the other four
models. Both the unconditional and conditional N-S models yield lower
expected net benefits than any of the other models when there is no avail-
able water for irrigation; in this case, the system is being driven solely
by rainfall. The behavior can be logically explained by the clustering
of the precipitation occurrences encoded in the N-S procéss. The'clust—
ering behavior, as shown by the convexity of the log-survivor functiomns
(Figure 5.9 and 5.12), tends to produce longer interarrival times. This

is implied in Figures 5.9 and 5.12 by the fact that:
-(5.21
PrN_.S[X>x] > Pr p[X > x] ¥x > 0 (5.21)

where the subscripts N-S and P refer to the N-S and Poisson models, re-

pectively.
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When there is no available irrigation water, the longer interarrival
times coupled to the soil moisture depletion processes and no possible
control, lead to longer and more severe periods of water stress on the
crop, thus producing reduced maximum expected net benefits as compared to

those obtained with the Poisson model.

It was expected that the conditional form of the N-S model would
yield greater expected net benefits than the Poisson model when irriga-
btion was possible. As presented in Figures 5.14 through 5.19, this ex-
pectation was wrong. It is observed from these figures that the condi-
tional N-S and the homogeneous Poisson model yield almost identical re-
sults. In fact, although the difference is not significant enough to be
‘detected in the figures, the conditional N-S model produces slightly low-
er expected net‘benefits for higher initial SMC's and slightly greater
expected net benefits for lower initial SMC's than the homogeneous Pois-
son model. The non-homogeneous Poisson model always yielded greater ex-
pected net benefits. Since the models were fitted to the same data set,
these results can be simply explained by realizing that the clustering
behavior will tend to induce greater water use and by the fact that the
dependence structure present in the precipitation process is very weak
as anticipated in Sections 5.4.2.1 and 5.4.2.2, and as shown in the form
of the CDF Slo(x;c) (see Figure 5.13). Observe that the range of ¢ (con-
ditional information) over which there is a significant change in the
- value of Slo(x;c) is about two days. TFor regions of deficit irrigation,
where the mean interstorm time tends to be long, a memory of only two
days seems to be for all practical purposes negligible. However, the
slightly better results obtained with respect to the homogeneous Poisson

during dry initial conditions indicate that there may exist instances
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where the use of the N-S model will improve irrigation efficiency; namely

when the dependence structure of the precipitation process yields longer

memory.

As presented in Table 5.14, the average precipitation expected by
the N-S model is slightly greater than the average precipitation expectea
by the Poisson models. The longer interarrival times tend to offset
this difference by producing greater water strésses on the crop, leading
to more water use and lower expected net benefits. Thus, the conditional

N-S model will only yield better results whenever the memory of the pre-

cipitation process is long enough to counterbalance the clustering effect.

The difference observed between the conditional N-S model and the
non-homogeneous Poisson model also raises once more the question of the
implied stationarity of the former model. Although it has been shown that
the N-S model is a better representation of the rainfall occurrences than
the homogeneous Poisson model, this has not been done with respect to the
non-homogeneous Poisson model. The implied independence of the Poisson
model is almost reproduced by the very short memory of thé fitted N-S
model, so that at the end the question remains one of determining which
is the true underlying process governing precipitation occurrences. This
is a question that can only be partially answered by simulating the sys-

tem with the different optimal policies obtained from each model.

Some additional results are now simply stated. Observe from Figures
5.14a through 5.19a that the Poisson model fitted by Cérdova and Bras
(1979) always produces greater expected net benefits than the Poissoﬁ
models fitted in this work, although the data used in both fits were the

'same. However, Cdrdova and Bras (1979) transformed the data by defining
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an independent storm event to justify the Poisson assumption. Table 5.14
compares the parameters obtained in both fits. 1In general, the model of
Cordova aﬁd Bras expects more precipitation. Also, observe from the fig-
ures that contrary to facts stated by Blank (1975) and Cordova and Bras
(1979), there is an increase in the expected net benefits when going from
irrigation on fixed dates (weekly irrigations) to irrigation on variable

dates (daily irrigation decisions).

Finally, it is necessary to emphasize that the results presented in
this chapter are only theoretic results expressed as expected values. A
simulation is required to be able to state with certainty the superiority

of one model over the others.
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5.6 Summary

This chapter has completely presented the calibration of the dif-
ferent model parameters and the case study results. The precipitation
process for the case study at Denver, Colorado has been shown to exhibit
a clustering dependence structure of very short memory. The homogeneous
Poisson model is not a good representation of the data. After fitting
the N-S model to the storm arrivals, the derived CDF's are shown to pos-
ses characteristics necessary for adequate short term forecasting of rain-
fall occurrence. Finally, case study results indicate that although the
precipitation is better represented by the N-S process, this improvement
does not produce better results for the particular data analyzed, when
the models are used to obtain optimal irrigation decisions. The expect-
ed net benefits are shown to be essentially identical under the condi-
tional N-S and homogeneous Poisson model, and lower than under the non-

homogeneous Poisson model.
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Chapter 6

SUMMARY, CONCLUSIONS AND FUTURE RESEARCH

6.1 Summary and Conclusions

The objectives of this work were manyfold. It was desired to
implement a real-time control model for irrigation, in regions of
deficit irrigation, that accounted for the widely documented dependence
and clustering behavior of the process of precipitation arrivals.

At the same time, it was desired to determine whether the rainfall
data from Denver also exhibited this clustering behavior and if so,
to determine how well the N-S cluster process could represent the

data as compared to the Poisson process.

Using the methodology proposed by Kavvas and Delleur (1975),
the precipitation data from Denver was analyzed and seen to have no
significant long term trends in the daily rate of occurrence. However,
from the behavior of the estimated variance-time, spectrum of counts,
and log-survivor functions it was concluded that the rainfall arrivals
for Denver possess a definite short memory dependence structure caused

by the clustering of the individual storms.

A particular form of the N-S cluster process was fitted to the
data and seen to represent quite well the real precipitation time
series. In order to preserve both the dependence structure and the

clustering behavior, the model was fitted to the theoretical spectrum
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of counts and log-survivor function. The slight inconsistency en-
countered in the calibration can be explained by the fact that the

process is not completely homogeneous as assumed.

The success obtained in modelling the precipitation data from
Denver using the N-S cluster process confirms once more the ample
generality and flexibility of the model; and most importantly, its
ability to adequately represent the clustering dependence of the storm
arrivals exhibited by the data. This last fact also confirms, once
more, the widely accepted notion that precipitation events occur in
clusters in the time domain. Furthermore, the fit obtained with the
N-S model as compared to the one obtained with the Poisson model

indicates the superiority of the former.

The use of the Palm-Khinchin theory allowed the derivation of
general expressions for the conditional distribution functions of the
time to the next rainfall event, conditional on part of the immediate
history of storm arrivals. Explicit forms of these expressions for a
particular form of the N-S model were derived. These functions are
seen to possess the required characteristics for adequate short term
rainfall forecasting. In fact, these functions are able to detect
short term trends, particularly drought trends. The use of fhe N-S
model and of the derived CDF's permitted a substantial increase in fhe

accuracy of the rainfall forecasting.

The dynamic precipitation model devised, with the capability of
chénging as the growing season progresses and of using the conditional

information to predict future behavior, was coupled with a model of
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the plant-soil system. This coupling allowed the implementation of a
stochastic control model to obtain optimal irrigation decisions.‘ It is
shown that for the case study, the added complexity of the precipitation
model results in a substantial improvement in the representation of the
brocess, although this does not lead to significant differences in the

theoretic expected maximum net benefits when compared to the Poisson mod-

el.

The results of this work do not allow any conclusion as to which
model is more adeqﬁate. On one hand, it has been shown that the N-S mod-
el is a better representation of the precipitation process than the homo-
geneous Poisson model. But on the other hand, from the practical point
of view, there seems to be no reason to favor one over the other, at
1e;st with respect to the particular case analyzed in this work. Results
indicate that for Denver, the dependence structure of precipitation is
very weak to allow for significant improvement in rainfall forecasting.
Consequently, given that the Poisson model is not only simpler and easier
to use, but also less costly to implement, the immediate conclusion is

that the Poisson model should be favored over the N-S model.
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6.2 Recommendations for Future Research

With respect to the precipitation model, the main issue is the as-
sumption of homogeneity. The N-S model is stationary. Two alternatives
are in order: either a homogenization scheme is implemented as suggested
by Kavvas and Delleur (1975) or a non-homogeneous form of the N-S cluster
model is developed. Neither alternative seems promising. First, most
homogenization schemes deal only with first order moments and it is shown
here that even under a homogeneous rate of occurrence, problems arise
when calibrating the second order moments. Second, npn—homogeneous forms
of the N-S cluster model can be expected to be very complex thus invalid-
ating their ability to be easily used. Consequently, it is necessary to
study different models from the general class of Moyal cluster procesées

so that a simple non-homogeneous cluster model is devised.

With the use of the Palm-Khinchin theory, it has been shown hoﬁ con-
ditional distributien functions of the time to the next rainfall event
could be derived. However, the situations considered here were very sim- .
ple. In fact, only the time since the last rainfall event is accounted
for. It is desirable to include more complex situations, when more than
one event in the past is considered. In this way, the emphasis is not
so much on the drought conditions but also on the wet conditions. The
derivation of CDF's accounting for more complex situations seems possible
by defining Palm-type functions of higher order. See Appendix F for an
example. However, from the onset, the complexity of the expressions ob-
tained, as well as the implementation of a control model able to use the

added information, makes this a difficult task.
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With respect to the general irrigation control model, a more detail-
ed modelling of the different components of the soil-plant is needed. At
the present level, the precipitation component of the system is much more
accurate than the soil-plant component. It is highly desirable that alll
system components be modelled at the same level of complexity so that ad-
ded accuracy in one component is not filtered out by another. 1In this
regard, the further research proposed above to improve precipitation mod-
elling and forecasting should be postponed in favor of further research
on the dynamics of the soil-plant system. In particular, on the impact
of the spatial variability of soil moisture in the root zoﬂe on plant
productivity, as well as on the impact of the spatial inhomogeneity of
the soil properties on the dynamics of soil moisture. Furthermore, the
effect of the fluctuations of the groundwater elevation on crop yield
has to be determined. Finally, and since the accuracy of the work rests
on the validity of the crop response model, further research and experi-
ments are needed to determine the form of the yield-evapotranspiration
relationship as wellias the sensitivity of the crop to vertical variance
of soil moisture in the root zone. Lastly, since the results presented
in this work are expressed in terms of theoretic expected values, the
system should be simulated using the optimal operating policies deter-
mined, so that a more definite conclusion can be reached with respect to

the precipitation model and its effect on the irrigation control problem.
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Appendix A

FIRST AND SECOND ORDER MOMENTS AS FUNCTIONS OF THE PGF

A) First Moment:

[oe]

By definition: g(z) = Z 2" Pr[N(*) = n] (A.1)

n=0
Differentiating equation A.l yields:

o]

?-g—gz—)- = Z n 2" PrN(e) = nj (A.2)
n=0 '

Evaluating equation A.2 at z = 1, yields:

o]

E[N(:)] = Z n Pr(N(s) = n] = é_g_i,z_)_ | (A.3)
=0 z=1

B) Second Moments:

1) Variance:

Differentiating again equation A.2:

co ©

2
B_ag__z) - 022" 2 pr(N(+) = n] -Zn P72 PriNG) =l (A4
dz =0 n=0
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Equation A.4, after evaluating it at z = 1, becomes:

2 > - o
i.&éi’). =Zn2 Br(N(-) = n] -2 n PriN(s) = nj (A.5)
oz 2=1 =0 n=0 : |
and
b2e(2) 2
5 = E[N"(+)] - E[N(+)] (4.6)
3z
z=1

Finally, adding equation A.3 to equation A.6, and subtracting

équation A.3 squared from equation A.6, the following is obtained:

var(N(-)] = B(N2(+)] = EZ(N(e)] = 2 &(z) 9g(z) _ [38(2)]21
Z

az 9z 92 =1

(A.7)

2) Covariance:

n
1 2 X ' -
By definition: g(z,%,) = E E z, Pr[Nl(-)*nl,NZ(-)—nZ]

—0 n, =0
(A.8)
Diffetenttating equation A.8 with respect to z, and z,!
ag(zl,z ) z —1 n,
E z, Pr[Nl(-) =1, Nz(-) =n,]
—O n, =0
(A.9)
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and

172

3 g(z 32,) -1 n,-1
BT R v— Sz Z Z o, z, Pr[Nl(-) = nl, Nz(') = nz]
"0 n —0
(A.10)
Equation A.10 evaluated as z, =2, = 1 yields:
328(21,22)
9z, 0z ZZ““P”N()‘HI,N()H]E[N()N()]
1772 - = - -
zl—zannO (A.11)
3g(zl,z2)
From A.9, e = E[N,(*)] (A.12)
: zy 1
121777
and by analogy: T = E[Nz(')] (A.13)
S
Finally,
cov N (+), Ny(+)1 = EIN;(+) N,(+)] = E[N ()IEN, ()]
az(z z.) 9¢(z,,2.) og(z. ,2.)
_ g 1’ 2 g 1’ g 19 2
Y IEY - 3z oz
12 zl=z2=1 1 zl=z =1 2 zl=22=1
(A.14)



Appendix B

FIRST AND SECOND ORDER MOMENTS FOR THE N-S CLUSTER MODEL

A) TFirst Moment:

The univariate PGF of the N-S cluster model for the interval

(0,t.) is (Equation 3.11):

t
1
g(z) = explu / {gy [1- (1 - 2)p(e)l - 1l}de] (B.1)
2
tl
where: p(t) = f fT(E - t)dc (B.2)

0

From equation 2.14:

EN(O,t,)] = 28(2)

3 1
57 =y e g(z) . —a—;- %'/- gN [1—(1-Z)p(t)]dt
z=1 / 2

(B.3)

z=1

The derivative in equation B.3 can be written as:

t. t

i 1
% f 8y [1-(1-2z)p(t)ldt = f -é% gy [1-(1-2z)p(t)];dt
2

P z=1 - 2 .

z=1

(B.4)
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By definition:

gN [1 - (1 - z)p(t)] ==:E: {1- (1 - z)p(t)]n Pr[Nz(t) = n] (B.5)
2 .

n=0

so that the derivative appearing in equation B.4 is:

5; N [1 - (1 - 2)p(t)] = p(t) Zn[l - (1 - 2)p(t)17} Pr(N,(t) = nl

2 n=0 (B.6)

and evaluating at z = 1 yields:

- p(t)z n PriN,(e) =nl =p(t) - EIN,()]

3z 8N [1-(l-2)p(t)]
2 -1 s
‘ " (3.7)
Substituting equation B.7 in equation B.4:
3 1 ! 4
32 ) ] & - (1 -2)pe)de = f E[N,(t)]p(t)dt
2 = o]
- z=1 - (B.8)

Now, by structural postulate, the Nz(t)'s are i.i.d. for each cluster

centered at t, and consequently equation B.8 becomes:

t t .
1 ’ 1
f E[Nz(t)]p(t)dt = E[Nz(t)] . f p(t)dt (B.9)
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Using equation B.2 in equation B.9:

t1 £ t t1 4
f p(t)dt = f f fT(E—t)dCdt = f / fT(i;-t)dtdr, = 1:1
— ' — 0 ‘ 0 .
(B.10)
Finally, by definition:
g(z) = 1 (B.11)

z=1

Substituting equation B.9, B.10, and B.1ll in equation B.3 yields:

E[N(O,tl)l = u - E[Nz(t)]- t (B.12)

B) Second Moments:

1) Variance:

From equation 2.15:

2 2
varln(o,t.)) = 282 , 238(z) _ |3g(z) (B.13)
1 az2 9z 3z z=1
From equation B.12:
_a_g_(i)_ = yu > E[N,(*)] - t (B.14)
9z 2 1

z=1
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and

2 202
= w s BN, C oty (B.15)

’ ag(z

Now, denoting [1 - (1 - z)p(t)] by k:

2 . t]_ 2 tl 2
3 9
3z /., 92 2 J 2
(B.16)
The second-order derivative appearing in equation B.16 is:
52 z ) ' n-2
— gy (k) = E n(n - 1) p (t)[1 - (1 - z)p(t)] PriN,(+) =
3z 2
n=0 (B.17)
And evaluating at z = 1:
32 : 2 2
—5 g (k) = p(t) * EIN7() -~ N ()] (B.18)
N 2 2
3z 2 z=1

Finally, after replacing equations B.14, B.15, and B.19 in equation
B.13, the following expression for the variance is obtained:
t

1.
var[N(O,tl)] =qu- E[Nz(t)] . t1 + oy E[sz(t) -Nz(t)] . f pz(t)dt

- OO

(B.20)
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2) Covariance:

Using equation 3.13, the PGF for the counts N(O,tl) and N(t1+ z, t2)

can be written as:

t
2
g(Zl,zz) = explu J/. {gNzll-(l-zl)pl(t) - (l—zz)pz(t)] - 1}dt]
-7 (B.21)
. tl t2
with pl(t) = J/~ fT(x—t)dx and pz(t) = J/ﬁ fT(x—t)dx
0 t.+ ¢

1 (B.22)

From equation 2.16:

cov[N(O,tl),N(t1+§,t2)] iy z dz

2
0 g(zl’zz) -[Bg(zlszz) . ag(zl’zz)]
) 1 I R

172
(B.23)

Denoting [1 - (1 - Zl)pl(t) - (1 - zz)pz(t)} by m, the derivatives

in equation B.23 are:

t

: ag(zl,zz) 2 5
—, =y g(zl,zz) f 3z gN (m)dt {(B.24)
1 / 1 2
og(z,,z,) t2
.—__1_...—2'__ = | - g(z z ) . 3 )
Az 1’72 — g (m)dt (B.25)
2 J az2 N2
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t

2
) g(zl,zz) 2 5 -
-—-—.——-—-—-=u-g(z,z)-/ g (m)dt
azlaz2 1772 azlaz2 N2

t

t
+ul. ) 2 & (m)dt ’ 2 (m)dt
Wt g(zg,zy) 52, oN, " 5z, BN, n

- 00

(B.26)

Evaluating B.24, B.25, and B.26 at z =z2=1, yields:

1

t
2
- . 2 .
cov[N(O,tl),N(t1+?;,t2)] =y E[N2 (t) - Nz(t)] f pl(u) pz(u)du

- 00

(B.27)
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Appendix C

DERIVATION OF Po(x)

From equation 3.11:
g(z) = explu ,/P {gN [1 - (1 - 2)p(t)] - 1}dt
2

and

X

p(t) =ffT(£-t)dc

0

From equation 3.43:

P, = g2

According to equation C.3:

X

Po(x) = exp[u f {gNz[l - p(B)1 - l}dt]

- 0O

Now, from equation 3.25:

- p2
gNZ(Z) = T-a-pz ° lz] < 1
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and from equation 3.26:

ae—a(;_t) if z-t > 0
fT(c—t) = (C.6)
: 0 otherwise

According to definition C.6 and equation C.2:

X
p(t) = f 0e g o B ey |t <o (C.7)
0
and
X
p(t) = f U R B N (c.8)
t
Equation C.4 can then be rewritten as:
0
Po(x) = explu [ {gN [1 - eat(l - e—qx)] - 1}dt
- OO 2
x .
+exp[u f {gN [—e_a(x—t)]}dt] (c.9)
2
0
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From eduation C.5:

g [1 - &t - e'“x)] = ef1 - a1 - :_ax)] ~ (C.10)
Ny 1-(-pl1-e*a-e™]

and

-a(x-t)
—a(x-t) -pe o
g. |-e = (Cc.11)
Nz[ ] 1+ (1 - p)e—a(x-t)

Now, substituting C.10 and C.11 in equation C.9 and carrying out

the integrations, it is easy to obtain:

Py(x) = [w——l’——_—ﬁ] e H¥ (C.12)
1 - qe
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Appendix D

RESULTS OF THE SDP ALGORITHM: UNLIMITED WATER CASE.
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RESULTS OF THE STOCHASTIC DYNAMIC PROGRAMMING ALGORITHM

- e - o G e s s e . Gy = = e e e % S W W e e = e e e e e e

OPERATION POLICIES

OPERATION POLICY IRRIGATE UP TO SOIL MOIST.CONT. EQUALS STATE
NO. GR.PR.1I GR.PR. II GR.PR. 111
1 14 : 22 26
2 NO IRRIGATION NO IRRIGATION NO IRRIGATION
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Appendix E

RESULTS OF THE SDP ALGORITHM: LIMITED WATER CASE.
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RESULTS OF THE STOCHASTIC DYNAMIC PROGRAMMING ALGORITHM

OPERATION POLICIES

OPERATION POLICY IRRIGATE UP TO SOIL MOIST.CONT. EQUALS STATE
: NO. GR.PR.1I GR.PR. 1I GR.PR. III

1 14 22 26

2 24 30 38

3 36 40 - 52

4 50 54 66

5 NO IRRIGATION NO IRRIGATION NO IRRIGATION
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Appendix F

DERIVATION OF A MORE COMPLEX CONDITIONAL
DISTRIBUTION OF STORM ARRIVALS

Assume that the information about the past of the process is
that a rainfall event has occurred during the observation interval,

not at the origin. The desired conditional distribution can be

written as:

P
) s 010

n>0 For0léys Bs Tp)

where SOlO(x; Cys ;2) yields the probability that the time to the
next rainfall is greater than x, conditional on the fact that one
storm occurred after 4 time units since the beginning of the obser-

vation period, and ;2 time units have elapsed since the occurrence of

that storm.

It is well known that:

Pr{A U Bl = Pr[A] + Pr[B] - Pr[A N B] (F.2)

and for mutually exclusive events:

Pr{A U B] = PrlA]l + PrIB] ' (F.3)

194



In the situation depicted above, the observation interval has been
divided into three subintervals, a first interval of length §l with
no storms, a second interval of length h with one storm, and a third

interval of length CZ with no storms. Since events are instantaneous,

a limit is taken as h~> 0.

Let A now be the event (0,1,0) and B the event (0,0,1) representing
the number of events in each of the above intervals. Then AN B = ¢

and AUB = (0,1,1). Thus, using equation F.3 it is obtained:
And from equation F.4:

Now, define a Palm-type function as:

VYa1n(Cys 2,) = 1lim -
010'>1° =2 nao U Po(h)]

(F.6)

Substituting equation F.5 in F.6, and adding and subtracting

POl(Cl’ Cz) yields:

Ha 0 (1 - p,(0)]

(F.7)
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Multiplying and dividing by h:

h h

(C c)'llm

010 e 0 1 - Po(h)]/h
(F.8)
In equation F.8:
1 - Po(h) = Pr(N(O,h) > 0]
so that:
1 - P,(h)
lin ——2— = lin Pr[N(o;lh) >0l ., (F.9)
h->0 h+0
where by definition, A is the mean rate of the process.
Finally, substituting in equation F.8:
010°%1°%2 X acz I :

Using equation F.10 in equation F.l, the desired CDF is obtained

as:
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where in general the functions wOlO(Cl’ ;2) are defined in terms of
the p.d.f. of the number of events in a given time interval

Pi,j,k ee. (X,¥,2 ... ) defined in Chapter 3.
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