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ABSTRACT

A stochastic, multivariate, hydrometeorological data gener-
ation algorithm is presented. Hourly values of precipitation,
cloud cover, shortwave radiation, longwave radiation, tempera-
ture, dewpoint, wind speed, and wind direction are jointly gener-
ated for the two-meter level. The procedure is designed to pro-
vide coherent sets of input data for models of various land
surface processes. The model's flexibility and economy allow
the study of land surface responses to different atmospheric
forcings.

Generated data plots, model output statistics, and generated
mean diurnal curves are compared to observations for the months
of January and July at two sites, Boston, Massachusetts and Dodge
City, Kansas. Data representing three ''climates', normal, wet,
and temperature-biased were generated and applied to a detailed
model of the land surface. The resulting energy fluxes across
the land-atmosphere interface are reviewed and the differences

are noted.
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K(t)

NOTATION

bulk transfer coefficient for sensible heat
bulk transfer coefficient for momentum

bulk transfer coefficient for water vapor
Julian day

water vapor flux

heat flux into the ground

sensible heat flux

clear sky shortwave radiation

insolation

total direct and diffuse shortwave radiation
eddy transfer coefficient for heat

eddy transfer coefficient for momentum

eddy transfer coefficient for water vapor
radiation attenuation factor

Monin-Obukhov length

turbulent latent heat diffusion into the atmosphere
mean fairweather cloud cover

cloud cover

mean cloud cover for all inter-storm periods

intermediate mean cloud cover during inter-storm
periods

atmospheric pressure
cloud cover transition function

observed cloud cover transition
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T,(8)
v}
T(t)

T'(t)

"

T, (t)
Ty ()
T, (t)

X, (€)
Y(t)

Wb o)

Wy ()

NOTATION

time of local sunrise

longwave radiation

total reflectivity of the ground
Richardson number

bulk Richardson number

net all wave radiation
"fairweather'" region

time of local sunset

cloud transition period

temperature

dewpoint temperature

deterministic temperature component
stochastic component of temperature
mean hourly dewpoint temperature
deterministic component of dewpoint temperature
dewpoint deviations

ground surface temperature

mean wind direction

predictors in temperature regression equation
hourly temperature change

solar constant

wind direction



10

NOTATION

mean wind speed

wind speed

friction velocity

regression coefficients

molecular scattering factor -

mean atmospheric transmission coefficient for
cloudless, dust-free, moist air after scattering

only

coefficients of differential equation for
temperature

specific heat of air
total dust depletion

depletion coefficient of the direct solar beam
by dust absorption

regression coefficients for dewpoint temperature
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depletion coefficient of the direct solar beam
by dust absorption

atmospheric vapor pressure
saturation vapor pressure
relative humidity
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storm depth
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NOTATION

elevation adjusted optical air mass
cloud cover deviations

turbidity factor

specific humidity

longwave radiation

ratio of actual earth-sun distance to mean

earth-sun distance

ds(t)/dt

sine of solar altitude

time between storms

arbitrary initial time

storm duration

mean monthly precipitable water
elevation
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for sensible heat profile

empirically determined adjustment factor
for wind profile

random input for wind direction

empirically determined adjustment factor
for water vapor profile

angle of radiation

(mean time between storms)_1

cloud cover decay coefficient - approaching

storms
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NOTATION

skew coefficient of €t

skew coefficient of wind speed
(mean storm duration)-1

declination of the sun

effective atmospheric emittance

random deviate

cloud cover decay coefficient - receding storms
standard normal deviate

(mean storm depth)_1

mean monthly surface dewpoint

is -1 for West longitude
is +1 for East longitude

atmospheric density

lag-1 serial correlation coefficient of
wind direction

lag-1 serial correlation coefficient for
dewpolnt temperatures

lag-1 serial correlation coefficient of
wind speed

cloud cover serial correlation function

lag-1 serial correlation coefficient for
stochastic component of temperature

lag-1 serial correlation coefficient of
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Stefan-Boltzman constant

standard deviation of hourly dewpoint temperaturc
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NOTATION

standard deviation

of wind direction

variance of the fairweather cloud cover

standard deviation

standard deviation
of temperature

standard deviation
shear stress, hour

serial correlation
of integration

of wind speed

of stochastic component

of dewpoint deviations
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local latitude
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CHAPTER 1

INTRODUCTION

1.1 Overview

Motivation for the research outlined in the following
report is the growing need to provide high resolution hydro-
meteorological data for various computer simulation models
of the physical processes taking place near the land sur-
face. Subjects for such modelling include the transfer
of heat and moisture across the land-atmosphere inter-
face, plant growth, plant disease propogation, insect in-
festation, irrigation management, and crop forecasting.

Each of these modelling efforts is becoming more sophis-
ticated as our knowledge of the individual processes grows.
Many of the processes are related, and efforts to couple
related models are being made to study larger and more
comprehensive land surface systems.

Data requirements of these studies include: precipi-
tation, radiation, cloud cover, temperature, humidity, wind,
etc. For many models, data at hourly intervals is highly
desirable. This time resolution may be necessary when study-

ing diurnal effects.
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Previously, researchers had only historical obser-
vations from which to draw a statistically coherent set of
input data. While it is true that observed data are the
only data where all of the variable interactions survive
intact, a researcher using such data is limited to a given
set of statistics. 1If, for instance, a researcher wants
to study the effect of a fundamental change in the statis-
tical parameters of one input variable on a land surface
process, there exists no rational way to modify the other
inter-related input variables whose statistics would nat-
urally be changed by the shift. For example, if the number
of storms was to be increased, how would cloudiness, temp-
erature, and incoming shortwave radiation be adjusted to
accomodate the change?

The physical linkages between the variables that re-
flect the flow of heat, moisture, and momentum across the
land-atmosphere interface are compleéx. Figure 1.1 pro-
vides some insight into the nature of these inter-relation-
ships. It is clear that simple scaling of one variable
would not be sufficient to realistically study the sys-
tem-wide responses. A more sophisticated adjustment pro-

cedure is required.
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Data could possibly be generated by existing computer
models of planetary weather dynamics. Changing boundary
conditions would produce a number of different weather
scenarios which would provide the appropriate data. How-
ever, for most cases, the computer costs of this approach
are still prohibitive.

Another approach would be to create data using multi-
variate stochastic generation techniques. However, severe
non-stationarities, discontinuities, and unusual data dis-
tributions inhibit the application of multivariate tech-
niques as they have traditionally been applied in hydrology.

Because of these problems, very few researchers have
successfully developed algorithms to stochastically generate
several weather variables simultaneously. Those that exist
make some extreme simplifying assumptions, smooth the data,
are applicable only at three or four specified times per

day, and in general, are quite inflexible.

1.2 Multivariate Climate Data Generation: Previous Work

Kim (1976) generated time series of precipitation and
temperature for use in snowmelt forecasting. However, he
was able to show that, in his case, temperature and precipi-
tation were statistically independent, greatly simplifying

the problem.
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Jones et.al. (1970) formulated an algorithm to generate
rainfall, daily average temperature, and daily evaporation
of water. The functional relationships among his weather
variables can be summarized as

Rainfall = f(time of year, previous rainfall)

Temperature = f(time of year, current rainfall)

Evaporation = f(time of year, current rainfall,
previous rainfall)

The approach of Jones et.al. was to analyze the histor-
ical data and use fitted high order polynomials to predict
probability distribution parameters (e.g. means and var-
iances) for each variable as a function of the week of the
year. Polynomial equations were obtained based on the
occurrence or non-occurrence of rainfall. For example, one
equation predicting mean daily temperature was developed for
dry days and another equation was developed for wet days.
A similar approach was used to calculate the standard devia-
tion of daily temperatures. The stochastic nature of daily
temperature was then simulated by sampling from a normal dis-
tribution of temperatures having the derived mean and standard

deviation for that particular day.
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The approach of Jones et.al. considers only the day-
to-day variations of the primary variables. Time varia-
tions of much less than one day are needed.

Ahmed (1974) developed a program to gencrate rain-
fall, ambient temperature, air humidity, short and longwave
radiation, and wind speed to use in a dynamic simulation
of crop behavior. The weather variable inter-relationships

as specified by Ahmed were

Rainfall = f(location, probability of rainfall
for current day)

Radiation = f(location, time of day, time of
year, rainfall for the day, clear
or cloudy conditions)

Wind speed = f(location, time of day, time of year)

Temperature = f(location, time of day, time of year,

rainfall for the day, clear or

cloudy conditions)

Air humidity f(location, rainfall for the day, air
temperature)
The description of Ahmed's functional relationships make
this algofithm appear quite attractive, but his formula-

tion and execution of them do not have the desired resolution

and flexibility.
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Rainfall is generated on a daily basis. No consid-
eration is given to storm duration and hence to storm in-
tensity.

Cloud cover, which is one of the most important ingred-
ients in determining the surface energy balance, was
treated by Ahmed as a binary variable. That is, cloud
conditions were assumed to be either fully overcast or
clear, nothing in between.

Ambient temperature was computed by generating weekly
means. Empirical equations were used to convert weekly
means to temperatures at 8:00 AM, 12:00 Noon, and 4:00 PM
for each day of the week.

Two simplifying assumptions were also used in Ahmed's
temperature formulation: 1) ambient temperature decreases
in direct proportion to the amount of rainfall, and 2)
the probability of clear or cloudy sky on any day was
assumed proportional to the rainfall probability of that day.

Nicks (1975) developed a model to generate values for
daily rainfall, daily minimum and maximum temperatures,
and daily solar radiation. Rainfall was generated by a
Markov chain process. The temperature and radiation data
were generated individually by lag-1 Markov processes

conditioned by current and preceding wet or dry days.
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Probably the best effort thus far to jointly generate
a set of meteorological data was presented by Richardson
(1981). Richardson developed a procedure to generate
daily precipitation, maximum temperature, minimum temper-
ature, and solar radiation. Precipitation was generated
independently using a Markov chain. Daily max/min temper-
atures and daily radiation data were generated using a
multivariate model with means and standard deviations con-
ditioned on the occurrence of wet or dry days. In this
manner, Richardson was able to preserve the inter-relation-
ships among the four variables.

For most of the models reviewed, time resolution was
on the order of one day. No multivariate hydrometeoro-
logical data generation algorithms with time resolution as

low as one hour have been found in the literature.

1.3 Constrained Stochastic Climate Simulation

The result of the current research is a computer model

to stochastically generate ten hydrometeorological variables

with hourly resolution. Included in the variable set are
1. time between storms 6. longwave radiation

2. storm duration 7. temperature

3. storm depth 8. dewpoint temperature
4. cloud cover 9. wind speed

5. shortwave radiation 10. wind direction
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The general approach in constructing the model was
to develop a set of stochastic elements that could be
coupled and thus constrained by deterministic relationships
in order to preserve as much of the important cross-corre-
lations as possible. At the same time, the individual
stochastic elements were designed to provide time series
whose statistical properties approximate historical values.

To accomplish this task, several major hurdles had to
be overcome. The two most important dealt with the genera-
tion of hourly cloud cover and the generation of hourly
temperature.

Hourly cloud cover is a highly non-stationary variable.
The first and second moment properties are obviously quite
different during an intra-storm period than during an
inter-storm period. A model was required that constrained
cloud cover during storm events, provided for the proper
transition into and out of storm periods, and permitted
the occurrence of total cloud cover during an inter-storm
period.

A technique was developed that allows the generation
of a time series whose mean and variance at a given point in
time are allowed to vary in a cohtrolled fashion. This

technique is an essential ingredient in providing much of
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the desired coordination between precipltation occurrences,
cloud cover, short and longwave radiation, and temperaturec.
It allows the '"ripple'" effects that would result from a
change in precipitation statistics to be felt throughout
the generated data set.

Hourly temperature also exhibits pronounced non-sta-
tionarities, both diurnally and seasonally. To attack this
problem, a new methodology is used that is based on an
expansion of ideas presented in an unpublished report by
Bryan (1964). The technique generates hourly temperatures
as ;ca function of the previous hourly temperatures, short
and longwave radiation, wind speed, and wind direction.
(Provision was made to include a link to ground temperatures
as well). Stochasticity is introduced by cloud cover as
it affects short and longwave radiation and by superimposing
a serially correlated series of random deviations on the
calculated temperature.

The resolution of the cloud cover and temperature pro-
blems formed the framework that allowed the remaining ele-
ments to be knitted together to form a rational model. The
model has been named Constrained Stochastic Climate Simu-

lation (CSCS).
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Chapters 2 - 8 present the theoretical development
for each component of the CSCS model. Parameter estimation
is discussed in Chapter 9. The results of four data gen-
eration experiments using the CSCS model appear in Chap-
ter 10. The model has been tested for two time periods
of the year, January and July. These two months were chosen
because they correspond to a common procedure of January-
July comparisons in the climate-modelling literature and
because they represent two significanly different weather
regimes.

Two different geographical locations were tested:
1) Boston, Massachusetts, and 2) Dodge City, Kansas. Coas-
tal and continental climatic regimes are represented
respectively by these locations.

Output from the CSCS model was also used as input to
a detailed model of the land surface (Milly, 1982) to
show its applicability to studies of land surface response
to various meteorological forcings. (Chapter 12).

The CSCS model generates data that 1s representative
of the 2-meter level. The land surface model used in Chap-

ter 12 requires data at the surface or zero-meter level.

Chapter 11 describes how the CSCS model is linked to the land
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surface model through the surface boundary layer. Stable,
unstable, and neutrally stable atmospheric conditions are
accounted for in establishing the various flux profiles.

In this project, the generated atmospheric data were
used to directly force the land surface model. Feedbacks
from the land surface model to the atmosphere are not
explicitly accounted for, although the potential for coupling
is built into the CSCS model. |

By not accounting for the feedback mechanisms in
this application, the CSCS-land surface system is in
effect an "island'" model. This means that the data repre-
senting the 2-meter atmospheric level at a point are unaf-
fected by the local land surface conditions. The natural
analogy for this situation would be a small island whose
land surface processes were being forced by a meteorological
data set that derived its properties from the areas
surrounding the island.

Perhaps the most attractive feature of the CSCS model
is its efficiency. On a DEC-10 time-share computer sys-
tem, twelve months of hourly data can be generated in less
than one CPU minute. Overall, the CSCS model should be an
effective, flexible, and cost efficient tool to use in a
wide variety of studies that require large amounts of

hydrometeorologic data.
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Chapter 2

PRECIPITATION MODEL

2.1 Introduction

Many stochastic precipitation models have been devised
over the years to serve a variety of needs. The character
of these models ranges from the simple to the complex. Each
model attempts to satisfy certain statistical properties that
are observable in a historical data base and are important
to a particular application. Most of the precipitation models
used in hydrologic applications, including those used in the
multivariate weather data generators discussed in Chapter 1,
describe the occurrence of daily precipitation. Xavvas and
Delleur (1975) and Nicks (1975) provide good surveys of
stochastic models of precipitation that appear in the liter-
ature.

Generally, these models describe the precipitation
phenomenon in two stages. First, some sort of determination
is made to decide if a wet or dry period has occurred. Second,
if a wet period has occurred, the amount of precipitation
for the period is computed.

For the current application, a precipitation model 1is

needed that can yield data with hourly resolution, yet not
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overburden the project computationally. One model that sat-
isfies these requirements is an alternating renewal process
for independent, alternating wet and dry periods used by

Grayman and Eagleson (1969).

2.2 Grayman-Eagleson Precipitation Model

Grayman and Eagleson found that a respectable sequence
of synthetic rainfall data could be created by modelling the
times between storms, tb’ storm durations, tr’ and the
total storm depths, h. Detailed investigations of observed
storm sequences by Grayman and Eagleson showed that storm
durations and times between storms could be treated as inde-
pendent events, but that storm depths were highly dependent
on storm durations. Grayman and Eagleson also found that
times between storms and storm durations could often be
described as being exponentially distributed. Storm depths
were found to follow a gamma distribution when conditioned
by storm duration. Thus, the precipitation model can be
expressed by successive sampling from the probability den-
sity functions (pdf) described by the following equations

Time between storms - pdf

£(t,) = 8e P, t, >0 (2.2-1)

b)

where B = (mean time between storms)_1
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Storm duration - pdf

-8t
T .
f(tr) = Se >ty > 0 (2.2-2)

-1
where § = (mean storm duration)

Storm depth given storm duration - conditional pdf

§t_-1 -nh

f(nh|st ) = N " e h >0 (2.2-3)
n r T(8t,) s 1 2 .
-1
where n = (mean storm depth)

The solution procedure is as follows. At some initial
time, say to’ generate a time between storms, tb. Once tb is
known, the period (to,t0+tb) is considered dry with the
hourly precipitation set equal to zero. Next, when time, t,

reaches to + tb’ the storm duration, t is selected. The

r’
period (to + tb’ to + tb + tr) is then considered wet. Using
the value just computed for tr’ a storm depth is selected
from the distribution described by Equation 2.2-3. When time
reaches ty tb ot the process is repeated to determine the
next storm sequence.

Presently, a uniform precipitation rate is assumed. Later
versions of the CSCS model could easily contain an algorithm
to provide variable intrastorm precipitation rates. But for

now, hourly precipitation is found by dividing storm depth,

h, by storm duration, tr
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2.3 Data Generation

The data generation technique used for the exponen-
tial distributions of Equations 2.2-1 and 2.2-2 is straight-
forward and is described in Appendix A.

Generation of gamma distributed variates 1s not as easy.
Direct selection of a gamma variate is complicated by the fact
that the gamma probability density function cannot be anal-
ytically inverted. Therefore, indirect methods are required.

If the parameters of the gamma distribution are integer,
a gamma variate can be determined by summing variates chosen
from exponential distributions. However, the parameters of
Equation 2.2-3 will generally be non-integer.

The method used by Grayman and Eagleson (1969) to gen-
erate a gamma variate, nh, involved a mixture of techniques
depending on the value of the product Str. Basically, the
authors used a method of summing exponentially distributed
variates when &t >1 and a numerical integration technique
when Oiétril. The reason for using a different technique
when 8t >1 results from the fact that for 0<ét <1, the
peak of the gamma distribution is located at nh = 0, but its
magnitude is undefined. The situation where t, is less than

one occurs often, meaning that the numerical integration pro-
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cedure is used f[requently. A more efficient procedure to
generate gamma variates 1s desired.

Curtis (1978) investigated three alternative techniques
to generate gamma distributed variates. The first technique
considered was a purely numerical technique used by Thom
(1968) to generate direct and inverse tables of the gamma dis-
tribution. The second technique considered was an acceptance-
rejection technique developed by Curtis (1978) that followed
procedures outlined in Abramowitz and Stegun (1970). The
third technique considered was another acceptance-rejection
method presented by Fishman (1973).

Fishman's approach was by far the most efficient and
worked for both integer and non-integer distribution para-
meters. The solution procedure for the Fishman technique is

given in Appendix A.

2.4 Summary

With the implementation of the Fishman technique to
generate gamma variates, a very efficient precipitation gen-
erator results. One big computational advantage is that this
precipitation model yields hourly values, yet is only run
aperiodically. In each dry-wet cycle, the precipitation

model is '"turned on' only two times. First at t,, @ time
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between storms is selected. Second, at ty * ty,, a storm dur-
ation and a storm depth are computed. The rest of the time,
the only computation that occurs is a simple check to determine
if a new time between storms or a new storm duration is re-
quired. If no new variate is required the entire generation
scheme is skipped. This contrasts with other methods, such

as Markov Chain techniques, that require a solution of the
generating scheme at each time step.

Another advantage of this particular precipitation model
results from the generation of the time between storms, ty.

By knowing the times that storms begin, (and end for that mat-
ter), explicit and continuous coordination between the preci-

pitation ﬁodel and other CSCS components such as cloud cover,

temperature, solar radiation is possible.

Previous investigators who have attempted to develop mul-
tivariate meteorological data generators have all recognized
this coordination problem as manifested by the differences
between meteorological variables on dry days as opposed to wet
days. Different sets of equations had to be developed as
"special cases' depending on whether a particular day was

wet or dry. As will become clear in later chapters, the
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information provided by the precipitation model allows the
development of a generalized set of equations that operate

for all times, wet or dry.
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CHAPTER 3

CLOUD COVER MODEL

3.1 Introduction

The evolution of cloud cover plays a critically im-
portant role in the flux of heat and moisture at the land
surface. Energy balances are greatly affected as cloud
cover continuously alters the transmission and reflection
of radiant energy. Of course, cloud cover is also asso-
ciated with precipitation inputs to the land surface
moisture balance. Yet, cloud cover as a stochastic pro-
cess has received very little treatment in the hydrologic
literature.

Where studies have been performed, (Gringorten, 1971
and 1966; Fox and Rubin, 1965; Chargnon and Huff, 1957) cloud
cover has been treated independently of other meteorologic
processes. Developers of the various multivariate climate
data generators discussed in Chapter 1 circumvented this
issue by modelling net solar radiation, temperature, etc.
The only time the effect of cloud cover was even implied 1in
these works was through the development of separate sets

of generating equations for wet days and for dry days. The
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lower temperatures and solar radiation levels on wet days
implied the presence of more cloud cover than on dry days.
When interest is in the association of cloud cover and
precipitation, the underlying modelling philosophy has
been to follow the mechanics observed in the atmosphere.
That is, clouds must be present prior to establishing the
quantity of precipitation. However, as many meteorolo-
gists will say, one of their most difficult tasks is to
predict total precipitation amounts when presented with a
given atmospheric situation having precipitation potential.
In the following sections, a new approach will be
used to model cloud cover as a stochastic process. The
new technique overcomes many of the difficulties previous
researchers have encountered when jointly generating meteor-
ological data. It allows the establishment of the essen-
tial relationships between the meteorological variables of

interest.

3.2 General Description

Cloud cover, N(t), is a process that is bounded by
0 (clear sky) and 1 (overcast). Cloud conditions between
these two extremes are reported in tenths. Thus, the
observed cloud cover data set includes 0., .1, .2, ... .8,

.9, and 1.0.
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Since the precipitation model divides time into two
states, an inter-storm period and an intra-storm period,
it seems reasonable to use some of this information to con-
strain the cloud cover model to conform to a certain set of
conditions. One obvious condition that can be imposed
immediately is that during an intra-storm period (i.e.
(t0+tb’t0+tb+tr)) gloud cover is total (i.e., N(t) = 1.0).
This leaves only the inter-storm period within which to
generate cloud cover.

To develop cloud cover during an inter-storm period,
first consider N(t) as a random process. Next, consider the
expectation of N(t) conditioned on the time between storms,
ty, (i.e. E(N(t)]tb)). If the process, N(t), is examined near
the beginning or near the end of an inter-storm period,
E(N(t)ltb) would be close to 1.0. Whereas, if the process
is examined near the middle of the inter-storm period,
E(N(t)ltb) would usually be quite different from 1.0. Ob-
viously, N(t) is non-stationary.

The nature of the precipitation model discussed in
Chapter 2 presents an interesting feature to the development
of a cloud cover model. Generally, in simulation problems,

only the past states of the system are known. The only
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thing known about the future is implied from the assumption
that the statistical properties of future responses of the
physical process being modelled will be identical to those
observed in the past. In this problem, however, one future
state is always known. Since the time until the next storm
is part of the output of the precipitation model, the

state N(t0+tb) = 1.0 1s always known in addition to the past
history of the system states.

The cloud cover process as defined here is very sim-
ilar to the classic Dirichlet problem in mathematics.

There a differential equation is constructed to describe a
process that occurs within a bounded region. The solution
is known initially and the solution at the boundary is
known for all time, t, of interest. A solution is desired
within the specified region.

The development of the cloud cover model will follow
along the lines that are used to solve boundary value problems
in differential equations. The proposed procedure is to
acknowledge and analyze the properties of the function at
the boundaries, infer the existence of properties of the
function on the interior of the region, and select one of
a possible set of solutions that satisfies the prescribed

interior and boundary conditions.
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3.3 Interior and Boundary Conditions

Boundary conditions of the inter-storm cloud cover
process occur at the end of the previous storm event and at
the beginning of the next event. At these times N(t) = 1.0.
Overcast conditions (i.e. N(t) = 1.0) will not be precluded
from inter-storm periods. However, no rainfall will be
associated with the inter-storm overcast conditions.

From a statistical point of view, it is important to
determine the moment properties of the process at the
boundaries. The first moment, or the conditional expec-
tation of N(t) with respect to ty at the end of the pre-

vious storm is

E(N(to)ltb) = 1.0 (3.3-1)

since N(toj is completely deterministic. Similarly, at

t=t

‘O+t

b
E(N(t0+tb)ltb) = 1.0 (3.3-2)

The second moment or conditional variance at the

boundaries will be

VAR(N(tg)[t,) = 0 (3.3-3)

and
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VAR(N(tO+tb)ltb) =0 (3.3-4)

since the process is completely deterministic at the boun-
daries.

In the interior of the inter-storm region, imagine
that the given ty is long enough that there exists a sub—
region, R*, loosely centered around the midpoint of the
inter-storm period in which the process N(t) can be
assumed stationary. Thus, the first and second moment prop-

erties of N(t) when teR* are

E(N(t)ltb) = E(N(t)) =M (3.3-5)

0
and
2

VAR(N(t) [t,) = VAR(N(t)) = o_ (3.3-6)

This implies the existence of a '"fairweather'" cloud cover
process that is relatively unaffected by approaching or
receding precipitation-producing systems.

Now that the existence of specific first and second
moment properties of the process at the boundaries has been
established and the existence of first and second moment
properties in a sufficiently large interior region has
been inferred, it is further suggested that there exists

a smooth transition of moment properties from the boundaries
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to the interior region.

There may exist a whole set of solutions satisfying
the established or inferred boundary and interior condi-
tions. It is not the purpose here to find all or even a
part of the set of possible solutions. It is sufficient

to find just one that works.

3.4 Solution Development

One candidate solution is the function
N(t) = M0 + (l-MO)(l-P(t)) + m(t)P(t) (3.4-1)

where M0 is the '"fairweather'" mean value of N(t), P(t)

is the transition function, m(t) is the stationary se-

quence of correlated deviations with E(m(t)) = 0, VAR(m(t))

= omz and serial correlation function pm(T),where T is lag.
Since by definition, MO’ E(m(t)), and VAR(m(t))

are not functions of time, the properties of the transi-

tion function must induce Equation 3.4-1 to meet the required

boundary and interior conditions. At the boundaries, N(t)

becomes
N(to) = N(t0+tb) = 1 (3.4-2)

By inspection of Equation 3.4-1 with N(t) = 1, the following

is required of P(t)

P(tg) = P(tg*ty) = 0 (3.4-3)
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Before proceeding further, the first and second
moments at the boundaries of the process defined by Equa-
tion 3.4-1 will be verified. The conditional expected

value of N(t) is
E(N(t)[ty) = E(My+(1-Mg) (1-P(t)) + m(t)P(t)) (3.4-4)

For more detail refer to Appendix B. Completion of the
operations indicated in Equation 3.4-4 leads to the expres-

sion for the time varying conditional expectation of cloud

cover.
E(N(t)[t,) = My + (1-Mg) (1-P(t)) (3.4-5)

Substitution of Equation 3.4-3 into Equation 3.4-5

at tO and t0+tb yields
E(N(to)ltb) = E(N(t0+tb)|tb) =1 (3.4-6)

as required by Equations 3.3-1 and 3.3-2.
Equation 3.3-5 specifies the requirement for
E(N(t)ltb) when teR*. Substitution of Equation 3.3-5 into

Equation 3.4-5 gives

M0 = MO + (1-M0)(1-P(t)) (3.4-7)

or

(1-My) (1-P(t)) =0 (3.4-8)
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In order to have a meaningful solution, FEquation 3.4-8

requires that

(1-P(t)) =0 , teR¥ (3.4-9)
or

P(t) =1 , teR¥* | (3.4-10)
Thus, a second condition has been inferred for P(t).

The second moment property of Equation 3.4-1 is found

by
VAR(N(t) | t,) = E(NY () [t) - B2 (N () |t) (3.4-11)

Again the reader is referred to Appendix B for the details
of evaluating Equation 3.4-11. Evaluation of Equation

3.4-11 leads to
VAR - o 2p2
(N(t)ltb) = o, P (1) (3.4-12)

To verify Equation 3.4-12 at the boundaries, substitute

Equation: 3.4-3 into Equation 3.4-12. Thus,
VAR(N(tO)Itb) = VAR(N(t0+tb]|tb) =0 (3.4-13)

as required by Equations 3.3-3 and 3.3-4.
For the interior region, Equation 3.4-10 can be sub-

stituted into Equation 3.4-12 to show that
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2
ter* = %n - (3.4-14)

VAR(N(t)]tb)
as required by Equation 3.3-6.

It has now been demonstrated that Equation 3.4-1 can
be a desirable solution to the cloud cover problem if the

transition function P(t) has the following properties
P(ty) = P(ty*ty) = 0 (3.4-15)
P(t) = 1 when teR¥* (3.-4-16)

One such function that satisfies the conditions of

Equations 3.4-15 and 3.4-16 has the form

t(t-t,) Y (tytt, -t)
P(t) = (1 - e 0y - e 0B 77y (3.4-17)

where ¢, Yy are decay coefficients controlling the transi-
tion rates from the boundaries to R*. ¢ would apply to
receding storms and y would apply to approaching storms.
These transition rates could be different values, but for

convenience, Y and ¢ are assumed equal. Thus

'Y(t-to) 'Y(t0+tb_t)

P(t) = (1 - e )J(1 - e ) (3.4-18)

To verify that Equation 3.4-18 satisfies the condi-

tions set forth by Equations 3.4-14 and 3.4-15, the func-
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tion is evaluated at tg, to*tys and teR¥*.

0

At tO

pleg) = (1 - e 00y T

- (-1 - oY),

P(to) =0 (3.4-19)
At to"'tb

P(ty*ty) = (1 - _Y(t0+tb-t0))(1 o 0T,

- - e Byann

P(ty+t,) = 0 (3.4-20)
Finally, when teR*

Lim P(t) =1

t, > (3.4-21)

b
Equation 3.4-21 suggests that the condition of Equation 3.4-16
is met only in the 1limit as ty 7. However, this is not a
problem since, for all reasonable values of vy, P(t) will
reach a value close to 1.0, say 0.99, sufficiently soon to
permit practical application of the function. The value

chosen for y will be discussed in Chapter 9.
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Another feature of the function N(t), that is shown
in more detail in Appendix B, is the serial correlation
function. The auto-correlation function of the cloud

cover process defined by Equation 3.4-1 is
en(T) = o, (1) (3.4-22)

where pm(T) is the serial correlation function of the
correlated random process, m(t). So, while the mean and
variance of the cloud cover are controlled or modulated by
the time varying function, P(t), the serial correlation

function 1s unaffected.

3.5 Stationary Deviations Process

The stationary deviations process, m(t), is taken

to be a simple first order Markov process defined by

m(t) = o, (LIm(t-1) + n(t)/1-p2(1) (3.5-1)
where

pm(l) = lag-1 correlation coefficient

n(t) = random deviate with

E(n(t)) =0

VAR(n(t)) = o °

m
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In order for Equation 3.5-1 to be an appropriate model
for the process, the auto-correlation structure of the

natural process must follow
T
py(t) = o (1) (3.5-2)

It turns out that the observed data used in this study
follows Equation 3.5-2 sufficiently well to warrant the
use of Equation 3.5-1 in the cloud cover model (See

Figures 3.1-3.2).

3.6 Summary

A cloud cover model has been developed that satis-
fies a prescribed set of requirements during both inter-
storm and intra-storm periods. A continuous transition
from one set of conditions to the next is provided. The
first and second moment properties of the cloud cover
process are allowed to vary in a controlled fashion, while
the auto-correlation structure is not affected by the
transition function.

The process is capable of producing values that are
less than zero or greater than one. Model output will,

however, be constrained to 0<N(t)<l. Actually, the fact
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that the model described by Equation 3.4-1 can generate
values outside the valid range for N(t) is an advantage.
It mimics the real atmosphere in the sense that the real
atmosphere can assume a range of conditions with a clear
sky, as well as with a totally cloudy sky.

Cloud cover viewed by a weather observer is just
the manifestation of a set of atmospheric conditions that
allows the formation of clouds. A clear sky i1s not just
one atmospheric state, but a whole continuum of states
"below'" the cloud formation threshold. The atmosphere
may be just below the cloud formation threshold or it may
be well below the threshold and require the completion of
a series of evolutionary atmospheric processes in order
to form clouds again.

Similarly, overcast sky is not one state, but a con-
tinuum of states beyond the point where the sky is totally
obscured. Total cloud cover may exist as a single very thin
layer, a single very thick layer, or multiple layers of
variable thickness and cover. A series of events must occur
at the various atmospheric levels to cause the clouds to
break up again.

Parameter estimation for the cloud cover model will be

discussed in Chapter 9.
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Chapter 4

SHORTWAVE RADIATION MODEL

4.1 Introduction

One of the most important variables in the surface energy
balance is, of course, solar or shortwave radiation. Solar
input ié highly variable and nonstationary, both daily and
seasondlly. The shortwave radiation mddel proposed in the
following sections will be used to generate hourly values of
solar input at any time of the year.

Since, for all practical purposes, the sun radiates its
energy at a constant rate, much of the variation 1n the amount
of radiant energy actually intercepted by the earth can be
described by the mechanics of earth's rotation about its axis
and by its orbital path about the sun. The equations des-
cribing the earth's motion are well known and straightforward.

The real difficulty lies in the description of what
happens to the shortwave radiation as it passes through the
earth's atmosphere on its way to the surface. A multitude of
particulate and molecular atmospheric constituents scatter,
reflect, and absorb radiant energy. Analytical evaluation of
these effects is all but impossible. Fortunately, a number

of empirical relationships have evolved through observation
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and experimentation that allow estimates of radiation finally

reaching the earth's surface.

4.2 Shortwave Radiation

As mentioned previously, the sun radiates energy at a
nearly constant rate. The average intensity of solar radiation
received on a plane unit area normal to the incident radiation
at the outer 1limit of the earth's atmosphere is called the
solar constant. A commonly used value for the solar constant,
Wbo’ (Eagleson, 1970) 1is:

_ -2 . -1
Wbo = 2.0 cal-cm “-min (4.2-1)

The portion of WbO incident on a horizontal surface is

generally of more interest and is referred to as insolation,

IO.

=

_ bo .
I, = —— sina (4.2-2)
T

The solar altitude or angle of radiation, a, with the horizon-
tal is given by

sino = sindsin¢ + cosdcos¢cosT (4.2-3)
where 8 is the declination of the sun, ¢ is the local lati-
tude, and 1T is the hour angle of the sun. The variable r is
the ratio of actual earth-sun distance to mean earth-sun dis-

tance and is given by (TVA, 1972)
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2m

T6T (186-D)} (4.2-4)

r = 1.0 + 0.017 cos [

where D is the Julian day (i.e. 1 < D < 365 or 366).

The sun's declination varies throughout the year and from
year to year. Hence, declination values are usually pub-
lished in tabular form (List, 1963). However, an approxi-
mation formula that is sufficiently accurate for heat trans-
fer computations is available (TVA, 1972). Thus
§ = Zééééﬂ. cos [%%g (172-D)] (4.2-5)
The local hour angle, T, can be computed from

T = ST + 12 - DTSL + ET (4.2-6)
when the sun is east of the observer's meridian and from

T = ST - 12 - DTSL + ET (4.2-7)
when the sun is west of the observer's meridian. The var-

iables in Equations 4.2-6 and 4.2-7 are defined as

ST = standard time in the time zone of the observer
in hours counted from midnight (e.g. 0:00<ST<
23:59).

DTSL = time difference between local and standard meri-

dian in hours
- %g(LSM~LLM)

where £ is -1 for WEST longitude, & is for +1 for
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EAST longitude, LSM is the longitude of the stan-
dard meridian and LLM is the longitude of the ob-

server's meridian.

1]

ET difference between true solar time and mean solar
time in hours. (Usually neglected for heat trans-
fer computations . ET = 0 here).

The total radiation for a given period, At = ty, - t;, can

be found by substituting Equation 4.2-3 into Equation 4.2-2

and integrating.

t2 t2w
AtIo = J Iodt = [ —%9-(sinﬁsin¢ + cosd8cos¢cosT)dt (4.2-8)
T
t t
W t2 t2
I = —— sindsin¢dt + cosd8cos¢costdt (4.2-9)
At o r2
t t

In the evaluation of the first integral on the right-hand
side of Equation 4.2-9, § and ¢ are considered constant over

the interval. Thus,

t
2
J sindsing¢dt = sindsin¢(t2-t1) (4.2-10)

t

In the second integral on the right-hand side of Equation 4.2-9,

§ and ¢ are again held constant, but 7 is a function of time, t.
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By introducing the change of variables

2m

T =57t (4.2-11)

to transform hours to radians, the second integral becomes
t t
1

2
J cosdcos¢pcostdt = cosécos¢J COS[%%IJdT (4.2-12)
Y t
t2
[ cosdcos¢dcostdt = %g-cosdcos¢(sin(12) sin(rl)) (4.2-13)
Y

Now by substituting Equation 4.2-10 and Equation 4.2-13
into Equation 4.2-9, the total hourly isolation is computed

as

W :
AtIO = ;%2 {(tz—tl)sinésin¢ + %2c056cos¢(sin(T2)-sin(rl))

(4.2-14)
the hour angle 1 should fall in the range 0<t<Zm. However,
when t is near noon standard time, discrepancies may arise
due to the non-synchronization with true solar noon. Thus,
if T < 0 as computed by Equation 4.2-11, just add 27. Sim-
ilarly, if t > 27 from Equation 4.2-11, subtract 2m.

Sunrise and sunset are assumed to accur at a=(Q. Ob-
structions near the horizon and refraction considerations are

ignored.
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4.3 Clear Sky Shortwave Radiation

Eagleson (1970) quotes the following equation for the
attenuation of the radiation spectrum under clear skies,

based on the monochromatic arguments of Beer's Law.

I
TE = exp(-na;m) (4.3-1)
0

where IC is clear sky radiation, ay is a molecular scattering
factor (al = 0.128 - 0.054 1log m), m is the relative thick-
ness of the air mass (m = coseca), and n is a turbidity
factor (2.0 for clear air, 5.0 for smoggy urban air).

TVA (1972) considers that attenuation relationships of
the form of Equation 4.3-1 to be valid only for monochromatic
radiation and can therefore be considered only as an approx-
imation when used to compute the attenuation of the total
spectral solar radiation flux. However, its simplicity is
attractive. For the current version of the CSCS model, Equa-
4.3-1 is used.

However, it is prudent at this point to present an al-
ternative to Equation 4.3-1 that should be considered in
future versions of the CSCS model. Atmospheric transmission
of the solar beam is a function of a number of variables

including dust, moisture, elevation, ground cover, solar
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altitude, etc. Referring to TVA (1972), a method used by
Klein (1948) incorporates these elements. For clear sky

solar radiation

I a' + 0.5(1-a'-d) - O.Sda

T I - 0.5R, (T-a™+d)
- (0.465+0.134w) (0.129+0.171e 0~ 880Mpyp
At = e p (4.3-3)
(-0.981+0.03416,)
w = e (4.3-4)
5.256
m, =m((288 - 0.00652)/288) ‘ (4.3-5)
-1.253 -1
m = (sina + 0.1500 (a + 3.885) ) (4.3-6)
d =dg +d, (4.3-7)

where a' is the mean atmospheric transmission coefficient
for cloudless, dust-free, moist air after scattering only, w
is the mean monthly precipitable water content in cm, ed is
the mean monthly surface dewpoint, in °F  measured at the
2m-level, m is the optical air mass,dimensionless,

mp is the elevation or pressure adjusted optical:air
mass,dimensionless, z is the elevation in meters,

o is the solar altitude in degrees, d is the total
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dust depletion, dS is the depletion coefficient of the direct
solar beam by dust absorption, and Rg is the total reflec-
tivity of the ground. Some of the coefficients that appear
in the preceding equations may vary with location and time

of year. TVA (1972) provides brief summaries of coeffi-
cients at different locations and refers to studies providing
more comprehensive lists (e.g. Kimball, 1927, 1928, 1929;

Fritz, 1949; Bolrenga, 1964; Reitan, 1960, etc.)

4.4 Cloudy Sky Shortwave Radiation

The presence of clouds will further reduce the amount
of shortwave radiation reaching the earth's surface. The
amount of additional attenuation depends not only on the
cloud cover but cloud type, thickness and elevation.

The U. S. Army Corps of Engineers (1956) gives the fol-

lowing relationship to estimate the impact of cloud cover.
= =1 - (1-K)N (4.4-1)

where IS' is the total direct and diffuse shortwave radia-
tion, N is the fraction of sky obscurred by clouds, and K is
a coefficient to account for altitude considerations.

3

K=0.18 + 0.0853(10 )z (4.4-2)

where z is the cloud base altitude in meters.
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Prior to Equation 4.4-1, all equations in Chapter 4
have been deterministic. With the introduction of N and K,
the stochastic element has now entered the solar radiation
generation process. Cloud cover, N, was discussed in Chap-
ter 3.

The stochastic generation of K is not particularly
easy. Any relationships that might logically be expected
- to exist between K and N are difficult to identify, due to
the way data for z are reported. Cloud base altitude 1is
only reported when N > 0.50. For N < 0.50, z is reported as
"unlimited ceiling".

The scale on which z is reported also varies with al-
titude. For example, z may be reported in 30 to 150m
(100-500 ft.) intervals when z is small and 1500-3000m
(5,000-10,000 ft.) intervals when z is large. To avoid the
problems with establishing K, an alternative attenuation
function is desired that is a function of N alone.

TVA (1972) reports that the relationship

1
1 2

1
—

.0 - 0.65N (4.4-3)

—
O jn

provides reasonable results. Under certain kinds of cloud
cover, Equation 4.4-3 can give values for attenuation that

are too high. As N»1 for high thin cloudiness, more radiant
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energy passes through than Equation 4.4-3 would indicate.

To help alleviate this problem, total opaque cloud cover is
used instead of total cloud cover. Opaque cloud cover data
are also reported at first-order stations where total cloud
cover is recorded and it gives a more accurate indicator of

the current cloud deck's ability to attenuate solar energy.

4.5 Summary

A procedure for generating hourly values of shortwave
radiation has been developed that uses predominantly det-
erministic techniques to establish '"potential radiation'".
Stochasticity enters through the introduction of generated
cloud covers that were discussed in Chapter 3. Seasonal
and diurnal variations are handled through the equations
describing the earth's motions about the sun and its own
axis.

Perhaps one of the most important features presented
thus far is that the depressed values of solar input observed
on cloudy days are now accounted for. Since the cloud cover
model is "synchronized" with the precipitation model, the
shortwave generation model automatically follows in step.
Furthermore, an infinite variety of radiation inputs are pos-

sible, even on a day with precipitation. For example, the
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precipitation may occur at night, clouds clear away, and
maximum solar input is observed for the day. Or cloudiness
and precipitation may last all day and a minimum solar input
is generated. Any combination in between is also possible.
This feature is one of the significant elements that 1is

missing from the models in the current literature.
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Chapter 5

LONGWAVE RADIATION MODEL

5.1 Introduction

Atmospheric constituents are heated by conduction,
convection and radiation. These elements in turn emit what
is known as atmospheric or longwave radiation. The incoming
longwave radiation is another significant element of the land

surface energy balance that must be simulated.

5.2 Longwave Radiation with Clear Skies

The temperature, density,and depth of atmospheric water
vapor, carbon dioxide, and ozone largely determine the amount
of longwave radiation at the land surface. The major source
of variability in the total atmospheric emittance is asso-
ciated with the emission of water vapor in the 8-14um spec-
tral window. (Idso, 1981)

Since atmospheric radiation is a function of the full
depth of the atmosphere, and since routine soundings of
atmospheric properties are not generally available, many
researchers have attempted to estimate longwave radiation
using parameters that can be measured at the land surface.

The two most commonly used parameters are the atmospheric
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vapor pressure and air temperature, both measured at the Zm-
level.
The effective emittance of a cloudless atmosphere 1is

generally expressed as

R
a

€, = —1 (5.2-1)
a oT

where €, is the effective emittance, R_ is the longwave

a
radiation of all wavelengths, o is the Stefan-Boltzman con-
stant (0.826(10_10)ca1 cm'zmin—1°K4), and T is the 2m air
temperature in k.

Brunt (1932) and Angstrom (1915, 1936) developed equa-

tions for estimating €, based on atmospheric vapor pressure

alone. Brunt's equation is of the form

- + b( 5
€, = 2 eo)

and Angstrom reported

€, = o - g10 Y®" (5.2-3)

where a, b, a, vy, and B are empirical constants.

Formulations that depend only on temperature include
those of Swinbank (1963) and Idso and Jackson (1969).
Swinbank developed

_ 2 }
e, = 6T (5.2-4)
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and Idso and Jackson used

~d(273-T) 2
e, =1 - ce (5.2-5)

where §, ¢, and d are empirical constants.

Idso, in cooperation with several other researchers,
led a number of investigations into the nature of atmos-
pheric radiation through the 1970's. This work culminated
in a 1981 publication which presented a new equation for
full spectrum thermal radiation. The new equation takes
into account both atmospheric water vapor and temperature.
The new equation was developed to follow the body of evi-
dence that links longwave radiation to the biﬁding energies
of certain hydrogen bonds. Idso's latest approach takes

the form (Idso, 1981)

(1500/T)

*)e e (5.2-6)

€, = 0.70 + 5.95(10

where e is in mb and T is in °K. Idso developed the model
using data that ranged from 245°K to 325°K for T and from
3mb to 28mb for e, -

To stochastically generate values representing longwave
radiation, models to generate temperature and vapor pressure

are required. The temperature generation scheme will be
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discussed in a later chapter. Vapor pressure will be com-
puted as a function of the 2m dewpoint and the 2Zm temper-
ature. Dewpoint will be a generated variable and will also

be covered in a later chapter.

5.3 Atmospheric Water Vapor Pressure

As mentioned earlier, dewpoint and temperature will be
used to compute vapor pressure as required by Equation 5.2-6.
The path from dewpoint to vapor pressure is not particularly
direct. Several steps are taken.

First, the saturation vapor pressure, e is computed

using an approximation formula found in Rasmussen (1979)

Térc, i+, THeC T

eg = C *CTHC, 3 4 5

s (5.3-1)

where eg is in mb and T is in °C. The coefficients of

Equation 5.3-1 were given as

C, = 6.0689226

C, = 4.4358312(10 1)

C, = 1.4590816(10 %) (5.3-2)
C; = 2.7619554 (10" %)

C, = 2.9952590(107°)

C; = 1.4398885(10° %)

Equation 5.3-1 was indicated to be valid over the range

-50°Cc to +50°C.
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A more computationally efficient form of Equation 5.3-1
was actually used. Equation 5.3-1 can be rewritten as

e, = C, + T(Cy*T(C,*T(Cx+T(C,*TCc)))) (5.3-3)

Equation 5.3-3 requires approximately half the effort to
evaluate than does Equation 5.3-1,
The second step is to evaluate the relative humidity.

Linsley, et.al. (1975) provide the following approximation
112 - 0.1T - Td]

£ = 117 + 0.90T

(5.3-4)

where f is the relative humidity, T is temperature in oC, and
Td is the dewpoint temperature in °C. For the range of

-25%C to +45°C, Equation 5.3-4 approximates relative humidity
to within 0.6 percent.

Relative humidity can be defined as
e
£ =2 (5.3-5)

e
S

Since f and e in Equation 5.3-5 are known, the remaining step
is to solve Equation 5.3-5 for e, and compute the vapor

pressure needed by Equation 5.2-6.

5.4 Longwave Radiation with Cloudy Skies

The presence of clouds will increase longwave radiation

due to the energy emitted by water and ice particles at
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the base of the clouds. Cloud type, temperature, and extent
all have an impact on the total additional contribution.
One correction factor found by TVA (1972) to work reasonably

well for a variety of conditions 1is

K= (1 + 0.17N%) (5.4-1)

where N is cloud cover. Applying Equation 5.4-1 and Equa-
tion 5.2-6 to Equation 5.2-1 yields the final relationship
used to generate longwave radiation.

(1500/T)

)eoe ) (1 + 0.17N2)GT4

R, = (0.70 + 5.95(10°°

(5.4-2)

5.5 Summary

A generating scheme for longwave radiation has been
developed using the latest results of Idso (1981) to deter-
mine the atmospheric emissivity. Stochastically generated
temperatures and dewpoints are used to ''drive' the longwave

generator.
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Chapter 6

TEMPERATURE MODEL

6.1 Introduction

In recent years, several researchers have attempted to
generate temperatures stochastically. In some fashion, each
investigator had to deal with the diurnal and seasonal cycles
that appear in the data. These cycles account for much of the
variability in observed temperature.

Because the periodicities are so evident, Fourier or
harmonic techniques have often been used to generate temper-
atures. Kim (1976) and Song et.al. (1973) are two examples.
Kim used Fourier techniques to generate an independent trace
of daily temperatures for input to a snowmelt forecast model.
Song et.al. developed a model to generate daily air temper-
atures and water temperatures for streams in the Missouri
River Basin. Song et.al. proposed that air and water temper-
atures could be considered to contain a deterministic part and

a stochastic part.
AT. = AT. + AT! (6.1-1)
i i i

WT. = WT. + WT!
1 1 1

where ATi and WTi are the respective average daily air temp-
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erature and the average daily water temperature on the ith
day; KTi and WTi are the deterministic components; and AT}
and WT& are the stochastic components.

The deterministic components, KEi and WTi, were taken to

have the general form

_ .o2mi 2mi
Ti = A + Bsin zge * Ccos 365 (6.1-3)

where the coefficients A, B,and C were derived through
regression analysis.

The stochastic components, AT; and WT; are not purely
random. Serial and cross-correlations exist. Therefore, Song
et.al. proposed that the water temperature departures be

written as a function of the air temperature departures.

WT.i' = DATi' * 84 (6.1-4)

where & is a random number with zero mean. Substituting Equa-
tion 6.1-4 into Equation 6.1-2 to get a temperature model
(albeit for water instead of air) that enables the output to
be correlated with a second time series.

_ - 2mi 2mi [} . . ;
WTi = a + bsin 36t + CCOs =zpE + dATi + 61 (6.1-5)

The coefficients a, b, c and d are evaluated through regression

analysis.
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Other researchers have created temperature generation
models that essentially depend on techniques yielding weakly
stationary processes (e.g. Markov lag-1). Seasonal variation
is introduced by using different parameter sets for different
times of the year. (Jones et.al., 1972; Ahmed, 1974; Nicks,
1975; Richardson, 1979, 1981). With the exception of Ahmed's
model, all of these models generate daily temperatures (either
mean or max-min) that are conditioned on the occurrence of
wet or dry days. This approach attempts to account for the
fact that on wet days temperatures tend to be lower than on
dry days.

Nicks (1975), for example, generated daily maximum and
minimum temperatures using a Markov lag-1 process. Four dif-
ferent sets of parameters were developed depending upon the
current wet/dry sequence. Parameter sets were developed
for a wet day following a wet day, a wet day following a dry
day, a dry day following a wet day, and a dry day following
a dry day.

Richardson (1979, 1981) used a similar approach but also
considered '"maximum temperature, minimum temperature, and
solar radiation to be a continuous multivariate stochastic

process'. Richardson then used a multivariate generating
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approach (Yevjevich, 1972) that was conditioned by the current

day's wet or dry state.

Ahmed (1974) also conditioned temperature by the current
day's wet/dry state, but used a somewhat different approach.
Ahmed was studying water-use efficiency in crop production
systems and needed temperatures for time scales shorter than
one day. Instead of continuously generating temperatures
throughout the day, Ahmed simplified the problem by developing
a set of equations designed to yield air temperature at three
specific times each day.

At 8:00 a.m.:

T=T- 3.0 + 1.SPp - 0.5h (6.1-6)

T=T+ 2.0 + 1.SPp - 0.5h (6.1-7)
At 4:00 p.m.:
T=T+ 1.0 + 1.5Pp - 0.5h (6.1-8)

where T is the air temperature in Oc, T is the average temp-

erature for the day in 0C, P_ is the precipitation probability,

p
and h is the amount of precipitation in cm. The + or - sign
depends on the clear or cloudy conditions of the sky (i.e. a

binary switch).
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All of the approaches seen thus far eliminate the problem
of diurnal variation by dealing with longer time scales or,
as in Ahmed's case, develop an empirical set of equations for
each time of interest. In effect, Ahmed's approach uses a
daily time scale as well, since each equation is based on
data from only one particular time of day. This is really no
different than a max-min approach.

The literature on stochastic generation of temperatures
at time scales of less than a day is quite limited. Perhaps
that in itself is a statement of the difficulty of the
problem. The literature certainly indicates that the need is
there (Jones et.al. 1972; Nicks, 1975; Ahmed, 1974; Mishoe,
1978; Jones and Smerage, 1978, Baker, 1981) but the solution
is not.

Only one relevant paper was found that approaches the
problem of stochastic generation of temperatures at the hourly
level. Hansen and Driscoll (1977) developed a mathematical
model for the generation of hourly temperatures. They were
able to develop a model of the periodic course of mean hourly
temperatures using the first, 365th, 730th, and 1095th
harmonics which correspond to the annual, daily, 12 hour and

8 hour variations.
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T, = T + (Alsin((360/N)t) + Blcos((360/N)t))

+

(Arec5in((360/N)365t) + By ccos((360/N)365t))

365

As50sin((360/N)730t) + B, qcos((360/N)730t)

+

+

A

1095Sin((360/N)1095t) + By(qcsin((360/N)1095t))

(6.1-9)
where Tt is the temperature at hour t, T is the mean annual
hourly temperature, Ai and Bi are amplitude coefficients, and
N is the number of observations in the fundamental period.

To simulate the irregular and aperiodic variations of
hourly temperatures, Hanson and Driscoll superimposed a
sequence of serially correlated standard normal deviates upon
the temperatures generated by Equation 6.1-9. A lag-1 Markov
process was used.

For some reason, however, Hanson and Driscoll chose not
to try to estimate what the variance of the superimposed set
of deviations ought to be. Rather, the sequence was assumed
to have a variance of one which caused, as the authors acknow-
ledged, the overall model variance to be lower than the observed.

Unfortunately, none of the models discussed so far have
both the refinement in the time scale and the necessary flexi-
bility to rationally include the effects of other variables
(e.g. cloud cover) on a continuous basis. A new approach

must be defined.
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6.2 Bryan's Temperature Forecast Model

In 1967 Gerrity published a report describing a physical-
numerical model for the prediction of synoptic-scale low
cloudiness. The model was designed to permit the investi-
gation of the significance of certain boundary-layer processes
for the development of horizontally extensive areas of low
cloudiness. The model required temperature inputs at the
lower boundary, the 2-m level. Gerrity chose an empirical
method developed by Bryan (unpublished,1964) to estimate the
temporal variation of the air temperature attributed to the
divergence of radiative heat flux and the divergénce of

eddy heat flux. Bryan's method uses the equation

dggt) = by - byT(t) + bys(t) + byr(t) (6.2-1)

where T(t) is temperature, t is time in hours after 1local

midnight.
s(t) = sindsin¢ - cosécos¢cos%% (R<t<S§) (6.2-2)
s(t) = 0 (otherwise)
r(t) = Q%%El = Tﬂ cosd8cosdsin %% (R<t<12) (6.2-3)
r(t) = 0 (otherwise)

and 8 is the solar declination, ¢ is the local latitude, R is



77

the local time of sunrise and S is the local time of sunset.
Equation 6.2-1 gives the temperature change as a function of
the current temperature and solar input as represented by the
two terms s(t) and r(t). The solar input is then represented
by the sine of the solar altitude. (This is especially
interesting, since the relationship for the sine of the solar
altitude also appears in the shortwave radiation model of
Chapter 4. The possibility thus presents itself for possible
linkage of the shortwave radiation model with a method for
computing temperatures.)

Equation 6.2-1 can be integrated by using the integrating

blt
factor e = . Thus
It (e T(t)) = e (bo + b2 s(t) + bsr(t)) (6.2-4)

The solution of Equation 6.2-1 1is

—bl(t-t') -blt
T(t) = T(t")e + e F(t,t") (6.2-5)
t blT t blT t blT
F(t,t') = boJ e “dt + sz e s(t)dt + bSJ e r(t)dr
t! t! t!
(6.2-6)

Equation 6.2-5 suggests that temperatures can be calcu-

lated for any time, t, if only the initial temperature 1is



78

known (i.e. T(t')). Before Equation 6.2-5 can be evaluated,
however, the coefficients bi must be determined.

The standard method for determining the coefficients that
arise from the solution of a differential equation is to
apply known boundary or initial conditions and solve for the
respective values of the coefficients. Bryan, however, de-
veloped a procedure to derive the coefficients by fitting the
model to a set of observed data through regression.

The details of Bryan's method can be found in Appendix C.
For readability, only the essential elements are presented
here.

Equation 6.2-5 can be rewritten in the following form

-bl —bl(t-l—t‘) -bl(t—l)
T(t) = e (T(t")e + e F(t-1,t'))

—blt
+ e F(t,t-1)

(6.2-7)
The quantity inside the brackets is just T(t-1). Thus Equation
6.2-7 becomes

—b1 —blt

T(t) = e T(t-1) + e F(t,t-1) (6.2-8)

Ilquation 6.2-8 gives the current temperature based on the
conditions an hour earlier at t-1. The hourly temperature
change, Y(t), is found by subtracting T(t-1) from both sides

of Equation 6.2-8.
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-b -b,t

Y(t) = -(l-e LT(t-1) + e T F(t,t-1) (6.2-9)

Next, substitute the expression for F(t,t-1) into Equation

6.2-9. ¢ t
-blt blT —bl -blt blr
Y(t) = boe e “dt - (1l-e JT(t-1) + bze e “s(t)drt

t_l t-l

t
—blt blr
+ b,e e "r(r)dr (6.2-10)

3 t-1

Evaluation of the first integral (I1 for convenience) on the

right hand side of Equation 6.2-10 leads to

c-l

-b
I, =3+— (1 - e 1

) (6.2-11)
1 1

The last two integrals, I2 and 13, on the right hand side are

complicated by the exponential term inside the integral.

Bryan (1964) indicated that it was sufficient to use the mean

b1T

value of e over the integration interval and bring it out-

side the integral. Thus

b,t -b b,t
E(e 1) =1-(1-e el (6.2-12)
1 .
t
b, “by
I, = +— (1 - e )| s(t)dr (6.2-13)
2 b1
t-1
and t
bg by
13 = 5 (1 - e ) r(t)drt (6.2-14)
1 t-1
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Substituting the expressions for Il’ IZ’ and 13 back into

Equation 6.2-10 yields

b -b -b
Y(t) = g2 (1 - e Ly o1 -e YHree-n
b; b, t bs -b, t
il (1 - e )| s(t)dt + 5 (1 - e ) r(t)dr
1 1
t-1 t-1
(6.2-15)

At this point, it may not be clear that Equation 6.2-15 is
of a form that can be utilized to estimate the coefficients
by regression. To establish this point, compare Equation 6.2-15

with the following term-by-term
Y(t) = a_+ a;X,(t) + a,X,(t) + azX;(t) (6.2-16)

For the constants a

b -b

1
a = B% (1 -e ) (6.2-17)
_bl
a; = -(1 - e ) (6.2-18)
b -b
_ 2 ~ 1 )
a, = EI (1 e ) (6.2-19)
b -b
73 _ 1 _
az = po (1 e ) (6.2-20)
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For the predictors, Xi(t)

Xl(t) = T(t-1) (6.2-21)
t

.Xz(t) = s(t)drt (6.2-22)
t-1

('t ,

X3(t) = | r(t)drt (6.2-23)
t-1

Once the ai‘s have been determined by regression, the bi's can
easily be found since the set of Equations 6.2-17 through
6.2-20 is a system of four equations in four unknowns. There-

fore, the bi's are determined as

bl = —ln(a1v+ 1) (6.2-24)
and
b1 .
bi = - EI a; , 1= 0,2,3 (6.2-25)

Now standard regression techniques can be used on the
observed data set of hourly temperature changes to establish
the bi's. Once the bi's are established, Equation 6.2-5
can be used to forecast temperature given only the initial
temperature T(t').

Since s(t) and r(t) operate only during certain portions

of the day, the equations for both Y(t) and T(t) will have
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different forms depending upon the time of day. These dif-
ferent forms and the details of their development appear in
Appendix C.

Bryan's temperature model presents some interesting
possibilities. First, as was noted earlier, a direct linkage
is evident between Bryan's temperaturé model and the shortwave
radiation model through the joint use of the expression for
the sine of the solar altitude. This allows the temperature
model to continuously respond to the temporal variation of
the solar signal. In addition, two other parameters in
Bryan's approach help account for seasonal variations (i.e.
declination,d8) and geographical influences (i.e. latitude,¢)
on the solar input.

Flexibility is another key element in Bryan's model.
Modifications could be made to the original Equation 6.2-1
to help account for the effects of cloud cover, longwave
radiation, wind speed, wind direction, ground temperature, etc.
If this could be done, then an expanded Bryan model could be
used to trace a '"deterministic' component of temperature upon
which a random component could be superimposed as was done by
Hansen and Driscoll (1977). Then an hourly stochastic temp-

erature generator would exist that could be coordinated with
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other stochastic variables in a multivariate process.

6.3 Stochastic Temperature Generation

An expanded version of Equation 6.2-1 can be written
as
LY

dT (t)
dt

"
+ blT(t) = b0 + bZK(t)S(t) + bSK(t)r(t)

+ b4q(t) + bSTg(t) + b6WS(t) + b7Wd(t) (6.3-1)

where %(t) is the deterministic component; K(t) is the radia-
tion attenuation factor (K(t) =1 - 0.65N2(t)); N(t) is the
cloud cover; q(t) is a longwave radiation estimate; Tg(t)
is the ground temperature; Ws(t) is the wind speed; and Wd(t)
is the wind direction.

The longwave radiation estimate, q(t) is not the same
as the longwave radiation calculated by Equation 5.4-2.
Rather, the simpler Swinbank (1963) formulation was used with

a cloud cover correction factor (TVA, 1972).
- -5 2 6
q(t) = 0.937(10 “)(1 + 0.17N (t))oT (t) (6.3-2)

where o is the Stefan-Boltzman constant, 0.826(10_10) cal
em 2min 1°k"%. One of the main reasons for including the
term b4q(t) in Equation 6.3-1 was to insure that a term res-

ponding to the effects of cloud cover was present throughout
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the entire day. The other two terms that respond to cloud
cover are only present during certain portions of the day.
The term b4q(t) will be available all day and should be use-
ful in explaining some of the differences in cooling observed
on clear nights as opposed to cloudy nights.

Wind speed and wind direction were added as possible
indicators of an advected temperature component. Wind direc-
tion, in particular, might give an indication of the sign of
the advection (i.e. warming or cooling).

Wind direction is often reported in degrees azimuth
measured from the north (Ooiazimuth§3600). Inclusion of wind
azimuth in Equation 6.3-1 can cause some inconsistencies in
parameter estimation. For example, an azimuth report of
360° or 10° physically indicate practically the same prop-
erty, a northerly flow. However, statistically the two
reports would indicate something quite different. The 10°
report would be a value that is considered well below the
mean value and the 360° report represents a value well above
the mean. This problem will most notably affect the serial
correlation estimates.

A transformed wind speed is used instead where

Wy(t) = azimuth | (0°< azimuth <180°) (6.3-3)
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and

Wy(t) = |azimuth - 360°[, (180<azimuth<360°) (6.3-4)

This approach unfortunately filters out east-west influences
but the relative impact of the north-south component remains.

To solve Equation 6.3-1, first note that q(t) is a non-
linear function of temperature. Since q(t) is rgally only
being used as in index, it is linearized using q(t-1) and
bringing it outside the integral. Now the solution to
Equation 6.3-1 becomes

"N n —bl(t-t') —b1
T(t) = T(t")e + e G(t,t") (6.3-5)

where

t t
blT b1T
G(t,t') = bO e ~dt + b2 e "K(t)s(t)dr

Y obyr Y byt
+ b3 e K(t)r(t)dr + b4 q(t-1) e dt

t blT
e ~ Wy(r)dr (6.3-6)
t
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Parameter estimation can now proceed as was demonstrated in

the

The

previous section.

The details appear in Appendix D.

The hourly temperature change can now be expressed as

Y(t) =
+
+
+
+
+
+
b
term e

dt -

t
-b,t b.,t
e 1 J e 1 (1 - e

K(t)s(t)dr

T
that appears in the integrals

-b.
LT (t-1)

(6.3-7)

containing s (1)
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and r(t) is treated by using the mean value argument shown
in the previous section (see Equation 6.2-12). The integra-
tion interval is short enough that the values K(1), Tg(T),
WS(T), and Wd(T) can be evaluated at time t and brought out-
side the respective integrals.

The regression formula for Y(t) is now

Y(t) = a, * 1Xl(t) + .. .+ a7X7(t) (6.3-8)

where the coefficients a; are

by
a; = - (1 - e 7) (6.3-9)
ay . |
ai = - Wbl y 1 = 0,2,3,...,7 (6.3'10)

and the predictors Xi(t) are

Xl(t) = %(t—l) (6.3-11)
t

Xz(t) = K(t) { s(t)drt (6.3-12)
t-1
t

XS(t) = K(t) [ r(t)dr (6.3-13)
t-1

X4(t) = q(t-1) (6.3-14)

Xs(t) = Tg(t) (6.3-15)
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X6(t) Ws(t) (6.3-16)

X, (t) = Wy(t) (6.3-17)

Note that since the temperature at time t is the variable
being computed, T(t-1) is used in Equation 6.3-14.

Once the ai's have been estimated, the bi's are easily

found
b1 = -1n(a1 + 1) (6.3-18)
bl
b. = - —= a. i=0,2,3,...,7 (6.3-19)
1 1 1

Now Equation 6.3-5 can be used to estimate the ''deterministic'
component of hourly temperatures.

The bi‘s are developed for each period of interest. 1In
the current application, observed hourly values of temperature
change, opaque cloud cover, wind speed,and wind direction for
a particular month were used to estimate the bi's. Ground
temperature data were not available. Thus,b. was set to 0.0.

Equation 6.3-5 is applied each day to compute tempera-
tures at t = 0 (midnight), 1, 2,...,23. The initial temper-
ature, %(t'), for the period is the 11:00 p.m. (t=23) temp-

erature for the previous day.
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The "deterministic'" component is essentially the expec-
ted temperature given the set of predictor values. All of
the temperature variability is not explained by the model.
To represent the random element, a serially correlated set
of random variates will be added to the '"deterministic"

trace. Thus, the hourly temperature, T(t),
n,
T(t) = T(t) + T'(t) (6.3-20)

N
where T(t) is the "deterministic'" element and T'(t) is the
random element.

The random element is defined as
v}
Té(t) = To(t) - T(t) (6.3-21)

where Té(t) is the observed deviation, To(t) is the observed
A"}

temperature and T(t) is the deterministic component. The

deviations are assumed to be approximated by a lag-1 Markov

process.

TU(t) = pp,T'(t-1) + ctOT,/l—p%, (6.3-22)

where P is the lag-1 serial correlation, [ is the standard

normal deviate, and O is the standard deviation.

6.4 Summary

The stochastic temperature model generates hourly temper-
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atures as a function of the time of day, time of year,
latitude, longitude, cloud cover, wind speed, longwave
radiation, shortwave radiation, ground temperature, and wind
direction. Also, because the precipitation model in effect
"drives" the cloud cover generation, the temperature output
is appropriately affected by the occurrence of precipitation.
These features make the proposed stochastic temperature

algorithm the keystone in the framework of the CSCS approach.
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Chapter 7

WIND MODEL

7.1 Introduction

The wind component of the CSCS model is composed of two
parts, wind speed and wind direction. Wind speeds are re-
quired as input to flux computations of the land-air inter-
face. Wind speeds may also quantify, somewhat, advection
processes for the temperature model. Wind direction 1is re-
quiréd as an advection indicator for the temperature model
as described in Chapter 6.

For the most part, the‘cross-correlation coefficients
between wind speed, wind direction,and the other variables
in the CSCS model are relatively low, generally less than
0.35 (see Tables 7.1-7.4). Therefore, forvthis version of
the CSCS model, both wind speed and wind direction are treated

as independent lag-1 Markov processes.

7.2 Wind Speed

The frequency distributions of wind speeds tend to be
positively skewed. A variety of probability distributions
with this property have been applied to wind speeds. Among
them are the Planck, Rayleigh, gamma and the Weibull.

(Hennessey, 1977; Justus et.al., 1977; Sherlock, 1951). The



92

Weibull appears to be the most popular.

It is apparent then, that not only must the mean and
variance of the generated data be reproduced, but the gen-
erated data should be skewed as well. One often-used approach
in hydrology to generate skewed serially correlated data
is the Thomas-Fiering method (Haan, 1977).

The equation for a lag-1 Markov process can be written

I . _ & 2 _
ws(t) = W, + oS(WS(t 1) Ws) *e0 V1 P (7.2-1)

where W_(t) is the hourly wind speed, WS is the mean hourly
wind speed, o is the lag-1 serial correlation coefficient,
and o is the wind speed standard deviation. The variable

€t is random and defined by Thomas and Fiering as

2.3
_ 2 Yewt Ye 2
Et = :{";1 + 3 - -3—6— - ?;" (7.2-2)

where Y is the skew coefficient of & and wt is a standard
normal deviate. The skew coefficient of € in turn is defined

as

3
(1 - 0o .7)vg
vy = (7.2-3)
£ (1 - ps2)1.5

where Y is the skew coefficient determined from the wind

speed data.
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In some applications, the mean and standard deviation
of hourly wind speed may not be independent of the time of
day. This can result when surface-generated instabilities
promote vertical exchanges. This allows greater momentum
transfer from faster moving air aloft and increases sur-
face winds. Since atmospheric stability follows a charac-
teristic diurnal curve, wind speeds may as well. (Oke, 1978).

To approximate this property, the mean and variance
in Equation 7.2-1 will be allowed to vary with time.

Since there is a relatively smooth transition of the observed
hourly means and standard deviations throughout the cycle,
the minimum and maximum parameter values are entered with
their respective times of occurrence. Parameter values for

each hour are then found by linear interpolation.

7.3 Wind Direction

As mentioned previously, wind direction is generated as
input to the temperature model as an indicator of advected
heating or cooling components. Advection is due to variations
in the spatial properties of the atmosphere. When dealing
only with point data, however, it is quite difficult to
identify the nature of advection, particularly for future

time steps. Wind direction appears to be about the only
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point variable that could indicate advection. This is
largely due to the fact that air masses coming to a loca-
tion from different directions may have characteristically
different properties. For instance, winds with a large
.northerly component may, on the average, bring cooler
weather conditions than winds from the south.
The transformed wind direction discussed in Chapter 6

is generated by a lag-1 Markov process.
Wd(t) = Wd + pd(Wd(t—l) - Wd)

2
+ @t/l - Py (7.3-1)

where Wd(t) is the hourly transformed wind direction,
Wa is the mean hourly transformed wind direction, and
Pq is the lag-1 serial correlation coefficient. The var-
iable o, is a random input with zero mean and standard
deviation equal to 0> the standard deviation of the trans-
formed wind direction.

The distribution of transformed wind direction is, of
course, bounded on the left by 0° and on the right by 180°.
To generate a random variate for Equation 7.3-1, an algorithm

was developed that will generate a random variate from an

arbitrary frequency histogram. (See Appendix A; Curtis 1978;
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Abramowitz and Stegun, 1970). Utilizing the observed
frequency histogram of transformed wind direction, a random
value, @t, representing wind direction (Wd,od) is selected.

Thus, @t can now be defined as

@t = Ot - Wd‘ (7.3-2)

to complete the wind direction model.
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Table 7.1 Data Correlation Matrix for Dodge City, KS -

July 1951 - 1957

TEMP DEW CLOUD WIND WIND
COVER SPEED DIR.
1.00 -0.22 -0.28 0.31 0.26
1.00 0.23 -0.10 -0.10
1.00 -0.08 -0.25
1.00 0.20
1.00

Table 7.2 Data Correlation Matrix for Dodge City. KS -

January 1952 - 1958

TEMP DEW CLOUD WIND WIND
COVER SPEED DIR.
1.00 0.66 -0.10 0.10 0.20
1.00 0.11 0.08 0.19
1.00 0.12 -0.03
1.00 -0.08

1.00
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Table 7.3 Data Correlation Matrix for Boston, MA -
July 1951 - 1963

TEMP DEW CLOUD WIND WIND
COVER SPEED DIR.

1.00 0.26 -0.21 0.35 0.18
‘1.00 .30 -0.12 0.28

1.00 -0.05 0.06

1.00 0.04

1.00

Table 7.4 Data Correlation Matrix for Boston, MA -
January 1949 - 1962

TEMP DEW CLOUD WIND WIND
COVER SPEED DIR.

1.00 0.88 0.33 -0.04 0.36
1.00 0.48 -0.07 0.28

1.00 -0.13 0.10

1.00 -0.08
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CHAPTER 8

DEWPOINT MODEL

8.1 Introduction

Some measure of atmospheric moisture is required to
cstablish a gradient for moisture transport processes at
the land surface. Specific humidity, vapor pressure, rela-
tive humidity and dewpoint temperature are all common
descriptors of atmospheric moisture content (Eagleson,
1970). Relative humidity and dewpoint data afe more
generally available since they are measured at National
Weather Service first-order stations.

To simulate on an hourly basis, relative humidity
appears to be the more diffiéult due to the strong diur-
nal variations attributed to temperature (Oke, 1978).
Dewpoint, on the other hand, is much more stable during
the course of a day (Lorenz, 1978). Therefore, dewpoint
temperature is a more likely candidate for simulation.

Ahmed (1974), however, generated air humidity for his

multivariate model in the following fashion

Hy =1+ H (8.1-1)

where Ha 1s the air humidity (i.e. vapor density) in
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g/ms, Has is the saturated air humidity (i.e. saturation
vapor density) in g/ms, and Hr is the relative humidity.
Relative humidity for a particular time of day (8:06 AM, .
12:00 Noon, 4:00 PM) was computed by linear interpola-
tion between weekly mean values of Hr for the indicated
times. H o is a function of temperature and was computed
using Murray's adaption of the Goff-Gratch equation (Van
Bavel, et.al., 1973). This approach is quite simplistic
since any natural stochasticity is filtered out by the
use of weekly mean relative humidities. Also, humidities
are computed only at three specified times of the day.
Higher resolution is required in this study.

Gringorten (1966), in a study simulating the fre-
quency and duration of weather events, suggested that
dewpoints could adequately be generated by a lag-1 Markov
process. This would be a reasonable approach if the mean
hourly dewpoints did not change materially during the

course of a day.

8.2 Dewpoint Generation

From the plots of observed hourly dewpoints in Fig-

ure 10.13 and Figure 10.15, it is clear that the mean diurnal
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variation of dewpoint is quite small. The difference
between the maximum and minimum hourly dewpoints in
Boston, MA was 1.1°C for January‘and July. For Dodge
City, KS, the difference was 2.4°C for January and 1.7°¢
for July.

It is also apparent from Figure 10.13 and Figure 10.15
that the hourly variation in dewpoint is not random.
Rather, the hourly transitions are quite smooth. These
variations where they are noticeable, can generally be
explained by the short term dynamics at the land-air
interface. For example, the pronounced morning minimum in
the Dodge City data for January is likely due to the
removal of atmospheric moisture near the surface due to
frost formation. During the day, rising temperatures cause
the moisture to return to the lower atmosphere, elevating
the dewpoint again.

During July, the morning rise in dewpoint is probably
due to the addition of moisture from evaporating dew. The
subsequent dip in dewpoint temperatures in the afternoon
is likely the result of instability-generated mixing with
dryer air aloft. As the strength of the vertical instabil-

ity subsides in late afternoon, moisture builds up again
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in the lowest atmospheric layer and the dewpoints rise.
Tables 7.1 - 7.4 present the lag-0 cross-correlation
matrices for the observed data. The generally weak cross-
correlations exhibited by the July data indicate that
dewpoints could be generated independently.
Since the daily variation of July dewpoints for Boston
and Dodge City are small, and since the July dewpoints
are only weakly correlated with the other model variables,
July dewpoints could be generated independently by a first-
order Markov model as suggested by Gringorten (1966).

Therefore, the July dewpoints will be generated by
Td(t) = ;[Td + pd(l)(Td(t-l)-Td) +

beog(1-p5(1))7 (8.2-1)

where Td(t) is the hourly dewpoint in QC, Ta is the mean
hourly dewpoint in °c, pd(l) is the lag-1 serial correla-
tion coefficient, wt is the standard normal deviate, and
04 is the standard deviation of hourly dewpoint in °c.

To affirm the choice of a first order Markov process

to represent the July dewpoints, the observed serial corre-

lation functions for July hourly dewpoints are plotted in
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Figure 8.1 in comparison with the appropriate theor-

etical curve (i.e. p(T) = pT(l)). The theoretical curve
follows the Boston data very well. For the Dodge City
data, the theoretical curve follows the observed data

quite well only for the first six to eight hours. Beyond
that point the theoretical curve falls faster than the
observed. Overall, Equation 8.2-1 seems to be a reasonable
choice for July dewpoints.

Since the January dewpolnts appear to have a stronger
cross-correlation structure with other CSCS model variables,
January dewpoints will be assumed to be composed of a
"deterministic'" component and a random component. This
approach follows that established for temperature genera-
tion in Chapter 6. The deterministic component, ¥d(t)’

will be estimated by linear regression. Thus

ny [a V]

Td(t) = dO + led(t—l) + dzT(t) + dSN(t) + d4WS(t)

+ d5Wd (t) (8.2-2)

v
where Td(t—l) is the previous hourly "deterministic' por-



Figure 8.1

103

<
3 1.0
—
_<_| 0.8+
w
§ o6l
BOSTON, MA.
= 04l JULY 1951 -1963
= —LAG- | MARKOV
w o OBSERVED
0.2
| | | | | I | | |
2 4 6 8 10 12 14 & I8
LAG (HR)
S
= 1.
= 0
<<
o) o8
c ° o
oc o (o] o
3 o6 ©°%00o000
0 DODGE CITY, KS
T —LAG -1 MARKOV
w o OBSERVED
»n 02}
1 ] ] ] 1 | | | 1
2 4 6 8 10 12 14 16 I8
LAG (HR)

Serial Correlation of Hourly Dewpoint



104

tion in °C, 1T(t) is the current temperature in OC,
N(t) is the cloud cover, WS is the wind speed in ms—l,

and Wy 1is the wind direction in degrees (ooiw i1800).

d
The di's are coefficients to be estimated by standard linear
regression techniques.

The random component will be treated as a lag-1

Markov process which represents a deviations process

defined by
Y
Téo(t) = Tdo(t) - T(t) (8.2-3)

where Ty (t) is the observed dewpoint in °C, T(t) is the
dewpoint in °c generated by Equation 8.2-3 using observed
data as input, and Téo(t) 1s the observed dewpoint temper-
ature deviation in °C.

The dewpoint deviations are generated by

(T§(E-1) + veog, (-0, (107 (8.2-4)
(o]

'I‘C'l(t) = pT' do

do

where O (1) is the observed lag-1 serial correlation co-

do
¢fficient of the deviations, wt is the standard normal de-
viate, and Orp is the standard deviation of the observed
do

deviations in ©C.
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The January dewpoint model can now be written as
V]
Td(t) = Td(t) + Té(t) (8.2-5)

8.3 Skewed Data

The dewpoint data tend to be negatively skewed. For
example, the July data were found to have skew coefficients
of -0.55 and -0.67 for Boston and Dodge City respectively.
To be correct in modelling hourly dewpoints in July, the
random deviate wt should be modified according to the
Thomas-Fiering approach described in Chapter 7 for wind

data. The transformed random variate, e_ was defined pre-

t
viously as
3
2) 3
Y ¥ Y
- 2 S > _ 2 _
€y = ?; 1 + e 35_] 7;— (7.2-2)
where
3
(1 - p3(1)) : )
Y. T ) 1§ Yd 7.2-3
- p3(1))

where Yq 1s the skew coefficient of the observed data.
This approach does not work well for dewpoint genera-

tion because the lag-1 serial correlation coefficients for
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dewpoints are very high. (0.96 for July in Boston and
0.95 for July in Dodge City). To see the problem more
clearly, let us look at the modifier of Yq in Equation

7.2-3 and call it F. Thus

(1 - 03(1))
F = > 1% (8.3-1)
- oz b

Examination of Equation 8.3-1 shows that the denominator
decays to zero faster than the numerator as Pyq approaches
one. Therefore, as pd(1)+1, F»o, The skew adjustment
factor, F, 1s plotted against lag-1 correlation on Figure
8.3. Generally, when lag-1 correlation is less than about
0.9, there is no problem. But for lag-1 correlation values
greater than 0.9, F gets very large. For example, for
p(1) = 0.95, F = 4.7,

To see the full impact of such an extreme adjustment
factor, we must examine the last term of Equation 8.2-1

using e, from Equation 7.2-2 instead of the standard normal

t

L
deviate by On Figure 8.4 the value of etod(l—p(zi(l))2
is plotted against a wide range of values for by -

During the course of generating a large number of

random standard normal deviates, wt, a few values selected
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from the tails ol the distributlon are expected. 1If,

for instance, a large negative value for y, is selected,

t
1,

a very large value for the etod(l - pczl(l))2 term results.
In this case, the last term of Equation 8.2-1 so dominates
the output that very large and sudden negative shifts of
dewpoint occur. From Figure 8.4, it is seen that nega-

0 to 14°C are possible. If

tive shifts on the order of 10
two or more large values of wt happen to be generated

close in succession, totally unrealistic sequences can

be generated. Therefore, the Thomas-Fiering approach

was not used for dewpoints. Instead, the process was
approximated using normally distributed deviates. Be-

cause dewpoints are constrained by temperature, (i.e. Td < T),

some of the skew is recovered. In future studies, other

ways of preserving dewpoint skewness should be examined.
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CHAPTER 9

PARAMETER ESTIMATION

9.1 Introduction

In Chapter 2 through Chapter 8 the individual compon-
ents of the CSCS model were developed. However, the de-
tails of each required parameter estimation were not dis-
cussed. Rather, it seems more reasonable to treat the
parameter estimation issues in a separate comprehensive
chapter. Hopefully, future users of this report will find
it more convenient to refer to a single chapter on para-
meter estimation instead of searching all chapters to
seek the necessary information.

In the following sections, the procedureé used to
identify the parameters used in each component are described.
A different set of parameters was derived for each month
studied (i.e. January and July).

Hourly observations of rainfall, total opaque cloud
cover, wind speed, wind direction, temperature, and dew-
point were obtained from the National Climate Center in
Ashville, North Carolina for Boston, MA, Dodge City, KS and
Phoenix, AZ. These locations were chosen to represent a

variety of climatic and geographic conditions. Unfortunately,
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the Phoenix records had too many missing observations and
the data set was not used in this study. However, adequate
records were obtained for January (1949-1962) and July
(1951-1963) at Boston and January (1952-1958) and July
(1951-1957) at Dodge City.

‘For each location, data for each January (or July)
were stripped from the master data file and combined to
create 'mew' time series containing only January (or July)
data. Parameters were then estimated from the January

(or July) time series for each location.

9.2 Precipitation

The required parameters for the precipitation compon-
ents include the mean time between storms, EB, in hours,
the mean storm duration, fr’ in hours, and the mean storm
depth, h, in mm. Calculation of the arithmetic mean values
is obviously straightforward. The difficulty here lies in
the assumptions used in developing the precipitation compon-
ent, namely that successive storms are treated as independent
events and that the times between storms follow an expon-
ential distribution.

During times of precipitation activity, there may occur
periods of no recorded precipitation. This is not unusual
since a single synoptic scale disturbance can have multiple

mesoscale precipitation events imbedded within it. Since
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the periods of precipitation emanate from systems evolving
within a common parent some dependence is expected. As

the times between recorded precipitation increases, casual-
ity arguments suggest that this dependence decreases. The
key then is to establish some minimum time between recorded
precipitation that could be used to discriminate between
"independent" storm events.

Restrepo and Eagleson (1982) studied long-term hourly
precipitation records for six locations in the continental
United States and found minimum times between recorded
precipitation required for independence that ranged from 8
to 76 hours. In general, dry climates had high values for
this minimum separation interval while humid climates were
found to have lower values. Using a procedure outlined by
the authors, the minimum separation intervals for Boston,
MA and Dodge City, KS would be on the order of 13 hours and
47 hours respectively. Restrepo and Eagleson concede,
however, that for precipitation models like the one used
here, such a strict requirement on independence is opera-
tionally impractical and probably unnecessary.

If these long separation intervals were imposed, long
storm durations would result and the storms would contain

many periods without precipitation. This would produce
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unrealistically low average storm intensities. Restrepo
and Eagleson (1982) suggest that a shorter separation
criterion could be used operationally.

Grace and Eagleson (1967) found that a two hour separ-
ation interval was sufficient for identifying separate storms
in New England under a sharply limited definition of in-
dependence. Using the same criterion Sariahmed and Kisiel
(1968) found a three hour separation interval sufficient
for an analysis of convective storms in Arizona. For this
study, a two hour separation interval was used.

The parameter estimation procedure used in this study
defined a storm duration to include the hours with recorded
precipitation plus any non-precipitation separation intervals
of two hours or less. Once the storms were defined then the
appropriate mean storm durations, the mean times between
storms, and the mean storm depths were determined by the

usual techniques.

9.3 C(Cloud Cover

Cloud cover, as indicated in Chapter 3, is represented
by a modulated non-stationary stochastic process composed
of intra and inter-storm sequences. Parameter estimation
for cloud cover during intra-storm periods is trivial since

total cloud cover is assumed (i.e. N(t) = 1.0). For inter-
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storm periods several parameters must be identified.

In Chapter 3, the existance of a stationary inter-
storm "fairweather" cloud cover process was assumed. It
was also assumed that the conditional mean and variance
of the cloud process follow a smooth transition from their
intra-storm values to their inter-storm '"fairweather"
values. Therefore, parameter estimation for the cloud cover
process must include the following: 1) the identification
of the appropriate fairweather sequences, 2) the estimation
of the mean, variance, lag-1 serial correlation coefficient,
and the frequency histogram of the fairweather cloud cover,
and, 3) the decay coefficient for the transition period.

For convenience, the cloud cover model is rewritten

here as

N(t) = MO + (1+M0)(1-P(t)) + m(t)P(t) (9.3-1)

where M0 is the fairweather mean cloud cover, P(t) 1is
the transition function, and m(t) 1is a stationary sequence
of serially correlated deviations. P(t) and m(t) are res-

pectively defined as

-Y(t-tg) Y (ty*ty-t)

P(t) (1 - e )(1 - e ) (9.3-2)

il

fl

m(t) = p_(1)m(t-1) + n(t) (1-0 2(1))" (9.3-3)
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where Yy is the transition decay coefficient in hr‘l, t,
is the time of beginning of the inter-storm period in hr,
ty is the time between storms in hr, pm(l) is the lag-1
serial correlation coefficient of the fairweather cloud
cover, n(t) is a zero-mean random deviate with variance,
omz, and sz is the variance of the fairweather cloud
cover.

The nature of the hypothesized transition of the
cloud cover mean and variance is shown in Figure 9.1. In
this example where ty = 100 hr, the function describing
the mean is U-shaped. The variance is represented by the
trace of + 1 standard deviation about the mean. The var-
iance narrows to zero at each end and attains its maximum
value in the middle as it follows the general curvature of
the mean.

The values for the mean and variance that we are look-
ing for are those that represent the stable or fairweather
central region during the time between storms. In other
words, we are interested in that region described by the
bottom of the U-shaped functions shown in Figure 9.1.

To explain the procedure used to identify the fair-

weather sequences, it is best to again refer to Figure 9.1.

Here we have an inter-storm period of 100 hours. If we cal-
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culate the mean cloud cover for the entire 100 hour period,
we would get a value say NlOO’ Next, if we eliminate two
hours from each end of this 100 hour period and calculate
a new mean for the remaining 96 values, we would get Ngﬁ
where Ng@ < NlOO since some of the highest values of N
were eliminated. If we continue to eliminate values at
each end, the mean values will continue to decrease, al-
though at a slower rate. When the mean value has stabilized,
it is assumed that the fairweather sequence has been iden-
tified.

To handle the entire data set, the procedure is to
first compute the mean value of cloud cover for all inter-
storm periods. Then after successively eliminating values
from both ends of the available inter-storm periods, new
means are computed. Eventually after some Tr hours have
been eliminated, the mean value stabilizes. The value Tr
1s the length of the transition period. Once Tr is es-
tablished, the fairweather sequences contained in inter-
storm periods of length greater than 2Tr are combined in
a new time series containing only fairweather values.

After the fairweather cloud cover time series has been

2

determined, MO’ o

» p,(1), and the frequency histogram

can be estimated by the traditional methods.
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In general, the frequency histograms of the fair-
weather cloud covers tend to be U-shaped with spikes at
zero and one. Part of the reason for this result is that
visual observations of both zero and one actually encompass
broader ranges of causétive atmospheric conditions than
do the other observations (i.e. N(t) = 0.1, 0.2,...,
0.9, etc., see Chapter 3.6). This distortion causes peaks
at zero and one that can be two to four times greater than
the values obtained for the other levels of cloudiness. As
a result the random variate generating scheme described
in Appendix A becomes very inefficient.

In addition, the lag-1 Markov model (Equation 3.5-1)
used to generate the fairweather cloud cover sequence
preserves the first and second moments of the input distri-
bution but does not necessarily preserve the distribution
itself. For strongly peaked U-shaped input distributions,
the tendancy is to produce output distributions that are more
uniform (i.e. lower peaks and higher mid-ranges).

An example of a cloud cover histogram is presented in
Table 9.1. Except for zero and one, all elements represent
a cloud cover range of 0.10. Because cloud cover observations
are bounded by zero and one, histogram elements for zero and
one represent a range of only 0.05. To make the histogram
‘a probability mass function, the magnitudes of the histogram

elements for zero and one would have to be doubled to get
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the proper mass contribution for these elements. However,
this would compound the peakedness problem discussed earlier.

Another alternative would be to expand the range of the
representative histogram elements for zero and one. (Remem-
ber that the outcome of the cloud cover process is still
constrained to be between zero and one). If these two
ranges are expanded such that the resulting histogram ele-
ments take on values of the same order as the mid-range
values, three positive results occur. First, the data
generation efficiency roughly doubles. Second, the output
histogram is less distorted and third, the broader causative
atmospheric conditions are better represented. An example
of the adjusted input histogram is shown in Table 9.2.

The remaining parameter to be estimated for the cloud
cover model is the transition decay coefficient, y. To
estimate Y we can use the value found for the length of
the transition period, Tr,during the identification of the
fairweather sequence.

The transition function P(t), as shown in Equation 9.3-2,
is a symmetric function. To examine the transition rate, we
nced only to look at one side of the function since for
analysis purposes we can assume that ty is large enough to

eliminate the influence of the second side of the function.
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Observed Cloud Cover Histogram: July,

RANGE
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Table 9.2 Adjusted Cloud Cover Histogram: July, Boston

RANGE FREQUENCY (%)
-0.25 < N < -0.15 10
-0.15 < N < -0.05 1
-0.05 < N < 0.05 11

0.05 < N < 0.15 11
0.15 < N < 0.25 12
0.25 < N < 0.35 10
0.35 < N < 0.45 7
0.45 < N < 0.55 3
0.55 < N < 0.65 3
0.65 < N < 0.75 3
0.75 < N < 0.85 4
0.85 < N < 0.95 3
0.95 < N < 1.05 4
1.05 < N < 1.15 4
1.15 < N < 1.25 3



123

Thus, for convenience, the right-hand side of P(t) is
ignored and Equation 9.3-2 can be rewritten (after setting
the arbitrary initial time t to zero) as

'Yt
P(t) = (1L - e ) (9.3-4)

According to the criterion established in Chapter 3,
P(t) = 1.0 within the fairweather regime. But according
to Equation 9.3-4 P(t) -~ 1.0 as t > <. This requirement
is impractical operationally. However, this problem is
overcome by simply choosing a value of P(t) that is suf-
ficiently close to 1.0. Thus, for the present study, the
fairweather regime exists for P(t) > 0.99. This definition
of the beginning of the fairweather regime (i.e. when P(t) =
0.99) also implies that the length of the transition period,
Tr’ is equal to the time it takes P(t) to go from 0.00 to
0.99. Using P(t) = 0.99 and t = T, Equation 9.3-4 can be
written as
-YT

0.99 = (L -e ) (9.3-5)
After rearranging and taking the natural logrithm of both
sides of Equation 9.3-5, and solving for y gives

1 10 (0.01) (9.3-6)

T

=2
n
—

or

, = b (9.3-7)

H



124

1.0
:: 0.8
a
5 osl-
4
™ -
L A — P(t),7 =0.192 hr
Z X |
© 14 8 OBSERVATIONS
’_ 8
7 ® JAN, DODGE CITY
Z o JULY, DODGE CITY
= X JAN, BOSTON
0.2 A JULY, BOSTON
o NS NN NN N SRR N SN RN S N
2 4 6 8 10 12 14 16 18 20 22 24
TRANSITION TIME (HR)
'igure 9.2 Comparison of Observed and Theoretical Transition

Function



125

Table 9.3 Mean Cloud Cover Transition

T Dodge City Boston
(hr) January July January July
0 0.367 0.333 ’0.572 0.432
2 0.354 0.306 0.534 0.403
4 0.344 0.282 0.506 0.379
6 0.340 0.265 0.483 0.362
8 0.333 0.250 0.464 0.348
10 0.327 0.242 0.449 0.338
12 0.326 0.234 0.439 0.332
14 0.320 0.229 0.432 0.327
16 0.317 0.225 0.429 0.325
18 0.317 0.225 0.425 0.326
20 0.315 0.221 0.424 0.328
22 0.314 0.219 0.425 0.328

24 0.314 0.213 0.430 0.324
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Thus, by knowing the length of the transition period, Tr’
that was used to identify the fairweather regime earlier,
the transition decay coefficient can be estimated easily.

Another interesting way to look at the transition is
worth noting. The transition can be observed by studying
the rate by which the mean cloud cover varies from its
value for all inter-storm periods to its fairweather values.
In normalized form, the '"'observed' transition can be

expressed by

Po(t) = (9.3-8)

where Na is the mean cloud cover for all inter-storm periods.
(This corresponds to NlOO in the earlier example), MO is

the fairweather mean, Nt is the mean cloud cover for an
intefmediate region.

The value of Equation 9.3-8 is that we can now plot
observed data to see the smooth transition hypothesized in
Chapter 3. Figure 9.2 shows the observed values of Po(t)
for the four data sets used in this study. Based on the
observed values for N(t) shown in Table 9.3, 24 hours was

judged to be a reasonable value for the length of the transi-

tion, Tr’ This value was used in computing the Po(t)'s
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shown in Figure 9.2 and in Equation 9.3-7 to determine Y
for the hypothesized transition function P(t) which is

also plotted in Figure 9.2. The transition function, P(t),
represents the overall shape of the observed transitions
quite well. However, the theoretical curve appears to fit
the Boston observations slightly better than for Dodge City.
The Dodge City transitions are slightly slower than Bos-

ton's.

9.4 Shortwave and Longwave Radiation

As shown in Chapter 4, shortwave radiation is com-

puted by
IC = IO exp(-nalm) (9.4-1)
and
— . 2 i}
I,' = I.(1 - 0.65N%) (9.4-2)

The variables in Equation 9.4-1 and 9.4-2 have been defined
earlier in Chapter 4. The only variable that must be sub-
jectively selected prior to simulation is the turbidity
factor, n, which was indicated to vary from about 2.0 for
clear air to about 5.0 for smoggy urban air. Because no
prior information was available to make anything more than
a subjective decision regarding the value of n, its value

was set to 2.0 for both Boston and Dodge City.
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For longwave radiation, we have

: (1500/T)

R, = (0.70 + 5.95(10 *)e_e )(1 + 0.17N%)oT?

a
(9.4-3)
where the principal variables, e, T, and N are generated

by the CSCS model. No other parameters are required by

the longwave component.

9.5 Temperature

The temperature model requires the estimation of sev-
eral regression coefficients, bi’ for the "deterministic"
portion along with the variance and the lag-1 serial correla-
tion coefficient of a superimposed deviations process. Since
the methods used to estimate the parameters of the temperature
model were an integral part of the model development detailed
in Chapter 6 and Appendices C and D, they need not be dis-

cussed again here.

9.6 Wind Speed and Wind Direction

Wind speed and wind direction are both generated inde-
pendently by lag-1 Markov models. The wind speed model re-
quires as input the mean, the variance, the lag-1 serial corre-
lation coefficient and the skew coefficient of the observed
wind speeds. The wind direction model requires the mean, the

variance, the lag-1 serial correlation coefficient, and the
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frequency histogram of the observed wind directions. All

parameters are estimated by the traditional methods.

9.7 Dewpoint

Two methods have been employed to generate dewpoints
depending upon the circumstances. The first method gener-
ates dewpoints independently using a lag-1 Markov model
and requires the mean, the variance, and the serial correla-
tion coefficient of the observed dewpoints. These parameters
are estimated by the usual techniques.

The second option available to generate dewpoints uses
a linear regression model with a superimposed deviations
process. The coefficients of the regression model are esti-
mated by standard regression methods. The deviations pro-
cess is again modelled by a lag-1 Markov approach which
requires the variance and the lag-1 serial correlation of
the observed deviations. The regression model and the method
used to determine the observed deviations are discussed in

detail in Chapter 8.

‘9.8 Summary
The parameters required by the CSCS model that are

estimated from the observed data are summarized as follows:
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Precipitation

* mean time between storms
« mean storm duration

« mean storm depth

Cloud Cover

- fairweather mean

- fairweather variance

+ fairweather lag-1 serial correlation
- fairweather frequency histogram

« transition decay coefficient

Temperature

Wind

Wind

« regression coefficients
« deviations variance

- deviations lag-1 serial correlation
Speed

* mean

« variance

« lag-1 serial correlation
+ skew

Direction

+ mean

 variance

« lag-1 serial correlation

« frequency histogram
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Dewpoint
* mean
* variance
+ lag-1 serial correlation
or
- regression coefficients
+ deviations variance

+ deviations lag-1 serial correlation
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CHAPTER 10
CSCS RESULTS

10.1 Introduction

After estimating the parameters as described in Chap-
ter 9, January and July data sets were generated by the
CSCS model for both Dodge City, KS and Boston, MA. Three
different aspects of the output will be reviewed. First,
plots of the hourly data values generated by the model
will be examined to see at least qualitatively that the
various output elements are coordinated. Second, model
output statistics will be presented to determine how well
the observed statistics are reproduced. Third, the mean
diurnal curves of generated temperatures and dewpoints will

be compared to their observed counterparts.

10.2 Generated Data Plots

Figures 10.1-10.11 each represent three-day segments
of the generated data sets. Presentation of hourly plots
for the entire simulation period is obviously impractical
due to space limitations. The selected three-day segments

will be sufficient for demonstration purposes.
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Looking first at Figures 10.1-10.2 for January in
Dodge City, KS, we have plots of hourly temperature in °c,
hourly dewpoint in OC, hourly shortwave radiation in
langleys (ly), hourly longwave radiation in langleys, hourly
cloud cover 1n tenths, and hourly precipitation in mm.
Perhaps the most dominant features of these plots are the
obvious diurnal structures of shortwave radiation and
temperature.

Beginning with shortwave radiation, the generated
hourly values are zero through the night as they should be.
At sunrise, solar radiation starts its steady increase to
its peak around noon. After the peak at solar noon, short-
wave radiation decreases to zero again at sunset.

Shortwave radiation is dramatically affected by the
presence of cloud cover. This is seen clearly by comparing
the shortwave radiation curves for the two cloudy days
(1/19, 1/20) and the mostly sunny day (1/21) in Figure 10.1.
The peak solar radiation value on 1/21 was approximately
38 1y when cloud cover was 0.1. This compares to é peak
of approximately 14 1y on 1/19 when cloud cover was 1.0.
This also represents the 65% reduction of shortwave radia-
tion due to total cloud cover that is dictated by FEquation

4.4-3.
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The trace of hourly temperature also shows a strong
diurnal signature. In general, minimum temperatures
occurred in the early morning hours near sunrise and maximum
temperatures occurred in mid to late afternoon. However,
just as an observed temperature trace can deviate signi-
ficantly from its characteristic diurnal curve, the CSCS
model is capable of generating temperature traces for
particular days that lack the characteristic diurnal
signature. Witness day 1/20 in Figure 10.1. For the
(irst 16 to 18 hours of this stormy day, the temperature
curve stayed relatively flat. This is especially interesting
when compared to the temperature curve of day 1/19 which
was also stormy. In both cases the radiation inputs were
at minimum values yet the temperatures of day 1/19 are
substantially higher than on 1/20 and follow a more charac-
teristic curve. This behavior of the CSCS model is
explained by the stochastic component in the temperature
scheme. On day 1/20, the stochastic components were appar-
ently negative which served to counter the positive influ-
ence of the radiation input and to stabilize the temperature.
The CSCS model has the capacity to generate a wide range of
daily temperature patterns, making for a more natural appear-

ing long-term trace of generated temperatures.
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Figures 10.3-10.5 show segments of the generated data
for July at Dodge City. Immediately, the increase in
generated shortwave radiation over that of January is
apparent, not only in magnitude, but in hours of sunshine
as well. Peak shortwave radiation values at Dodge City
increased from approximately 40 1ly hr-1 in January to
about 86 1ly hr_1 in July. In addition, the number of hours
of significant shortwave radiation (i.e. I_ ' > 1.0 1y hrnl)
increased from about 9 hours in January to about 14 hours
in July.

The cloud cover transitions into and out of storm
periods can be seen in Figures 10.3 to 10.5. In Figure 10.3,
cloud cover increases steadily in anticipation of the first
storm on day 7/4. After the first storm, the cloud cover
remains high due to the close proximity of a second storm.
Once the second storm passes, the cloud deck breaks up and
clears for day 7/5 before building again for the approaching
storm on day 7/6.

In Figure 10.5, we see a short intense storm preceded
by and followed by periods with little cloudiness. It 1is
significant to note here that although a storm occurred on
day 7/8 (Figure 10.5), the total shortwave radiation was

only slightly reduced. The storm occurred before sunrise
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and the cloud deck decayed quickly to minimize the impact
on shortwave radiation. Contrast this result to that of
day 7/4 when the storms occurred during the day and to that
of day 7/6 when the storm occurred before sunrise but the
cloudiness remained through the day. This behavior of the
CSCS model is a significant improvement over previous
models that implied specific reductions of shortwave
radiation for stormy days regardless of when the precipi-
tation occurred.

Figures 10.6 - 10.8 show segments of data generated
for January in Boston, MA. As expected, low values for
shortwave radiation are generatéd. Although the number of
hours with significant shortwave radiation is the same as
for January in Dodge City, KS, the peak values are slightly

lower. Shortwave radiation peaks of about 40 1y hr 1L

i was the

were generated for Dodge City but 36 1y hr
maximum value.generated for Boston in January. The reduction
is explained by the difference in the latitudes of the two

sites since the same atmospheric attenuation parameters were

used in both cases. Boston is located at 42022' N while

Dodge City is located at 37°46' N.
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The characteristic diurnal temperature curve 1s not
as strong for January in Boston as it is for the other
examples. Looking ahead to Figure 10.12 shows that the
difference between the average minimum and maximum hourly
temperatures is only about‘SOC for Boston, compared to
about 10°C for Dodge City (Figure 10.14). |

The temperatures generated by the CSCS model for
January in Boston appropriately do not exhibit a strong
diurnal signature. This is especially true for days
1/26 - 1/29 in Figures 10.7 and 10.8.

It is also interesting to note the general downward
trend from a maximum of +5°C on day 1/22 (Figure 10.6)
to temperatures in the -6° to -3°C range on day 1/24.
This is consistent with the movement of large synoptic-
scale weather systems through the region.

Longwave radiation also shows a general downward
trend during the period 1/22 - 1/24. This is the result
that should be expected with a general drop in atmospheric
temperature and dewpoint.

Figures 10.9 - 10.11 show the segments of data for
July in Boston, MA. Again, the notable increases in short-
wave radiation and temperatdre over January levels are

evident. Although the diurnal signature of the July temp-
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eratures is strong, cloudiness coupled with a negative
stochastic element can flatten the temperature curve for
short periods of time (see day 7/6, Figure 10.9 and day
7/13, Figure 10.11). Expected downward trends in temper-
ature are also occasionally countered by a positive stochas-
tic component as evidenced by the temperature pattern
during the evening hours of day 7/14 (see Figure 10.11).
Although visual examination of various segments of
CSCS model output does not constitute a rigorous verifi-
cation, it does provide a framework for a qualitative inter-
pretation of model component coordination. In this res-
pect, the CSCS model seems to be working properly. That
is, cloud cover impacts shortwave radiation, shortwave
radiation affects temperature, cloud cover is total during
storms, etc. These effects might not be apparent from an
analysis of model output statistics alone. The next step
is, however, to verify that the model is working well

statistically.

10.3 CSCS Model Output Statistics

Tables 10.1 - 10.4 contain the statistics of the model
output and the statistics of the observed data for compari-
son. The generated data sets used in the statistical analy-

sis are each 20 months in length. (i.e. 20 July's, 20 Jan-
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uary's, etc.) Thus, 620 days or 14,880 hours of data
were generated and analyzed for each experiment.

For temperature,dewpoint, cloud cover, wind speed, and
wind direction, the means, standard deviations, and lag-1
serial correlation coefficients were computed. Since the
observed skew coefficients were used in the wind speed
component, the skew coefficients of the generated wind
speeds were also computed. For the precipitation analysis,
the mean times between storms, the mean storm durations,
and the mean storm depths were computed. Observations of
hourly shortwave and longwave radiation were not available
for the periods of record used in this study. However,
Getz and Nicholas (1979) provide estimates of mean daily
shortwave radiation by climatic week based on data for
the period 1952-1975. The estimated mean daily shortwave
radiation was found from Getz and Nicholas by averaging
the radiation values for the climatic weeks that span
January and July.

Examination of Tables 10.1 - 10.4 shows that the
statistics of the CSCS output compare favorably with the
observed statistics in each case. The means and standard

deviations of the respective generated temperatures and



Table 10.1

MEAN

STANDARD

DEVIATION

LAG-1

SKEW

MEAN

MEAN
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Output Statistics:

TMP DEW CLD WSP
0.3°C -6.5°C 0.41 5.5 m/s
(0.0)* (-6.8) (0.38) (5.5)
7.3°C 5.4°C 0.35 2.3 m/s
(7.4) (5.7) (0.41) (2.4)
0.98 0.97 0.87 0.87
(0.98) (0.98) (0.91) (0.86)
- - S 0.55
- - - (0.54)

PRECTPITATTON

tb tr h

207.7 hr 4.9 hr 2.2 mm

(184.8) (4.8) (2.3)
RADIATION

SWR LWR

190 1y/d 507 1y/d

(228) ---

*( ) denotes observed value .

January, Dodge City,

KS

WDR

90.5°
(86.3)

43.9°

(59.2)

0.89
(0.92)
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Table 10.2 Output Statistics: July, Dodge City, KS

TMP DEW CLD wsPp
MEAN 26.3°¢C 15.5°C 0.33 5.3 m/s
(26.8)%  (15.4) (0.34) (5.6)
STANDARD 5.5°C 3.5°C 0.32 2.1 m/s
DEVIATION (5.5) (3.5) (0.36) (2.3)
LAG-1 0.96 0.94 0.90 0.77
(0.96)  (0.95) (0.89) (0.78)
SKEW .- - - 0.54
—_— - - (0.51)

PRECIPITATION

tb tr h
MEAN 63.4 hr 2.5 hr 6.0 mm
(66.9) (2.5) (6.1)
RADIATION
SWR LWR
MEAN ' 598 1y/d 826 1y/d
(626) ---

*( ) denotes observed value.

WDR

112.
(129.

41.
(50.

0
>)

3)

.81
.84)



Table 10.3

MEAN
STANDARD
DEVIATION

LAG-1

SKEW

MEAN

MEAN
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Output Statistics: January, Boston, MA

TMP DEW CLD WSP
-1.2°C -7.4°C 0.58 5.5 m/s
(-0.9)%*  (-7.4) (0.61) (5.7)

6.7°C 7.7°C 0.36 2.6 m/s
(5.9) (8.2) (0.44) (2.7)

0.99 0.99 0.88 0.88
(0.99) (0.99) (0.89) (0.88)

- --- - 0.68

- —_— - (0.61)

PRECIPITATION

ty t, h

51.1 hr 7.2 hr 7.0 mm

(55.3) (8.8) (9.0)

RADIATION

SWR LWR

126 1y/d 497 1y/d

(131) -

*( ) denotes observed value.

.85
.87)
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Table 10.4 Output Statistics: July, Boston, MA

TMP DEW CLD WSP
MEAN 22.9°% 15.3°C 0.42 4.4 m/s

(22.8)%  (15.5) (0.45) (4.4)
STANDARD 4.5°C 3.5 0.35 1.8
DEVIATION (4.3) (3.8) (0.40) (1.8)
LAG-1 0.97 0.96 0.89 0.82

(0.97) (0.97) (0.88) (0.81)
SKEW --- R --- 0.43

- . - (0.45)

PRECIPITATION

MEAN 66.1 hr 4.1 hr 7.9 mm

(64.5) (3.9) (7.2)

RADIATION

SWR LWR

MEAN 551 1y/d 797 1y/d

*(

(479) ---

denotes observed value.

WDR

101.6°
(102.4)

39.8
(46.1)

0.77
(0.78)
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dewpoints are almost always within 0.5°C of the observed
values. These results are particularly satisfying, since
the temperature component is by far the most complex part
of the CSCS model. In essence, the temperature component
is the keystone of the CSCS approach since almost all of the
other elements in the model influence or interact with the
temperature generation algorithm. For the CSCS model to
work as a whole, it is most important that the temperature
component performs properly.

Statistically, the cloud cover model worked well too.
The means of the generated cloud covers were quite close to
the observed values. Remember that the final generated
cloud covers are a combination of the generated fairweather
sequences, the transition periods, and the storm periods.
The input parameters for cloud cover generation were the
fairweather statistics and the transition decay coefficients.
To obtain the proper output statistics, the CSCS model
relies on the transition functions into and out of storm
periods that were described in Chapter 3 to create the pro-
per evolution of the entire cloud cover process.

To see how well the generated cloud cover mean values

evolved from the fairweather mean values, refer to Table 10.5
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where the mean observed fairweather cloud cover, the mean
observed cloud cover for the entire record, and the mean
generated cloud cover are presented. It is apparent that
the CSCS is capable of producing an evolutionary cloud
cover process whose statistics are quite close to the
. observed values.

Reviewing the statistics for wind speed in Tables
10.1 - 10.4 shows that the reproduction of the observed
statistics by the CSCS model is excellent. However, repro-
duction of the wind direction statistics is only fair.
This is not really unexpected, given the procedure used
to represcent wind direction in this study (see Chapfer 7).
To be more correct, wind direction should, at the very
least, not be treated independently. However, for the
data sets used in this study, wind direction did not appear
to be a particularly strong predictor.. Therefore, more
sophisticated wind direction generation algorithms were
not investigated.

The precipitation statistics were also adequately re-
produced. The only significant departure was for the mean
time between storms for January at Dodge City. However,

January in Dodge City is quite dry. Only about 70-75 storms
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Table 10.5 Evolution of Mean Cloud Cover

MEAN VALUES

Fairweather Total
Observed Observed
Boston, MA
January 0.43 0.61
July 0.32 0.45
Dodge City, KA
January 0.31 0.38

July 0.21 0.34

Total

Generated
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werce generated {or the 20 month simulation period for
January in Dodge City, compared to about 250 storms for
the other data sets. With fewer storms to analyze,
higher variability in the statistics 1s expected.

It is difficult to draw many conclusions regarding
the shortwave output since the records used by Getz and
Nicholas (1979) to obtain the mean daily shortwave radia-
tion cover a much longer period than the data sets used in
this study. It is unclear whether any differences noted
betwcen observed and generated values could be attributed
to modelling deficicencies or to natural statistical varia-
tion. Nevertheless, the generated values are near the
observed values and the model is making the correct sea-
sonal adjustments.

Observed data were not available for longwave radia-
tion. However, to the extent that the Idso (1981) expres-
sion for atmospheric emissivity (see Chapter 5) represents
the conditions at Boston, MA and Dodge City, KS, the gen-

erated longwave radiation values should be reasonable.

10.4 Diurnal Curves for Temperature and Dewpoint

In the previous section, statistical evidence was pre-
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sented to suggest that the temperéture and dewpoint com-
ponents of the CSCS model performed well. It is also
important that the two temperature components produce

the proper diurnal variations. Figures 10.1Z - 10.15
show the observed and generated diurnal curves of temper-
ature and dewpoint (i.e. mean hourly values) for January
and July at Boston and Dodge City.

Overall, the generated temperature curves compare
quite well with the observed values. The generated min-
imum and maximum temperatures are all within 1°C of
the observed values and their timing is about right. The
only timing discrepancy occurs for the maximum January
temperatures at both Boston and Dodge City. The generated
mean maximum temperature occurs around 4:00 PM in January.
The observed maximums occur near 5:00 PM at Boston and near
3:00 PM at Dodge City. The variation of the two observed
January maximums is probably due to the difference between
the coastal climate of Boston and the continental climate
of Dodge City. Since the timing of all the minimums and
the July maximums is quite good, the exact reason for the
generated maximums to be an hour off in January is not

readily apparent.
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In Boston, the model in its present form does not
appcar to be accounting for all of the modifying influences
of the nearby ocean in thc latc afternoon. The observed
temperatures remain elevated slightly longer in the after-
noon before starting the downward trend to the morning
minimum. This results in a six-hour period during the
evening hours where the model slightly underestimated the
temperatures.

Given that the diurnal curve of temperature for Janu-
ary in Boston is so flat (NSOC variation), it is a pleasant
surprise that the CSCS model performed as well as it did.
Of the lour data scts, the January - Boston experiment
probably offered thc most severe test of the CSCS model's
ability to adapt to a variety of climate conditions.

As for the January - Dodge City experiment (Figure
10.14), the observed temperatures in this continental cli-
mate drop more sharply in the late afternoon than during the
evening and early morning hours. During this period, the
temperature model gave a steadier transition for the down-
ward 1imb of the temperature curve. The exponentially-
dominated functions used in the temperature algorithms are
not quite able to express the sharp drop observed near

sunset in the January - Dodge City experiment.
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The CSCS model reproduced the observed diurnal
temperature curve for the July experiments quite well.

The maximum departure of the generated curve was about 1°¢c
for Boston and 1.5°C for Dodge City.

Dewpoint temperatures are shown in Figures 10.13
and 10.15. The reader is reminded that an independent
stochastic process was used to generate dewpoint tempera-
tures for July and that a regression model was used for
January dewpoints.

For July at Boston, (Figure 10.13) the resultant mean
generated curve is essentially '"flat" as expected and
represents the observed dewpoints well. For July at
Dodge City, the mean generated curve is again '"'flat" as
expected. However, in the Dodge City observed data there
is a subtle wave that is not represented by the stationary
lag-1 Markov process. During the forenoon, temperatures
rise causing dew to evaporate. This increases the moisture
content of the lower atmosphere and elevates the dewpoint
temperature. As temperatures continue to rise, more evapor-
ation occurs but by late morning increased instabilitics

cause mixing with drier air aloft, causing dewpoints to fall.
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By carly evening, instability decrecases again and continued
cvaporation causes the dewpoints to risc again. To capture
this fcature, alternative dewpoint generation techniques
will have to be explored.

For January, the regression model output represented
the observed data well, especially in capturing the morning
"dip" in the dewpoint curve. The observed "dip" coincides
with the morning temperature minimum. The depressed
dewpoints at this time are likely due to moisture driven
from the lower atmosphere by frost formation.

Another interesting diurnal curve to review is for the
dewpolint depression, delined as the difference between the
temperatures and dewpoints. Figures 10.16 and 10.17
present the observed and generated dewpoint depression
curves for Boston and Dodge City respectively.

Dewpoint depression is interesting because it is
sometimes used as an indicator of the atmosphere's ability
to take up moisture. High dewpoint depression values indi-
cate a high capacity to take up moisture. For low dewpoint
depression values, the opposite is true. Under the right
circumstances then (e.g. with sufficient moisture at the

surface), dewpoint depression could also be interpreted as
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an indicator of surface moisture flux.

Dewpoint depression is not explicitly generated by
the CSCS model. It is derived from the output from the
temperature and dewpoint components. For the observed and
derived dewpoints to compare favorably, the temperature
and dewpoint. components must be synchronized correctly.
In addition, deviations between observed and generated
dewpoint depressions can appear more glaring than with
either temperature or dewpoint. For example, if a generated
temperature and a generated dewpoint differ from their
observed values by IOC, the difference might not be con-
sidered significant. However, if the 1°C differences are
opposite in sign, the error in dewpoint depression would
be 2°C.

Thus far we have seen that the CSCS model satisfac-
torily reproduces the desired characteristics of the
meteorological data sets. The next step is to examine the
target land surface processes that the CSCS output data
are designed to force. An application of the CSCS output
to a detailed model of the land surfacc is presented in

Chapter 12.
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Before we get to the detailed analysis in Chapter 12,
it is instructive to make a quick examination of one par-
ticular land surface process to see that it is correctly
forced by the (SCS model output. Evaporation is perhaps
the most important process at the land-atmosphere inter-
face, being the basic mechanism for the restoration of
both atmospheric moisture and energy. Solar radiation,
temperature, dewpoint, and wind speed all contribute to
evaporation. If an estimate of evaporation could be made
using these meteorological data, the result would, in essence,
be an integration of the joint interactions of the input
variables. It is of particular interest to make a compar-
ison ol thc cvaporation estimates computed using the ob-
served meteorological inputs with the estimates computed
using the generated CSCS data. In this {ashion, we can
see to what degree any errors in the CSCS output have an
effect on the results of the target process.

Linsley et.al. (1975) present a nomogram solution for
the estimation of shallow-lake evaporation és‘a function
of solar radiation, air temperature, dewpoint, and wind
movement. Using the mean values of the observed and gen-
erated (CSCS) data for July at Boston, MA and Dodge City, KS,
evaporation estimates were made with the nomogram of Lins-

ley et.al. The results appear in Table 10.6.
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For the Dodge City experiment, the observed and gen-
erated evaporation estimates agreed to within 3%. For
the Boston experiment, the observed and generated estimates
varied by about 9%. The principal source of error in the
Boston evaporation estimate stems from the roughly 15%
over-estimation of the shortwave radiation input. The
shortwave radiation error is likely due to error in the

atmosphere attenuation function that was discussed earlier.

10.5 Summary

The results of CSCS model experiments for January and
July at Boston, Massachusetts and Dodge City, Kansas have
been presented. Hourly data plots, model output statistics,
and selected mean diurnal curves were reviewed.

Overall the CSCS model performed well. The results indi-
cate that the CSCS model is capable of generating well coor-
dinated sets of meteorological data with high time resolution
(i.e. hourly values). This represents a significant improve-
ment over existing techniques in both the number of variables
generated and in the time resolution of the generated data.

Two individual components, cloud cover and temperature,

were especially critical to the successful completion of the

CSCS model. The modulated non-stationary stochastic process
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]

Table 10.6 Comparison of Shallow Lake Evaporation
Estimates for July

Dodge City Boston
pata Units  OBS  CSCS 0BS cscs
Temperature (OC) 26.8 26.3 22.8 22.9
Dewpoint °0) 15.4 15.5 15.5 15.3
Wind (m/s) 5.6 5.3 4.4 4.4
Shortwave (1y/d) 626. 598. 479. 551.

Evaporation (mm/d) 8.1 7.9 5.3 5.8



173

derived to represent cloud cover enabled the linking of

the precipitation, the shortwave radiation, the longwave
radiation, the temperature, and the dewpoint regression
components with the cloud cover component on an hourly
basis. The temperature model enabled the generation of
hourly temperatures that were linked to other meteorological
variables and that reflected seasonal and geographical

changes.



174

CHAPTER 11

ATMOSPHERTIC BOUNDARY LAYER

11.1 Introduction

Vertical transfer of momentum, heat, and moisture
between the earth and the free atmosphere occurs through
the atmospheric boundary layer. Continuous small scale
turbulent fluxes in the boundary layer appear to be the
basic mechanism of the exchanges between the atmosphere
and the earth. (Bhumralkar, 1979)

Although relatively thin, 10 to 50m (Anderson, 1976),
the boundary layer can account for significant atmospher-
ic effects. For example, the boundary layer contains only
about 2% of the total atmospheric kinetic energy on an
annual basis, yet it contributes up to 25% of the total
generation and more than 35% of the total dissipation of
atmospheric kinetic cnergy. (Kung, 1963)

Attempts to quantify earth-atmosphere exchanges have
led to a relatively large body of boundary layer literature.
General descriptions of turbulent processes of the lower
atmosphere can be found in a number of books (e.g., Oke,

1978; Rose, 1966; Priestly, 1959; Sutton, 1953, 1954;
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Lumley and Panofsky, 1969).

Two basic approaches to flux estimation commonly
appear in the literature. The eddy fluctuation method
seeks to describe the instantaneous properties of eddies
as they pass a specified level in the boundary layer.
Profile or flux-gradient methods infer the flux based on
average atmospheric profiles and on the degree of atmos-
.pheric stability.

The eddy fluctuation method describes flux using the
observation that atmospheric entities exhibit short-term
fluctuations about their longer term means. Since the
properties contained by an eddy are its density (po),
its vertical velocity (wv), and the concentration of the
atmospheric entity (s), the mean vertical flux density

of the entity (S) can be written as (Oke, 1978)

S = E (Ee + pé)(v”av + w",)('s‘ + s') (11.1-1)

where the overbars indicate the mean values and the primes
indicate the short-term fluctuations about the means. Ex-
pansion of Equation (11.1-1) followed by a term by term

evaluation leads to
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S = E(pwés') (11.1-2)

For the vertical transfer of momentum, sensible heat, and

latent heat, Equation 11.1-2 is used to give

T = -E(p Wlw!) (11.1-3)
Qq = E(pgewyT) (11.1-4)
Qp = ElpgLywiap) (11.1-5)

where T 1is the shear stress in Pa, p
-3

e is the eddy den-

sity in kgnm

in ms_l, < is the specific heat of air in Jkg

, We is the horizontal wind speed fluctuation

1 -1
°k , T'

is the temperature fluctuation in OK, LV is the latent
heat of vaporization in Jkg—l, and qf is the specific hum-
idity fluctuation in kgkg—1

The fluctuation terms represent changes in the at-
mospheric properties over periods on the order of seconds.

Data collection for time intervals this short is not

routine. In addition, the basic time unit of the CSCS model

is one hour. Therefore, eddy fluctuation methods were
not used in this study.

In the profile or flux-gradient approach, the flux 1is
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generally described by (Oke, 1978)

X

(Flux of ] Ability of the medium Gradient of
to transport the entity a relevant

an entity

property

Through the turbulent surface layer, momentum transfer

can be described by

a™ 3z (11.1-6)

where Py is the atmospheric density in kgm-s, KM is
the eddy transfer coefficient for momentum in mzs-l, and
z is elevation in m.

For sensible heat {lux

- oT _
H = panKH s (11.1-7)

where H is in Wm-z, KH is the eddy transfer coefficient

for heat in mzs_l, and T is the air temperature 1in °k. Nor-
mally, potential temperature is used in Equation 11.1-7.
However, in this study, only temperature differences over
the lowest 2 meters are of interest. Over this range,
potential temperatures and air temperatures are essentially

the same. Finally, for water vapor, the turbulent f{lux

transfer can be described by
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aqh

E = __paKW __g_z_ (11.1'8)

where [ is the water vapor flux in kgcm_zs°1, Ky is the
eddy transfer coefficient for water vapor in mzs_l, and

aj, is the specific humidity in kgkg_l. Equations 11.1-6
to 11.1-8 show that the desired fluxes can be estimated if
the appropriate gradient and the associated transfer coef-
ficient are known.

The lower atmosphere is a very active zone with var-
iations in heating and cooling resulting from instantaneous
variations of fluxes with height. Over longer periods,
such as a half-hour or more, flux variations with height
are very small (Oke, 1978). Therefore, the surface layer
is often called the layer of constant flux. Practically,
this means that estimates of flux at any point in the low-
est 50m over a suitable site are assumed equal to their
surface values. Atmospheric variables generated for the

two meter level by the CSCS model can then be used to help

estimate transfers across the land-atmosphere interface.

11.2 Profile Method for Flux Estimation

In a neutrally stable atmosphere, (i.e., one with an
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adiabatic lapse rate), under fully turbulent conditions,

the wind profile is logarithmic and expressed by

W z-d
s _ 1 0
W, -k 1“{ z ] (11.2-1)
_ 0
where do is the zero displacement plane in meters, zg is

the roughness length in meters, k is the von Karman con-

stant (0.40), and W, is the friction velocity defined by

=

o

We = (t,/0,) (11.2-2)

where Ty is the shear stress at the surface in Pa.

The vertical profile of the horizontal wind speed is

found by differentiating Equation 11.2-1 and rearranging

to give
oW W,
S
= ° &z (11.2-3)

Remembering that the boundary layer 1is also assumed to be

a layer of constant flux, we can write

T =T, T constant (11.2-4)

Using Equations 11.1-6, 11.2-2, 11.2-3, and 11.2-4, an

expression for the eddy transfer coefficient for momentum
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can be written as

) oW |

Ky = k2 ‘"a’“i‘ (11.2-5)

Equation 11.2-5 shows that the transfer coefficient for
momentum is also a function of the vertical gradient of
the horizontal wind.

The problem of establishing the transfer coefficients
Ky
of similarity'". (Oke, 1978). Under this assumption, an

and K, can be simplified by invoking the "principle

atmospheric eddy can transport any conservative entity

with equal facility. Therefore,

Ky = Ky = Ky

(11.2-6)
Using Equations 11.2-5 and 11.2-6, a new expression for

sensible heat flux can be written as

- 2.2 s oT )
H = pacpk 2" 57 33 .(11.2 7)

Likewise, an expression for water vapor flux can be written
as

aW . 9q
E = -p k2,2 S h

a 55 "Hz (11.2-8)

Equation 11.2-8 can also be written in terms of vapor
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pressure by using an approximation for specilic humidity

0.622e
0

qh = ——P_,——— (11.2"9)
d

where e, is the vapor pressure in mb, Pa is the atmospheric
pressure in mb, and the constant, 0.622, is the molecular
weight ratio of water vapor to dry air. Substitution of

Equation 11.2-9 into Equation 11.2-8 gives

0.622p oW de
L a 2.2 S 0 ~
E = ~—F;~——~k 2 %, 37 (11.2-10)

The equations for t, H, and E presentced so far; arc
strictly valid for ncutral stability only. lor stable
and unstable conditions, the wind profile is not gcnerally
logarithmic. Stable conditions dampen {ree convection
and, using the logarithmic wind profile, cause the fluxes
to be overestimated. The opposite is true for unstable
conditions.

Monin and Obukhov (1954) have generalized the loga-

rithmic wind profile for all conditions, giving

oW W,
_.___S = _-L [ ( 11.2-11 )
oz M ’
where Ty is an cmpirically determined adjustment factor

that is reclated to atmosphcric stability. Obviously, for
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ncutral conditions, ¢M is unity.
Similar functions can be defined for the sensible

heat and water vapor profiles, giving

T H

Qo

— = - ——— (11.2-12)
97z QanKH H
and
aq
h E
—_— = - o) (11.2-13)
9z paKw W

where Jn and by are the stability related profile adjust-
‘ment functions. According to Monin and Obukhov (1954),the
functions @M, @H, and ®w should be functions of a dimen-
sionless height ratio z/L. L is constant with height in
the boundary layer and is presented by Anderson (1976)

as

3
Wxc paT

L= - 4k (11.2-14)

where g is the acceleration of gravity in ms 2. The
ratio z/L is positive for stable atmospheric conditions,
zero for neutral, and negative for an unstable atmosphere.
Several studies,conducted under the assumption that the
transport mechanisms of conservative entities are similar,

and therefore, that their profiles are similar, have resulted
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in empirical relationships for @(%). (Dyer, 1967;

Dyer and Hicks, 1970; Dyer and Grant, 1978:; Businger et.
al. 1971; McVehil, 1964; Oke, 1970; Yamamoto and Shim-
anuki, 1966) Not all researchers agree on the form of the
¢-functions, but the so-called Businger-Dyer formulae

are frequently used. For stable conditions, these give
(11.2-15)

which implies that KM = KH = Ky -

the equalities of the eddy transfer coefficients and the

For stable conditions,

¢-functions are supported by the studies of Saugier and

Ripley (1978) and Monji and Businger (1972). Tlor unstable
conditions
-1
92 = o, = o = (1-16 %) (11.2-16)
M H W L : '

The studies of Saugier and Ripley (1978) and Monji and
Businger (1972) also provide observational support for
Equation 11.2-16.

Since the information required to evaluate [ in Equa-
tion 11.2-14 is not generally available, some other stabil-
ity-related procedure to compute z/L from routinely
measured data 1is needed. Richardson (1920) developed a

criterion that '"reflects the ratio ol the consumption of
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cnergy by buoyancy forces to the rate ol its production
by wind shear." (Anderson, 1970)
Anderson gives the gradient form of the Richardson

number as

Ri - 80T/3z) ) (11.2-17)
T(oW /92)

Thus, the Richardson number can be computed from observa-
tions of wind speed and temperature. Anderson (1976)
also shows that the ¢-functions can be written in terms of

the Richardson number. For stable conditions

1

by = by T by T (1-5Ri) " (11.2-18)
and for unstable conditions
-1
2 ; 2
QM = @H = @W = (1-16R1i) (11.2-19)

Comparison of Equation 11.2-19 with Equation 11.2-16 shows
that, in the Businger-Dyer formula for unstable conditions,

the height ratio, z/L, is equal to the Richardson number, Ri.

11.3 Computation of Turbulent Transfer Using Measurements

at One Level

The CSCS model generates representative data at the
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Z-meter level only. Therefore, it is not possible to
evaluate the various gradients described in the previous
section. Similarly, observations of wind, temperature,

and humidity are made at one level for most data collection
sites. To overcome this problem, the flux equations must
be used in their integrated form. If these equations are
integrated between Zy and Za5 (assuming WS =0, T = Tb’

and e = ey at the bottom of the boundary layer), the flux

equations become

_ 2 7
T = paCMWS (11.3-1)
= _ al AN q_f)
H pacp(,HWS(l ry) (11.3-2)
and
0.6220a
E = - T was(eo - eb) (11.3'3)

where W_ is the 2-meter wind speed in ms Y, T is the 2-

meter temperature in °k, and e_ is the 2-meter vapor

0
pressure 1in mb. CM’ CH’ and Cw are the dimensionless

transfer coefficients for the integrated flux equations and
are called the "bulk" transfer coefficients. Under neutral

conditions, and using the similarity assumption, wec have
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4

=)

In( -
0

where the subscript N denotes neutral conditions.
Deardorff (1968) developed ratios of the bulk trans-

fer coefficients for the general case to their neutral

values. For stable conditions where it is assumed Oy = @H

= o> the ratios can be written as

G C C
W - H__ 2 M = (1.0 - 5([{1)H)2 (11.3-5)

(Cyhy Gy (Cy)

where (Ri)B is the bulk Richardson number given by Anderson
(1976) as

2z (T-T})
(Ri)p = — (11.3-6)
(T+TIW,

For unstable conditions, Deardorff (1968) gives

1]

L
(Cyn 2
M 1.0 - —MWN [ln [1+X ] + 21n [1+X]
)

-1 i -2
2tan " (x) + 3 ] (11.3-7)

and
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-1
s .

Chu  _ “w_( } 1o - 2ien i

€y C) Cyly| K UMIN 7 )
(11.3-8)

where

Z\ 4 :
x = (1 - 16 f) (11.3-9)

If Equations 11.3-1 and 11.3-2 are substituted into
Equation 11.2-14, the Monin-Obukhov length can be writtcn

as
3/2
M TW

3/2

Dividing the numerator and denominator by (CM)N and
using Equation 11.3-6 gives the relationship between the

height ratio z/L and the bulk Richardson number.

s77(Ri)y (11.3-11)

Gy (€
M’ N
(Cy)n
By knowing the wind speed, temperature, and vapor pressure

at the two meter level and the temperature at the bhottom
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of the boundary layer (i.e., at the land surface), the
fluxes can be estimated. The wind speed, temperature, and
vapor pressure at the two meter level are generated by

the CSCS model. If the temperature, Tb’ is available from
a model of the land surface, the fluxes across the earth-

atmosphere interface can be generated.

11.4 Solution Procedure

For neutral and stable conditions, the bulk transfer
coefficients are easily computed. Finding the coefficients
for unstable conditions is not quite as straightforward.
The coefficients depend on the ratio z/L. But from Equa-
tion 11.3-11, it is seen that the coefficients are needed
to determine z/L in the first place.

The problem of calculating the transfer coefficients
is solved in two phases. First, a table is constructed
that relates the ratio z/L to the bulk Richardson number
given values for z, Zyo and do' Second, during program
execution, (Ri)B is computed from Equation 11.3-6 and z/L
is found directly from the table. Once z/L is known, the

coefficients are easily found.
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CHAPTER 12
LAND SURFACE APPLICATION

12.1 Introduction

To demonstrate the utility of the CSCS model, gen-
erated data were used as input to a detailed model of the
land surface._ The resulting fluxes afe plotted here to note
any trends that occurred due to different meteorological
forcingsAgiven identical initial conditions. Also, the
mean daily fluxes are prescnted to show how the partition-
ing of energy in the surface heat balance changed for each

experiment.

12.2 CSCS Generated Data Sets

/ Three different generated data sets were used. First,
the observed statistical parameters found for July in
Boston, MA were used fo generate a ''mormal'' meteorological
data set. The output from the land surface model that
results from the '"normal" forcing serves as a baseline for
comparison with the results from the other experiments.

A second data set was generated that represents a
weather scenario which is much wetter than normal. This

b

was accomplished by changing only the input paramcters, ﬂ)

fr’ and h for the precipitation component. The precipitation
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statistics were estimated from the July 1959 data for Bos-
ton, the wettest month in the record.

Finally, a third data set was generated using the
observed statistical parameters but adding a constant
2.2°C (4°F) bias to the temperature component. The bias
was introduced by adding a constant to the stochastic
term in the temperature component represented by Equation
6.3-22.

Due to the rather large computational requirements
of the land surface model, the length of simulation was
limited to one month for each data set. Table 12.1 pre-
sents the statistics obtained from the three CSCS data
sets compared to the observed values for the period of
record.

Selecting the '"mormal'" data set presented some diffi-
culty. Since the CSCS output is stochastic and since one
month is too short a period for statistics to stabilize,
it is essentially impossible to generate one month of data
with all statistics identical to the historical values.
Therefore, several monthly runs were made and the monthly
data set whose statistics were judged to most closely repre-
sent the historical values was selected as the '"mormal"

data set.



Table 12.1

SET

OBS
NORM
WET

BIAS

EM
gC

22.
22.
24.

25.

8
7
4
5

July,

DEW
O¢c

15.
14.
15.

17.

Boston, MA
CLD WSP
m/s
0.45 4.4
0.46 4.6
0.50 4.3
0.45 4.4

WSR
deg

102.

99.
106.
101.

SWR
ly/d

479

LWR
ly/d

784
808

842

64.
57.
44.
45.

Data Set Statistics For the Land Surface Application:

T h
hr mm
3.9 7.2
5.1 6.0
5.6 18.6

161
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For the '"wet" data set, the input precipitation para-
meters were changed from the observed values prescnted 1in
Table 12.1 to Fb = 52.3 hr, fr = 5.3 hr, and h = 17.2 mm.
Decreasing the time between storms and increasing the storm
duration caused the mean cloud cover to increase. In
fact, the observed mean cloud cover in July 1959 in Bos-
ton was 0.51. This compares with a generated value of
0.50 (see Table 12.1).

It is interesting to note that in spite of the increased
mean cloudiness for the "wet" data set, the mean daily
shortwave radiation was actually higher than for the
"normal' data set. This can occur when, over short periods
of time such as one month, the higher levels of cloudiness
happened to occur during the night or during times when
shortwave radiation is low (e.g. early morning or late after-
noon). Existing meteorological data generation algorithms
are unable to capture the stochastic feature.

The temperature-biased data set has a mean temperature
that is 2.8°C higher than the mean temperature of the
"normal" data set. The only other model output variable
that is directly influenced by the temperature bias is the

longwave radiation. Table 12.1 shows that the longwave radia-
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tion is significantly higher for the 'biased'" data set
than for the 'mormal'" data set. The independently generated
dewpoints happened to be high for the 'biased" data set

and also served to drive up the longwave radiation.

12.3 Land Surface Model

The computer model of the land surface used in this
study numerically simulates moisture and heat transport 1n
a hysteretic, inhomogeneous porous media (Milly, 1982).

In particular, the model is used to represent a vertical
column of soil that begins at the land surface and extends
downward to a depth of 500 cm.

The atmospheric forcings represented by the CSCS data
sets (translated from the 2-meter level to the surface
by the boundary layer component described in Chapter 11)
define the surface boundary conditions. At the lower boundary,
no diffusion of soil moisture or heat is assumed and water
leaves the soil column only by gravity drainage, advecting
sensible heat with it. Only vertical variations of heat
and moisture are considered.

The soil parameters arc based on hypothectical silt
loam soil. A summary of thc soil paramecters appcecars in

Table 12.2.
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The initial conditions were the same for each exper-
iment. Initially, temperature, matric potential, and
volumetric liquid water content were assumed uniformly
distributed over the entire soil column. The starting
values for these parameters were chosen based upon the mean
temperature and mean precipitation for July in Boston as
well as upon the properties of the silt loam soil (Milly,

1982). The initial conditions chosen for the current

study are:

1. temperature, T = 22.7°C
2. matric potential, ¥ = -1000 cm
3. volumectric liquid
water conteﬁt, 6 = 0.233 Cms/cm3

The output from the land surface model includes plots
of the time history of the components of the surface heat

balance:

R - G =1+ LE (12.3-1)

where Rn is the net all-wave radiation, G is the heat flux
into the ground, H is the turbulent sensible heat diffusion
into the atmosphere minus the sensible heat carried into

the soil by water that infiltrates during precipitation, and

LE is the turbulent latent heat diffusion into the atmos-
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phere. All values in Equation 12.3-1 are expressed in
langleys/day (ly/day). 1In addition to the time histories
of the surface energy balance components, their average
daily values are also available for comparison.

The surface moisture balance equation is written as

dhd

qm/p1 = -P + E + It + RS (12.3-2)

where q_ is the upward mass flux of water in gcm_zd_l,

P is the precipitation rate in cm/d, E is the evaporation
rate in cm/d, hd is depression storage depth in cm, RS is
the surface runoff in cm/d, and 0y is the liquid mass den-
sity in g/cms. The surfacec heat balance and the surface
moisture balance equations are linked by the cvaporation
terms, LE and E. Thus, the latent energy term represents

an energy form of the evaporation rate which adds another

interpretive element to the plots of LE.

12.4 Results

Figures 12.1-12.6 present the 31 day plots of the indi-
vidual terms in the surface heat balance equation that
result from the land surface simulations using the different
meteorological data sets (i.e. 'mormal', "wet', and "biased").
Obviously, some of the finc details in the plots were

sacrificed in order to plot all the data. tHowever, the sig-



Table 12.2
Earametcr Value
n 0.46
0 0.414
u
; -4
K. 10 "¢cm/s
S
a 0.210
b -495.
C -0.147
d 0.0
e -0.0489
Soil Constituent

LLiquid water
Alir

Quartz

Other minerals

Organic matter

=

1906

Summary of Soil Parameters (ref. Milly,

Parameter

1.0
3(10° ™)
0.46
0.46

0.6

1982)

Value

0.05

0.11

10°cm ™t

0.20
0.10

0.5cm

3

1.37(0° 7))  --

E *

2

2.1(10 <) 0.

3

7(10 ) 0.125

6(10™H

* variable - see Milly (1982), Chapter 2
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Table 12.2 (continued)

Parameter Definition

soll porosity

proportion of medium occupied by water upon rewetting
to zero matric potential

hydraulic conductivity at saturation and temperature
T
0

fitted coefficient for wetting function

fitted coefficient for wetting function

fitted coefficient for wetting function

fitted coefficient for wetting function

fitted coelficient {for wetting function
volumetric soil fraction ol quartz

volumetric soil fraction of "other" minerals
volumetric soil function of organic matter
moisture content at which liquid flow becomes negligible
specific surface

albedo of soil when dry

albedo of soil when wet

maximum depressibn storage

volumetric heat capacity of the i-th constituent
thermal conductivity ol the i-th constitucnt
shape factor of the i1-th constitucent

initial temperature of arbitrary refercnce temperature
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nificant trends can still be examined. All of the data

are plotted in units of 1ly/d. Periods of precipitation are
indicated by the "tic" marks just above the time line. The
tic marks do not indicate intensity, just the occurrence

of precipitation.

The most significant feature of all the plots is the
strong diurnal signature. This is obviously due to the
radiation input which is dominated by the shortwave compon-
ent. Figure 12.1 presents the plot of net radiation for the
"normal'" run. The peak net radiation values represent a
positive contribution to the surface hcat balance of on the
ordcer of 1000 1y/d. At night there is a slipght radiational
loss as expected. Cloud cover significantly affccts net
radiation. This is especially clear during the relatively
stormy period from day 9 to day 15. The increased cloudi-
ness during the period cut the peak radiational input nearly
in half. |

Overall the ground flux (Figure 12.1) is the smallest
contributor to the heat balance. Although quite variable,
the flux away from the surface during the day is very nearly
balanced by flux toward the surface at night. During the
summer months, such as July, therc is a slight positive

net ground flux.
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The latent heat flux for the 'mormal' experiment is
shown in Figure 12.2. A diurnal signature is present in
the latent heat flux plot, however, its magnitude depends
heavily on the availability of 1liquid water to evaporate.
During the two dry periods (days 1-8 and days 20-28), the
latent heat flux steadily decreases as the supply of avail-
able liquid water 1is exhausted. As soon as the available
water supply is replenished, the latent heat flux increases
sharply again.

The sensible heat flux (Figure 12.2) runs esscntiully'
counter to the latent heat flux. As the latent heat flux
decreases, the excess heat is transferred to the atmos-
phere as sensiblé heat. Once the water is available again
to evaporate, the sensible hcat flux decreascs in rcsponsc
to the increased latent heat flux (see days 9-15 and
days 29-31).

Figures 12.3-12.4 present the results of the experi-
ment using the 'wet' data set. In this data set, the input
short and longwave radiation were higher (as discussed
earlier) which is reflected in the net radiation plot.

The biggest change between the results of the experi-
ment using the '"normal' data and the experiment using the

"wet'" data set is evident in Figure 12.4. A much higher
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amount of water was available for evaporation. Thus, high
rates of evaporation were sustained throughout the month
and sensiblc heat flux remained at fairly low levels.

Figures 12.5-12.6 present the results from the experi-
ment using the temperature-biased input data. Net radia-
tion levels were even higher for this experiment due to
the significant increase in longwave radiation input.

This leads to very high peak fluxes of latent heat (Fig-

ure 12.6) but the water supply was not able to sustain those
rates for very long. Accordingly, the sensible heat fluxes
(Figure 12.6) were higher than for the "wet" case (Figure
12.4).

Table 12.3 summarizes the average values for all four
terms in the surface heat balance. For the experiment
using the '"mormal' input data, the sensible and latent heat
fluxes were portioned almost equally. However in the "wet"
experiment, sufficient liquid water was available to allow
the latent flux to dominate. In the "bias" experiment,
increased radiant energy coupled with a higher than ''nor-
mal' supply of available water allowed the latent flux to
dominate the convective transport but not to the extent of

the "wet'" case.
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Table 12.3 Average Heat Flux For the Land Surface Simulations

(A1l values in 1ly/d)

Rn G H LE
NORMAL 262 §) 126 131
WET 302 12 20 270
BTAS 304 12 102 190

NOTE: R_- G = H + LE
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12.5 Summary

Three different data sets generated by the CSCS model
were used as input to a detailed model of the land surface.
In each case, the initial so0il column conditions were iden-
tical. Thus the differences noted in the resulting surface
fluxes were caused by the variations in the input data sets.

The variations in the input data set were in turn
caused by varying the input parameters of the CSCS model.
This demonstrated the use of the CSCS model to study the
response of a land surface to a particular change in a
climate or weather scenario. The stochastically generated
data sct resulting from such experiments will include many
of the "ripple" eflfects that might evolve in a naturally
occurring scenario due to the physical coupling of the

atmospheric processes.
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CHAPTER 13

SUMMARY, RECOMMENDATIONS, AND CONCLUSIONS

13.1 Summary

A computer model representing a new methodology
called Constrained Stochastic Climate Simulation has been
presented. The CSCS model jointly generatecs ten metcor-
ological variables with hourly resolution.

Two significant problems were overcome during the
development of the CSCS model. As a result, new procedurces
for the gencration ol c¢loud cover and temperature were
proposed. These procedures account [or the severe non-
stationarities in the cloud cover and temperature data
and allow the necessary linkages to other CSCS model com-
ponents.

The CSCS model was tested on four data sets (January
and July for Boston, MA and January and July for Dodge City,
K§). In each case, hourly output data plots, model out-
put statistics, and mean diurnal curves were examined. The
CSCS generated data were shown to represent the historical
data well. In addition, estimates of shallow-lake evapor-
ation were made using observed and generated data statis-
tics for July at Boston and Dodge City. This tested the

joint use of several CSCS output variables. Again, the
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results using the CSCS data were satisfactory.

To demonstrate the utility of the CSCS model, three
different data sets were generated to use as input to a
detailed model of the land surface. Simple changes to the
input parameters of the CSCS model were all that were
required to create new data sets needed to study how the

land surface system responded to different forcings.

13.2 Recommendations

Several recommendations for future work have been dis-
cussed in previous chapters. These and several additional
recommendations are summarized here.

The precipitation regimes of certain climates exhibit
significant diurnal variations. Warm humid climates dom-
inated by late afternoon rain showers illustrate this point.
Ways of incorporating this feature into the CSCS need to be
explored.

Since the precipitation model "drives' the cloud cover
model in the CSCS, diurnal variations in cloud cover due
to the precipitation regime will also be accounted for. This
"ripple'" effect will continue through the CSCS model to
the other components linked by cloud cover. (i.e. shortwave

radiation, longwave radiation, temperature and dewpoint).
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The methodoiogy used to determine an appropriate input
probability mass function for the fairweather cloud cover
generation algorithm needs to be reviewed. The difficulties
in regenerating as well as interpreting the observed fre-
quency histogram were discussed in Chapter 9. Either a
more effective way of preserving the strongly U-shaped
distribution or a way to quantitatively express the unobser-
vable physical processes needs to be developed.

An alternative shortwave radiation attenuation algorithm
was prescnted in Chapter 4. This method should be imple-
mented in the CSCS model and the rcsults compared with those
of the cufrcnt technique. Both methods need to be comparcd
with more detailed shortwave radiation data than were
available for this study. This would help determine whether
the use of the more complex alternative 1is warranted.

The longwave radiation model uses the latest results
of Idso (1981). However, his model apparently has been
tested at only one site (Phoenix, AZ). Idso's results are
promising, but the generality of his model is still open
to question. More testing of ldso's approach is needed.

The temperature model has been shown to perform well
for two different months, January and July. Although thesc

months represent two climate extremes, the other months
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should also be tested, particularly the more volatile
transition months during Spring and Fall.

In this study, temperature model parameters were
estimated for cach month. Since the temperaturc model
includes terms that reflect the day of the year, experi-
ments are needed to determine 1f parameters should be
estimated monthly or if parameters could be used that repre-
sent longer periods such as a season. If parameters could
be developed seasonally, the total parameter estimation
chore would be significantly reduced.

Wind speed and wind direction were generated indepen-
dently in this study. Fdr some locations, the assumption
of independence would not be valid. It may be more appro-
priate to condition wind speeds on wind direction.

In future versions of the CSCS model, wind direction
should be generated from its vector component form instead
of its azimuth form. By using the x-y components of the
wind vector, a continuous bivariate probability distribu-
tion function such as the bivariate normal distribution
might be used. This should produce a more realistic wind
direction specification than currently possible.

July dewpoints were generated independently. This

assumption was reasonable for Boston but in Dodge City,
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stability-related effects in the diurnal dewpoint curve
were not reproduced. If it is important to capture this
feature, other generation techniques such as the regression
model used for January dewpoints should be explored.

In addition to the recommendations relating to the
individual components, there is a broader concept that
should provide an interesting topic for future research.

It relates to the purely stochastic portions of the CSCS
model components. |

One common way of handling non-stationarities in
data that arc to be represented by a stochastic generation
procedurc is to rcemove the non-stationarities [rom the
data analytically and to treat residuals as a stationary
stochastic process. This is essentially the procedure
used in the CSCS approach, particularly in regard to cloud
cover, temperature, and dewpoint. In the CSCS model these
residuals were assumed to be independent. This assumption
should be explored more carefully. If significant correla-
tions exist between the residuals, standard multivariate
techniques might be used to jointly generate the residuals
and thus further improve the coordinated output ol the CSCS

model.



13.3 Conclusions

The CSCS model is a flexible and efficient tool that
can provide high resolution metcorological data to be usecd
in a variety of applications including land surface flux
studies, plant disease propogation modelling, insect
infestation modelling, irrigation management, and crop
forecasting. A variety of possible input weather or climate
scenarios could be applied to a system simulation and the
outputs could be used to develop probability statements
about future events. Various management decisions could
be made accordingly.

The flexibility that is inherent in the CSCS model was
achicved without great computational cost. This is very
desirecable since the CSCS model will generally be a tool
of the study, not the primary system of interest.

Even for very long simulation periods (e.g. 100 months),
the CPU times required on a DEC-10 computer are on the order
of minutes. Contrast this to the execution times of the
land surface model by Milly (1982) and the model of sur-
face hydroclimatology by Sellers and Lockwood (1981) which
are on the order of hours (or days). Thus, the use of the
CSCS model in these cases would add an insignificant com-

putational burden to the simulation studies.
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APPENDIX A

RANDOM NUMBER GENERATION

A.1 Introduction

Random numbers drawn from a variety of different dis-
tributions are required in the CSCS model. Fortunately,
the stochastic behavior of the CSCS components can be
generated by transformations of independent random numbers
that are uniformly distributed over (0,1) (Fishman, 1973).
This 1s important, since most computer systems have an
algorithm for generating random numbers from U(0,1)
resident in the system library. By using transformations of
U(0,1) to yield random numbers from uniform (U(a,b)), normal,
exponential, and gamma distributions, as well as any ar-
bitrary distribution, the generality of the CSCS model is
increased. The following sections outline the techniques
used to generate the required random numbers for the CSCS

model.

A.2 Uniform Distribution, (a < x < b)

The uniform probability distribution of variable, X, 1s

defined by
. h , i x < b
lX(x) ) i - (A-1)
0 , clsewhere

~
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The cumulative distribution, Fx(x), is delined as
X
. _ du _ X-a _
Py (x) = b-a b a (A-2)
a

FX(X) can have any value between zero and one. Therefore,
when Fx(x) is represented by a random variate U from U(0,1),

Equation A-2 becomes

U= X2 (A-3)

Solving for x gilves

x = a + (b-a)U (A-4)
where x Ls a uniformly distributed number from U(a,bh).
(Fishman, 1973).

The generation procedure is to simply select U from

U(0,1) and use Equation A-4 to generate x from U(a,b).

A.3 Exponential Distribution

The exponential probability distribution function can

be written as

1 _X/B
—_ 0 < < o

£y () =| ge , V2 X2 (A-5)
0 » X < 0

The cumulative probability distribution, FX(X), is
X
1 'U/B "X/B
Fy(x) = 7 e du =1 - e (A-6)
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If Fx(x) is represented by a random number, U, from
Uu(0,1), Equation A-6 can be written as

U=1-¢eX?8 (A-7)
Solving for x gives

x = -81ln(1-U) (A-8)
Since U is a uniform variate, it's easy to see that (1-U)
is also uniform. Therefore, Equation A-8 can be written
as

X = -81n(U) (A-9)

The generation procedure is to select U from U(0,1)
and usc liquation A-9 to obtain the exponentially distributed

variate x. (Fishman, 1973).

A.4 Normal Distribution

In the previous sections, the generating technique
relied on the invertability of the appropriate cumulative
probability distribution. Unfortunately, the cumulative
distribution function of the normal is not analytically
invertable.

The generating algorithm for normally distributed var-
iates in the CSCS model is based on the direct transformation

of uniform variates. (Fishman, 1973). Let U, and U, be

1

independent variates from U(0,1). Then the variates
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1

'
(—21nU1) Cos(ZﬂUz)

1
(-21nu J’sin(ZwUz)

1
arc independent and each is

zero mean and unit variance.

(A-10)

(A-11)

To demonstrate this, [Fish-

'rom a normal distribution with

man (1973) indicates that the joint probability distribu-

tion function of X1 and XZ is

£ (x45%5) Jt (u,,u,) = J (A-12)
X ,X, N1 2 Up,U, 102
—(xlz + XZZ)/Z
1
= 57 e (A-13)
where
“(x, 0+ x50/ (x, +x, 5172
-x,e X,e
J = - X, N i Xq
, 2 2 2
Zﬂ(x1 X, ) ZW(x1 X, )

The joint distribution in Equation A-13 is that of two

(A-14)

independent normal deviates, each with zero mean and unit

variance.

The generating procedure is to select U1 and U2 from

U(0,1) and use either of Equations A-10 and A-11 to yield a
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normally distributed variate X with zero mean and unit
variance. Note that in previous sections, one uniformly
distributed variate was selected for each generated random
number. Now, two uniformly distributed variates are re-
quired for each normally distributed variate. Therefore,
anvefficiency rating can be defined as the number of "target"
variates generated divided by the number of uniformly
distributed variates required. Since two uniformly dis-
tributed variates are required for each standard normal
deviate desired, the generating Equations A-10 and A-11 have

an efficiency rating of 50%.

A.5 Gamma Distribution

Consider the variate, X, to be gamma distributed with
shape parameter, o, and scale parameter, B. (denoted as
Ga(a,B)). The probability distribution function of the
gamma variate, X, 1is

L AN
r(x) =) (P 0 < x <m (A-15)

0 , X < 0

ILike the cumulative distribution function (cdf) of the nor-

mal distribution, the gamma cdf cannot be analytically
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inverted. Thercflfore, transformation of uniformly dis-
tributed variates will be used to generate gamma distributed
random numbers.

Fishman (1973) outlines a technique to generate gamma
variates that is valid for both integral and non-integral
shape factors. According to Fishman, if X is from Ga(a,B),
then X can be considered '"to be the sum of k’+ 1 independent
gamma variates, all with scale parameter B, but the first
k of which have unit shape parameter and the k+1st has shape
parameter y = a - (a)." (Note that k = (a) where "( )"
denotes ''the largest integer in').

The first k independent gamma variates are from Ga(1,R).
With unit shape parameter, the gamma distribution reduces
to the exponential distribution. Thus, the sum of k in-
dependent gamma variates from Ga(l,8) can be expressed as
the sum of k independent exponentially distributed variates.
Using Equation A-9,

k
Xl =.§ (-Banj) (A-16)
1=1
which can also be written as
k
X1 = -B1ln {jglUjJ (A-17)

where Uj is the jth variate selected from U(0,1).



The k + 1st variate is distributed according to
Ga(y,B). To obtain the k + 1st variate, let Y and Z be
independent variates from a beta distribution, Be(y,1-v),
and a gamma distribution, Ga(l,1), respectively. Then, as
Fishman (1973) shows, the variate W = BYZ is distributed
according to Ga(y,B8). Thus, the gamma variate, X, from

Ga(a,R) is found by

k
X = -Bln n U. + BYZ (A-18)
=1

Since Z is exponential with a unit parameter,

Z = ank+1 (A-19)
and Equation A-18 becomes
k
X = -8ln i Uj - YBln(Uk+1) (A-20)
j=1

The remaining task is to select Y from Be(y,l1-v).

The probability distribution function for a beta dis-
tributed variate with shape and scale parameters a and b res-
pectively 1s
a-1 b-1

I'(ath
e v Y (]_Y) ’ O:)\il
ry(y) = NONG (A-21)

0 , elsewhere
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In general, the parameters a and b will be nonintegral in the
CSCS model, therefore, an acceptance-rejection technique
for generating Y from Be(a,b) will be used, (Fishman, 1973).

Consider the transformations

1
Y, = Up /a (A-22)
and

1/b

Y, = U2

2 (A-23)

where U1 and U2 are independent uniformly distributed

variates from U(0,1). If Y, + Y

1 £ 1, then Fishman shows

that the variate

Y 1
= ... S OU, (A‘ZS)
(Yl ¥ ?ZT

is distributed according to Be(a,b).
To find the beta variate required by Equation A-20,

first find the transformed variates

1/v

Y, = U1 (A-23)

- Uzl/(l"Y) (A-24)

Next, determine if Y, + Y, < 1. If Y, + Y, <1, then

"accept" the variates Y, and Y, and compute the beta variate,
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Y, using Equation A-23.

If Yl + Y2 > 1, reject the variates Y1 and YZ’ Select
new variates, Uy and U,, and repeat the process until a
(Yl,YZ) pair are accepted to compute Y. Once a valid beta
variate, Y, has been identified, Equation A-20 is exe-
cuted to give the required gamma variate X from Ga(a,B).

If Ng is the number of uniformly distributed variates

required to generate one beta variate, the total number,

Ny of uniformly distributed variates required to generate one

gamma variate from Ga(a,B) is
np = nB + k + 1 (A-25)

The expected value of nr is then

E(ng) = E(ng) + E(I) + 1 (A-26)

Since the number of trials for success in the beta
generation procedure follows the geometric distribution,
the expected number of uniformly distributed variates re-

quired to generate a Be(a,b) variate 1is

|  2(a+b)T (a+b
t(ng) = é%r(i)g%b)) (A-27)

Substitution of a = y and b = 1-y into Equation A-27 leads

to
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: = i e 2 -
) = ST YT O T ) (A-28)

From Hildebrand (1976), the following identity can be used

to further simplify Equation A-28

F(y)T(1-v) = gTH%FVT (A-29)
Thus
_ 2sin(my) -
E(g) = =Gy (A-30)

Equation A-30 has a maximum when y = 0.50. Therefore, the
maximum expected value of ng is approximately 2.5.

Comparison of Equations A-15 and 2.2-3 gives

o = 8t (A-31)
Since k = (a), then

k = (8t,) (A-32)

Taking expected values of both sides of Equation A-32 gives

E(k) = (8E(t,)) (A-33)
However, since t, is exponential
-1
E(tr) =4 (A-34)

and Equation A-33 becomes

E(k) = 1 (A-35)
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Now using the Equations A-30 and A-35, Equation A-26

becomes
_ 2sin(ry) _
E(ngd = Sy * 2 (A-36)
and
E(ny)pay = 4-5 (A-37)

A.6 Arbitrary Distribution

Occasionally, it becomes necessary to generate a
random variable from a distribution for which there 1s no
conveniently available mathematical formula. To gencrate
a random variate over a finite domain (a,b), the following
steps are used. (Abramowitz and Stegun, 1970).

Let f be the maximum of f(y), the probability distri-
bution function of the variate y. Generate a pair bf
uniform deviates, U1 and U2 from U(0,1). Compute a point
y = a+(b—a)U1 in (a,b). If U, < f(y)/f, accept y as the
random deviate, otherwise reject the pair (Ul,UZ) and start
again. The expected number of uniformly distributed var-
iates, n,, required to generate the appropriate random

deviate is

E(ng) = 2(b-a)f ' (A-38)
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In the CSCS model where this approach was used,

f(y) was approximated by a histogram.
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APPENDIX B
STATISTICAL PROPERTIES OF N(t)

B.1 Introduction

The cloud model developed in Chapter 3 was required to
have certain statistical properties. These properties
were discussed in Chapter 3, but their development is
presented here. The cloud cover model has the form

N(t) = My o+ (1-MO)(1-P(t))+ m(t)P(t) (B-1)
wherc MO is the '"fairweather" mean value of N(t), P(t)
is the storm transition function, m(t) is a serially
corrclated random sequence with the following characteristics

E(m(t)) = 0 (B-2)

2

o} (B-3)

VAR(m(t)) m

i

The sequence, m(t), also has a serial correlation function

0, (1) where 7 is the lag.

B.2 Expected Value of N(t)

The first required property of N(t) is its expected
value. More specifically, the expected value of N(t)
given the time between storms, tys is required. The condi-

tional expected value of N(t) is found by
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E(N(t)ltb) = EM_ + (1-M ) (1-P(t))

+ m(t)P(t)) (B-4)
Since MO is a constant and P(t) is a deterministic func-
tion of time, Equation B-4 becomes
E(N(t)[ty) = My + (1-M) (1-P(t))

+ P(t)E(m(t)) (B-5)
Substitution of Equation B-2 into Equation B-5 results in
the expression for the time varying conditional expected

value of cloud cover shown earlier as Equation 3.4-5

E(N(t)[ty) = My + (1-M)) (1-P(t)) (B-6)

B.3 Variance of N(t)

The conditional variance of N(t) is defined as

VAR(N(t) [tp) = BCONCE) [t -EON(E) 5,00 %) (B-7)
which can also be written as

VAR(N(t) {t) = ECONCO) [£)D)- EPON(E) |8 (B-8)
First find (N(t)ltb)z.

(N(t) ] t) 2 = (M + (1-M) (1-P(t))

+m(t)P(t))? (B-9)



241

(N(t) [ t)° = MOZ + 2M_(1-M_) (1-P(t))
+ 2m(t)P(EIM + (1-M))Z(1-P(1))7
+2m(t)P(t) (1-M ) (1-P(t)) (B-10)
+ mé ()P (1)
Taking expected values of both sides of Equation B-10

gives

E(N(E) 1) %) = M7

+2M_(1-M) (1-P(t))
+ M iapen? o 2p% (1) (B-11)

Sincce

H(Zm(t)P(t)MO) = ZP(t)MOD(m(t))

1}
<

E(Zm(t)P(t) (1-M ) (1-P(t))) =

= 2P(t) (1-M ) (1-P(t))E(m(t))

i}
()

and
E(m’ (£)P2 (1)) = PE(0)Em® (1)) = PP(t)o ”
For EZ(N(t)|t,), Equation B-6 is used to give
B ONCE) [tg) = Mg+ (1-M)) (1-P(£)) (B-12)

Expansion of Equation B-12 and substitution into Equation

B-8 along with Equation B-11 gives
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VAR(N () | ty) = MO2 + 2M_(1-M_(1-P(t))

+ omZPZ(t) ; MOZ - 2M_(1-M_) (1-P(t))
1My A -p ()’ (B-13)

Equation B-13 reduces to the expression for the time vary-

ing conditional variance of N(t)

VAR(N(t) [ty) = o “PP(t) (B-14)

B.4 Serial Correlation Function (B-15)

The serial correlation function of a time series is
found by normalizing the covariance function of the time
series. The covariance is defined as

COV(N(t),N(t+t)) =

E((N() -1y (£)) (N(t+1) -uy (£+7))) (B-16)

As in previous sections, the process is conditioned by ty, -
For ease in writing, the designator "Itb” has been dropped.

Also, for convenience
ug(t) = EON(E) [ ty) (B-17)

Expansion of Equation B-16 leads to
COV(N(t),N(t+t)) = E(N(t)N(t+1))

-E(N()uy (t+1)) - E(ug(t)N(t+1))

+E (uy () (t+1)) (B-18)
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Since uN(t) and uN(t+T) are deterministic functions of
time, the third and fourth terms on the right-hand side

of Equation B-18 become respectively

E(uy (£IN(E+T)) = uy(t)uy (t+T) (B-19)
and

By (0)uy (£+1)) = nyg(t)uy (t+0) (B-20)
Substitution of Equations B-19 and B-20 into Equation B-18
gives

COV(N(t),N(t+1)) = E(N(t)N(t+T1)) (B-21)

“Hy (B E(N(E))

The next step is to substitute Equation B-1 cvaluated at

times t and t+1 into Equation B-21. This leads to
COV(N(t+1)) = P(t)P(t+t)E(m(t)m(t+1)) (B-22)

The serial correlation function of N(t) is defined as

. COV(N(t),N(t+T1)) i}
py (1) = ON(t)ON(t+T§ (B-23)

where oN(t) is the standard deviation of the process at

time t. The standard deviations are defined as

oN(t) = /VAR(N(t)]tb) = P(t)om (B-24)
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and

oy(trn) = /VKWTN(EITYTibI = P(t+1)om (R-25)

Substitution of Equations B-22, B-24, and B-25 into Equation

B-23 yields
pN(T) = P(t)P(t"'T)E(m(t)I;(t"'T)) (B-26)
P(t)P(t+T)Om
With the definition
E(m(t)m(t+1)) = COV(m(t)m(t+t)) | (B-27)
FEquation B-26 can be written as
DN(T) = COVQ:L;)m(t"’T)) (B-28)
m

The right-hand side of Equation B-28 is just the defin-
ition of the serial correlation function, pm(T), of the

random process m(t). Therefore, Equation B-28 reduces to

on(t) = o, (1) (B-29)

Equation B-29 states that the process N(t), whose mean and
variance are modulated in a controlled fashion by P(t),
will have a serial correlation function identical to the

process m(t).
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APPENDIX C
BRYAN'S TEMPERATURE FORECAST MODEL

C.1 Introduction

Since Bryan's 1964 report was unpublished and since
the writer knows of no formal presentation of the details
of Bryan's technique in the literature, a detailed mathe-
matical description of the approach will be included here.

Bryan's approach is represented by the following

equations
J_ T(t) + blT(t) = b0 + bzs(t) + bsr(t) (C-1)
s(t) = sindsin¢g - cosdcoscbcos12 )
(R<t<S) (C-2)
s(t) =0 , otherwise (C-3)
r(t) = 12 osécos¢51n(12 ) R (R<t<12) (C-4)
r(t) =0 R otherwise (C-5)

where T(t) is the temperature at time t, & is the solar
declination, ¢ is the local latitude, R is the local time
of sunrise (note the difference between local time and
standard time), and S is the local time of sunset.
Equation C-1 can be solved by using the integrating

b, t
factor e . Thus
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a4 | "t byt N
I |© Ii(t) = e bO + hzs(t) + bsr(t) (C-6)

and for the interval (t',t)

—b](t—t') -blt
T(t) = T(t")e ) + ¢ F(t,t') (c-7)
where t
blr b,T
F(t) = b e “dt + b e “s(t)dr
0 2
1] 1]
t t t
blT
+ b3 e r(t)drt (C-8)
t'

iquations C-7 and C-8 represent the solution to Equation
C-1. Once the coefflicients, bi’ are known, a temperaturc
forecast can be made given only the initial temperature

T(t').

C.2 Parameter Estimation

Bryan manipulated Equations C-7 and C-8 into a form
that leads to a linear regression formula used to estimate
!
the bi S.
First, note the following identities

-b.t -b, -b,(t-1)
e L e 1e 1 (C-9)

“by (t-t") -by (t-1-t")
e = e (C-10)
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F(t,t') = F(t-1,t') + F(t,t-1) (C-11)

Using these identities, Equation C-8 can be rewritten as

-b1 -bl(t-l-t') -bl(t—l)
T(t) = e T(t")e + e F(t-1,t")

~b1t
+ e F(t,t-1) (C-12)

The quantity inside the brackets is just T(t-1).
-b1 ~b1t
T(t) = e T(t-1) + e F(t,t-1)

Therefore,
(C-13)
The hourly temperature change, Y(t), is found by sub-

tracting T(t-1) from both sides of Equation C-13.

-b] —blt
Y(t) = -(1l-e “)T(t-1) + ¢ F(t,t-1) (C-11)
Substitution for F(t,t-1) leads to
byt [T byt -b,
Y(t) = boe e dt - (1-e IT(t-1)
t-1
t
-b,t b,t
+ bze 1 e 1S(T)dT
t-1
byt b obyT
+ b3€ e “r(t)dr (C-15)

Fvaluation of the (irst integral (]] for convenience) on
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the right-hand side of Equation C-15 leads to

b -b

I, = — (1-e 1

) (C-16)

The last two integrals, 12 and 13, on the right-hand side
of Equation C-15 are complicated by the exponential term

inside the integral. Bryan indicated that it was sufficient

byt
to use the mean value of e and bring it outside the
integral. Thus,
b,t -b b,t
E{e 1 ] = % (1-e 1)e 1 (C-17)
1
Thus, I2 and 13 respectively, become
t
b, !
I, = +— (1-e ) s(t)dr (C-18)
2 b1
t-1
and
bs by
I, =+ (1-e ) s(t)drt (C-19)
3 b1
t-1

Substitution ot the expressions for Il, IZ’ and 13, back

into Equation C-15 yields
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b b b
Y(t) = B% (1-e 1) - (1-e HT(t-1)
t
b, by
+ EI (1-e ) s(1)dr
t-1
t
b b
. E2(1-e 1, r(t)dr (C-20)
1
t-1

Equation C-20 is now in the required regression form
from which the bi's can be estimated. To see this more
clearly, compare Equation C-20 term by term with the fol-

lowing

Y(t) = ag o+ alxl(t) + uZXZ(t) + aSXB(t) (C-21)

The comparison gives for the coefficients

b -b .
a, = E% (1-e l) (C-22)
-bl
a, = -(1-c 1) (C-23)
b -b
a, = g= (l-e 1) (C-24)
1
b -b
. _ '3 _ 1 .
4 = FT (1-¢ ) (C-25)

ffor the predictors
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Xl(t) = T(t-1) (C-26)
rt

Xz(t) = s(t)drt (C-27)
t-1
rt

XS(t) = r(t)drt (C-28)
t-1

Once the ai's have been determined by regression, the
bi's can ecasily be found, since the set of Equations C-22
through C-25 is a set of four equations in four unknowns.

Therefore, the bi's can be found from

b1 = -1n(a1+l) (C-29)
b1 .
bi = - Ezai , 1 =20,2,3 (C-30)

Now that the bi's are established, Equation C-7 can
be used to forecast temperatures, given only the initial

temperature, T(t').

C.3 Evaluation of Predictors

From the definitions of s(t) and r(t), it is seen
that Equation C-20 and, ultimately Equation C-7, will have
different forms, depending upon the time of day. The

ranges over which each form will be valid are delimited by



251

several 'critical" times. These times must be identified
in order to coordinate the data observation times which occur
at regular intervals according to standard time, and the
occurrence of events in the local solar day (e.g. sunrise,
sunset, etc.) which vary in time throughout the year. FIive
critical times are identified: 1) ty is the value of t in
local time corresponding to midnight in standard time, 2)
re is the value of t which corresponds to the earliest
standard hour that does not precede local sunrise, R (rszR),
3) tio is the value of t at the earliest standard hour that
doecs not precede local noon (t12312), 4) S is the value of
t at the earliest standard hour that does not precede
local sunset, S_(sszs), and, 5) tys is the value of t cor-
responding to 11:00 p.m. local standard time.

For all times, t, predictor Xl(t) will equal T(t-1).
But the forms of Xz(t) and X3(t) will change with t. The

individual forms of Xz(t) and X3(t) for each range follow.

Range 1 t_ <t <1

o < ¢ ~ 1 for X,(t)

t

{ s(1)dr
0

[}

t

(C-31)

1!
o

X, (t)
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Range 2 t = re (first observation hour after sunrise)
For Xz(t)
- .
(
Xz(t) = s(t)dr
J
t-1
R T
( s
= s(t)dt + s(t)dr
J
t-1 R (C-32)
B . . 12 RS TR
Xz(t) = (rs-R)51n651n¢ - E—cosécos¢(51nT7— - Tf)

(C-33)

Range 3 rs+1 <t < s -l (daylight hours) for Xz(t)

t
Xz(t) = s{t)dt
t-1
X,(t) = sindsin¢ - 1£C055C05¢(Sinl£ - sinﬂ—(t—l))
2 T 12 12
(C-34)
Range 4 t = S for Xz(t) (near sunset) for Xz(t)
s
s
Xz(t) = s(t)dr
Ss-1

S S
= [ s(t)dt + s(t)dr
s
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Xz(t) = (S-ss+1)sinésin¢

12 N m i
i cosdcoso (cos T?S - cosij(ss—l)) (C-35)
Range 5 sS+1 <t < t23 (after sunset) for Xz(t)
t
Xz(t) = [ s(t)drt
t-1
Xz(t) =0 (C-36)
Similar ranges ecxist for Xg(t).
Range 1 t, 2t < rs—l (before sunrise) for XS(t)
t
Xs(t) = [ r(t)dr
t-1
Xs(t) =0 (C-37)
Range 2 t = T (near sunrise) for X3(t)
Tg
XS(t) = r(t)drt
r -1
S
R rS
= r(t)dt + r(1)dt
r -1
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mY

_ mR S _
X3(t) = cosdcoso (cos 7 CoS 35— ) « (C-38)
Range 3, ro+ 1<t <ty ot 1 (before noon) for Xz(t)
t
Xs(t) r(t)dr
t-1
- T _(¢- - T_ -
Xs(t) = Losécos¢(coslz(t 1) coslzt) (C-39)

Range 4, t = tio (near noon) for XS(t)

ti2

XS(t) = r(t)dr
ST

12 t12

= r(t)drt + r(t)drt

Xz (t) = c056c05¢(cos%7(t12 1) + 1) (C-40)

Range 5, t12+1 < t < t23 for XB(t)

|
=
~
A
A —
[a
,_‘

Xg(t)

il
e

X (t) (C-41)

For each hour of the day, the hourly temperature change,

Y(t), is computed from the observed data and the
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predictors X;(t) are evaluated. Standard linear regres-
sion techniques can be used to estimate the coefficients a;

which in turn are used to finally yield the bi's.

C.4 Bvaluation of F(t,t')

As with the predictors Xi(t), the function F(t,t')
will have different forms, depending on the time of day.
The general solution for F(t,t') will be shown first. Then
the individual forms applicable in each range will be
developed.

Consider again Equation C-8, where

t t
blT blT
F(t,t') = b0 e dt + b2 e s(v)dt
t! t!
t
blT
+ bs e r(t)dt (C-8)
t'
For convenience, let
F(t,t') = Il + I2 + 13 (C-42)
where t
blr
I, = b e dt (C-43)
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t
b11
hz e s{t1)dT (C-44)
tl
t
blr
I, = b3 e r(t)dT (C-45)
t!
Evaluation of I1 is straightforward and can be written

directly as

b b,t b,t'

I, = E—i— (e 1 - el ) (C-46)

For IZ, begin by substituting the full expression f{or s(t)

inside the integral. Thus,
t
b,t .
I2 = b2 e (sinésin¢ - cos@cos¢cos(T7))dT

1 (C-47)

The declination 6§ is actually a function of time and, in a
strict sense, ought to be evaluated in the integral.
However, the interval (t,t') is sufficiently short so that
the variation in 6 is ignored. Equation C-47 can now be

rewritten as
t t

b,t byt T
I, = bysindsing Je g - b,cosécos¢ e 1 cos (17)dt

t! £
(C-48)
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Completion of the integration finally yields

b b,t b,t'
I2 = Bg sindsin¢ (e 1= e 1 )
1
blt
] e blbzcosacos¢cos(12)
2
+(12)
b, t
) e 1 bz(%79c056c05¢sin(%%ﬂ
2 m
b, "+ (13)
b t!
. e b b2c056c05¢cos(12 )
2
byt e
b, t!'
e 1 bz(%73c056c05¢sin(%%L)
+ (C-49)
P
1 12

Similarly, for 13, substitute the full expression for

r(t) into the integral.
t

(
blT

3 e (%7 cosdcos¢sin %%)dT (C-50)

t '

Again, the short term variation in 6 is ignored. Thus
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t
m PrT e
I, = bS(T7)c056c05¢ e SLH(Tj)dT
-t'
and
m S
L. I7—b1b3cosécos¢ blt Coat
3 = e 51n(T7)

2. .1 (2

N2
) bs(rj) cos8coso ebltCOQ(ﬂt)
N S\17

by (gz)

T
Ii—blbscosécos¢ blt'

- 2 T 2 € sin(yg')
by" +(yp)

T2 ‘
h3(%?ﬂ cosdcosd b, t' Tt
. . - e cos (—%)
b, “+ (1)
1 12

(C-51)

(C-52)

To simplifly the writing of Equations (C-49 and C-52, the

following definitions are used

= 1
P =17
K :I.)_O.
1 b1
bzsinésin¢
K =
2 b

1

(C-53)

(C-54)

(C-55)
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blbzcosécos¢
Ky = ) 7 (C-56)
b + P
1
pbzcosdcos¢
Kq = 772 (C-57)
b1 +p
2
p b3c056cos¢
ks = 72 (C-58)
b +p
1
pblbscosécos¢
K6 = > 5 (C-59)
b1 + p

Using the definitions in Equations C-46, C-49, and

C-52, the general form of F(t,t') can be written as

b,t b,t! b.t b,t'

F(t,t") = K, (e L. ) *+ K, (e LR )
blt hlt

(K3+K5)e cos(pt) + (K6-K4)e sin(pt)
blt' blt '
+ (K3+K5)e cos(pt') + (K4-K6)e 51n(ptf)
(C-60)
Note that t' = ty - 1.
For the range t ) < t <R
t t
blT blT
F(t,t') = bO e dr + b2 e s(7)drt
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r(t)drt (C-61)

In this range s(t) and r(t) are both zero. Thus,

t
blr
F(t,t') = bo e dt
t!
blt blt'
F(t,t') = Kl(e - e ) (C-62)
For the range R <t <12
t blT t blr
F(t,t') = bO e dr + b2 e s(t)dr
t! £
t
blT
+ b3 e r(t)dr (C-63)

t R
blT blT
F(t,t') = bO e + b2 e s(t)drt
t' t! rd
t R
blT b1T
+ b2 e s(t)dt + b3 e r(t)dr

=
Il
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+ b3 e r(t)dr

o)

Remembering that prior to sunrise, s(t) and r(t) are zero,

carrying out the integration leads to

blt blt' -bl(t-R)

F(t,t') = Kl(e - e ) o+ Kz(l—e )

- (K3+K5)Cos(pt) + (K6-K4)sin(pt)

-b
+ (K3+K5)e

1(t'R)
cos (pR)

“b (t-R)
+ (K4-K6)e sin(pR) (C-64)

For the range 12 < t

[ A
wn

F(t,t') = bO e dt + b2

+ b e © s(t)dT

R
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R 12
blT blT
+ b3 c r(t)dr + b.s e r(t)dr
t! R
t blr-
+ b3 e r(t)dr
12
Evaluation of Equation C-65 gives
b,t b, t!' b,t b,R

F(t,t') = K, (e 1" 17y o K, (e 1 e 1y

b,t b,t

-'Kse 1 cos(pt) + K4e 1 sin(pt)

bR b.R

* Kge cos (pR) + K,e 1 sin(pR)

b1R blR
- K6e sin(pR) + K5e cos (pR)

For the range S < t < tys
t R

blT blT
F(t,t') = bO e dt + b2 e s(t)drt
t

' t'

(C-65)

(C-606)
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(S t
blT blT

+ b2 e s(t)dr + b2 e s(t)dT

R/

92]

R

12
( byt b.T
+ b3 e r{t)dt + b3 e ! r(t)dr
R

+ b3 e r(t)dr

(C-67)

During the evaluation of the integrals in liquation C-67,

the following identities prove usciul

S = 24-R
sin(2m-pR) = -sin(pR)
cos(2m-pR) = cos(pR)

The final form for F(t,t') is now written as

b.t b.t' b.S b.R
F(t,t') = Ky (e N K, (e 17 e 1y

b,S b;S 12b

1 sin(pR) + K.e

R 1
- K30 cos(pR) + K4c c

th b, R
¥ KSO cos(pR) + K4e sin(pR)

b]R - blR
- Kge © osin(pR) o+ K’c * cos(pR)

(C-68)
(C-69)

(C-70)

(C-71)
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The forecast temperatures are now found by substi-
tuting the appropriate form of [F(t,t') into Equation C-7
and solving for T(t), t, <t < t23. Note that declination,
§, was assumed constant over the interval (to,t23). Thus,
variations within a day arc ignored. Variations in § for
longer periods cannot be ignored. Therefore, the declin-
ation 1s recomputed for each day in which temperature fore-

casts are made (see Equation 4.2-5). This accounts for

longer term variations in solar input.
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APPENDIX D

DETERMINISTIC TEMPERATURE COMPONENT

D.1 Introduction

The deterministic component of the temperature model

is represented by

~

dggt) + bl%(t) = b, * bZK(t)s(t) + b3K(t)r(t)

+ b4q(t) + bSTg(t) + b6WS(t)

* bW, (t) (D-1)
where %(t) is the deterministic component, K(t) is the solar
radiation attenuation factor (K(t) =1 - 0.65N2(t)),

N(t) is the cloud cover, q(t) is_a longwave radiation esti-
mate (see Equation 6.3-2), Tg(t) is the ground temperature,
Ws(t) is the wind speed, and Wd(t) is the wind direction.

As indicated in Chapter 6, the general solution to
Equation D-1 can be written as

. . -by (t-t") -byt
T(t) = T(t')e + e G(t,t") (D-2)

where
t t

blT b1T
G(t,t") = bO e dt + b2 e K(t)s(t)dr

t' t!
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t t
blT blT
* by e K(e)r(t)dr + b4q(t—1) e d1
t' tl
t t
bll b1T
+ bS e Tg(T)dI + b6 c WS(T)dT
t' tl
t
blT
+ b7 e Wd(T)dT (D-3)

D.2 Parameter Estimation

The procedure for estimating the coefficients bi
through a regression involving hourly temperature changes,
Y(t), has been described in Appendix C. The resulting

coelficients a, are

b
a; = -(1-e l)
a) (D-4)
a. = - —Db. , 1 =20,2,3, ,7
1 b1 1
The predictors Xi(t) are
X, (t) = T(t-1) (D-5)
t
Xz(t) = K(t) s(t)drt (D-6)
t-1
t
X3(t) = K(t) r(t)drt (D-7)
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X (t) = q(t-1) (D-8)
Xc (1) = Tg(t) (D-9)
Xg () = W_(t) (D-10)
X, (t) = Wy(t) (D-11)

The one hour integration interval was considered short
enough to allow the variables K(t), q(t-1), Tg(t), Ws(t),
and Wd(t) to be brought outside their respective integrals.
Predictors Xz(t) and Xs(t) are used only during se-
lected parts of the day. These times have been defined in
Appendix C and will not be discussed again here. The
indicated integrations in Equations D-6 and D-7 have also
been discussed in Appendix C. The only difference in the
final forms of Xz(t) and Xs(t) for the present case 1s
the multiplier K(t). The remaining predictors are used

throughout the night and day.

D.3 ILvaluation of G(t,t')

For convenience, let the seven integrals of Equation



D-3 be written as

I, = b,
I, = b,
Ty = by
I, = b,
Ig = b
T = be
I, = b,

t

b,t
Je 1 dt
tt

t
T
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K&
e K(t)s(t)dr

tl

t
T

"
e K{(t)r(t)dr

(D-12)

(D-13)

(D-14)

(D-15)

(D-16)

(D-17)

(D-18)
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The integration indicated for I, is straightforward

and results in

b bt b,t'
Il = Egl e 10 e 1 ] (D-19)
1

The remaining integrals contain terms such as K(t1),
q(t), Tg(T), WS(T), and Wd(T).. Except for reasonably short
intervals, treating these terms as constants is not sensi-
ble. To deal with integration intervals that are large
cnough for these variables to vary significantly, the
following approach is taken.

Consider 12, where

- blT
I2 = b2 e K(t)s(t)dT (D-13)

t!

Iz can also be written in an equivalent form as

t
blT
L, = b2 e K(t)s(t)dr

t-1

blT
+ b2 e K(t)s(t)dT (D-20)
t!
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In the first integral on the right-hand side of Equation
D-14, the integration interval is short enough such that

K(t) can be brought outside the integral. Thus

t
blT
I2 = sz(t) e s(t)drt
t-1
t-1
blT
+ b2 e K(t)s(t)dT (D-21)

tl

Now the first integral in Equation D-22 is in the same
form as the integrals evaluated in Appendix C (see Equa-
tion C-47).

The same argument can be used to successively evaluate
the second integral of Equation D-21. Following the pro-
cedure hour by hour back to t', a series of the following

form results.

I, = sz(t) e s(t)drt

é K(n) e s(t)drT (D-22)
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Since the series of integrals defined in the second term
on the right-hand side of Equation D-22 is just the value

of I, at t-1, the following computational form is used

2
t
b1T
Iz(t) = sz(t) e s(t)dt + Iz(t-l) (D-23)

t-1
Concluding the integration of Equation D-23 yields
) b, blt bl(t-l)
Iz(t) = K(t) E~sinésin¢(e -e )
1

blt
e b,b cosécos¢cos(12)

1772
bl (ip°

b, t
e 1 bZ(I%)cosécos¢sin(%%)
2 m
1t )

b

b, (t-1)

e 1 b1b2c056c05¢c05( (t 1) |
2

b ()

bl(t-l) T
e bZ(Tf)cosécos¢sin
2

byt v (77

((”))

+

I,(t-1) (D-24)
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Using the definitions for KO, Kl’

. K6 defined in

Appendix C, Equation D-24 can be written as

by
L(t) = K(t) (Ky(e 1 - e
bt b

1 Tt 1
3¢ cos(lZJ - Kae

t
- K

bl(t-l)

+ K3e

cos(EL%%ll)

bl(t-l)

+ Kye 31n(ﬂ(t l)))+

sin(

t bl(t—l)

)

Tft)

I (t 1)

(D-25)

Similarly, the remaining integrals, Ii, can be obtained.

blt
IS(t) = K(t)(K6e

b, (t-1) e
S Koe ! sin(l§%~ll)

0

b,(t-1)
e 1 cos(ﬂ%%lll))+

+ K
(0 = ;% ae-1)(1e el
Ig(t) = ;ﬁ Tg(t)(l-e‘bl)eblt
I (t) = E—‘i—ws(t)cl—e‘bl)eblt

51n( ) -

blt

K.e cos (

Is(t—l)

t
+ 14(t-1)

+ Is(t-l)

+ 16(t~1)

Tt
17)

(D-26)

(D-27)

(D-28)

(D-29)
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I (t) = - Wy(t) (1-e

+ I7(t-l) (D-30)
1

The specific form of G(t,t') still depends on the time

of day for which the integrals are evaluated. (Note that

t' o=t -1).

For Range 1, t <t <R
b,t b,t! b b b,t

G(t,t') = Kj(e b - e Uy v Lart-na-e Lye 1
1
b5 -b1 blt
+ 14(t—1) + BI Tg(t)(l-e )e + Is(t-l)
b -b1 blt

N 5% W (1) (1-e De T+ Tg(t-1)

b7 b

b
Je

t

1=, I, (t-1) (D-31)

1

Actually, the terms on the right-hand side of Equation
D-31 retain the same form throughout the day. For conven-
ience then, the terms on the right-hand side of Equation
D-31 will be collectively referred to as H(t,t').

For Range 2, R < t < R+l

blt b;R
G(t,t") = H(t,t') + K(t) Kz(e -e )
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b, t b,t
e cos (35) - K,e 1 sin(%%)

1 nR)+ K4e 1 nR

bR b.R
+ K,e cos (3= 51n(17)

b,t b

t
17, (71t
sSin (1—2‘) - Kse

1 Tt
cos(T?)

+
=~
~~
ct
—
——

. mR b.R
6¢  Sin(yz) 4 g o 1 Cos(%%)] (D-32)

1
o=

5

For Range 3, R+1 < t < 12

blt bl(t-l)
G(t,t') = H(t,t') + K(t) Kz(e -e

bt , b.,t

- Kzc 1 cos(%%) - K4e 1 sin(%%)
b, (t-1) b, (t-1)

+ Kge 1 cos(ELE—ll) + Kye 1 sin(n(t 1))

b,t b, t

+ 1 (t 1) + K(t){K e 1 sin(%%) - KSe 1 cos(%%)
b, (t-1)

- K6e 1 51n(n(t 1))

b (t-1)
+ Kge 1 cos(li§%ll)] + Ig(t-1) (D-33)
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For Range 4, 12 < t <12 + 1

blt bl(t-l)
G(t,t"'") = H(t,t') + K(t) Kz(e - e )
b,t b,t
1 t .
- Kse cos(%j) - K4e 1 51n(%%)
b, (t-1) _ b, (t-1) _
+ Kge 1 cos(l%%mll) + K4e 1 sin(ﬁéé—llﬂ
12b b, (t-1)
. . t-1
+ Iz(t-l) + K(t) [kse 1 K6e 1 51n(1%7——l)
b, (t-1) ]
+ Kse 1 cos(l%%—ll)} + IS(t41) (D-34)
For Range 5, 12 + 1 <t <5
blt bl(t-l)
G(t,t') = H(t,t') + K(t) Kz(e - e )
b,t b,t
- K3e 1 cos(%%) - K4e 1 sin(%%)
b,(t-1) ) b, (t-1) _
+ Kse 1 cos(l%%~ll) + Kye 1 sin(ﬁ%%—ll)

+ I,(t-1) + 15(12) (D-35)
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For Range 6, S <t < S + 1

bls b](t—l)

G(t,t') = H(t,t') + K(t) Kz(e - e )
b,S b,S .
1 S 17 . 7S
- KSO cos(%j) - K4e 51n(T7)
b, (t-1) b, (t-1)
1 T(t-1) 1 .m(t-1)
+ Kse cos (37 ) + Ke sin(—g>—")
+ 1,(t-1) + 1.(12) ‘ (D-36)
Finally, for Range 7, S + 1 < t < 23
G(t,t') = H(t,t') + 1,(S) + I,(12) (D-37)

Now with the appropriate form of G(t,t'), Equation
D-2 can be used to find the deterministic component, T(t),

at any time of day.
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APPENDIX E
CSCS PROGRAM LISTING



-

OO0 NDDNOO0O00NONO0ONNOOOANOO A OO OO0 D00

CARD

-

[

INPUT SUMMARY FO2?

COLUMN

1-10
11-20

21-30

31-40

1-10
11-12
14-1%
17-20
22-23
25-26
28-31
33-55
37-58
40-41
43-45
47-48
50-51
53-62

1-10
11-20
21-30
31-40

41-50
bl ’60

1-10
i1-12

21-30

FORYAT

A10

10x
I2
12
14
I2
12
T4
F3e.8
F2e0
F2e.0
F3.0
F2.0G
F2e0
ALl

10X
F10.0
F10.0
F10.0

F10.0
Fi10.C

10X
12

F1G6.0

THL €3y

CISCRIP

- .- -

USER 1

MODEL

TI1On

NFORAATION CA-D w3tD ONLY ¥

CARU GROUPS IN THL CTtCe (CR FILt)

THREL

TITLS CARDS. THD TiXT Ch TH

wILL BE PRIGTED 20T AT THLC BEGTINK
THE INPUT DATA SU’ MAKRY,

SPACE

FOR CARD LaFfbLe. (.07 RLAD FY

0 LETACATT

TRE CArT™

INS OF

Cil5e

QUTPUT FILZ va™E rox ILPUT DATA SUMPARY &,

QUTPUT
FOR:M

UATA ANALY T e FILE MAMD #
XXYXXXaYYY

OQUTPUT FILT NAME FO© BELYRATLD ot
DEPRESSTINe XXXXXXaYYY

CUTFUT

FILE NAMZ PO« 0f JUCc IrFoE:

XXXXXXaYYY

CARD LABEL
INITIAL °O%TH -

TNITIAL TAY - Ty
INITIZL YDAk - YYYY
ENMDING MUNTH - My
ENOING DAY - Ny
ESNDING YEAR - YYyYYy
LATITUDE - DFEGROES
LATITULOE - MINGTES
LATITLNE - SECxhe
LONGITUDY - DEGARIES
LONCITUDE - S INOTES
LONGITUDE - STCC-6n

TINMD 20NL (Uele YLAGTEWN®y ¢CLMTE
Altive O *PACIFICY) LEFT CUSTIFY.

YMOUNT

USER 1

NEORMATION CARD

CARDC LAEFL
MEAN FAIMJTATHER CLLUD Civie

STe DG
LAG-1
CLOUD
CLOUD

Ve OF FAIRWEATHE? CLDD Cov
COYRELATION COEF. 3F FAIFYE
Coves

COVER TRANSITION UFECAY COLF

ATVOSPHETIC TURGIVITY FACTO™

CARO LALEL

NUSEER OF FATRWEATHLY CLGUD COVER
ELEMENMTS

LGWKER BOUND OF FAIRSEATRLR CLOUL

AS ThHE
wh S INT

AT1ow

ALY

o
-

AT D

FIZIemn

HISTOGRE"

cove®
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10

11

12

13

14

15

16

17

18

19

20

31-40

1-10
11-79

1-10
11-70

1-10
11~-20
21-30
31-40

1-40

1-10
11-20

21-30

31-40

1-40

1-10
11-20
‘21-30
31-40
41-50

1-10
11-20
21-30

31-40
41-50

1-10
11-20
21-30

F1040

10X
EF10e0

10X
6F 100

10X
F10.0
F1C0.0
Fl10.C

10x
4E12e9

10x%
F10.3

F10.C

F10.0

10X
F10.0
F10.0
Fi0.0
F10e0

10X
F10.0
F1C.0

Fl0.0
F10.0

10X
F10.0
F10.0

- 279 -

HISTOGRAM

UPPIR 8QOUND OF FAIDLATHIN CLOUVE COVE

nISTCSRAN

CARD LAKFL

HISTOGRAM LLEMENTS. USF
NEEDEDS RECEIN3E? Tnil 13
CN EACH CARD ARE REUSLRUE i ThE CAN

CARD LASCL

SOVARY CARTS
FI=oT 1€ 37
Fa

fis
ACY |
OoLestL

RIGHT HAMD COSRDINATEL of EAC0H HISTISRAM

ELEMERT FROT™ LUSNEST TG HIGHLTT.
USER INFORMATION CA=G

CARD LABFEL

EAN TINE BETWEEY STORET S

MEAN ETORM DURATION

~EAN STORM DEPTH

USER INFORTATION CASD

CA#L LABEL
REGRESSTON COCFFICIZ T FO- THE [ETL

CINISTIC COGPONERT i Int TErRE-TTU

MODEL (BC-H7)e USC Tad CATD

CARD LABEL

TEMFLFATURF BIAS F2oo TWD STOCHLITIC
CCYPONENT COF TEMPERITUY S
STe DEVIATION FOR TH U700
OF TEMPERATURE

LAG=1 SERIAL CO=CELLATICw COFFFICTICTT

THE STOCHASTIC CUMPONENT OJF TEHEERATU

USEK TNFGRYMATION CATD

CARD LABEL

MINIMUM HOURLY &IND SPLLED

TIME GOF PINIMUM HOURLY ~IND SFEED
MAXT AU HOURLY W&ING TPLED

TINE OF PAXTMUM KOUKLY «IKT SPELD

CAED LABLL
AINIMOM HOURLY STe GEVIATION CF . ING
TIAF GF MINIMUM HOUHLY STe CFVIETION
WINi SPEED
AAX TMUM HOURLY STe DXFEVIATIONY CF WIND
TISNE OF mAXIMU™ HOU LY “Te LLVIATION
AIND SPELD

CARD LABEL

WIND SPEFD SKEwWw COCFEICTE®T

LAG=1 SERIAL CORKELATICY COFFFICIENT
«INTH SPELD

CHL<TIC CO-7»>

Gz

o

i

SRY

F

P
OF

NF



s NeNel

c

C 21
C

C 22
C

(o

C

C

c

c 23
C

c

c

C

C

C 24
C

¢

C

C 25
C

C

C

C 26
C

o 27
C

C

c

C * kK
C

(o 28
c

C

C

C

C

C *k ok
c .
C 29
c

C

o

C

C S0
C

o

C

C

C

C

C

1-10
11-20
21-30
31-40

1-10
11-12

21-30
31-40

1-10
11-70

1-10
11-70

F IR

1-10
11-20
21-30
31-40

FOR KEGRLSSION

1-10
11-58

1-10
11-20
21-30

31-40

10X
F10e0
F10e0
Fld.C

F10.0
I2

F10a.0
Fl0e0

10X
6F10.0

10X
6F10.0

1MOEPENDE

10X
F10.0
F10.0
F10.0

10X
4E12.5

10X
F10.0
F10e3

Fl0.0

USER ITHFURMATION

CARD LAREL

vEAN TRANSFORMED wlnd OTFECTIC:

STe DEVIATION CF TRANSFCIMED wIHD DIRECTTO"
LAG-1 SEIAL COFFLATION CULFFICIENT OF
TRALSFORSES JINO DIKECTION

CARD LAsBcL
NUMEBEER DOF ELEMENTS T TRAMTFORMED WINN
DIRECTIOY HISTOGRAM

OWER BOUND OF HIZTOGOKAY (USUALLY 0.30)
UPPER BOUND OF HISTIOKA™ (JSUALLY 130D

CARD LASBEL
HISTOORA ELEMENT e ULE &S “NANY CANCTY A7
NEEDED

CARD LABEL
RIGHT HA2D COORDINATS OF YACH RISTNITA™
ELEYERT s LOEST T2 HICGKFERT

USER INFCRMATION CARD
DEWPOINT MODEL TYPE

TREGRS Y RESRESTICH MU L
*INDER? INDEPENGENT "ODEL

[T

NT DEWPOINT GENERATION INLY #+#s

CAKD LApTL

MEAN DELPOINT TERFECRATLAE

STe DEVIATION OF DF . EQINT TiWrERATUF
LAG=-1 SERIA&L CORFILATINYG COEFFICIZNT OF
DEWPOINT TIMPCRATURE

DEWPOINT GENERATION ONLY  #aw

CARD LAGEL
REGRESSICN COCFFICIENTS FOR THE DoTE2-
MINISTIC COMPONENT OF DEWPOINTS (30-29)

CARD LABCL

BIAS UOF STOCHASTIC COMPONENT OF LEW2OINT -
STe DEVIATION OF CSTICHARTIC COUp 0T Or
DEWRPDINTS

LAG=1 SECTIAL CORFRLLATICN CBEFFICIENT OF
STOCHASTIC CO“FOLENT OF DESPOINTL
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C...o..l.l..Q..o.o‘oo...-no.o...ono.o.o'.00-000.-00....00..00.0000‘-0..

c
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PROGRA CSCS

CONSTRAINED STOCHASTIC CLIMATE SIMULATICY

PROGRAMMERD UAVIZ Co CURTIS
~ORTHEAST RIVER FORECAST CENTE®
705 SLOGG-FIELD AVEMUE
RLOOYFIZLUe CT 06002-2478

TELEPHONED (203) 244-2520

THE CSCS “ODEL GFAERATES HOUPLY VALUTS 0F PRECTIFITATIONS CLOI
COVERy SHORTSAVE PADIATION s LONOGWAVE RATIATIN e TIUPLEATUF Do
DEWPOInNTe wIaD SPEEO AND WIND OISECTION THe #-20RAG CCLt To
FORTRAN AND HAS SBEEn DEVCLGOPED O A CEC-1C TIMF- HAKE COMFJITTH
SYSTEW STALDARD FORTRAN COLE wAS USED AS ¥Ulh AaS PRSSIeti T
AVGID T0O “ALY PROGLE~S wHEN TRANSFU2RTNS THIL COoPE T0O GTHER
MACHIMES. HOWEVER SCAE "MACHINE JEPFNDENT CoiF T0 INMEVITArLT
SUCH AS2

-= YOPEN® STATLYENTS FOF DATA FILE ACCT'.S

-= % CHARACTER #OINS FIR ALPAANUSE TC DATAE MLNITULATIL
== I®PUT/OUTPUT UNIT HNUruLiS

== RANDOM MUMSL: GENERATITION (SEF SU-RoeLTING LARLY)

DATA INPUT AND INTERNAL COMPUTATIONS HAVE RELN CARRIFD CUT T
ENGLISH UNITSe OATA OUTPUT CAW RE I EQ5LISH TP ~#€T«IC UM ITL. 7:1F
THE METRIC CONVERSION SLCTINM IN THL MAIN PROLRAM) ThL FLOT GUL-
FOUTINE 1S SCALED FOR METRIC OUTPUT.

THE PROGRAM IS CURRENTLY SET UP FOR GENDRATING ANY RNUNMEKIK OF SETC

OF DATA FOR A PAKTICULAR “ONTH. IN OTHE® WO 38e 20 JULYL s &5 AP0 1N T
15 JANUARYS £TCe CAN HE GENERATED. IF TH" 1" 7UT PARAMETLESS

REPRESENT OTHER PFRIONDS SUCH AS SIMONTHLYs SEASTUALLYs E10es THE

DATE CQUNTEKS MUST B ADJUSTED ACCOMDINGLY C(WFE 2'MROUTINY DFTED)
JULIAN DATES ARE USED INTERMALLY. THE PROUGRA™ HAC =yCh FULLLY

TESTED FOR JANUARY ANV3 JULY ONLY.

TG ALL USEKRS: GOCD LUCKYEY

DIMENSTION TITLE(lsed)dse ECOEF(8)y ACOEFL(3)

DIMENSTION CCPUF(30)y CTORLC20)s TTIPDF(C Y TTODCLD)

OIMEMNSTON ORPHF(’0)9JRO&U(3C)

DIMENSION DUWPULFC2D) DwGRDCTD)

DIMCNSION ZEROGCIUY ‘Pu(’%)'“”LU(RQ)

DIMENSION RAWSUMUISH)e XXT(L e%)y “MTANCH)

DIYMENSTION CUVHAT(S 45)e CORMAT(7¢")

DIMENSTION TCOATAC24) s wiATAC24) 9 CLOATAC2G) W _DATACDA) v IDATAC )
DIMENSTION TCTITLCY) DWTITLI(S)Y CLTITLCS) fd3TITLCE) W ITITLC)
DIMENSION TCRHO(Z4) yDPRUHDCZ24) o CLRHO(IA) «winHOCZ4) o 0HG(24)
DIMENSIOY TCHIST(S0) ¢ DPHIZTCS0) o CLATISTOI1) ¢ 2HIST(G40) s wDHIST(D)



[e]

DIMENSTON ASWRS(Z4)9ACLUS(28) 3 ALW S(24) AT FSEZ4) ¢ ATEWS(D4)
DIMINSION AWSFS(24)9AWDRS(24)9ASWHKB(24) 4 ATLDL(Z4) gALWRE(24)
DIMENSION ATHMPR(24)9ANEWR(24)4AWSP3(24) 4 AW0T2(04)

DIMENSION ASHSSG(26) ¢ ACLDST(24)9ALURSGCP4) yAT AT 55(26)«2DE VS (74)
DIMENSION ASWHRST(24)¢ACLOSDA(26) 981w RSLCIA) yATAPLI(24) 9 ALE . D7 4)
DIMFNSION AWSPSQ(24) «AWDRSN(24)

DIMENSTION AaSPSR(24) 6 ALIRSD(24)

OIMENSTION DEP(24)e PTEXTU16)

DOUBLE PRECISION WRITEFs BUGCTFFe OUTPUTe TZOhEw TZC4)s DEBUGLT)
OOUBLE PRECISION DAFILEs RADTYPy PMFILE

REAL KBARs Lidse MEAN
REAL [0e Ile I2¢ 136 l4s 159 16y 17
REAL LAT(3)s LING(R)

INTEGER TCHISTs DPHISTy CLHISTe ¢ SHIST, <UHITT
INTEGER TCHDIMy DPHDIMy CLHDI e WOHDIV, vOrDIN

EQUIVALENCE (ZEROC1) 9I0) e (ZERD2(2) el 1) e (7050 (2)aI2) e (7ERDC4) eI R),
$ CZERTES) 01929 (2IRD(6IaIC) o (L 7T oI ) o (201N )0l

CCA%0N /TITLESYZ TITLE

COMYON /FILES/ WRITEZFe ONTPUTY wUGIFF

COMMON ZDATES/  IYSeIMIGTiAYy LYRSLMDeLAY

COMMON ZLOCATE/ LATs LONGs TZ20GHE

COMiPON /7DBUG/ N 'Ge DEBYUG

COM™ON /CLOUDS/ CCBARCCSUSCCRHD9UTTAWRA Y

COvYON ZATMOS/ EY

COYMOY /PDFCLT/ MUMCCoCCPOF«CCHRNGCCASCC

COMAON ZRAINS/ TunAde TIHALs DHAN

COMMON /TEMPAR/ TOODIASe TODSUEVe TOURHD LCItF, TESLAL

COMMOY /POFTEX/ NINTTe TTeDFe TTiP3s TThe TT:

COMAON ZWINLSP/ SPEAR1¢SPRAR2¢SPBTL o SPETR2y3PSIIVIeSFSLVI s

$ . SPSOT1eSPSDT23y 5P SKEW e SFRHU

COMMON ZUWINDIF/ CXRARGUDRGEV4DHAHO

COMMON /PDFODIR/ NUNDRGDRPDOF sDRORU$DRASD?H

COMMON /DEWONE/ TYPEs ACOEF

COMMON /NDEWTWG/ Duw2ARSOWSDEVeOWSKEW gD UWRHY

COMNON /DEWDVS/ DJBIASy D<OEVSs DALRHO

COMMDON /0+DBITZ PHIGWTHETASGTHETALWEDET o4

COMMON /SUN/ DELTAe DTSLs SKeSS

COMMON /JUATES/ JULDATs JULRZL W JZESINs JULE e JFAN GOy wYLIUY?
. s JSTARTy JUSTUPy  JRENDe JYUBRK

COMNMON ./T0/ INe IS 1B

COMMON /RAINIZ IT.eITE

COMY.ON /SEED/ ISEED

covmaN /CLDCAVZ CCLAGI

COMMON /3EAS/ “ NIEAS

COMAON /RIYPL/ RADTYP

COMMON /STCRMS/ STURM
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COMMON /INTEG/ 1041141241341 441Te16&017
COMMON /LINES/ NLINES

COMMON /VAPIRP/ VP

COMNMON /PUNLCHLU/ PTEXTePNFILT 4 1PUMCH

DATA TZ/8BHEASTERN #3HCENTRAL o+ 8HVMOULTATH ¢ B8HPACIFIC /
DATA TCTITL /2dHOGJFLe 5HY TZse SHPIRAT, O A ¢ OH

DATA DVTITL /9HHUURLy SHY OFfWe S5HPOINT br « OF

DATA CLTITL /5HHOUSLs SHY CLOy 5:HUD COe S=VER e GH

DATA WSTITL /5HHOURLs ZHY WINe S5HO SPEe HRHIQ s SH

DATA wDTITL /SHHOJUSLe S5HY WINs SHD DIRs SHECTIN,y SiN
DATA Oiv /2HON/s OFF /3HOFF /

NN N NN

QUTPUT VARIAGLE DEFINITION

VARTIABLE DIMENSION DESC-TFTION
SWR LY/HPR SHORTWAVE RADIATIO.
w LY/HR LONGWAVE RADIATION
wDIR DEGRELS WIND DIRZCTION
cekb === CLOUD COVER

saxars  [FAGLISH URNITS ssdxaw

RATN In/HR PLECIPITAIGH
woP MI/HR WIND SHEED
TOWP. DEG F TEMOERATURE
OF DEG F DEWPOINT

SRR R "t IR 1IC UNITS kR AN

RAINM MU /HR PRECIPITAID
WSPM M/S WIND SPEED
TEMPM OLG C TEMPERATURE
DEJM 0EG C DELPUINT

CALL INTERACTIVE INPUT SUEROUTINE TO GET UNTIT NU“EER AND
DATA FILE INFORMATICGN NEEDED TO BLGIW OPERATION

sEeNeNeErNEsNeNoNeNeNeoNeNasEasNosNoNoNesNeNeoNaoNaoRaNe NeNale Ne Ne e e

CALL INTER (DAFILL+IS«DPLOTWIPL)
CALL START (ISEED)

CSTABLISH THE INPUT DATE FILE UNIT HUMBER AnE OFIN FILE FOR nFAD

sNeEsEnlaNeNy!

IN = 21
OPEl (UNTIT=INGDEVICE="0DSK* 9 ACCES = SE I Yo FILE=DAFILE)



IF (IPUNCH JLE. 0) GO3 TQ 108
OPEN (UNIT=1PUNCHDEVICE='DSKY sACCESS="SEGUUT *oFILE=FAFILE)

WRITE (IPUNCHeH”0) FTEXT
50 FORMAT (1:A5)

100 CONTINJE
IU = ¢6

OPEN (UNIT=IUsDEVICE=Z"DOSKYgACCLSS=YSTUCUT «FILEZOUTFUT)

P R R it gibve- i giiudipinfievaliper e uniesiieativn g gPuuiius g fi-saibrt g g guiheugibosenflunueindiodivulie\Songaiag

READ INWPUT DATA FILE

CALL READF (IfeISelB)

e e Ne]

CONVERY LATITUDE AnD LOMSTTULE DEGREFSIMINUTLwISLCONDS TC
THLIR DLCIMAL EQUIVALENTS.

PHI = DrSC(LAT)
THETAL = DRUS(LONG)

CHECK IF VALIOD TIvE ZONL HAS BLEMN RTGUESTED

IF (TZONFE.NELTZ2(1)) GG TO 20U
THETAS = 7540*2.0%35.,1415%/360.0
GO TO 300

200 IF (TZONELME.TZ(2)) 6o TO 210
THETAS = 60e042e0%341415%/360.
60 TQ 300

210 IF (TZONES.NE.TZ(3)) GO 10 220
THETAS = 1050%2.0*3.1415%/360.0
GG To 300

220 IF (TZONESANESTZ(4)) GG TO 230

THETAS = 120.0#%2.0*3.14159/726040
GG T0 300

230 WRITE (ISe240)
240 FORMAT (1H1.*TIME ZQNE RELUESTED IS NOT VALIDYZ///)

WRITE (1S+4250) T2O0NE«(TZCI)eI=144)

250 FORMAT (1HOsT1O0s*REQUESTED TIME ZONEYeTIGenH**4 a4y
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200 CONTINUE

INITIALIZE DATE COUMTFERS
CALL DATE]
INITIALIZE RAINFALL MODEL PAXAMLTERS

CALL RAINST (T3eTReDeJSINCEWSTOREGJUHRIEGS$JiIINTXT)

P T T T T s T T o T T i e e

VARTARLE INITIALIZATION SECTION
STATISTICAL VARIASLES

NDC
NDATA
NRDATA
TCSUu“
DuWSUM
CLSUM
WSSUX
WDSUM
TRSUH4
TBSUM
DHSUA
DRY
STORMS
TCS~SG
DWSSQ
CLS™SG
dSSMSu
WOoS~¥Sa
TTSUAD
DWsSuU143
CLSUMS
SPSu4l
WoSuM3

0
0

1ion
!

|

DI TR

Qo000 0

OO0 OCOODOODOOOL® 6 6 0 o

e w1 bbb

® 0 st s ODOODODODODOOM

cOoOCcCooOoOO00CoLoOoOO0 o

Hon i o ooy oo

e o 9 & 9 e

DO 375 TA = 1424
TCRHOCIA) = 0.0



375

270

271

272

273

274

NPRHOCTIA)
CLRACCIA)
WSRHOC(IA)
yDRHO(IA)
ASJRS(IA)
ASJRSQACIA)D
ACLDS(1IR)
ACLDSW(CIA)
ALAT3CTA)
ALARSw(1A)
ATSPS(TIA)
ATHPSS(IA)
AEWS(TA)
ADEWSI(TIA)
A#SPS(IA)
Aw3PSe(IA)
AWDRS(IA)
AYIRSL(IA)

Hu nu

CONTINUE
HISTOGRAM

TCHOIN
OPHOIN
CLHOIM
WSHOIH
WOHOTIA
TCODT
OPDT
CLOT
wSOT
wDDT
TCBASE
DPBASE
CLBASE
WSBASE
SU"SW
SUMLW
wDBAST
00 270
TCHIST(I
DO 271 1
ODPHIST(]

Lo B L L O L L ¥ 1 O L T O T RO Y I ¥ BT

DO 272 1

CLHISTC(I
006 273 1
WSHIST(I
Do 274 1
WOHIST (1
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*
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[ B R ap ]
¢ o 0
(e ab B anj
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ODOMO OO O
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VARTAGLES

20
50
11
40
G
e
2e
Oe

¢
0
10

1.0

20

«0

=-30.0
-5000‘

00
30
0o
00
) =
) =

) =
) =

) =

05
'0
]
o0
]
1,
0
j
0
le
0
1.
0
1y
0

MISCELLANEOQUS

TRACE =
NLINES =
I0Y = 1

TCHDIM
DPHOIM
CLHD I
E¥SHOTH

WOHDI™

VARTAGBLES

266
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MLAG = C4
JHOUR = 0
NSEAS = 1
NMAX =

RADTYP TCLOUDYSKY?
EP = -1.00

BETA = GAM

£ET = J.00

W = 200

4

IF (TRACE »EQe. ON) WRITE (1545300
9000 FORMAT (* M1')

c
C::::::::::::::::Z::::Z::::::::::::::::::::::::::::::Z:::::::::::::;:::
C::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::.‘Z:::
c
€ SET UP VARIASLE %EAN AND STA“DARD DEVIATINYN AFPAYS FOR
C  WIND SPEED.
C
ST = 040
C
DO 330 IV = 1424
-
CALL VARYX (SPBAR1¢SPEARZ+SPET143PBT245T 4 R (1V))
CALL VARYX (SP30V14SPSDVZ2eSP3DT1e0PLIT I eS3TaSHELCIN))
ST = ST + 1.0
c
$30 COMTINUL
c
c
c:::::::::::::::::::::::::::::::::::::::::::::::::Z::::::: TTZ=ZIzzZzzZzZzZ=zZ
C::::::::::::::::2::::::::::::::::::Z::::::::::::::::::Z:::::::::::::::
c
c
C BEGIN CYCLES FOR DATA GEHERATION
c
€ THE %400% LOOP REPRESENTS THE DAY CYCLF
o
400 CONTINUE
C
C
c UPDATE ORBIT PARAMETERS
c
CALL DECL (JULRELDELTAySR4SS)
c

DISL = EP*(THETAS-THETAL)*3.81972

STARTING VALUE SELECTION

sNelsEnEsEsEeNeNel

FOR THE FIRST TIME PERIOD OF EACH MONTH,
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C GFET INITIAL VALWYFE Fo& THE VASICUS NCQISE TERM: 2Y SFLECTING A
C RANDOM VARIATE FROM THE APPRCPKIATE PDF.
C
IF (IDAY oGTe 1) G TCO 210
IF (JHOURWGTe 0) 5O TO 310
C
C GET CLJJD COVER STARTING VALUE
C
CCLAGY1 = ARVA (CCPUFoNUNCCoCCASCCeCCURD 9 TAS)
c
CALL NORMAL (VX))
TTLAGYI = TOSDEV=*VY
C
C GET WIND 3SPEED STARTING VALUE
C
CALL MARGAM (NUMTT o TTP F o TTORZCaTTAeTT e SPRARZSPSOEVe Lol
3 SPEKEAN90e0sSPLAGL s wNOISE)
o
C GET WIND DIRECTICN STARTING VALUE
C
DRLAG1 = ARVA (DRPOFoNUMDE ¢sDRA SR Y4 DP IR 19 TCAY)
¢
C GET DEWPOINT STARTINu VALUE
C
IF (TYPE +EGe *REGXS®)Y GO TO 350
CALL MARGAM (WUMTT oTTPDFgTTORD 9T TA T T i)W AR TwSTEVelaloy
3 DNSEEWs0a0eDWLAGLIZD'OISKE)
GO T0 355
350 CONTINUL
C
CALL NORMAL (DuWX)
DWLAG] = 0.8%9*DWBAR + DWX*DWSULV
C
CALL NORMAL(DWX)
DWDLAG = DWEBIAS + DUXaD4DLV
C
355 CONTINUE
C
C .
C COMPUTE INITIAL TLHYPERATURE AND CONSTRATN DEAPOIRT IF LECESSARY
e .
TPR = TEMBAR + TTLAG1
IF (DJLAG] oGEe TPR) DWwLADSY = DeSS+TFPR
C

IF (TRACE +EQe ON) WRITE (IS47001)
9601 FORMAT (* M2%)
C
310 CONTINUFE

o
C ESTABLISH THE LAG-1 TEMPERATURES FOR THE TEMPEIRATURE AND LONG
C WAVE RADIATION MODELS.
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C

TE¥F1 = TPFR

THPLAG = TPX
c
C COMPJUTE TODAY®S COEFFICIENTS FCR TAE TELYPERATURE "20LL.
C

CALL TEMPX (DILTAs PHIs BCOELFy TOF,

1 CO0e Cle CP¢ C39 Cle CZe Cx)

~
C INITIALTIZE THE INTEGRATICON VARTABLES FOR THE TERRFFARATURE MODI LN
C (SCE THE ESUIVALENCT STATEMENT AT THE EBEGCINGINCG 2F ThHE FROFSAM)
c

DO 320 X = 1410

ZERG(K) = 0eC0

320 CONTINUL
c
C
(Z-=z==-=-s=Z===Z=Z-Z-zZsoZCosCIIZs-CTIoISISEISTIoTISSSSSSOSISSSIZCSIZITEZSCCoIZIIz
===z =<==zZ-zZzZZSZ=-=ZSZZZ-CSZSC-C-ZCIZSZZSSSXSISISZSISSTISTSISCZZICoSSSIIZIZCTSISSSIoCoC
C
c
C THL *500¢ LOOP REPRESENTS THE #OUIc SY HOU: DATA CUNF¥ATION
o
: 5T1 = 0.0

C
C

DO 500 1 = 0423
C .

IF (TRACE «tQe 0NY JRITE (I5,9002)
9002 FORMAT (* M3%)

le}

C
JP = I + 1
ST2 = FLOAT (1)
Cc
[t e e e Y PR S
(3t P L F TR S F I T P T P S N S R S s P S R
C
C RATHFALL SECTION
C .
CALL PCPN (TBeTReGeSTORFeJHOUK s JHREIS s JHNTXT o JoINCE 4 RATN)
TSIHCE = FLOAT(JSINCE)
C

IF (TRACE +£Qe ON) WPITF (IS49002%)
G003 FORBAT (' Ma')

C
C
e
C
C SHORTWAVE RADIATION SECTION
C
CALL SOLRAD (UULFELeGT14ST24TSTNCE ¢ TEaHMAY«CCAZCCH4CCHDF 7 UCC
3 CCORDySWReCLDGETAsGAMSCCBARSCC U CC/HOSSEALON)
C

1F (TRACE .FQe ON) WRITE (I1549C04)



9604 FOR™AT (v v5¢)

c
[ L I R A s F e R R S R R P L S R 1 S -
C:::;::::::::::::::::::::::::::::::Z::::::::::::::::T:Z::::::::l:::::::
c
C WIND SPEED SECTION
C

SPRBAR = SPH(JF)

SPSDEV = SPSD(JUP)
C

CALL MARGAN (NUMTTeTTPUFsTTORUSTTASTTRBaSPLEARCSHSDEVSSFRHD

3 SPSKEWeSPLAGCLeWwSP 9 iNJIISE)

C

IF (WSP eLTe 0e0) wSP = 0.0

SPLAGY1 = SP
C

IF (TRACE «£Qe ON) WRITE (15499009)
9CUs FGRYAT (* MgV)

SIND UDIRECTINN SECTION

CALL MARKOV (NUMDR 9DRPDF o tiRORI ¢ DR AW DRTg DR ARG DIV WL PF 1y
% DRLAG1y14%DI0)
505 CONTINUE

510 TF (WDIR «GTs. 180e0) 4DIR = 35040 =~ wlI®
IF (WOTR «GTe 1/0406) GO TC 510

520 IF (JDIR «LTe 0.3) WDIR = ABL(UDIR)
IF (WdDIR oL Te 0.0) GO T0O 520
DRLAG1 = WDIR

IF (TRACE .EGa ON) WRITE (1S49U0F)
3006 FORMAT (* M7°%)

C
(=Z========S==2=ZZ=-==S=-=-S=S-SZSSICSZIZISSSIETSSoSICSCoTICTSToSZSDTTooSoTTToCS
=Sz ===ZC-Z=zZ=Z=ZZZSS-Zs=ZSIZZISSIZZSSSSISIZSSSISCSToSTSSISTIIISCoSISISSosDIoz
C
C TEMPERATURE SECTICN
o
C COMPUTF THE SHORTWAVE RADIATION ATTENUATICN LUVE T3 CLOUD COVET.
C
KBAR = 1400 = Ce65+CLD*CLC
C
C COMPUTS HOURLY TECMPERATURES
C
C
CALL TLUNPSH (ST2¢0TSLeSReSEWLCOEF,
% CO0sC1aC29C29CasCO¢CSw Tt Ly KIEERWCTOY
$ WSPoWDIRGT PLAGYTHTST)

n e Nel

NOTE THAT TEMP1 AND TMPLAG AXE DIFFERENT VARLIBLYG!Y THELAS
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DOES
IN THE
COMPANENT.

I3 RCGUIRED

NOT HAVE THE DEVIATIONS TE
*REGRESSIONY PORTION OF
TEMPY IS USZ) «HEN

TMPLAG
TPR

THT
THPLAG

ADD THE RANDOX CUMPOSENT TO THE

CALL NOIMAL (AKV)

TD3IAS + TORHO*(TTLAG
ARV*TDSDEVASQART(1.00

TOEYV
$

TTLAG
TEMP

TOEV

1
= THT + TDEV

T

IF (TRACE
9007 FORMAT (¢

eE3e
ME)

ON) WRITL (IS

DEVPOINT TEMPLRATURE SECTIOM

66 T
T

*ROGRS )

*INDERPY) GO

1F
IF

(TYPE
(TYPE

eEGQ
«LQ3.

TYPE
*INVALID

ARITE
FORMAT

(1S«80)
(/71X

19

8C

STOP

560 CONTINUE
CALL DEWSIM C(ACOTF ¢DWLAGLSTL
ADD DEVIATIONS TG GFNERATED DEw
CALL NORMAL (ARV)

ODEWDC YV ODWBIAS « DWODRHO*=(DW
3 APY*DULFVASGRT(1L0

N
3

ACOZD IN AL IS USED gAMLY
TEVMPERATURY CGENERATION
ACTUAL LAT-1 TEATIZFATURE

RE
THE
THE

TENFERATURT JUST COPUTED.

1

TUBIAY) +
TCRHO=TORHO)

vy©307)

0
3

L6 0
=70

EWPOINT HMOULL TY L eeoe®eAT)

2R E R R NEANFEREEEE SRR R EEEEEESEES]

REGRTSSION DEWFCOIRTS

IZEEREREENERENEEEEEEEEENESENEER]

* Kk & *k k&

M aCLU s dD I w el

POINTS

ODLAG
0

DWETIAS)Y +
UwDRHOADWIHEHO )
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DwDL = DWDLAG
DWCLAG = DEWOEV
DEW = DEWR + CLWDEV

C
IF (2EW oCEe TEMF)Y DLW = Deb4iFaTi:-pP
DJL = DWLAGL + D4#0L
DwlLAGI = UEWR
C
GC TO 580
C
570 CONTINUE
C
C P Y s R R T
c v INUDEPELDENT DELJPOINTS »x
c Y L L
C
c
CALL NOKMAL (Q2wX)
OWL = DYWLAGIL
DEW = DWBAR + DWRHO*(DWLAGLI=-DWEAR) + DX elwalivaSapT(le=Ue-=la+1)
D¥LAG1 = DEwW
C
IF (DEax oGEe TEMP) DF s = (e29rTLwu?P
C
58C CoONTINUL
¢

IF (TXACE oEQe ON) WRITE (ISe900%9)
YG05 FORNMAT (v v1e)

C
C LONGWAVE RADIATIOCN SECTION
C
CALL LONGWV (TEMP19TEMP9OLWesDWLeCCLAGIWCLL vLw)

TEMP1 = TEYP

IF (TRACE «E£Qe ON) WKITE (IS490608)
9008 FORMAY (* M10°%)

C

c

C

C

C METRIC CONVERSION SECTION

c
TEMPM = (TEMP = 22.00)%(5.00/7.C0)
DEWY = (DEW = Z2.00)*(5.00/9.00)
WSPM = JEPx(,447C0
RAINM = RAIN*2%5.4

STGRE OATA IN THE HOURLY ARRAYS FOR AUTOCORRELATION ANALYSIS

[aNeNe]



OO0 0OO00 e NeNe] o e NeNe N aEsNeoNasNeNaNe e [ DOOO0ON

]

CLCATA(UP)
WSDATA(UP)
WDDATA (UP)
DWDATA (UP)
TCDATA(YP)

COMPUTE DFE PO

DEP(JP)Y =

[E I LI F I 1
[
Y (O
—
T

INT CEPTLSSION AND QUTPRUT FOx LATER ANVALYSIU

(TEMPMN - DEWM)*uwSPM

IF ( JP «ZGe 24 ) ARITE (1Us582) DEP
582 FORMAT (15F5e1/8F341)

QUTPUT DATA FOR LANL 3UKFACe MGDEL

IFCIPUNCHGT#C)CALL PUNCH (IPUNCHy RAINeVPe W8Py Sure Lwy T70870)

GO T0 506

NEBUG STATEME

NT

WRITE (ISe600)JHOURGUHNEXT ol oRAIN"QCLD el W 0l bl Mg dSIRGTEMP™ gLy L0

600 FORMAT (1H
$ 2X
506 CONTINUE

DATA PLOT SEC
IF (DPLOT

PLOTL = =2
IF (IMD.GE

2109 aXeI0e3X9I293X 9 F5e293XaF b el a2 9Fhala?XyFhedy
eF5e0e2X9F5e042X0F5:142XeF440)

TIOHN

NEs *Y®) 50 TO 507

0.
o4 oANDe IY0e.LES10) PLOTL = Co

PLOTU = PLOTL + 40.

CALL PLOT

(IMO s TICY o IHeEDe TENMPH 4D WMeSWR ol as CLUOSRAIRM ¢y WEPM o dUTR
STORMyIPLePLOTLSFPLOTU)
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IF (TRACE ofGe 0N WRITE (IS99 ul)
9710 FORMAT (% M11v)

c
(=ZZ==Z=TZC=SCSSCSSTS=SC2Z-ZSCSSSSIITSISNISSSIRISSTISXSSSTTISIISSSISSCIISIoC
(Z=sz==z==-======Z==2=Z==ZST=-=-ZT=Z=ZZSC=ZZZZZSSTTSTSTITTTSSSISSZZIISSISTIZzszoo=
c
507 CONTINUE

c

IFCI «C5e 23) 1IDY = i0Y + 1

IF (IDY «GTe31) Iy = 1
c

JHOUR = JHOUR + 1
3T1 = ST2
NDATA = NDATA + 1

C
C UPDATE THE STATISTICAL AMALYZIS
c
CALL MSTAT (1leTEMPHoDEWMeCLU W WEPM g WDIFP e ASLUY 9 XXT)

IF (TRACE +EQe CN) WRITL (ISe5020)
2020 FORMAT (v 11A°*)

poeiieeiivogipuaiifooqiuniontibanledeoegion i funiiglyagiongihs i giagibunfrodiasungihefaiihedmgadadibvi ool ihodi g g ool ouliborsfuegionpiodedien oo

il oo s o ool eornconien e o el fonileiourgor e s g ool Qadilo gibruciibun g dieioo g niihag

C
C
C
C
C
[of UPDATE AUTOCORRELATION AYNALY:IS
c .
C THE FIRST 24 HOURS OF THE MOWNTH ARE NEEDECD T2 FILL UF ThE DATA
C ARRAYS TO BEGIN THE AUTOCORRELATIAN ANALYSIS.
C

IF (JHOUR +LEe 24) GO TO 550

NRDATA = MNROATA + 1

CALL RAWLAG(MLAGyJPyTCDATA9TCSUMsTCSMS e TC UL GTCaTCVaToN o niFiaTa,
< TCRHG)
CALL RAWLAG(MLAG ¢JP ¢DWDATA ¢DWSUMsOWSUS T e 0w iU 7 olPL o TF Ve« ot RITATA
3$ DPRHO) '
CALL RANLAG(MLAGeyJPeCLOATASCLSUMICLSMS T« CLUNS4CLBsCLYsCLR o FUATA,
$ . CLRHO)
CALL RAWLAG(MLAGsJ s WSDATAyWSSUMs WSSMSA el SU3eWSTewSVedSKeNRLATA
$ WSRHO)
CALL RAWLAG(MLAGsJPyWDDATA ywDSUMsWDSMSUeWISUML WD oWV e WDK ¢ LFT AT A,
s WDRHO)

IF (TRACE «EQe ON) WRITE (1S49021)
9021 FORAAT (% 118B")

550 CONTINUE
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COMPUTE MEIAN AND STARNDARD DEVIATIGHS FOF EACH HMe OF TRE DAY,
SKEWS ARL NOT COMPUTID.

IF ¢ I «EGe 0 ) KDC = MOC + 1

CALL STAT (SaheASdrSEJPIGASVRSOG(UIP)Y ¢ 2722980 HLAOUF) g ASLESNCIF D

$ -999%. Uy NOT)

CALL STAT (CLDeACLDSUUP) ¢ACLOSO(UP) 9229 ACLOSCUPY W ACLDED(UR)
$ =959.0+%0C)

CALL STAT (WSFMgAWSPS(UP) ¢ AWSPIG(UD) 92200378 CUP)GALEFSTCIP )
$ ~399. 04 NDOCY

CALL STAT(WDIRWAWUAS(JIP)I yALDORSGIIP) 9222 ¢ A BABCUP) ¢ AGDISDCIR )«
$ =393.0¢ 5CC)

CALL STATITEMPY AT PS(UP) ¢sATHPSQ(UP) 92274 ATHPELIP) yATHFSDCOUF) »
$ =333.04N0C)

CALL STAT (DEWMeADEASCUIP) ¢ ADNEASIC(IP) 9222 ¢ ANERTLAIT) $ADEVSDUUFP ),
% ~399.04N0C)

CALL STAT ( LWeALUKSCUP)ALWRSU(UP) 9ZZZ ¢ ALNRTICUP) «ALWFED(UP Y,
3 -9‘)9.0a~f‘a!)C)

. IF (TRACE «EQe ON) 4RITE (1542022)
9022 FORMAT (* 11C*)

C

o

UPDATE RATINFALL STATISTICS

CALL RSTAT (TRSUMsTBSUMeDHSUMyTRSEAR ¢ TELOA N ¢ DHEAR ¢RATRY ¢ CTOARM
3 DRYs STORNM)

IF (TRACE CQe ON) JRITE (1549023)

9023 FORMAT (* 110"

UPDATE THE HISTOGRAKS

CALL HGRAM (TCHISTsTCHUIMeTENMP4TCDToTCLASD)
CALL HGRAM (DPHISTsOPHDIMyOELMaDPDT P HATE)
CALL HGIAM (CLHIST¢CLHDIMWCLT sCLUTSILELSF)
CALL HGRAM (wSHIST s SHDIMyWEP e wWSDT 4 aSRAST
CALL HGOGRAM (JdURIST4wDHOIM WD IReWwODTeaDBALED

1F (TRACE «£0. ON) WHITL (1549011)

9011 FORMAT (v nmi12v)

S00 CONTINUL



c .
IF (JULREL oLTe JREND) GO TO 370
¢
C RESET MONTHLY COUNTEXS
C
JHOUR = 0
c
C
C RESTART STOR™ SEGUENCE
[%
CALL RAINOST (THeTreDeJdSINCESSTORMyUJHRIOS UHNEXT)
C
390 CONTINUE
C
C  UPDATE THE DAY COUNTERS
C
CALL DATE™
c
C CHECK FOR END CF PRUN
C

IF (TRACE «EQe ON) WRITF (ISe9012)
9012 FORMAT (* M13°*)

1F CJULDAT JLFe JULEND) GG TO 400D

c
C CALL THE FINAL STATISTICAL ANALYSIS SUBROUTINY
c

CALL FSTAT (5+FAWSUMeXXTeMEANSCOVAAT ¢CORPATSIDATA)

(.

C CALL THE AUTOCORRKICLATION SUPROUTINE

C .
CALL AUTOCO (ALAGYTCRHOsTCByTCVy i ixDATALTCTITL)
CALL AUTOCC (MLAGyOFRHO4DPRGDPVINRDATALDRTITL)
CALL AUTOCCO (FLAGSCLRHOSsCLBWCLVy' IPDATASCLTITL)
CALL AUTOCO (MLAGIWSRHOeWSBe WSV ADATAWUWSTITL?
CALL AUTOCO (NMLAGyawDEHOeWDB oW VeNIDATAGLDTITL)

o

IF (TRACE +EGe ON) WRITE (ISsS013)
9013 FORMYAT (* Ml47)
C

OUTPUT RESULTS

OO0 ON



e}
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WRITEC(ISeT1D) (MEANCI)9I=1e™)
715 FORMATCLIHY////T2Bs *MEAY VALUESY/ T *TCoARY 2 T2l UWwh AR,
$ T354"CLBARY4TUS 3 WSBARYgTOT s *wDEARY /1 e2F1242/)

WRITE(ISeT72C) ((COVMAT(I9J)ed=1e5)91=19%)
720 FUR"MAT(1X9T249*COVARTIANCE MATRIXT 9/ (5(1IXe"F1242/)))

WRITC(ISe740) ((CONMAT(IeU)ed=1452eI=142)
740 FORMAT(1IX9T244%COXRELATION MATRIX* 4/ (5(1XensF12.2/)))

YRITE (1Se74%) TCKeDPKeCLKeWSKedDX
745 FORMAT (/T25¢%SKE~ COEFFICIENTOY /TR PTCOKE 9T 200 0L oKL W aT32,
$ YCLSKEW?aT44 4 WSSKEW T 9TO0y twlSKEL*/1X45F1042)

WRITE (ISe747) TRE3ARe TRSBAR. DHUAR
747 FORMAT (//7/77T2Cs*RAINFALL QUTPUT STATISTICS //
$ TOoUe TR Y 4T3 at T g Tl 4?5/ /T229F 524131 et RelgT2TaF a0/ /T)

PRINT HISTOGRAMS OF THE GENERATED DATA

CALL PRINTH (TCHISToTCHDIM9TCDTeTC3ASEGTCTITL 9 iDATA)
CALE PHINTH (UPHIZT@DPHUIVeUPDTeCP3ASL s UTITL DATAY
CALL PPINTH (CLHIGTCLAUIoCLOTSCLBASESCLITITLaLIATA)
CALL PRINTH (wSHISTowSHOUI N g WSO TewSBASE«wSTITLWWIATAR)
CALL PRINTH (YWDHISTewDhOTAeuDOTeWI3ASE«wOTITLA3ATA)

CONVERT VARIANCES TO STANDARD DEVIATIONS.
DO BO0 1G = 1424

SGRT(ASWRSD(1GY)
SGRTICACLULSU(IG)Y)
SGRTCAWSPSO(1IG)Y)
SARTCANDRSDOTIG))
CGRTCATHPSDCIGH)
SGRTICADE A450C16))
SARTCALWRSI(IG))

ASWRSD(IG)
ACLDSD(1G)
AWSPSD(IG)
AWORSD(IG?
ATHPSOC(1G)
ADEWSUD(IG)
ALWRSD (IG6)

Wt v noun

200 CONTINUE
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C
C COMPUTEL TOTAL ODAILY &HHOKT AND LONGWAVE RADIATION
o
DO 810 IG = 1424
C .
SUMSW = SUNMSW + ASWRG(OIR)
SUMLWA = SUMLW + ALWRG(IG)
C

210 CONTIGUE

PRINT HOURLY MEANS AND STANDARD DEVIATIONS.

CALL HOUR (ASWJRB4ASHRSDe*SWRT)

WRITE (1Se811) SUMSYW
811 FORMAT (T239*TOTAL=®eT37eF7e2)

CALL HOUR (ALWRBeALWURSDLYLYRY)
WRITE (1Se811) SuUMLw

CALL HOUR (ACLDBSACLCSOD«*CLO")

CALL HOUR (AWSPRGAWSFIIe*uSFY)

CALL AJUR (AWURBAWDRED 4Dt

CALL HOUR (AT"PDBSATMPSDy *TMFY)

CALL HUUR (ADEWRBWADEWSOs*UENT)

IF (TRACE +EQe ON) WRITE (ISs490U14)
9014 FORMAT (v M1S%Y)

C
WRITEC (IS+760)
750 FOR“AT (1H1415(15(5H Y/))
sSTOP
END
c
c....‘..'...'.'l."...‘...'...‘.‘....l.........l................'...."
C
SUBROUTINE VARYX (X1sX2eTleT2y5TeX)
c
C ROUTINC TO LIMCARLY INTECRPOLATE A VALUE QF X
c
RANGE1l = T2 - T1
RANGE2 = 24.0 = RANGE1
C
IF (ST «GTe T1) GO TO 100
X = X2 = (X2 = X1)*((24¢0 = T2 + GT)/RAGLI)
RETURN
C
100 IF (ST 6T« T2) GO TO 2060
X = X1 + (X2 = X1)*C0(ST = T1)/RALGEL)
RETURH
C

200 CONTINUE
X = X2 = (X2 = X1)*x((ST - T2)/«ANGE2)
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1c U1 =
IF «
vz =
X =

RELTU
EnD

G O 6 5 0 000900 05 ST OO PO PPTOCL IR IBEOE S0 0PSRN OO OPTONLe IR RESOSOSOee

SUBK

RCUTINE
T«0 MET

1
10

3
£s -
co-C
K

DouUs

BATA
DATA
DATA
DATA
DATA
DATA

COMPUTL

R =

CoOYPUT

Mm>x > x x

[}

[ LR T 1 I 1

COMPUTL

£ =

RAD(G)
Ul «LTe 0.00001) C 7O 10

RANDCO)
SUGRT (=2, U*ALOGCULI)I* (05 (£.23313+00)
R

DUTINEC VAPOR (T4TDWE«ES)

T2 CONPUTE ATHQSPHERIC VAPIR PRESSURE

ER TEAPEIRATURE ANU DEWPCINTe

ees TEMPERATJUPE - OEG C
ees LEWPIINT TEFPERATURE - DEG C
see VAPOR PRLSSURDT = MILLIBAR

ese LATUXKATLL VAPCK PRESSURE - MILLT:
Seee COEFFICIE.TS [x UATe VAPCR PAL"4e.

eee RELATIVE HUMIDITY

LE PRLCISION CO0sC1eC29C29C4elH

C0/6.0689226 /
Cl1/4.4356212¢-01/
C2/14590816E-032/
C3/2.76155547-04/
C4/2699525%0E 06/
C5/71.4398885E-08/

RELATIVE HUMIDITY

GIVE™N

.y

Ar Pt Oxa

(€112, = 01T + TDI/(1124 + 0e9x1))xn2,0

£ SATURATION VAPOR FRESSURL
C4 + T=xCH
C3 + T#*X
C2 + T*X
Cl1 + T#*X
COoO + T=X

ATMOSPHEZIC VAPOR PREISUURE

R*ES
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RETURN
END

SUBROUTINEL INTER (DAFTLT«ISeNPLOTSIPL)

ROUTINL TO READ THE NECCESSARY RUSTINE IRFCRIATIN:. FROM™

CONSOLLC
ODIMENSION PTEXT(10)

CoMnvoN /SEED/S  ISEED
COMMON /PUNCHD/ PTICXTy PNFILEs IPUNCH

DOUGLE PRECISION ODAFILEs PNFILE

SET THE CONSOLC UNIT HUYEEIR FOR THIS YACHI :f.
IC = 5
DAFILE = *DCC~0DenAT?
WRITE (IC+90) DAFILE
Gl FORZAT (//71Xe*THE CURRINT DATA FILZ TS teil0/
% IXe*D0 YOU wloH TO KCAD A DIFFE-~ENT S0 (Y/1)%)
READ (ICe110) ANS
IF (ANS oMNEe *Y®) GO TO 115

JRITE (I1Ce100)

THL

100 FORMAT (//1Xe* HAT DATA FILLC CONTAINS TVHE INFUT DATA?2Y/

$ 1Xs?® ENTER FILE NAME IN THE FoOkM XXKXY ¥ aYYY ¢)

REAU (ICs110) UAFILE
113 FORMAT (A)

119 CONTINUE

WRITE (ICs120)

120 FOKMAT (/1X%Xe'0C YJU wANY TO PRINT THE I1vPUT SUMMMARY TG THt

$ *CONSOLE? (Y/N)*)

READ (ICe130)ANS
130 FGRYAT (A)

IF (ANS oEGe®*Y®) IS = IC

WRITE (IC4s140)

140 FORMAT (/1Xse*INPUT SEED FOR THL RANDOM NUNMLIR JENERATGR ')

READ (ICe150) ISEZD
150 FORMAT (1)

<

9 05 000200 CCITEOOP RN CO0 SO COOPTOEBLEOO IO PLIOP PRSI GPSSLLGRSLSPNSEIENYTTIOETS

.



C
1C U1 = RA:D(D)
IF (Ul «LT. 0.000C21) CN TO 10
U2 = RANDKO)
X = SUKRT (=24U*ALOGCULI)I*COS(E.20313200)
c
RETURN
[
c
C........0......'.....C..Q..0'.0..0...0..‘.0....‘..l‘...l....‘.........
c
SUBKOUTINL VAPORK (T4TDsELES)
c
C
C ROUTINT TO COHPUTE ATHQSPHERIC VAPAR PRESSURE GIVEW
C T«0 METER TEMPERATUKRE AND DEWPOINT.
C
C T eee TEMPEAATJPE = DEG C
c 0 eee DEWPOINT TEXPFRATURE - DEG C
C £ eee VAPOR PRISSURDI - “ILLIBAR
c £S5 eee LSATURATLS VAPCR PRESSURE = MILLT. "~
c CO0-C5ew0e COEFFICIE:NTS I% 5ATe VAPCR PALT5e APt (Oxa
C f ees RELATIVE mUMIDITY
c
C
DOUSLE PRLCISION CGeC1eC29C29CueCH
C .
DATA CO0/6.0689226 /
CATA C1/4.435£312¢-01/
DATA C2/1.4590816E-32/
DATA C3/2.761G5542-04/
DATA C4/2499525905-06/
DATA C5/1.4398885C-08/
C
c
c
C COMPUTE RCLATIVE HUMIDITY
c
R = (C112¢ = 04147 #+ TDI/ (1124 4+ 0a9xT))xax2,0
C .
c
(o CUMPUTE SATURATION VAPOR FRESSURL
c
X = C4 + T*CHS
X = C3 + T»*X
X = €2 + T=X
X = Cl + T*X
ES= CO + Tx»X
C
C
C COMPUTL ATMOSPHEZIC VAPOR PRESSURL
c

£ = R2ES

o
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RETURN

END
C N
Co....l.00.0000..0..Qo.l..'...o'.I-.coooo.oouoov-.olt...‘...'.....o..o.
C

SUEBROUTINL INTER (DAFTLCHISeNPLOTSIPL)

€
C ROUTINL TO READ THE NECCESSARY RUSTIME INFCRATINN FROM THC
C CONSOLC.
c
OIMENSION PTEXT(106)
c
convoN /SEED/  ISEED .
COM#ON /PUNCHD/ PTEXTy PNFILEs IPUNCH
C
DOUGLE PRECISION DAFILEs PNFILE
C
c
C SET THE CONSOLC UNIT WNUMEBER FOR THIS “ACHIF.
c
IC = 5
C
DAFILE = *DCCHODDAT*
WRITE (ICs90) DAFILE
“0 FORZAT (//71Xe*THE CURRIET DATA FILz IS 'eai0/
$ 1Xe*D0 YOU WIoH TO RLAD A DIFFE-~ENT SVE? (Y/Z0)%)
c .
READ (ICe110) ANS
IF (ANS oNEe *Y®) GO TO 115
C
c
WRITE (ICe100)
100 FORMAT (//1Xe* HAT DATA FILL CONTAINS THE INFJT DATA2Y/
$ 1Xa? ENTER FILE NAME IN THE FORM XXXXYxaYYY ¢)
C .
REAU (ICs110) UAFILE
113 FORMAT (A)
C .
115 CONTINUE
c .
WRITE (IC+120)
120 FORMAT (/1X«?®0C YJU wA®NYT TO PRINT THE I9PUT SUMMARY TG THE %,
$ ®CONSOLE? (Y/8)*)
C
READ (ICe130)ANS
130 FORMAT (A
C
IF (ANS oEGe*Y') IS = IC
C

WRITE (ICs140)

140 FORM“AT (/1Xe*INPUT SEED FOR THL RANDOM NMUWLIR CENERATGR ')
READ (ICe190) ISEZD

150 FORMAT (1)
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«RITE (IC4160)
160 FORMAT (/1X4*D0 YOU WwANT A PLOT? (Y/'DM)

READ (ICe120) DPLOT
IF (DPLOT «NEe. *Y®*) GO TO 185

SRITE (ICe170)
170 FOR'AT (/1Xe®aHICH PLOT? 1 FOR &-VARIALLY Y/
% 1Xe? 2 FOP 4=-VARIAZRLETY/)

“EAD (ICs180) IPL
180 FORMAY (1)
185 CONTINUE
IPUNCH = [
WRITE (IC4190)
190 FORMAT (/1Xs'CREATE LAND SURFACE “ODEL DATA FILE? (Y/N) ")

READ (IC+130) ANS
IF CANS oNEe *Y?') GO TO 2:

L7
=]

IPUNCH = 27
WRITE (IC+2CQ)
200 FORMAT (/1Xe*tNTER DATA FILE MAME eee XXXXXX,YYY?')

PEAD (1Ce110) PNFILE

WRITE (1Cs210)
210 FORMAT (/1Xs *FANTER COuMENTS TG IDENTIFY CQUTPUT DATA %
$ (80 CHAR. “AX)*)
FEAD (1Ce220) (PTEXT(I)oI=1418)
220 FORHMAT (15A5)

WRITE (I1C9240) IPUNCHPLFILES(FTEXT(I)sI=10e1r)
240 FORMAT (1X3I571Xe&k10/1X416A5)
23C CONTINUE

RETURN
£nD

© 00 0600060000 0000 P IO ORPOEOTCPOELBROBIE SO0 TS T PPOERPOESOEENOCOIOIOIEBLOEOSEPPOEOSOIETIILOES

SUBROJTINE START (ISEED)
ACTIVATE RAND ISECD TIGES TO PROVIDE A DIFFERTNT
STARTING POINT IN THE GERERATION OF XANDOWM NUNBEERS
WITH CACH InNFUT OF ITISEED
DO 100 1 = 141SELD

X = RAND(O0)
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RETURN
FND
C
(\-...Q...‘........I..."O..l'.'l’............‘.......‘...."0‘...'......0
C
SUBROUTINFE READF (INsISeIR)
C
C
C  THIS SU3PRIGRAY READS THE INPUT DATA FOR THE STOCHASTIC
C HYDROMETCOROLOGICAL #UDEL.
C
C
DIMENSION TITLF(1lued)e RCOEF(S)e ACOCF(x)
DIMENSION CCPUF(30)s CCORU(3ID)
DIMENSTION DRPUFC€33)y DRCROC3D)
C
c
DOVELE PRECISIGN WRITEFe BUGCFFe TZC0NFs To(a4)s DETLCCT)
DOUBLE PRECISION  OQUTPUT
C
C
REAL LAT(3)y LONG(X)
C
CoMMON /TITLES/ TITLE
CoOM™MON /ZFI1LLS/ URITEFs OUTFUT. BUGOFF
CO“MON /DATES/ IYReIMUeIDAYe LYRGLMDsLDTAY
CoM™MON /ZLOCATL/ LATe LONGs TZ6GE
co#4A0N /DCUGY/ NUGIERUG
COMYON /CLOUDSY/ CCHBAR ¢CCSU9CCRHO$BETA$CAM
COM~MON ZATMOS/ EN
COMMON /PUFCLD/ NUMCCeCCPLFCC2RNDWCCASCCHE
COMA0N /RAINS/ TRBLARe TREAR, [RAR
COMMON /TEMFAR/ TOBRTIASe TOSDEVe TORHUs CT7Fe TENZAK
COMMON /WINDSP/ SPEAK19SPRAT24SPUTIoSP2T2¢ P DVIWSPIDV L,
b SPSUTL1eSPSDT2eSPEKE W e 3P AHY
COMMON /WINDIR/ DRBARGDRDEVIDREHI
COMMON /PDFDIR/ NUSDR9DRPOF yDRORND 9DRA 4O HY
COMMON' /DEWONE/ TYPEs ACOEF
COMMON /DEuUTwO/ NeEARGDaSPEV D 3KELy DWLHD
COMMON /DEWDVS/ DAtiIASe DwWDEVe DWORHO
C
C KEAD THE GENERAL DATA SECTION
c
C NOTE: *DJUMMY® RKEADS ARE TIHLESTCHL TG REAZ Tt *CARDLY THAT °
C THE #AJOR SCCTIONS OF THE I%=2JdY UATA. 1T I5 BELIC.ED
c MAKE HANDLING THE DATA DECK EASIER A°D AS A MEANKS TO
c EXAMINATION UF THE DATA DECKX EASICR.
C
c
c

READ (INe10)

10 FORHMAT

(A)

DUMMY
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READ THE TITLE CARGS (€3}

D) 15 1 = 1,3
READ (INe2C0) (TITLE(JeI) wd=1e1D)
2¢ FOR"AT (13A5)
1= CONTINUE

READ THE DATA FILL f.AMEZ FO® THE GENERAL O0Tr:

READ (INe30) WRITEFe OUTPUTs BUGCFF
20 FORZAT (1GXe3A10)

OPFN FILES FOR OUTPUT

18 = 22

T AKND

DEBUS INFO

OPEXN (UNIT=IGBeDEVICE=*DSKY ¢ ACCESSZ*SELNUTY B FILE=BUGGFF)

IF (IS «EQ3e 3) GO TC 235
IS = 23

OPEN (UNIT=ISsOEVICE='DSKYsACCESS=*SEL0UT yFILE=ARITEER)

35 CONTINUE

READ DATES, LATITUDEs LONGITUDL . AND TIME 00T

READ CTINe4C) THOUSIDAYSIYRSLMOOLGAY LY <o
$ CLATCI) 0121 e5) o (LONGEI) s T=1el) o T20%E

40 FORMAT (10Xal”el1XeT2¢1X9T4e1Xe12s1Xell¢1XsT4glYe

% 2 F3e60901X9F2e091X9F2a041X)9A10)
READ DEBUG 14FO
DEBUG INFORMATION CAx OFE QUTPUT FROM SEVLRAL
READING IN THE APFROPRIATE SUBROUTINE nAnE,
INCLUDE: TAUs DECLy SOLRAGDe CLRSKYs COVIRy
NAMES, ARE LEFT JUSTIFIED.
THIS FEATURE 1S CURRENTLY DISABLED.

NBUG = 0O
Gv TO 51

FEAD (INe50) “HBUG«(DERUGIT Yo T=14NEUG)
50 FORMAT (10XeI296A10)
51 CONTINUE
READ CLOUD AXD RADIATION DATA

READ (INs30) DUMMY

RLAD PARAMITER CARD

SURKD
THe ©E
ARV A,

UTINES DY STH2LY

SU2R2UTINGS
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READ (INsGU)
60 FOR%AT
READ
FORMAT

(INeH2)

READ (IMetg)
RCAD (INe64)
64 FCORYVAT

READ RAIN MOUDEL

READ (INg1C)
READ (INesS0)

CCRAky CCSUe CCRHOy RAHs BN

(1UX96EF1Ca0)

NU¥CCe CCAe CCR

(10X9Tla8¥92F1040)

(CCEDNF L) oIzl UrCC)
(CCOERDET) eIzt CCH

(10XeAF1060)

PARAMETERS

DU-NY

TbHARs TR3ARS

ngar

READ TEMPERATURE DATA

READ (INs10) TUMMY
READ (INe7C) (BCCEF(I)eaIl=148)
70 FORMAT(10X44E12.5)

PEAD (INs60)

READ WIND SPLED
SEAD (INe1C)
READ CINe&0)
FEAD (INeb()
READ (INg60)

READ

READ (INe10)
READ (INs60)
READ (Ihe£2)
READ (INgh4)
READ C(INsio4)

WIND DIRECTINN

TD&1ASy TULIDEVe TD~HO

PARANLTTLI® CATA
Yy

SFBA Y,
ﬁP?U]:'
SPSKU W

FT1le

1S SPHT?
F3hT1e

SPFEAR?e &
5 EY2RES N N

SPIZV 2
SFRHO

DATA

pumry

URBARe DS0EVS
SUMD? o DX AeuRB
(DRPOF(I) s I=14%U0RY)
(DRORDCI) e I=19NUNIOR)

ORIHO

READ DCwWPOINY MODREL PARAMETERS

RCAD (INe10) DUAMY
READ (INe10) TYPF
IF (TYPESEQe'FGRSY ,Cxe TYPELFIL*INDESY) 60 TO 100
WRITE (ISy95) TYPT
99 FORMAT (/77 ¢T5g sk ans DEYPAINT MONEL TYPE —=%ehGev=— I¢ IT4UVALIT .Y/
$ T11, YONLY Y0 INDEPE® nF €YOLGReY ARE ACCEPTALLS®)
STOP
100 IF ¢ TYPE «EQe TINDEP® ) READ (If.460) DWBAR, DWSOEVe UWRHD
IF ¢ TYFE «FEQe YREGRS® ) READ (I+470) (ACCIF(1)el=146)
IF ¢ TYPE «EQ. *REGRSY ) READ (I%+60) TWBIAS,y JWDEVe DYW2RHD
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il INPUT DATA SUMMARY  foirsssoiriliriiiIirioiaiicocoioe
PRINT GENERAL DATA
HWRITE (1Se¢49Q)
490 FORMAT (1H143C15(5H YN
»RITE (ISe47%1)
491 FORNMAT (1Xa79C1H2)/)
WRITE (IS4492)
492 FCORMAT (1X4T20Ge*CONSTRATINED STCGCHASTIC CLTI "ATE SI®ULATION®/
k2 T35 INPUT SUMAARY /)

JRITE (I1Se491)

DO 8510 U = 142
KRITE (1Se500) (TITLC(Iad)eI=1,1%)
SC0 FORMAT (1H «15AY)
€10 CAONTINULD
WRITL (1Se491)
IF (I5.EGaD) LRITEF = eCONCOLE®
WKITE (1Se515) WRITEFs OUTPUTs 3UIOFF
515 FORMAT (//1XeT314°CUTPUT FILE NLAVES®//TI1s W ITIFD veA10/
s T21,CUTPUT. Y4410/
$ TZ1'BULSFFI *9A10/
WRITE (ISs491)
WRITE (IS9520) IMOeIDAYeIYRGWL“CeyLDAYsLYF

520 FORMAT (//T124*3EGINNING DATE
$ CENDING DATE 942X eI29%/%412e

YRR P EANANE FERY A RS KRS T
/v'14)

WRITE (IS94530) (LAT(ID¢l=1a3)e(LONGCI)ai=10e3)+TZ0NE

540 FORMAT(//1Xe *LATITULUE =
3 YLONGITUDE =

WRITE (1S4491)

IF (NBUGeER.0) GO TO 545

Yol Xl
P 92N sFhe0gFraleFleledX T

".OQF]}-{J"F SetenXe

ZCME = Y4A10/)

S o= TeTATOG)

WRITE €(ISeS40)(IRTUCITI)vI=145PUG)
540 FORMAT (//1Xe*DELUG SUBRODTINE
wRITE (15¢491)

54% CONTINUF

PRINT CLOUD AND CKY FARAMLTERS
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s NeNeNeNel
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WRITE
L0 FORMAT

WeLre
%1 FORCAT

1

3

$

WRITE
552 FORMAT

CALL PROIST

WRITE
562 FORM™AT
b3

WRITE
593 FOR¥AT
%

WRITC
WRITE
wRTTE
wRITE
WRITC

PRINT PRECIPITATION

WPITE
565 FORMAT

¢

3

$

(ISe5H0L0)
(IXeT2HyrCLOUD AND SKY PATLMETE 07D

(1S+501)

CCHARCCESHyCURHT

(IXeT2igFALIRWIUATHLR CLOUY CHVIKY/
TE1e* YU AN Y9 T4 sFan/

T51e9ST e DEVe 9 T4243M e/
T351e'LAG-1 COEFs 9142 4Fned//)

(ISe552)
(1X g T3 *FATRWECATHIR CLOUD CIVER HILTHCGRAM'/)

( CCPUOFe CCORise HNULMCC )

(1Se542) CCAsCCB
(//TZe YLEFT BCUAND OF HIZTWe = "9F10etet Xy
*RIGHT RQJND OF HISTe = *aF1la4)

(ISe553)

A~ o N
(//1XeT234°CLCUL CNOVFER DECAY COEFFTICERT

YeFSal/

T234*ATHMOSFHERIC TUSLIDITY FACTLE = “4F4.1/)

(IS+491)
(I1S+690)
(1Sy491)
(ISy492)
(IS4491)

(IS+565)

MOCCL PARAMETERS

TEHEARGTREAH JUBAFR

(FIXyT2Hhe*FRECIPITATIS! MJODEL BARA ITIISY//
T2ZetiEAn TIME BETWECH STUR Y53 TE0eF7e2/
T23s'mEAN STORM DURATIONY«TTOsF7e2/
T23¢*GEAN STOAM DEPTH®eTH04F 7.7/

WRITE (1S,491)

PRINT TEMPERATURE

WRITE
70 FORWMAT

MONEL PAPAMETERS

CISeST70Y(3CTEF(I)aI=148)
(//71XeT264 Y TEXPERATURE “O0LL PAFANTTErG /Y

T22¢9"'B0*¢2XeE124594X9"51%42%4012e5/

T2 ' 34" 92X eE12e594XK9 25%42XeE12657/

k4
$ TP24%B2%¢2XeE12e004X 0?25 42X9E12.5/
$
$

T22¢*B6% 42X eE12.594X"87%42X4E124077)

WRITE
580 FORMATY

(IS+580)

(1X,

T3C«

TUB1ASe TDSDEVe TDRHO
*STOCHASTIC COMPCIENTY//
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3 T28e* T ¥PEFATURE
% T2H¢%STe
$ T284*LAC-1 COke

WRITE
WKITE
wRITE
=217
wRITE

PRIKT WIND SPEED

DEVIATION

(ISs491)
(1S4490)
(ISy491)
(ISe432)
(ISe491)

MOGEL PARAVETLRS

FilAS'QZX’Ft.?./
COEF et 42XeFe2/)

/

WRITE (ISe600) SPLARL145P3T14SPHARZ4SPRT 2
SPSUOV1¢GPSNT1eSPSGV2e5H5DTE

3

€00 FORMAT
$ T21
3 T21
3 T21
$ T21

WeITE

601 FURYAT

b

WRITE

PPINT WINC

wRITE
620 FORAAT

3

b3

$

WRITE

(/T22e vWIND
o THIN HOURLY
¢+ *MAX HIURLY
¢« *MIMN HOURLY
s *MAX HOURLY

MEAN
ME AN
ST
ST

(ISe601)
(/7 T294*SKEW

SPSKEW

OEVE
DEV=

= Y9F 4.1t

= YeF4.1
teF4,1
'QFQol

SPAHD
COLFFICIENT

!
s ?
'

SPLED PARAMETIRSY//

AT
AT
AT
AT

'9F5-2

toF Sel et HOURIY
YoF-alg? HOUNSY//
*of Hel et NOUTSY/
Yot 1ale® HOUPSY/S/)

T29¢%LAG-1 COLFFICTENT*4FL.2/)

(1S4451)

DIRECTION

(IS«620)
(//T2T7e%% 10
T312'PELNYGTG2
T314%57T.

CR3ARGDRELVeDRREHD
DIXECTION
1WF6e2/
DEVe'sT424F a2/

MOCEL PARAMETERS

TS514*LAG-1 COEF*eT424F542//)

(1S4630)

PARAMITERS//

630 FORMAT (/7289 *¥WIND DIRcCTION HISTOGRAMY/)

CALL PRDIST (

WRITE
632 FOGRPAT

3

WHITE

IF

PRINT DEWPOINT MODEL PARAMETERS o

WRITE

(TYPE

DRFDF o

(1S46352) DRALDERB
(//T54LEFT BCUND
*RIGHT BOUND

(1S4451)

oE0e YREGRS®)

(1S+640) DWitARy Dw

DRIED e

G0N 10

SOEVy

NUNMDR

CF HIAT.
OF HILT.

665

e

)

o

CINGETLENLENT

DWEHO

Teir 10ebob Xy
Yot 10e4/

GENERATION?®



40 FORMAT (//T2T4*0EWPOINT “ODEL FARAMCTE:Se//

3 T3l *MEANY 4 T40gFRa2/
$ T319*ST QEV*sT4D4F6e2/
$ TS510LAG=1 CUFF*9T424Fne2//)
C .
WRITE (ISe491)
C
GO0 To 70¢0
o

665 CONTINUE

PRINT DEW POINT MODEL PASAVIYEFPS see *REGRESSION TYPED ®

e NeNeNe!

WRITE CISSE70)CACODEF(I)Iy1=146)
670 FORMAT (/71214 *PESPOINT MODEL RFGRESSIUL COACFFICIENTS s/
3 T2240 A0t X9 E1240vd4Xe ALY 4OXWEL12457
$ T224%A2 42X 1253 4X 9 A3 42X+E1245
3 T220 A4 942X eE0124B98X s AT 42X E12a5/7)

WwRITE (ISe680) Duiil1ASe DWCEVe DWOrHO
680 FORMAT (//T244*STOCKHASTIC COAPONENT PACAMO L3¢/

$ T8+ *DEPOINT BIAS *e2XsFCe2/
3 T28¢°*ST DEVIATION Y92XeF b/
3 T2B9*LAG=1 COR COLEF "92XeFbel//)
c
“RITE (IS4491)
I .
700 CONTINUE
C
C
RETURN
END
C
C'.'......"’...............'.....'."...."'.."...'..........I.‘.O'.'
C
SUBROUTINE PRDIST ( Hs 0ORLy NMAX)
C
C PPINT QUT THEL INPUT PROBASBILITY MASS FUNCTION
C
C
C
COMMON 10/ I5e IS, 10
C
C
DIMENSION QRO (NMAX)
OIMENSTION HINFAX)
DIMENSTON FMT(6)«F2T1(10)
C
DATA FMT FO (T8 ¢t gt gty 10v 4 (TH=? gt e m tet))e/
DATA FMT1 /° 1¢,° 2%¢° Jeg 0 49 4t S50
$ . 6Eve " AR eyt g g e 10/
C

DO 100 U = 1eNMAXe10
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IvAX = 10
IFC U*10 «GTe 5BAX ) IMAX = NMAX = J + 1

WRITE (1S9200)Y(H(I+J=-1)eIz=1,1%AX)
FORMAT (1H ¢1XetHIST *410(1XsFEe2))

IaS]
<
o

FMTC(3) = FMT1IC(1IVAX)

WRITE (ISsF¥T)

WRITE (1S4400) (CRO(CI*+J=1)eI=141*2X)
400 FORMATC(IH ¢1X9*'0RU  "91UC1IXeFEe2)//)

100 CONTINUL

RETURN
ENC

6 0 000800 Q 0P 00000000 LLPOP LIS OEEN OO0 NN PSR 00OPEEPLR0N LIS ROSLENTSE S IANSE e
SUBROUTIME DATED

OATEYl INITIALIZES THE UDATE COUNTERS.
JULIAN DATES ARE USED.

I1YR eee INITIAL YEAR
140 eee INITIAL MONTH
IDAY ..o INITIAL DAY
LYR eee LAST YEAR

LMO ees LAST MONTH
LDAY see LAST DAY

JULDATeee CURFENT JULTAN DATE

JBEGINeee JULIAN DATE AT BEGINWING OF RUN

JULFMNDeee JULIAN DATE AT ZHND OF RUN

JRANGEeee LENGTH OF RUN

JULREFeee JAN 1 GF INITIAL YLAR

JULREL ees JULIAN DATE FELATIVE TO JAN 1 OF CUPRENT YEAY

JSTART e RELATIVT JULTAN DATE TO SECI T MONTHLY PAREMITUR
ESTIMATION RANGE

JSTOP eee RELATIVF JULIAMN DATE TO NG mONTHLY PARAYETLOR
£5TIMATION RANGE

JYEAR eee YEAR COUNTER

NXLPYRsee JULIAN DATE GF DEC 31 OF (IXT LZAP YEAP

COMMON /DATLS/ IYKe 140y 1DAYs LYRe L¥Oe LDAY
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COMMON /ZJLATES/ JULUATe JULIELs JBEGINe JILEMUe JRENCGE s NXLPY

3 vJITART J3T2Pe JRENDy JYLAR
CoMMaON /137 IREAUy IWRITEe TWLUS

INTEGER 106UGe CALC12)
DATA CAL /731408931 ¢30¢31030031¢31430631432421/
STT DEBUG FLAG

10BUG = 0

DETERMINE INITIAL JULIAN DATES

CALL JULIAN (IMOsIODAY G IYRSJHREGIN)
CALL JULIAN (LO+LDAYSLYRSJULENLD)
CALL JULIAN ( 1, 141YRYyJULREF)

JULREL = JBEGIN = (JULRZF
JRANGE = JULEND = JBEGIN + 1
JULDAT = JUBCGIN -1

DETERMINE THE WEXT GCCURANCE OF 12731/ CLTAT YCAT)
(IE. THZ 3e6TH DAY OF THE YLAR)
LASTLP = JYR = HMOUCIYRe4)
CALL JULTAYN (12431 9LASTLP¢NXLPYR)
IF (JULDAT oG8« NXLPYR) NXLPYR = NXLPYR + 14¢1
NOTEeee 1461 = 365 + 365 + 365 + 366
THIS SECTION DEFINLS VARTABLES NTEDED FOR “ONTHLY
PARAMETER ESTIMATION
JYZAR = TYX
JSTART = JULREL + 1
LD = CAL((LYD)
CALL JULTAN € LiACs LDy IYFe JDATE )

JSTOP = JDATE - JULREF + 1
JREND = JST2P

IF (JYEAR = MOUDCJIYEARGY)) 65470465
IF (110.EGQGe2 «ANDe IDAYLEGe28) JREND = JITCP + 1
CONTINUE
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ENTRY DATE

THE MEXT SSCTION 1S USED EACH DAY T2 USGATE

THE JULIAN DATE COUNTETS IF ARNUAL PARAMLCTYELS ARLC

JULREL
JULCAT

JULRLL + 1
JULDAT + 1

CHECK FOR END OF YEAR

IF (JULREL oLE. 269) GO TG 100
IF (JULREL «GTe 366) 60 To 2060

CHECK FOR LEAP YEAR
1F (JULDATSNESNXLPYR) GO TO 200

YESe THERE ARE 366 DAYS THIS YEAR,
UPDATE NXLPYR TC NOXT LLAP YEA".

HXLPYR = =<XLPYR + 1401

IFC I03UG oNEe 0 ) GN TO 900
CONTINUL

RETURN

RESET RELATIVE JULIAN DATE
JULREL = 1
CONTINUL

IFC 1DBUG «NEWe O ) GO 7O 900
RETURN
ENTRY DATEM

THIS SCCTION 1S USCD £ACH DAY TO UPDATE THi
IF MONTHLY PARAMETER CSTIAATION IS USEL.

JULREL = JULREL + 1
JULDAT = JJLDAT + 1

IF (JULREL oLEe JREND) GO TO 400

UPDATE THE JULIAN COUNTERS

JULTAN

DAYE

USED,

CrunT

v
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c
JYEAR = UYEAR + 1
c
CALL JULIAN (IMO+014JYEARSJBEGIN)
CALL JULTAY (014014JYEARGJULREF)
c
JULREL = J3EGIN = JULREF + 1
JSTART = JULREL
c
CALL JULIAN (IMO3014JYEARGJULDAT)
c
LD = CAL(L¥O)
c :
CALL JULIAN € LMDy LDs JYEARs JUATE )
¢
JSTOP = UDATE - JULREF + 1
JREND = JSTCP
c
IFCJYEAR = “ODCJYEAR4)) 40044104400
410 IF (LMOEQe? oAiDe LDAYZEQeZH) JREND = JHEND + 1
400  CONTINUE
c
IF ( IDBUG .NEe 0 ) G7 TO 90y
c
c
RETURN
c
c
c
900 CONTINUE
c
c DEBUG INFORMATION FOX JULIAN DATE CALCLATIONS
c
WRITE (IWRITE9920) JULDATGJULRELJUIEGINGJULERL aJRANGE 4 NXLFY?
g sUSTARTJSTOP WJPENT 9 JY I AT
920 FORMAT (1H *JULDAT="4I11043Xe *JULREL = gT1CeSXy *JSECTN=" 3110537,
3 /2X s " JULEND=Y9T1043Xs PURANGE= e T10 3Ky *NXLPYF=" 9110,
$ 72X 9V USTARTS 0y T1043Ke*USTOP =04 T10 43X tJRERD 04110,
$ ) 3Xe'JYEART*9110) :
c
RETURN
c
c
£ND
c
C".'......‘"....'.'........’...I.......C.......QU..I'OOOQCCIO.IDCOIOOO
c
SUBROUTINE DATTU(IUATE ¢IMOsIDAY$IYR)
c
c CONVERT JULIAN DATE TQ CALENDE" DATE
c .

INTEGER CAL(12,42)

DATA CAL/04319594500120¢15191819212¢243427342044334
1 0e3196099141219152¢183292130244927442054335 /
I1=(IDATE=-1)/1461
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12=1DATE-C(I1x14G01)
1<=12<=14¢1

IFC(I24.LE«365) 60 TO 10
IF(I2.LE«730) GO 10O 26
IF(I2.LE«1C3%) G0 TO 3¢

1=
~ =

14=12-109%
SC TO 40
13=0

14=12
14=12-365
GC TO 4¢C
13=1

G0 TO 40

30 13=2

40

100

14z12-730
IYR=1300+15+4(4=+11)
1DX=1
IFC(I3.EQs 3)INUX=2
DO 130 I=0412
IF(laelt e CALCTSINTX)) GO TO 200
CONTINUE
IM3=12
IDAY=T4-CAL(1Ce1%0X)
RETURN

200 1¥0=l-1

10
20

JOAY=T4-CAL(I-1,41I%0X)
RETURN
END

SUBROUTIND JULTIANCMO«DAgYHqANS)
INTEGER ANSaCALC12)40A80YR
DATA CAL /3162843143031 030¢31431 9309351331/

COMPUTE JULIAN DATE FRKOM JAN. 1o 1973

ANS=0

I=YR=-1900
AHS=ZANS+3£5+1
CEL(2)=28
IFCMODIYRe4) el iiaC) CALL2)=2%
J=40-1

IF(JeEI.0) GO TO 20
DO 10 1=14d
ANS=ANS+CAL(I)
CONTIWUL

CONTINUE

ANS=ANS+DA

RETURN

END



C
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c
FUNCTION OMS(CA)
c
c FUNCTION DMS CONVERTS ANGLES EXPHESSEN IN
C DEGRECSs ~INUTES AND SECOUDRS TO RADIANS
C
DIMENSICN A(3)
REAL MINUTE
C
c
DEGREE = a(1)
MINUTE = AC2)
SECOND = A(3)
c
DMS = DEGREE*3414159/150. » MIHUTE#3.1415°71680./€06
1 + SECOND*3,14155/1804/60e/50
¢
RETURN
END
c
C-oo.oo.ooaoooooooo.oo...oo-o-o-onoooot-'o-o---a.t-'oooo.ooooooooooo-.-
C
FUNCTION TAUCST)
C

COMMON Z0RYIT/Z PHI o THLTAS s THETAL WP 4ET o
COM~AN /137 T-CADy I1WXITLe 14HUG

COMMON /D=UG/ NBUGSDFHUG

DOURLE PRECCISION ITAULDEBUGCL)

CATA ITAU /*TAUY/

THETAS = LONGITUDE OF STALDARO MLCRIDIAN (-ADIAS)
T5TH MERIUIAN FO? EASTEWN STANDALD TI:°C
9CTH MERIGIAN FUF CONTRAL STANDA®D TIE
105TH MERIDIAY FCR MOUNTAIN STANOUARD TIwL
120TH MERIDIAN FOR PACIFIC STAMIARKD TIuE
THETAL = LONGITUDL OF O02SERVERS MERIDIAN (XADIAND)
TAU = LGCAL HGCUP AANGLE
ST = STANDARD TIME IN THE TIML ZONE OF TIIE
OBSERVER IN HGURS COUNTED FRo*
MIONIGHT (EGCe 0400 TO 24400)
£EP = +1 FOK EAST LONGITUDEs =1 FOR WKEST LCNGITUDE
ET = DIFFERENCE HETWEEN TRUE SJILAR T[wm‘T

AND MEAMN SOLAR TIME (USUALLY NLGLECTED
FOR HEAT TRANSFER COMPUTATIONS)

FUNCTION SUBROUTINE TAU CONVERTS THE OBSEVERD
STANDARD TIME TO LOCAL HOUR ANGLFE IN RADIANS

OBTAIN TIME DIFFERENCE BETWEEN STANDARD AtRIDIAY AMD
OBSCRVERS MERIDIAN (HOURS)

nnnnhnonnnnnnnnnonnnnnﬁn
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DTSL = EF*(THECTAS - THETAL)* 12.0/3414135

COMPUTE OBSERVERS HOUR ANGLEC (#ADIANS). E = +1 FCR
MORNING AND E = -1 FJIR AFTERNOUON (leEe SOLARNOON)
IF (STeGTel2e +# OTSL =-ET) E = -1.0000

IF (STeLE.12. + DTSL =-ET) F = 41,0000

TAU = (ST 4+ E*12. - OTSL + E£T) * 3.14159/12.0

IF (TAUGCT«64283185) TAU = TAU - be283185
IF (TAULTe0e0) TAU = TAU + 6.283185

DERUG OPTION

IF (NBUG.EQ.0) GG TO 100
GO 200 1 = 1+0BUG

IF (DEBUG(I)NELITAYY GO 10 2060
FRITE (I4AUGe 25D STePHI ¢« THETASe THET AL TP oF ToaoeDTSLSTAY
250 FORMAY (//7/771H +*FUNCTION TAU', 2% ¢
1 8T ¥ sF6e392Xe'THI =9 4F6e3e2Xe Y THETAS =t L e 2e2xe?THETAL =0
2 FEa3g2Xe'EP =9 qF (a3 sl X' LT = 4F6e392Xe®d “'qFadelXe
5 'DTSL =%4F6e392XetTAU =*9F6e3)
200 CONTIUE

100 CONTINUE

RETURN
END

0 0 00 0PN 00000000 Cs00000C00006000600006060006s00606esoetacdttitosooncsesoncsovenr

SUBROUTINE DECL (RJDWUELTA$SR$SS)
INTEGER RJD

COMMAON /Z02TIT/ PHISTHETASWTHETALSEPoeE Tew
COYMON /107 IREADs IWRITE, IWBUG

COMMON /DSUG/ NBUGWDEBUG

DOUBLE PRECISION 10CCLyDEBUGC(L)

DATA [DECL/*DECL*/

DELTA = DECLINATION OF THE SUN (RADIANT)
PHI = COBSERVERS LATITUDE (RADTANS)
THETAS = LONGITUDE OF STAMDARD YERKIDIAt (KADIANS
TH5TH MERICIAN FOF ELASTERN STANDAND TINME
GO0TH MERIDIAN FOR CENTRAL STALDAR) TISE
105TH MERIDIAN FOR MOUNTAIN STANDARD TIME
120TH MERIDIAN FOR PACIFIC STANDAMD TIMC
THETAL = LONGITUDE OF OBSERVERS ¢ERIDIAN (CALTANS)
RJO = KRELATIVE JULIAN DATC (T.Fe WITH RFSHECT TC JAN 1)
ST = STANJDARD TI#E IN THe TImME ZOUE OF THFE OBSERVIK
1IN HOURS COUNTED FROM MIDNIGHT (T.Ge0e00 TO 24.00)
EP = +1 FOR EAST LONGITUDEs. =1 FOR JELT LONGITUDRF
ET = DIFFERENCE BETJEEN TRUEL SOLAR TI0L ANMD
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MEAN SOLAn TINME (USUALLY NCGLECTE D FO#R
HEAT TRANGFIR CONPUTATIONS)

COMPUTE TI1 'F DIFFERENCE RETWELDN STANDARD MEAILTAYN AND
MERIDIAN C(HOURY)

OBSERVERS

DTSL

T EPwCTHET

AS = THETAL)® 3481972

COMPUTE DECLINATICON OF THE SUN (RADIANS)

DELTA
COMPUTL HO
TSss

COMPUT

SS

= 0a40932C
ur. ANGLE AT

= ACOS(-TA
£ STANDARD

= TSS=*3.81

COMPUTE HGUR ANGLE OF

TSR
COMPUT

SR

= 64283185
£ STANDARD

= TSR=*Z.8E1

NE(Ce02172%(172¢ = FLIAT(RJD)) )

SUNSET (RADIANS)

NEDELTA)«TANCPHI))

TIME OF SUKRST (HOURS)
972 + 12. +DTSL =-ET7
SUNRISE (RADIAANS)
- TS8S
TIME OF SUNKISE (HOU!))

972 ~12. + DTSL -ET7

CONVERT SUNRISL IN STANDARD TIME TO LOCAL TFI¥F

SR = 8§

R - DTSL

CONVERT SUNSET IN STANDARD TIMF TJ LOCAL TIuC

SS = S§Ss - DTSL

DEBUG

CPTION

IF (NBUG.EG.Q0) GO TO 300

DO 100

I = 1+4BUG

IF (DEBUG(I)eNLSIDECL) GO TG 100

WRITE
200 FORMATY
1 I5¢°
2 SS
100 CONTIN

300 CONTIN

RETURN
END

(IWitUGy»200)
(//77/7+1H o
DTSL ='sF6
=V FbHe3e2X

UE

Ut

RUDsOTSLeDELTAsTSSyS5¢TSReSR
CSUBRIOUTINE DECL Pevaratyr [ (jj) =0,
«3s? DELTA ='9¢Fhedet TS5 =%«Fbely
s *TSH =99Faele2Xe?'3R = *4Ffed)
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C
SUBROUTINE RAINST (TLoeTReDeJSINCE«STOURY oJHAEGE o JHREXT)

C
C .
C ROUTINE TO INITIALIZD THE RAINFALL “CDELe TdAIs FROGUTIME INTURES
C THAT THE BEGINNING OF THE MO&TH SCCUAS RANMDOMLY DMMPTRG EITHE-
C AnN IHNTRA- OR AN INTER=STOR:Y PERIGD ACCORCINSG TO THE AFPROPRIATE
C PROEBABILITY DISTRIBUTINN.
o

COMMON /RAINS/ TEMEAN,y TRMEANs DMEAN

COMMON /RAINI/ ITRGITH

DATA ON/Z*0N®/ e OFF/YOFFY/
r
C

TSUM = 0.0

DEBUG = OFF
c
C GENERATE THE TIME SINCE THE LAST STUORM.
C .

CALL EXPO (TBMEANSTSINCD)
c
C NOw BEGIN TO GENERATS A SEGULCNCE OF STORYWS THAT LILL EFINC Ui UF
C T3 THE BEGINNING OF THE ionTH.
C

100 CALL EXPO (TUEMEANTH)
TSUM = TSUM + TE

c
C ARE WE UP TO THE STARTING POINT YET?
Cc
IF (TSuUM .GE. TSINCE) G2 T6 2CO0
c
C IF NOTe GEMERATE A STORM DURATION.
C
CALL EXPJ (TRMEANGTR)
TSUY = TSUM + TR
c
C ARE WE UP T0 THE STARTING POINT YFT? IF rOT, GO HACK AMD
C  GENERATE THE NEXT INTERSTORM PERIGD.
c
IF (TSUM «LT. TSINCE) GO TO 100
C .
c IN THIS CASEe THE MCGHTH BELIAS DURING A STOR™. OETERMING TISE
C TILL END OF STORM (TTEODS) AND TURN STORM™ FLAS O%Ne
c
TTEOS = TSUM - TIINCE
STORM = ON
JSINCE = 0
18 = 0.0
C
C COMPUTE THE STORM DEPTH GIVEM STORM DURATION.
C

ALPHA = TR/TRMEAN
BETA = OPEAL
CALL GAMMAD (ALPIHALBETASL)



ABJUST STOR™ ODTPTH TO REFLECT ONLY THE POKTIw DURING THE
CURRENT MONTH,.

s NeoNeNe)

D = O*CTTLOS/TR)
TR = TTEOS

c
C CONMVERT TR TO NEAREST INTEGER VALUE
c

CALL ROUND (TReITR)

IF CITR «tGe 0) ITR = 1
JHREGS = ITR

c
C
RETURN
c
c
200 CONTINUE
c
C IN THIS CASEs THL MONTH BEGINS DURING AN INT:<=STRRY PERIGD.
C DETERMINE TIME TILL NEXT STORMe TURN STOR: FLAGC SFF.
C
TTINEXT = TSUmM - TSINCE
STORM = OFF
TR = 0.0
D z 0.0
€
c .
C CLOUD COVER MODEL WILL ALSO NEED THE TIME SIWCE THE LATCLT STO»
C ENDED.
c - v
TSINCE = T8 - TTHEXT
c
C CONVERT TTNEXT TO NEAREST INTEGLK
c
CALL ROUND (TTNEXToI1T8)
IF (ITE .Ede 0) ITB = 1
JHNEXT = 1TB
CALL ROUND(TSINCE ¢ JSINCE)
"
C
c
c
RETURN
END
¢
C..‘.....Q.C.'...Q.'.I'...’.'......".’..............I...........O..Q..
: _
SUBROUTINE ROUKD (XsIX)
c
C  ROUND IS A RCUTINE THAT CONVERTS A REAL VALUY exys TO THE *EAXEST
C INTEGER VALUL. IN OTHER WORDS,y IX IS ROUNGED UP wHIN MECELSA~Y.
c ,
IX = INT(X)
RX = AINT(X)
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CHECK IF X IS NEGATIVE (R POSITIVE.

IF (X)) 10042004300
100 [F (ASS(X=KX) «5Te 0e00) IX = IX -1
200 RETURN
300 TF (ABS(X=RX) +GTe 0e53) IX = IX + 1

KETURN
END

® S 0 0 PO 00O OO PSP BPCOPOOOOT P EEIROIPOOT D PO E OSSO POPCEITPOICTOEETSPPEOE e

SUBROUTINE PCPN (THeTReDySTURMGUHGUR ¢ JHRLO S dHNEXToJSINCE s AT )

PCP} CHECKS TO SEE IF WE ARE CURRENTLY IN A . TO%+ OR

STORM.

co»MON /RAINI/  ITRTITS
COMMON /RAINS/ TEMEANGTRI“CAMeLMEAN

DATA 0%/*0N%/y OFF/QFF/

ECTWEEN
STORMS AND CO’PUTES THE HOURLY RAINFALL TOTAL ACCRROINGLY.

YHEN NECESSARYs PCPN SELECTS NiEw TIMES BETWIO STCRMS.
DURATIONSy AND STORM DREPTHLe THLD HOURLY COURTERS ARE
UPDATED FOR TIME TILL NEXT STOR™ AND TIME TItbL £D OF CuURrENT

STCR™

ALEn

CHECK IF STORM FLAG IS OM OR OFFe IF STORY FLAG IS G%e GO TO THU
STORM SECTION.

IF ( STORM <EGe ON )Y GO TG 200
STORM FLAG IS OFFe 1NOW CHECK IF WE HAVE ENDED THE LATEST THNTER-
STOR# PERIOD.

IF ( JHOUR LGTe JHNEXT ) GO TC 130
STILL'IN HETWEEN STOR“S. THEREFOKE SET RAIN = 0.0 AND RETURS
ALSO INCRLMEMNT THE COUNTER FCR TIME SIMNCE LAST STOR%.

JSINCE = JSIKCE + 1

D = 0.0

RAIN = Qa0

RETURN
100 CONTINUE
GENERATE A NEW STORMe FI12STy TURMN STORM FLAG ONs SECUMDe SELECT A

STCRM DURATION. THEN SELZCT A STORM DEPTH

STORM = ON
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CALL EXPO (T3IMEANGTR)
ALPHA = TR/TRALAN
RETA = DvEAX
CALL GAMMAD (ALPHABETALD)
CONVERT STURM DURKATION TO THE “EAREST INTIZGE# VALUE.
CALL ROUND (TrsITR)
MINIMUS STORY DURATION IS ONE HOUS,
IF CITR oE&e C) ITR = 1
UPDATE ThC TIME TILL END OF STCANM.

JHREODS
JSINCE

JHCUR + ITR -1
0

"o

COMPUTE THE HOURLY RAINFALL DEFTH
RAIN = D/FLOATC(ITR)

RETURN

200 CONTINUE

STORY FLAG IS GMNe NCW CHECK TH SEZ IF THE STaRM TYUDFED.
1F (JHOUR «GT. JHREOS) GO TO 300
THE STORM IS STILL GOING GNe THEREFOREs COMPUTE FAIN AL RTTL Vo

RAIN = D/FLOAT(CITR)
JSINCE = ©

RETURN

300 CONTINUE

STORM = OFF

STORM ENDEDe STLECT THE NEXT TI#t BETWEEN STor“s.
CALL EXPO (TSHMEANsTB)

CONVERT TIME BETWEEN STORMS TO NEAREST INTEGI~ VALUE.
CALL ROUND (T53,1T8)

MINIMUM TIME EETWEEN STORMS IS OinF HOUR.



c
IF (IT2 JEGe 3) ITS = 1
c
C UPDATE THE TIME TILL NEXT STORG&e
c
JHNEXT = JHOUR + 178 - 1
JSINCE = 1
c
RAIN = 0.0
c .
RETURN
END
C

C.o.ll'o.o..0...-.n....--oo.oo..o‘oo...o..oc...c...o..."o-o.o.o.oo-"t

C
SUBROUTINE EXPO (EMsT)

c
COMMON /SEED/ ISEED

c

c SUBROUTINE TO GENERATE EXPONENTIALLY OIST<TBUTED KANDON NUAREST

c EM = AEAN OF THE DISTRIEUTION

c T = RANDOM VARIASBLE

c

c GENERATE U(0s1)

c

IX = ISEED
CXXXXXCALL RANDU (IX4ISFED4R)
CALL RAND1 (IXeISECDsR)

c
C TAKE THE INVERSE OF THF EXPCNEMTIAL PUF
[
T = «EM*ALOG(R)
RETURN
END
C
Ceoscesvcvsceecrsocereocsecsorcsoseocscroscsososssvesecseosnecstooconsotosnaccsaccsossocs
o
SUBROUTINE GAMMAD (ALPHAWEETAsX)
C
COMMON /WARN/ TWARN
COMMON. /SLED/ ISEED
COMMON /10/ INsISs1E
C
U = 1.0
X = 0.0
K = IFIXCALPHA)
GAM = ALPHA - FLOAT(X)
c
C WRITE (54900) UeX9sKsGAMeALPHALZBETA
300  FORMAT (1HCe'UZt4E12.592Xe X940l 12507 e "K=0431C92ns
1 POAMZ*9E12a542Xy "ALPHAZ?4512.5492Xs SEETAZ',
2 £12.5)

[z EeXe]



IF (KeECGe 0) GO TO 100

PO D0 1 = 1,.x
IX = ISEED

CXXXX CALL RANDU (IX4I1SEED4R)
CALL RAND1 (IXeISEEDeR)

t) = Ry
c
C WRITE (5¢520) Iy e U :
9290 FORMAT (1H2g PTRACE 1 v4% Iz *415¢42Xe "= ¥43012e¢%42Xs
1 U= *4£12.5)
C
S0 CONTINUE
¢
X = =ALOGC(U)
C
IF (GAMAGEe. 04000001 ) GO TO 100
c
X = BETA=xX
C
C WRITE €54930) X
930 FORMAT (1HO9"TRACE 2 ®42Xy "Xz 9,£172,%)
(o
RCTURN
C

100 CONTINUE
IX = ISEED
CXXXX CALL RANDU (IXeISEEDsR)
CALL RANDL1 (IXsISEEDyR)

Z = =ALDOG (R)
c
C WRITE (34340) Re2
940 FORMAT (1HOs® TRACE 3 *9® Rz ¢ ,F 12,548 72z v4512,°%)
C .
C
c

DO 200 J = 14100
IX = ISEED

CXXXX CALL RANDU (IX4aISTEDsU1)
CALL RAND1 (IXeISEEDsU1)
IX = ISEED

CXXXX CALL RANDU (IX<ISEED,U2)
CALL RAND1 (IXsISEEDsuU2:

COMPUTE THL VALUES OF EM AND EN

IF EM AND EN ARE COMPUTED DIRECTLY AS:

Ul**(1.0/GAM)
UZ2x*(10/¢C1a0G=-GAM))

£
Ex

" n

A MACHINE UNDERFLOY 0OR OVERFLOY CAN EASILY O0CCUR. THESE
CONDITIONS CAN BE ANTICIPATED LY FIRST CALCULATING TrE
LOG (BASE 10) OF E£M AND ENe THE VALID RA4GE OF LOG(LM)

DOOO0O0OOOONNO N0
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c AND LOGCEN) IS MACHIME CJEPCADENT BUT HAS “EVLATHELESS
R BEEN SET TO BLTJELYN =370 AMLD 43740 IN THIZ PROGRAM,.
c IF A VALUE OF HAS QEEN FOUND BELCW THIS RANGE. A DEFALLT
C OF LOG(EM OR EN) = =3740 IS USEDe IF A VALLFE ORAS BUEN
c FOUND ABOVE THIS RANGEs THEWN LCG (E# SR EN) = 437.0.
C EM AND EN ARE THEN FOUND BY TAKING THE APPROPRIATE ANTILOGS.
c
c
EMLIO = (1.0/GAMI*ALOGLO('1)
o
lF ( EMLIO oGEo =770 «AWDe
1 EMLIO oLEe +3740 ) Go 10 110
c
IWARN = IWARY + 1
IF C EMLIO0 oGTe +57.0 ) EMLIC = +37.C
IF € EML10 oLTe =37.0 ) EML1IO = =37.6C
C
110 EM = 10.0x+CML10
c
C
ENLIO = (140/(140 = GAMI)I+ALOG10(I2)
C
IF ‘ E‘.Llﬂ -GE. -3700 QA"‘JD.
1 ENL10 oLE. +37.0 ) G2 Tn 12¢
C
I4A3N = TJARN + 1
IF € ENLIOD 45Te #3740 ) ENLIO = +37.06
IF € EnL10 oLTe =37.0 ) ENLIO = =37.0
c
120 EN = 1040%+£NL10
C
C
c
C WRITE (54950) JoeUlsU2+EMeENsEMLIGOFENLILOD
350 FORMAT (1HU9*TRACE 4 %o J= "415s"% Ulz *eF1le5s
1 T U2z 1481250 Y EMZT V4E12.54% ENT *4L12.5
2 * EMLIO=*4E12.9¢® ENL1O0='4112.%)
c
IF (EM +EN oLEe 1.0) GO TO 300
200 CONTINUE
C .
C
WRITE (IS4500)
500 FORMAT(® END OF DO LGOP IN BETA SUBSECTION OF GAMMAD *)
STOP i
C
C
300 Y = EM/Z(EH® + £%)
C
X = BETA«(X + Y=2)
C
RETURN
END
C

(o0t 00000000 00e0etttretersssesosnsososensontdsodnessosssenccssdtotscccscsoncsosscsn
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SUBROUTING KANDU (IXelYeYFL)
GENERATLS A UNIFORM DISTRIBUTION

IY = IX*65539

IF ¢IY) 10420¢20

Iy = 1Y + 2147483647 + 1
YFL 1Y

YFL YFL*46566123L-9

RETURN

ENTRY RAND1 (IXeIYsYFL)

YFL = RAND(O)

RETURN
END

SUBROUTINE STAT(XgSUMgSUMSGUSUMNI e XBAR X VA yXonT we™)

ROUTINE TO COMPUTE THE FIRST THREE
MEAY ==~ VARIANCE =-~ SKFW4 CCGEFFICIELT ---eveve---
XBAR XVAR XTKEW

901

202

TRACE = P*0OFF*

MOMENTS 0F [N TEREST

IF (TRACE «EGe *ON') WRITE (£4901)

FOR“AT (* STAT1®)

SUM = X + SUM
SUMSG = X*X + SUMSQ
SUM3 = X*x3.0 + SUM3

IF (TRACE oEQe 'ON') WRITEZ (54902)

"FOFMAT (% STATZ2v)

UPDATE THE MEAN AND VARIANCS CONPUTATION

903

XBAR Sut/s N

XVAR SUMSG/M - XBAR*XEAR

IF (XSKEW «LTe =-990.0) RETURN
XM3 = SUM3/N = 30*XBAR#SUMII/N

([T

+ 2404XEA2*3,0

IF (TRACE «EGQGe *0%N') WRITE (54903)

FORMAT (v STAT3v)

IF (N «LEe 2) RETURN

COMPUTE SKEW COEFFICIENT



C
IF (XVAR «GTe 04006312 GO TO 100
XSKEW = 0.0
GO T0 998
100 CONTINUE
C
FACTOR = FLOAT(N=N)I/ZFLOAT((N=1)x("{=2))
: XSKEWd = FELCTOR*XYI/(XVAr«SQPT(XVaR))
c
IF (TPACE «EGe *Id') WRITE (54904)
204 FORMAT (* STAT4GY)
IF (TRACE +ECe *Un") »RITE (54905) Ne xXSKFwe FACTORs XVaR
905 FORMAT (I1043(E124542X))
999 RETURN
END
C
c....'......'.......-....."...'...Q'."..........'............‘.......
C
SUBROUTINT HGRAM (HelAyXslT4BASE)
c
C SUBROUTINE TO UPDATE THE FREGUENCY HISTCGRAM:
[of .
COMMON /10/ INeISeIB
INTEGER H
DIMENSTION H(C(IA)
C
00 100 1 = 1,14
IF(ReGTeBASE+]12DT) GO TG 100
HCT) = HCT)Y + 1
RETURN
100 CONTINUE
c
HCIY = H(1) + 1
AMAX = BASE + IA=*DT
C
WRITE (IS+300)AMAXeX
900 FORMAT (1M 42 VALUE GREATER THAMN *4EF12e5«* &S FCUKTe X = ¥,
1 £E12.5)
C -
RETURN
END
o
C‘.......................’......'...‘..'..‘.'.."...’.........‘........
C
SUBKOJUTINE PRINTH (HeNMAXsDToBASE«TITLE ¢NDATAY
C
C  PRINT OUT NORMALTIZED HISTOGRAMS OF GUNLRATED ATA
C
C
C
COMMON 10/ INeIL eIk
C
r
INTEGER H

"DIMEN3ZTON HONNAX)
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DQIMENSION TITLECL)
CIMENSION TACLIO)

C
C HLORMALIZE THE HISTOGRAM ILEMENTS
c
c GO TO 60

DO 50 T = 1eNHAX

N = H{D)

X = 100e0«(FLOAT(N)/FLOAT(NDATAY)

CALL ROUND (XelH)

C TF(NIAXeE o I1)WRITE(SyS501) ToN "X oveXoIR

501 FORMAT(ISe1XeI5¢1Xel1041XsE12e%01XeI19)
HCI) = 1IH

50 CONTINUE

60 CONTINUE

WRITE (IS+S10)
210 FORMAT (1-1415(5H Y/ 1H+ 4 15(35H ))
JRITE (IS49C0) (TITLEC(I)9I=145)
900 FORMAT (1H +14Xe*HISTOGRAY QF *95A54% (PERCENT)I /)
DO 100 U = 1ein4AXe10
I%ax = 10
IFC J*10 o0Te NMAX ) INAX = NMAX = U + 1

g Ne]

60 TO 1993
196 DO 198 I1I1=1,41I%AX

12 = J1 « ¢ - 1

WRITE (5¢197) 12+ I1TeJdeliiAXeNYAXSH(IZ)
197 FORMAT(SIS.[20)
198 CONTINUE
199 CONTINUE

WRITE (ISe200)(H(I+J~1)s]=1+IMAX)
200 FORMAT (1H 410(2Xe15))

C
c
WRITE (1S+200)
300 FORMAT (1H 410(T7H~==~-~~ )
C
C

DG 350. K = 1410
350 TACK) = (X-1+J)*DT + BASE

WRITE (ISs400) (TA(K)eK=1410)
400 FORMAT(1H ¢10C1XeF6e2)//)

c
C
106 CONTINUE

C

c
RLTURN
END

C

C.ooo.oo.".oo....QQOOQCl.o.co.o.o...ooc.c..c..oo-u.-000'00.0...00..00.
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SUPROUTINE SOLRAD (RUD¢ST19ST2sTaT34NtAXSCCASCCBaPDF eloCOADRD,y

SWReCLDWBETASGAV4CCHBARSCCSDeRHD ST ASEN)

SUBROUTINE SOLRAD COMFUTES INCIDENT SOLAR
RADIATIOGH Oiv THE GRAYND GR 2% THE TOP OF &
VEGETAL CANUPY DURINSG A SPECIFIED INTEAVAL QOF TIvE

ST1 = BEGIWNING COF INTERVAL = STANDARD TI4E
sT2 = END OF INTERVAL - STANDAKD TIML
CSKY = CLEAR SKY RADIATION = LANGLY
CLD = CLOUD COVER (0.0 - CLO - 1.0)
SR = TOTAL INCIDENT SOLAR RADIATION = LANGLY
SR = SUNRISE
SS = SUNSET
Tl = BEGINNING OF INTERVAL OF INTEGRATIO .V - LOCAL HOUK
T2 = END OF INTERVAL OF INTEGRATION - LOCAL HOUR ALGLF
RJD = RELATIVE JULIAN LATC
STALPH = SINCALPHA)
POF = PROBAGILITY DENSITY FUNCTION (DI-CRTTE)D
FOR NOISE TER% IN CLOUD COVER 00FL
RADTYP = INODICATES IF USER WANTS CLRSKY CAlLCJULATIONS
COORD = COGCROINATLS OF THE INTERVALS QF 7 OF
DOULLE FRECISION CLEAR«RACTYP
DOUBLE PRECISIGON ISOLRD«DEBUGCL)

DIMENSTION PUF(C1)s COORUCL)

DIMENSIOGN RHO(1)4CCBARCL)IZWCCSD(1)43ITACLI)WGAV(])
INTEGER SEASON(1)

INTEGER RJD

COMMON /OREIT/ PHISTHETASsTHETALGEP9ETew
CoOMMON /RTYPE/ RAUTYP

COMMON /SEED/ ISEED

CoOMMON /DBUG/ HMBUGSDERUG

COMMON /10/ INeISeIH

DATA ISOLRD /%SQLRADY/

DATA CLEAK /*CLEARSKY?®/

COMPUTE DECLINATIONs SUNRISE AND SUNSET

CALL DECL (RJDSDELTA,SR4SS)

SCREENING TO DETERMINE THE PROPER INTLRVAL OF INTEGKATION

IF (ST2.L.£EeST1) GO TO 100
IF (STlaLEsSReANDeOT2eLESRY OO TO 120

IF (ST1elLeSReANDeST2e0lMeSReANIGST24LESS) G TO 130

IF (ST1elLEeSReANDeSET24GE05S) GO TO 140
IF (ST1eGteSReANGeST2LELSS5) GO TO 150
IF (ST1eLEeSSeANDeST2.6Le5S) 50 TO 160
IF (ST1.GLeSSeANDeST24GE«SS) GO TO 1260
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100

120

130

140

150

160

500

300

1

§T2 IS IN THE AM WHILE ST1 IS STILL I PM

CONTINUE
IF (ST2.GT«SR)Y GO TO 150

NO SHORTWAVE RADIATION IN THIS INTERVAL

CSKY = 0.0

Tl = TAUCSTL)
T2 = TAUCST?)
SIALPH = 999.
G0 TO 803

PART JF IMTERVAL COMES AFTER SUNRISE. SET “ESIKNIANG
OF INTERVAL EGUAL TO THE LOCAL HOUR ANCGLE 2F SUNRISE.
THEN CORNVERT ENDING TIME TO LOCAL HOUR ANGLE.

T1 = TAU(SR)
T2 = TAU(ST2)
GO TO 500

INTEGRATIGN INTERVAL INCLUDES ENTIRE INTESVAL FROM SUNRISE
TO SUNSET

Tl = TAU(CSR)
T2 = TAUCSS)
G0 T0 500

INTEGRATION INTEPVAL IS EATIRELY &ITHIN SUNSHIND PEFICE

T1 = TAUC(ST1)
T2 = TAUCST?)
GO TO 500

ENDING TIME OCCURS AFTER SUNSET

TAUCST1)
TAU(CSS)

T1
T2

" n

COMPUTE CLEAR SKY SOLAR RADIATION FOR THE
INTERVAL T1 TO T2

CONTINUE
CALL CLKSKY (RUDeT1leaT24NMAXsCSKYSsSTALPHSDTLTA)

DETERMINE CLOUD COVER

CONTINUE
IF (RADTYP.EQ.CLEAR) GO TG 9S00

G0 To 801
CALL COVER (RUDeCCAQCCEsPOF«NsCOORDYSEASO.«TReToZELTAWGAH4CCHAR,
CCSDeRHOsCLD)

R01 CONTINUE

COMPUTE CLOUDY SKY SOLAR RADIATION



C
SWR = COKY*(1e0 = Co65+CLDACLD)
GO TO %30
C
200 SWR = CSKY
[of
250 CONTINUE
C
C DEBUG OPTION
C
IF (NBUGeEGe0O) GC TC 1100
DO 1000 I = 1e¢48ULG
C

IF (DEBUGC(I)«NFISOLRD)Y GO TO 1600
WRITE CIBe1050)RJICeST1eST2eSReSSeT1aT2eCSXVaSlALPHWCLED
1050 FORYATY (//7/7+1H «*SUCRJQUTINE SOLRLU®T ¢2Xe?'RJL =
1 T892X e ?ST1 =Z®gFT7e392Xa¥ST2 =%9FTeleXe?S2 =v
2 F7e392Xa55 =0 9FTea39CXa"T1 =04F745¢42Xe*TS =0
3 FTe3/7T204'CSKY =Z®4Fl2a2¢2Xs*SIALPH =%gFde.in
4 2Xe%'CLD =v4F743)
1000 CONTINUE

*

c
1100 CONTINUL
RETURN
END
C
c..‘.......’0....l‘..‘...l‘.-..l.l.l".'.....‘..o.i..OOOOO.‘Q..O.CQC.‘.
C
c

SUBROUTINE CLANSKY (RJUDaT1eT29NHAY GCSKYsSTALPHGOELTA)

C

C SUBROUTINE TO NUMERICALLY IXNTLCGRATE THC

C EGUATION FOR CLEAR SKY RADIATION. SIHPSONS

C RULE IS USEDe.

C

C DELTA = DECLINATION OF THE SUM (RADIANS)

C PHI = OBSERVERS LATITUCE (RADIANS)

c En = TURBIDITY FACTGR

C = 2.0 FOR CLEAR MOUNTAIN AIR

c : = 4~-5 FOR SMOGGY URBAN AREAS

c W = SOLAR CONSTANT = 120e LANGLY/HAE

c - W IS READ 1K AS A VARIAZGLE TO ALLOW THE USER  TO CHOGSE
c WHICH VALUE OF 4 IS APPRGPRIATE.

C RJD = RELATIVE JULIAN GATE

C T = HOUR ANGLT AT EEGIMNING CF TINTUHVAL

c T2 = MOUR AMNGLE AT tND OF INTERVAL

c MMAX = NUMBER OF SUBINTERVALSE = 2444€ees

C CSKY = FINAL VALUE 0Of F 1S CLEAR SKY FRAUTATION

C SIALPH = SIN (ALPHA)s WHERE ALPHA IS THE ANGLE

C OF RADIATION “ITH THE HOMIZONTAL (RAVIAKS)
c ALPHA = ANGLE OF RADIATION (RADTANS)

C

C "REFERENCE FDR SIMPSONS RULE

C TI PROGRAMMABLE 58/59 MASTER LIBRARY

c TEXAS JUNSTRUMENTS INCORPORATEDs 1977 pP29-31
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930 FORMAT (////7+1H0 s *SUGROUTINE CLRSKY Y2y, *

10

70

COMMON /DBUG/Z NBUGSDERUG

COMMON /QRBIT/ PHLWTHETALWTHLTALWEPGETy .

COMMON ZATMDS/ EN
cComvon 210/ T 1SeIB
INTEGER RJD

DOUBLE PRECISION TCSKYSDEBUG(T)

DATA ICSKY /PCLKSKYY/

IS DEBUG REQUESTED FOR SUZROUTINE

IBUG = ©
IF (NBUG.LQ.0) GO TO 910
DO 900 I = 1+MBUG

IF (DEBUG(I)eNELICSKY) GO TO 9CO
IBUG = 1

GO0 T0 310

CONTINUE

CONTINUE

IF (IBUG.EG.0) GO TO 10
wRITE (IBe9230) RUDeT1eT2eNMAK

CLRSKY?

JD =%,

1 T92Xe?Tl =t eFhalia®T2 =P eFEa3e2XstNMAXY =v,417)

CON}INU[

DO LOOP PERFORMS INTEGRATION bY SIMPSON®S

IMAX = NMAX + 1

D = (T2 = T1)/NKNAX

IF (DeGEeB.0) GO TO 70

D = ¢ 6628318 = T1 + T2 )/NMAX
CONTINUE

DO 100 NN = 14IMAX

N=NN-1

COMPUTE CURRENT HOUR ANGLE

T = T1 + N*D

COMPUTE SINCALPHA)

STALPH = SIN(DELTA)I*SIN(PHI) + COS(DLLTA)«COS(PHIDI*CCE(T)

RULF
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C

C

OO0

40

45

200

50

920

100

CHECK TO PREVENT DIVISION BY ZERD OR USING ZERQ
AS THE ARGUMENT OF A LOG FUNCTION

CONSIDER THE TERM

Y = ( De128 = 04054¢*ALCG10C1e/STALPH)Y)
WHEN ALPHA APPRGACHES ZERDe THE CLCAY FUNCTION STARTSE TO0 w3GJe
THIS OCCURS DUE To POLES THAT EXI=T AT THt ELES OF ThRD INTERVAL
OF INTEGRATION. AN APPROXIMATION TO THE DECAY FUNCTICN 4AS
MADE THAT CONSISTZOD CF A STRAIGHT LINE EXTSAFSLATION OF TuE
DECAY FUNCTION FROM ALPHA = 0.016 TO ZERD.

ALPHA = ASINC(SIALPH)

IF (ALPHA .GTe 0.C16) GO TO 40
IF ¢ ALPHA .LTe 0.0 ) ALPHA = 0.
IF ¢ STALPH oLTe 340 ) SIALPH =

0
0e0
X = e 293454+ ALPHA«STALPH

GO TO 4t

CONTINUE

X=C(EXP(-EN*(04128 = Us054+«AL0OGI0C(1a/STALPH))/STALFHII*LTALPH
CONTINUE

IF (MO0D(Ne2)eNELD)Y GO TO 200

M=2

IF (NeEGeU) M=1

IF (NeERSiMAX)Y M=1

F=F + %xX

GO0 T0 S0

F=F + 4xX

DEBUG OPTI1ON

IF (IBUGeELieD) GO TO 100
WRITE (IB4920) oNeToeSIALPHeXsF

FORMAT (1H ¢T254 %N S04 ]842Xe®T =4 F5.542Xa*STALFH =%y FhHels
1 2Xe®X =*4F124¢392X9'F =% E£12.3)
CONTINUE

F = FsD/3.0

COMPUTE CORRECTION FACTOR FOK FLLIPTICAL 7~%#17
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R T 14000 + De0174CNS{0e2832*FLOAT(IE6 = 2N /35%,)
C
CSKY = (12.0%6060/31416)2F*xW/(Ra3)
C
C DEBUG CPTION
c

IF (IBUGeEG.0) GO TO 3900
WRITE (IB9S40) FevgWeCSKY

Q40 FORMAT (1H ¢T25¢%F =93F12.3e2Xe"%% TP 4FE .3y
1 %W =% FBe342Xe?CSKY =943E12.3)

C
300 CONTINUE
RETURN
END
C
Cococcoooo.-ooooocoo-o’ooo.ooooooooo.oooooo-oooco.o000.0..-......0.-...
C
c
SUBROUTINE COVER (RJUDeAWBePOFsMeCOORDISEASTN gy THaToFETAGGAY$CCH A,
1CCSNDeyrHOeCLD)
c

INTEGER RJDSSEASCH(1)

DIMENSION PDF(1)+4CNORO(1)

DIMENSTION REOC1)9CCHRAR(IISCCSDI1)¢BETACTI)CAY (L)
comMvoN /CLDCOVY/ C1

COMMON /LEAP/ LCHECK

COMMON /SEAS/ NSEAS

CoMMoN /DBUG/ NBUG€DBEBUG

COMMON /IO0/ INeIS,IR

COMMON /STORMS/ STORH

DOUBLE PRECISION ICOVERSDEBIG (1)
DATA ICOVLR /*COVERY/

DATA ON/*ON®/y OFF/Y0FF*/

ARRAY CONTAINING RELATIVE JULIAN UATES OF ThHE FIPST DAY
OF EACH SEAGON

DISCRETE PROBABILITY NENSITY FUNCTION OF CLOGUD CNVIR
COORDINATES OF PDF (laEe INTERVALS)

NUMBER OF INTERVALS IN PUoFe DINMENSION 2F PCF

AND COORD IS N* (NUMBER OF SEASONS OF CLOUD

COVER PARAMETERS)

CURRENT SEASCH

TIME BETWEEN STORMS (HOURS)

TIME SINCE LAST STORM (HOURS)

MEAN CLOUD CGVER

STANDARPD DEVIATIGN OF CLOUD COVER

LAG-1 AUTOCORRELATION COFFFICIENT

TRANSITION DJECAY PARAMLTER

TRANSITION UDECAY PARAMETER

NUMBER OF SEASONS PER YLAR

RANDOM VARIATE FOR THE NOISE TERM IN THE CLCULL COVER
HODEL

PREVIOUS VALUE OF THE AR(1) PROCESS

CURRENT VALUE OF THE AR(1) PROCESS

VALUE OF THE MOODOULATION FUNCTION

SEASON

POF
COORD
N

I n

ISEAS

CCBAR
CCSD
RHO
BETA
GAN
NSEAS
ARV

W uunn

Cc1
c2

zRsles N sl N s el NeNeNeNeNaNe Rl ol Ne e NeRa Ne)
-

0o
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cLou

DETERMINE THE

0 COVER

CURRENT SEASON

IF (NSEASWGTe1) 50 TO SO

50 CON
1F

6C CON

ISEAS = 1
Gd TO0 150
TINUE

(RJD <L Te
ISEAS = NS
60 TO 1%0
TINUE

[#9
[64]
[}

SCASON(HSEAS+LCHECK+NSEASY) (&3 TO &€

EAS

DO 100 I=1sNSEAS
IF (RJUDeGESEASON(I + LCHECK#NSCAS)) GO TO 1020

ISE
Go
100 CON
WR1I

160 FORMAT (1FH14///«*SEASON

STO
150 CON

AS =1
T0 150
TINUE

-1

TE (1S+160)

p
TINUE

COMRUTE STOCHASTIC COMPONCNT

ARV

c2
1 (A

SELECTION

= ARVA(PDFsNeA9BsCOORDsISEAS)

= RHOCISEAS)*C)

RV - CCBAR(CISEAS))
2 +« CCBARCISEAS)I#* (1. - RHOCISEAS))

CHECK YO SEE 1F A STORM IS GOING UN.
MODULATION FUNCTION. IF STORM IS OWe
THE MODULATION F

IF (STORM

CLD

60 T0 300

200 CON

= 1.0

TINUE

UNCTION.

«EQe OFF) GO TO 200

COMPUTE MODULATION FUNCTION

BEX
GEX

CHECK

UNDERFLOW WHEMN

IF
IF

P

TO SEE

(8EXP
(GEXP

1F

eGTo
.GT.

P = BETACISEAS)*T
= GAM(ISEASY*(TB-T)

FAILED T

+ SURT(1e-KHOCISEASIARHC(CISICAL) )

SUTRGUTINE COVER )

1IF NO “T0nMe COMBPLUTE Trib

SET CLD = 1.0 ARD

EEXP OR GZAP «#ILL CAUSE A MACHINE

37«0%AL0G(101)
37«0+ALOG(104))

3ExP
GEXP

USED AS THE ARGUMENT IN THE EX7P FUNCTICH.

S2Te0%xALNG(C10.0)
=57.0+A1L05(10.0)

HY=PAS
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P = (140 ~CXP(=3EXP))*(1e0 ~EXP(~GEXP))

€
C COMPUTE AVERAGE CLNUD COVER FOR INTERVAL
c
c .
CLD = CCBARCISEAS) + (1.0 - CCBARCISEAS)I)I*>(1.0 =F) + C2#*P
IF (CLDeGTele0) CLU = 1400 )
IF (CLDeLTe0e0) CLD = 0400
300 CONTINUE
c
C CCRBUG OPTION
c
IF (NBUG.EG.0) GO TO S10
DO 900 I = 1+NBUG
IF (DERUG(I)eNESICOVER)Y 6T T0O <00
WRITE (1B+920) RJD¢ISEASeC1eC29ARY oPoCLD
920 FORMAT (///1H *SULROUTINE COVIRT92X e *RUD =" 41S42X0
1 *ISEAS =%el442Xe"Cl =*eFT7e3¢2X9%C2 =%oFTely
2 YARVA T 9,3F0a392Xe?P ='gFLedec Xy 'CLD =*4FZ.2)
C

WRITE (IB4930) BETACISEAS) ¢GAMCISEAS) oTH T

930 FORMAT (1H o95ETAS 401209 2Xe*GAME 90124542 Xy
$ OTBz= 93 12e0042Xe%T= "4E£12.5)

9300 CONTINUEL

e1n CONTINUE

c
C SAVE CURRENT VALUFE OF THE STOCHASTIC COYPONEXT FOh
C USE T4 THLC NEXT TIME PERICGD ’
¢ .
Ci1 = C2
c
RETURN:
END
C
C oo o eceenccnesneceeonsneteseeeoneceenovnsnescesssrtocscocsasosnsscscncstdoossoccssosscsovasne
C
C
FUNCTION ARVA (PDFaNsAsEsCOORLSICSEAD)
c
c FUNCTION ARVA SELECTS A RANDOM VARIABLE Fi 2+ AN
C ARBITRARY DISCRETE PkOBABILITY MASS FUNCTIGON
c
C PDF = DISCRETE PROBABILITY NENSITY FUNCTION
C N = NUMBER OF INTERVALS
c A = LUWER LIHAIT OF UCAeB)
c B = UPPER LIAIT OF UCA4B)
C ISEED = SEED FOR RAKDU
c COORD = CONTAINS COOROINATES CF THL INTCHVALS
C OF pDFo (COORD(I—I)'LT.X.A\D'XQLE.C(‘]']F‘D(1’)
C
C

REAL PDF(1)4y PEAKs CO0ORD(1)
COMMON /SFEED/ ISEED
COMMON /DBUG/ NBUGSDEBUG
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100
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300
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500

600
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COMMON /1I0/ INeISeIS
pDoUBLE PRTCISION TARVASBEBUGLT)
DATA TARVA /sARVAT/

FIND THE PEAK OF InE DISTRIBUTION

PEA«X = 0.0
DO 100 1 = 1N

IF (POFCCISEAS=1)=N +1)eCGTFEAK) PEAK = PO ((ISTAS=1)2N

CONTINUL
SCLECT THE FIRST RANDOM NUMBER FROM U(CA+8)

IX = ISTED

CALL RAND1 (IXeISELCDR)
CALL RANDU (IXeISEEDSR)
Ul = A + (E=-A) *» K

FIND WHICH INTERVAL Ul BELONGS TO

D0 200 I = 1N

IF (Ul <GTe COORDCCISEAS=1)*N + 1 )) GO 13 20C

J= (ISFEAS=1)+h +1

60 T0 300

CONTINUE

WRITE (15,250)

FORMAT (1Hle * SULROUTINE ARYA -=- Ul 16 G TATL. *,
1YTHAN THE MAXIMUM INTERVAL FOR THE DISC~EY: PIF*)
STOP

CONTINUE

CALCULATE THE SELTCTION CRITERION

F= PDF(JI/PEAK

IX = ISEED

CALL RAND1 (IXeISTCEDWU2)
CALL RANDU (IX,ISCEDLU2)

DEBUG GPTION

I1F (NBUG.EGeD)Y GO TO 600

DO 500 I = 1l4HLFUG

IF (DEBUG(I)JNELIARVA) GO TO 5400

WRITE (IB«590) PEAKeULl9U2sF

FORMAT (/7/71H o tFUNCTION ARVA® 42X ¢ ?PEAK =t4FLoely
1 U =t eF6ea3elXe2 =%4F6e392Xs'F =%sFf6ie3) ’
CONTINULE

CONTINUE
ACCEPT OR REJECT U1
IF (U2.6T.F) GO TO 150

ARVA=U]
RETURN

+1)



END
c

C....-....lo.l.oo..‘.o.t’looc..o..'0.000.....-0.0.'0...0.0.0.....00.'..

~
~

SUBROUTINE MARKKOV (NePOF¢COORUsA+T o XBAR ¢ XUEVeXVHO o XLAGLI Ko XD

C
C “ARKOV IS A GENERAL ROUTINE TO CORPUTE A STOCHASTIC VARIATE
C OGENERATED BY A FIRST QRDE? MARRKRIV PROCESS.
C
DIMENSICN POF(1)+CONRD(1) ¢ XBAR(L) «XDEVEL) ¥REU(L)
C
C
HWSEAS = 1
C
GO TO (200+300) ¥
C
200 CONTINUE
C
C SECTION 1 == USE THIS SECTI10x WrEN ARV IS ZELLICTED FROY
c AN ARBITRARY PDF «ITH “LCAd = Xs&% M40
c STANDARD DELVIATIOM = XTFEV
C
C DETERMINE THE RANDOM VARIATE
C
ARV = ARVA (POFoloAsReCOIRDINSEAS)
c
X= XBARCNSEAS) + XRHO(NSEAS)I#(XLAGL = XZAT(NTDAG)) ¢
% c3ART (1o C=XAHO(NSEFAS)IAXRHOIRSEAS) I A CARY =XEAN (NSEAS))
c
C
GG TO 800
300 CONTINUE
c
C SECTION 2 =-- USE THIS SECTION WHCKN A7V 15 ER&“ A
o STANDARDIZED NORMAL DISTRIBUTION € 5(041) )
C ARV = ARVA (POUFeNNshAsBeCOORDINSEAT)
CALL NORMAL (ARV)
X= XBARCNSEAS) + XRHO(NSEAS)I*(XLAGL1 = XTA-INGEAS)) +
$ CSGRTC1 & 0=XRHO(NSEASI*XRHRO(NSEAS) I # (AV*XNIVENSEAS))
C
C

800 CONTINUE

XLAG1 COULD BE SET EGUAL TO X AT THIS FOINT OK CHECKED FO~
NEGATIVE UMBERSe. HOWEVLR THE NATURE OF THESE CHECKS CEPLUNDS
CN THE VARIATE BEING GENERATED. THEREFDIRUD s THYSE CHECKS ARE
MADE IN THE CALLING ROUTINE WHERE THE IDEXNTITY OF THE VARTATE
IS KNOWN ALONG wITH THE PECULIARITIES ASSTCIATLD WITH 1IT.

sl e NeNeNeNeNeNeNe

IDEBUG = O

IF (IDEBUG EQeD) RETURN

WRITE (S5¢100) XRBAR(NSEAS) o XDEV(NSTAS) oXRHIAINSEAS) ¢ ARVeXLAGT 9 X
100 FORMAT (/1Xe6(E11e4491X))



RETURN
END
c

C..'.o.'..o...'0.0000.0.0.‘00QQOQQ.....c..0.0..00'00.0-.00.....oooo.o.o

-~

c .
SUBROUTINE LINMITS (DTSLsReSeTORHN¢T1I24SI0vA9T-3)

o
c FIND LIMITS FOR TESPERATURE INTEGRATION
¢
c
T0 = - DTSL
‘ T23 = 23400 - OTSL
o
IF (DTSLeLTe0.0) GO TO 50
c
¢ FIND LIMITS OF INTEGRATION WHEMN ORSERVER 5%
c WEST OF THE STAMNOARD MERIDIAM
¢
c FOR SUNRISE
C
RHO = AINT(R+1.0) - DTSL
IF (RHG oLTe K) RHO = RHD + 1
¢
c FOR SUNSET
c
SIGMA = AINT(S+1) - DTSL
IF (SICMA oLTa. S) SIGMA = SIGMA + 1
c .
c FOR LOCAL NOOWN
c
T12 = 13.0 - DTsL
c
60 YO0 75
C
50 CONTINUE
c
€ FIND LIMITS OF INTEGRATION WHEM OBSERVER
c 1S EAST OF THE STANDASD MERIDIAM
c .
RHO = AINT(R) - OTSL
IF (RHO oLTe F) RHO = RHO + 1
o
SIGMA = AINT(S) - DTSL
IF (SIGMA oLT. S) SIGMA = SIGMA + 1
c _
Y12 = 12.0 - DT5L
o
7% CONTINUE
c
RETURN
END
c
C..’.......‘.Q....".‘.”..‘......-........'..‘....‘..l.'........Q'.".
c

SURROUTINF TEMPK (DELTAWPHIWBe TPRIMEs KOs Klg K2s K3e K4e KDy KE)



C
C SURRJUTINL TEMPK COMPUTES Tt COCFFICIENT.
C FOR THE TEMPEFATURE CGUATIOAN
C
C
p
C DELTA = DECLIWATICHN OF SUN IN RADIANS
C PHI = LATITUCE IN RADIANS
c B = VECTOR OF REGRESSION COEFFICIENT:
c TPRIME = YESTERDAY®*S TEMPERATURE AT 11 M4
o KO-K6 = COLFFICIENTS I8 TEYPIRATURE ECSUATION
C BO0-B&6 = CQUIVALENCED VARIAULES WITH 2 VECTOR tLEwERTS
C P = CONSTANT = 2*PI/24
C Ba2pPe = INTERKEDIATE VARIABLE USED FREGUIATLY
C
o
C
REAL KOeK1eK29KI9K49KS9KE
OIMENSION B(1)
(o
B0 = B(1)
g1 = 3(2)
B2 = B(3)
B3 = H(¢€4)
o
P = Je14159/12.0
2P = Bl*31 4+ Oxp
C
KO = TPKI®E
C
K1 = BO/B1
C
K2 = B2*SIN(DELTA)*2SINL(PHID)/2]
C
K3 = B1#B2+CCS(DELTA)I*COUS(PHI)/Z2P2
C
K4 = PAB2«COS(DELTAI*COS(PHI)/R2P2
C
K9S = PaPaBSaCOS(RELTAI*COS(PHI)/R2PZ
c .
K6 .= P*B12B3*«COS(DELTAI*COS(PHINI/Z222
C
RETURN
f£ND
C
c
C...‘............'.....'..’........‘.....’....‘..'.’....l’.........‘...
C
SUBROUTINE TEMPSHN € STy DTSLs KeSeBy KOeK1sK2eKSe Kbyl SgKhy
% CLDe KBARs GTOs WSPe WDRs THPLAGs THATs T )
c
[

INTEGER IDBUG
DOUBLE PRECISION DERUG(1)s DTE¥PS
REAL ROsK1eK2¢KS9K49KS4KS
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REAL I09011412+4134149415416917s ABAR

C
DIMENSTON B(1)
C
COVMON ZINTEG/ ICeT110124134144154156017
Co¥MaN /107 IFCADs IWRITFy TW<ub
COMMON /ZDEUG/Z NPRUGe DEHUG
COAYON /SWITCH/ SalICHle SWICHZ
~
OATA DTEMPS / *TEMPSHN L
o
C
C STATEMENT FUNCTIONS FOR INTEGRALS I2 AND 10
C
c
FUNCL(AB) = KZ2*(EXP(R1*A) - FEXP(R142%3))
FUNC2CA) = EXPAUII*A)*#(KZ2CAS(PaA) + X4xl IN(I'*A))
FUNC3(B) = EXPULBLI*BI*(KGASINIP*G) - KHE*CIS(2B))
C
c
C
C
C SET DEBUG FLAG
C
IDBUG = 1
C
C
C .
C SET SWITCHES THAT DETERMINE &HICH PREDICTOHCS Anl USED
C
SwWICH1 = 1
SWICHZ2 = ¢©
C
c
Bl = B(2)
B84 = B(D)
85 = B(6)
B6 = B(T)
B7 = B(8)
C
(o

C8000 WRITE (549000) (BC(J)ed=148)
C9000 FORMAT (1HUO4*TEMPS B VELTOR®*45Xs 4(E12e94aX)/T2004(E12e5¢5X))

C
C

1F ¢ SWICH1 +.E%e 0 ) KBAR = 1.000000
c
c

P = 3414159/12.00000

c
C
C CONVERT STANDARD TIMEC TO LeCaL TIYE
C

T = TAUCST)I* 1240/2.14159 - 12.0

(@]
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IF ( ST oLTe 045 «ANDe T «LTe Cel ) 5D TO
IF ( ST «0Te22e5 «ANDe T oGTe Z4e ) G TO %
IF (T olLTe 00 ) T = T ¢+ 24,00

!F ( T.GT. 24.00 ) T =71 - 2"..00

CONTINUE

IN ADDITINN TO SUNRISE AND SUNSET DETERMTINT THF LIMITS
OF THE wANGES OF THE TENPERATURE EJUATIONG

T0 = -DTSL
T12 = 12.0 - CTSL
T23 = 2Ze.0 - ULTSL

TP = T0 - 1.0
IFCIDRUGeEND) WwRITE C(INRITES1I3) TOaroeT12e¢59gT254TF
FORMAT (1H 9T4006(2XsE1043)7)

THE FORM OF INTEGRALS T1le I4e I5e I4s %D 17 AKFE THE
FOR ALL TIMES OF THE DAY. 12 AND I3 &wILL VARY 1IN
FORM DEPENDING ON THE TIHE CF DAY,

COMPUTE Ils T4y IS5« 164 17
I1 = K1+(EXP(BIT) = EXP(212TP))

IF ¢ SWICH1 +E%e 0 ) GO TO 40

PP = (140-FXP(=31))*EXP(E1+T)/HB1
B8 = 1e579E-8%(1a00+40417+CLD*#20) 4 (THPLAG*4E D) %%0,
I4 = S4*QR*PP + 14

CONTINUE
IF ( SJICHZ +FECe G ) GJ TO 50

15 = 25+GTO*PP + 1§

CONTINUE

16
17

R6*WUSP+PP + I6
BT7*UOR*PP + 17

(L]

CALCULATE SUBTOTAL

sSavg
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SUBTOT = 11 + 14 + 15 + 15 + 17

[ 2 o M)

Y

ORE GNP ISE

SUNRISE

C
C
C
IF (7T «GTe R > 5O TO 100
C
[of
Crxsxnxns RANGE 1 ~-- AFTER MIUNMNIGHT AND 3EF
C
C
C
GTT = SuBTOT
C
G0 T0O 900
C
C
100 IF ¢ T .GTe R + 1,00 ) GO TO 200
C
C
Conxraraar RANGE 2 -=FIRST HOUR CR FRACTION
C
C
C
C
12 = FULCI(Tek) = FUNC2(T) + FUNC2(R)
12 = 12*K2AR
C
13 = FUNC3(T)Y - FUNCA(R)
13 = KBAR»*1IS
C
GTT = 12 + I3 + SUBTOTY
C
GO0 T0 900
200 IF(C T «0Te T12 > GO TO 250
c
c -
Cxxaxxsrax RANGE 3 == AFTER SUNRISE ARD GBEFQOXRE HOON
c .
Q1 = FUNC1(TsT-140)
Q2 = FUNC2(T)
Q3 = FUNC2(T-1.D)
C
T12 = FUNC1(TeT=-1.0) = FUNCZC(T)Y + FUNC2(T=~1.C)
12 = T12+«KBAR + 12
C
IFCIDBUGSECSOIWRITE(IWSURIIC1IKBARy 12
291 FORMAT (2Xe *KBAR %y 2(t 12454 3X))
C
TI3 = FUNC3(T) = FUNCI(T-1.0)
13 = TI3*»KBAR + 15
C



GTT =
c
G0 TD
c
C
C
250 IF ¢ T
c
c
C
Cratxkkninr K
C
T2 =
I2 =
C
TI13 =
13 =
C
GTT =
G0 TO
C
300 IF C 7T
C
C
Cranandatak RA
C
C
T12 =
12 =
C
C
GTT =
C
GO T0
C
C
C
400 IF (T
[
C
Crarxaxaxs RA
c
C
T12 =
12 =
C
C
GTT =
C
GO 70
C
c
C

12 + 13 + SUBIOT
ang
«5Te T12 + 1.0 ) GO TO 200G
ANGE 4 ~~ F1RST HOUSN AFTCR LOCAL NOUHMN

FUNC1(TeT-1e0) = FUNC2(T) + FUNC2(T=-1.0)

TI2»KBAR + 12

FUNC3(12e0) = FUNMC3(T-1.0)
TIZ*KBAR + I3

I2 + I3 + SyzTQT

900
«GTe S ) CO TO 4CO
NGE 5 == AFTER LOCAL NOON EBUT BEFUSRL

FUNC1(TeT-1.0) FUNC2(T) + FUNC2(T=-1.0)

TI2*KHBAK + 12

Ie + 13 + SUBTOT

9C0

eGTe S+1.0 ) GO TO %00

NGE 6 == FI?ST HOUR AFTER SUNSET

FUNCL1(SeT=1.0) = FUNC2(S) + FUNC2(T-1.0)

TI2*xKBAR + 12

12 + 15 + SUBTOT

300

500 CONTINUL

SUNSET



- 345 -

c
Cassnanrs RANGE 7 =-- AFTER SUNSET
C
c
c MOTE: 12 DCES NOT CHAKGE “rEN T oGT. S
c 13 DOES NOT CHANGE aHEN T o6T. 12,0
c THUS USE ThE PREVIOUSLY CGHSUTLD VALUE® F0< I &RD 13
c THAT HAVE EBEEN STORED IN THE Cav@on /107567
c
c
GTT = 12 + I3 + SUETOT
-
c
c
300 CONTINUE
c
c
¢ NOW THAT THE FUNCTION GTT HAS HSEEN EVALJATCD,
c COMPUTE THE TEPERATURE AT TIWE T.
c
c
IFCI0OBUCSEGeD) "RITEC(H9990) GTTalleI2e1 4 Ttal%e16417
990 FORMAT € 2Xy YGTT ¢48(E12.5434))
C
¢
THAT = KO#EXP(=E1#(T=TP)) + GTT*LXP (= 1T}
c
c

CBD10 WRITE (549010) THATsKOsBlaTeTPsGTT
C9510 FORMAT (1HOs *TEMPSNYy 6(£12e6545X))
C
C

c

CAMA R A A RS R A AR R A AN R A L R kA AR R AN AR AN KA R AR R A A A A KA R A A RS E KA R AN AA RN A KA KA X R K £

RETURN
5950 CONTINUE

CQiﬁﬁit.iiQ*ﬁtiititlttﬁt***i*t**i*ii*iﬁi*ttﬁﬁtl*ii*i*iﬁ*diﬁtiﬁ**' Ak kA Rk K

DEBUG [NFORMATION FCOnh TEMPSN

e NeoNeNoNel

WRITE (546000)
6000 FORMAT (1H1/72C1H*3100C1H )/ )e1t4 4250 8Hs*x4))
¢
VRITE (546005)
6005 FORMAT (1t o10C4H»#2ax) 3 T044YDEIUG TEMPLNO TH1 91004 Kass)/ /)
c
WRITE (596010) Te TPy Ky €
6010 FORMAT (11 ¢*TIML PARAME TELRYL 472 el tdTal2Xe HTP 15Xy 11
L] 153Xe1HS/ 10X 405X F 1304
c
WRITC (H4€020)
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6020 FORMAT (//1H o7 Xoe*r 0% yi2Xe P K1 y12Xg Ky 1 X9 vA20412X,
¥ TKY® 12X s 'KG 1 412X e tKA")

WRITE (S900350)K09n19K2eK39KbeKS9KA
6030 FORMAT (1t +8(3Xet1144))

WRITE (5+6340)
6040 FORMAT (//91H oTAaZHY Gwl2X92H01412X¢2HE 2 91 X e FR3410X 42K 4
1 12X92HB5e¢ 12X e 7 HBG 012X 42HBT)

WRITE (5460300 (BC%)gr=148)

WRITE (546035)
6335 FORMAT (//71H ¢6Xe3HTLDs10K9HT " PLAG ¢9Xs H 5P al1.Xe 2HWDR)
aRITE (S9€£030) CLOe T¥PLAGy 4554 WDR

WRITE (546050)
6350 FORMAT (//1H +b6XelHOTTel12Xe2HI1910Xe2HIZ el 2Xe i l2g12X gsHIbG
% 12X 9 2HID 912X 42HI 69 12X 4 2HIT)

“PITE (£45030) GTTQI]‘12915014915916917
WRITE (546060)
606C FORMAT (//1H +5Xa4HTIYEg11XeaHTE “P)
C
ARITE (S596030) ToTHAT
C
WHITE (546070)
6070 FORVAT (//1H 429(4Hx243))

OO0 o0

C.t*tiit*ii*iﬁtt***tiiti**titiii*iitii**it*tﬁii'niiii'kﬂtiﬁit'titttﬂtﬁ!ﬂ

C‘iii\i**tii*iiti*r*i*ti*ﬁtttitii*'*ﬁQtfi**ﬂﬁdtitt*liﬂtt.tﬁ*lnii‘ifﬂﬁttt

C
c
RETURN
END
C
C".‘.".‘..."...'...'...'......'..‘...l.......'Ol..........l.'....-.'
c .
SUBROUTINE LONGWV (TFI14TF24TOF19TOF24CLN14CLO24LY)
g
C COMPUTE LONGWAVE RADIATION
C
C TCoeeo e TEMPERATURE IN DEGRELS CELSIUS
c ClileaeeeCLOUD COVEF (C<= CLD >=1)
c LadeesseCOAFUTED LONGWAVE RASIATION
C TOCeae e DEWPOINT TEMPERATURE If DEG C
c VPeeees VAPOR PRPESSURE IN MILLIGARS
C SVPees e SATURATED VAPOR PRESSHURE IN MILLIBAKS
C
REAL LW
C

COMMON /VAPCRP/ VP
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OO0

an0n

o
c
o
C COANVERT DEG F TO 0DEG C
C

TOAVE = (TDF1+TDF2)/2.0

TAVE = (TF1+TF2)/2.0
C
' TC = (TAVE = 32.034(5.,0/%.0)

TOC = (TDAVE = 3240)%(5.0/9.0)

CONVERT CELSIUS TO KELVIRM

TK = TC + 273.16
c
C
» DEFINE THE VALUE OF THE STEPHEN=BCOLTZ~¥AN CONMSTANT
C CCAL/Z(CM*x2 » MIi, * Kxxi4))
c

S = 0.826€-10
C
C
c OEF INE THE VALUF OF ATMOSPHERIC EMISSIVITY
C ,

CALL VAPDR (TCsTLCeVPyH5VPR)
C

£ 2 0670 + 9e990=054VP*EXP (15004 /TK)

COMPUTF LONOWAVE RADIATION

Lw = E*5*TKa#4,0
o
c
c ACCOUNT FOR CLOUDINESS
C

C = € 1.0 + 04172CLD#**2.0 )
c

Lw = C*LW
ol .
c
C COMPUTE TOTAL LONGWAVE FOR JONE HOUR (Ife 60 “[NUTLCS)
c

LY = Lw*60.0
c
c

RETURN

END
C
C..."l.....‘......".l‘.....t...000.0.'...0...'0.....6l.....l'..l.l.-.
o ,

SUBROUTINEG DEWSIM (ACUEFsDEWLACy TEMPoCLU s ! IIF ¢ dSE s DEW)
¢

c
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DEWSIM USCS THE FOLLOWING MOUEL TD GENEKATE UFWPOINTS

TDCT) = AQ + AL*«TN(T=1) + A2«THP + AS«CLD + A4+ 0117 + ASwaSP

DIMENSION ACOEF (1)

GENERATE TODAY®*S DEWPOINTS

DEW = ACOEF (1) +ACOEF(D)*DCWLAG +ACOEF(2)2TF»2 o
$ ACOEF C4)=CLD » ACCEF(S)*WDIR +ACHEF(ni*xwlF

RETURN
END

® 8 0000800600005 00POEBTOCLOEECOLOL00000008 000000600008 0000006ersoetonoecsvece

SUBROJTINE MSTAT (NeAeZeCeDosE e A5 My XXT)

ACCUMULATE RAW SUMS AND RAW SU“S OF SQUARES AND CK(GSS PROUUCTS

DIMENSION ACNY BN g ClN)gDIN) s L(N) o RAUSLMEE) o XAT(S 95 ) e X (5)

DO 100 I = 1eN

LOAJ DATA INTO wURK ARRAY

X€(1) = ACD)
X€(2) = 8(1)
X(3) = Ct1)
X€4) = DCD)
X(H) = ECI)

COMPUTE RAW SUMS
DO 200 U = 145
RAASUMCJU) = RAWSUMCYY + X(I)
DO 209 K = 145
XXT(KeJ) = XXTC(K9d) + X(KI)*X(J)
200 CONTIWNUE
100 CONTINUE

RETURH
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EnD
c
COI..........-..Q....O.Q.O..Ql..l'...".....0....0..'...OQ...C.....A.Q.
C
c

SURROUTINT FSTAT (IDIMyRAWSUY ¢ XXT4MEANCIV AT COK¥AT«NDATA)

COMPUTE THE “EAN VECTGRe THE COVARTANCE MATZIX, ANMD THE
CORRELATION FATRIX

[ EeEeNe e

DIMENSTON RAWSJIMCIDIN)y XXTC(IDIASIDIM)e MTANCIDIN)
DIMENSTON COVMATCIDINGICI)s CORAATCILIMe1U1M)
DIMENSTION MMT(3,5)

REAL MEAN MMT

COMPUTE MEANS AND AVERAGE CRGSS PROGUCTS

OO0

DO 100 I = 14131M
MEANCL) = RAJSUMII)ZLDATA
00 100 J = 14101
XXTCJeI) = XXTLJOWID/HLATA
100 CONTINUL

MULTTIPLY THE Mo AN VECTOP Y ITS TRANMSPCSE

[zl eNeNel

DO 200 I = 14101V
DO 200 J = 14101IM
MMT(Je 1) = MEANCJII*ZEANC]D)
200 CONTINUE

COMPUTE COVARIANCE MATRIX

[eEeReRel

DO 300 1 15 ID1IM
Do 300 J leI01N
COVHMAT (JeI) = XXTUJsID) = MNMT(JeI)
300 CONTINUE

0nou

COMPUTE THE CORRELATION MATRIX

loNeNeNal

DO 400 I = 14101
DO 400 J = 1,I01%
CORMAT(J4I) = COVMAT(Ja1)/SORVCCOVMAT( I J)I*CT MAT(T$T))
430 CONTINUE

g Nel

RETURN

END
¢
C.O.‘.O.‘.0.0..‘...0....0‘00.....Dl.'O..'..........’.'0..00‘.0..0.0....

c
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SUBROUTINE RAWLAG (IDT-igJPeDATAYSUMgSUMNL Qe UMI o XHAR g XVAR S XSKE a e
$ HNR o F0)

UPDATE ARRAY FOR AUTOCORRELATION ANALYSIS

INT"MeceeeIIMINSION OF DATA ARRAY AND MAX LAG

JPesesees POINTER FOR CURRENT 0f LATEST DATUH

DATAeeee e DATA ARRAY ( A SCISCULARY CATA ARRAY )
ReeesseeeSUM OF SGUARES AND CROSS=FRODUCT ARRAY

DIMENSION DATACIDIM)e RCIDIM™)
COMMON /107 INeISeIB
BUG = °C*OFF
IK = JFP
REFERENCE FOR THE EGUATIONS TO CONPUTE AUTOCOSRELATIOMS
HAANs CHARLES T.3STATISTICAL METHODS I& HYDROLCCY,

TOWA STATE UKRIVIRSITY PRLSS91977e PAGE 228y EQ (11413)

IF (BUG +Ede *ON") WRITE (54910)
910 FORMAT (°* RALLAGL®)

X = DATACJUP)
CALL STAT (XeSUYeSUMSySUMIZXBARIXVARXSKIWehR)
DO 100 K = 14I0IM
IF (BUG EQe. TON®) WRITE (54920
920 FORMAT (v RAWLAG2")

IF (BUG «EQe 'ON® ) WRITE (IBs300) KeJPsIK

RCK) = R(K) + DATA(JP)I*DATACIXK)

IK = IK - 1
IF (IK oLEe 0) IK = IK + IDIM

100 CONTINUE

300 FORMAT (1XePK= v 4]242XetJP=94I242Xe'IK="417)

RETURN
END
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C...O.l...olo‘.-00.0...0....0.0..0‘....‘.........4-0.0.0.4-..0.00.000noo

c
SUBROUTINC AUTOCG (MLAGs RHGs XbANe XVAXs '"'Me TITLL)
c
C DETERMINE THE AUFTOCURRELATION FUNCTION. THEZ MAXIMLM LAG IS MLAC.
C
C .
C REFERENCE FOR THE EGUATICYNS TO COMPUTE AUTSCHURELATION 2
c -
C HAANe CHARLES ToiSTATISTICAL METHCODS IN HYTRGLOGY.
C IOWA STATE UKRIVERSITY PRESSe1977s PAGF 2284 FhG (11613)
C
c
C ALAGeewee MAXTMUM LAG
C RHOeesaseeRAY CATA IN === AUTCCORKRECLATION CQUT
C XBAReeeeoMTAN UF CURKENT DATA TYPL
C XVAR.aee«s VARIANCE OF CURRLCHKT DATA TYPE, -
C NNeeoseoeoeoo NUMBEIR COF DATA POINTS IN “NNTH
c
C
DIMENSTION RHO(MLAG)
DIMENSION TITLECL)
CoMMON /IU/ INe I3 1B
C
BUG = “YOFF?
IF (BUG oEde YON?') WRITE (IH43300) (TI7LFC D) eM=1e0) .
IF (BUG «EGe *ONY) WRITE (I8543310) (RUHOCK) 9KZ1aMNLACY el e Xl "y
3 XVAR
C
DO 100 K = 14MLAG
c
RHOCK) = (RHO(K)} = NN*xBAR*XDARDY /Z((NN=1)*X /L)
C
100 CONTINUE
C
IF (BUG oEQe *0ONT') WRITL AIDWaB310) (RHIC(K2eKZTaVLAC)
C
At ITE (154900)
900 FORMAT (1H1,415(5H ))
C
WRITE (1S54910) (TITLE(")eMN=143)
910 FORMAT (1H +1%Xs YAUTOCORRELATIOYN FUNCTION FOh *e%A%/)
C
WRITE (1Ss920) (KeK=0411)e (RHO(K) +K=1412)
920 FORMAT (TXe*LAG *¢1215/6Xs13(o5H~~~=~ Y/ TXe*RHD *912F5.27)
WRITE (1Se920) (KeK=12423) 9 (RHI( DM =12e24)
C

9300 FORMAT (1Xe16A%5)
3910 FORMAT (IXs4(6F1062/)/71X9%NNS %y [0 SXetXBA = V4F10acy
$ EXVAT = Y 4F10.2//)

C
c

RETURN
END

]
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[ ]
C.-.QQ.'........'.0.0.0'O..'O...'l..'..'......000'OOOOOIOIO.QQIQOQQ.C..

("
SUBROUTINE MARGAY (i gPOF gCUDND s AgE o XBARGXDF Ve XKHO 9 SKENeXLAGL e Xy AT V)

GLENERATE THE NEXT DATUM CF A FIRST ORDER MARXKNAV PROCESS WHISTE
VARIATES ARE GAMMA UISTYAIHUTED.

Neoowoososo NUMPER (OF OEDILATES I PLF .

POFeseeee ARRAY CONTATNING ELEMENTS GF PROBABILITY DISTRIEUTIGC!
FUNCTION (HISTOGKRAM FORM) WHICH TIH " (Delde

COOKODeees CCGORDINATES NF FODF

Aeeeseees LEFT BOUND OF PNOF

DeooswsseseRIGHT BOUND GF POUF

X35AReeeee PRGCESS MEAYM

XDEVeoswee”ROCESS STANIARD DEVIATION

XRHDeoee s PROCESS LAG-1 AUTOCORRELATION COECEFICIENT

XLAGl eee e PREVIJUS VALUE COF PROCESS -

SKEWeoeeooe GAMItA DISTRIGUTION SKEW COEFFICIENT

Xeosooeooes CURRENT VALUEL 0OF THE PRCCESS

KEFERENCE S
HAANe CHARLES T.3STATISTICAL HMETHGCDY IN HYDPOLCGYe
IOWA STATE UNIVESRSITY PRLSSe 1977

[zEeBeNeNe NN NN N NaNo N NeNeNaNeNe e Ne leNel

C
DIMENSION POF(1)9COORI. (1) o XPARCL) ¢ XDEVEI)yXRHC(1) 9SKFL (1)
C
C SET NUMBZR OF SEASONS TO ONE
C
NSEAS = 1
C .
C EVALUATE RANDOM COMFONENT DISTRIBUTED ACCOIDING TO PDF
[«
C 10 ARV = AFVA (PDFyNysAsECOORDWNSEAS)
10 CALL wORMAL (ARV)
c )
C TO CONTERACT THE PROuLEM OF 3JDDEN SAIFTES IN A GEMERATED TIMT SEnIfS
C WHOSE VARIATE 1S SKEweD ASD HAS A HIGH (LG S EATER THAN +8) LAG-1
C AUTOCORREZLATIO«w CCEFFICILNTe RESTRICT THEL ULSAGE OF THE TAIL GF THE
C MN(Del) THAT CAUSLCS THFE ,PROBLEY.
c
C BY RESTRICTING EXCURSIONS INTO THE OFFENDING TAIL T3 ABICLUTL VALUYCS
C BELOW 2e8¢ ONLY 0e26 PERCENT OF THT DISTXRIZUTION IS RESTRICTED,
C .
c le IF THE SKEW 1S NEGATIVEs RESTRICT THE ZGATIVE TAIL OF :H(0s1)
c 2¢ IF THE SKEW IS POSITIVLs RESTRICT THL FOSITIVE TAIL OF ~(0l.1)
c
IF (A3SCAKV) oLEe 2.£) GO TO 490
C
IF C(ARV) 204 404 30
20 1F (SALW(NSEAS)) 10 4Ue 40
30 IF (SAKCW(NSCAS)) 40e 40y 10
c

40 CONTINUE



- 383 -

c 8
C
C
C EVALUATE RANDOM COMFONENT
~
CSE = (160 =XRHO(NSEAS)*#w340) =S _wlNSHAES)Y
s (1e0 = XPHO(NLEAS)* 22, 0)2x]1,.5
C
£ = €260/CSUI*(1o0+C3E*ARV/Se0 = CSTACST /36 ed*> 340
$ - 2.0/CSE
C
C GENERATE THE NEXT VALUE QF THE PROCISS
C
X = XBARCNSLCAS) + XRHO(LSEAN)*(XLAGL - NXDBAZ(HUFAY)) +
3 CAXOEV(USEAS) #SART(l e 0= XRHOCASEASIAXRHOULNSET AS))
c
o 4
o XLAG1 COULD 8L SOT ECUAL TO X AT THIS POINT OF CHECKELD Fon
C NEGATIVE NUMLGERS, HOWEVEE THE NATURE CF THLSE CobCrSE CEZPLNES
C ON THE VARIATC BEILI.G GENERATED, THERFFCRY ¢ THESH CHECKZ ACF
c MADE I%N THE CALLLIIC ROUTING WiERZ THE IR 'TITY ) THE VARI[ATE
C IS KNDWN ALONG WITH THE PLCULIARITIES ASS.CIATED wiTH 1T,
o
IDEBUS = €
IF CIUEEUG +ELe0) RETURYN
WRITE (54100) XPAXCNSLAS) o XIEVI(NSEAS) o XRHOI (T LS ) o AR Ve XLAGT o X
Y 3SKTWeCSELE
100 FORMAT (/1Xe6(E11.4e1X))
RETURY
EnD
C
C..‘..'.'......'.............'."'..‘.......Q.....’."".........'......
C

SUBROUTINE PUNCH (IPUNCHe RAINMe VPe W3SPYe Swie iy TENPY)

C
C CONVERT THE DATA GUNFRATED BY THE C° MOUFL 10 08TA LITH UNITE
C C

COMPATASLE WITH ~ILLYYS LAND SURFA

(o]

CHAANR AR A A AR RN AR AN TR R AR AR A AR A RN AR AN R A AR A AR AR KA A AR AN N A AR AR AR AR ARR AN RS Ak A&
Croxann INPUT VARIABLES APAARK A A KA AN A XA E R A AR KRN A AR R I AR A AFT KRR AR R AR A& Nk k&
[ R R R R R Ry R R S R R

c

C IPUNCH ees UNLIT JUMEEP FOR OUTPUT DATA FILE

C RAINYM eae PRECIPITATION IH M™/HR

c vP ees VAPOR PREILURE 1IN MILLIBAXS

C WSP! eee wlnND SPEED IN M/STC

C SWwR eee SOLAR RADIATICON TH LANOLLEYS/HR

C L eoe LONGUWAVE RADIATION IN LANGLEYS/HR

C TEMPM  eee TEMPERATUAY It DEC C

C
ciﬁ*ﬁ**ttitiiikﬁ*itii*i*ititttit*ii*\&iii'ittdtﬁ‘it*fitﬁiiﬁi*t‘ikkitﬁttiit
Crrdhhx QUTFUT VARIABLES FRAAAAN R AR AR AN T A AR R AR AN R AR ARSI R AR AR R A b Ak
C*t*ii*i**li**i.iﬁ*iii*ﬁAtﬂ‘ﬁi*niiﬁ*tit*ﬁi.ti‘*ii‘iiittﬂtiiii*ti*ittti*‘
C

C PRLCIP esee PPECIPITATION IN CH/SLC



- 354 -

c RitQVA ese WATELRN VAPUR UDEHSTITY 170 GOAMS/CAmal
C RADS eee SHORTWAVE RADIATIOW Iw LANGLEY/IEC
C RADLLD  eee LONGWAVE +FADIATIN'. IN LANGLEY/CTEC
C TEMPM eee TTAPERATU Y IN DEN C
o
Cﬁ.'ﬁﬁiii.tlﬁ'.*ﬁ*ﬁiﬁﬁiﬁﬁtﬁi*‘.Qiﬁlﬁﬁﬁii.iﬁtlltﬁ“ii"h*ﬁﬂi“*ﬁ.ﬁniltﬁt’
C
REAL oW
C
C
Cawsws  PRECIPITATION CONVERCION
C CM/SEC = (MM/HR) & (Cr/100%)* (4~ /360050C)
c
PRECIP = RAINVM/36500.00
C
c .
Cranse VAPOR DENSITY CORVEKSIOM
C
RHOVA = (04022/2.876E+086) * VP / (273.16 + TTNEM)
C
c
c
Caexaw  WYING SPEED CONVEHXRSION
C CM/5EC = (M/7SeCrysCliocCvsH)
C
UA = JSPM+100.00
c
C
Cessaas RADIATION CONVERSIOH
C LANGLEY/SEC = (LANGLEY/ZHA)*(HY/35004)
C
RADS = SWR/J3600.
RADLD = Lw/3600. '
¢ '
C
Cewwss  DATA QUTPJT SECTION
C
C WRITE (IPUCHe900 ) PRIECIPy PHOVAs UAs FASey RADLDs TENPH
ARITE (IPUNCHeS03) RATHMe VPy LSPMy SWkse Lug TEMPY
900 FORMAT (6L13e3)
C

CHAARA R A XA RA LI R A R AARN A AR AR RN A AR A AR AN AR AR R A AR RS R A AN A TP A R AR N A A A ARk A Ak k2 h

c

RETURY

END
C
c.-.O-Dn.o.0‘t'.ono....cl..b.......ot.ooo.o.oooobon--o..oo.o.c..'lootvc
c

SUBRUJTINE PLOT (IMelialHeNMAXSTEMPsDEWsS FowRLeCLDIFAT Y,
% WSPelilIRsSTOR sy IPL e Ty TE)

DATA PLOTTING SUBROUTINC

e N eNeNel

IMesoere s CURRENT MONTH



OO0 OM0OSOOON0 O

s BaNeNe! (e Ne]

lal

s NeNeNeNeRel

IDeeoeee e CURPENT DAY

IHoo.o-ooCUR?{E_-MT HOUR

NMAXaooos MEXTMUM ~UF-ER GF LINES BEFORE NEW TITLFE AND
TEFMPaoeos TCMFERATJRE

DEWoeoeosoe DL IFOINT TL~PERATURE

SWwReseeese SHOPT WAVE ~ADIATICN

*.JRL......LO»\'S WAVID RADTIATION

ClDeseoesCLCUD CCOVER

RAINsesoeos RATLFALL

4ASPeseseewIND SPECD

WDIReoeeeWIND CIREZCTION

IPLecesasFLAG FOR WHICH COMBINATION GF DATA 1. PLOTIED

IPL = 1 TEMPe CEwWe SwRe dxbLe CLOe AND RAIN P
IPL = 2 SuRe WRi e CLUs RAIN PLOTTED
IPL = 3 WSPy wDIR BLSTTED

STORMesee e ON/OFF FLAG TO DUTERMINE IF IT IS RAILING

THeeooae s REGINNING OF TEVFERATURE RA&MGL FOR S9DINATF SCALLE

TEeeseees END OF TEMPERATURE RAND FO< ORDINATI SCALF

DIMENSION SY4e0L(139)
INTEGER CALCLZ)
INTEGCR PPTEVFs PPDEde FPUFF e PPSdRe PPLWRe PPCLT

CoMMO N /L INES/ NLINEDS
COMMDNY /107 INe ISy L3
DATA CAL /31928e31 030931920931 a31930¢%1430431/

IC = ©

SET UP PAGE HEADINGS
IF (NLINES «GTe 0) GG TO 20QC

wRITE (IC4870)
870 FORFAT(IH1.110C1H )/1H+ 5110C11 ))

GO TO (1004+1204140) IPL
100 CONTINUE

CALL ROUND (TL«I1T7E)

CALL ROUND (TrsITo)

HEADINGS FOR PLOTTING 6 DATA POINTS

WRITE (ICs8E0)

880 FORMAT (1H +1312¢(1HI))
«RITE (ICe8EL)

881 FORMAT (1H 43%Xe*% CONSTRAINED :=TOCHASTIC CLIMATE S1
3 ! (CSCS) e 8X)

HERADING

LCTTCD

KARINAXANR AN AL R A NARNARRA R AN LN RN AR EARNNANAN T ANT R AR ARY AR AR A AR PR E R A A kb

MULATION



- 3‘:,6 -

BRITE (IC,8862) s
BB2 FORMAT (1H 4112¢1H2)/)
WRITE (ICsy5C1)
901 FORMAT (1H +T154*HAGUKLY TEMPERATURES (DFG C)%y T71e *HRADIATION ¢,
$ *CLANGLY/HOUR) g T10541CLOUD (#) )
WRITE (ICs902)
702 FORMAT (1H oT1Re (T = TENMP, D = DEW PT) V4 T5Bs?(S = SHGFT WAVE, ¥
1 o®L = LONG wAVF)®gT104¢ #axRATIann?)
INCR = 10
WRITE (IC9203) (IsI=1TEITEWINCH)e (I4I=20480420)
305 FORMAT (1H oTeebI10eT060441100T1034%0 5 10)
WRITE (1Ce904)
04 FORMAT (1H o®MM/ULUIHR . g5 (Htlmmmmt)gtmuma g ¥y S (HHmmmay),

% YH=mm g g2 (tiHHmm——t))
C
NLIRKES = WLINES + 8
C -’
GO TO 290
C
Ct."itt*ﬂiiitltt*ﬁtttlt**l*ntiait**.lkn*tﬁkt*ttitititiiiitttti*iiﬁtttt.
C
C
120 CONTIUE
C
C W2ITE HEADINGS FCOP 4 VAKIABLE PLOT
C
“ARITE (1C+890)
290 FOR™AT (1H +63C1HZ))
YO0 FORMAT (1H +B8BXe® CONCLPTUAL STOCHASTIC CLIMATE SIYULATIOC*
$ 'S (CSCS) ?42X)
WRITE (ICs900)
WRITE (ICs891)
891 FORMAT (1H ¢63(1HI)/)
WRITE (ICes910)
10 FORMAT (1F oT18Be*t~ARTATICN (LALGLY/ZHOUPY Yy TARE«*CLOGUL (%))
JRITE (ICs%11)
311 FORMATC(IH oT1oe?(S = “HOHRTWAVE S L = LONMG (AVE) *4 T34,
L] *axs RAIN xat)
WRITE (1Ce912) (I141=10470920)
512 FORMAT (1H +T6¢41108eT%44%0 e 1)
WRITE (ICy913) PR
215 FORMAT (1H o*®MM/DUTHR V9B (OH====4)g4H-==eq 42 (HiH~~==4))
C
NLINES = NLINES + 8
C
GO TO 200
Cc

Chrddkhhkkth kkd kA N AN AR Rk a ARk A AR S A A AR R IR AR AN AR R A A AR AR AA R AR R A AR AR A A AN AL A&

c
140 CONTINUL

RESERVED FOR HEADINGS FO™ WwIND AND -wIND DIRECTION

ERF A AR AR ARARARA R KRR R AN N A AR R A A AR AR AR AR AR AR AN KRR AN A AR AR P AR A A A S A AR S R A AN b a

c
c
C
C
C



(@] s EeNeREeNel (e}

(o N eNeNe!

aNeoNaNeNel

~ oo

aoo

200 CONTIUE
DETERMINE PLOTTING POSITIONS
INITIALIZE THE PLOTTING POINT OFFCZET

PPOFF
IRMIN

1
1

GO T3 (210+2204230) IPL

DETERMINE PLOTTING POSITIONS
210 T7T = TEMP
CALL ROUNDY (TT4IT) P
DD = Ot w
CALL ROUND (Dus10M)
ADD PLOTTING POSITION OFFSCT
FIRSTe CONVEKT T TG UNITS OF 2 LrGREES

181 = 78
CALL ROUND (T0141751)

ACCOUNT FOR THE OFFSET FRO™ THE LEFT SIGE OF THLD GRAPH TG

ITBO = ITB1 - 5

ADD PLOTTING POSITION OFFSET

PPTCMP = IT - 1780
FPDEY = I0W = ITboO
PPOFF = 49 + PPOFF
IR¥INY = PPOFF

IF (PPTEMP oGT. PPOFF) PPTE“P = PPOFF
1F (PPDLW +GT. PPOEF) PPUfJ = FPOFF

220 CONTINUE

SW = 3WRE/c 60
CALL ROUND (SaslSu)
A o= JRL/260
CALL ROUND (dLeTuL)

PPSWR = ISw + PPOGFF
PPLWR = 1WL + PPOFF
PPOFF = 44 + PPQFF
IF (PPSWR «GTa. PPOFF) PPLWR = I'POFF
IF (PPLWR «GTe FPOFF) PPL.R = BPTFF

Tl



CLOY = CLU+*10.
CALL RGOGUNO (CLDYsICLD)

C
IF CICLD «LTe 0) [CLY = O
IF (ICLD «G6Ts 10) ICL' = 10
c
PPCLD = ICLD + PPOFF
PPOFF = PPOFF + 10
c
IF (PPCLD +5T. PPIFF) PPCLD = SPOFF
NPMAX = PPOFSF
50 10 250
c
c
C*iﬁii*ﬁii*ii’*‘.ﬁf.i‘i*tiitﬁi't‘tti*i*kﬁtit.‘ii'itﬁﬁiiitti*tiﬁt’ﬁi*'iiitt
C L4
c

230 CONTINUL
c
C RLSERVED FOR SETTING PLOTTING POSITIONS FCR ¢ IND AND WIND DIRFCTILN
C

290 CONTIMUE

AP R AR AT RAAR A AR A AN AN RS R AN R AR AR A NRR A A AR ANR AR D AR A AR R A AR R A AR N A AN DL bRk

SET UP SY™EOL ARKAY

(el N e Wl

DO 300 I = 14135
SYMEQL(I) = v ¢ }
IF (I4 WHEe 23) 50 TO 300
IF Ci_LINES .GE. “vAX=1) GO TO
SYMBOL(I) = v_v

300 CONTIVUE

(~
W
[

GO TD (3054520+60C0) IFL

3065 CONTIUE
G0 TO %15
IF (1)4 «LTa 10) GO TO 318
DO 317 I = 1041DuWs10
SYMBOL(I) = ¢t

3103 CONTIVUE

315 CONTINUE

DO 33} I = PPCEwsPTENE
SYMPOL(I) = ®-¢
330 CONTI UL

SYMBOL(PPDEW) = *0°
SYXEJL(PPTENP)= *T¢
120 CONTIIUE



DO 367 1 = IRYINGPPSUR
SYMBOL(I) = *7¢

3606 CONTINUE
SYMBOL(PPSWR) = 5+

SYMBOL(PPLWR) L
c
SYMBOL(NPMAX) = 9]¢
SYMBOL{(NPMAX=10) = *]°
SYMBOLU(PPCLU) = 9ws9
SYMBOL (1) = ]
SYMBOL (5PYAX~54) = 9]¢
~
CHXRARARAN AR ANRANR A A A R AR AN R A N KRR T RANA R A RN AR AR AN AN R ARN A AN R R AP AR A A A A A A k&
C
C

IF (STORM <EGe. *OFF®) GO TO 37C
NPMAX = NP¥AX - 10

PLOT DATA IF STORM IS *0N°

la N Nel

GO TG (48304410) IRL

O

400 WRITE (IC9550) IMyIDgTHe(SYMBOL (I)el=1grPrAX) oKATYN
G50 FORMAT C1H 21297/ 9124120 3T1290064 1% %0 a® 3F4olglXgtsnt)
60 TO 500

410 WRITE (1C4960) IMeIDsThe(SYMBOL(I)eI=1oNPHAX) orATL
SED0 FORMAT (1M 912¢%/%120a%0%3]1298 219?422t 3Fd,lelXeg?srt)
GO TO S¢00

370 CONTINUE

WRITE (ICeS70) IMeIDelHe(SYMBOL(I)gI=1eNPMAX)
970 FORMAT (1H +TZe"/%el24%i%9124120A1)

500 CONTINUE

NLINES = NLINES + 1
IF (ID.EQeCALCI¥) JANDe IHeEQGeZ23) NLINES = O
IF C(HLINES «GEe Me¥MAX) NLINES = 2

IF (NLINES GTe 0) GO TO £00
GO TO (56G4570) 1IFL
560 WRITF (ICs204)
WRITE (ICeR03) (Is1=TTHeITEoINCR) s (I4I=20+8D04920)
60 TO 6CO
570 WRITL (ICy913)
YRITE (ICe912) (T41=10470+201
600 CONTINUE )
RETURN



APPENDIX F
TEMPERATURE MODEL PARAMETER ESTIMATION PROGRAM LISTING



c
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]

C....'......O'.....l.......0..0.......I........'......I........CO..

c

OO0 O0O0O0O000000O0O0O 00

(%]

e NeNe]

PROGR AN TEMPER

PROGRAM TEMPER IS USID TO ESTIZATY THE RIGPESIILY

CUZFFICIINTS FO

THE DETEXVYINISTIC CCAPGHENT OF THE TOMPERATURD *0DELe  ThL PR3GRA™
12 CURREMTLY SET UP FOR MINTHLY PAAATETL- ESTIVMATION. 1F AxY 570
PERIODS ARE TO BE USEGs SJRRDUTINE JATEDl «ILL HAVE TQ OF AMODNIFIED

IN ORDER THAT THE DATE COJNTERS ARE UPDATED
PRCCRAMMERS
DAVIS Ce CURTIS
NORTHELST IIVER FORt CAST CENTLR
705 SLOOMFIELD AVE
BLOOMFIELDs CT U6ULD2 7

(203) 245-2520

INTEGER RANGE
INTEGEK SELASON(1Z)

PEAL*R DEBUGL20)
REAL*B TZONFeT2C4)
RFEAL KBARDR

NIMENSTON
DIMENSION
DIMENSION
DIMENSIGN
DIMENSICN
CIKENSTION

XY(EBY«XXT (B3
ACZ) e (3)
TPRIME(ZS) o
KHEAROBCZ2S) e GRTIEMIC25),
WSPFED(25%) s #DIK(29)
ACOLF(R)e BCOEF (8

THAT("S)
CLOJD(2%)

COMMON 21C/ IREAUSIWRITE#IWCEUGeIPARMe 18CTT

FROPERLY .

COMMON /UHUG/Z MEUG. SELDUG

COMMON /SEAS/ NSEAS

COMMON /ORBIT/ FHL4THETASsTHETAL»EP T Tew

cowvoN /SUn/ DELTAs DTSLe SResSS

COMMON /JDATES/ JMLBATy JULRELs JHEGT'e JULENDe JRANGES NXLFYI
$ sJITART,y JSTIPy JRENDs JYTAK

COMMON /DATES/ 1YRs IMOy IDAYe LYRs L"Cs LIAY

COMMON /YSTAT/ YS5U4e YSUMSQs YREAile RSGUA®

DATA T2/BHEASTERN oRHCENTRAL o« BHMOUNTATYN

SEY INPUT/OUTPUT UNIT NUMGERS

TREAD 21
JT4RITE 5
IWBLUG

IPARM
IBCOE

un Ry
n
S W

n
g

+BHPLCIFIC /



c [ ]
c
c
c CALL TRANSLATOR PROGRA~” FOR INTERACTIVE INPUT
c
CALL TRTEMP (IRELD)
c
C
C
c
CO000C000GOC0000C03000eeseaceeOPFNeoeeessalB0GNICLOOCCICOR0CECD
C
C DATA FILE DEFINITION:
c
c DCCTYPDAT .ee INFUT DATA FILE
C DCCTMP.EUG eee DEDUG DATA FILE -’
c DCCTMP.PRBM ... OBSERVED DATA FILE
c DCBCGF+DAT eee REGRESSION COEFFICIENT QUTYPULT FILE
C
c

OPEN (UMIT=IRCAGYJEVIC =®DGKY g ACCESS = SEGT LY oF TLEZ'ECCTYPL AT

IF (1.9ITE .E2e %) GO 10 £%

DPEN (UNITZIWRITE G DEVICE=YUSKY ACCESSTYSFGAUT GFILEZ'DCCTYF 00T Y)
8° CONTILUE '

OPEN (UNIT=1WRUGSDEVIC =00SKe3ACCISS=vSEGOUT Yo FILE=YLCCTHP L EUGY)

CPEN (UHITZIPARMeDEVICT =PDSKY 20 CESS=YSELI N *4FILE="DCCT#PPH ")

OPEN (UNIT=I2COE DEVICIZYLSKY g ACCESS=PSE20UTYeFILE='0CLCOF 43ATY)

OOO()OOOOOO(‘OOOUOOOOOO-- *0 00 .OPLNOO ceo oo 000000-‘900000000(’0000

INPUT DATA SECTION

[sNaNeNeleNe!

CXAXXXPEAL C(IREADS1CO0) IREAU ISFITE. 1.8UG
CX100 FOR™AT (31%)
c
READ (IREAN.110) MEUG (DEFUG(I)e I=1NRUG)
110 FORMAT (I99EXe7(L892X)/CICKXeT(ARY2X D))

C

800C WRITE (IwRITEs2000) NbUG

90600 FORMAT (1HO4*NPUG=%92X4110)

on

READ C(IREAD9120) 1DAYsIMOeIYRSLDAYSLEOSLY
120 FORMAT (2(03x9]12¢35%¢1241Xe14))
WRITE (IWRITE120)IDAYyIMOsIYRWLOAY 9L MOl Y™

e NelNe NeNeNeRel

READ (IREAUS140) (ACI) v I=143)e(C(I)gI=193)sTZ0NE



OO0 0O0

OO OO0 N o0

e NeoReNeNel

140

CONVERT DEGREES TO

FOURYAT (2(23F5a045X)eTS14A8)

RADIANT

PHI = D2¥S(A)
THETAL = 3MS(2)

CHECK THE TIwWE ZONE 10 GET THE PRCF: R STANDARD
ORSERVER LOCATION

200

210

220

2373
240

250

300

260

148y SHw a»xax/T104 YAVAILALLE TI:ME
CABeDHA axa2 /TI640H2 22 a g A0 gD A asa»/TIL g HA S 4w Ay
IABeOHA a2 a2/ TIA(OH v axa , ARQOHARARR)

IF (T2OWE«NESTZC1) GO TO 200
THETAS = 75404240%3414155/3¢0.0
G0 T0 300

IF (TZONEWNELTZ(2)) 60 TO 210
THETAS = 90.0%2.0%3,1415%/260.
Go TO 3no

IF (TZONEJNELT2(3)) GO0 TO 2290
THETAS = 105.04240#%3414155/36040
S TO 300

IF (TZONESNLTZ2C4)) GC TG 220
THETAS = 120.022,0%3,14153/36040
GO TO 300

(1IURITESZ40)

(111l *TIXE ZOMNE REGUESTED
(IWXITE«250) TZ20'Ee(TZ(I)s
(14409 T10 4 *2FQGUESTED TIME

WRITE
FORMAT
YRTITE
FORMAT

CONTINUE

READ C(IREADy260) £P4ETaU
FORMAT (16FS.0/9F5.0)

READ OATA BOUND VALUES

TLBea o TEMPERATURE LOWER HOUND

TUBe oo TEFPERATUREL UPPLR LOLYD

WUBeseWIND SPEED UPPER EDUAD
READ (IREADs260) TLBy TUZy WUB

IS

HERIDIAN

MOT VALY 227
1z1e4)

.
..

.

o0 o
s e e v

.

.
. -

JONEY ¢T30S Hanarnn,
ZONESO g Tl atsrinanana,

PR Y Y
* s

OF THE

00
- e

INTTIALIZE THE ARRAYS USED IN THE REGRLSSION ALGORITH e

DO 100 1 = 148

.
- n

. .
o e
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XY(T) = 0.0 ¢
DO 130 J =1,8
XXT(Jel) = Da0D
100 CONTIHLUE
C
c .
YSUM = Do
YSUVMSE = Qa0
YME AN =z Oe
c
C
C
o
C
IRANK = 7
C
C L 4
o INITIALIZE THE DATE VARKIABLES
C
CALL DATEL
C
[5S-S5 SSH ES 4SS S S NS S35 S H S S S S 3 S S S S E E 2 R E S R S E R R N A F - H- 05
(oSS S S S - 2 S S S S S-S S - R S S S I I I S
| O S S S - S S S S S S R - S S S R S B S S A R R R R R R R R R
C
c EV/?LUATE OBSERVED DATA Tu DIVOLIP COLFFICIOCANTS FOF THE
C TEMPERATURE YODELe
c
325 CONTINUE
C .
C FOR EACH DAYy 25 OBSERVATIONS OF EACH DATA TYRPE ARPE USKFL IN THb
C PARAMETED® ESTIMATION. THZ DATA T1I*Z SEQUEMNCE I5:
C 11P¥y MIDNIGHT, L2 9 eee o 1148y IDONe 1PMse eee ¢ 11PN,
C It THIS FOKMATe THE 11PM Q2RSERVATIC, APPCASS TUICEe IN THE 2771k
C LOCATION FOR DAY W AMO IN THE 1ST LJCATION FT DAY ' o+ 1,
C
C
READ (IPAR42604500=343) TPKRI™M:
READ (IPARYM426C04LATS34%) CLOUD
READ (IPARM42¢€0+E1D=34%) WSPELD
READ (IPAR1«260¢E%0234%) WOIR
C
C
(o CHECK I"PUT DATA TO MAKE SUE DATA AKE WITHIWN
C REASONABLE CJUND". '
C
DO 326 LL = 1425
C
L = LL
IF (TPRIVE(L) eGETLE oANDe THFARIME(L)oLF«TUBYXGY TC 227
CALL OCHECK ( JULRFL,s 1o TPRIMIe L )
327 IF (CLOUDCL) e CL e 0o 0l aANDCLUUDIL) LT 000D 60 TG 228
CALL DCHECK ( JULREL, 24 CLNUD o L )
32~z IF (WSPLED(L) «CEeDe00ehhijaWdTPRED(L)eLEVUEY G0 T0O 329

CALL DCHECK ( JULRELy 3e JSPEED L )
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329 IF (wDIRCL) eGEeCefli0anNle DIZ(®) el 36000
CALL DCHECK ( JULRELsy 49 «)IRy L)

326 COMTINUE

ESTI%ATE RADIATION STTENUATIO . DUZ TO CLLUD Cuvi®

DO 330 I = le2°

KEAROB(1I) = l¢ = CofSaCLCUI(TI)*»2,

IFCWOIRCI) oGTe if0e) DIRCIIZALSUWIIE(TII=24CY)
CONTINUE

u
(&)
(]

CALL DATA ANALYSIS ROUTILES -

CALL PRMEST (TPRIVE«KBAROSsCLOUDGRTENP¢WSPEED«WD LRy IRANK
3 XXTeXY)

UPDATE THE DATt COUNTERS
ENTRY DATE eee FOR YEAFLY PARAVETT- 057
ENTRY DATLMess FOR “ONTHLY PAFAMETLF £S

I«.T)0h
TY*ATIOHL

~==«=CALL DATE
CALL DATEM

CHECK TO SFE IF END OF TEST P, RIOC HAS VEEY REACHED
IF ¢ JULDAT .LEe JULENL ) GC TO 425
345 CONTINUE
DETEKMINE THE *A® COEFFICIENT.
CALL COEF ¢ IRANKs, XXT4 XYs ACOLT)
DETERMIND THE *%#e COEFFICIENTX
CALL ATUB (ACOEF 4riCOEF)
% s 0 % 060 000 e o000 e 6 @€ a8 0 o e pPe e P20 0606000 s o e vesee sresese e eebo

WRITE (IWKITE.€00)
€00 FORMAT (1M1/92¢1H+q100C1H )/)¢dH S*TEMPERATURE MOOEL PARAMETE .

e oo oo
s ks a3

'



DT OM

(2 Nel

c
C

510 FORMAT (1H

f20 FORMAT

820 FORMAT

6£30

e R A R

BB oA s

3

WRITE

WRITE

WRITE

WR11C
FORMA

sSToP
END

vESTIVATION PROGRAM nutpuTers/z/)

(IJRITESEL1N)
o T24,

- et -

CACOEF(TI)eI=14)

YA CLEFFICIENTSYYZY/

1H #12Xe2HAD 1 XelHAL 12X 92HAZ91204¢2HAN/
IH $4Xe4 (X yt17a8)//
14 212X e2"AG 42 XelHADG 12X e2HAGe 12X g20 T/
I 24X e84 (X gL10e%)/77)

(IWRITEeH2U)
(1H +T24,

(BLOEF(T)el=1e™)

B OCUIFFICIENTC*//

IH «12XelnB001cXe0ibEl4 10X e24E2612Y 424U/
1H 8Xe4(XeE12e8)//7
1H 912Xe2HB4 410 XelHI15412X 42 Bbe 12X 4277/
1H 84X e4(2X9E1eS)//7)

(IBCOLs62%)

(TWRITES63M)
T (1n

10HRSQUARED

(*BCOEF 0=

t4Xe THYMEA! =

4

(BCOULFCIYeI=1,y2)
Y24t 12.5/Y2COEF 4-7

RS QU LK
s2XeF T 420
= 22X eF542)

YRD AN,

taui 1 %)

c.’.-.."....‘..‘Q...'....O-c‘...‘.‘.oc‘.‘l.O.-.-......l..........‘l

c

c
c

N e

e NaNeNeal

507,

£ NN

SUBRD

INTEGER

REAL*

JTINE TRTEMP

Al ()
5 FItE

(IRt AD)

REAL#*3 DEBUG(20)+T204H1 s TZ2(4)
DIMENSTION A(3)983(3)4BL(T7)
DIMENSION TPRIME(25)

IC =

WRITE
FORMA
.
T15
T10,
T10,

5

(IC+335)
T (130+T10
TOLLGWINGZY/

YIF LY

INPUT DATA FILE EXISTS.

YOU CAN DO THE ',

’ .ACTrON'QT:'OQ”‘LSPC"@‘;L'/TIG"Oootoo"y.’z(f"'oo.ooooo'/

1.
*2.

TYPE
TYPE

PYCLDFILET Y "4 TS0 YEXISTING
POLEWFILE® Y 9 T30,

*INPUT WNbWw

INFUT FILE 19 UsEL ¢/
UATA AS KEGUESTEDYZZ)



READ (ICeS50G6) FILL
306 FORMAT (2A)

C
[of
C
c
IF ¢ FILE <EQe *SLOFILE® ) FETURN
IF € FILE oEQe *HLCJFILET* ) GO TO 14
C
WRITE (ICeS07) FILE
907 FORMAT (1HO*INVALID INPUT FILT DESIGNATIONY ¢T30e%2anax¥ 400,
2 Caxxkax? [EXNG*VALTD DESIGNATIONS AREw S,
3 T3S taxxaxQLIFILE tnannt/
L T35 ¥ aawas NI WFILERraeaat//)
STOP
Cc Pd
C
C
14 CONTINUE
C
C
C SET LP OQUTPUT FILE TO RECIEVE TRAMSLATEC INPUT LATA
C
Cc
CNO000N000030000000000Cesenesee Pl heaceneeedDNNOLSNLNGONROOOSOD
C
OPEN CUNTT=IREAUSUELVICE=YDSKYQACCESS ST N UT Yo FILE=DCCT A0 ATY)
Cc
CO00000000000000000000ceceececelPFlersneeeeliN000500000300000C0
Cc
Cc
C
Cc
C
C
C
WRITE (ICe920)
S20 FORMAT (1HOs*INPUT DEBUGC INFO - NBUGe (DTUGCCI)eI=14MEUG) YD
(o
C - rd
READ (1Ce20) NEUGs ( DEBUG(Ids I = 14NBUG )
20 FORMAY ( 1s TAZCTA))
C
C
C
JRITE  ISFEAD25 ) MNBUGe € DEHUGCI) ¢ I=14H:1G)
2% FORMAT ( 159 SXg 7C(A8¢2X)/7€C10X o7CAB921)))
(o}
[
WRITE (1Ce930)
930 FORMAT (1HO.*INPUT BEGINNING UDAYe MONTHe YFAR (4 DIGITE TN e
L3 CYEAR AND ENDING DAY,y MONTHe YFAR?®)
Cc
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READ (ICe3Z0) IUAY(IMOIYEARSLUAYSLMOSLYZAY
30 FORMAT (¢1)

a0

C
C
¢
WRITC (IREAD#35) TDAYs 1IMOs IYEARe LDAYe L™Oe LYFAR
3% FORMAT (2(3XeI292XsI291Xe14))
C
C
(o
C
WARITE (ICe950)
950 FORMAT (1HOs*INPUT STATIO%N LAT=-LONG IN UMS AND TIMF ZQMNE 0oF 0
1 *STATION®)
Cc
C
READ (ICs50) (ACI)eI=193)9 (RCI)elb=147)y TZONE
50 FORMAT ( &6F¢ A)
[
C
C
WRITE (IREADSSS) (ACIdeaI=143)s (BCI)oI=14l)s T70NE
55 FORMAT (2(3F542e5X)eT51,448)
C
c
WRITE (ICe960)
960 FORMAT (1HOe* INPUT EPe ETy x")
c
c
READ (I1Ce60) EPy ETe W
60 FORMAT (3F)
C
WRITE (IRFADSGLS) TPy tTe W
6% FORMAT ( 3F5.2)
C
C
«RITE (ICe70)
70 FORMAT (1HO0sY INPUT DATA CHECK VALUESY/
$ ¢ TEMP LOWER BOUyq, TEMP UPPER B0JUNDe WINI SPFED UFPER BOUND®)
C
READ (ICy60) TLEe TUBs wUB
[

WRITE (IREADeS70) TLEs TURs WUE
970 FORMAT (ZF5.0)

C .
CCCCCCCCCCCCCCCCCCCCCCaeveeeseCLOSESsesseolCLCLCCCCLCCCCCCCCCCC
C .

CLOSE (UNIT=IREAD+REVICE=*DSK*sACCESS=*SFEUSUT 9 FILE=YDCCTMP.DATY)
C
108 of of o o o of o oF o o o 6 o off o o o o o o PAPEPYPIPIPIIPY o 1 ¢ R4 JPAPIPAPAPPIPN off of off of of ot off o o of o of o of o off of o of o
C
C

RETURHN
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SUBROUTINE DATE1

DATEY INITIALIZES THE DATE COUNTERS.
JULIAN DATES ARE J3ED.

IYR eee INITIAL YITAR

I40 LI ) INITI,AL MONTH

IDAY <«.e INITIAL DAYy

LYR see LAST YEAR

LMS eee LAST MONTH

LOAY eae LAST DAY .

JULOAT eee CURRIANT JULIAN D
JBEGIMNees JULIAN DATE AT 3
JRANGC eee LENGTH NF RUN
JULREFeee JAN 1 OF INITIAL YEAZ

JULRELeee JULIAY DATE RELATIVE TO JAn 1 OF

NMNING OF UK

A
T
; JF RU%

T
G
Wl

ESTISATION RANGE

Curk~ENT YLAR
JUSTARTeee RELATIVL JULIAN DATF TG RESIN +ONTHLY FARAMETL:

JSTOP eee RELATIVFE JULIAN DATE TO tND “oMNTHLY PARAYETE®

ESTINATION RANGE
JYEA? oee YEAR COUNTELR

NXLPYReee JULIAXN DATE OF DEC 351 OF NEXT LFAP YFAR

COMMON /DATES/ IV, INMZy IDAYs LYRe LMOs LDAY

COMMON /JOATES/ JULDATs JULnELs JBEGINs JULENDS JWANGES

s JSTARTs JSTOPs JAENDy JYEAR

CaMMON /T10/ IREADy IWR1Tts 1WbBUGe IPARMe TuCOFE

INTEGER IDEBUG

SET DEEUG FLAG

ID3UG = O

DETCRMINE INITIAL JULIAN DATES
CALL JULTAN (IMOINDAYSIYReJBEGIN)

CALL JDLIAMN (LMOCLODAYsLYReJULEMND)
CALL JULITAN ( 1 1elYR9JliLaFF)

JULREL = JBLGIN = JULREF

MXLEY -
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JULEKD -~ JEEGIN + 1 .
JEEGIN ~ 1

JRANGE
JULDAT

DETERMINE THE NEXT OCCURANCE OF 12/31/(LEAW
(ICa THP 365TH DAY OF THE YEAFR)
LASTLP = IYR = “0D(IYRe4)
CALL JULIAN (12431 ¢LASTLPGNXLPYR)

IF CJULDAT oGCe NXLPYR) NXLPYR = NXLPYR + 14561

NOTEees 1461 = 365 + 365 + 365 ¢ 368

L d

YEAFR)

THIS SECTION DEFINLES VARIABLES NEEDED FOR MONTHLY

PARAYETER ESTIYATION

JYEAR = TYR
JSTART = JULREL + 1
CALL JULIAN  L2Ge LDAYs IYHRe JTUATE )
JETIP = JUDATE - JULREF + 1
JREND = JSTOP
IF (JYEAR = PFODCJYEAR4)) 65470965

IF (1M0eE a2 «ANDe IDAYSEWa2%) JREND = JULTOP « 1

CONTINUE

ENTRY DATE

THE NEXT SECTION IS5 USED EACH DAY TO UFDATE
THE JULIAN DATE COUNTERS.

JULREL = JULREL + 1
JULUGAT = JULDAT + 1
CHECK FOR END OF YEAR

IF (JULREL «LFe 265Y GO TO 100
IF (JULREL oGT« 206) GO TO 200

CHECK FOR LEAP YEAR
IF (JULDAT.NESNXLPYR) GO TN 20¢

YESs THERE ARE 366 DAYS THIS YLAR.
UPDATE NXLPYR TO NIXT LEAP YEAR

NXLPYR = NXLPYR + 1461

IFC IDBUG «NEe 0 ) GO TO %00
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50 CONTINUE
RETUR

RESET RELATIVE JULIAY UATE
200 JULREL = 1
100 CONTINUE
IFC IDGUG «NEe 0 ) GO TO 900
110 RETURN
ENTRY DATEM

THIS SECTION IS USED EACH DAY TO oPDATE THY OnLIA" TATE COJLTL TS
IF MONTHLY PARAMETER ESTIWATION IS UStD.

JULREL ¢ 1
JULDAT + 1

JULREL
JULDAT

o

IF (JULKEL oLEs JRENU) GO TGO 4CO
UPDATE THE JULIAN COUNTEPS

JULREL JSTART

JYEAR JYEPAR + 1

CALL JULTAN (IMOIDAYSJYEARGWJULGAT)

JREND = JSTOP

IF(JYLAR = “OD(JYEARS4)) 40044109400
410 IF (LMOSEGe? oAMDe LDAY EGLe283) JREND = J%ERD + 1
400 ConTINnNUL

IF ¢ IDBUG «NEe 0 ) GO TO S0U

RETURHN

300 CONTINUE

DEBUG INFORMATION FOR JULIAN DATE CALCULATIONS

WRITE (I148UGe320) JULDATGJULRELwJEEGINGJULEND 9JTANGL o NXYLP YR

3 ¢JSTAKT aJSTOPSJREND e UYLAK

920 FORMAT €1H 9t JULDAT='9110¢3XeJULREL =T 10adX e UBFGINTYeT10+3Xe
$ J2X e *JULEND =Yg 110 3X e JRANSE = 9 T1Ce3X ot NXLPYRZ"9T]10
% 72X+ P JUSTART=%4 1109 3Xs*USTOP ="4I110¢5Xe*JRELD =%e110y

% IXe *JYEAR=%4110)
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RETURN
C
C

END
C
c.......'.............'.‘.......................C‘........'........
o

SUBROUTINE DATTCIDATESIMOsIDAYSIYD)
o
c CONVERT JULIAYN DATE T0 CALENDER CATE
C

INTEGEK CAL(1242)

DATA CAL/D0931459¢509120415101819212¢243427343049324,
1 003145009191 2101352¢1H2¢21292644274¢3054525 /
I1=(I0ATE-1)3/1461

I2=IDATE=-(T1%*14¢61) -

1<=12<=1461

s NeNe!

IFCI2.LEa265) 50 TO 190
IF(I2.LE«730) GO TO 20
IF(I2.LE«10G25) GC TO 30
13=3
14=12~1095
GO TO 40
10 13=0
14=12
14=12-265
60 TO 40
20 13=1
GO T0O 40
30 13=2
14=12-720
40 JYR=1900+13+(4=+11)
INDX=1
IFCI3.ECa3)INDX=2
DO 100 1=2412
IFCI49« LECAL(TINDX)) GO TO 200
100 CONTINUE
IM0=12
IDAY=T4~CALC12411DX)»?*
RETURN
200 I1MO=T1-1
IDAY=T4=CAL(I=-1+1INDX)
RETURN
END
C
C
C.....'.OO’....0..0.'.."..‘..000......'..'..'.OCO‘...'..Q..Q..O.Ql.
C
SUBROUTINEG JULTANCMOsUASYRyANS)
INTEGER ANSeCAL(12)9eDAYR
DATA CAL /31928931 930s31920+31531930931930+31/



C COAPUTT JULIAN CATE FROM JA%.. 8ls 1973
o
ANS=0
1=Y¥3-1900
ANS=ANS+365x]
CAL(2)=28
IFC?I0(YR94) e Gel) CAL(D)Z2S
Jz=™j-1
IF{JefGe0) GO TO 290
DO 10 I=1.J
ANS=ANS+CAL(I)
10 CONTINUE
20 COMTINUE
AMS =ANS+DA
RETURN
FND
c .
C..C‘............Q.'....."".‘..'..........‘..0..‘..'.'.‘.Q.'.....
c
FUNCTION DMS(A)
o
o FUNCTION DMS CONVFRTS ANGLES EXPRESSEDS Iw
C DEGREESy MINUTES AAND StCONDS TO RADIANG
c
DIVMENSION ACZ)
REAL YINUTE
C
o
DEGREL = A(1)
MINUTE = A(2)
SECOMND = AC3) "
o
DMS = DEGREE*2.14155/160e + MINUTI*3614159/1806/600
1 + SECONDU%23414159/71834/606700e
c .
RETUQH s
END
c
C..................O...I...'.....OI...I...'.......'...0".......'0.
C
FUNCTION TAUCST)
o

COM“0N /ORBIT/ PHISTHETASyTHETAL+EPsETeW
COM¥ON /10/ IEEADs IWRITCs I1WRUGs IPARMe THCOL
COoMYNON /DBUG/Z WBULDEBUG

REAL*H ITAGLOELUGC20)

DATA ITAU /*TAUY/

%

C

C THETAS = LOHGITUDL OF STANDARD MUIRIDIAN (HEDIAMS)
C 7H5TH MERTIOIAN FOR EASTE N STANDAYD TIVL

C 90TH MERIDIAN FOR CENTRAL STANDA-L TIHE

C 105TH MERIDIAN FOUR MOUNTAIHN STANTARD TIME
C 120TH MERIOIAN FOR PACIFIC STANDA®D TIHML
C THETAL = LONGITUDE OF OESERVERS MERIDIAN (RAGIANS)
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TAU = LOCAL HOUK &NGLE ¢
ST = STANOARD TIME IN THE TI"C 20%E OF THE
OBSERVER IN HOURS COUNTED FRNM
MIDNIGHT (EGe Ue00 TD 24400)
£p = +1 FOR EAST LONGITUDEs =1 FOX wEST LOSGITUDF
ET = DIFFERENCE BETWEEXN TRUFE 30LAR TIvL

AND REAN SOLAR TIYL CuSUDALLY MNeOLECTTO
FOR HEAT TRANSFE® COMPUTATIO®NS)

FUNCTION SUBROUTINE TAU CONVERTS THE SRSERVERS
STANDARD TIME TO LOCAL HOUR AMGLEL IN RADIAMNS

OBTAIN TIME DIFFERENCE BETWJEFN STANDARD MEZICLIAN AND
OBSERVERS MERIOIAN (HUURS)

DTSL = EP#(THETAS - THETAL)# 12.0/34141%09

COMPUTE ORSERVERS HOUR ANGLE (RADIANS)e £ = +1 F7F
MORNING AND E = -1 FOR AFTEKNOSN (JeFe OOLARRGCH)

IF (ST.GTel2e + CTSL -£T7T) E = -143000
IF (STeLEel2e + CTSL -ET) E = 41,0000

TAU = (ST + E#*12. - OT3L + ET) » 3,14159/12.0
IF (TAUGTe6428218%) TAU = TAU ~ 6.283185

IF (TAUeLTe0e0) TAU = TAU + 62832185

DEBUG OPTI10N

IF (NBUG.LGa3) GO TO 1060
DO 200 I = 1s%8UG

IF (DELUGCI)«NELITAU) GO 10 200
WRITE (IWwbBUGs250) STePHIWTHETAS s THETAL s P9t Tan o DTSL e TAY

250 FORMAT (////71H o *FUNCTION TAU®s 2Xo

1 ST =%3F6ea39cXe*PH] =%4F R elecXs Y THETAS =t oFEeZe2Xe'THETAL =?
2 FHEe3e2X 9 EP =% oFAQe392Xe®T T = sFCe3elXe®? =¥ 4FHelalXy
3 *DTSL TtyF6e 392Xy *TAU =%4F6a3)

200 CONTINUE

100 CONTINUE

RETURN
END

LI A0 IE K A0 20 N BB 3K B B0 BN B S U IR 2R AK 3 20 2 AU 2 K N A BN K B BRI B AK K BB I B BC I A B LA 2 BN B IR B BN 2K 2L X I 3N 28 4

SUBROUTINE PRMEST ( TPRIME s KRAROBe CLOUDe GRTLCYPe WSPEEDS
LS WODIR, IRAGNKy XXTy XY)

PRMEST 1S THE CONTROULLING ZUBROUTINE Fow THE PARAVMETER E-TIYAT]
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FOR THE TENPCIRATURE Pi0Jectr10n RoUTINE

BASLD 0% TCUAY'S ORSERVED Ti“PSey CLT COVIR,

GETERMINES THE PARAMETERS MECTSSARY 710 PROJECT
TEMPERATURES FOR TOHOHRIVe
DIMENSION TPRIME(1)g XXT(HeP)e XY(B)
NIYENSION KZAROBC(I)s TLOUC(1)e GRTEXP(1)
DIMENSION WSPEED(1)e «DIR(1)
RCAL KBARs KBAXORB
INTEGER RANGEy I0ZUG
COvMOYN /SUN/ DELTAs DTSLs SFe SS
COMMON /0RBIT/ PHIs THETASe THETALS EPs “Tei
COMMON /ZJOATES/ JULDATs JULRELS JEEGINe JiLEND
¢ JSTART,y JSTCPe JRWADe JYLAR
COMMON /DATES/ 1YRe 140Gy IDAYs LYRe L0 LDAY
comMMon /107 IEADs TwxITDe TWizUGe 1PARMe 17COE
SET CEBUG FLAG
108UG = 0
COMPUTE THE ANGLE AOJUSTMENT BETWEEN THI

STANCARD MERIUTAN OF THE OBSERVER®*S TIVY
OBSERVER®*S LOCAL MERIDI A

DTSL EP+ (THETAS-THETAL)* 3481972

COMPUTE THi DECLINATION OF THE SUN

CALL DECL (JULREL+DELTAg SR4SS)

.

DETERMINE THE LIMITS OF INTEGRATIO
GENERATION ALGOXITH™

N
N

FOR

CALL LIMITS (DTSLy SReSSeTOWRHOeT124SIGNMNA,T23)

JSANGE e NXLPYT

Z0NE AND THE

THE TEYPERATURE

IF ¢ 10BUG EC.0 ) GO TO 9%1
WRITE(IWBUGeZ9CIUELTAGDTSL o TO W RHO 95324 T1295TCMA eSS T234PHI
FORKMAT (T24*SUBKCUTINE PRMESTY/T24*DELTAZYg1XaF10ece

T204*DTSL =9 1XeF10,49T404°TG6 =te1XeF1Cab,
TEOs*RHO =91 XeFllatsTBOe'SKH =te1XeFl0es4/
T2 %712 Tt g1 XeF10.49T20e*SIGMATY41XsF1Caby
T40+°*SS St e IXgF 106N THDG T3 =®e1XeF10ety
T8O *'PHI =v41XeF1l0.4)

CONTINUE
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INITIALIZE THF STANDARD TIML COJUNTER.
ST = 0.0
BEGIN LOOP TO 4NALYZE TODAYS TEMPLRATUNRES. COMPUTF
THE SET COF COEFFICIENTS FOR THE TEMPTZRATURE PFCJECTINNS.

DO 200 I = 2,425

TMPLAG = TPRIMEC(I-1)

KBAR = KBARCE(I)

TGD = GRTEMPC(I)

CLD = CLOUD(ID -
WSP T WSPEEDCD)

#OR = WDIRCI)

COMPUTE THE PREDICTCRS X1le X2¢ X4 x4y XNy Xbe X7

CALL X1X2X3 (SToTMPLAGIPHIZNELTA9TGaSRyTIZ240SeT2245%HiD

3 SIGHAs CLDe KBAXe TGODe #CPe “.DR' A1 e Y2 X2 X4¢YSertbaX T
$ RANGE s T)
IF € IDBUG WEG 0 )Y GC YO 91
WRITEC(]. '“UGQ SED)STeTAPLAGePHT ¢ X19XD2e X3 oX‘lQX‘QX(,Q)‘7Q‘A GF
9€0 FORM"AT (TZ"ST"’FUQUQ THOFLAG=gF T el PHIZ"4F 10ebe
2 . X=¥97(IXeF10eD) " RANGE=%412)
961 CONTINUE

DETERMINE THE HOURLY TCAPERATURE CHANGE

Y = TPRIME(CI) - TPRIFE(I=-1)

" UPDATE REGRESSION MATRIX AND VECTOR

CALL REGRES (YaXJoX2eX3aXtoX5eXE9XTgXYaIRANKeXXT)

G0 TO 830

IF(STeLTe22.5) GO TO B20
ARITECSB30)JULDAT o (UXXTCIZ9IY) s IY=1alt ANKIQIZ=10lFARK)

e50 FORMATCIXeTHJULDAT =91 XoI7/7C1Xe7¢E1104)7))
840 COMTINUE
8310 CONTINUE

IF ( IDBUG +ER%. 0 ) GO TO 662
. WRITE (IWBUGs965) STaTeYaTPRIMECI) ¢TPRIME(I=1)eX19X29Y3
3 1 XGoeXSeXEeX7

94465 FORMAT( ST =% 0F 4,092 X 0Tt 4F Ta3e2Xea?' YTt Tela® TPIS gl 7al34ry
$ 'TPIl“'gF7o\s?X|'X1 O o F T el a2Xe¥X 204 12eS82XetXI=F 124,
$ 2Xo¥XAZ gL Tl a2Xe " XS %9 7e202X e Xt=¥9 [ Tea292Xs?XT=t4F7.2)

962 CONTINUE



c .
IF ( IDBUG .EG. C ) GO TO %15
c
C DEBUGC STATE“ENTSeeeeCHECK MATRIX OPLRATIOM RESULTS
C .
DO 910 II = 14IRANK
910 WRITE (IWEUGeSOT) (XXTU(TIgJled=1sIRANK)
G300 FORMAT (1X/* XXT='elXe€(F1l2.%42X))
ARITE (IWCUGe9C3) (XY(J)ed=1legIRANK)D
903 FORMAT (1X/* XY=t41Xe6(F1l2.593X))
c .
916 CONTINUE
C
C
c UPDATE THE STAKDARO TIME COUNTER
c
ST = ST + 1.0 4
C
-C
200 CONTINUE
C
RETURN
END
C
C
c.‘.'........'.0.0............‘.‘Q‘O.....'...O'OO‘.........l‘...‘.'
c
SUBROUTINE COEF (IRANKe XXTe XYy AZOEF )
C
c
C SUBROUTINE CCEF DETERMINES THE REGRESSION COLFFICIENTS
c REQUIKREDN FOR THE TEY¥PERATURE “OOELe
C
¢
DIMENSION LUYORK(E) s MLORK(B)e Al&4)
DIMENSIOH XXTC(Be&)e XY(E)e ACOEF(2) o XXTIANV(EHE)
C
INTEGER RANGEs 1DH/UG
c
COMMON 710/ IREADs TwRITEs 1WdUGe IPARMe IBCOL
COMMON /JDATES/ JULDATs JULEELe JREGTINy JiLENDy JFANGEs NXL*YR
$ 9JSTARTe JSTOPs JRENDe JYDAR
COMMON /YSTAT/ YSUMe YSUMSQe YYEANe RSGUAR
C
c
C SET DEBUG FLAG: N
c

10BUG = 0

JHEN TRANK 1S LESS THAN THE PROGRAM DIMENSIONS
FOR XXTy PRUBLEMS WILL OCCUR WHENL XXT 15 INVERTED.
THESE PROBLEMS ARISE DUF TC THE waY DATA IS STOREN

sNelesNeNeNeNy]
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IN YMATRIX FCRMe THE SOtUTIGN IS TO CONVERT XXT(Jel)
TO VLCTOR FORMYe A(L)e

Do 205 1
D0 235 v

14 IRANK
l1eIRALK

o

JJ = (I=1)*IRANK + J
ACJJ) = XXTCJeI)

IFCICBUGeEG 1) WRITE (I1WCUGe284) JelaJdJdsACII) o XXT(JsI)

204 FORMAT (1H0w93I5e 2(2XeE10265)) .
205 CONTINUE

INVERT THE REGRESSION rATRIXe XXT.

CALL MINV (AgIRANK9DXXToLWORKe MWORK)

DO 305 1 = 14IRANK
D0 305 U = 14IRANK
3505 XXTINVCJeI) = ACCI-1)+IRANK + J)

IF ¢ IDBUG «EC. 0 ) G0 Tn 921

DO 920 I = 1e4IRANK .
920 WRITE (TWLUGe=04) (XXTINV(IsJ)sJd=1sIRAL"FK)
904 FORMAT C(IX/® XXTINVEZT'e2Xe6(F1l2e593X))

921 CONTINUE

s ..

DETERMINE THE REGRCSSION COEFFICIENTC
CALL MATMLT (XY oXXTINVsACCEFeIRANK)
SINCE PREDICTER X5 IS NOT BEING ULEDs THE ELE“ENTS OF ACGLF

HAVE BEEN REARRANGED SLIGHTLY (SEF SUZROUTINE X1X2Xx3).
NOW REORDER ACCEF.

ACOEF(8) = ACOLF(T)
ACOEF (7)) = ACCEF(6)
ACOEF(6) = 0.0



AXY = 0 .
C
c
c
o
o COMPUTF MULTIPLE COEFFICIENT OF DETERMINATION
C .
DO 400 1 = 148

400 AXY = ACOEF(I)aXY(1) + AXY

c
XXTYY = XAXT(1lel)*YUEA*YMEAN
o
RSGUAR = (AXY=XXTYY)/Z(YSUMSG=XXTYY)
C
C .
IF ( IDBUG «Efie 1 ) GG TO 919
NRITE (IWBUGeS18) JULKZLe DXXTse (AGOEFC(IJ)+TJz14IRANK)
318 FORMAT (1H s*JULREL=®31%¢5Xs%UETe OF XXT=teF10.5/
$ " ACOEF=148(2XeF1l44))
c
WRITE (TWBUGeIZ0) AXY4XXTYY o XXTC14l)eYS UMD
930 FORMAT (1H o3HAXY ¢1XeF12e545XeOHXXTYY 41X4 12.%45X% s
% BHXXTC(191) ¢1XebE12e%95XebHYSUMLIelIXaE 12,9)

919 CONTIWUE

. ,
RETURYN
END

C
C..‘.‘.....Q0..0....0‘....'0..C..O..‘..Q‘0.0.0.0!........00..00....
f

SUBROUTINE DECL (RJUDesCELTASSReSS

INTEGER RJUD

COMMON ZORBIT/ PHIoTHETASeTHETAL«LP ¢E T W
COMMON /1G/ IRLAD IWHITEs I&dHUGe IPARMs IBCOE
COMMON /0BUG/ NBUG$DELSUG

REAL*S IDECL+DEBUG(20)

DATA IDECL/*DECL*/

c

c DELTA = DECLINATION OF THE SUN (RADIAXNS)

o PHI = OBSERVERS LATITUDE (RAUIANS)

c THETAS = LONGITUDE QF STANDARD MERIDIAN (RADIANS)

c 75TH MERIDIAN FOK EASTERN STANDAKD TIME

C 90TH MERIDIAN FOk CENTRAL STANDARD TIvE

C 105TH MERIDIAN FOR MAOUNTAIN STANDARD TI%F

c 120TH MERIDIAN FGR PACIFIC STANDASD TIME

c THETAL = LONGITUDE OF OSSFRVERS MERTIDIAN (RADIANS)

C RJD = RELATIVD JULIAN DATE (lefe WwWITH I7SFECT TO JAN 1)
c ST = STANDARD TIME IN THE TIXE ZONE OF THE ORSCFRVER

c IN HOURS COUNTED FROM MINDNIGHT (F«Ge0e00 TO 24,00
C £P = 41 FOR EAST LONGITUDE,s =1 FOR A#ET LONGITUDL

c £T = DIFFERENCE CETWEEN TRUF SOLAR TIYE AND

€ MEAN SOLAK TIME (USUALLY NEGLECTED FOR

c HEAT TRA'SFELER COMPUTATINNS)

C

C COMPUTE TIME DIFFERENCE BETWEEN STANDARD n#ERICIAN AND



C OSSERVERS HERIDIAN (HOURS) ¢
c
OTSL = EP*(THETAS - THETAL)* 3.81972
¢
C COMPUTE DECLINATION OF THE SUN (RAJDIANS)
¢
DELTA = 0.4072354CJ0(04017244¢172¢ = FLGATC~JD)) )
c
C COMPUTE HOUR ANGLE AT SUNSET (RADIANS)
¢
r
TSS = ACOS(=TAN(OCLTA)I*TAN(FHI))
c COMPUTE STANDARD TIME OF SULST (HGUKS)
c
ss = TSS*3.81972 + 12. +DTsSL =ET
c
C COMPUTE HOUR ANGL7i OF SUNRISE (RADIANSY
C
TSR = £.283185 - TSS
c
c COMPUTE STANDARD TIME OF SUNRISE (HOUR)
¢
SR = TSR#3.81972 =12+ + DISL -ET
c
c
c CONVERT SUNRISE IN STANDA®D TIME T2 LOCAL [I¥E
c
SR = SR - DTSL
C
c CONVERT SUNSET IN STAYDARG TIME T0 LOCAL TIMF
c
§5 = S§ - DTSL
c
c
C DEBUG DPTION
c
IF (NRUG.EG.0) GO TO 300
DO 100 1 = 14MEUG
c
IF (DERUG(T)eNELINECL) GO TO 100
WRITE (IWRUGe200), BJDsDT LeNELTAsTSSsSSeyTSReSR
200 FORMAT (////e1H «+%SUBRQUTINE DLCCL ®e®se%v,% 7gD =%,
1 IS5e® DTSL ="eFbede?® DELTA S'4F6.34% T3 =¥ 4FGedy
2 % SS T¥4FH5e392Xe?TSR =Z¥4F6e342Xe"SR = 47 6e?)
100 CONTINUE
c
300 CONTINJE
C
RETURN
£ND
c
o4

0 0O B OPECBHCO OGO COODO OO OO OO TOIEOEEsEs O COOED OO OO OO EEOPLOLLSISEBLIPRTOEOSECEBSTSTO

o

SUERDUTINL LIMITS (OTSLeReSeTOsRHOeT124SI0MAST3)
c FIND LIMITS FOR TEMPLRATURE INTEGRATION
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e EeaNe

ONODOOO

S0

75

T0
123

- DTSL
25,00 - DTSL

nn

IF (DTSL.LT.0.0) GO

FIND LIMITS OF INTEG
WEST 2F THE STANOUARD

FOR SUNRISE

RHO = AINT(R+1.0) -
IF (RHO «LTe R) Rti0

FOR SUNSET

SIGMA = AINT(G+1) -
IF (SIGMA «LTe. S) SI

FOR LOCAL NOON
T12 = 130 = DTSL
GO JO 75

CONTTIWUE

FIND LIMITS GF ILTE

IS EAST OF THE STANDARD MERIDIAN

RHO = AINT(R) - DTSL
IF (RHO LT« R) RHO

SIGMA = AINT(3) - OT
IF (SIGMA «LT. S) SI

T12 = 12.0 - DTSL
CONTINUE

RETURN
END

- Inl -

TO 50

RATION wHEN

MERIDTAN

DTSL
= FHO +

0TSL

1

GMA = SIGMA + 1

GRATION

= RHO +

SL

aHEN

1

ORSERVER IS

033ERVER

GMA = SIGMA + 1

S S0 S PP PGP0 COPE P00 G00 0000000000000 00000 sCorsessnnoRssssnrLTOESS

%
$

SUBROUTINE X1X2%x3 (
RHOs SIGMA, CL
RANGEST)

STe TVPL
De KBAR,

AGy P
TGO

Hly DELTUS

WSPe

CO“PUTE THE PREDICTERS XlseoeeXTa

ST ees LOCAL

STANDARD

TIME

nidrie

Ty Re T1Z2y Sg T25.
X1oeX29X2gXUgXDeXfiaxTy
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T eee LOCAL TIHEL ‘

TMPLAG see TEMPERATURE AT PREVIJUS TIME PERIOD

PHI eee STATION LATITUDE (RADIANS)

DELTA eee DECLINATION (RADIANS)

R eoe LOCAL SUNRISE

S eee LOCAL SUNSLET

10 eee VALJL OF T AT LOCAL STANDARD MIODNMIGHT
RHO eoe FIFST OHSERVATIONW HOUR AFTE? SUNHICE
T12 ese FIRSET OBSERVATION HNUR AFTER LNACAL NOON
SIGMA  eee FIRST OBSERVATIOW HOUR AFTE: SUNLLET

123 see VYALUL OF T AT LOCAL STAMNDAKD 2300 Hir (IE 11

INTEGER RANGEs IDRUG
INTEGER SWICH1s S«ICH2

REAL KGA®

COMMON /SWITCH/ SWLICH1y SwICH2

COMMON /10/ IREADs IWRITE. IwPUGs IPARY, 14CGC

SWICH1
SWICHZ2

"o
(=)

A 0.0005
PI 314159
I0BUG = 0

CONVLRT STANDAKD TIME TO LOCAL TIML
T = TAUCST)*(12.,0/F1) = 1240

IF (T oGTe 2440 » T = T =~ 24,40
IF ¢ 7T oLTo DeQ ) T = T + 24,3

X1 IS JUST THE LAG-1 TEMPERATURE
X1 = TMPLAG ST
DETERMINE THE APPROPRTATE RANGE FO-< X2 AND X3

eee BEFORE SUNRISC ces

IF € TO oLEe T oANDe T oLTe P ) GO TO 190

eees SUNRISE ceo

IF ¢ RHO= A oLEs T «ANDo
1 RHO+ A oGEe T ) GO T 200

Pu)y



C [ ]
C
c eeoe MORNING HOURS sse
C
IF ¢ RHO#A LEe T «ADe T oLFe 12 ) GC Tou 3ICO
C
c
C see NOON L 4
C
IF € T12- A oLEe T <AND.
1 Tl2+ A Gl T Yy GO TO 4CO
c
C
C eee AFTERINOON HOURS ece
C .
IF € T12+% A olEe T oANDe T oLTa S ) GO TO Z0O
(o] L d
c :
o eee SUNSET ese
C
IF ( SIGMA- A .LE. T oAND.
1 SIGMA+ A oGEe T ) 60 T0 600
C
c
C LN {VE”!“&G HOURS LI
C
IF ¢ SIGMA+A JLE. T JANDe T oLCe 123 ) 55 70 700
c
o
(=emrmraaccw— - . e - - . . - - PY S - . = - = e h B Ge e - A e O e e - - e e W - an
c
100 x2 = 0.0
X3 = 0.0
RANGE = 1
G0 To 5060
c
(o - - - - " By ae n am - a — — — — Sm St o - G - At an " . . e . = .= T e e e - - -
C
200 A = PI*#R/12.0.
B = PI*RHO/12.0
C » .
X2 = (RHO-R)*SIN(PHI)»SIN(DELTA)
X2 =X2 = (120/F1)*COSCIELTAI«COUS(PHI)I *»(ETN(Z) =~ STR(L) )
c
X3 = COS(DELTA}*COS(PHI)I*(COSCAY=CIS(BEY)
RANGE = 2
GO T0 3C0
Cmwrmmcermrcreom—a-- - - - —— B e o - = - - . - - S am = = . . e -
c
300 A = PI*T/12.0
B = PI*»(T~-1.0)/12.0
C

X2 = SINCLDLLTA)#S[.tPHI)
T X2 = (12.0/P1)#COSUDELTAI*COS(PHI)*»(LINCA)=SINCE))

o



- 384 -

®
X3 = COS(DELTA)I»CCS(PHII*(COS(E)=-COSCA))

RANGE = X
GO TO 900
C
o o o con o v v e o v o e e e e e e e ,r e ———-——- —————— cm e m e, ——————
C
400 A = PI*T/12.0
B = PI*(T-I.U)/]Z.U
C = PI*(T12~-1.0)/12,0
C
X2 = SINC(DELTA)I*SIHN(PHI)
X2 = X2 = (12.0/FP1)Y*COS(OILTAYCGSUPHII*(SIN(A)=-SIN(R))
C
X3 = COS(ODELTAY*»COS(PHII*(COS5(CY+1a0)
C
RANGE = 4
G0 1O 900 s
C
(remrcranc e cccr e ———— S i — e —————————-—-
C
500 A = PI+T/12.0
B = PI#«(T~10)/12a0
Cc
X2 = SINC(CELTA)I*SIN(PHI) .
X2 = X2 = (1240/PI)*COSCOLLTA)*COUS(PHII*(SINCA)=SIN(L))
C
X3 = 0.0
RANCE = 5
GO0 10 9¢C
C
(remrrmccncrenea——- -——————— ——————————— - e em—————— ——————
C
600 A = PI*S/12.0
B = PIs(SIGMA-1,0)/12.0
C
X2 = (S=SIGYA+1.C)*SIN(DELTA)IxSIN(PHI)
X2 = X2 + (12«0/F1)*CCSCDELTA)2COSCPHIIA(IIN(HI=STNCA))
C
X3 = 0.0
RANGE = 6
GO TO0 9GO0 s
C
Cocecccrmcccccecccca—— ——————- S I R e T
C
700 X2 = 0.0
X3 = 0.0
RANGE = 7
C
C oo o o o e i o o o e e e o e o e e o o e e e T e = = = o = -~ - -
Cc
300 CONTINUE
(o
C

IF ( SWICH1 .E£E3e« 0 ) GO T0D 9305



c

c.QOOOOI‘.oO...OQ..Q.OOQ.Olo0.00.!0'0...0.00.0.0000ooon.o...o.o.ao.

c

sNoBeNeReNsNsNoNeNeoReNeReNoNs e ReNe v NalNa Ralle Mel

“

eEeNeNel

910

X2 = KRAR#X2 .

X3 = KBAR&X3

X4 = 1e57SE-82(1e0040e17ACLD**2e)a(THPLAGs 46D ) %000
X5 = TGD*SWICH2

X6 = WSP

X7 = 4DR

IF ¢ I10BUG.EG.0) RETURN

WRITE (IWBUGe939) CLDe KFARs TGO
FORMAT (1HOy *CLD='4E12.592Xe tKBAKZ 9L 124540Xy *TCL=",
E12.5)

URITECTW2UGe910) ST X1le X2¢ X39 X4 XIA2UGe RANGEs T Ay

FORMAT(IXeF5e¢CalXeO(E12e%91X) gl FaF 100347 (1XaT176%))
RETURN
END

SUBROUTINE REGRES ( Ye Xlg X224 X3¢ Xlhe X544 XEg XTeo XYo No xXT

SET UP THE VECTOR XY AND THE MATRIX XXT ThAT AXF
WECESSARY TC ESTIMATE THE REQUIRED TEMPFRATURE EGUATIO !
COEFFICIENTSe. THIS SUEBROUTINE IS CALLED 0nCE EACH

TIME PERIODe (JTeEa EVIZRY TIME THE TEVPLIATUSLZ CHRM(ELe Yo
IS COMPUTED) )

Yeoooeeos TEMPEPATURE CHANGE IN LAST TIME PERICO
Xleooe o PRENICTGR X1 IN THL TE'PLRATURE VYODTL
X2ee0es PREDICTIOR X2 IN THEL TEWPERATURT *QO0E
X3eeeeePRESICTOR xX& IN THE TEWPERATURE "02EL
X4eeeeePREDICTUR X4 IN THE TEMPERATURE ~OLEL
XOewoee PFENICTOR X5 IN THE TEMPERATURE OLEL
X9ee0eeePREDICTOR X6 IN THE TEMPERATURE 0O0CL
X7eesoeePREDICTOR X7 IN THE TE®PIZRATURE »07EL

XYeeoeoee VECTOR COTAINED BY MULTIPLYING THE PTEDICTCR VALUES

BY THE,ORSERVED TEMPERATU~E CHANGES. ( THE
FLEMENTS OF XY ARE SUMMATIONT)
NeoeoooDIENSION OF XY
XXTeoeooeMATKIX OBTAINED BY POSTHULTIPLYI NG THE VECTCF
X BY ITS TRANSPOSL. (THE LLEMENTS JF XXT ARE
SUMMATIONS)

OIMENSION XY(B)e XXT(He8B)s X&)

COMMON /ZYSTAT/ YSUMe YSUMSQRe YMEANe KRIGUAX

PUT PREDICTOR VALUES 1IN PREDICTOR VECTOR

XC1) = 1.0

P



X(2) = X1 .
X¢3) = X2
X¢4) = X3
X(5) = x4
X{6) = X6
XC7) = X7
X(8) = X5

C

CS000 JRITT (547000) (X(JU)9d=1y8)

CSC00 FORMAT (1HO9*REGREC X VECTORT4UXed4(12e590X)/T2244(E12e50057))
C

c
C
c
C UPDATE THE XY VELCTOR
C
DO 100 I = 14N 4
XYC1) = X(I)»Y + XY(1)
100 CONTINUE
c
c
C UPDATE THE XXT MATRIX
C
DO 2C0 I = 1N
DO 2C0 J = 1eN
XXTCJel) = XCJI2X(I) + XXT(Jel)
200 CONTINUL
r
c
c UPDATE Y STATISTICS
c
YSUM = Y + YSUM
YSUMNSQ = Y*Y <+ YSUMSA
YMEAN = YSUM/XXT(1e1)
C
C
RETURN

END
PO OO SO0 OO O OO0 L PO POOLORNOOPIENOPOOIRN OISO EPTR OO PBEOP PSSR GSSTOTETS
s .’

SO T G0 C P OOT OO PODEP O OPOCOO PP IOPOE O OOOO PSSO PO OOO OGP O ssrEee
SUBROUTINE MINV

PURPOSE
INVERT A MATRIX

USAGE
CALL MINV(AgNeDolLoeM)

DESCRIPTION OF PARAETERS
A = INPUT MATRIXs DESTROYED IN COMPUTATION AND KEPLACED BY
RESULTANT INVERSE.

[sEeBeNsRalsReNe NN NeNeNe NeNelNeNel
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ORDER OF MATRIX A [
RESULTANT DCTERVINANT

4ORK VECTOR OF LENGTH
WORK VECTOR CF LENGTH X

sro2
1

REMARKS
MATRIX A MUST BE A GUNERAL MATRIX

SUBROUTINES AND FUNCTION SUTPRAGRAMS RIGUIFEDR
NONE ‘

MZ THOD
THE STAWDAR) GAUSS-JORDAN METHOD IS.USElise THY CETFRMINAANT
IS ALSO CALCULATED. A DETERMINANT OF ZERQ IXNDICATCLS THAT
THE MATRIX IS SINGULAR.

0 CORCIROPOINIDL000EPTFINNCOIDN0ILSP0,0000800°080000000000000080s0000000ce

SUBROUTINE MINV(AgNeDyLeM)
DIMENSTON AC(1)eL(1)eM(1)

S8 0 5 000 CCEIPVOSOPLNCAEOEPEO O OGSO POOSPONOERNEOTEPOEEINLTSESSERNIESETPRTY

IF A DOUBLE PRECISION VERSION OF THIS w«OUTINE IS DESIREDS, Tnf
C IN COoLUMH 1 SHOULOD Bt RE“OVED FPRO# THY DIOUBLE PRFECISIN.
STATEMENT WHICH FOLLOWS.

DOUGLE PRECISION A+sDstIGA4HOLD

THE C MUST ALSO BF REMOVED FROM DOUBLE FRECISIOGN STATEwEANTL
APPELARING 'IN OTHER ROUTINES USED IN CO JUNCTION wWITH THIC
RCUTINE.

THE DOUBLE PRECISION VERSION OF THIS SUBROUTINE MUST ALED
CONTAIN DOUBLE PRECISION FORTRAN FUNCTIONS. AGS IN STATEMENLT
10 MUST BE CHANSED TO DABS.

O ® 5 00 0 0T 00 ITC PO SO PP ICSSERL S0 TE0 0000 E 00RO PCESSOE OOt LIEBeSOeS

SEARCH FOR LARGEST ELEMENT
D=1a.0 .
NK=~-N
DO B0 K=1eN
NKZNK +N
LEKI=K
M{K) =K
KK=NK +K
BIGA=A(KK)
DO 20 J=KeN
12=N+(J=-1)
DO 20 1=KeN
1Jz12+1
10 IFC ASS(BIGA)= ABS(ACIJU))) 15420420
1% BIGASZACTIY)



e NeNel

e e Ne!

2000

o0

20

30

35

38

40

49
46

[54]
o]

(541
[5:]

60
62

936
65

L(K)=1
M(K)=J
CONTINUE

INTERCHANGE ROWS

J=L(K)

IF(J=K) 35435425
KI=K=\

D0 30 T=1eN
KI=KI+N
HOLD==A(KI)
JI=KI~-K+J
ACKIIZACII)
A(JI) =HOLD

INTERCHAMNGE COLUMNS d

I=M(K)

IFCI=-K) 495445438
JP=HNx(1~-1)

DO 40 uU=1leN
JK=NK+J

JI=Jre+y
HOLC==A(JK)
ACJK)IZA(UI])
ACJI) =HUOLD

DIVIDE COLUMN «Y MINUS PIVOT (VALUFL NF PIVOT LLEMENT I3
CONTAINED IN bIGA)

IF(RIGA) 484464948
ND=0e.0

RETURN

DO 55 I=z=14N

IFCI-X) 50G¢55450
IK=K+ ]
ACIK)=ACIK)/(-BIGA)
CONTINUE

REDUCE MATRIX - ..

DO 65 I=14N

IK=NK+]

HOLD=ACIK)

TJd=I=-N

DO 65 J=1eN

TJd=1IJ+N

IF(I-K) 6C465+60

IFtJ=-K) 62+65¢62

KJ=IJ=-1+K
ACIJ)=HOLDO*A(KJ)I+AL(TY)
TFCABSCACIU) ) eGTeleE 37e0RABS(ACTU)) oL TeleE=27)4RITE(EG236)ACTIY)
FORVMAT(1IXe*A(IU)="41Xsb1245)
CONTINUE
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DIVIDE ROw BY PIVeQT

KJ=K=nN

00 75 J=14N
KJ=KJ+%

IFCJ=-K) 70475470
A(KJ)=ACKJI/BIGA
CONTINUE

PRONUCT OF PIVOTS

IFCCALOGINC(OI+ALOGIC(EIGA) ) el Te372) Gy Th

IF (IFLAG.GT0) GO TO T€
IFLAG=1

NRITE(S5+800)

FORMAT(/// 91Xe *SUBRCUTINE MInVI BITERMINANT

*AACHINE CAPACITY. CALCULATICN
*PROCESSING CONTINUESY///)

GO0 T0 76

CONTINUE

D=D*BIGA :

1F (BDeGTeleaE 20X ITE(S9925)D

FORMAT(1X g %D=%41X4E12e5)

CONTINUE

REPLACE PIVCT Y RICIPROCAL

A(KK)=1.0/BIGA
CONTINUE

FINAL ROW AND COLUMN INTERCHANGE

K=N

K=(K-1)

IF(K) 15041504105
I=L(K)

IF(I=-K) 12041204108
JRI=NA(K=1)
JR=N*x(]~-1)

DO 110 J=1¢N s e
JK=Ja+dJ

HOLD=A(JK)

JI=JR+dJ
ACUK)==A(J])

ACJLl) =HOLD

J=M(K)

IF(J-K) 10041004125
KI=K=Y

D0 130 TYI=14N
KIz=K]l+u

HOLD=A(KT)
\,I:KI‘K‘J
A(KIY)==AC(UI)

ACJI) =HOLD

15

GFESTER

77

I17¢
THHA"

EXCFEDS
1.6+437,

te/ VX,
Ye/ 1%
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GO 70 100 ¢
150 RETURN
END
C
C'.V..'...'......‘.....‘l.....’...'..'......'...'.....‘..'..'I...‘..
C
SUBROUTINE “ATMLT (Ay B¢ Co N)
P
C
c
C MATMLT POST MULTIPLIES AN N X N MATRIX 2ty A
c VECTORs As UF LENGTH Ne THE RESULT IS A VECTGRs Co
o 0F LENGTH N
c
C
DIMENSIGN AC8)y BE(8He2)y C(3)
c -
c
DO S0 I = 14N
50 C(I) = 0.0
c
c
DO 100 J = 1N
DO 100 I = 1%
C
CCI) = BClyJdxACY) + C(1)
c
100 CoMNTINUE
C
o
RETURN
£nND
C.".............-...........O..'..'0.'."..'.0..‘..‘...'0."'0..'.
c

SUBROUTINE ATOB (A4B)

DERIVE THE TEMPERATURE MODEL COEFICIENTS (Il.Ee.
ELEMENTS OF VECTOR B) FROM THE REGRESSICN VECTRR A

Aeoeas REGRESSION COEFFICIENT VECTOR
Beoeeos VECTOR OF TEMPERATURL MCOEL COEFFICIENTS

ACl) = AD B(1) = BO
AC2) = Al B(2) = E1
AC3) = A2 B(3) = &2
A(g) = A3 B(4) = 13
LC(S) = A4 8(5) = E4
Alg) = AS 8¢(6) = 85
AC7) = A6 B(7) = k6
A(B8) = A7 B€8) = 87

(zEeBeNeNeNeNaNeNeNeNe N NeleNe s ke Ra R e
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c [ ]
DIMENSTION A(1)48(C1)
c
c
C
c DETERMINE 51
o
c
B(2) = =ALOG(1.0+A¢2))
<
c
C
BA = B(2)/(-A(2))
c
c
C DETERMINE BI®*S
c -
DO 100 I = 1.8
c
IF ¢ 1T EQe 2 ) GO 7O 100
c .
BCI) = ACI)«BA
C
100 CONTINUE
C
C

CRO00 WJRITE (S54900) (B(JU)eu=148)
C 900 FORMAT (1HOos '8 VECTCRYe GXe8(E12e595X)/T15Ha8(E12e000Y))
C .

C
c
RETURN
END
C
C
C........0..0.‘!..'...........ll'l.I0....O.'.......'l".......‘....
c f
SUBROUTINE DCHECK (JULRELs IDs DATAs L )
c

DIMENSION DATACL)e TYPE(&)s FMTC(1Y)
C PR
DATA FMT /%(1H ¢BHJULREL =41XeI3s sexXXXX DATA OUT CF EQUNDS*Y,
$2XeE12e9e3Xe 'L =**92X412)%/

c
DATA TYPECLI)/*TEMP Y/ TYPL(2)/*CLUY/ W TYPT(I)/'UWSP/,
3 TYPEC(4)/uDIR®/
c h .
c WRITE (54100) FMT
100 FORMAT (1H +10C1XsAS)/)
C
FMT(6) = TYPL(ID)
C
ARTTE (S¢FMT) JULRELe DATAC(L)e L
c
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[ ]
RETURN
END
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