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ABSTRACT

A stochastic, multivariate, hydrometeorological data gener-

ation algorithm is presented. Hourly values of precipitation,

cloud cover, shortwave radiation, longwave radiation, tempera-

ture, dewpoint, wind speed, and wind direction are jointly gener-

ated for the two-meter level. The procedure is designed to pro-

vide coherent sets of input data for models of various land

surface processes. The model's flexibility and economy allow

the study of land surface responses to different atmospheric

forcings.

Generated data plots, model output statistics, and generated

mean diurnal curves are compared to observations for the months

of January and July at two sites, Boston, Massachusetts and Dodge

City, Kansas. Data representing three "climates", normal, wet,

and temperature-biased were generated and applied to a detailed

model of the land surface. The resulting energy fluxes across

the land-atmosphere interface are reviewed and the differences

are noted.
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NOTATION

CH bulk transfer coefficient for sensible heat

CM bulk transfer coefficient for momentum

C, Wbulk transfer coefficient for water vapor

D Julian day

E water vapor flux

G heat flux into the ground

H sensible heat flux

I clear sky shortwave radiation

I insolation

I ' total direct and diffuse shortwave radiation

K11  eddy transfer coefficient for heat

KN eddy transfer coefficient for momentum

K W eddy transfer coefficient for water vapor

K(t) radiation attenuation factor

L Monin-Obukhov length

LE turbulent latent heat diffusion into the atmosphere

M 0 mean fairweather cloud cover

N cloud cover

N a mean cloud cover for all inter-storm periods

N tintermediate mean cloud cover during inter-storm

periods

Pa atmospheric pressure

P(t) cloud cover transition function

P (t) observed cloud cover transition
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NOTATION

R time of local sunrise

Ra longwave radiation

R total reflectivity of the ground
g

Ri Richardson number

(Ri)B bulk Richardson number

R net all wave radiationn

R* "fairweather" region

S time of local sunset

T cloud transition period

T(t) temperature

Td(t) dewpoint temperature

T(t) deterministic temperature component

T' (t) stochastic component of temperature

Td mean hourly dewpoint temperature

Td(t) deterministic component of dewpoint temperature

Td' (t) dewpoint deviations

T (t) ground surface temperature

W d mean wind direction

X (t) predictors in temperature regression equation

Y(t) hourly temperature change

W bo solar constant

W d(t) wind direction
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NOTATION

Ws mean wind speed

Ws (t) wind speed

W* friction velocity

a regression coefficients

a molecular scattering factor

al mean atmospheric transmission coefficient for
cloudless, dust-free, moist air after scattering
only

b coefficients of differential equation for
temperature

c specific heat of air

d total dust depletion

d a depletion coefficient of the direct solar beam
by dust absorption

d regression coefficients for dewpoint temperature

de 0zero displacement plane

d s depletion coefficient of the direct solar beam
by dust absorption

e 0 atmospheric vapor pressure

e s saturation vapor pressure

f relative humidity

g acceleration of gravity

h storm depth

k von Karmon constant

m relative thickness of the air mass
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NOTATION

mp elevation adjusted optical air mass

m(t) cloud cover deviations

n turbidity factor

q h specific humidity

q(t) longwave radiation

r ratio of actual earth-sun distance to mean
earth-sun distance

r(t) ds(t)/dt

s(t) sine of solar altitude

tb time between storms

t 0 arbitrary initial time

tr storm duration

w mean monthly precipitable water

z elevation

0 H empirically determined adjustment factor
for sensible heat profile

4 M empirically determined adjustment factor
for wind profile

0 t random input for wind direction

0 W empirically determined adjustment factor
for water vapor profile

a angle of radiation

rB (mean time between storms) 1

y cloud cover decay coefficient - approaching
storms
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NOTATION

skew coefficient of t

skew coefficient of wind speed

(mean storm duration) 1

declination of the sun

effective atmospheric emittance

random deviate

cloud cover decay coefficient - receding storms

standard normal deviate

(mean storm depth)-

mean monthly surface dewpoint

is -1 for West longitude
is +1 for East longitude

atmospheric density

lag-l serial correlation
wind direction

coefficient

lag-1 serial correlation coefficient
dewpoint temperatures

lag-1 serial correlation
wind speed

coefficient of

pI(T) cloud cover serial correlation function

PT' lag-l serial correlation coefficient for
stochastic component of temperature

PT, (1) lag-l serial correlation coefficient of
do dewpoint deviations

Stefan-Boltzman constant

standard deviation of hourly dewpoint temperature

ys

a6

Ct

TI

p

of

for

CYd
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NOTATION

ad standard deviation of wind direction

G i 2  variance of the fairweather cloud cover

G sstandard deviation of wind speed

(i Tvstandard deviation of stochastic component
of temperature

GT, do standard deviation of dewpoint deviations

T shear stress, hour angle of sun, lag in a
serial correlation function, dummy variable
of integration

T shear stress of surface

local latitude

standard normal deviate
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CHAPTER 1

INTRODUCTION

1.1 Overview

Motivation for the research outlined in the following

report is the growing need to provide high resolution hydro-

meteorological data for various computer simulation models

of the physical processes taking place near the land sur-

face. Subjects for such modelling include the transfer

of heat and moisture across the land-atmosphere inter-

face, plant growth, plant disease propogation, insect in-

festation, irrigation management, and crop forecasting.

Each of these modelling efforts is becoming more sophis-

ticated as our knowledge of the individual processes grows.

Many of the processes are related, and efforts to couple

related models are being made to study larger and more

comprehensive land surface systems.

Data requirements of these studies include: precipi-

tation, radiation, cloud cover, temperature, humidity, wind,

etc. For many models, data at hourly intervals is highly

desirable. This time resolution may be necessary when study-

ing diurnal effects.
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Previously, researchers had only historical obser-

vations from which to draw a statistically coherent set of

input data. While it is true that observed data are the

only data where all of the variable interactions survive

intact, a researcher using such data is limited to a given

set of statistics. If, for instance, a researcher wants

to study the effect of a fundamental change in the statis-

tical parameters of one input variable on a land surface

process, there exists no rational way to modify the other

inter-related input variables whose statistics would nat-

urally be changed by the shift. For example, if the number

of storms was to be increased, how would cloudiness, temp-

erature, and incoming shortwave radiation be adjusted to

accomodate the change?

The physical linkages between the variables that re-

flect the flow of heat, moisture, and momentum across the

land-atmosphere interface are complex. Figure 1.1 pro-

vides some insight into the nature of these inter-relation-

ships. It is clear that simple scaling of one variable

would not be sufficient to realistically study the sys-

tem-wide responses. A more sophisticated adjustment pro-

cedure is required.
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Data could possibly be generated by existing computer

models of planetary weather dynamics. Changing boundary

conditions would produce a number of different weather

scenarios which would provide the appropriate data. How-

ever, for most cases, the computer costs of this approach

are still prohibitive.

Another approach would be to create data using multi-

variate stochastic generation techniques. However, severe

non-stationarities, discontinuities, and unusual data dis-

tributions inhibit the application of multivariate tech-

niques as they have traditionally been applied in hydrology.

Because of these problems, very few researchers have

successfully developed algorithms to stochastically generate

several weather variables simultaneously. Those that exist

make some extreme simplifying assumptions, smooth the data,

are applicable only at three or four specified times per

day, and in general, are quite inflexible.

1.2 Multivariate Climate Data Generation: Previous Work

Kim (1976) generated time series of precipitation and

temperature for use in snowmelt forecasting. However, he

was able to show that, in his case, temperature and precipi-

tation were statistically independent, greatly simplifying

the problem.
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Jones et.al. (1970) formulated an algorithm to generate

rainfall, daily average temperature, and daily evaporation

of water. The functional relationships among his weather

variables can be summarized as

Rainfall = f(time of year, previous rainfall)

Temperature = f(time of year, current rainfall)

Evaporation = f(time of year, current rainfall,

previous rainfall)

The approach of Jones et.al. was to analyze the histor-

ical data and use fitted high order polynomials to predict

probability distribution parameters (e.g. means and var-

iances) for each variable as a function of the week of the

year. Polynomial equations were obtained based on the

occurrence or non-occurrence of rainfall. For example, one

equation predicting mean daily temperature was developed for

dry days and another equation was developed for wet days.

A similar approach was used to calculate the standard devia-

tion of daily temperatures. The stochastic nature of daily

temperature was then simulated by sampling from a normal dis-

tribution of temperatures having the derived mean and standard

deviation for that particular day.
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The approach of Jones et.al. considers only the day-

to-day variations of the primary variables. Time varia-

tions of much less than one day are needed.

Ahmed (1974) developed a program to goncrate rain-

fall, ambient temperature, air humidity, short and longwave

radiation, and wind speed to use in a dynamic simulation

of crop behavior. The weather variable inter-relationships

as specified by Ahmed were

Rainfall = f(location, probability of rainfall

for current day)

Radiation = f(location, time of day, time of

year, rainfall for the day, clear

or cloudy conditions)

Wind speed = f(location, time of day, time of year

Temperature = f(location, time of day, time of year

rainfall for the day, clear or

cloudy conditions)

Air humidity = f(location, rainfall for the day, air

temperature)

The description of Ahmed's functional relationships make

this algorithm appear quite attractive, but his formula-

tion and execution of them do not have the desired resolution

and flexibility.

)
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Rainfall is generated on a daily basis. No consid-

eration is given to storm duration and hence to storm in-

tensity.

Cloud cover, which is one of the most important ingred-

ients in determining the surface energy balance, was

treated by Ahmed as a binary variable. That is, cloud

conditions were assumed to be either fully overcast or

clear, nothing in between.

Ambient temperature was computed by generating weekly

means. Empirical equations were used to convert weekly

means to temperatures at 8:00 AM, 12:00 Noon, and 4:00 PM

for each day of the week.

Two simplifying assumptions were also used in Ahmed's

temperature formulation: 1) ambient temperature decreases

in direct proportion to the amount of rainfall, and 2)

the probability of clear or cloudy sky on any day was

assumed proportional to the rainfall probability of that day.

Nicks (1975) developed a model to generate values for

daily rainfall, daily minimum and maximum temperatures,

and daily solar radiation. Rainfall was generated by a

Markov chain process. The temperature and radiation data

were generated individually by lag-1 Markov processes

conditioned by current and preceding wet or dry days.
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Probably the best effort thus far to jointly generate

a set of meteorological data was presented by Richardson

(1981). Richardson developed a procedure to generate

daily precipitation, maximum temperature, minimum temper-

ature, and solar radiation. Precipitation was generated

independently using a Markov chain. Daily max/min temper-

atures and daily radiation data were generated using a

multivariate model with means and standard deviations con-

ditioned on the occurrence of wet or dry days. In this

manner, Richardson was able to preserve the inter-relation-

ships among the four variables.

For most of the models reviewed, time resolution was

on the order of one day. No multivariate hydrometeoro-

logical data generation algorithms with time resolution as

low as one hour have been found in the literature.

1.3 Constrained Stochastic Climate Simulation

The result of the current research is a computer model

to stochastically generate ten hydrometeorological variables

with hourly resolution. Included in the variable set are

1. time between storms 6. longwave radiation

2. storm duration 7. temperature

3. storm depth 8. dewpoint temperature

4. cloud cover 9. wind speed

5. shortwave radiation 10. wind direction
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The general approach in constructing the model was

to develop a set of stochastic elements that could be

coupled and thus constrained by deterministic relationships

in order to preserve as much of the important cross-corre-

lations as possible. At the same time, the individual

stochastic elements were designed to provide time series

whose statistical properties approximate historical values.

To accomplish this task, several major hurdles had to

be overcome. The two most important dealt with the genera-

tion of hourly cloud cover and the generation of hourly

temperature.

Hourly cloud cover is a highly non-stationary variable.

The first and second moment properties are obviously quite

different during an intra-storm period than during an

inter-storm period. A model was required that constrained

cloud cover during storm events, provided for the proper

transition into and out of storm periods, and permitted

the occurrence of total cloud cover during an inter-storm

period.

A technique was developed that allows the generation

of a time series whose mean and variance at a given point in

time are allowed to vary in a controlled fashion. This

technique is an essential ingredient in providing much of
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the desired coordination between precipitation occurrences,

cloud cover, short and longwave radiation, and temperature.

It allows the "ripple" effects that would result from a

change in precipitation statistics to be felt throughout

the generated data set.

Hourly temperature also exhibits pronounced non-sta-

tionarities, both diurnally and seasonally. To attack this

problem, a new methodology is used that is based on an

expansion of ideas presented in an unpublished report by

Bryan (1964). The technique generates hourly temperatures

as ;a function of the previous hourly temperatures, short

and longwave radiation, wind speed, and wind direction.

(Provision was made to include a link to ground temperatures

as well). Stochasticity is introduced by cloud cover as

it affects short and longwave radiation and by superimposing

a serially correlated series of random deviations on the

calculated temperature.

The resolution of the cloud cover and temperature pro-

blems formed the framework that allowed the remaining ele-

ments to be knitted together to form a rational model. The

model has been named Constrained Stochastic Climate Simu-

lation (CSCS).
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Chapters 2 - 8 present the theoretical development

for each component of the CSCS model. Parameter estimation

is discussed in Chapter 9. The results of four data gen-

eration experiments using the CSCS model appear in Chap-

ter 10. The model has been tested for two time periods

of the year, January and July. These two months were chosen

because they correspond to a common procedure of January-

July comparisons in the climate-modelling literature and

because they represent two significanly different weather

regimes.

Two different geographical locations were tested:

1) Boston, Massachusetts, and 2) Dodge City, Kansas. Coas-

tal and continental climatic regimes are represented

respectively by these locations.

Output from the CSCS model was also used as input to

a detailed model of the land surface (Milly, 1982) to

show its applicability to studies of land surface response

to various meteorological forcings. (Chapter 12).

The CSCS model generates data that is representative

of the 2-meter level. The land surface model used in Chap-

ter 12 requires data at the surface or zero-meter level.

Chapter 11 describes how the CSCS model is linked to the land
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surface model through the surface boundary layer. Stable,

unstable, and neutrally stable atmospheric conditions are

accounted for in establishing the various flux profiles.

In this project, the generated atmospheric data were

used to directly force the land surface model. Feedbacks

from the land surface model to the atmosphere are not

explicitly accounted for, although the potential for coupling

is built into the CSCS model.

By not accounting for the feedback mechanisms in

this application, the CSCS-land surface system is in

effect an "island" model. This means that the data repre-

senting the 2-meter atmospheric level at a point are unaf-

fected by the local land surface conditions. The natural

analogy for this situation would be a small island whose

land surface processes were being forced by a meteorological

data set that derived its properties from the areas

surrounding the island.

Perhaps the most attractive feature of the CSCS model

is its efficiency. On a DEC-10 time-share computer sys-

tem, twelve months of hourly data can be generated in less

than one CPU minute. Overall, the CSCS model should be an

effective, flexible, and cost efficient tool to use in a

wide variety of studies that require large amounts of

hydrometeorologic data.
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Chapter 2

PRECIPITATION MODEL

2.1 Introduction

Many stochastic precipitation models have been devised

over the years to serve a variety of needs. The character

of these models ranges from the simple to the complex. Each

model attempts to satisfy certain statistical properties that

are observable in a historical data base and are important

to a particular application. Most of the precipitation models

used in hydrologic applications, including those used in the

multivariate weather data generators discussed in Chapter 1,

describe the occurrence of daily precipitation. Kavvas and

Delleur (1975) and Nicks (1975) provide good surveys of

stochastic models of precipitation that appear in the liter-

ature.

Generally, these models describe the precipitation

phenomenon in two stages. First, some sort of determination

is made to decide if a wet or dry period has occurred. Second,

if a wet period has occurred, the amount of precipitation

for the period is computed.

For the current application, a precipitation model is

needed that can yield data with hourly resolution, yet not
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overburden the project computationally. One model that sat-

isfies these requirements is an alternating renewal process

for independent, alternating wet and dry periods used by

Grayman and Eagleson (1969).

2.2 Grayman-Eagleson Precipitation Model

Grayman and Eagleson found that a respectable sequence

of synthetic rainfall data could be created by modelling the

times between storms, tb, storm durations, tr, and the

total storm depths, h. Detailed investigations of observed

storm sequences by Grayman and Eagleson showed that storm

durations and times between storms could be treated as inde-

pendent events, but that storm depths were highly dependent

on storm durations. Grayman and Eagleson also found that

times between storms and storm durations could often be

described as being exponentially distributed. Storm depths

were found to follow a gamma distribution when conditioned

by storm duration. Thus, the precipitation model can be

expressed by successive sampling from the probability den-

sity functions (pdf) described by the following equations

Time between storms - pdf

f(tb ) -= etb , tb > 0 (2.2-1)

where S = (mean time between storms) 1
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Storm duration - pdf

f(tr) = 6e r , tb > 0 (2.2-2)

-l
where 6 = (mean storm duration)

Storm depth given storm duration - conditional pdf

6t -1 - h

f(nhl6t) I(6t) , h > 0 (2.2-3)

where n = (mean storm depth)

The solution procedure is as follows. At some initial

time, say to, generate a time between storms, tb. Once tb is

known, the period (to,to+tb) is considered dry with the

hourly precipitation set equal to zero. Next, when time, t,

reaches to + tb, the storm duration, tr, is selected. The

period (t0 + tb, to + tb + tr) is then considered wet. Using

the value just computed for tr, a storm depth is selected

from the distribution described by Equation 2.2-3. When time

reaches to + tb + tr, the process is repeated to determine the

next storm sequence.

Presently, a uniform precipitation rate is assumed. Later

versions of the CSCS model could easily contain an algorithm

to provide variable intrastorm precipitation rates. But for

now, hourly precipitation is found by dividing storm depth,

h, by storm duration, tr.
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2.3 Data Generation

The data generation technique used for the exponen-

tial distributions of Equations 2.2-1 and 2.2-2 is straight-

forward and is described in Appendix A.

Generation of gamma distributed variates is not as easy.

Direct selection of a gamma variate is complicated by the fact

that the gamma probability density function cannot be anal-

ytically inverted. Therefore, indirect methods are required.

If the parameters of the gamma distribution are integer,

a gamma variate can be determined by summing variates chosen

from exponential distributions. However, the parameters of

Equation 2.2-3 will generally be non-integer.

The method used by Grayman and Eagleson (1969) to gen-

erate a gamma variate, ah, involved a mixture of techniques

depending on the value of the product 6tr* Basically, the

authors used a method of summing exponentially distributed

variates when 6t r> 1 and a numerical integration technique

when 0<6t r<1. The reason for using a different technique

when 6tr >1 results from the fact that for 0<6tr<1, the

peak of the gamma distribution is located at fh = 0, but its

magnitude is undefined. The situation where tr is less than

one occurs often, meaning that the numerical integration pro-
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cedure is used frequently. A more efficient procedure to

generate gamma variates is desired.

Curtis (1978) investigated three alternative techniques

to generate gamma distributed variates. The first technique

considered was a purely numerical technique used by Thom

(1968) to generate direct and inverse tables of the gamma dis-

tribution. The second technique considered was an acceptance-

rejection technique developed by Curtis (1978) that followed

procedures outlined in Abramowitz and Stegun (1970). The

third technique considered was another acceptance-rejection

method presented by Fishman (1973).

Fishman's approach was by far the most efficient and

worked for both integer and non-integer distribution para-

meters. The solution procedure for the Fishman technique is

given in Appendix A.

2.4 Summary

With the implementation of the Fishman technique to

generate gamma variates, a very efficient precipitation gen-

erator results. One big computational advantage is that this

precipitation model yields hourly values, yet is only run

aperiodically. In each dry-wet cycle, the precipitation

model is "turned on" only two times. First at to, a time
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between storms is selected. Second, at t + tb, a storm dur-

ation and a storm depth are computed. The rest of the time,

the only computation that occurs is a simple check to determine

if a new time between storms or a new storm duration is re-

quired. If no new variate is required the entire generation

scheme is skipped. This contrasts with other methods, such

as Markov Chain techniques, that require a solution of the

generating scheme at each time step.

Another advantage of this particular precipitation model

results from the generation of the time between storms, tb.

By knowing the times that storms begin, (and end for that mat-

ter), explicit and continuous coordination between the preci-

pitation model and other CSCS components such as cloud cover,

temperature, solar radiation is possible.

Previous investigators who have attempted to develop mul-

tivariate meteorological data generators have all recognized

this coordination problem as manifested by the differences

between meteorological variables on dry days as opposed to wet

days. Different sets of equations had to be developed as

"special cases" depending on whether a particular day was

wet or dry. As will become clear in later chapters, the
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information provided by the precipitation model allows the

development of a generalized set of equations that operate

for all times, wet or dry.
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CHAPTER 3

CLOUD COVER MODEL

3.1 Introduction

The evolution of cloud cover plays a critically im-

portant role in the flux of heat and moisture at the land

surface. Energy balances are greatly affected as cloud

cover continuously alters the transmission and reflection

of radiant energy. Of course, cloud cover is also asso-

ciated with precipitation inputs to the land surface

moisture balance. Yet, cloud cover as a stochastic pro-

cess has received very little treatment in the hydrologic

literature.

Where studies have been performed, (Gringorten, 1971

and 1966; Fox and Rubin, 1965; Chargnon and Huff, 1957) cloud

cover has been treated independently of other meteorologic

processes. Developers of the various multivariate climate

data generators discussed in Chapter 1 circumvented this

issue by modelling net solar radiation, temperature, etc.

The only time the effect of cloud cover was even implied in

these works was through the development of separate sets

of generating equations for wet days and for dry days. The
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lower temperatures and solar radiation levels on wet days

implied the presence of more cloud cover than on dry days.

When interest is in the association of cloud cover and

precipitation, the underlying modelling philosophy has

been to follow the mechanics observed in the atmosphere.

That is, clouds must be present prior to establishing the

quantity of precipitation. However, as many meteorolo-

gists will say, one of their most difficult tasks is to

predict total precipitation amounts when presented with a

given atmospheric situation having precipitation potential.

In the following sections, a new approach will be

used to model cloud cover as a stochastic process. The

new technique overcomes many of the difficulties previous

researchers have encountered when jointly generating meteor-

ological data. It allows the establishment of the essen-

tial relationships between the meteorological variables of

interest.

3.2 General Description

Cloud cover, N(t), is a process that is bounded by

0 (clear sky) and 1 (overcast). Cloud conditions between

these two extremes are reported in tenths. Thus, the

observed cloud cover data set includes 0., .1 .2..... .8,

.9, and 1.0.
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Since the precipitation model divides time into two

states, an inter-storm period and an intra-storm period,

it seems reasonable to use some of this information to con-

strain the cloud cover model to conform to a certain set of

conditions. One obvious condition that can be imposed

immediately is that during an intra-storm period (i.e.

(t0+tb,t0+tb+tr)) cloud cover is total (i.e., N(t) = 1.0).

This leaves only the inter-storm period within which to

generate cloud cover.

To develop cloud cover during an inter-storm period,

first consider N(t) as a random process. Next, consider the

expectation of N(t) conditioned on the time between storms,

tb (i.e. E(N(t)Itb)). If the process, N(t), is examined near

the beginning or near the end of an inter-storm period,

F(N(t)Itb) would be close to 1.0. Whereas, if the process

is examined near the middle of the inter-storm period,

E(N(t)Itb) would usually be quite different from 1.0. Ob-

viously, N(t) is non-stationary.

The nature of the precipitation model discussed in

Chapter 2 presents an interesting feature to the development

of a cloud cover model. Generally, in simulation problems,

only the past states of the system are known. The only
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thing known about the future is implied from the assumption

that the statistical properties of future responses of the

physical process being modelled will be identical to those

observed in the past. In this problem, however, one future

state is always known. Since the time until the next storm

is part of the output of the precipitation model, the

state N(t0+tb) = 1.0 is always known in addition to the past

history of the system states.

The cloud cover process as defined here is very sim-

ilar to the classic Dirichlet problem in mathematics.

There a differential equation is constructed to describe a

process that occurs within a bounded region. The solution

is known initially and the solution at the boundary is

known for all time, t, of interest. A solution is desired

within the specified region.

The development of the cloud cover model will follow

along the lines that are used to solve boundary value problems

in differential equations. The proposed procedure is to

acknowledge and analyze the properties of the function at

the boundaries, infer the existence of properties of the

function on the interior of the region, and select one of

a possible set of solutions that satisfies the prescribed

interior and boundary conditions.
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3.3 Interior and Boundary Conditions

Boundary conditions of the inter-storm cloud cover

process occur at the end of the previous storm event and at

the beginning of the next event. At these times N(t) = 1.0.

Overcast conditions (i.e. N(t) = 1.0) will not be precluded

from inter-storm periods. However, no rainfall will be

associated with the inter-storm overcast conditions.

From a statistical point of view, it is important to

determine the moment properties of the process at the

boundaries. The first moment, or the conditional expec-

tation of N(t) with respect to tb at the end of the pre-

vious storm is

E(N(tO)Itb) = 1.0 (3.3-1)

since N(t0 ) is completely deterministic. Similarly, at

t=t0+t b

E(N(t0+tb)!tb) = 1.0 (3.3-2)

The second moment or conditional variance at the

boundaries will be

VAR(N(tO)ltb) = 0 (3.3-3)

and
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VAR(N(t0+tb)ltb) = 0 (3.3-4)

since the process is completely deterministic at the boun-

daries.

In the interior of the inter-storm region, imagine

that the given tb is long enough that there exists a sub-

region, R*, loosely centered around the midpoint of the

inter-storm period in which the process N(t) can be

assumed stationary. Thus, the first and second moment prop-

erties of N(t) when teR* are

E(N(t)Jtb) E E(N(t)) = MO (3.3-5)

and

VAR(N(t)ttb) VAR(N(t)) = 0m2 (3.3-6)

This implies the existence of a "fairweather" cloud cover

process that is relatively unaffected by approaching or

receding precipitation-producing systems.

Now that the existence of specific first and second

moment properties of the process at the boundaries has been

established and the existence of first and second moment

properties in a sufficiently large interior region has

been inferred, it is further suggested that there exists

a smooth transition of moment properties from the boundaries
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to the interior region.

There may exist a whole set of solutions satisfying

the established or inferred boundary and interior condi-

tions. It is not the purpose here to find all or even a

part of the set of possible solutions. It is sufficient

to find just one that works.

3.4 Solution Development

One candidate solution is the function

N(t) = M0 + (1-MO)(l-P(t)) + m(t)P(t) (3.4-1)

where M is the "fairweather" mean value of N(t), P(t)

is the transition function, m(t) is the stationary se-

quence of correlated deviations with E(m(t)) = 0, VAR(m(t))

= o 2 and serial correlation function p (T),where T is lag.
m m

Since by definition, M0, E(m(t)), and VAR(m(t))

are not functions of time, the properties of the transi-

tion function must induce Equation 3.4-1 to meet the required

boundary and interior conditions. At the boundaries, N(t)

becomes

N(t0 ) = N(tO+tb) = 1 (3.4-2)

By inspection of Equation 3.4-1 with N(t) = 1, the following

is required of P(t)

P(t0 ) = P(tO+tb) = (3.4-3)0
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Before proceeding further, the first and second

moments at the boundaries of the process defined by Equa-

tion 3.4-1 will be verified.

value of

The conditional expected

N(t) is

E(N(t)|tb) = E(M0 +(1-M 0 )(l-P(t)) + m(t)P(t))

For more detail refer to Appendix B. Completion of the

operations indicated in Equation 3.4-4 leads to the expres-

sion for the time varying conditional expectation of cloud

cover.

E(N(t) Itb) + (I-MO)(l-P(t))

Substitution of Equation 3.4-3 into Equation

at t0 and t0 +tb

E(N(t0 )ltb) = E(N(t0+tb)Itb)

as required by Equations

= I

3.3-1 and 3.3-2.

Equation 3.3-5 specifies the requirement

E(N(t) Itb) when tcR*. Substitution of Equation 3.3-5 into

Equation 3.4-5 gives

NI = NI + (l-M 0 )(1-P(t)) (3.4-7)

or

(1-M0 )(1-P(t)) = 0

(3.4-4)

yields

(3.4-5)

3.4-5

(3.4-6)

for

= M 0

(3.4-8)
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In order to have a meaningful solution, Equation 3.4-8

requires that

(1-P(t))

P (t)

= 0 , tcR*

, tER*= 1

Thus, a second condition has been inferred for P(t).

The second moment property

by

VAR(N(t)Itb) E(N 2(t)ltb)

Again the reader is referred to

of evaluating Equation 3.4-11.

of Equation 3.4-1

-E 2 (N(t)Itb)

Appendix B fo

is found

(3.4-11)

r the details

Evaluation of Equation

3.4-11 leads to

VAR(N(t)jtb) m2 P (t)

To verify Equation 3.4-12 at the boundaries, substitute

Equation, 3.4-3 into

VAR(N(t 0 ) 1tb)

as required by Equations

Equation 3.4-12.

= VAR(N(t0+tb) Itb)

3.3-3 and 3.3-4.

For the interior region, Equation 3.4-10 can be sub-

stituted into Equation 3.4-12

or

(3.4-9)

(3.4-10)

(3.4-12)

Thus,

= 0 (3.4-13)

to show that
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VAR(N(t) Itb)tR* (3.4-14)

as required by Equation 3.3-6.

It has now been demonstrated that Equation 3.4-1 can

be a desirable solution to the cloud cover problem if the

transition function P(t) has the following properties

P(t0 ) = P(t0+tb) = 0

P(t) = 1 when tcR*

(3.4-15)

(3.-4-16)

One such function that satisfies the conditions of

Equations 3.4-15 and 3.4-16 has the form

P(t) = (1 - e
-C(t-to M e-y(to+tb-t)

where c, y are decay coefficients controlling the transi-

tion rates from the boundaries to R*. c would apply to

receding storms and y would apply to approaching storms.

These transition rates could be different values, but for

convenience, y and C are assumed equal. Thus

P(t) = (1 - e
-y(t-t

0 ) )(
-Y(to+tb- t)

) (3.4-18)

To verify that Equation 3.4-18 satisfies the condi-

tions set forth by Equations 3.4-14 and 3.4-15, the func-

) (3.4-17)
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tion is evaluated at t0 , t0+tb, and tcR*.

At t0

P (t0) e
-y(t0 -t0 ) ) e -Y (to+tb-t0)

= (1-1) (1 - e

P(t0 ) = 0

-Y (tb)

(3.4-19)

At t0 +tb

P (t0+tb) = (1 - e
-Y (to+tb-to) 

e
-Y (to+tb-to-tb)

-Y b

P (t0+tb) = 0 (3.4-20)

Finally, when tER*

Lim P(t) =

t b

1

(3.4-21)

Equation 3.4-21 suggests that the condition of Equation 3.4-16

is met only in the limit as tb-+Co. However, this is not a

problem since, for all reasonable values of y, P(t) will

reach a value close to 1.0, say 0.99, sufficiently soon to

permit practical application of the function.

chosen for y will be discussed in Chapter 9.

The value
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Another feature of the function N(t), that is shown

in more detail in Appendix B, is the serial correlation

function. The auto-correlation function of the cloud

cover process defined by Equation 3.4-1 is

PN(T) = Pm(T) (3.4-22)

where p M(T) is the serial correlation function of the

correlated random process, m(t). So, while the mean and

variance of the cloud cover are controlled or modulated by

the time varying function, P(t), the serial correlation

function is unaffected.

3.5 Stationary Deviations Process

The stationary deviations process, m(t), is taken

to be a simple first order Markov process defined by

m(t) = pm ()m(t-1) + j(t)/1-p2(1) (3.5-1)

where

pm(1) = lag-l correlation coefficient

q(t) = random deviate with

E((t)) = 0

VAR(n(t)) = m2
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In order for Equation 3.5-1 to be an appropriate model

for the process, the auto-correlation structure of the

natural process must follow

PN( = PNT() (3.5-2)

It turns out that the observed data used in this study

follows Equation 3.5-2 sufficiently well to warrant the

use of Equation 3.5-1 in the cloud cover model (See

Figures 3.1-3.2).

3.6 Summary

A cloud cover model has been developed that satis-

fies a prescribed set of requirements during both inter-

storm and intra-storm periods. A continuous transition

from one set of conditions to the next is provided. The

first and second moment properties of the cloud cover

process are allowed to vary in a controlled fashion, while

the auto-correlation structure is not affected by the

transition function.

The process is capable of producing values that are

less than zero or greater than one. Model output will,

however, be constrained to O<N(t)<l. Actually, the fact
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that the model described by Equation 3.4-1 can generate

values outside the valid range for N(t) is an advantage.

It mimics the real atmosphere in the sense that the real

atmosphere can assume a range of conditions with a clear

sky, as well as with a totally cloudy sky.

Cloud cover viewed by a weather observer is just

the manifestation of a set of atmospheric conditions that

allows the formation of clouds. A clear sky is not just

one atmospheric state, but a whole continuum of states

"below" the cloud formation threshold. The atmosphere

may be just below the cloud formation threshold or it may

be well below the threshold and require the completion of

a series of evolutionary atmospheric processes in order

to form clouds again.

Similarly, overcast sky is not one state, but a con-

tinuum of states beyond the point where the sky is totally

obscured. Total cloud cover may exist as a single very thin

layer, a single very thick layer, or multiple layers of

variable thickness and cover. A series of events must occur

at the various atmospheric levels to cause the clouds to

break up again.

Parameter estimation for the cloud cover model will be

discussed in Chapter 9.
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Chapter 4

SHORTWAVE RADIATION MODEL

4.1 Introduction

One of the most important variables in the surface energy

balance is, of course, solar or shortwave radiation. Solar

input is highly variable and nonstationary, both daily and

seasonally. The shortwave radiation mddel proposed in the

following sections will be used to generate hourly values of

solar input at any time of the year.

Since, for all practical purposes, the sun radiates its

energy at a constant rate, much of the variation in the amount

of radiant energy actually intercepted by the earth can be

described by the mechanics of earth's rotation about its axis

and by its orbital path about the sun. The equations des-

cribing the earth's motion are well known and straightforward.

The real difficulty lies in the description of what

happens to the shortwave radiation as it passes through the

earth's atmosphere on its way to the surface. A multitude of

particulate and molecular atmospheric constituents scatter,

reflect, and absorb radiant energy. Analytical evaluation of

these effects is all but impossible. Fortunately, a number

of empirical relationships have evolved through observation
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and experimentation that allow estimates of radiation finally

reaching the earth's surface.

4.2 Shortwave Radiation

As mentioned previously, the sun radiates energy at a

nearly constant rate. The average intensity of solar radiation

received on a plane unit area normal to the incident radiation

at the outer limit of the earth's atmosphere is called the

solar constant. A commonly used value for the solar constant,

Wbo, (Eagleson, 1970) is:

-2 -
W = 2.0 cal.cm 2min (4.2-1)

The portion of Wbo incident on a horizontal surface is

generally of more interest and is referred to as insolation,

I .0
Wbo

I = -o sina (4.2-2)0 r2

The solar altitude or angle of radiation, a, with the horizon-

tal is given by

sina = sin6sin$ + cos6cos~cosT (4.2-3)

where 6 is the declination of the sun, $ is the local lati-

tude, and T is the hour angle of the sun. The variable r is

the ratio of actual earth-sun distance to mean earth-sun dis-

tance and is given by (TVA, 1972)
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r = 1.0 + 0.017 Cos 365 (186-D) (4.2-4)

where D is the Julian day (i.e. 1 < D < 365 or 366).

The sun's declination varies throughout the year and from

year to year. Hence, declination values are usually pub-

lished in tabular form (List, 1963). However, an approxi-

mation formula that is sufficiently accurate for heat trans-

fer computations is available (TVA, 1972).

2 3. 4 Srcos 2,F (172-D)J

The local hour angle, T, can be computed from

T = ST + 12 - DTSL + ET

when the sun is east of the observer's meridian and from

T = ST - 12 - DTSL + ET

when the sun is west of the observer's meridian.

(4.2-7)

The var-

iables in Equations 4.2-6 and 4.2-7 are defined as

ST = standard time in the time zone of the observer

in hours counted from midnight (e.g. 0:00<ST<

23 :59).

DTSL = time difference between local and standard meri-

dian in hours

-(LSM-LLM)

where is -1 for WEST longitude, is for +1 for

Thus

(4.2-5)

(4.2-6)
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EAST longitude, LSM is the longitude of the stan-

dard meridian and LLM is the longitude of the ob-

server's meridian.

ET = difference between true solar time and mean solar

time in hours. (Usually neglected for heat trans-

fer computations . ET = 0 here).

The total radiation for a given period, At = t2 - ti, can

be found by substituting Equation 4.2-3 into Equation 4.2-2

and integrating.

t

At 1o =

tL

2 f dt = (sin6sin$ + cos6cos4cosT)dt (4.2-8)

t1 1

It = bo
Ato 0 2_

t 2 r-t2
sin6sinpdt +

t t

cos 6cos~cosT dt]

In the evaluation of the first integral on the right-hand

side of Equation 4.2-9, 6 and $ are considered constant over

the interval. Thus,

t

t
2

sin6sin~dt = sin6sin$(t 2 -t1 )

1

(4.2-10)

In the second integral on the right-hand side of Equation 4.2-9,

6 and $ are again held constant, but T is a function of time, t.

(4.2-9)
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By introducing the change of variables

T =-t (4.2-11)

to transform hours to radians, the second integral becomes
t t2

cos6coscosTdt = cos6cos$ cos( 2 4 dT

t1 t I

(4.2-12)

t2
12

cos6cos~cosTdt = 1 cos6cos$(sin(T 2) - sin(T1 )) (4.2-13)

t
1

Now by substituting Equation 4.2-10 and Equation 4.2-13

into Equation 4.2-9, the total hourly isolation is computed

as

Wbo 12
At o= -- {(t 2-t)sindsin$ + os6cos$(sin(T2)-sin(T ))

(4.2-14)

the hour angle T should fall in the range 0<T<2ff. However,

when t is near noon standard time, discrepancies may arise

due to the non-synchronization with true solar noon. Thus,

if T < 0 as computed by Equation 4.2-11, just add 2fr. Sim-

ilarly, if T > 2Tr from Equation 4.2-11, subtract 2ff.

Sunrise and sunset are assumed to occur at a=0. Ob-

structions near the horizon and refraction considerations are

ignored.
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4.3 Clear Sky Shortwave Radiation

Eagleson (1970) quotes the following equation for the

attenuation of the radiation spectrum under clear skies,

based on the monochromatic arguments of Beer's Law.

I
I-= exp(-na1m) (4.3-1)
0

where Ic is clear sky radiation, a1 is a molecular scattering

factor (a1 = 0.128 - 0.054 log m), m is the relative thick-

ness of the air mass (m = coseca), and n is a turbidity

factor (2.0 for clear air, 5.0 for smoggy urban air).

TVA (1972) considers that attenuation relationships of

the form of Equation 4.3-1 to be valid only for monochromatic

radiation and can therefore be considered only as an approx-

imation when used to compute the attenuation of the total

spectral solar radiation flux. However, its simplicity is

attractive. For the current version of the CSCS model, Equa-

4.3-1 is used.

However, it is prudent at this point to present an al-

ternative to Equation 4.3-1 that should be considered in

future versions of the CSCS model. Atmospheric transmission

of the solar beam is a function of a number of variables

including dust, moisture, elevation, ground cover, solar
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altitude, etc. Referring to TVA (1972), a method used by

Klein (1948) incorporates these elements. For clear sky

solar radiation

a' + 0.5(1-a'-d) - O.5d
a (4.3-2)

I 1 - 0.5R (1-a'+d )o g s

-(0. 4 6 S+0.134w)(0.129+0.171e 
8 8 0mp)m

a? = e (4-)

w = e(-0.981+0. 034 10 d)(4.3-4)

5.256
mp =m((288 - 0.0065z)/288) (4.3-5)

-1.253 -1
m = (sina + 0.1500 (a + 3.885) ) (4.3-6)

d = d + d (4.3-7)

where a' is the mean atmospheric transmission coefficient

for cloudless, dust-free, moist air after scattering only, w

is the mean monthly precipitable water content in cm, e d is

the mean monthly surface dewpoint, in 0F, measured at the

2m-level, m is the optical air mass,dimensionless,

m is the elevation or pressure adjusted optical: air

mass,dimensionless, z is the elevation in meters,

a is the solar altitude in degrees, d is the total
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dust depletion, ds is the depletion coefficient of the direct

solar beam by dust absorption, and R is the total reflec-

tivity of the ground. Some of the coefficients that appear

in the preceding equations may vary with location and time

of year. TVA (1972) provides brief summaries of coeffi-

cients at different locations and refers to studies providing

more comprehensive lists (e.g. Kimball, 1927, 1928, 1929;

Fritz, 1949; Bolrenga, 1964; Reitan, 1960, etc.)

4.4 Cloudy Sky Shortwave Radiation

The presence of clouds will further reduce the amount

of shortwave radiation reaching the earth's surface. The

amount of additional attenuation depends not only on the

cloud cover but cloud type, thickness and elevation.

The U. S. Army Corps of Engineers (1956) gives the fol-

lowing relationship to estimate the impact of cloud cover.

I '
__- = 1 - (l-K)N (4.4-1)
c

where Is' is the total direct and diffuse shortwave radia-

tion, N is the fraction of sky obscurred by clouds, and K is

a coefficient to account for altitude considerations.

K = 0.18 + 0.0853(10- 3)z (4.4-2)

where z is the cloud base altitude in meters.
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Prior to Equation 4.4-1, all equations in Chapter 4

have been deterministic. With the introduction of N and K,

the stochastic element has now entered the solar radiation

generation process. Cloud cover, N, was discussed in Chap-

ter 3.

The stochastic generation of K is not particularly

easy. Any relationships that might logically be expected

to exist between K and N are difficult to identify, due to

the way data for z are reported. Cloud base altitude is

only reported when N > 0.50. For N < 0.50, z is reported as

"unlimited ceiling".

The scale on which z is reported also varies with al-

titude. For example, z may be reported in 30 to 150m

(100-500 ft.) intervals when z is small and 1500-3000m

(5,000-10,000 ft.) intervals when z is large. To avoid the

problems with establishing K, an alternative attenuation

function is desired that is a function of N alone.

TVA (1972) reports that the relationship

I '
= 1.0 - 0.65N2  (4.4-3)

c

provides reasonable results. Under certain kinds of cloud

cover, Equation 4.4-3 can give values for attenuation that

are too high. As N+l for high thin cloudiness, more radiant
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energy passes through than Equation 4.4-3 would indicate.

To help alleviate this problem, total opaque cloud cover is

used instead of total cloud cover. Opaque cloud cover data

are also reported at first-order stations where total cloud

cover is recorded and it gives a more accurate indicator of

the current cloud deck's ability to attenuate solar energy.

4.5 Summary

A procedure for generating hourly values of shortwave

radiation has been developed that uses predominantly det-

erministic techniques to establish "potential radiation".

Stochasticity enters through the introduction of generated

cloud covers that were discussed in Chapter 3. Seasonal

and diurnal variations are handled through the equations

describing the earth's motions about the sun and its own

axis.

Perhaps one of the most important features presented

thus far is that the depressed values of solar input observed

on cloudy days are now accounted for. Since the cloud cover

model is "synchronized" with the precipitation model, the

shortwave generation model automatically follows in step.

Furthermore, an infinite variety of radiation inputs are pos-

sible, even on a day with precipitation. For example, the
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precipitation may occur at night, clouds clear away, and

maximum solar input is observed for the day. Or cloudiness

and precipitation may last all day and a minimum solar input

is generated. Any combination in between is also possible.

This feature is one of the significant elements that is

missing from the models in the current literature.
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Chapter 5

LONGWAVE RADIATION MODEL

5.1 Introduction

Atmospheric constituents are heated by conduction,

convection and radiation. These elements in turn emit what

is known as atmospheric or longwave radiation. The incoming

longwave radiation is another significant element of the land

surface energy balance that must be simulated.

5.2 Longwave Radiation with Clear Skies

The temperature, density,and depth of atmospheric water

vapor, carbon dioxide, and ozone largely determine the amount

of longwave radiation at the land surface. The major source

of variability in the total atmospheric emittance is asso-

ciated with the emission of water vapor in the 8-14pm spec-

tral window. (Idso, 1981)

Since atmospheric radiation is a function of the full

depth of the atmosphere, and since routine soundings of

atmospheric properties are not generally available, many

researchers have attempted to estimate longwave radiation

using parameters that can be measured at the land surface.

The two most commonly used parameters are the atmospheric



65

vapor pressure and air temperature, both measured at the 2m-

level.

The effective emittance of a cloudless atmosphere is

generally expressed as

Ra
F _ - (5.2-1)

a aT4

where 6 a is the effective emittance, Ra is the longwave

radiation of all wavelengths, a is the Stefan-Boltzman con-

stant (0.826(10 )10)cal cm- 2min- 0 K4 ), and T is the 2m air

temperature in 0K.

Brunt (1932) and Angstrom (1915, 1936) developed equa-

tions for estimating c a based on atmospheric vapor pressure

alone. Brunt's equation is of the form

:a = a + b(e0 )2

and Angstrom reported

a = - 1 0 ye. (5.2-3)

where a, b, a, y, and are empirical constants.

Formulations that depend only on temperature include

those of Swinbank (1963) and Idso and Jackson (1969).

Swinbank developed

Ca = T2 (5.2-4)
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and Idso and Jackson used

-d(273-T) 2
E = 1 - ce (5.2-5)

where 6, c, and d are empirical constants.

Idso, in cooperation with several other researchers,

led a number of investigations into the nature of atmos-

pheric radiation through the 1970's. This work culminated

in a 1981 publication which presented a new equation for

full spectrum thermal radiation. The new equation takes

into account both atmospheric water vapor and temperature.

The new equation was developed to follow the body of evi-

dence that links longwave radiation to the binding energies

of certain hydrogen bonds. Idso's latest approach takes

the form (Idso, 1981)

-5 (1500/T)
Ca = 0.70 + 5.95(10 )e e (5.2-6)

where e0 is in mb and T is in 0 K. Idso developed the model

using data that ranged from 245 0K to 3250K for T and from

3mb to 28mb for eo.

To stochastically generate values representing longwave

radiation, models to generate temperature and vapor pressure

are required. The temperature generation scheme will be
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discussed in a later chapter. Vapor pressure will be com-

puted as a function of the 2m dewpoint and the 2m temper-

ature. Dewpoint will be a generated variable and will also

be covered in a later chapter.

5.3 Atmospheric Water Vapor Pressure

As mentioned earlier, dewpoint and temperature will be

used to compute vapor pressure as required by Equation 5.2-6.

The path from dewpoint to vapor pressure is not particularly

direct. Several steps are taken.

First, the saturation vapor pressure, es, is computed

using an approximation formula found in Rasmussen (1979)

e s C o+C 1T+C 2T 2+C 3T 3+C4 T 4+C 5T 5  (5.3-1)

where es is in mb and T is in 0C. The coefficients of

Equation 5.3-1 were given as

C = 6.0689226

C = 4.4358312(10- )

C2  = 1.4590816(10- ) (5.3-2)

C3  = 2.7619554(10~ )

C4 = 2 . 9952590 (10 6

C5 = 1.4398885(10- 8

Equation 5.3-1 was indicated to be valid over the range

-50 C to +50 C.



68

A more computationally efficient form of Equation 5.3-1

was actually used. Equation 5.3-1 can be rewritten as

e s = C0 + T(C 1+T(C2 +T(C 3+T(C 4+TC5 )))) (S.3-3)

Equation 5.3-3 requires approximately half the effort to

evaluate than does Equation 5.3-1.

The second step is to evaluate the relative humidity.

Linsley, et.al. (1975) provide the following approximation

112 - 0.T - Td (534)f = 112 + 0.9T(.34

where f is the relative humidity, T is temperature in 0C, and

Td is the dewpoint temperature in 0C. For the range of

-25 0C to +45 C, Equation 5.3-4 approximates relative humidity

to within 0.6 percent.

Relative humidity can be defined as

e
f -e 0 (5.3-5)

es

Since f and es in Equation 5.3-5 are known, the remaining step

is to solve Equation 5.3-5 for e0 and compute the vapor

pressure needed by Equation 5.2-6.

5.4 Longwave Radiation with Cloudy Skies

The presence of clouds will increase longwave radiation

due to the energy emitted by water and ice particles at
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the base of the clouds. Cloud type, temperature, and extent

all have an impact on the total additional contribution.

One correction factor found by TVA (1972) to work reasonably

well for a variety of conditions is

K = (1 + 0.17N2 (5.4-1)

where N is cloud cover. Applying Equation 5.4-1 and Equa-

tion 5.2-6 to Equation 5.2-1 yields the final relationship

used to generate longwave radiation.

+ 59 -l0 (1500/T) 2 4
Ra = (0.70 + S.95(10 )e0e )(1 + 0.17N )aT

(5.4-2)

5.5 Summary

A generating scheme for longwave radiation has been

developed using the latest results of Idso (1981) to deter-

mine the atmospheric emissivity. Stochastically generated

temperatures and dewpoints are used to "drive" the longwave

generator.
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Chapter 6

TEMPERATURE MODEL

6.1 Introduction

In recent years, several researchers have attempted to

generate temperatures stochastically. In some fashion, each

investigator had to deal with the diurnal and seasonal cycles

that appear in the data. These cycles account for much of the

variability in observed temperature.

Because the periodicities are so evident, Fourier or

harmonic techniques have often been used to generate temper-

atures. Kim (1976) and Song et.al. (1973) are two examples.

Kim used Fourier techniques to generate an independent trace

of daily temperatures for input to a snowmelt forecast model.

Song et.al. developed a model to generate daily air temper-

atures and water temperatures for streams in the Missouri

River Basin. Song et.al. proposed that air and water temper-

atures could be considered to contain a deterministic part and

a stochastic part.

AT. = AT. + AT! (6.1-1)1 1 1

WT. = WT. + WT!1 1 1

where AT. and WT. are the respective average daily air temp-
1 1
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erature and the average daily water temperature on the ith

day; AT and WT. are the deterministic components; and AT!
1 1 1

and WT' are the stochastic components.

The deterministic components, ATi and WT., were taken to

have the general form

T. = A + Bsin 365 + Ccos 3 (6.1-3)

where the coefficients A, B,and C were derived through

regression analysis.

The stochastic components, AT' and WT' are not purely
1 1

random. Serial and cross-correlations exist. Therefore, Song

et.al. proposed that the water temperature departures be

written as a function of the air temperature departures.

WT.' = DAT. + 6 (6.1-4)
1 1 i

where 6 is a random number with zero mean. Substituting Equa-

tion 6.1-4 into Equation 6.1-2 to get a temperature model

(albeit for water instead of air) that enables the output to

be correlated with a second time series.

WT. = a + bsin 2 + ccos 27ri + dAT. + 6. (6.1-5)
1 1_6 16

The coefficients a, b, c and d are evaluated through regression

analysis.
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Other researchers have created temperature generation

models that essentially depend on techniques yielding weakly

stationary processes (e.g. Markov lag-1). Seasonal variation

is introduced by using different parameter sets for different

times of the year. (Jones et.al., 1972; Ahmed, 1974; Nicks,

1975; Richardson, 1979, 1981). With the exception of Ahmed's

model, all of these models generate daily temperatures (either

mean or max-min) that are conditioned on the occurrence of

wet or dry days. This approach attempts to account for the

fact that on wet days temperatures tend to be lower than on

dry days.

Nicks (1975), for example, generated daily maximum and

minimum temperatures using a Markov lag-1 process. Four dif-

ferent sets of parameters were developed depending upon the

current wet/dry sequence. Parameter sets were developed

for a wet day following a wet day, a wet day following a dry

day, a dry day following a wet day, and a dry day following

a dry day.

Richardson (1979, 1981) used a similar approach but also

considered "maximum temperature, minimum temperature, and

solar radiation to be a continuous multivariate stochastic

process". Richardson then used a multivariate generating
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approach (Yevjevich, 1972) that was conditioned by the current

day's wet or dry state.

Ahmed (1974) also conditioned temperature by the current

day's wet/dry state, but used a somewhat different approach.

Ahmed was studying water-use efficiency in crop production

systems and needed temperatures for time scales shorter than

one day. Instead of continuously generating temperatures

throughout the day, Ahmed simplified the problem by developing

a set of equations designed to yield air temperature at three

specific times each day.

At 8:00 a.m.:

T T - 3.0 + 1.5Pp - 0.5h (6.1-6)

At 12:00 noon:

T = T + 2.0 + 1.5Pp - 0.5h (6.1-7)

At 4:00 p.m.:

T = T + 1.0 + 1.5Pp - 0.5h (6.1-8)

where T is the air temperature in 0 C, T is the average temp-

erature for the day in 0 C, Pp is the precipitation probability,

and h is the amount of precipitation in cm. The + or - sign

depends on the clear or cloudy conditions of the sky (i.e. a

binary switch).



74

All of the approaches seen thus far eliminate the problem

of diurnal variation by dealing with longer time scales or,

as in Ahmed's case, develop an empirical set of equations for

each time of interest. In effect, Ahmed's approach uses a

daily time scale as well, since each equation is based on

data from only one particular time of day. This is really no

different than a max-min approach.

The literature on stochastic generation of temperatures

at time scales of less than a day is quite limited. Perhaps

that in itself is a statement of the difficulty of the

problem. The literature certainly indicates that the need is

there (Jones et.al. 1972; Nicks, 1975; Ahmed, 1974; Mishoe,

1978; Jones and Smerage, 1978, Baker, 1981) but the solution

is not.

Only one relevant paper was found that approaches the

problem of stochastic generation of temperatures at the hourly

level. Hansen and Driscoll (1977) developed a mathematical

model for the generation of hourly temperatures. They were

able to develop a model of the periodic course of mean hourly

temperatures using the first, 365th, 730th, and 1095th

harmonics which correspond to the annual, daily, 12 hour and

8 hour variations.
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Tt = + (A sin((360/N)t) + B 1 cos((360/N)t))

+ (A3 6 5 sin((360/N)365t) + B 3 6 5 cos((360/N)365t))

+ A 730sin((360/N)730t) + B 7 3 0 cos((360/N)730t)

+ A1 0 9 5sin((360/N)1095t) + B1 0 9 5 sin((360/N)1095t))

(6.1-9)

where Tt is the temperature at hour t, T is the mean annual

hourly temperature, A and B are amplitude coefficients, and

N is the number of observations in the fundamental period.

To simulate the irregular and aperiodic variations of

hourly temperatures, Hanson and Driscoll superimposed a

sequence of serially correlated standard normal deviates upon

the temperatures generated by Equation 6.1-9. A lag-l Markov

process was used.

For some reason, however, Hanson and Driscoll chose not

to try to estimate what the variance of the superimposed set

of deviations ought to be. Rather, the sequence was assumed

to have a variance of one which caused, as the authors acknow-

ledged, the overall model variance to be lower than the observed.

Unfortunately, none of the models discussed so far have

both the refinement in the time scale and the necessary flexi-

bility to rationally include the effects of other variables

(e.g. cloud cover) on a continuous basis. A new approach

must be defined.
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6.2 Bryan's Temperature Forecast Model

In 1967 Gerrity published a report describing a physical-

numerical model for the prediction of synoptic-scale low

cloudiness. The model was designed to permit the investi-

gation of the significance of certain boundary-layer processes

for the development of horizontally extensive areas of low

cloudiness. The model required temperature inputs at the

lower boundary, the 2-m level. Gerrity chose an empirical

method developed by Bryan (unpublished,1964) to estimate the

temporal variation of the air temperature attributed to the

divergence of radiative heat flux and the divergence of

eddy heat flux. Bryan's method uses the equation

dT t) = b - b T(t) + b2 s(t) + b3r(t) (6.2-1)

where T(t) is temperature, t is time in hours after local

midnight.

s(t) = sin6sin$ - cos6cosqcos+ (R<t<S) (6.2-2)

s (t) = 0 (otherwise)

r(t) = ds(t) = 7 cos6cos7sin j (R<t<12) (6.2-3)r(t) = 12 ( -terws)

r(t) = 0 (otherwise)

and 6 is the solar declination, 5 is the local latitude, R is
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the local time of sunrise and S is the local time of sunset.

Equation 6.2-1 gives the temperature change as a function of

the current temperature and solar input as represented by the

two terms s(t) and r(t). The solar input is then represented

by the sine of the solar altitude. (This is especially

interesting, since the relationship for the sine of the solar

altitude also appears in the shortwave radiation model of

Chapter 4. The possibility thus presents itself for possible

linkage of the shortwave radiation model with a method for

computing temperatures.)

Equation 6.2-1 can be integrated by using the integrating

b t
factor e .1  Thus

d bi t b1 t
]t (e T(t)) = e (b0 + b 2 s (t) + b 3r(t)) (6.2-4)

The solution of Equation 6.2-1 is

T(t) = T(t')e + e F(t,t') (6.2-5)
t tb T
tb 1 b 1 bt b1

F(tit') = bof e dT + b2 e s(T)dT + b 3 e r(T)dT

ty t' t'

(6.2-6)

Equation 6.2-5 suggests that temperatures can be calcu-

lated for any time, t, if only the initial temperature is
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known (i.e. T(t')). Before Equation 6.2-5 can be evaluated,

however, the coefficients b. must be determined.

The standard method for determining the coefficients that

arise from the solution of a differential equation is to

apply known boundary or initial conditions and solve for the

respective values of the coefficients. Bryan, however, de-

veloped a procedure to derive the coefficients by fitting the

model to a set of observed data through regression.

The details of Bryan's method can be found in Appendix C.

For readability, only the essential elements are presented

here.

Equation 6.2-5 can be rewritten in the following form

T(t) = e -b (T(t')e-bl(t-1-t') + e b (t-1)F(t-l,t'))

+ e -b t F(tt-l)

(6.2-7)

The quantity inside the brackets is just T(t-1). Thus Equation

6.2-7 becomes

T(t) = e 1T(t-1) + e- F(tt-1) (6.2-8)

Equation 6.2-8 gives the current temperature based on the

conditions an hour earlier at t-l. The hourly temperature

change, Y(t), is found by subtracting T(t-1) from both sides

of Equation 6.2-8.



79

Y(t) = - (1-e-b )T(t-1) + e- tF(tt-1)

Next, substitute the expression for F(t,t-1) into Equation

6.2-9. t
-b t b 1 T

Y(t) = b e e dT - (1-e

t-1

-b 1 )T(t-1) + b 2 e

t

-bl t b IT
e Se(T)dT

t'-1

t

+ b3e
-bit b 1 T

e r(T)dT (6.2-10)

Evaluation of the first integral (I1 for convenience) on the

right hand side of Equation 6.2-10 leads to

-b1I bo
I - (1 - e1 )

(6.2-11)

The last two integrals, 12 and I3, on the right hand side are

complicated by the exponential term inside the integral.

Bryan (1964) indicated that it was sufficient to use the mean

value of e

side the integ

over the integration interval and bring it out-

ral. Thus

b1 T
E(e ) e

b1 b1 t

t

I2 - b2  el) s(T)dT
2 b 1

t-l

I b 3
13 = (1 e

1
(6.2-14)

't

r(T)dT

t'-l

(6.2-9)

and

(6.2-12)

(6.2-13)



80

Substituting the expressions for I, I2, and I3 back into

Equation 6.2-10 yields

b
Y(t) = b-- (1 - e

1

+ (b 2 e
b1

-b -h
1) (1 e )T(t-1)

t-l

s(T)d + 3  (1 - e-b {r(T)dT
1

t-1

(6.2-15)

At this point, it may not be clear that Equation 6.2-15 is

of a form that can be utilized to estimate the coefficients

by regression. To establish this point, compare Equation 6.2-15

with the following term-by-term

Y(t) = a + a1 X1 (t) + a2X2 (t) + a3 X3 (t)

For the constants a.

b -b
ao = b-- - e )

1

0 =-b
a 1 = -(1 -e 

)

a 2 =b 2le2 b1
1)

b3 -b1
a3 =-( -e )

(6.2-16)

(6.2-17)

(6.2-18)

(6.2-19)

(6.2-20)

-b
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For the predictors, X (t)

X 1 (t) = T(t'-1) (6.2-21)

-t

.X2 (t) = s(T)dT (6.2-22)

t-l

t

X 3 (t) = {r(T)dT (6.2-23)

t-1

Once the a 's have been determined by regression, the b 's can

easily be found since the set of Equations 6.2-17 through

6.2-20 is a system of four equations in four unknowns. There-

fore, the b 's are determined as

b = -ln(a1 + 1) (6.2-24)

and

b. - a , i = 0,2,3 (6.2-25)
1 a 11

Now standard regression techniques can be used on the

observed data set of hourly temperature changes to establish

the b 's. Once the bi's are established, Equation 6.2-5

can be used to forecast temperature given only the initial

temperature T(t').

Since s(t) and r(t) operate only during certain portions

of the day, the equations for both Y(t) and T(t) will havc
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different forms depending upon the time of day. These dif-

ferent forms and the details of their development appear in

Appendix C.

Bryan's temperature model presents some interesting

possibilities. First, as was noted earlier, a direct linkage

is evident between Bryan's temperature model and the shortwave

radiation model through the joint use of the expression for

the sine of the solar altitude. This allows the temperature

model to continuously respond to the temporal variation of

the solar signal. In addition, two other parameters in

Bryan's approach help account for seasonal variations (i.e.

declination,6) and geographical influences (i.e. latitude,$)

on the solar input.

Flexibility is another key element in Bryan's model.

Modifications could be made to the original Equation 6.2-1

to help account for the effects of cloud cover, longwave

radiation, wind speed, wind direction, ground temperature, etc.

If this could be done, then an expanded Bryan model could be

used to trace a "deterministic" component of temperature upon

which a random component could be superimposed as was done by

Hansen and Driscoll (1977). Then an hourly stochastic temp-

erature generator would exist that could be coordinated with
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other stochastic variables in a multivariate process.

6.3 Stochastic Temperature Generation

An expanded version of Equation 6.2-1 can be written

as

dT(t) + b T(t) = b0 + b 2 K(t)s(t) + b 3 K(t)r(t)
dt10 23

+ b 4 q(t) + b 5 T g(t) + b 6 Ws(t) + b 7 Wd(t) (6.3-1)

where T(t) is the deterministic component; K(t) is the radia-

tion attenuation factor (K(t) = 1 - 0.65N 2(t)); N(t) is the

cloud cover; q(t) is a longwave radiation estimate; T (t)

is the ground temperature; Ws (t) is the wind speed; and Wd(t)

is the wind direction.

The longwave radiation estimate, q(t) is not the same

as the longwave radiation calculated by Equation 5.4-2.

Rather, the simpler Swinbank (1963) formulation was used with

a cloud cover correction factor (TVA, 1972).

q(t) = 0.937(10 5)(1 + 0.17N 2(t))aT 6(t) (6.3-2)

where a is the Stefan-Boltzman constant, 0.826(10 0) cal

-2 -lo -
cm min K. One of the main reasons for including the

term b4q(t) in Equation 6.3-1 was to insure that a term res-

ponding to the effects of cloud cover was present throughout
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the entire day. The other two terms that respond to cloud

cover are only present during certain portions of the day.

The term b4q(t) will be available all day and should be use-

ful in explaining some of the differences in cooling observed

on clear nights as opposed to cloudy nights.

Wind speed and wind direction were added as possible

indicators of an advected temperature component. Wind direc-

tion, in particular, might give an indication of the sign of

the advection (i.e. warming or cooling).

Wind direction is often reported in degrees azimuth

measured from the north (0 0<azimuth<360 0) . Inclusion of wind

azimuth in Equation 6.3-1 can cause some inconsistencies in

parameter estimation. For example, an azimuth report of

3600 or 100 physically

erty, a northerly flow.

reports would indicate

report would be a value

mean value and the 3600

the mean. This problem

correlation estimates.

A transformed wind

Wd(t) = azimuth

indicate practically the same prop-

However, statistically the two

something quite different. The 100

that is considered well below the

report represents a value well above

will most notably affect the serial

speed is used instead where

(00< azimuth <1800) (6.3-3)
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and

Wd(t) = jazimuth - 36001, (180<azimuth<3600 ) (6.3-4)

This approach unfortunately filters out east-west influences

but the relative impact of the north-south component remains.

To solve Equation 6.3-1, first note that q(t) is a non-

linear function of temperature. Since q(t) is really only

being used as in index, it is linearized using q(t-1) and

bringing it outside the integral. Now the solution to

Equation 6.3-1 becomes

-b (t-t')
T(t) = T(t')e

where

G(t,t') =

+ e btG(t,t')

-t by t by
bo e dT + b2  e Kb(lT)s(T)dT

t' t

t b T r-t b 1T
+ b 3  e K(T)r(T)dT + b 4 q(t-1) e dT

t t'

+ bf e lTg(T)dT + b6 f e W rs(T)dT

t t'

(6.3-6)+ b 7  e Wd(T)dT

t'

(6.3-5)
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Parameter estimation can now proceed as was demonstrated in

the previous section. The details appear in Appendix D.

The hourly temperature change can now be expressed as

Y(t) = be b

-b1 t
+ b2 e ~

bIT -b1 I
e dT - (1 - e )T(t-l)

I
1

-t

+ b 3 e -b1
t

t'-l

t
biT
e K(T)s(T)dT

b T

e ' K(T)r(T)dT

-b t
ct (t -1)

-t b1 T
e dT

t- 1

-b t ' 1
+ b5e {teb T g(T)dT

t-l

+ b 6 e -bt

t'-l

-b t Ft
+ b 7 e -

t'l

b. T

b T
e 1 s (T)dT

b T

e Wd(T)dT

I that appears in the integrals containing s(T)

+ b 4 e

(6.3-7)

The term e
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and r(T) is treated by using the mean value argument shown

in the previous section (see Equation 6.2-12). The integra-

tion interval is short enough that the values K(T), T (T),

Ws (T), and Wd(T) can be evaluated at time t and brought out-

side the respective integrals.

The regression formula for Y(t) is now

Y(t) = a0 + a 1X (t) + . . .

where the coefficients a are

al

+ a7X 7 (t)

= - (1 - bi)

a 
1a. - .

1 b 1 1

and the

x

, i = 0,2,3, .,7

predictors X (t) are

(t) = T(t-1)

-t

X2 (t) = K(t) s(T)dT

t'-1

X3 (t) = K(t)

X4 (t)

x 5 (t)

-t
r(T)dT

=q(t-1)

= T (t)

(6.3-8)

(6.3-9)

(6.3-10)

(6.3-11)

(6.3-12)

(6.3-13)

(6.3-14)

(6.3-15)
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X6 (t) = Ws (t) (6.3-16)

X7(t) = Wd(t) (6.3-17)

Note that since the temperature at time t is the variable

being computed, T(t-1) is used in Equation 6.3-14.

Once the a 's have been estimated, the b. 's are easily

found

b= -n (a + 1) (6.3-18)

b. = - - a. i = 0,2,3,.. .,7 (6.3-19)
1 a 1 1

Now Equation 6.3-5 can be used to estimate the "deterministic"

component of hourly temperatures.

The b. 's are developed for each period of interest. In

the current application, observed hourly values of temperature

change, opaque cloud cover, wind speed,and wind direction for

a particular month were used to estimate the bk's. Ground

temperature data were not available. Thus,b 5 was set to 0.0.

Equation 6.3-5 is applied each day to compute tempera-

tures at t = 0 (midnight), 1, 2,...,23. The initial temper-
nV

ature, T(t'), for the period is the 11:00 p.m. (t=23) temp-

erature for the previous day.
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The "deterministic" component is essentially the expec-

ted temperature given the set of predictor values. All of

the temperature variability is not explained by the model.

To represent the random element, a serially correlated set

of random variates will be added to the "deterministic"

trace. Thus, the hourly temperature, T(t),

T(t) = T(t) + T'(t) (6.3-20)

where T(t) is the "deterministic" element and T'(t) is the

random element.

The random element is defined as

T'(t) = T (t) - T(t)
0 0

(6.3-21)

where T'(t) is the observed deviation, T (t) is the observed
00

temperature and T(t) is the deterministic component. The

deviations are assumed to be approximated by a lag-l Markov

process.

T'(t) = PTT'(t-1) + CtT,/1- (6.3-22)

where pT' is the lag-l serial correlation, %t is the standard
normal deviate, and aT, is the standard deviation.

6.4 Summary

The stochastic temperature model generates hourly temper-
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atures as a function of the time of day, time of year,

latitude, longitude, cloud cover, wind speed, longwave

radiation, shortwave radiation, ground temperature, and wind

direction. Also, because the precipitation model in effect

"drives" the cloud cover generation, the temperature output

is appropriately affected by the occurrence of precipitation.

These features make the proposed stochastic temperature

algorithm the keystone in the framework of the CSCS approach.
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Chapter 7

WIND MODEL

7.1 Introduction

The wind component of the CSCS model is composed of two

parts, wind speed and wind direction. Wind speeds are re-

quired as input to flux computations of the land-air inter-

face. Wind speeds may also quantify, somewhat, advection

processes for the temperature model. Wind direction is re-

quired as an advection indicator for the temperature model

as described in Chapter 6.

For the most part, the cross-correlation coefficients

between wind speed, wind direction,and the other variables

in the CSCS model are relatively low, generally less than

0.35 (see Tables 7.1-7.4). Therefore, for this version of

the CSCS model, both wind speed and wind direction are treated

as independent lag-1 Markov processes.

7.2 Wind Speed

The frequency distributions of wind speeds tend to be

positively skewed. A variety of probability distributions

with this property have been applied to wind speeds. Among

them are the Planck, Rayleigh, gamma and the Weibull.

(Hennessey, 1977; Justus et.al., 1977; Sherlock, 1951). The
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Weibull appears to be the most popular.

It is apparent then, that not only must the mean and

variance of the generated data be reproduced, but the gen-

erated data should be skewed as well. One often-used approach

in hydrology to generate skewed serially correlated data

is the Thomas-Fiering method (Haan, 1977).

The equation for a lag-l Markov process can be written

W s(t) = Ws + p s(Ws (t-1) - Ws) + Ct s sl- (7.2-1)

where Ws (t) is the hourly wind speed, W is the mean hourly

wind speed, ps is the lag-l serial correlation coefficient,

and a is the wind speed standard deviation. The variable

E is random and defined by Thomas and Fiering as

Y Y2 3
2 + C + _ _ _ 2 (7.2-2)

Et Y [1 +6 36) Y(.22

where y is the skew coefficient of E and t is a standard

normal deviate. The skew coefficient of c in turn is defined

as
3

(1 - p5 )ys

Y = 2 1.5 (7.2-3)
(1 - p5 )

where y is the skew coefficient determined from the wind

speed data.
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In some applications, the mean and standard deviation

of hourly wind speed may not be independent of the time of

day. This can result when surface-generated instabilities

promote vertical exchanges. This allows greater momentum

transfer from faster moving air aloft and increases sur-

face winds. Since atmospheric stability follows a charac-

teristic diurnal curve, wind speeds may as well. (Oke, 1978).

To approximate this property, the mean and variance

in Equation 7.2-1 will be allowed to vary with time.

Since there is a relatively smooth transition of the observed

hourly means and standard deviations throughout the cycle,

the minimum and maximum parameter values are entered with

their respective times of occurrence. Parameter values for

each hour are then found by linear interpolation.

7.3 Wind Direction

As mentioned previously, wind direction is generated as

input to the temperature model as an indicator of advected

heating or cooling components. Advection is due to variations

in the spatial properties of the atmosphere. When dealing

only with point data, however, it is quite difficult to

identify the nature of advection, particularly for future

time steps. Wind direction appears to be about the only
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point variable that could indicate advection. This is

largely due to the fact that air masses coming to a loca-

tion from different directions may have characteristically

different properties. For instance, winds with a large

northerly component may, on the average, bring cooler

weather conditions than winds from the south.

The transformed wind direction discussed in Chapter 6

is generated by a lag-1 Markov process.

Wd(t) = Wd + Pd (Wd(t-l) - Wd)

+ D 1 d (7.3-1)

where Wd(t) is the hourly transformed wind direction,

Wd is the mean hourly transformed wind direction, and

pd is the lag-l serial correlation coefficient. The var-

iable (t is a random input with zero mean and standard

deviation equal to ad, the standard deviation of the trans-

formed wind direction.

The distribution of transformed wind direction is, of

course, bounded on the left by 00 and on the right by 1800.

To generate a random variate for Equation 7.3-1, an algorithm

was developed that will generate a random variate from an

arbitrary frequency histogram. (See Appendix A; Curtis 1978;
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Abramowitz and Stegun, 1970). Utilizing the observed

frequency histogram of transformed wind direction, a random

value, Ot, representing wind direction (Wdad) is selected.

Thus, %t can now be defined as

t = 0 t -Wd (7.3-2)

to complete the wind direction model.
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'able 7.1 Data Correlation
July 1951 - 1957

TEMP

1.00

DEW

-0.22

1.00

Matrix for

CLOUD
COVER

-0.28

0.23

1.00

Dodge City, KS -

WIND
SPEED

WIND
DIR.

0.31

-0.10

-0.08

1.00

0.26

-0.10

-0.25

0.20

1.00

Table 7.2 Data Correlation Matrix
January 1952 - 1958

TEMP

1.00

DEW

0.66

1.00

CLOUD
COVER

-0.10

0.11

1.00

for Dodge City. KS

WIND
SPEED

0.10

0.08

0.12

1.00

WIND
DIR.

0.20

0.19

-0.03

-0.08

1.00

SP D DIR.
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Table 7.3 Data
July

TEMP

1.00

Correlation
1951 - 1963

DEW

0.26

1.00

Matrix for Boston, MA -

CLOUD
COVER

-0.21

.30

1.00

WIND
SPEED

0.35

-0.12

-0.05

1.00

Table 7.4 Data Correlation Matrix
January 1949 - 1962

TEMP

1.00

DEW

0.88

1.00

CLOUD
COVER

0.33

0.48

1.00

for Boston, MA

WIND
SPEED

-0.04

-0.07

-0.13

1.00

WIND
DIR.

0.18

0.28

0.06

0.04

1.00

WIND
DIR.

0.36

0.28

0.10

-0.08

1.00
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CHAPTER 8

DEWPOINT MODEL

8.1 Introduction

Some measure of atmospheric moisture is required to

establish a gradient for moisture transport processes at

the land surface. Specific humidity, vapor pressure, rela-

tive humidity and dewpoint temperature are all common

descriptors of atmospheric moisture content (Eagleson,

1970). Relative humidity and dewpoint data are more

generally available since they are measured at National

Weather Service first-order stations.

To simulate on an hourly basis, relative humidity

appears to be the more difficult due to the strong diur-

nal variations attributed to temperature (Oke, 1978).

Dewpoint, on the other hand, is much more stable during

the course of a day (Lorenz, 1978). Therefore, dewpoint

temperature is a more likely candidate for simulation.

Ahmed (1974), however, generated air humidity for his

multivariate model in the following fashion

H 1 as - HI (8.1-1)

where 1H a is the air humidity (i.e. vapor density) in
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g/m H1as is the saturated air humidity (i.e. saturation

vapor density) in g/m 3, and Hr is the relative humidity.

Relative humidity for a particular time of day (8:00 AM,

12:00 Noon, 4:00 PM) was computed by linear interpola-

tion between weekly mean values of Hr for the indicated

times. Has is a function of temperature and was computed

using Murray's adaption of the Goff-Gratch equation (Van

Bavel, et.al., 1973). This approach is quite simplistic

since any natural stochasticity is filtered out by the

use of weekly mean relative humidities. Also, humidities

are computed only at three specified times of the day.

Higher resolution is required in this study.

Gringorten (1966), in a study simulating the fre-

quency and duration of weather events, suggested that

dewpoints could adequately be generated by a lag-1 Markov

process. This would be a reasonable approach if the mean

hourly dewpoints did not change materially during the

course of a day.

8.2 Dewpoint Generation

From the plots of observed hourly dewpoints in Fig-

ure 10.13 and Figure 10.15, it is clear that the mean diurnal
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variation of dewpoint is quite small. The difference

between the maximum and minimum hourly dewpoints in

Boston, MA was 1.1 0C for January and July. For Dodge

City, KS, the difference was 2.40C for January and 1.70C

for July.

It is also apparent from Figure 10.13 and Figure 10.15

that the hourly variation in dewpoint is not random.

Rather, the hourly transitions are quite smooth. These

variations where they are noticeable, can generally be

explained by the short term dynamics at the land-air

interface. For example, the pronounced morning minimum in

the Dodge City data for January is likely due to the

removal of atmospheric moisture near the surface due to

frost formation. During the day, rising temperatures cause

the moisture to return to the lower atmosphere, elevating

the dewpoint again.

During July, the morning rise in dewpoint is probably

due to the addition of moisture from evaporating dew. The

subsequent dip in dewpoint temperatures in the afternoon

is likely the result of instability-generated mixing with

dryer air aloft. As the strength of the vertical instabil-

ity subsides in late afternoon, moisture builds up again
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in the lowest atmospheric layer and the dewpoints rise.

Tables 7.1 - 7.4 present the lag-0 cross-correlation

matrices for the observed data. The generally weak cross-

correlations exhibited by the July data indicate that

dewpoints could be generated independently.

Since the daily variation of July dewpoints for Boston

and Dodge City are small, and since the July dewpoints

are only weakly correlated with the other model variables,

July dewpoints could be generated independently by a first-

order Markov model as suggested by Gringorten (1966).

Therefore, the July dewpoints will be generated by

Td(t) = Td + Pd(l)(Td(t-)-Td) +

Ct d(1-P (1)) (8.2-1)

where T d(t) is the hourly dewpoint in 0 C, Td is the mean

hourly dewpoint in oC, pd(l) is the lag-l serial correla-

tion coefficient, t is the standard normal deviate, and

ad is the standard deviation of hourly dewpoint in 
0C.

To affirm the choice of a first order Markov process

to represent the July dewpoints, the observed serial corre-

lation functions for July hourly dewpoints are plotted in
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Figure 8.1 in comparison with the appropriate theor-

etical curve (i.e. p(T) = pT(1)). The theoretical curve

follows the Boston data very well. For the Dodge City

data, the theoretical curve follows the observed data

quite well only for the first six to eight hours. Beyond

that point the theoretical curve falls faster than the

observed. Overall, Equation 8.2-1 seems to be a reasonable

choice for July dewpoints.

Since the January dewpoints appear to have a stronger

cross-correlation structure with other CSCS model variables,

January dewpoints will be assumed to be composed of a

"deterministic" component and a random component. This

approach follows that established for temperature genera-

tion in Chapter 6. The deterministic component, Td(t),

will be estimated by linear regression. Thus

Td(t) = d0 + d Td(t-1) + d2T(t) + d3N(t) + d4 Ws(t)

+ d5Wd (t) (8.2-2)

where Td(t-l) is the previous hourly "deterministic" nor-
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Figure 8.1 Serial Correlation of Hourly Dewpoint
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tion in C, '(t) is the current temperature in 0 C,

N(t) is the cloud cover, Ws is the wind speed in ms

and Wd is the wind direction in degrees (00<Wd <1800).

The d 's are coefficients to be estimated by standard linear

regression techniques.

The random component will be treated as a lag-l

Markov process which represents a deviations process

defined by

TI (t) = T (t) - T(t) (8.2-3)
do do -Tt

where T do(t) is the observed dewpoint in 0 C, T(t) is the

dewpoint in 0 C generated by Equation 8.2-3 using observed

data as input, and To (t) is the observed dewpoint temper-

ature deviation in 0C.

The dewpoint deviations are generated by

TA(t) = PT, (i)TI(t-1) + 2tcT, 2, (8.2-4)
do do do

where pT, (1) is the observed lag-l serial correlation co-
do

efficient of the deviations, t is the standard normal de-

viate, and GT, is the standard deviation of the observed
do

deviations in OC.
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The January dewpoint model can now be written as

Td(t) = Td(t) + TA(t) (8.2-5)

8.3 Skewed Data

The dewpoint data tend to be negatively skewed. For

example, the July data were found to have skew coefficients

of -0.55 and -0.67 for Boston and Dodge City respectively.

To be correct in modelling hourly dewpoints in July, the

random deviate $t should be modified according to the

Thomas-Fiering approach described in Chapter 7 for wind

data. The transformed random variate, E was defined pre-

viously as

2 E~ YE 2
Ct = y - + 6 ~ 3  

- (7.2-2)

where

3
(1 - p

Y 2 1.5 d (7.2-3)
(1 - pd

where Yd is the skew coefficient of the observed data.

This approach does not work well for dewpoint genera-

tion because the lag-l serial correlation coefficients for



107

dewpoints are very high. (0.96 for July in Boston and

0.95 for July in Dodge City). To see the problem more

clearly, let us look at the modifier of Yd in Equation

7.2-3 and call it F. Thus

3
(1 - pd

F = (8.3-1)
(1 - p (1)) 1.5

Examination of Equation 8.3-1 shows that the denominator

decays to zero faster than the numerator as pd approaches

one. Therefore, as Pd( 1 ) 1', F-oo. The skew adjustment

factor, F, is plotted against lag-i correlation on Figure

8.3. Generally, when lag-i correlation is less than about

0.9, there is no problem. But for lag-l correlation values

greater than 0.9, F gets very large. For example, for

p(l) = 0.95, F ~ 4.7.

To see the full impact of such an extreme adjustment

factor, we must examine the last term of Equation 8.2-1

using E from Equation 7.2-2 instead of the standard normal

deviate t. On Figure 8.4 the value of ctGd(lPd2l)

is plotted against a wide range of values for t'

During the course of generating a large number of

random standard normal deviates, t, a few values selected
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from the tails of the distribution are expected. If,

for instance, a large negative value for t is selected,

a very large value for the tad( - () 2 term results.

In this case, the last term of Equation 8.2-1 so dominates

the output that very large and sudden negative shifts of

dewpoint occur. From Figure 8.4, it is seen that nega-

tive shifts on the order of 100 to 14 0 C are possible. If

two or more large values of $t happen to be generated

close in succession, totally unrealistic sequences can

be generated. Therefore, the Thomas-Fiering approach

was not used for dewpoints. Instead, the process was

approximated using normally distributed deviates. Be-

cause dewpoints are constrained by temperature, (i.e. Td<

some of the skew is recovered. In future studies, other

ways of preserving dewpoint skewness should be examined.
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CHAPTER 9

PARAMETER ESTIMATION

9.1 Introduction

In Chapter 2 through Chapter 8 the individual compon-

ents of the CSCS model were developed. However, the de-

tails of each required parameter estimation were not dis-

cussed. Rather, it seems more reasonable to treat the

parameter estimation issues in a separate comprehensive

chapter. Hopefully, future users of this report will find

it more convenient to refer to a single chapter on para-

meter estimation instead of searching all chapters to

seek the necessary information.

In the following sections, the procedures used to

identify the parameters used in each component are described.

A different set of parameters was derived for each month

studied (i.e. January and July).

Hourly observations of rainfall, total opaque cloud

cover, wind speed, wind direction, temperature, and dew-

point were obtained from the National Climate Center in

Ashville, North Carolina for Boston, MA, Dodge City, KS and

Phoenix, AZ. These locations were chosen to represent a

variety of climatic and geographic conditions. Unfortunately,
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the Phoenix records had too many missing observations and

the data set was not used in this study. However, adequate

records were obtained for January (1949-1962) and July

(1951-1963) at Boston and January (1952-1958) and July

(1951-1957) at Dodge City.

For each location, data for each January (or July)

wcre stripped from the master data file and combined to

create "new" time series containing only January (or July)

data. Parameters were then estimated from the January

(or July) time series for each location.

9.2 Precipitation

The required parameters for the precipitation compon-

ents include the mean time between storms, tb, in hours,

the mean storm duration, tr. in hours, and the mean storm

depth, h, in mm. Calculation of the arithmetic mean values

is obviously straightforward. The difficulty here lies in

the assumptions used in developing the precipitation compon-

ent, namely that successive storms are treated as independent

events and that the times between storms follow an expon-

ential distribution.

During times of precipitation activity, there may occur

periods of no recorded precipitation. This is not unusual

since a single synoptic scale disturbance can have multiple

mesoscale precipitation events imbedded within it. Since
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the periods of precipitation emanate from systems evolving

within a common parent some dependence is expected. As

the times between recorded precipitation increases, casual-

ity arguments suggest that this dependence decreases. The

key then is to establish some minimum time between recorded

precipitation that could be used to discriminate between

"independent" storm events.

Restrepo and Eagleson (1982) studied long-term hourly

precipitation records for six locations in the continental

United States and found minimum times between recorded

precipitation required for independence that ranged from 8

to 76 hours. In general, dry climates had high values for

this minimum separation interval while humid climates were

found to have lower values. Using a procedure outlined by

the authors, the minimum separation intervals for Boston,

MA and Dodge City, KS would be on the order of 13 hours and

47 hours respectively. Restrepo and Eagleson concede,

however, that for precipitation models like the one used

here, such a strict requirement on independence is opera-

tionally impractical and probably unnecessary.

If these long separation intervals were imposed, long

storm durations would result and the storms would contain

many periods without precipitation. This would produce
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unrealistically low average storm intensities. Restrepo

and Eagleson (1982) suggest that a shorter separation

criterion could be used operationally.

Grace and Eagleson (1967) found that a two hour separ-

ation interval was sufficient for identifying separate storms

in New England under a sharply limited definition of in-

dependence. Using the same criterion Sariahmed and Kisiel

(1968) found a three hour separation interval sufficient

for an analysis of convective storms in Arizona. For this

study, a two hour separation interval was used.

The parameter estimation procedure used in this study

defined a storm duration to include the hours with recorded

precipitation plus any non-precipitation separation intervals

of two hours or less. Once the storms were defined then the

appropriate mean storm durations, the mean times between

storms, and the mean storm depths were determined by the

usual techniques.

9.3 Cloud Cover

Cloud cover, as indicated in Chapter 3, is represented

by a modulated non-stationary stochastic process composed

of intra and inter-storm sequences. Parameter estimation

for cloud cover during intra-storm'periods is trivial since

total cloud cover is assumed (i.e. N(t) . 1.0). For inter-
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storm periods several parameters must be identified.

In Chapter 3, the existance of a stationary inter-

storm "fairweather" cloud cover process was assumed. It

was also assumed that the conditional mean and variance

of the cloud process follow a smooth transition from their

intra-storm values to their inter-storm "fairweather"

values. Therefore, parameter estimation for the cloud cover

process must include the following: 1) the identification

of the appropriate fairweather sequences, 2) the estimation

of the mean, variance, lag-l serial correlation coefficient,

and the frequency histogram of the fairweather cloud cover,

and, 3) the decay coefficient for the transition period.

For convenience, the cloud cover model is rewritten

here as

N(t) = M0 + (1+M0 )(l-P(t)) + m(t)P(t) (9.3-1)

where M0 is the fairweather mean cloud cover, P(t) is

the transition function, and m(t) is a stationary sequence

of serially correlated deviations. P(t) and m(t) are res-

pectively defined as

P(t) = (1 - e -y(t-t 0 ) )(l e Y(t0+tb t) (9.3-2)

m(t) = p m(1) m(t-1) + (t) (1-pm (1)) (9.3-3)
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where y is the transition decay coefficient in hr 1 , t0

is the time of beginning of the inter-storm period in hr,

tb is the time between storms in hr, pm (1) is the lag-i

serial correlation coefficient of the fairweather cloud

cover, rI(t) is a zero-mean random deviate with variance,

2 2.
Tm , and a is the variance of the fairweather cloud

cover.

The nature of the hypothesized transition of the

cloud cover mean and variance is shown in Figure 9.1. In

this example where tb = 100 hr, the function describing

the mean is U-shaped. The variance is represented by the

trace of + 1 standard deviation about the mean. The var-

iance narrows to zero at each end and attains its maximum

value in the middle as it follows the general curvature of

the mean.

The values for the mean and variance that we are look-

ing for are those that represent the stable or fairweather

central region during the time between storms. In other

words, we are interested in that region described by the

bottom of the U-shaped functions shown in Figure 9.1.

To explain the procedure used to identify the fair-

weather sequences, it is best to again refer to Figure 9.1.

Here we have an inter-storm period of 100 hours. If we cal-
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culate the mean cloud cover for the entire 100 hour period,

we would get a value say N1.0. Next, if we eliminate two

hours from each end of this 100 hour period and calculate

a new mean for the remaining 96 values, we would get N9 6

where N9 6 < N10 0 since some of the highest values of N

were eliminated. If we continue to eliminate values at

each end, the mean values will continue to decrease, al-

though at a slower rate. When the mean value has stabilized,

it is assumed that the fairweather sequence has been iden-

tified.

To handle the entire data set, the procedure is to

first compute the mean value of cloud cover for all inter-

storm periods. Then after successively eliminating values

From both ends of the available inter-storm periods, new

means are computed. Eventually after some Tr hours have

been eliminated, the mean value stabilizes. The value Tr

is the length of the transition period. Once Tr is es-

tablished, the fairweather sequences contained in inter-

storm periods of length greater than 2Tr are combined in

a new time series containing only fairweather values.

After the fairweather cloud cover time series has been

2
determined, Mo, a m ' Pm(1), and the frequency histogram

can be estimated by the traditional methods.
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In general, the frequency histograms of the fair-

weather cloud covers tend to be U-shaped with spikes at

zero and one. Part of the reason for this result is that

visual observations of both zero and one actually encompass

broader ranges of causative atmospheric conditions than

do the other observations (i.e. N(t) = 0.1, 0.2,...,

0.9, etc., see Chapter 3.6). This distortion causes peaks

at zero and one that can be two to four times greater than

the values obtained for the other levels of cloudiness. As

a result the random variate generating scheme described

in Appendix A becomes very inefficient.

In addition, the lag-l Markov model (Equation 3.5-1)

used to generate the fairweather cloud cover sequence

preserves the first and second moments of the input distri-

bution but does not necessarily preserve the distribution

itself. For strongly peaked U-shaped input distributions,

the tendancy is to produce output distributions that are more

uniform (i.e. lower peaks and higher mid-ranges).

An example of a cloud cover histogram is presented in

Table 9.1. Except for zero and one, all elements represent

a cloud cover range of 0.10. Because cloud cover observations

are bounded by zero and one, histogram elements for zero and

one represent a range of only 0.05. To make the histogram

a probability mass function, the magnitudes of the histogram

elements for zero and one would have to be doubled to get
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the proper mass contribution for these elements. However,

this would compound the peakedness problem discussed earlier.

Another alternative would be to expand the range of the

representative histogram elements for zero and one. (Remem-

ber that the outcome of the cloud cover process is still

constrained to be between zero and one). If these two

ranges are expanded such that the resulting histogram ele-

ments take on values of the same order as the mid-range

values, three positive results occur. First, the data

generation efficiency roughly doubles. Second, the output

histogram is less distorted and third, the broader causative

atmospheric conditions are better represented. An example

of the adjusted input histogram is shown in Table 9.2.

The remaining parameter to be estimated for the cloud

cover model is the transition decay coefficient, y. To

estimate y we can use the value found for the length of

the transition period, Tr, during the identification of the

fairweather sequence.

The transition function P(t), as shown in Equation 9.3-2,

is a symmetric function. To examine the transition rate, we

need only to look at one side of the function since for

analysis purposes we can assume that tb is large enough to

eliminate the influence of the second side of the function.
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Table 9.1 Observed Cloud Cover Histogram: July, Boston

RANGE

0.00 < N <

0.05 < N <

0.15 < N <

0.25 < N <

0.35 < N <

0.45 < N <

0.55 < N <

0.65 < N <

0.75 < N <

0.85 < N <

FREQUENCY (%)

32

11

12

10

0.05

0.15

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0.95

7

3

3

3

4

3

0.95 < N < 1.00 11
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Tablc 9.2 Adjusted Cloud Cover Histogram: July, Boston

RANGE

-0.25 < N

-0.15 < N

-0.05 < N

0.05 < N

0.15 < N

0.25 < N

0.35 < N

0.45 < N

0.55 < N

0.65 < N

0.75 < N

0.85 < N

0.95 < N

1.05 < N

1.15 < N

-0.15

-0.05

0.05

0.15

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0.95

1.05

1.15

1.25

FREQUENCY (%)

10

11

11

11

12

10

7

3

3

3

4

3

4

4

3
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Thus, for convenience, the right-hand side of P(t) is

ignored and Equation 9.3-2 can be rewritten (after setting

the arbitrary initial time t0 to zero) as

P(t) = (1 - e
yt

) (9.3-4)

According to the criterion established in Chapter 3,

P(t) = 1.0 within the fairweather regime. But according

to Equation 9.3-4 P(t) -+ 1.0 as t +o. This requirement

is impractical operationally. However, this problem is

overcome by simply choosing a value of P(t) that is suf-

ficiently close to 1.0. Thus, for the present study, the

fairweather regime exists for P(t) > 0.99. This definition

of the beginning of the fairweather regime (i.e. when P(t) =

0.99) also implies that the length of the transition period,

Tr, is equal to the time it takes P(t) to go from 0.00 to

0.99. Using P(t) = 0.99 and t = Tr, Equation 9.3-4 can be

written as

0.99 = (1 - e
-yT

r) (9.3-5)

After rearranging and taking the natural logrithm of both

sides of Equation 9.3-5, and solving for y gives

= ln (0.01)
T

(9.3-6)

or

(9.3-7)Y= .61
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1.0 -
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0

L) 0.6
z0
La-. - P( t), Y 0.192 hr~
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0 OBSERVATIONS
I.-.. JAN , DODGE CITY
in
Z 0 JULY, DODGE CITY

X JAN , BOSTON
0.2- A JULY, BOSTON

2 4 6 8 10 12 14 16 18 20 22 24

TRANSITION TIME (HR)

Figure 9.2 Comparison of Observed and Theoretical Transition

Function
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Table 9.3 Mean Cloud Cover Transition

Dodge
January

City
July

Boston
January July

0

2

4

6

8

0.367

0.354

0.344

0.340

0.333

0.327

0.326

0.320

0.317

0.317

0.315

0.314

10

12

14

16

18

20

22

0.333

0.306

0.282

0.265

0.250

0.242

0.234

0.229

0.225

0.225

0.221

0.219

0.213

0.572

0.534

0.506

0.483

0.464

0.449

0.439

0.432

0.429

0.425

0.424

0.425

0.432

0.403

0.379

0.362

0.348

0.338

0.332

0.327

0.325

0.326

0.328

0.328

0.430 0.324

T
(hr)

24 0.314
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Thus, by knowing the length of the transition period, Tr'

that was used to identify the fairweather regime earlier,

the transition decay coefficient can be estimated easily.

Another interesting way to look at the transition is

worth noting. The transition can be observed by studying

the rate by which the mean cloud cover varies from its

value for all inter-storm periods to its fairweather values.

In normalized form, the "observed" transition can be

expressed by

N - N
P0(t) = t (9.3-8)

0 N - M
a 0

where Na is the mean cloud cover for all inter-storm periods.

(This corresponds to N10 0 in the earlier example), M0 is

the fairweather mean, Nt is the mean cloud cover for an

intermediate region.

The value of Equation 9.3-8 is that we can now plot

observed data to see the smooth transition hypothesized in

Chapter 3. Figure 9.2 shows the observed values of P O(t)

for the four data sets used in this study. Based on the

observed values for N(t) shown in Table 9.3, 24 hours was

judged to be a reasonable value for the length of the transi-

tion, Tr. This value was used in computing the P0 (t)'s
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shown in Figure 9.2 and in Equation 9.3-7 to determine y

for the hypothesized transition function P(t) which is

also plotted in Figure 9.2. The transition function, P(t),

represents the overall shape of the observed transitions

quite well. However, the theoretical curve appears to fit

the Boston observations slightly better than for Dodge City.

The Dodge City transitions are slightly slower than Bos-

ton's.

9.4 Shortwave and Longwave Radiation

As shown in Chapter 4, shortwave radiation is com-

puted by

I = 0 exp(-nam) (9.4-1)

and

I = I (1 - 0.65N ) (9.4-2)

The variables in Equation 9.4-1 and 9.4-2 have been defined

earlier in Chapter 4. The only variable that must be sub-

jectively selected prior to simulation is the turbidity

factor, n, which was indicated to vary from about 2.0 for

clear air to about 5.0 for smoggy urban air. Because no

prior information was available to make anything more than

a subjective decision regarding the value of n, its value

was set to 2.0 for both Boston and Dodge City.
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For longwave radiation, we have

R = (0.70 + 5.95(10 -5)e e (1500/T))(1 + 0.17N 2)aT 4

(9.4-3)

where the principal variables, e0 , T, and N are generated

by the CSCS model. No other parameters are required by

the longwave component.

9.5 Temperature

The temperature model requires the estimation of sev-

eral regression coefficients, b , for the "deterministic"

portion along with the variance and the lag-1 serial correla-

tion coefficient of a superimposed deviations process. Since

the methods used to estimate the parameters of the temperature

model were an integral part of the model development detailed

in Chapter 6 and Appendices C and D, they need not be dis-

cussed again here.

9.6 WindSpeed and Wind Direction

Wind speed. and wind direction are both generated inde-

pendently by lag-I Markov models. The wind speed model re-

quires as input the mean, the variance, the lag-l serial corre-

lation coefficient and the skew coefficient of the observed

wind speeds. The wind direction model requires the mean, the

variance, the lag-l serial correlation coefficient, and the
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frequency histogram of the observed wind directions. All

parameters are estimated by the traditional methods.

9.7 Dewpoint

Two methods have been employed to generate dewpoints

depending upon the circumstances. The first method gener-

ates dewpoints independently using a lag-l Markov model

and requires the mean, the variance, and the serial correla-

tion coefficient of the observed dewpoints. These parameters

are estimated by the usual techniques.

The second option available to generate dewpoints uses

a linear regression model with a superimposed deviations

process. The coefficients of the regression model are esti-

mated by standard regression methods. The deviations pro-

cess is again modelled by a lag-l Markov approach which

requires the variance and the lag-l serial correlation of

the observed deviations. The regression model and the method

used to determine the observed deviations are discussed in

detail in Chapter 8.

9.8 Summary

The parameters required by the CSCS model that are

estimated from the observed data are summarized as follows:
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Precipitation

- mean t

- mean s

- mean s

Cloud Cover

ime between storms

torm duration

torm depth

" fairweather mean

- fairweather variance

- fairweather lag-i serial

- fairweather frequency hi

- transition decay coeffic

Temperature

- regression coefficients

- deviations variance

- deviations lag-i serial

Wind Speed

- mean

- variance

- lag-i serial correlation

- skew

Wind Direction

- mean

- variance

- lag-i serial correlation

- frequency histogram

correlation

stogram

ient

correlation
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Dewpoint

- mean

- variance

- lag-i serial correlation

or

- regression coefficients

- deviations variance

- deviations lag-i serial correlation
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CHAPTER 10

CSCS RESULTS

10.1 Introduction

After estimating the parameters as described in Chap-

ter 9, January and July data sets were generated by the

CSCS model for both Dodge City, KS and Boston, MA. Three

different aspects of the output will be reviewed. First,

plots of the hourly data values generated by the model

will be examined to see at least qualitatively that the

various output elements are coordinated. Second, model

output statistics will be presented to determine how well

the observed statistics are reproduced. Third, the mean

diurnal curves of generated temperatures and dewpoints will

be compared to their observed counterparts.

10.2 Generated Data Plots

Figures 10.1-10.11 each represent three-day segments

of the generated data sets. Presentation of hourly plots

for the entire simulation period is obviously impractical

due to space limitations. The selected three-day segments

will be sufficient for demonstration purposes.
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Looking first at Figures 10.1-10.2 for January in

Dodge City, KS, we have plots of hourly temperature in 0C,

hourly dewpoint in 0C, hourly shortwave radiation in

langleys (ly), hourly longwave radiation in langleys, hourly

cloud cover in tenths, and hourly precipitation in mm.

Perhaps the most dominant features of these plots are the

obvious diurnal structures of shortwave radiation and

temperature.

Beginning with shortwave radiation, the generated

hourly values are zero through the night as they should be.

At sunrise, solar radiation starts its steady increase to

its peak around noon. After the peak at solar noon, short-

wave radiation decreases to zero again at sunset.

Shortwave radiation is dramatically affected by the

presence of cloud cover. This is seen clearly by comparing

the shortwave radiation curves for the two cloudy days

(1/19, 1/20) and the mostly sunny day (1/21) in Figure 10.1.

The peak solar radiation value on 1/21 was approximately

38 ly when cloud cover was 0.1. This compares to a peak

of approximately 14 ly on 1/19 when cloud cover was 1.0.

This also represents the 65% reduction of shortwave radia-

tion due to total cloud cover that is dictated by Equation

4.4-3.
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The trace of hourly temperature also shows a strong

diurnal signature. In general, minimum temperatures

occurred in the early morning hours near sunrise and maximum

temperatures occurred in mid to late afternoon. However,

just as an observed temperature trace can deviate signi-

Ficantly from its characteristic diurnal curve, the CSCS

model is capable of generating temperature traces for

particular days that lack the characteristic diurnal

signature. Witness day 1/20 in Figure 10.1. For the

first 16 to 18 hours of this stormy day, the temperature

curve stayed relatively flat. This is especially interesting

when compared to the temperature curve of day 1/19 which

was also stormy. In both cases the radiation inputs were

at minimum values yet the temperatures of day 1/19 are

substantially higher than on 1/20 and follow a more charac-

teristic curve. This behavior of the CSCS model is

explained by the stochastic component in the temperature

scheme. On day 1/20, the stochastic components were appar-

ently negative which served to counter the positive influ-

ence of the radiation input and to stabilize the temperature.

The CSCS model has the capacity to generate a wide range of

daily temperature patterns, making for a more natural appear-

ing long-term trace of generated temperatures.
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Figures 10.3-10.5 show segments of the generated data

for July at Dodge City. Immediately, the increase in

generated shortwave radiation over that of January is

apparent, not only in magnitude, but in hours of sunshine

as well. Peak shortwave radiation values at Dodge City

increased from approximately 40 ly hr-1 in January to

about 86 ly hr 1 in July. In addition, the number of hours

-l
of significant shortwave radiation (i.e. Is' > 1.0 ly hr )

increased from about 9 hours in January to about 14 hours

in July.

The cloud cover transitions into and out of sto.rm

periods can be seen in Figures 10.3 to 10.5. In Figure 10.3,

cloud cover increases steadily in anticipation of the first

storm on day 7/4. After the first storm, the cloud cover

remains high due to the close proximity of a second storm.

Once the second storm passes, the cloud deck breaks up and

clears for day 7/5 before building again for the approaching

storm on day 7/6.

In Figure 10.5, we see a short intense storm preceded

by and followed by periods with little cloudiness. It is

significant to note here that although a storm occurred on

day 7/8 (Figure 10.5), the total shortwave radiation was

only slightly reduced. The storm occurred before sunrise
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and the cloud deck decayed quickly to minimize the impact

on shortwave radiation. Contrast this result to that of

day 7/4 when the storms occurred during the day and to that

of day 7/6 when the storm occurred before sunrise but the

cloudiness remained through the day. This behavior of the

CSCS model is a significant improvement over previous

models that implied specific reductions of shortwave

radiation for stormy days regardless of when the precipi-

tation occurred.

Figures 10.6 - 10.8 show segments of data generated

for January in Boston, MA. As expected, low values for

shortwave radiation are generated. Although the number of

hours with significant shortwave radiation is the same as

for January in Dodge City, KS, the peak values are slightly

lower. Shortwave radiation peaks of about 40 ly hr 1

were generated for Dodge City but 36 ly hr- was the

maximum value generated for Boston in January. The reduction

is explained by the difference in the latitudes of the two

sites since the same atmospheric attenuation parameters were

used in both cases. Boston is located at 42022' N while

Dodge City is located at 37046, N.
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The characteristic diurnal temperature curve is not

as strong for January in Boston as it is for the other

examples. Looking ahead to Figure 10.12 shows that the

difference between the average minimum and maximum hourly

temperatures is only about S0C for Boston, compared to

about 10 0C for Dodge City (Figure 10.14).

The temperatures generated by the CSCS model for

January in Boston appropriately do not exhibit a strong

diurnal signature. This is especially true for days

1/26 - 1/29 in Figures 10.7 and 10.8.

It is also interesting to note the general downward

trend from a maximum of +50C on day 1/22 (Figure 10.6)

to temperatures in the -60 to -30 C range on day 1/24.

This is consistent with the movement of large synoptic-

scale weather systems through the region.

Longwave radiation also shows a general downward

trend during the period 1/22 - 1/24. This is the result

that should be expected with a general drop in atmospheric

temperature and dewpoint.

Figures 10.9 - 10.11 show the segments of data for

July in Boston, MA. Again, the notable increases in short-

wave radiation and temperature over January levels are

evident. Although the diurnal signature of the July temp-
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Figure 10.10 CSCS Output: July, Boston
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eratures is strong, cloudiness coupled with a negative

stochastic element can flatten the temperature curve for

short periods of time (see day 7/6, Figure 10.9 and day

7/13, Figure 10.11). Expected downward trends in temper-

ature are also occasionally countered by a positive stochas-

tic component as evidenced by the temperature pattern

during the evening hours of day 7/14 (see Figure 10.11).

Although visual examination of various segments of

CSCS model output does not constitute a rigorous verifi-

cation, it does provide a framework for a qualitative inter-

pretation of model component coordination. In this res-

pect, the CSCS model seems to be working properly. That

is, cloud cover impacts shortwave radiation, shortwave

radiation affects temperature, cloud cover is total during

storms, etc. These effects might not be apparent from an

analysis of model output statistics alone. The next step

is, however, to verify that the model is working well

statistically.

10.3 CSCS Model Output Statistics

Tables 10.1 - 10.4 contain the statistics of the model

output and the statistics of the observed data for compari-

son. The generated data sets used in the statistical analy-

sis are each 20 months in length. (i.e. 20 July's, 20 Jan-
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uary's, etc.) Thus, 620 days or 14,880 hours of data

were generated and analyzed for each experiment.

For temperaturedewpoint, cloud cover, wind speed, and

wind direction, the means, standard deviations, and lag-l

serial correlation coefficients were computed. Since the

observed skew coefficients were used in the wind speed

component, the skew coefficients of the generated wind

speeds were also computed. For the precipitation analysis,

the mean times between storms, the mean storm durations,

and the mean storm depths were computed. Observations of

hourly shortwave and longwave radiation were not available

for the periods of record used in this study. However,

Getz and Nicholas (1979) provide estimates of mean daily

shortwave radiation by climatic week based on data for

the period 1952-1975. The estimated mean daily shortwave

radiation was found from Getz and Nicholas by averaging

the radiation values for the climatic weeks that span

January and July.

Examination of Tables 10.1 - 10.4 shows that the

statistics of the CSCS output compare favorably with the

observed statistics in each case. The means and standard

deviations of the respective generated temperatures and
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Table 10.1 Output Statistics:

TMP DEW

January,

CLD

Dodge City,

WSP

MEAN

STANDARD
DEVIATION

LAG - 1

0.30 C
(0.0)*

7.30C
(7.4)

0.98
(0.98)

-6.5 0
(-6.8)

5.40C
(5.7)

0.97
(0.98)

0.41
(0.38)

0.35
(0.41)

0.87
(0.91)

SKEW

5.5 m/s
(5.5)

2.3 m/s
(2.4)

0.87
(0.86)

0.55
(0.54)

1REC P1 TAT ION

tb tr h

207.7 hr 4.9 hr 2.2 mm
(184.8) (4.8) (2.3)

MEAN

SWR

190 ly/d
(228)

RADIATION

LWR

507 ly/d

denotes observed value.

KS

WDR

90.50
(86.3)

43.90
(59.2)

0.89
(0.92)

MEAN

*( )
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Table 10.2 Output

'T'M P

Statistics:

DEW

July, Dodge City,

CLD WSP

MIAN 26.30 C
(26.8)*

STANDARD
DEVIATION

5
(S

LAG-1

.50C
.5)

0.96
(0.96)

15.
(15.

50CS C
4)

3.S0C
(3.5)

0.94
(0.95)

0.33
(0.34)

0.32
(0.36)

0.90
(0.89)

SKEW

5.3 m/s
(5.6)

2.1 m/s
(2.3)

0.77
(0.78)

0.54
(0.51)

PRECIPITATION

tb

63.4 hr
(66.9)

598
(626)

tr

2.5 hr
(2.5)

RADIATION

LWR

ly/d 826

* ( ) denotes observed value.

KS

WDR

112.00
(129.5)

41. 90
(50.3)

0.81
(0.84)

MEAN

h

6.0
(6.1)

mm

SWR

MEAN ly/d
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Table 10.3 Output Statistics:

TMP DEW

January,

CLD

MEAN

STANDARD
DEVIATION

LAG - 1

SKEW

-1.2 0 C
(-0.9)*

6.7 0C
(5.9)

0.99
(0.99)

-7.40 C
(-7.4)

7.7 C
(8.2)

0.99
(0.99)

0.58
(0.61)

0.36
(0.44)

0.88
(0.89)

5.5 m/s
(5.7)

2.6 m/s
(2.7)

0.88
(0.88)

0.68
(0.61)

PRECIPITATION

tr

7.2
(8.8)

h

7.0 mm
(9.0)

hr

RADIATION

LWR

497 ly/d

* ( ) denotes observed value.

Boston,

WSP

MA

WDR

82.80
(74.4)

40.30
(49.0)

0.85
(0.87)

MEAN

tb

51.
(55.

1 hr
3)

SWR

MEAN 126
(131)

ly/d
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Table 10.4 Output

TMP

Statistics:

DEW

July, Boston, MA

CLD WSP

MEAN

STANDARD
DEVIATION

LAG-1

22.9 0C
(22.8)*

4.5 0C
(4.3)

0.97
(0.97)

15.30 C
(15.5)

3.5
(3.8)

0.96
(0.97)

0.42
(0.45)

0.35
(0.40)

0.89
(0.88)

SKEW

4.4 m/s
(4.4)

1.8
(1.8)

0.82
(0.81)

0.43
(0.45)

PRECIPITATION

tb

66.
(64.

t

1
5)

SWR

551 ly/d
(479)

hr 4.1 hr
(3.9)

h

7.9 mm
(7.2)

RADIATION

LWR

797 ly/d

*( ) denotes observed value.

WDR

101. 60
(102.4)

39.8
(46.1)

0.77
(0.78)

MEAN

MEAN
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dewpoints are almost always within O.50 C of the observed

values. These results are particularly satisfying, since

the temperature component is by far the most complex part

of the CSCS model. In essence, the temperature component

is the keystone of the CSCS approach since almost all of the

other elements in the model influence or interact with-the

temperature generation algorithm. For the CSCS model to

work as a whole, it is most important that the temperature

component performs properly.

Statistically, the cloud cover model worked well too.

The means of the generated cloud covers were quite close to

the observed values. Remember that the final generated

cloud covers are a combination of the generated fairweather

sequences, the transition periods, and the storm periods.

The input parameters for cloud cover generation were the

fairweather statistics and the transition decay coefficients.

To obtain the proper output statistics, the CSCS model

relies on the transition functions into and out of storm

periods that were described in Chapter 3 to create the pro-

per evolution of the entire cloud cover process.

To see how well the generated cloud cover mean values

evolved from the fairweather mean values, refer to Table 10.5
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where the mean observed fairweather cloud cover, the mean

observed cloud cover for the entire record, and the mean

generated cloud cover are presented. It is apparent that

the CSCS is capable of producing an evolutionary cloud

cover process whose statistics are quite close to the

observed values.

Reviewing the statistics for wind speed in Tables

10.1 - 10.4 shows that the reproduction of the observed

statistics by the CSCS model is excellent. However, repro-

duction of the wind direction statistics is only fair.

This is not really unexpected, given the procedure used

to represent wind direction in this study (see Chapter 7).

To be more correct, wind direction should, at the very

least, not be treated independently. However, for the

data sets used in this study, wind direction did not appear

to be a particularly strong predictor. Therefore, more

sophisticated wind direction generation algorithms were

not investigated.

The precipitation statistics were also adequately re-

produced. The only significant departure was for the mean

time between storms for January at Dodge City. However,

January in Dodge City is quite dry. Only about 70-75 storms
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Table 10.5 Evolution of Mean Cloud Cover

MEAN VALUES

Fairweather Total

Observed Observed Generated

Boston, MA

January

July

Dodge City,

January

0.21 0.34

Total

0.43

0.32

0.61

0.45

KA

0.58

0.42

0.31 0.38 0.41

0.33July
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were generated for the 20 month simulation period for

January in Dodge City, compared to about 250 storms for

the other data sets. With fewer storms to analyze,

higher variability in the statistics is expected.

It is difficult to draw many conclusions regarding

the shortwave output since the records used by Getz and

Nicholas (1979) to obtain the mean daily shortwave radia-

tion cover a much longer period than the data sets used in

this study. It is unclear whether any differences noted

between observed and generated values could be attributed

to modelling deficiencies or to natural statistical varia-

tion. Nevertheless, the generated values are near the

observed values and the model is making the correct sea-

sonal adjustments.

Observed data were not available for longwave radia-

tion. However, to the extent that the Idso (1981) expres-

sion for atmospheric emissivity (see Chapter 5) represents

the conditions at Boston, MA and Dodge City, KS, the gen-

erated longwave radiation values should be reasonable.

10.4 Diurnal Curves for Temperature and Dewpoint

In the previous section, statistical evidence was pre-
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sented to suggest that the temperature and dewpoint com-

ponents of the CSCS model performed well. It is also

important that the two temperature components produce

the proper diurnal variations. Figures 10.12 - 10.15

show the observed and generated diurnal curves of temper-

ature and dewpoint (i.e. mean hourly values) for January

and July at Boston and Dodge City.

Overall, the generated temperature curves compare

quite well with the observed values. The generated min-

imum and maximum temperatures are all within 1 0C of

the observed values and their timing is about right. The

only timing discrepancy occurs for the maximum January

temperatures at both Boston and Dodge City. The generated

mean maximum temperature occurs around 4:00 PM in January.

The observed maximums occur near 5:00 PM at Boston and near

3:00 PM at Dodge City. The variation of the two observed

January maximums is probably due to the difference between

the coastal climate of Boston and the continental climate

of Dodge City. Since the timing of all the minimums and

the July maximums is quite good, the exact reason for the

generated maximums to be an hour off in January is not

readily apparent.
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In Boston, the model in its present form does not

appear to be accounting for all of the modifying influences

of the nearby ocean in the late afternoon. The observed

temperatures remain elevated slightly longer in the after-

noon before starting the downward trend to the morning

minimum. This results in a six-hour period during the

evening hours where the model slightly underestimated the

temperatures.

Given that the diurnal curve of temperature for Janu-

ary in Boston is so flat (%S C variation), it is a pleasant

surprise that the CSCS model performed as well as it did.

Of the Four data sets, the January - Boston experiment

probably offered the most severe test of the CSCS model's

ability to adapt to a variety of climate conditions.

As for the January - Dodge City experiment (Figure

10.14), the observed temperatures in this continental cli-

mate drop more sharply in the late afternoon than during the

evening and early morning hours. During this period, the

temperature model gave a steadier transition for the down-

ward limb of the temperature curve. The exponentially-

dominated functions used in the temperature algorithms are

not quite able to express the sharp drop observed near

sunset in the January - Dodge City experiment.
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The CSCS model reproduced the observed diurnal

temperature curve for the July experiments quite well.

The maximum departure of the generated curve was about 10C

for Boston and 1.50 C for Dodge City.

Dewpoint temperatures are shown in Figures 10.13

and 10.15. The reader is reminded that an independent

stochastic process was used to generate dewpoint tempera-

tures for July and that a regression model was used for

January dewpoints.

For July at Boston, (Figure 10.13) the resultant mean

generated curve is essentially "flat" as expected and

represents the observed dewpoints well. For July at

Dodge City, the mean generated curve is again "flat" as

expected. However, in the Dodge City observed data there

is a subtle wave that is not represented by the stationary

lag-1 Markov process. During the forenoon, temperatures

rise causing dew to evaporate. This increases the moisture

content of the lower atmosphere and elevates the dewpoint

temperature. As temperatures continue to rise, more evapor-

ation occurs but by late morning increased instabilitics

cause mixing with drier air aloft, causing dewpoints to fall.
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By carly evening, instability decreases again and continued

( vaporation causes the dowpoints to rise aga in. To captt re

this feature, alternative dewpoint generation techniques

will have to be explored.

For January, the regression model output represented

the observed data well, especially in capturing the morning

"dip" in the dewpoint curve. The observed "dip" coincides

with the morning temperature minimum. The depressed

dewpoints at this time are likely due to moisture driven

from the lower atmosphere by frost formation.

Another interesting diurnal curve to review is for the

dewpoint depression, defined as the difference between the

temperatures and dewpoints. Figures 10.16 and 10.17

present the observed and generated dewpoint depression

curves for Boston and Dodge City respectively.

Dewpoint depression is interesting because it is

sometimes used as an indicator of the atmosphere's ability

to take up moisture. High dewpoint depression values indi-

cate a high capacity to take up moisture. For low dewpoint

depression values, the opposite is true. Under the right

circumstances then (e.g. with sufficient moisture at the

surface), dewpoint depression could also be interpreted as
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an indicator of surface moisture flux.

Dewpoint depression is not explicitly generated by

the CSCS model. It is derived from the output from the

temperature and dewpoint components. For the observed and

derived dewpoints to compare favorably, the temperature

and dewpoint- components must be synchronized correctly.

In addition, deviations between observed and generated

dewpoint depressions can appear more glaring than with

either temperature or dewpoint. For example, if a generated

temperature and a generated dewpoint differ from their

observed values by 1 0 C, the difference might not be con-

sidered significant. However, if the 1 0C differances are

opposite in sign, the error in dewpoint depression would

be 2 0 C.

Thus far we have seen that the CSCS model satisfac-

torily reproduces the desired characteristics of the

meteorological data sets. The next step is to examine the

target land surface processes that the CSCS output data

are designed to force. An application of the CSCS output

to a detailed model of the land surface is presented in

Chapter 12.
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Before we get to the detailed analysis in Chapter 12,

it is instructive to make a quick examination of one par-

ticular land surface process to see that it is correctly

forced by the CSCS model output. Evaporation is perhaps

the most important process at the land-atmosphere inter-

face, being the basic mechanism for the restoration of

both atmospheric moisture and energy. Solar radiation,

temperature, dewpoint, and wind speed all contribute to

evaporation. If an estimate of evaporation could be made

using these meteorological data, the result would, in essence,

be an integration of the joint interactions of the input

variables. It is of particular interest to make a compar-

ison of the evaporation estimates computed using the ob-

served meteorological inputs with the estimates computed

using the generated CSCS data. In this fashion, we can

see to what degree any errors in the CSCS output have an

effect on the results of the target process.

Linsley et.al. (1975) present a nomogram solution for

the estimation of shallow-lake evaporation As4a function

of solar radiation, air temperature, dewpoint, and wind

movement. Using the mean values of the observed and gen-

erated (CSCS) data for July at Boston, MA and Dodge City, KS,

evaporation estimates were made with the nomogram of Lins-

ley et.al. The results appear in Table 10.6.
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For the Dodge City experiment, the observed and gen-

erated evaporation estimates agreed to within 3%. For

the Boston experiment, the observed and generated estimates

varied by about 9%. The principal source of error in the

Boston evaporation estimate stems from the roughly 15%

over-estimation of the shortwave radiation input. The

shortwave radiation error is likely due to error in the

atmosphere attenuation function that was discussed earlier.

10.5 Summary

The results of CSCS model experiments for January and

July at Boston, Massachusetts and Dodge City, Kansas have

been presented. Hourly data plots, model output statistics,

and selected mean diurnal curves were reviewed.

Overall the CSCS model performed well. The results indi-

cate that the CSCS model is capable of generating well coor-

dinated sets of meteorological data with high time resolution

(i.e. hourly values). This represents a significant improve-

ment over existing techniques in both the number of variables

generated and in the time resolution of the generated data.

Two individual components, cloud cover and temperature,

were especially critical to the successful completion of the

CSCS model. The modulated non-stationary stochastic process
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Table 10.6 Comparison of Shallow
Estimates for July

Lake Evaporation

Dodge City

Data

Temperature

Dewpo int

Wind

Shortwave

Evaporation (mm/d)

Boston

Units

(0C)

(0C)

(m/s)

(ly/d)

OBS

26.8

15.4

5.6

626.

OBS

22.8

15. 5

CSCS

26.3

15. 5

5.3

598.

CSCS

22.9

15. 3

4.4 4.4

479. 551.

8.1 7.9 S.3 S.8
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derived to represent cloud cover enabled the linking of

the precipitation, the shortwave radiation, the longwave

radiation, the temperature, and the dewpoint regression

components with the cloud cover component on an hourly

basis. The temperature model enabled the generation of

hourly temperatures that were linked to other meteorological

variables and that reflected seasonal and geographical

changes.
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CHAPTEIR 11

ATMOSPILRlC BOUNIARY LAYER

11.1 Introduction

Vertical transfer of momentum, heat, and moisture

between the earth and the free atmosphere occurs through

the atmospheric boundary layer. Continuous small scale

turbulent fluxes in the boundary layer appear to be the

basic mechanism of the exchanges between the atmosphere

and the earth. (Bhumralkar, 1979)

Although relatively thin, 10 to SOm (Anderson, 1976),

the boundary layer can account for significant atmospher-

ic effects. For example, the boundary layer contains only

about 2% of the total atmospheric kinetic energy on an

annual basis, yet it contributes up to 25% of the total

generation and more than 35% of the total dissipation of

atmospheric kinetic energy. (Kung, 1963)

Attempts to quantify earth-atmosphere exchanges have

led to a relatively large body of boundary layer literature.

General descriptions of turbulent processes of the lower

atmosphere can be found in a number of books (e.g., Oke,

1978; Rose, 1966; Priestly, 1959; Sutton, 1953, 1954;
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Lumley and Panofsky, 1969).

Two basic approaches to flux estimation commonly

appear in the literature. The eddy fluctuation method

seeks to describe the instantaneous properties of eddies

as they pass a specified level in the boundary layer.

Profile or flux-gradient methods infer the flux based on

average atmospheric profiles and on the degree of atmos-

pheric stability.

The eddy fluctuation method describes flux using the

observation that atmospheric entities exhibit short-term

fluctuations about their longer term means. Since the

properties contained by an eddy are its density (p.)'

its vertical velocity (wy), and the concentration oF the

atmospheric entity (s), the mean vertical flux density

of the entity (S) can.be written as (Oke, 1978)

S = E (P + p')(Wv + w')( + s')] (11.1-1)

where the overbars indicate the mean values and the primes

indicate the short-term fluctuations about the means. Ex-

pansion of Equation (11.1-1) followed by a term by term

evaluation leads to
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S = E(pw's')v
(11.1-2)

For the vertical transfer of momentum, sensible heat, and

latent heat, Equation 11.1-2 is used to give

T = -E(p W'w')e s v

0 = E(pecpw'T')

QE = E(PeLwh)

where T is the shear stress in P4, pe is the eddy

(11.1-3)

(11.1-4)

(11.1-5)

den-

-3
sity in kgm , W' is the horizontal wind speed fluctuation

1-1 -1
in ms , c is the specific heat of air in Jkg 0 K T'

is the temperature fluctuation in 0K, Lv is the latent

heat of vaporization in Jkg , and q1 is the specific hum-

idity fluctuation in kgkg .

The fluctuation terms represent changes in the at-

mospheric properties over periods on the order of seconds.

Data collection for time intervals this short is not

routine. In addition, the basic time unit of the CSCS model

is one hour. Therefore, eddy fluctuation methods were

not used in this study.

In the profile or flux-gradient approach, the flux is
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generally described by (Oke, 1978)

Flux of Ability of the medium Gradient of
I X

(an entityj to transport the entity, a relevant

property

Through the turbulent surface layer, momentum transfer

can be described by

W
Tpa KM z(11.1-6)

where pa is the atmospheric density in kgm , KM is

the eddy transfer coefficient for momentum in m 2 s , and

z is elevation in m.

For sensible heat flux

H = -pac K (11.1-7)
a p H z

where H is in Wm2 , KH is the eddy transfer coefficient

for heat in m 2 s , and T is the air temperature in K. Nor-

mally, potential temperature is used in Equation 11.1-7.

However, in this study, only temperature differences over

the lowest 2 meters are of interest. Over this range,

potential temperatures and air temperatures are essentially

the same. Finally, for water vapor, the turbulent flux

t ransfor c, n be dcsciribcd by
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E = -p K (11.1-8)a W D z

-2 -l
where E is the water vapor flux in kgcm s , KW is the

eddy transfer coefficient for water vapor in m s , and

qh is the specific humidity in kgkg-. Equations 11.1-6

to 11.1-8 show that the desired fluxes can be estimated if

the appropriate gradient and the associated transfer coef-

ficient are known.

The lower atmosphere is a very active zone with var-

iations in heating and cooling resulting from instantaneous

variations of fluxes with height. Over longer periods,

such as a half-hour or more, flux variations with height

arc very small (Oke, 1978). Therefore, the surface layer

is often called the layer of constant flux. Practically,

this means that estimates of flux at any point in the low-

est SOm over a suitable site are assumed equal to their

surface values. Atmospheric variables generated for the

two meter level by the CSCS model can then be used to help

estimate transfers across the land-atmosphere interface.

11.2 Profile Method for Flux Estimation

In a neutrally stable atmosphere, (i.e., one with an
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adiabatic lapse rate), under fully turbulent conditions,

the wind profile is logarithmic and expressed by

-s 11n z d
IV* k 1z 0

(11.2-1)

where d is the zero displacement plane in meters, z0 is

the roughness length in meters, k is the von Karman con-

stant (0.40), and W, is the friction velocity defined by

11

W = (T0/Pa) (11.2-2)

where T is the shear stress at the surface in Pa.

The vertical profile of the horizontal wind speed is

found by differentiating Equation 11.2-1 and rearranging

to give

aw Ws -

(_-

gz kz

Remembering that the boundary layer is also assumed to be

a layer of constant flux, we can write

(11.2-4)C = T = constant
0

Using Equations 11.1-6, 11.2-2, 11.2-3, and 11.2-4, an

expression for the eddy transfer coefficient for momentum

(11. 2-3)
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can be written as

K = k2z2 "sz
M z

(11.2-5)

Equation 11.2-5 shows that the transfer coefficient for

momentum is also a function of the vertical gradient of

the horizontal wind.

The problem of establishing the transfer coefficients

K and K can be simplified by invoking the "principleH WI

of similarity". (Oke, 1978). Under this assumption, an

atmospheric eddy can transport any conservative entity

with equal facility.

K M = KH =

Therefore,

(11.2-6)

Using Equations 11.2-5 and 11.2-6, a new expression for

sensible heat flux can be written as

2 2 s T
H = Pacpk z Dz D i

(11.2-7)

Likewise, an expression for water vapor flux can be written

as

2 3W q
E = -Pak z2 z Dz (11.2-8)

Equation 11.2-8 can also be written in terms of vapor
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pressure by using an approximation for specific humidity

0 . 622e
0

a
(11.2-9)

where e is the

pressure in mb,

weight ratio of

Equation 11.2-9

vapor pressure in mb, Pa is the atmospheric

and the constant, 0.622, is the molecular

water vapor to dry air. Substitution of

into Equation 11.2-8 gives

0.622p 3W 3e
2a 2 2 s o

E - P k z z za
(11.2-10)

The equations for T, HI, and E presented so far, are

strictIy valid Ior neutral stability only. For stab1e

and unstable conditions, the wind profile is not gonerally

logarithmic. Stable conditions dampen free convection

and, using the logarithmic wind profile, cause the fluxes

to be overestimated. The opposite is true for unstable

conditions.

Monin and Obukhov (1954) have generalized the loga-

rithmic wind profile for all conditions, giving

W s W.
M q(11.2-11)

Iz NI
wleric 1 is ;III CiII)Irica IIy determined adjust ent act or

that is related to atmospheric stability. Obviously, for



182

neutral conditions, M is unity.

Similar functions can be defined for the sensible

heat and water vapor profiles, giving

_p c K H (11.2-12)
pa cp H

and

KE (11.2-13)
=Z p aK Wa W

where and 4W are the stability related profile adjust-

ment functions. According to Monin and Obukhov (1954),the

functions DM' 4 H' and DW should be functions of a dimen-

sionless height ratio z./L. L is constant with height in

the boundary layer and is presented by Anderson (1976)

as

3
Wecp paT

L = - kgH (11.2-14)kgH

where g is the acceleration of gravity in ms- 2. The

ratio z/L is positive for stable atmospheric conditions,

zero for neutral, and negative for an unstable atmosphere.

Several studies,conducted under the assumption that the

transport mechanisms of conservative entities are similar,

and therefore, that their profiles are similar, have resulted
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in empirical relationships for ( (Dyer, 1967;

Dyer and Hicks, 1970; Dyer and Grant, 1978; Businger et.

al. 1971; McVehil, 1964; Oke, 1970; Yamamoto and Shim-

anuki, 1966) Not all researchers agree on the form of the

D-functions, but the so-called Businger-Dyer formulae

are frequently used. For stable conditions, these give

(M = )H = DW = I + 5 (11.2-15)

which implies that KM = KH = KW* For stable conditions,

the equalities of the eddy transfer coefficients and the

0-functions are supported by the studies of Saugier and

Ripley (1978) and Monji and Businger (1972). For unstable

conditions

'2
2 ~
M H W = (1-16 - ) (11.2-16)

The studies of Saugier and Ripley (1978) and Monji and

Businger (1972) also provide observational support for

Equation 11.2-16.

Since the information required to evaluate L in Equa-

tion 11.2-14 is not generally available, some other stabil-

ity-related procedure to compute z/L from routinely

measured data is needed. Richardson (1920) developed a

criterion that "reflects the ratio of the consumption of
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ene ry by buoyancy (or(ces to the rate o itS prI)'dIct i oil

by wiid shear." (Anderson, 1.976)

Anderson gives the gradient form of the Richardson

number as

Ri = - T z) 2 (11.2-17)
T( Ws/3z)

Thus, the Richardson number can be computed from observa-

tions of wind speed and temperature. Anderson (1976)

also shows that the D-functions can be written in terms of

the Richardson number. For stable conditions

M M W = ([-1Ri) (11.2-18)

and for unstable conditions

= 

2 H = = (1-16Ri) (11.2-19)

Comparison of Equation 11.2-19 with Equation 11.2-16 shows

that, in the Businger-Dyer formula for unstable conditions,

the height ratio, z/L, is equal to the Richardson number, Ri.

11.3 Computation of Turbulent Transfer Using Measurements

at One Level

The CSCS model generates representative data at the
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2-meter level only. Therefore, it is not possible to

evaluate the various gradients described in the previous

section. Similarly, observations of wind, temperature,

and humidity are made at one level for most data collection

sites. To overcome this problem, the flux equations must

be used in their integrated form. If these equations are

integrated between z- and za, (assuming Ws = 0, T = Tb'

and e = eb at the bottom of the boundary layer), the flux

equations become

T = PC MW 2 (11. 3-1)

=P a c C 11W (TF-Tb) (I.i3-2)

and
0 . 6 2 2 Pa

E - p CWWs(e 0 - e b) (11.3-3)
a

where Ws is the 2-meter wind speed in ms -, T is the 2-

meter temperature in 0K, and e0 is the 2-meter vapor

pressure in mb. CM, CH, and C are the dimensionless

transfer coefficients for the integrated flux equations and

are called the "bulk" transfer coefficients. Under neutral

conditions, and using the similarity assumption, we have
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k

I

)

z-d
n(

2

where the subscript N denotes neutral conditions.

Deardorff (1968) developed ratios of the bulk trans-

fer coefficients for the general case to their neutral

values. For stable conditions where it is assumed M =H

= @D, the ratios can be written as

C
(C

C

'I[1 N

CM

c )N
= (1.0 - 5(Ri))) 2 (11 .3-5)

where (R i) 1 is the bulk Richardson number given by Anderson

(1976) as

2gz (T-Tb)
(Ri)B = ( b 2

(T +T b)"s

For unstable conditions, Deardorff (1968) gives

= 1.0
(C M)N

k

2tan (x) (11.3-7)

( II * 3- 1

(11.3-6)

CM

(C M) N
+x 2]elln

-2

+ 21n

+T

1 +x]

2

and

(c 1) N ';: (CW )N C'M) N z
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-11~

CH Cw F C 1M  2 2

(CH)N (CW9N (CMNI . -(CM) N n(2

(11.3-8)

where

x = (1 - 16 (11.3-9)

If Equations 11.3-1 and 11.3-2 are substituted into

Equation 11.2-14, the Monin-Obukhov length can be writtcn

as

3/2T 2

L= CM TWL C Hkg (T-T b
(11.3-10)

Dividing the numerator and denominator by (C )N3/2 and

using Equation 11.3-6 gives the relationship between the

height ratio z/L and the bulk Richardson number.

kCH/ (CM) N
CM

(CMON ( )
(CM) N

(11.3-11)
3/2 (Ri)B

By knowing the wind speed, temperature, and vapor pressure

at the two meter level and the temperature at the bottom

z
LW
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of the boundary layer (i.e., at the land surface), the

fluxes can be estimated. The wind speed, temperature, and

vapor pressure at the two meter level are generated by

the CSCS model. If the temperature, Tb, is available from

a model of the land surface, the fluxes across the earth-

atmosphere interface can be generated.

11.4 Solution Procedure

For neutral and stable conditions, the bulk transfer

coefficients are easily computed. Finding the coefficients

for unstable conditions is not quite as straightforward.

The coefficients depend on the ratio z/L. But from Equa-

tion 11.3-11, it is seen that the coefficients are needed

to determine z/L in the first place.

The problem of calculating the transfer coefficients

is solved in two phases. First, a table is constructed

that relates the ratio z/L to the bulk Richardson number

given values for z, z , and d0 . Second, during program

execution, (Ri)B is computed from Equation 11.3-6 and z/L

is found directly from the table. Once z/L is known, the

coefficients are easily found.
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CHAPTER 12

LAND SURFACE APPLICATION

12.1 Introduction

To demonstrate the utility of the CSCS model, gen-

erated data were used as input to a detailed model of the

land surface. The resulting fluxes are plotted here to note

any trends that occurred due to different meteorological

forcings given identical initial conditions. Also, the

mean daily fluxes are presented to show how the parti-tion-

ing of energy in the surface heat balance changed For each

experiment.

12.2 CSCS Generated Data Sets

Three different generated data sets were used. First,

the observed statistical parameters found for July in

Boston, MA were used to generate a "normal" meteorological

data set. The output from the land surface model that

results from the "normal" forcing serves as a baseline for

comparison with the results from the other experiments.

A second data set was generated that represents a

weather scenario which is much wetter than normal. This

was accomplished by changing on]y the input parameters,, t

tr, and h For the precipitation component. The precipitation
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statistics were estimated from the July 1959 data for Bos-

ton, the wettest month in the record.

Finally, a third data set was generated using the

observed statistical parameters but adding a constant

2.2 0 C (40 F) bias to the temperature component. The bias

was introduced by adding a constant to the stochastic

term in the temperature component represented by Equation

6.3-22.

Due to the rather large computational requirements

of the land surface model, the length of simulation was

limited to one month for each data set. Table 12.1 pre-

sents the statistics obtained from the three CSCS data

sets compared to the observed values for the period of

record.

Selecting the "normal" data set presented some diffi-

culty. Since the CSCS output is stochastic and since one

month is too short a period for statistics to stabilize,

it is essentially impossible to generate one month of data

with all statistics identical to the historical values.

Therefore, several monthly runs were made and the monthly

data set whose statistics were judged to most closely repre-

sent the historical values was selected as the "normal"

data set.



Table 12.1 Data Set Statistics For the Land Surface Application:

July, Boston, MA

SET EM
C

DEW
0C

CLD WSP
m/s

WSR
deg

SWR
ly/d

LWR b
ly/d hr

OBS 22.8 15.5 0.45 4.4

NORM 22.7 14.4 0.46 4.6

WET 24.4 15.4 0.50 4.3

BIAS 25.5 17.7 0.45 4.4

102.4 ' 479

99.2 522

106.7 534

101.5 523

784

808

842

64.5 3.9

57.3 5.1

44.4 5.6

45.8 4.1

t
r

hr
h
mm

7.2

6.0

18.6

9.0
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For the "wet" data set, the input precipitation para-

meters were changed from the observed values presented in

Table 12.1 to tb = 52.3 hr, tr = 5.3 hr, and h = 17.2 mm.

Decreasing the time between storms and increasing the storm

duration caused the mean cloud cover to increase. In

fact, the observed mean cloud cover in July 1959 in Bos-

ton was 0.51. This compares with a generated value of

0.50 (see Table 12.1).

It is interesting to note that in spite of the increased

mean cloudiness for the "wet" data set, the mean daily

shortwave radiation was actually higher than for the

"normal" data set. This can occur when, over short periods

of time such as one month, the higher levels of cloudiness

happened to occur during the night or during times when

shortwave radiation is low (e.g. early morning or late after-

noon). Existing meteorological data generation algorithms

are unable to capture the stochastic feature.

The temperature-biased data set has a mean temperature

that is 2.8 0 C higher than the mean temperature of the

"normal" data set. The only other model output variable

that is directly influenced by the temperature bias is the

longwave radiation. Table 12.1 shows that the longwave radia-



193

tion is significantly higher for the "biased" data set

than for the "normal" data set. The independently generated

dewpoints happened to be high for the "biased" data set

and also served to drive up the longwave radiation.

12.3 Land Surface Model

The computer model of the land surface used in this

study numerically simulates moisture and heat transport in

a hysteretic, inhomogeneous porous media (Milly, 1982).

In particular, the model is used to represent a vertical

column of soil that begins at the land surface and extends

downward to a depth of 500 cn.

The atmospheric forcings represented by the CSCS data

sets (translated from the 2-meter level to the surface

by the boundary layer component described in Chapter 11)

define the surface boundary conditions. At the lower boundary,

no diffusion of soil moisture or heat is assumed and water

leaves the soil column only by gravity drainage, advecting

sensible heat with it. Only vertical variations of heat

and moisture are considered.

The soil parameters are based on hypothetical silt

loam soil. A summary of the soil parameters appears in

Table 12.2.
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The initial conditions were the same for each exper-

iment. Initially, temperature, matric potential, and

vo lume tric liquid water content were assumed uniformly

distributed over the entire soil column. The starting

values for these parameters were chosen based upon the mean

temperature and mean precipitation for July in Boston as

well as upon the properties of the silt loam soil (Milly,

1982). The initial conditions chosen for the current

study are:

1. temperature, T = 22.7 0 C

2. matric potential, T = -1000 cm

3. volumetric liquid

3 3water content, 6 = 0.233 cm /cm

The output from the land surface model includes plots

of the time history of the components of the surface heat

balance:

R G = H1 + LE (12.3-1)

where Rn is the net all-wave radiation, G is the heat flux

into the ground, H is the turbulent sensible heat diffusion

into the atmosphere minus the sensible heat carried into

the soil by water that infiltrates during precipitation, and

LE is the turbulent latent heat diffusion into the atmos-
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phere. All values in Equation 12.3-1 are expressed in

langleys/day (ly/day). In addition to the time histories

of the surface energy balance components, their average

daily values are also available for comparison.

The surface moisture balance equation is written as

q P = -P + E + d + R (12.3-2)ml dt s

where qm is the upward mass flux of water in gcm-d~ ,

P is the precipitation rate in cm/d, E is the evaporation

rate in cm/d, hd is depression storage depth in cm, R :is

the surface runoff in cm/d, and p1 is the liquid mass den-

3
sity in g/cm . The surface heat balance and the surface

moisture balance equations are linked by the evaporation

terms, LE and E. Thus, the latent energy term represents

an energy form of the evaporation rate which adds another

interpretive element to the plots of LE.

12.4 Results

Figures 12.1-12.6 present the 31 day plots of the indi-

vidual terms in the surface heat balance equation that

result from the land surface simulations using the different

meteorological data sets (i.e. "normal", "wet", and "biased").

Obviously, some of the fine details in the plots were

sacrificed in order to plot all the data. flowever, the sig-



Table 12.2 Summary of Soil

Parameter

n

0

K
s

a

b

c

d

0

Value

0.46

0.414

10 4cm/s

0.210

- 495.

0.147

0.0

-0.0489

Parameters

Parameter

03

04

05

0 k

S

Ad

Aw

hmax

(ref. Milly, 1982)

Value

0.16

0.33

0.05

10 cm~

0.20

0.10

0. 5cm

Soil CIonstituevnt

Liquid water

Ai i

1. 1.0 1.37(10 )

2 3(10~4 ) *

Quartz 3 0.46

Other minerals

Organic matter

4 0.46

5 0.6

2.1(10- 2

7(10 -3)

6(10~4 )

see Milly (1982), Chapter 2

C A.

*

0.125

0.125

0.5

196

gi

* variable
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Table 12.2 (continued)

Parameter Definition

n soil porosity

0 u proportion of medium occupied by water upon rewetting
to zero matric potential

Ks hydraulic conductivity at saturation and temperature

T 0

a fitted coefficient for wetting function

b fitted coefficient for wetting function

c fitted coefficient for wetting function

d fitted coefficient for wetting function

0 fitted coefficient for wetting fuinction

()3 voluimetric soi1 Fracition of quartz

o4 volumetric soil fraction of "other" minerals

65 volumetric soil function of organic matter

8 k moisture content at which liquid flow becomes negligible

S specific surface

Ad albedo of soil when dry

A albedo of soil when wet

h max maximum depression storage

C. volumetric heat capacity of the i-th constituent

X i thermal conductivity of the i-th constituent

g. shape Factor of the i-tb constituent

T 0 initial temperature of arbitrary reference temperature
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nificant trends can still be examined. All of the data

are plotted in units of ly/d. Periods of precipitation are

indicated by the "tic" marks just above the time line. The

tic marks do not indicate intensity, just the occurrence

of precipitation.

The most significant feature of all the plots is the

strong diurnal signature. This is obviously due to the

radiation input which is dominated by the shortwave compon-

ent. Figure 12.1 presents the plot of net radiation for the

"normal" run. The peak net radiation values represent a

positive contribution to the surface heat balance of on the

order of 1000 ly/d. At night there is a sligiht rad;it ionil

loss as expected. Cloud cover significantly affects net

radiation. This is especially clear during the relatively

stormy period from day 9 to day 15. The increased cloudi-

ness during the period cut the peak radiational input nearly

in half.

Overall the ground flux (Figure 12.1) is the smallest

contributor to the heat balance. Although quite variable,

the flux away from the surface during the day is very nearly

balanced by flux toward the surface at night. During the

summer months, such as July, there is a slight positive

net ground flux.
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The latent heat flux for the "normal" experiment is

shown in Figure 12.2. A diurnal signature is present in

the latent heat flux plot, however, its magnitude depends

heavily on the availability of liquid water to evaporate.

During the two dry periods (days 1-8 and days 20-28), the

latent heat flux steadily decreases as the supply of avail-

able liquid water is exhausted. As soon as the available

water supply is replenished, the latent heat flux increases

sharply again.

The sensible heat flux (Figure 12.2) runs essentially

counter to the latent heat flux. As the latent heat flux

decreases, the excess heat is transferred to the atmos-

phere as sensible heat. Once the water is available again

to evaporate, the sensible heat flux decreases in response

to the increased latent heat Flux (see days 9-15 and

days 29-31).

Figures 12.3-12.4 present the results of the experi-

ment using the "wet" data set. In this data set, the input

short and longwave radiation were higher (as discussed

earlier) which is reflected in the net radiation plot.

The biggest change between the results of the experi-

ment using the "normal" data and the experiment using the

"1wet" data set is evident in Figure '12.4. A much higher
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amount of water was available for evaporation. Thus, high

rates of evaporation were sustained throughout the month

and sensible heat flux remained at fairly low levels.

Figures 12.5-12.6 present the results from the experi-

ment using the temperature-biased input data. Net radia-

tion levels were even higher for this experiment due to

the significant increase in longwave radiation input.

This leads to very high peak fluxes of latent heat (Fig-

ure 12.6) but the water supply was not able to sustain those

rates for very long. Accordingly, the sensible heat fluxes

(Figure 12.6) were higher than for the "wet" case (Figure

12.4).

Table 12.3 summarizes the average values for all four

terms in the surface heat balance. For the experiment

using the "normal" input data, the sensible and latent heat

fluxes were portioned almost equally. However in the "wet"

experiment, sufficient liquid water was available to allow

the latent flux to dominate. In the "bias" experiment,

increased radiant energy coupled with a higher than "nor-

mal" supply of available water allowed the latent flux to

dominate the convective transport but not to the extent of

the "wet" case.
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Table 12.3 Average Heat Flux For the Land Surface Simulations

(All values in ly/d)

R G H LE

NORMAL 262 6 126 131

WET 302 12 20 270

BIAS 304 12 102 190

NOTE: Rn - G = H + LE
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12.5 Summary

Three di Fferent data sets generated by the CSCS model

worc used as input to a detailed model of the land surface.

In each case, the initial soil column conditions were iden-

tical. Thus the differences noted in the resulting surface

fluxes were caused by the variations in the input data sets.

The variations in the input data set were in turn

caused by varying the input parameters of the CSCS model.

This demonstrated the use of the CSCS model to study the

response of a land surface to a particular change in a

climate or weather scenario. The stochastically generated

data set resulting from such experiments will include many

of the "ripple" effects that might evolve in a naturally

occurring scenario due to the physical coupling of the

atmospheric processes.
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CHAPTER 13

SUMMARY, RECOMMENDATIONS, AND CONCLUSIONS

13.1 Summary

A computer model representing a new methodology

called Constrained Stochastic Climate Simulation has been

presented. The CSCS model jointly generates ten meteor-

ological variables with hourly resolution.

Two significant problems were overcome during the

development of the CSCS model. As a result, new procedures

For the generation Of ciOUd( cover and temnperat L UrC WOre

proposed. These procedures account for the severe non-

stationarities in the cloud cover and temperature data

and allow the necessary linkages to other CSCS model com-

ponents.

The CSCS model was tested on four data sets (January

and July for Boston, MA and January and July for Dodge City,

KS). In each case, hourly output data plots, model out-

put statistics, and mean diurnal curves were examined. The

CSCS generated data were shown to represent the historical

data well. In addition, estimates of shallow-lake evapor-

ation were made using observed and generated data statis-

tics for July at Boston and Dodge City. This tested the

joint use of several CSCS output variables. Again, the
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results using the CSCS data were satisfactory.

To demonstrate the utility of the CSCS model, three

different data sets were generated to use as input to a

detailed model of the land surface. Simple changes to the

input parameters of the CSCS model were all that were

required to create new data sets needed to study how the

land surface system responded to different forcings.

13.2 Recommendations

Several recommendations for future work have been dis-

cussed in previous chapters. These and several additional

recommendations are summarized here.

The precipitation regimes of certain climates exhibit

significant diurnal variations. Warm humid climates dom-

inated by late afternoon rain showers illustrate this point.

Ways of incorporating this feature into the CSCS need to be

explored.

Since the precipitation model "drives" the cloud cover

model in the CSCS, diurnal variations in cloud cover due

to the precipitation regime will also be accounted for. This

"ripple" effect will continue through the CSCS model to

the other components linked by cloud cover. (i.e. shortwave

radiation, longwave radiation, temperature and dewpoint).



211

The methodology used to determine an appropriate input

probability mass function for the fairweather cloud cover

generation algorithm needs to be reviewed. The difficulties

in regenerating as well as interpreting the observed fre-

quency histogram were discussed in Chapter 9. Either a

more effective way of preserving the strongly U-shaped

distribution or a way to quantitatively express the unobser-

vable physical processes needs to be developed.

An alternative shortwave radiation attenuation algorithm

was presented in Chapter 4. This method should be imple-

mented in the CSCS model and the results compared with those

of the current technique. Both methods need to be compared

with more detailed shortwave radiation data than were

available for this study. This would help determine whether

the use of the more complex alternative is warranted.

The longwave radiation model uses the latest results

of Idso (1981). However, his model apparently has been

tested at only one site (Phoenix, AZ). Idso's results are

promising, but the generality of his model is still open

to question. More testing of Idso's approach is needed.

The temperature model has been shown to perform well

for two different months, January and July. Although these

months represent two climate extremes, the other months
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should also be tested, particularly the more volatile

transition months during Spring and Fall.

In this study, temperature model parameters were

estimated for each month. Since the temperature model

includes terms that reflect the day of the year, experi-

ments are needed to determine if parameters should be

estimated monthly or if parameters could be used that repre-

sent longer periods such as a season. If parameters could

be developed seasonally, the total parameter estimation

chore would be significantly reduced.

Wind speed and wind direction were generated indepen-

dently in this study. For some locations, the assumption

of independence would not be valid. It may be more appro-

priate to condition wind speeds on wind direction.

In future versions of the CSCS model, wind direction

should be generated from its vector component form instead

of its azimuth form. By using the x-y components of the

wind vector, a continuous bivariate probability distribu-

tion function such as the bivariate normal distribution

might be used. This should produce a more realistic wind

direction specification than currently possible.

July dewpoints were generated independently. This

assumption was reasonable for Boston but in Dodge City,
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stability-related effects in the diurnal dewpoint curve

were not reproduced. If it is important to capture this

feature, other generation techniques such as the regression

model used for January dewpoints should be explored.

In addition to the recommendations relating to the

individual components, there is a broader concept that

should provide an interesting topic for future research.

It relates to the purely stochastic portions of the CSCS

model components.

One common way of handling non-stationarities in

data that are to be represented by a stochastic generation

p)rocedure is to remove the non-stationarities From the

data analytically and to treat residuals as a stationary

stochastic process. This is essentially the procedure

used in the CSCS approach, particularly in regard to cloud

cover, temperature, and dewpoint. In the CSCS model these

residuals were assumed to be independent. This assumption

should be explored more carefully. If significant- correla-

tions exist between the residuals, standard multivariate

techniques might be used to jointly generate the residuals

and thus further improve the coordinated output of the CSCS

model.
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13.3 Conclusions

The CSCS model is a flexible and ef ficient tool that

can provide high resolution IfICteorological data to be used

in a variety of applications including land surface flux

studies, plant disease propogation modelling, insect

infestation modelling, irrigation management, and crop

forecasting. A variety of possible input weather or climate

scenarios could be applied to a system simulation and the

outputs could be used to develop probability statements

about future events. Various management decisions could

be made accordingly.

The flexibility that is inherent in the CSCS model was

achieved without great computational cost. This is very

desireable since the CSCS model will generally be a tool

of the study, not the primary system of interest.

Even for very long simulation periods (e.g. 100 months),

the CPU times required on a DEC-10 computer are on the order

of minutes. Contrast this to the execution times of the

land surface model by Milly (1982) and the model of sur-

face hydroclimatology by Sellers and Lockwood (1981) which

are on the order of hours (or days). Thus, the use of the

CSCS model in these cases would add an insignificant com-

putational burden to the simulation studies.
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APPENDIX A

RANDOM NUMBER GENERATION

A.1 Introduction

Random numbers drawn from a variety of different dis-

tributions are required in the CSCS model. Fortunately,

the stochastic behavior of the CSCS components can be

generated by transformations of independent random numbers

that are uniformly distributed over (0,1) (Fishman, 1973).

This is important, since most computer systems have an

algorithm for generating random numbers from U(0,1)

resident in the system library. By using transformations of

1(0,1) to yield random numbers from uniform (U(a,b)), normal,

exponential, and gamma distributions, as well as any ar-

bitrary distribution, the generality of the CSCS model is

increased. The following sections outline the techniques

used to generate the required random numbers for the CSCS

model.

A.2 Uniform Distribution, (a < x < b)

The uniform probability distribution of variable, X, is

defined by

h , ls x 1)
~(x) (A -I

0 , elsewhere
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di str ibution,
x

1:'X (x ) , is (dlfinedTh11 CumuIIII'tivo

FX (x) =

a

FX(x) can have any value between zero and one.

when FX(x) is represented by

Equation A-2 becomes

U- x-a
b-a

a random variate U

Therefore,

from U(0,1),

(A-3)

Solving for x gives

x = a + (b-'i)tU

wlre x [s a uni formly distributed number from IJ(a,b).

(Fishman, 1973).

The generation procedure is to simply

U(0,1) and

select U from

use Equation A-4 to generate x from U(a,b).

A.3 Exponential Distribution

The exponential probability distribution

be written as

fX(x) =

0

function

(A-5)

, x < 0

The cumulative probability distribution,
x

FX(x), is

FX(x) = e

0

du = 1 - e

I du
b-a

a s

S -a (A-2)

(A-4)

can

(A-6)
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If FX(x) is represented by a random number, U, from

U(0,1), Equation A-6 can be written as

U = 1 - e X/ (A-7)

Solving for x gives

x = - ln(1-U) (A-8)

Since U is a uniform variate, it's easy to see that (1-U)

is also uniform. Therefore, Equation A-8 can be written

as

X = - ln(U) (A-9)

The generation procedure is to select U from U(0,1)

and use 1Iquation A-9 to obtain the exponentially distributed

variate x. (Fishman, 1973).

A.4 Normal Distribution

In the previous sections, the generating technique

relied on the invertability of the appropriate cumulative

probability distribution. Unfortunately, the cumulative

distribution function of the normal is not analytically

invertable.

The generating algorithm for normally distributed var-

iates in the CSCS model is based on the direct translformation

of uniform var-iates. (Vishiman, 1973). Let U and U., he

independent variates from U(0,1). Then the variates



X, = (-21nU,) cos (2'fU 2 )

X2 = (-21ntl I sin (2TrU 2 )

are i ndcpendent and each is C

zero mean and unit variance.

man (1973) indicates that the

tion function of X and X2 is

xX2 '(xx 2) U ,U2

rom a normal distribution with

To demonstrate this, Fish-

joint probability distribu-

(u1 ,u2 ) = J (A-12)

S1

(x

2 2
-(x 12+ x 2 )/2

e

22
+

-x2

27r(x] +x 2 )

(x

(A-13)

2 2
+2 )/2

-x2

x

21T(x 1 2

The joint distribution in Equation A-13 is that of two

independent normal deviates, each with zero mean and unit

variance.

The generating procedure is to select UI and U 2
from

U(0,1) and use either of Equations A-10 and A-li to yield
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(A-10)

(A - 1.l )

where

-x e

(A-14)

a
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normally distributed variate X with zero mean and unit

variance. Note that in previous sections, one uniformly

distributed variate was selected for each generated random

number. Now, two uniformly distributed variates are re-

quired for each normally distributed variate. Therefore,

an efficiency rating can be defined as the number of "target"

variates generated divided by the number of uniformly

distributed variates required. Since two uniformly dis-

tributed variates are required for each standard normal

deviate desired, the generating Equations A-10 and A-11 have

an efficiency rating of 50%.

A.5 Gamma Distribution

Consider the variate, X, to be gamma distributed with

shape parameter, a, and scale parameter, 3. (denoted as

Ga(a,K)). The probability distribution function of the

gamma variate, X, is

F XW1 0 <-x

0 ,x < 0

Like the cumulative distribution function (cdf) of the nor-

mal distribution, the gamma cdf cannot be analytically
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inverted. Therefore, transformation of uniformly dis-

tributed variates will be used to generate gamma distributed

random numbers.

Fishman (1973) outlines a technique to generate gamma

variates that is valid for both integral and non-integral

shape factors. According to Fishman, if X is from Ga(a, ),

then X can be considered "to be the sum of k + 1 independent

gamma variates, all with scale parameter 8, but the first

k of which have unit shape parameter and the k+lst has shape

parameter = a - (a) . " (Note that k = (a) where "( )

denotes "the largest integer in").

The first k independent gamma variates are from Ga(l,).

With unit shape parameter, the gamma distribution reduces

to the exponential distribution. Thus, the sum of k in-

dependent gamma variates from Ga(l,3) can be expressed as

the sum of k independent exponentially distributed variates.

Using Equation A-9,

k
X I= Z (- InU )(A-16)

j=l

which can also be written as

k
X= -ln {I Uj (A-17)

where U is the jth variate selected from U(0,1).
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The k + 1st variate is distributed according to

Ga(y, 3). To obtain the k + 1st variate, let Y and Z be

independent variates from a beta distribution, Be(y,l-y),

and a gamma distribution, Ga(l,l), respectively. Then, as

Fishman (1973) shows, the variate W = YZ is distributed

according to Ga(y,(). Thus, the gamma variate, X, from

Ga(a,3) is found by

k
X = TI U. + YZ

j=
(A-18)

Since Z is exponential with a unit parameter,

Z = InUk+l
1

and Equation A-18 becomes

k

X ~~ = -S nH U- Y 1 ( k +l )

(A -1.9)

(A-20)

The remaining task is to select Y from Be(y,1-y).

The probability distribution function for a beta dis-

tributed variate with shape and scale parameters a and b res-

pectively is

S(a+b) a-

FY(y) = ()
0

b-I
(1 -y) , 0<x<1

elsewhere

(A-21)
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In general, the parameters a and b will be nonintegral in the

CSCS model, therefore, an acceptance-,rejection technique

for generating Y from Be(a,b) will be used, (Fishman, 1973).

Consider the transformations

Y = UI/a (A-22)

and

where U1

variates

that the

Y U2 1/b (A-23)

and U2 are independent uniformly distributed

from U(0,1). If Y + Y2 <, then Fishman shows

variate

Y

Y =
(A-23)

is distributed according to Be(a,b).

To find the beta variate required by Equation A-20,

first find the transformed variates

Y2 = U2

(A-23)

(A-24)

Next, determine if Y + Y2<1. If + Y2 < 1, then

"accept" the variates Y and Y2 and compute the beta variate,
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Y, using Equation A-23.

If Y + Y2 > 1, reject the variates Y and Y Select

new variates, U1 and U2, and repeat the process until a

(Y1,Y2) pair are accepted to compute Y. Once a valid beta

variate, Y, has been identified, Equation A-20 is exe-

cuted to give the required gamma variate X from Ga(a,3).

If ri is the number of uniformly distributed variates

required to generate one beta variate, the total number,

ni of uniformly distributed variates required to generate one

gamma variate from Ga(a,3) is

r T1 + k + 1 (A-25)

The expected value of T1 is then

E(nt) = E(n ) + E(k) + 1 (A-26)

Since the number of trials for success in the beta

generation procedure follows the geometric distribution,

the expected number of uniformly distributed variates re-

quired to generate a Be(a,b) variate is

E 2(a+b)F(a+b) (A-27)
abF (a)r (b)

Substitution of a = y and b = 1-y into Equation A-27 leads

to
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y:.r = -y lyYl - )

From Hildebrand (1976), the following identity can be used

to further simplify Equation A-28

F(Y)PF(l-y)
iTr

sin(Try) (A-29)

(A-30)E (TI)= 2sin(ify)
(1-Y)I

Equation A-30 has a maximum when y = 0.50. Therefore,

maximum expected value of Tj is approximately 2.5.

Comparison

a = 6 t

of Equations A-15 and 2.2-3 gives

Since k = (a), then

k = (6tr)

Taking expected values

(A-32)

of both sides of Equation A-32 gives

E(k) = (6E(tr) )

However, since tr is exponential

-r
E(tr) = 6

(A-33)

(A-34)

and Equation A-33 becomes

E(k) = 1

(A-28)

Thus

the

(A-31)

(A- 35)
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Now using the Equations A-30 and A-35, Equation A-26

becomes

E(n ) = 2sin(ry) + 2 (A-36)
t y (1 -y) T 2

and

E( 3TI max ~ 4.5 (A-37)

A.6 Arbitrary Distribution

Occasionally, it becomes necessary to generate a

random variable from a distribution for which therc is no

conveniently available mathematical formula. To generate

a random variate over a finite domain (a,b), the following

steps are used. (Abramowitz and Stegun, 1970).

Let f be the maximum of f(y), the probability distri-

bution function of the variate y. Generate a pair of

uniform deviates, U1 and U2 from U(0,1). Compute a point

y = a+(b-a)U1 in (a,b). If U2 < f(y)/f, accept y as the

random deviate, otherwise reject the pair (U1 ,U2) and start

again. The expected number of uniformly distributed var-

iatcs, nt, required to generate the appropriate random

deviate is

E(nt) = 2(b-a)f (A- 38)
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In the CSCS model where this approach was used,

f(y) was approximated by a histogram.
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APPENDIX B

STATISTICAL PROPERTIES OF N(t)

B.1 Introduction

The cloud model developed in Chapter 3 was required to

have certain statistical properties. These properties

were discussed in Chapter 3, but their development is

presented here. The cloud cover model has the form

N(t) = M + (1-M )(1-P(t))+ m(t)P(t) (B-1)

where M0 is the "fairweather" mean value of N(t), P(t)

is the storm transition function, m(t) is a serially

correlated random sequence with the following characteristics

E(m(t)) = 0 (B-2)

VAR(m(t)) = a (B-3)M

The sequence,

pM (T) where T

m(t), also has a serial correlation function

is the lag.

B.2 Expected Value of N(t)

The first required property of N(t) is its expected

value. More specifically, the expected value of N(t)

given the time between storms, tb, is required. The condi-

tional expected value of N(t) is found by
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E (N(t) ltb) =E (M + (1-M0) (1-P(t))

+ m(t)P(t))

Since M is a constant and P(t) is a deterministic

tion of time, Equation B-4 becomes

E(N(t) ]tb) = + (1-M )(R-P(t))

+ P(t)E(m(t))

Substitution of Equation B-2 into Equation B-S results in

the expression for the time varying conditional expected

value of cloud cover shown earlier as Equation 3.4-5

E(N(t) Itb) + (1-M 0 )(-P(t))

B.3 Variance of N(t)

The conditional variance of N(t)

VAR(N(t) Itb)

is defined

= E((N(t) Itb-E(N(t)'tb) )

which can also be written as

= E((N(t)It b )2) -VAR (N(t) th) E2 (N(t)ltb)

First find (N(t) Itb) 2

(N(t)[tb 2 = (M9 + (1-M 0 )(1-P(t))

+ m(t)P(t))
2

(B-4)

func-

(B-5)

(B-6)

as

(B-7)

(B-8)

(B-9)
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(N(t) Itb )2 = m02

+ 2m(t)P(t)

+ 2M (1-M0) (l-P(t))

M + (1-M )2 (1-P(t)) 2

+ 2m (t) P (t) (1-M0 ) (l- P (t))

+ m2 (t) P2 (t)

Taking expected values of both sides of Equation

gives

= M 2 + 2M (1-M )(1-P(t))

+ (1-M ) 2 (l-P(t)) 2
+ m 2P 2(t)

F,(2m (t ) (t)M 0 ) 2P(tJM 0(m(t))

E (2m(t) P(t) (1-Mo) (i-P(t))) =

= 2P(t) (1-M 0 )(1-P(t))E(m(t))

= 0

= 0

E(m2 (t)P2 (t)) = P2 (t)E(m2 (t)) = P 2 (t)a 2

For E2 (N (t) I tb) ,

E2 (N(t)1t,)

Equation B-6 is used to give

= (M0
+ (1-M (1-P(t)2

Expans ion of Equation B-12 and substitution into Equation

B-8 along with Equation B-11

(B-10)

E((N (t)Itb )2)

B-10

Since

(B-11)

and

(B-12)

g ives
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VAR (N(t)Itb) =

+ aM2P2 (t)

M 0 2 + 2M (1-M (1.- P (t) )

- M 2 - 2M (1-M 0 ) (-P(t))

(I-MO) 2 (1- P (t) ) 2

Equation B-13 reduces to the expression

ing conditional variance of N(t)

VAR(N(t)| tb)

for the time vary-

Sm 2 2(t)

B.4 Serial Correlation

(B-14)

(B-15)Function

The serial correlation function of a time series is

found by normalizing the covariance function of

series. The covariance is defined as

COV(N(t),N(t+T)) =

E((N(t)-- N (t)) (N(t+T )-p N (t+T)))

As in previous sections,

For ease in writing,

the time

(B-16)

the process is conditioned by

the designator

tb*

has been dropped.

Also, for convenience

-pN (t) = E(N(t)lt b)
(B-17)

Expansion of

COV(N(t)

- E(N (

Equation B-16 leads to

,N(t+T)) = E(N(t)N(t+T))

t)PN(t+T)) - E(pN(t)N(t+T))

(B-18)

(B -13)

+E (P N(t )P N(t+T ) )
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Since VN(t) and pN(t+T) are deterministic functions of

time, the third and fourth terms on the

of Equation B-18 become respectively

E (P N(t)N(t+T)

E(PN(t)1PN(t+T))

right-hand

= IN(t)1pN(t+[)

= N N(t)p N(t+[)

Substitution of Equations B-19 and B-20 into Equation B-18

gives

COV(N(t) ,N(t+i))

-VN(t+1 )E(N(t))

= E(N(t)N(t+T))

The ncxt step is to substitute Equation B-i eva luated

times t and t+T into Equation B-21. Th

COV(N(t+T)) = P(t)P(t+T)E(m(t)m(t+

The serial correlation function of N(t)

is leads to

,))

is defined

COV(N(t),N(t+T))
N (N(t) ON(t+T)

where a N(t) is the standard deviation of the process

time t. The standard deviations are defined as

(B-24)
N( t) = /VAR(N t) tb)

and

side

(B-19)

(B-20)

(B-21)

(B-22)

as

(B-23)

at

= P(t)a m
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and

N (t +, ) = /V (N tT) J
N

Substitution of Equations B-22,

- P (t+I) om

B- 24,

( B1 2 ) )

and B-25 into Equation

B-23 yields

P(t)P(t+-[)E(m(t)m(t+T))

P(t)P(t+[)G m2
(B-26)PN (T)

With the definition

E(m(t)m(t+T)) = COV(m(t)m(t+r))

Equation B-26 can be written as

p (T)
N

= COV('m(t)m(t+T))
2

m

The right-hand side of Equation B-28 is just the defin-

ition of the serial correlation function,

random process m(t). Therefore, Equation B-28

(B-29)PN() = m(T)

Equation B-29 states that the process N(t), whose mean and

variance are modulated in a controlled fashion by P(t),

will have a serial correlation function identical to the

process m(t).

(B-27)

(B - 2 8)

pm (-), of the

reduces to
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APPENDIX C

BRYAN'S TEMPERATURE FORECAST MODEL

C.1 Introduction

Since Bryan's 1964 report was unpublished and since

the writer knows of no formal presentation of the details

of Bryan's technique in the literature, a detailed mathe-

matical description of the approach will be included here.

Bryan's approach is represented by the following

equations

dT (t) + b T(t) = b0 + bs(t) + b3r(t) (C-1)

s(t) = sin6sin$ - cos6cos~cosy t)

(R<t<S) (C-2)

s(t) = 0 , otherwise (C-3)

r(t) = T-,cos6cosqsin(f t) (R<t<12) (C-4)

r(t) = 0 , otherwise (C-5)

where T(t) is the temperature at time t, 6 is the solar

declination, $ is the local latitude, R is the local time

of sunrise (note the difference between local time and

standard time), and S is the local time of sunset.

Equation C-1 can be solved by using the integrating

factor e t. Thus
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C1 e T ebt (t) = e b0 + b2s (t) + b3r (t) (C-6)

and for the

T(t) = T(t')e

t

- b I (t- t' ) -b t
+ CFF(t t)

t

F ) ' 0

t'

bI T b T
e dT + 1)2 J e s(-) d

j-

t t~

+ b3 e r(T)dT (C-8)

Equations C-7 and C-8 represent the solution to Equation

C-i. Once the coefficients, b , are known, a temperature

forecast can be made given only the initial temperature

T(t').

C.2 Parameter Estimation

Bryan manipulated Equations C-7 and C-8 into a form

that leads to a linear regression formula used to estimate

the bi's.

First, note the following identities

-b 1 t -b1 -b (t-l)
e =e e (C-9)

-b 1 (t-t')
e (C - 1 0)

where

(C-7)

interva I (t',t)

-b ( - - '
=e
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+ F(tt-l) (C-11)

Using these identities, Equation C-8 can be rewritten as

by 'T(t')e-b (t-l-t')
T(t)

-b I(t-1)
F(t~l~tflj

+ e -btF(t,t-l) (12

The quantity inside the brackets

T (t)
-b1 t

is just T(t-1).

F (t,t-1)

Therefore,

(C-13)

The hourly temperature change,

tracting T(t-1)

Y(t) is found by sub-

from both sides of Equation

Y(t) -(i-- )T(t-1) + 0-b 
t

Substitution for F(t,t-1) leads to

Y(t) b -bi t {teblT dT

-b1 t
+ b2e ~

It b1 T
e s(T)dT

t-l

-bit -t

t-1

b T
e r(T)dT

0vg r'l ( I I

C-13.

(C- 4)

(C-15)

F(t~t' ) = F(t-lt')

(C-12)

-b 1T(t-1)

- ( 1-e- )T (t-1)

of the Cirst in for- convenincice) onl1:vil I al t I n Oi
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the right-hand side of Equation C-15 leads to

b -k

1
(C-16)

The last two integrals, 12 and I3, on the right-hand side

oF Equation C-l5 are complicated by the exponential term

inside the integral. Bryan indicated that it was sufficient

to use the mean value of e 1

integral.

and bring it outside the

Thus

b 1 -b b1 t
E e = (l-e )e (C-17)

Thus, 12 and 13 respectively, become
t

b

-b1 s( )dT
(C-18)

b

I3 (1-e3I )b s(Tc)dT

t- 1

Substitution of the expressions for I , I2' and I3, back

into Equation C-15 yields

and

(C-19)
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Y(t) = b (1-e
1

+ b- (1-e )
b1

-b
) - (1-e )T(t-1)

t

s (T)dT

t-1

t

b -+ (1-be { r(T)dT

t-1

Equation C-20 is now in the required regression form

from which the b 's can be estimated. To see this more

clearly, compare Equation C-20 term by term with the fol-

i ow i ig

Y(t) a 0 + a x (t) + a 2 X 2 (t) + a 3 X 3(t)

The comparison gives for the coefficients

b -bI
a = b (-e )

b,

S b I -

a 3 = (1-0 )
3 1

(C- 21)

(C-22)

(C- 3)

(C-24)

(C - 2 5)

For I the p ric(1 t ors

(C-20)
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X1 (t) = T(t-1) (C-26)

-t

X2 (t) = s(r)dT (C-27)

-t

X 3 (t) = r(T)dT (C-28)

t- 1

Once the a. 's have been determined by regression, the

b 's can easily be found, since the set of Equations C-22

through C-25 is a set of four equations in four unknowns.

Therefore, the bi's can be found from

b = -in(a 1 +) (C-29)

bI
b. = - -a. , i = 0,2,3 (C-30)
1 a 11

1

Now that the b 's are established, Equation C-7 can

be used to forecast temperatures, given only the initial

temperature, T(t').

C.3 Evaluation of Predictors

From the definitions of s(t) and r(t), it is seen

that Equation C-20 and, ultimately Equation C-7, will have

different forms, depending upon the time of day. The

ranges over which each form will be valid are delimited by
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several "critical" times. These times must be identified

in order to coordinate the data observation times which occur

at regular intervals according to standard time, and the

occurrence of events in the local solar day (e.g. sunrise,

sunset, etc.) which vary in time throughout the year. Five

critical times are identified: 1) to is the value of t in

local time corresponding to midnight in standard time, 2)

r is the value of t which corresponds to the earliest

standard hour that does not precede local sunrise, R (rs >R)

3) t1 2 is the value of t at the earliest standard hour that

does not precede local noon (t12>12), 4) ss is the value of

t at the earliest standard hour that does not precede

local sunset, S (s >S), and, 5) t23 is the value of t cor-

responding to 11:00 p.m. local standard time.

For all times, t, predictor Xl(t) will equal T(t-1).

But the forms of X2 (t) and X3 (t) will change with t. The

individual forms of X2 (t) and X3 (t) for each range follow.

Range I t 0< t < rs - I for X 2 (t)

t

x2 (t) = s(-)dT

t
0

X 2 (t) = 0 (C-31)
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Range 2 t

For X 2 (t)

= r
S

X 2 (t)
S

(first observation hour after sunrise)

t

s (T) d'U

t- 1

R

I
t-1

r

s (T)dT +

R

s

s (T)dT

(C-32)

= (r s-R)sinsin$ l2 cos6cos(si 7r7T (in 1 2

(C-33)

Range 3 r +1 < t < s -I (daylight hours) for X 2 (t)

X2 (t) = (T)d-

= sin6sin$ 12 os6cos$(sin -

= ss for X2 (t) (near sunset) for X2 (t)
s

s (T)dT

ss-1

s (T)dT

s -1

ss

+ s()dT

S

X2 (t) TR

X2 (t)

Range 4 t

X2 (t)

sinl (t-1))

(C-34)

S=T
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X2 (t) =(S-ss+)sin6sin$

12 TT f
- cosocos$(cos 12S - cos 1(ss -1))

Range S ss+1 < t < t2 3 (after sunset) for X2 (t)

t

X2 (t) = (-c) d

t-1

X2 (t) = 0

Similar ranges exist for X3 (t).

Range I t < t < r s-1 (before sunrise) for X3 (t)

t

X3 (t) = ()d

X3 (t) =

t-1

0

Range 2 t = rs (near sunrise) for X 3 (t)

r
s

s

'-c

R r 

5-1 R

(C-35)

(C-36)

X3 (t) =

(C-37)
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X3 (t) = cos6cos$(cos T2

Range 3, rs + 1 < t < t12
t

X3 (t)

t -1

7 r
Cs12 0 (C-38)

- 1 (before noon) for X3 (t)

r (T)dT

X3 (t) cos6cos$(cos -(t-1)

Range 4, t = t12 (near noon)

t

t2

ti' 2 - 1

12

r (T)dT

- cos -t)

for X 3 (t)

r(T)dT

+

12-1

t12

12

r(T)dT

X 3 (t) = cos6cos"(cosE17(t
1 2

Range S, t1 2 +1 < t < t2 3 for X3
t

X3 (t) = r (T)dT

t-1

X3 (t) = 0

For each hour of the day, the hourly temperature

(C-41)

change,

Y(t), is computed from the observed data and the

(C-39)

X 3 (t)

=1
1) + 1) (C-40)

(t)
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predictors Xi(t) are evaluated. Standard linear regres-

sion techniques can be used to estimate the coefficients a1

which in turn are used to finally yield the bi's.

C.4 Evaluation of F(t,t')

As with the predictors Xi(t), the function F(t,t')

will have different forms, depending on the time of day.

The general solution for F(t,t') will be shown first.

the individual forms applicable in each range will be

developed.

Consider again Equation C-8, where

F(t,t') =

t

b 0 e b d rb0  ebldT

t

t

t

+ b2 0 s(T-)dTu

Then

(C-8)+ b 3  e lr(T)dT

t

For convenience, let

F(t,t') = I + I2 + T3

where t

I =b { e dT

t'

(C-42)

(C-4 3)
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1 2 = b 2 b I

t

s (T)( IT

t

13 = b3 e

t'

r (T) dT
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(C-44)

(C-45)

Evaluation of I is straightforward and can be written

directly as

I b (e - e ) (C-46)

For I2, begin by substituting the full expression for s(T )

inside the integral. Thus,
t

I2 = b2  {e (sinsin$ - cos6cos~cos(7 ))dT

t,
(C-47)

The declination 6 is actually a function of time and, in a

strict sense, ought to be evaluated in the integral.

However, the interval (t,t') is sufficiently short so that

the variation in 6 is ignored. Equation C-47 can now be

rewritten as
t t

I2 = b2sin6sin$ ebTdT - b2cos6cos$ eb1Tcos2()dT

t''48
(C -48)
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Completion of the integration finally yields

b2  b t bit'
I2 b sin6sin$(e - e )

e b b2 cos6cos~cos( ()

b 2 + 2b 2+( IT ) 2

1 12 1T

eb tb 2 (y)cos6cos~sin(T )

b 2 + ( 2

eb t b2cos6cospcos(1 )
+ - b 2 + ( _ _ M ) 2

1 12

eb t b 2 ( 7 )cos6cos~sin(7- )
+ 2 1 2(C49)

+ (12

Similarly, for I3, substitute the full expression for

r (T) into the integral.
t

I3 = b3  ] 1 (-r cos6cos~sin yd)dT (C-SO)

t'

Again, the short term variation in 6 is ignored. Trhu,,s
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13 b 3 (j)COs6cos$

1 12 blb 3cos6cos$
3 2 r) 2

b1 +()

l)3(12) 2cos6cos$

2 t 2
b 2+( 7 )b1  1-2

bj b b3 cos6cos$

b12 +( 2

t

b It
e

t
b T

e s in ( ) -r

e sin(" )

cos (i2)

b t' . '
e sin( 2-)

1> 9 2cos6cos$ b t'
+ 2 T 2

b1 12
Cos(" t 'co(12

To simplily the writing of Equations C-49

(C-52)

and C-52, the

following definitions are used

p =2

b

1

b 2sin6sin$

K2 2b

(C-53)

(C-54)

(C-55)

afnd

(C-51)
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b b 2cos6cos$

3 b 2 2
b + p

pb2 cos6cos$
K4 = 2 2

b 1 + p

p b3cos6cos$
K5 -" 2 2

b1 + p

pb b 3 cos6cosp
K-6 2 26 b1 + p

(C-56)

(C-57)

(C-58)

(C-59)

Using the definitions in Equations C-46, C-49, and

C-52, the general form of F(t,t') can be written as

bFt
F(t,t') = K1 (e 1

Note tha

b1t
t  bIt

- e )+ K(2(1

b t

b t'

bi t

- (K3+K )e cos(pt) + (K6 -K4 )e sin(pt)

+ (K3 +K 5)e bt'cos(pt') + (K4 -K6 )e btsin(pt')

(C-60)

t t' = t - 1.

For the range to < t < R

}eb1Td + )
F(t,t') = e d + 2

t''

t

e s(T)dT

t'
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+ b3 te bT

t'

r(T)dT (C-61)

in this range s(t) and r(t) are both zero. Thus,
t

F(t,t') = b
T bdT
e dT

t

F(t,t') = KI(e 1 -eb ) bC-6I)

For the range R < t < 12

"I-t by r
F(t,t') = b0 e dT + b2

t'

t

+ b3

t''

e s(T)dT

bT
1 r(T)dT

Equation C-63 can also be written as

F(t,t') =

t

+ b 2  e

R

s(T)dT + b 3

RI b1T
e s(T)dT

t'

R

e r(T)dT

t'

(C-63)

t

b 0 e bIT+ b 2

t''

b T
I

(C-62)
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t

+ b3

R

e
b T

I r(T)dT

Remembering that prior to sunrise, s(t) and r(t) are zero,

carrying out the integration leads to

b t
F(t,t') = K1(e ~ - eb ) + K2 (l-e

-b1 (t-R)

(K3+K 5) cos(pt) + (K 6 -K 4 )sin(pt)

+ (K 3 +K 5 )e

+ (K4 -K 6)c

For the range

F(t,t')

t

+ b2

R'

-bl (t-R)

-bI (t-R)

cos (pR)

sin (pR)

12 < t < S

t

b9

t''

b T
C

e
b T

I

R

dT + b2

t''

s (T)dT

)

(C-64 )

b 1 T
e s (T)dT
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R 12

+ b3 1 r(c)dT + b3 { e
+ R'

+ b 3  e

12

I'

b1 T
r (r)d T

r(T)dT

Evaluation of Equation C-65 gives

b t b1tt  b t b R
F(t,t') = K1 (e -e ) + K2I (e

K 3 e
b t

cos (pt) + K4e 1 sin(pt)

b R
+ K 3e cos (pR) + Ke

b R
sin (pR)

b R
K6

12b
+ K e

sin(pR) + K5e
b 1 R

cos (pR)

1

For the range S < t < t23
t R

F(t,t?) = b e bdT + b2  e bl-s(T)dT

't ti

(C-65)

(C-66)
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t

s(T)dT + b2  e b -us(T)dT

S

12

r(T)dT + b3

R

b T
e 1 r(T)dT

t

+ b 3

12

0 1 r(r)dt

During the evaluation of the integrals i.n Equation

the FoI lowi ng

S = 24-R

sin(27T -pR)

cos (27 -pR)

i dent it ics p rove USC Ul ,

= -sin(pR)

= cos(pR)

The final form for F(t,t')

F(t,t') = Kl(e

- K 3

K 3

b S

b R

is now written as

b t b t' b S b 1R
11 ) + K2(e b

Cos (pR)

Cos (PR)

6 sin

bI S
+ K 4 e sin(pR) + KSe

+ K 4 sin (pR)

bK R
+ Ke'c cos(pR)

12b 1

(C - 7'1)

S
b 1 T
e+ b 2

R

+ b3

t''

b 1 T
e

C-67,

(C-68)

(C-69)

(C-70)

(C -6(7)
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The forecast temperatures are now found by substi-

tuting the appropriate form oF F(t,t') into Equation C-7

and solving for T(t), to < t < t 23. Note that declination,

6, was assumed constant over the interval (t 0 ,t23). Thus,

variations within a day are ignored. Variations in 6 for

longer periods cannot be ignored. Therefore, the declin-

ation is recomputed for each day in which temperature fore-

casts are made (see Equation 4.2-5). This accounts for

longer term variations in solar input.
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APPENDIX D

DETERMINISTIC TEMPERATURE COMPONENT

D.1 Introduction

The deterministic component of the temperature model

is represented by

dT t) + bIT(t) = bo + b2 K(t)s(t) + b3 K(t)r(t)

+ b 4q(t) + b 5 T (t) + b6 W s(t)

+ b 7Wd(t)
(D-1)

where T(t) is the deterministic component, K(t) is the solar

radiation attenuation factor (K(t) = 1 - 0.65N2 (t)),

N(t) is the cloud cover, q(t) is a longwave radiation esti-

mate (see Equation 6.3-2), T (t) is the ground temperature,

Ws (t) is the wind speed, and Wd(t) is the wind direction.

As indicated in Chapter 6, the general solution to

Equation D-1 can be written as

-b 1 (t-t'
T(t) = T(t')e

where
t

G(tt') = b 0  e dT + b 2

t'

+ e - tG(t,t')

tT b1 'r
e K(r)s(T)dT

t'

(D-2)
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t t

+ h 3  { 1) T K('rJ r(T)d: + b 4 q(t-1) e b d -L

tt t''

t t
Sb g ' bT

+ 5 e T(Tc)dT + b6 C 1ws(T) dT

t t'

t

+ b 7  { eb TWd(T)dT

t

(D-3)

D.2 Parameter Estimation

The procedure for estimating the coefficients bi

through a regression involving hourly temperature changes,

Y(t), has been described in Appendix C.

coefficient~s a atr e

a1 = -(1-c )
a I= -(e b 1

b.
1 b1

The resulting

(D-4)

, i = 0,2,3,...,7

The predictors X (t) are

Xl(t) = T(t-1)

X 2 (t) = K(t)

X3 (t) = K(t)

tIs (T) dT

t

r(T) dT

t-1

(D-5)

(D-6)

(D-7)
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X4 (t) = q(t-1) (D-8)

X 5 (t) = T (t) (D-9)

X6 (t) = Ws (t) (D-10)

X7 (t) = Wd(t) (0-11)

The one hour integration interval was considered short

enough to allow the variables K(t), q(t-1), T (t) , W (t) ,

and Wd(t) to be brought outside their respective integrals.

Predictors X 2 (t) and X 3 (t) are used only during se-

lected parts of the day. These times have been defined in

Appendix C and will not be discussed again here. The

indicated integrations in Equations D-6 and D-7 have also

been discussed in Appendix C. The only difference in the

final forms of X2 (t) and X3 (t) for the present case is

the multiplier K(t). The remaining predictors are used

throughout the night and day.

D.3 Evaluation of__ t,t'9

For convenience, let the seven integrals of Equation



D-3 be written as
t

IS be 0 e d T d

tv

t
12b =

I2 = b 2 e K ( -)s ( -)d

tf

t
b

I3 = b3 e

t?

I K(T)r(T)dT

t

14b =

I4 = bt4 e q(T)dT

t

t

b eb
I5 = b5 e

ti

t

16b =

I 6 = b 6 e W s (-u) d-u

t

t

I 7 = b 7 eb TWd (-r )d-c

t

T0 (T)dT
zn
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(D-12)

(D-13)

(D-14)

(D-15)

(D-16)

(D-17)

(D-18)



269

The integration indicated for I is straightforward

and results in

11
lbt

b 1 t
e eb 

t'j
(D-19)

The remaining integrals contain terms such as K(T),

q(t), T (c), Ws and Wd(T) Except for reasonably short

intervals, treating these terms as constants is not sensi-

ble. To deal with integration intervals that are large

cnough for those variables to vary significantly, the

following approach is taken.

Consider I2, where

t

I 2 = b 2  e blK(T)s(T)dT

t

(D-13)

12 can also be written in an equivalent form as

t

I2 = b 2  e b rK(T)s(T)dT

t-l

t-l

+ b2

t'

b T
e 1K(T)s('r)dT (1-20(D-20)
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In the first integral on the right-hand side of Equation

D-14, the integration interval is short enough such that

K(T) can be brought outside the integral. Thus

t

e

b 1 T
12 = b2 K (t) s(T)dT

+ b2

t'

t- K
b 1 T

e K(T)s(T)dT (D-21)

Now the first integral in Equation D-22 is in the same

form as the integrals evaluated in Appendix C (see Equa-

tion C-47).

The same argument can be used to successively evaluate

the second integral of Equation D-21. Following the pro-

cedure hour by hour back to t', a series of the following

form results.

t

I2 = b2 K(t) e ls(T)d

t-l

t'+n
t'-t

+ b2  E K(n)
n=l

t''+n-1

beT
e 1 (~T (D-22)
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Since the series of integrals defined in the second term

on the right-hand side of Equation D-22 is just the value

of I2 at t-1, the following computational form is used

t

I 2(t) = b 2K (t) e
1 s(T)dc + 12 (t-1)

Concluding the integration of Equation D-23 yields

A rb 2 -b It b 1 (t -1)

I2 (t) = K(t) {5 sin6sin$(e -e t

eb tb b2cos6cos~cos(12)

b1 2 2

)

e tb 2 ( )cos6cossin(t)

b(2 + )2b2+ ( n-)

b (t-1)
e

+
b b cos6cospcos(. (t 1)1 2 12

b 2 + T ( 2
1 + 1

2b (t-)b2 ()cos6cos sin( 12

b 2 + (Tr)2

+ I 2 (t-')

(D-23)
b

(D-24)
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Using the definitions for

Appendix C, Equation D-24

K0, K, . .. , K6 defined

can be written as

1 2 (t) = K(t)(K 2 (e

- K 3b tcos ( )3 1

+ K3 e

+ K 4eb (t)

b1 (t-1)
~ C

Keb tsin( t4 1~i2)

7T(t- 1))cos ( 12

sin (t-1)))+ 12 (t-1)

Similarly, the remaining integrals, Ii, can be obtained.

S-

I3(t) = K(t)(K6e

b K (t -
1)

+ K 5 e

b 4
I1 (t ) =

b 5
I5 (t) =

I ~b 6
I6 (t) = 1

sin( l 2

C o ( t - 1)1cos (12 )+

q(t-1) (1-

T g(t) (1-e

-b1 b t
e ) e

-b b t

-b1 b t

13(t-1)

+ I 4 (t-1)

+ I5(t-1)

+ I6 (t-1)

in

)

(D-25)

sin (' ) b 1t
K5 cos (" )

(D-26)

(D-27)

(D-28)

W s (t ) (1 - e (D-29)
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I b 7W (--b eb t+I
7 (t) Wd(t)(l-e 7)eb + I 7 (t-1)

The specific form of G(t,t') still depends on the time

of day for which the integrals are evaluated.

t' = t0-1).

For Range 1, t < t <
0 -

(Note that

R

b t

G(t,t') = K1(e
b t' b4  b b1 t

- e 1 + b q(t-l)(l-e )e

b -b1  b t
+ 4 (t-l) + ST (t) (1-e )e + I5 (t-1)

+ b- Ws(t) (1-c
1

)e + 16 (t-1)

b b b1  t

+b Wd(t)(-e )e + I7 (t-l) (D-31)

Actually, the terms on the right-hand side of Equation

D-31 retain the same form throughout the day. For conven-

ience then, the terms on the right-hand side of Equation

D-31 will be collectively referred to as H(t,t').

For Range 2, R < t < R+i

G(t,t') = H(t,t') + K(t) K2 (e1-e

(D-30)
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b t
K 4 e s in (T -)

I( z b 1 Rk
Cos ( J+ K e s in(

+ K(t) K60
bIt

b R
K 6e sin(-2)

sin(' t) - K b1 t (r)12e S co0s T-

+ K e Cos () J

For Range 3, R+1 < t < 12

+ K(t) K2

b 1 t b1 (t-1)

K eb ItS in(r )

+ K3 eb 
(t-1)

COS 7T(t-1) )c12

+ 12 (t-t) + K(t) K6e

- b1 (t-1)

sin( t l J+ K4eb

b 1 t
sin( K5e 1 cos( +)

. T(t-1))
sin ( 2

+ K b(t-1)cOs(( ) + 3 (t1) Cos 12)

cos ( )
b t

b R

- K 30

+ K3e

(D-32)

1) t
K 3 c

)

cos(i)

G(t,t') = H(t,t')

(D-33)



For Range 4, 12 < t < 12

G(tt') = H(tt') + K(t) {K 2

- K4e
b1 t

b t b1 (t-1)

sin (7T)

COS ( ) + K e b(t 1 ) sin(
T (t-1)

+ I2 (t-1) + K(t) K5 e 1 6eb (t-
1 )

sin( ff(t1) )

COS( T ( (t-1))co(12 I+ 1 3 (t-1)

For Range 5, 12 + 1 < t < S

G (t t') = H(tt') + K(t) K2 (e

- KCb t )

b1 (t-1)
e

Kgb4 t sin (1-)

+ b I(t-1)
12

+ K4b (t-1)
+ 4e

sin(7r (t-1))
12

+ I2 (tl-) + 13 (12)
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+ 1

)

+ b (t- 1)

+ K5e
b (t-1)

(D-34)

)

I

K3e b 1.tCOS ( )

(D- 35)



For Range

+ K(t) K 2 (e

bIS
7s (Cos ( t)

COS - )co (12 )
+ K3e b(t-)

- K4e
b S

bIS b (t-1)

sin ( n)12)

+ K4e sin( 12)J

+ I2 (t-l) + 13(12)

Finally., for Range 7, S + 1 < t

+ I 2 (S) + 13(12)

Now with the appropriate form of G(t,t'), Equat ion

D-2 can be used to find the deterministic- component,

at any time of day.

270

6, S < t < S + 1

K.3

(D-36)

< 23

(D-37)

' (t)

G (t t'I) = H(t~t ')

G(tit') = H(tjt')
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APPENDIX E

CSCS PROGRAM LISTING



- 278 -

C
C CA, D INPUT SUMNAkY Fo'
C

C
C CAR ) COLUMN FokA T
C ---- ------ ------

1 1-80C

C
C
C
C
C

2-4 1-80

C 5 1-10
C 11-20
C
C
C 21-30
C

C 31-40
C
C
C 6 1-10
c 11-12
C -14-15
C 17-20
C 22-23
C 25-26
C 28-31
C 33-35
C 37-68
C 40-41
C 43-45
C 47-48
C 50-51
C 53-62
C
C
C 7 1-80
C
C 8 1-10
C 11-20
C 21-30
C 31-40
C

C 41-50
C 51-60
C
C
C
C
C

-- U"IFik INF :-,ATION CA -- 't D ONLY TO
CARD GROUPS IN TmE 'J Ce, (CR FILL)

1 SAb THRFE TI TLE CAFAS. THE
'IL L L 3E PR I ! T E '.U T AT
THE INPUT PATA S'JMA Y.

lox SPfACE FOR C
A10 OUTPUT FILE

OUTPUT 0ATA
F OR '1 XXYXX

Alf OUTPUT FILE
UEPRESSIT&>%.

A10 OUTPUT FILE
XXXXXX.YYY

1 0
12

12
14

F2 0
2 0F3.0

F? 3 0
F2.0

A 2 0
F31 .1

CARH LA3EL

INITIAL : 3
I!,I T I PL "A Y
I'JTIAL YEA
ENDING MONT
FNDi\G DAY
ENDI\& YEAR
LATTTUOE
LAT I TUDE
LATIT0E
LONSITUDF
L 0 N C I TL) i -
LONG I TULE
TIME ?oNE (

.1F A AT T

T xT Ct. THESi CA
T HE -* G I N,, I S OF

ARD LAFEL. ,')T EAD C Y C -<.
'JA 'E F 0 IrPUT DATA SU" 'ARY
ANALY I . FILE NA"V EAS TH2

X.YYf

XXXXXX.YYY
NA1E 1 FF 0 JC ! r F0 fAT 1

iH - '

- YYYY
H -

Li * ,

Y YYYy

m I 4, TE

I j T

FEA', T FC
IF4ACIFICt)

tCL 1 .- AL't
LEIF JU.T IFY.

-- USER iNF'r~'iAT] 0j CARDB

loX CARE LAfEEL
F10.0 MEAN FAIaE' ATHFR CL 'D CrVL
P10.0 ST. DEV. OF FA ItKEAT- EP CL'O) CCvE"
F10.0 LAG-1 C- R:LATFICr ' :F FAIL E AT-iE

CLOUD CGVFz.
F10.0 CLOUD COVER TRANSITIlN :; CAY CrLFFICIE"i
F10.0 ATY.cP HE'IC TU- C1 ITY F AC10'

9 1-10 10x CARD LABEL
11-12 12 NUYSLF F fAT RWLATHL : CLOUD COVEF fil C TO'A'

E LE ' EN T S
21-30 F10.0 L3oWER H3UND OF FAIR;-AT hLk CLOUL COVE ,

THIE , C C: I D L

L;FSC"<IPTIcM,

*'-10NT AI,%*, 0!
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31-40

10 1-19
11-70

11 1-10
11-70

C 12 1-30
C

13 1-10
11-20
21-30
31-40

C 14 1-A0
C.

1i 1-10
11-58

16 1-10
11-20

21-30

31-40

17 1-80

18 1-10
11-20
21-30
31-40
41-b0

1C 1-10
11-20
21-30

F10.0
HIST OGR AM
ulPPR OUND OF FA I ATH CLOt 1, COVEF7
mISTOGR AM

1OX CAR) LAhFL
EF10.0 HISTOGRA" ELEMETC. 1sr 1.3 l Y CAR<; AN

NEEDED. O' EM3E' TaiA IL F I'T 1 C SAC.
UN EACH CA"\L AF< R ES.RE FC6 ThE CAJI L> L

10 x
6F 10.0

CARD LA:EL
RIGHT HAt'r) COr\DI?.ATL r
ELEME.,T FRO:' LU.EST TC H

EACP HI - T'' ' A
IGHL 'T.

-- USER 1NFOR' ATION CA-

10 x
F1O.0
F1O.0
F10.0

CARN.

'EAN

LA B FL
TI E SETWAE E-: ST F F
STORM DUEATIO
STORM -jEPTH

-- USER I'jFOR2 AT IO' CA7F

1ox CArt L LABEL
4E12. rEGRES COEFFICI>T. FO TH CE IH

f'NSTIC C0 PUNE7) ' 1 i . T -f - 1 T U
'A(DE L ( 3 - "7 ) . US ,-L- T C A - .

loX CARD LABEL
F 10. TEM EF ATU1RF b3IA7 F'D TiC T:CHI.'1IC

CCMPQ'NENT C'F T EMPF A IU&'
F1O.0 ST. DLVIA T ION F OP TH :T r CH A T I C C,)

OF TEMPERATURE
F10.0 LAG-1 SERIAL COQOLLATIGO C')FFILIE"

THE STOCHACTIC CTMPG'.E\ O )F TE A
T rr
10 E

-- USFR INFCiRiATIONq CA' D

10 x
F10.0
F10.0
FIU.0
F1.0

10 x
F 10.0
F 0.0

31-40 F1O.0
41-50 F 1.0

20 1-10
11-20
21-30

10 x
F1.0
F10.0

CARD LAaFL
M1NI"MU" HOUL Y W 5 F tL E D
TIMF OF HZII U liOULY IND

TAX1UFl HOURLY WOURL EP r2
TJIF- iF f-AXIIWUM ht URLY WN2

CA~f LABLL
I I 1MdM H01)i:LY c. FVI
T IAF CF "11NIMUM HOU-LY
WI) SPEE.D
AAX IMUM HOJRLY ST. 'c VI

TIl.E OF oAXIMU" 1 HOJJLY
,!IN D SPEED

5, v E F D

SPFEr

ATI0 CF - '
.T. F V I A T 10 iF

A I)' OF IN ' .P f

LT. tLVIATI' OF

CARD LA'BEL
W1Th SPEED SKEW CjEFF ICIE-T

LAG-1 SER AL CORRVLFLAT IC" COF FFICIE1T
oIN1 SPEEL

C

C
C
C

C

C

C
C
C
C
C
C

C
C
C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C
C
C
C
C
C
C
C
C
C
C
C

DO itT



2 0

21 1-80

22 1-10
11-20
21-30
31-40

23 1-10
11-12

21-30
31-40

-- U5Fk INF u J'vA T IOJ

10X
F 1 .0 1,
F10.0
F1 .0 C

CARD LAFEL
M'EAN, THANSFOR.MED WI:ND UUEC TIn.
ST. DEVIATIO' OF TRA'%SFC 'iE I DI REC
L AG-i I E "I AL CO: L A T ION COEFFICIE T OF
TPA.SF 0RWE d I Nj DI FCT I N

F10.0 CARD LAriL
12 NUM ER ')F EL E1L'T'" I T F F E E

DIrECTIO4 HISTOG,,AM
F10.0 LeWLR BOUID OF HITCGJA (USUALLY
F10.u UPPER U CF HIST SRA (J'ALLY

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

25 1-10
11-70

C 2 1-80
C

27 1- 5

I K

W'IN

0.*U0 )
1 80.*)

AS ANY CA\' A

loX CARD LAHEL
6F10.6 RIGHT HA',D CO%)RDI'ATF ,F EAC'

LLEEN'T, L0wE T T-i Hl"HE >T
H I S T 0' A

-- USER IU'FCRsATIO1 CArF)

A' DEWPOINT MODEL T Y ri F
C " RF7 RS' REGRES .C 1 , L
C 'INDEr'= IND)PENDEN T "GDEL

C
C *** FJR IVDEPFND .4T DFWPOINT GENER ATI3X )LY

28 1-10
11-20
21-30
31-40

10X
Fl1.0
F 1.0
F10.0

CARD LA'EL
MEAN DE.4POINT TE2EP(TLi:E
ST. DEVIATIOV OF DFFOlNT TfEEf-ATU'F
LAG-l SERIAL COREELATI0'J C(FFICIEr OF
DEWPOINT TE'APCRATURE

C *** FOR REGRLSSION DLWPOINT GNERATIO'\ O\LY
C

29 1-10
11-58

60 1-10
11-20
21-30

31-40

lox CARD LABEL
4E12. 5 REGWESSICN COEFFIC

VINISTIC CO:MPONET

10X CAD) LAiEL

IEXTl FO THE FETF'-
K)F DE W'POINITS (DO-.2')

F10.0 BIAS OF STOCHASTIC COrMPoUENT OF rEW<INT
F10.0 ST. r)EVIATl1YN OF FT"ChATC Ct T I ( C r

D E 1- P 0 1 7'- T S
F10.0 LAG-1 SELIAL CO PELA TI CSEFFICI Tr F

STOCHASTIC COOF0FNT 0lF DEPOINTi
C
C

C

24 1-10 10X CARD LA,3iL
11-70 6F10.0 HISTOGRA'. ELEME:.T.. 1$F

NEEDED

C

C
C
C
C
C
C
C

C
C
C
C
C
C
C
C
C
C
C
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C
C... ........................................

C
PROGRA% CSCS

C
C
C CONSTRAILD STOCHASTIC CLIATE 31MULATICT'

LAVI! C. CUriTIS
vORTHEAST RIVER FOPECAST CENTE
705 3LGOCFIELD AVEhUE
FLOO'FI7L0, CT 06002-2478

TELEPHONE: (203) 244-2520

THE CSCS "ODEL GF'ERATES H 1UPLY VAL.YS DF PRFiI TATiD., CLu'
COVER, SHCRT4AVE FADIATIO%, LO'iG.AVE RAD IATI'v,, TLNERA L"
DEWPuIT, I4D SPEED AND -. IND D I ECI ION. THE ' .GRA CCU I
FORTkAN AND HAS -EEi4 DEVELOPED 0'. A DEC-1f TI :F -HA"L CO JTC-
SYSTE . STANDARD FORTRAN CDDE wAr' USED AS M'UCh A> P'SclLE Ti
AVOID TOO .AY PRO[LE>S wHEN TRAoSFt. 'R .C TiI C FF TO CTHE'
MACHINES. HaWEVER SUAE tIACHINE DEPFDEAT C5', I IEVITArL%
SUCH AS:

-- 'OPEN' STATE"ENTS FOF
-- C CHARACTER w'ORPS FOr'
-- I".PUT/OUTPUT UNIT NU
- RANDOM NUM3Lr GENERAl

DATA FILE ACC .S
ALPHAUE:'[ IC 'ATA / JLAI 1

9 C SEE SU T I IE FAitJ)

C
C
C

C
C
C
C
C

C
C
C
C

C
C
C
C
C
C
C

C
C

C

GU T I,;
C U IT7. 7

FrT U

C THE PROGRAM IS CURRENTLY SET UP FOR GENERATiN3 ANY N' '); r S7FT'
C OF DATA FOR A PARTICULA' M ONTIH. IN OTHEi .'07.. "o JtjLYL, V
C 15 JANUAP<YS ETC. CA"; HE GEr.ERATE>. IF THiE- I^ JT PAAM li 7;
C iEPRESENT OTHER PFRIUODS .UCH AS EIMONTHLY. St AK.OALLY, LIC., THE

C DATE C.OUNTERS MUST UE ADJUSTED ACCO'DINGLY ( FE D7HOUT fIE Ut TE )
C JULIAN DATES ARE USED Ir!TEF'NALLY. THE PF-GHA" HAc "Er, FLLLY
C TESTED FOR JANUARY AvD JULY ONLY.
C
C TO ALL UDERS: GOOD LUCK!!!
C

DIMENSION TITLE(lb9, ),
DIMtCNS10*N
0I MENS ION
D IME N SI 0N
D I MEN S 1 ON
DImE'S ION
D I M EN S I ON
D I VN F N S I ON
DI MENSN 1 "1
D I M E W Si N
DIMES ION

bCOEF() , AC(EF( )
CCPUF 3 ), CCO ('U), TTPF '3) 
DR PFF C30 ) ,i3CFi) , 3 )
DWPUFC3), D.fRD(7)
ZERO(1U), P6j3(24) ,Sp D )

CUVhAT(C),5), COR*AAT( ,

TCOATA(24) W DA T 4 4), CL A A (24)
TCTITL ,) ,DWTII L( ) ,CLTITL()
TCRH(24 ) ,DPRIOC24 ) ,CLRH( 4)
TCHIST (ho) , PHI T ( 0) , CLHI S T CI)

TT I'D( )

ii AT A 4)
,J'.TITL(5)

, ..3HI ST ( 40)

Sr) ATAC 4 )
JTITL( )

, W>H1 ST C)

DATA INPUT AND INTERNAL COOPUTAT IONS HAVE E CA R IED
ENGLISH Ut,ITS. DATA OUTPUT CA,. hE I ElGLISH SP ET_ I
THE METRIC CONVERSION SLCTION IN THE MAIN PROiR---) THL
ROUTINE 1S SCALED FO, METRIC OUTPUT.



DI MENS-ION
D I ME 'SION

DI mEj S ioN
0 I MENS ION
DI MENSION

IMFSION
DI ME'iSI.0%
DI M I F s I 6N

AS W S(24 ) ACLUS( 24) , AL ; S(I4)
AWSPS( C24),AWD)RS(24),ASWR (24)
ATMP (24),A A (4JvA*SPB ( 24
AS kSa(24) ,ACLD (24 ),AL4RS 3(
ASWSD( 24) ,ACLDSD (24), AR SLb C
A WSPS G(2'4) A WDRSQ(24)
ASPS)(?4) ,AxY SD(24)
1,EP(24 ) P TEX T( 161

DOUBLE PRECISION
DOUr3LE PRECISION

WRITEF, BUGoFF, OUTPUT.
DAFILE, RADTYP, PNFILE

A TCLF C24) , A L E*S ( 24)
A C LD 4 ( ALIWRb(24)

4),AT 'S 4 4 D E J ('4)

4) ,A T PsJ 2 4),At- E D '4)

TZOCE, TZ(4)i DFbUG(M)

REAL KBAR, L1, MEAN'
REAL 10, 11, 12, I3, 14, 15, 16, 17
REAL LAT(3), L )\(3)

INTEGER TCHIST,
INTEGER TCHDIM,

PPHIST, CLHIST,
D)DHD1',,' CLHIII '.-

EgUIVALENCE 2ERO 1),IOZE02),11),c7E rC?),I2),(7E.C4),J5',
E,) )Z)

TI TLE
WH ITEF, 0! TPUT , L'JGJFF

IY ,, I'0 , IjAY, LYR ,L" I 4L
LA T, L uN jG, TZOE

CC 6 AR ,CC S ,CC CHO , ETA, 
E%
NJ'CCCCPDFtCC(RFvCCAC
T ' A2,;' T4HAE., DbA,'
TDDIAS, TDSCiEV* T:JRH.J,
AI'TT, TT-DF, TTVDJ, TT

SPLSAR1,SPFAR2,5PuiTl,SPE:
SPSJTI ,SPSDT2, SPSK(EW, SF
C;.< RAR , UR FE V ,DR HO
NUIt9P ,DRPDF ,D 0Rr 0,DRA ,D
TYPE, ACOEF
D~?AR,SEV,WS'W,WP

D0HIAS, DOqELV, DAURHO
PHITHETA$,THETALEDET
DELTA, DTSL, SFSS
JULDAT, JULEEL, JDE'INv,

*JSTART, JSTUP, JREND,
I\, IS, lbI T\v I ') I

I SEED
CCLAG71
N E A f:
AAD T Y P
ST ORM1

f.Ci-, F 

H .,t 1.C 9 F, T ET

JA, LTT ArC X

H Y

, Y A

C
C

C
C

C

C

C

COIMONC 0 M1 *- 0N

CjMM'ON

CO 'N 0 %
COM?ON
CO 0 N
C Q 0~ O 1)
CO0 MA '0 NCOMMiON
CO MMON

CO M MO N

CO f1 MOIN

C 0MMO 0I

C 0 IA. 0

CO TI1ON

CO MMO N

C0M '! Q N

CO M o N
COMTIiON
COMrIMO N

CO ON

CO TMON
CO M 'O N

CO M h ON

/TI TLES/
/FI LLS/
/1) A T F S
/LOCATE/
/ D E U G /
/CL OUDS/
/A Ti)OS/

/PDFCLD/
/R AI NS/
/TEMPAR/
/P0FTE/
/Wi P/ b p

/W I N 0 I F
/P DFI/ R
/DEWONE/
/DEWTWO/
/DEWDVS/
/O 0 IT/
/SUN/
/J D ATE SI

/I J/
/R A N I /
/ S E E D/.
/CLDb)V/
/ SE A S/
/RTYPE/
/ S T / " M SI

- 2 2 -
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CO M MO N
COMMON
C 3MN 0
C 3M, ON

DAT A
DATA
DATA
DATA
DATA
DATA
DATA

/INTEG/ 10,11, 12,I3,I.,I6v17
/L INES/ NL IC S
/VtAPORP/ VP
/PUfCH 1 / PT E X T, P.F IL , IPU'CH

TZ/8HEASTERN ,SHCENTRAL
TCTITL /.IHHGJHL, 3 riY TEM,

DVTITL /' H 6:-,iL, THY OFW,
CLTITL /THHOSUL, H Y CLO,
WSTITL /THHOURL, THY WIN,
. DTITL /5HHOJUL, SHY 4IN,
O; /?HON/, OFF /6HUFF /

C
C
C OUTPUT VARIABLE DEFINITIO4
C

VARIABLE

CLD

DIME NSiON

LY/HR
LY /R
DEGR ~EES

C ***** F EGLISH UJITS

C
C RAIN It/HR
C wSP MJ/HiA
C TFMP. DEG F
C DFd DEG F
C
C ***** T P IC UNIT S
C
C R AI N'. MM/HR
C 14 SPM H/S

C TEMPM DLG C
C DEWM DEC C

, JOU;.T
ER A T,

5JH PO I;jT,
5HU,3 CD,
5H,, SPE,

5H1) DIR,

Alr ,

': T

5 ECT

DLSC7 IF'TION
-----------
SHORTh:AVE RA! IAT13.
LONGiA VE ADI A T I
JIND [)I,%:CTIO'.
CLOUD COVE2

***** *

PFIECIPITAIO
WIND SPEED
TF! PFRATUHF
DEWP-)I ,T

***** *

PRECIPI T A 1,']
WIND SPEED
TEMPL R A TUR E
DEWPJI 1,T

C
C
C
C CALL INTE-RACTIVE INPUT SUEROUTINE Tr GET U-\IT %U"'ER AND ,
C DATA FILE INFORMATIGN NEEDED TO BEGIN OPERATION
C

CALL INTER (DAFILLI!SqDPLCTIPL)
CALL START (ISEED)

C

C
C-
C
C
C ESTABLISH THE INPUT DATi FILE UNIT !UMB3Ei' A% OpF<' FILE Fk'l -VAD
C

IN = 21
OPEN ,

C

C
HAC1F IC

, r.2

/

/

/

/

9
9

I
5H
SHN

C
C
C
C
C
C
C



IF (IPUNCH .LE. 0) Gl TO 100
OPEN (UNIT=IPUNCHOEVICE='DSK

WRITE (IPUNCH,90) FTEXT
50 F0'RMAT (1Ab)

100 CONTINJE

IU = 6

',ACCESS='SEQ0UTPFILEFAFILE)

C

OPEN (UNITZIUDEVICE='DSKWACCESS'SECLUT' .FJLE=OUTPUT)
C
C

C
C
C
C READ INPUT DATA FILE
C

CALL READF (IN-,IS,1)

C

Cc

CC C0'4VERT L ATITUDE AND LO13 ITUbE DEGREFS:M '-11UT. >! CO'i) TC
C THiiClt DEC IMv.AL E2 UIVALENTS.

PHI = D-S(LAT)
THETAL = D'S(LOG)

C
C CHECK IF VALID TIME ZONE HAS BEEJ RCEUESTErD

IF (TZONE.NE.TZ(1)) GO TO 200
THETAS = 75.0*2.0*,.141.59/35O0.0
GO TO 300

200 IF (TZONE.NE.TZ(2)) Go TO 210
THETAS' = 90.0*2.0*3.141 , :/360.
GO TO 300

210 IF (TZONE.NE.TZ(3)) GO TO 220
THETAS =105.0*2.0*3.141-0/60.0
GO TO 3C0

220 IF (TZON;E.NE.TZ(4)) GO TO 230
THETAS = 120.0*2.0*3.1,415:/Z6G.0
GO TO 300

230 WRITE (IS,240)
240 FORMAT (IH1,'TIME ZONE RE-UESTFD IS ')OT VALIJ'///)

WRITE (IS,250) TZONE,(TZ(I),I=1,4)
250 FORMAT (1H0,T10'REQUESTED TIvE ZOlNEF ,T36,bH****,

C

C

C

C

C

C

c

C

- ?s4 -
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1A8,brl*****/TtO, 'AV AILABLE TIME Z"NES' , TH*****,
2A8,5H*****/T36, bH* **,A8,5H**** /T36 5*****,
3A8,5H*****/T36,5H* **.*,A8,i*****)

C
c
C
C

300 CONTINUF
C
C
C INITIALIZE DATE COUNTERS
C

CALL DATEl
C
C INITIALIZE RAINFALL 'IODEL PAAIETELRS
C

CALL RAINST (T-,ThDJSINCEST3RrJHRE&S,JiI!WX1)
C
C

C

C
C

C VAPIARLEJ P.ITIALIZATION SECT1ON

SSTATI.STICAL VArIABLES
C

!DC = 0
NDATA =0
NRDATA =0
TCSUM 0.C
DySUJM =0.0
CLSUM = 0.0
WSSU:M = 0.0
WDSUM = 0.0
TRSU4 0.0
TBSUM = 0.0
DHSUA 0.0
DRY = 0.0
STOR'iS = .0
TCSVSQ 3 .0

DWS4SQ 0.0
CLS-SQ = 0.0
WSSMSu 0.0
WDSVSQ = 0.0
TTSUM3 = 0.0
DWSUM3 0.0
CLSUM3 0.0
$Suv3 0.0
WfJ$UM3 0.0

C
flO 375 IA = 12

TCRHOC1A) =0.0



flDRHO (IA)
CLRHO(IA)
WSRHO(IA)

. 'CR10 I A)
AS4N S IA)

AS4RSQ(IA)
ACL DS (I A)
ACLDSO( IA)
A L S.; ( I A)
AL RS,(IA)
ATIPS( IA)

AUEwS( I A)

A DEwS. C(I A)
Ao SP$(IA)
ASPS,, (IA)
A w!9RS( IA)
Al JR ' J( I A)

375 CONTINUE

H IST OGR AM

TCHDI' =I
DPHDI1
CLHD I
WSHDI' =

SHD =D
TC T 
iPDT
CLDT
WSDT 
WDDT =
TCBASE =
DPBASE =
CLBASE =
WSBASE =
sU SW =
SUMLW

.D3ASE =
00 270 I

270 TCHIST(I
DO 271 I

271 )PHIST(I
DO 272

272 CLHIST

DO 273
273 WSHIST

DO 27-4
274 WDHIST

3.0
0.0
0.3
0.0
0.0
0.0

0.
0 GC.1
0 .
0.0
0.0

0.0
0 .C
0.00.0

o .n
0.0

VARIA5LFj

50
50
11
40

2.C
2.0
0.10
1.0
20.0
-300

-. 05
00.0
00.0
00.0
00.3
= 1, TCHDIM

S1,UPHVDIM

) = 0
I = 1,CLHDI
I) = 0

I) =

I) =

, WSti)I-
0
,WDHDI'

0

MISCELLANEOUS VARIABLES

TRACE = OFF
NLINES 0
IDY = 1

- 2b6 -

C
C
c

C
C
C
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MLAG =C14
JHOUR 0
NSEAS = 1
MAX =4

RADTYP = 'CLOUDYSKY'

EP = -1.00
BETA = 3A,

ET 0.00
W = 2.00

C

IF CTR ACE .EQ. ON) WRITE (IS,*000)
9000 FORMAT (t Pit)

C

C
C

C SET UP VARIASLE '4EAN AND STA"DARD DEVIATI' AcFAYS FOR

C WID SPELD.
C

ST z 0.0
C

DO 330 IV = 1,24
C

CALL VARYX A

CALL VARYX (SP^>hV1,SPSDV2,SPST1 TST f IV))
ST = ST + 1.0

C
330 CONTIJUL

C
C

CC
C
C
C BEGIN CYCLES FOR DATA GE ERATIOJ
C
C THE '400* LOOP REPRESENTS THE 7AY CYCLF
C

400 CONTINUE
C
C

C UPDATE ORBIT PARAMETERS

C
CALL DECL (JULRELDELTASRSS)

C
DTSL = EP*(THETAS-THETAL)*3.81972

C
C

C

C STARTING VALUE SELECTION1
C
C
C FOR THE F IRST TI t-E PE1RI GD OF EACH MON'TH,
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C GET INITIAL VALUE Fo0 THE VAVICUS NOISE TFiMl: LY SFLECT I'G A
C RANDOM VARIATE FROM THE APPROPRIATE PDF.
C

IF (IDAY .GT. 1) G,] TO 31
IF (JHUR.ZT. 0) 30 TO 3j1C

C
C GET CLOJD COVt~R oTAfTING VALUE

CCLAG1 = ARVA (CCP F,.UNCCCCACC ,CuR& ',:;EA1)
C

CALL NORMAL (V,)
TTLAG1 = TDStEV*VN

C
C GET WIJD SPEED STARTING VALUE
C

CALL MARGAM (SU-TTTTPi FTTORDTTATT3,S'PiAP ,SPSDFV,O.O,
$ SPO KE A,0.0,SPLAG01, W4N)I SE

C
C GET WIN!D DIRECTION STARTING VALUE
C

DRLAGI = ARVA F

C
C GET DEWPOINT STARTI . VALUE
C

IF (TYPE .EQ. *EWS) GO TO 350
CALL MARGAM (4U*TTTTPDFTTORDT TATTB,iJ'-A 1,3- PV C.0,

I DWSEW,.0,DLAG,[;OISE)
GO T) 355

350 CONTIUEL
C

CALL %ORMAL (DWX)
DWLAG1 = 0.85*DWBAR + DWX*DWSEV

CALL NORMAL(DWX)
DWiDLAG = DWBIAS + DWX*D4DEV

C
355 CONTINUE

C
C.
C COMPUTE INITIAL TL'PERATURE ANG CONSTRAIT! PEFPOIT IF EECESSApY
C

TPR = TEMBAR + TTLAG1
IF (D.LAGI .GE. TPR) DWLAG'1 = 0.9*TPR

C
IF (TRACE .EQ. ON) WRITE (ISq9001)

9001 FUFW'AT (" M2')
C

310 CONTINUE
C
C

C
C ESTAHLISH THE LAG-I TEMPERATURES FOF THE TEMi'ERATURE AND LONG
C WlAVE RADIATI&S MODELS.
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C
TEMPi TPP
TMPLAG TPR

C
COMPUTE TODAY'S COEFF CIE4TS FCR T!E TE 0 ATORE O3L.

C
CALL TEMPK (DELTA, PHI, 6COLF, T'-,

C CO, Cl C?, C3, C4. Cc, C';)
r

C IvITIALIZE THE I'.TEG: ATI0% VARIAbLES FI THE TF: F RATU L .
C (SEE THE ElUIVALEcaCE 2TATEMtNT AT T-iL hE .1'" G )F IH F3C )
C

DO 320 K = 1,1J
ZERO(K) = 0.00

320 CONTINUE
c
C
C
CC
C

C THE '500' LOOP KEPR[CSFNTS THE hiOJ, 5Y HOUtJ DATA c F ATIU
C

STI = 0.0
C
C

00 500 1 = U,23
C

IF (TRACE .L1. O%) IR I (1'9002)
9002 FORI. AT (9 M3')

c
JP I + 1
ST2 FLOAT(I)

C
C
C
C
C RAVJFALL SECTION
C.

CALL PCPN C TB,TR,r STORW,JHOJR,JHR 3OS,JIIN XT, Jz ,1GC AIJ)
.C

TSIwCE FLOAT (J.SINCE)
C

IF (TR ACE .EQ. ON) WITF (IS,9V03)
9003 FORtIAT (s 1'40)

C
C
C
C
C SHORTWAVE RADIATION 'ECTION
C

CALL cOLRAD (JULFEL, T1,ST2,TSINCETfNLAiCCACCPCC PF,'LUCC,
$ CCORDS.RCLD dETAGAM.CCbA-< CC D.CC-H0,'EA 0N)

C
IF (TRACE .E. ON) WRITF (I',*qCC4)
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9t00It FORAT ( 5 )
C

C

C WIND SPEED SECTION
C

SPHAR SPB(JP)
SPSDEV SPSO(JP)

C
CALL ARGAi (NUfMTT TP:F, TTORb,TTa, TAT TB, S .AR . SFSDEV, SPF HO I

$ SPSKFW,SPLAG1,W.5 P,.N3ISE)
C

IF (4SP .LT. 0.0) wSP = 0.0
SPLAG1 = 4SP

C
IF (TRACE .EQ. ON) wRITE (IS,90b)

9 v35 F0R AT M6')
C

C
C -4IND DIRECTION SECTICN
C

CALL MARKOV U

$ fRLAG1,1,' DI:)
50t C0NTI'4UE

C
510 IF (WDIR .GT.

IF (WDIR .G;T.

520 IF (DIR .LT.
IF (WDIR .LT.
DRLAGI = WDIR

1 80.0)
1 k0. 0)

0.0)
0.0)

D 1P = 360.0 -
GC TC 510
GDIR =O A( DIR)
GO TO 520

IF (TRACE .EQ. ON) WRITE (IS,900F)
9006 FORMAT (f 7')

C

C
C TEMPERATURE SECTION
C
C COflPUTF THE SHORTWAVE RADIATIOIN ATTFNUATIC iVE T) CLOUL C0V'.
C

KBAR = 1.00 - 0.65*CLD*CLC
C
C COMPUTE HOURLY TEPEr A TUPES
C
C

$

$

CALL TLMPS% (ST2, UTFLCR,S5 ,OCOEF,
C0,C1,C2,C3,C'4 ,C5,CSCLD ,fKfiR.LR ,CTO,
6W5P9,'IR,T'-PLA",THiTT)

C
C
C NOTE THAT TEMP1 ANU TAPLAS AE DIFFE-ENT VA-AI[LE C! T LAC
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OES NOT HAVE THE DEVIA TIONS TERM ADnED I A" I JSEr' LY
iNq THE 'REGRESS I(N' PORT IO:'j OF THF TErPErA7UPC- GEERATIO

C>-PONFT. TE"'P1 IS USE) AHFl Tr-E ACTUAL LA 7-1 T E ATLt'E
is qFEQUIRED.

C
TMPLAG THT
TPR T;-"PLAG

C
C ADD THE RADO) C:'P0,NENT TO THE TE'rER ATU- JUST CO -LT E .
C

CALL NOrMAL (ARV)
C

TDEV = 7D31AS + TDEHD*(TTLACl - TUBIAS) +
$ ARV*TDDEV*SQT(1.00 - TDRHO*TDfrHO)

C
C
C

TTLAG1 = TDEV
TEMP = THT + TOEV

C
C
C

IF (TRACE
9007 FORkIAT (9

C

.El. OX) WPITC (1, 007)
H 8')

C------------------------------------------------

DE.POINT TEMPLRATURE SECTION

IF (TYPE .EQ.
IF (TYPE .EQ.

'PGRS') GO 10 60
'NJDEP9) GO TO r70

#RITE (IS,80) TYPE
80 FORMAT (//1X, 'INVALID

STOP

C * **** * **A* ***** * * ** ******* ***

C * REG<rSSI O" DEVE WF \lTS * **

C ***** * ** ** * * A A* * * *****

C
C

560 CONTINUE
C

CALL DEWSIM ( ACOFF ,ED'>LAG1,TEMf ,CLD, MW I-* ," FE.R)
C
C ADD DEVIATIONS TO GFERATED DEW POINTS
C

CALL NORMAL(ARV)
DEWDEV = D413IAS + IWDRHO*(tEWDLAG - DW':IAS) +

$ AP V*Dd[;F V*SGRT( 1. 00 - DiDRHO* 0 Hi)
C

C
C

C7

C
C
C

C

C

C

C

DE POINT !,;C EL L P . .. *
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D'DL = DWDLAG
DWCLAG = DEWDEV
DEW = DLWR + DLWDEV

IF (DEWj .CE.
D.IL = DLAG1
DwLAG1 = CEwR

TEUP) UEW .i99 ATE P
+ DflL

GC TO 580

570 CONTINUE

CALL 'NO %MAL (C-X)
DWL = DWLAG1
DEW = DwBAR + DWR{o*(D
DLA-1 = DE

WLAG1-DAR) + X V*PT(1.-

IF (DE4 .&E. TE"P) DE1- = 0, 9*TEI P

S CONTINUE

IF (TKACE *[.E ON) WRITE tIS,90 )
9;Co FONNAT C' ')

C

C
C

C
C LC-N'GIWAVE i3ADIATIONj SECTION
C

CALL LOtqGWV (TEMPltTEMPtDEWv,L-tCCLAG1 oCLUL L)

TEAP1 = TEmP
C
C

IF (TRACE .EQ. ON) WR ITE (IS,'008)
9008 FORMAT (0 r109)

C

C

C METRIC CDV[R SION SECTION
C

T Em P Ml
DEWM
RPM
RA 1N

(TEMP - 32.0k)*(5.&0L /'.C0 )
(D E - 32.00)*(5.00/9.OC)
.USP* *.4470

R A I N * 2 1 4
C
C STORE DATA IN THE HOURLY ARRAYS FOR AUTOCDRRFLAT ION ANALYSIS
C

C

C

C

C
C

C
C
C

C

********* ****** *** * * ** *
** IX8EPENLDE2T 'E.PFi'TS
** * ***A** *** ****** **A* * ****

C

C

**

**
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CLDATA(JP) = CLD
WSDATA(JP) = A.SP1'
WDDATA(JP) = .DIP
DWDATA(JP) = 'iEM
TCDATA(JP) = TF.'PM

C

C
C

C COMPUTE DJFPOINT DEP LSSICN AND OUTPJT FOi LATE A ALY L
C

DEP(JP) = (TEYPM - DE;M)*WSPM
C

IF ( JP .EQ. 24 ) :RITE (IU,582) DEP
5P2 FORMAT (1;F5.1/8F5.1)

C
C

C
C
C OUTPUT DATA FOR LAIL --U!'FACL 'M0DEL
c

IF( IPUrICH.GT.C )CALL PUN1CH (lPU CH, RAl%-vPv % P -l T -i")
C

C

GO TO 506
C
C DEBUG STATEMENT
C

iR I TE ( I S v6 00 JHOJ' JHNE X T I v RA I N'- CLD n 9 1 a '.'v 4LoI .IE L~ ,L
600 FORMAT (1H ,Iu,4X,I6q3XI2,3XF5.2,3XF4.2,2XF4.1,2XF4.J,

S 2XF5.0,2XF5.3i2XF5.1,2XF4.0)
506 CONTINUE

C

IH.= I
C
C

C
C DATA PLOT SECTIOIN
C

IF (DPLOT .E. 'Y') 30 TO 507
C

PLOTL = -20.
IF (IMC.GE.4 .AND IlO.LE.10) PLOTL 0.
PLOTU = PLOTL + 40.

C
CALL PLOT (IMD,1CYIHvF0,TEPi,DEWM PS CLA CL ) ,RAAIN PM, 9 I,

$ STORM, I PLPLOTLPLOTU)
r



IF ( TR ACE .[Q. oN;) Ww I IE (IS,.)llU)
9-10 FORMAT 0 Milt)

C

C
507 CCNTINUF

C

IF(I .E'. 23) ICY = IY + 1
IF (IDY .GT.31) I)Y = 1

C
JHOUR = JHOUR * I
STI = ST2
NDATA = NDATA + 1

C
C UPDATE THE STATISTICAL ANALYSIS
C

CALL MSTAT E
C

IF (TRACE .EQ. ON) WRITE (IS,9V20)
?020 FORkAT (' I1A')

C
C

C
C UPDATE AUTOCORiELATION A'JALY?,IS
C

C THE FIRST 24 HOURS OF THE MOF.TH A5E NEEDED T7 FILL UF THE DATA
C ARRAYS TO BEGIN THE AUTOCORRELATI'DN AJALYSIS.
C

IF (JHOUR .LE. 24) GO TO 550
NRDATA = NRDATA + 1

CALL RAWLAG(MLAGJPTCDATAqTCSUMTCSMSOTC'U 3,' TCUTC ,TCI< T ,
$ TCPHG)

CALL RAWL AG(ML AGJPUWDATA ,DWSUMDW SAJv:SQ q.,DPcI,U:F VwP , RHAI A -
$ DPRHO)

CALL RA'LAG(MLAG,JP,CLDATA,CLSUM,CLSMS GCLU% ,CLB9,CLVCLK i .UATA.
$ CLRHO)

CALL R AWLAG(ML AGJPWSDAT AvWSSU[ A;SS"' l t SUM3,W ,"WSV , K R !kT A
$ WSRHO)

C ALL R A WL AG ( MLAG 9 JP 9WDDA TA t, WDSUM 9 '.D S"S(4 W"" l vU --WDZ- 9 WD[V v WDK , . EAT A ,
$ WDRHO)

C
IF (TRACE .EQ. ON) WRITE (1S,9021)

9C21 FORAAT (t 11B)
C

550 CONTINUE
C

C
C DIUPNAL CURVE SECTION
C
C

- 294 -
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COMPUTE MEAN AND STADARD DEvIATIO S FOP L ACH h "Ut F ThE DAY.
SKEWS ARE -OT COMPUTED.

IF ( I .EQ. 0 ) N DC . C + 1

CALL STAT
C
CALL STAT
C
CALL STATi

$
CALL STAT(

CALL ST AT

CALL STAT

CALL ST A T
$

C
IF (TRACE

9022 FORMAT (9

S4R, AS-irxS( JP) ASWRS a(JP)
-999., 0, %DC)

(CLD9ACLDS(JP) tACLDS'(JD)
-999.

(WSPA,
-999.
WDIRA

-999.
TEMPAq
-99-. .

C DE .M,
-999.

0,%D C )
A'SPS(JP),A',SOS (Jo
0 , %DC)
6D 9S(JP) , A vDRSC ( J )

0, .CC)
AT PS(JP),AT'PSQ (JP
0b NDC)
A0EAS (JP) ,ADE "s:, (JP
0, N DC)

C LWAL'JRS(JP), AL:RS&( JP)
-9990 fl, nDC)

.EQ. ON) *RITE (C1 ,9022)
11C)

ZZZA'-- D (JP),A C LID D JF
,ZZZ, ALDS (JP) , ACLOD'' (J )

),ZZZ,A S~(JP),ASSCP
),ZZZ,A P(JP) ,A lE<SD(JP)

) ,ZZZ, ALT t (J-P) ATF SD( JP)

) Z2Z' ,A:-E ( J 7)-o ADEW SD (JP)

ZZZ,9 A'R JP) , "A:kS t DJP )

C
C
C
C
C -
C
C UPDATE RASTFALL STATISTICS
C

CALL RSTAT (TSMTSMDSMTSBRTSAHA A

D Y, STORM)
C

IF (TRACE .EQ. ON) 4RITE (1,9023)

9023 FORMAT (0 11D)
C
C

C
C

C UPDATE THE HISTOGRAIS
C

CALL HGRAN (TCHISTTCHDIM,TE rP' ,TCDTTCbASE)
CALL HGRAAM (DPHISTDPHDIMltDEMDPJT ,LhiA E)
CALL HGRAM (CLHISTCLHDIlCL . ,CLDT,2L-)

CALL HGr<A'0 (wSHIST ,WSHDI',WSP ,1SDT,i-BAS Z)

CALL HG<AM (J0H ,STewDh5JMWDIRwDDT PD-ASE-
C

IF (TRACE
9011 FOR'AT (9

C
500 CONTINUE

C

.EQ. ON) WPITE ( V,9011)
M 12 ' )

C
C
C
C

C
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C

C
C
C

IF (JULREL *LT. JREND) GO TO 3%D

C RESET NMONrlHLY CO3U4TFA:S
C

JHOUR = 0

C
C RESTART STORP SEQUEr4CE
C

CALL RAINz:T (THT, ,D)5INCESTORMJHR rJHNEXl)
C

390 CONTINUE
C
C UPDATE THE DAY CoJ!1TERS
C

CALL DATE'
C

CHECK FOR END OF PUN

IF (TRACE .EQ. ON) WRITF (IS,9012)
9012 FOP"AT (I k'13t)

C
IF (JULDAT .LE. JJLEND) GG TO 400

C
C
C

C

C

CALL FSTAT (5,PAWSUMXXTMEANC3V.' ATC i..'AT ,WDATA)

C CALL THE AUTOCORRELATION SUtROUTIpjE
C

CALL AJTOCO
CALL AUTOCO
CALL AUTOCO
CALL AUTOCO
CALL AUTOCO

(ALAC,TCFHO,TCBTCV,N2DATA,TCTITL)
('LAG, DFRH ,ODP? ,DPV, N (DATA, r [ T ITL)
(V LA flCL P riO, CL B CL V, DATACL TITL)

CSL A G, D-' H 01 r,. D U q , D V, D A T A J T.3 I T L)
C

IF (TRACE .EQ. ON) WRITE (I',9013)
9'113 FOR'IAT (v M14')

C
C

C
C

C

C
C
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WR ITE ( Iq,715) (MEA\(I) ,I1, )
715 FORMAT (1H1////T2,O'MEAj VALUS'E/T%,' TCSAk' ,T2l, 'I EAF* ,

S T33,*CLBAP 9T45,*WSBAReTb7,*aDBARt/lX,5F12.2/)

WRITF(IS,720) ((C0VMAT(1,J),J=1,5),J=1,t)
720 FOR 4AT (1XT24,'COVAR1A NCE ATR X',/L3(1' ,KF1Z.2/)))

WRITE (IS, 740) ( (CO'DMAT (I, J) , J= 1,5), I 1. )
740 FORMAT( 1XT24,$CO.ELAT1ON MATRIX',/(5(IX,-F12.2/)))

,RITE (IS,745) TCKDPKCLKqSK *4DK
745 FORMAT (/T25, 'SKE1 COE FFICIENT-'/T8, 1TC>IKt ,T2U, *L",

$ OCLSKE:dT44,tWSSKEw ,Tb6,'wDSKE.*/lX,5F12.2)

C
WRITE

747 FORMAT
$ T24,

(IS,747) T9S3AR, TRS9AR, DUlAR
(///12C9,RAINFALL OUTPUT STATI TIC;)//

OTBt ,T3L,@TI',T409 ,Ol//T22,F5.2m131. 5.,/)
C

C

C

C

C

c
C
C
C PRINT HiSTOGRAMS OF THE GENERATED DATA
C

CALL PRINTH (TCHIST,TCHUI ,,TCDTTC3A SE, CT ITL.,T). TA)
CALL PRINTn (bPHIZ TDP HI YPDT,"P3A SL ,;JT I T L , A TA
CALL PPINTH (CLHI: TCLHDI0,CLD, CL bA ECL I TL,> T A)
CALL PRINTH (wSHI STWS DI,WSr0T, i3ASEST TL, ATA)
CALL P91NTH (WHIST, wDhDIMADTWD3ASEFoD TITL ATA)

C
C

C

C
C CONVERT VARIANCES TO STANDARD DEV1ATIOIS.

C
DO P0O IG 1,24

C
ASWRSD(IG)
ACLDSD(IG)
ASPSD(IG)
AWDRSD(IG)
ATMPSO( IG)
ADEWSU(IG)
ALJRSD(IG)

SQRT(ASWRSD(
S C R T AC CLD J C
SQ R T (A W S P S0

1KT(AWDRSD(
k T AT,' P ;, (

SCIRT-(ADER T A (
SQRT(ALWRSDC

1G))
IG))
1G))
IGE))
1G))
IG))
1G))

C
P00 CONTINUE

C.
C

C

z, KE * -tT 2 -
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C
C CO"PUTL TOTAL DAILY H340kT AND LON6WA VE RA. IAT J1.
C

00 810 IG = 1,24
C

SU4SW = SUMSW + AWR (IG
SUiLw = SULW + ALWRG(IG)

'10 CONTIiUE
C
C

C
C
C
C PRINT tOURLY MEANS AND STANDARD OEVIATIONS.
C

CALL HOUR (ASWRfASWRSf,*SWR*)
. T (18, 811) S M

1 1 FORMAT (T29,.TGFAL=9,T37,F7.2)
CALL HOUR (ALWRBAL'RRC,'LWs)

WR ITEL ( IS *811 ) SUMJ-'L'
CALL HOUR (ACLDBACLCSD*,CLD[)
CALL HOUR (A SP AWS 3,'SSP )
CALL rIOUR (AWfRf5,A D4S),'0-:* )
CALL HOUr ( A T!P' A TMPSD9, IM- ')
CALL H -'UR (AD EALEwSDi) E i)

C
IF (TRACE .EQ. ON) WRITE (IS,9014)

9014 FOR'AT (I M15t)
C

WRITE (IS,760)
7 0 F0R k'A T (1H 1,v15 ( 1S b H )

STOP
E N D

C
C . ......................................................................
C

SUTNROUTINE VARYX (XIX2,T1,T2,TX)
C
C ROUTINE T-O LINLARLY INTCRPOLATE A VALUE OF X
C

?ANGE = T2 - TI
RANGE2 = 24.0 - FANGL1

C
IF (ST .GT. TI) GO TO 100
X = X2 - (X2 - X1)*(24.0 - T? + :T/RA':G
RE T UR N

C

100 IF (ST .GT. T2) GO TO 200
Y = Xl + (X2 - X1)*(ST - T1)/PA'GE1)
R ET URN

C
200 CONTINUE

X = X2 - (X2 - X1)*((ST - T2)/ANGE2)
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C
1C Ul = RA- D(G)

IF (U1 .LT. 0.00001) Cl TO 10
U2 = RAN.D(0)
X = S T - A U C

C

L BD
C
C............ ...... ............R.. . . .
C

SUCTOJTINE VAPOR (TTDEES)
C
C

R2UTIN'~ Tr) COWPUTE AT'Oe.PiER]C VAPOR PRES1tRE GIVE%
T.O METER TE.APERATUKRE AU DEWPC1NT.

T ... TEMPERATJPE - DEC C
TD ... DEW6POINT TE:'PEATUE - DEG C
E ... VAPOR PRE'SURE. - M1LLIBAR
ES ... :AT UAILI VAP0R% PRI SS UR - I ILLI
C0-C5... COEFFICIE:.TZ [% "AT. VAPCR PRE'. x

F ... RELATIVE HUNIDITY

DOU-LE PRLCISION C0vCl C2, C3,C4C5

DATA
DATA
DATA
DATA
DATA

CO/6
C /4
C2/1
C3/2
C4/2

.0&89226 /

.4 35 1 312E-01/

.4590816E-32/

.7619554.-04 /
*99525901E-06/

DATA C5/1.4398P85E-0R/
C
C
C
C COMPUTE RELATIVE HUMIDITY
C

R ((112. - 0.1*T + TD)/(112. + 0.9*f))** '.

CUVPUTE SAT.URATIO"t VAPOR FRESSURL

X = C4 + T*C5
X = C3 + T*X
X = C2 + T*X
X = CI + T*X
ES= CO + T*X

COMPUTE A TMOSPHE IC VAPOR PiRE-S IEJPU

E = R*ES

C
C
C
C
C
C
C
C
C

C
C

C

C
C
C
C

C
C
C

C
C
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C

RI TURN
E ND

........ e...............g................................. . . ....

SULNROUT IN E INTEP (VAFILEqISD0LOT*IPL)
C
C ROUTINL TO READ THE NECCESSARY RU TIME INF C
C CONSOLE.
C

LDP'ENSION P TEXT( 6)
C

ATIr). FR 0 THE

COMMO1 /SEED/ ISEED
COMMON /PUNCHD/ PTEXT,

C

DOUBLE PRECISION DAFILE, PNFILE
C
C
C SET THE CONSOLE UNlT ,U~'eER FOR THIS IIACHI.F.
C

IC = >
C

DAFILE = 'DCC:OD.DATv
WRITE (IC,90) DAFILE

9 B FOR'AAT (//1Xv'THE CURRJ.T DATA FILE T ',t4

$ 1X,00 YOU OH T0 READ A DIFFL-E'T 0'E?
C

PEAD (IC,110) ANS
IF (ANS .NE. *Y') GO TO 115

C
C

dRITE (IC,100)
100 FORfAT (//1X9

9 iHAT
$ 1X,' E'4TER FILE

REAL (IC,110)
113 FORkAT (A)

0/
(Y/ ))

DATA FILE CONTAINS THE PvPJ r FATA?'/
NAME IN THE FOUv XXXXI(w..YYY f)

LJAFI LE

115 CONTINUE

WRITE (IC,120)
120 FURYAT (/ X*DC YJU iA'fl TO PRINT THE

$ 'CONSOLE? (YIN)')

ITOUT VU !MMARY TO THE ',

READ (IC,130)ANS
130 FORMAT (A)

IF (ANS .EQ.'YP) IS = IC

WRITE (IC,140)

140 FOR'AT (/X,' I PUT SEED FJR THL 4ANDO 'Ue'KBE
READ (IC,150) ISEED

150 FORMAT (I)

&EPERATCF )

C
C.
C

C

C

C

C

C

C

C

f-PNFILE, IPU,.CH
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C
IC Ul = RA,.-D(G)

IF (Ul .LT. 0.00001) Cl TO 10
U2 = RAD(0)
X =SakT (-2.u*ALOG(UJ1) )*CO8(E6.23319*A')

C
RETURV
L ND

C
C.....O.O.... .O. . . .. .. .. . .. .. . .. .. .
C

SUCTOJTINE VAPOR (TTDEES)
C
C

R UTIN TI COiPUTE ATuol PHERIC VAPOR PRESlIIRE GIVEN
TWO METER TE?'PERATURE AU DEWPCINT.

S...

C5...

TEMPEI'ATJPE - UEC C
DEWPIINT TE:PFrATUE - DEG
VAPOR PRESSURE - v.lLLIBAR
z-ATU:Al~a VAPOR PR .SSL)Rf -
COEFFICIE:JT IP "AT. VAPCR
RELATIVE HUAIDITY

T
TD
E
ES
Co-
P

I ILL.I
P;N E" ". ,, (I x.

DOUbLE PRLCISION C0,C1,C2,C C4,C5

DATA
DA TA
DATA
DATA
DATA
DATA

C0/6.0689226 /
C1/4. 435 312E-01/
C&2/l.4590816E-)2/
C3/2.7619554O-04/
C4/2.9952590'E-06/
C5/1.4398P85E-0&/

C
C
C

C COMPUTE RELATIVE HUMIDITY
C

R ((112. - 0.l*T + TD)/(112. + 0.9*1))** .f

CUPUTE SAT.URATION VAPOR FRESSURE

XE=
X =
X =
X =

C4
C3
C2
Cl
Co

+4

+4

+

+

+

T*C5
T*X
T* X
T*X
T X

COMPUTE ATMOSPHE!IC VAPOR PR'ES11UP

E = R*ES

C
C
C
C
C
C
C

C
C

c

C

C

C
C
C
C

C
C
C
C

C
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C
RLTURN
E ND

C

C
SUuROUTINL INTEP (DAFILE, ISDPLOT9IPL)

C
9OUTINL TO READ THE NECCESSAfY RU TIkE
CONSOLE.

THE

DI tENSION P TEXT (16)
C

COll"O'll /SEED/ ISEED
COM:.ON /PUNCHD/ PTLEXT, PNF ILE, IPUNCH

C
DOUBLE PRECISION DAFILE, PNFILE

C
C
C SET THE CONSOL[ UNjT NU'TER FOR THIS IACHil.F.
C

IC
C

DAFILE = 'DCC-OD.DAT'
WRITE (IC,90) DAFILE

91 FORAAT (//1X,'THE CURREa.T DATA FILE IS ',410/
$ 1X,*00 YOU WI.:> TO READ A DIFFE-E'1T 0 ? (Y/ )')

C
PEAD (IC,110) ANS
IF (ANS .NE. OY') GO TO 115

C
C

WRI T
100 FORMAT

$ lx, I

(IC, 100)
(//1X, 9  HAT DATA

E'4TER FILE NAPE
FILE CONTAINS THE PvPJ r DATA?'/
IN THE F0 XX Xw.YYY * )

REAb (IC,110) DAFILE
110 FORk'AT (A)

115 CONTINUE

WRITE (IC,120)

120 FoRMAT (/I1X,'DG YU iA'f TO PRINT THE
$ t CONSOLE ? ( Y N))

I 'UTI VUMMARY TO THE

REAL) (IC,130)ANS

130 FOR AT (A)

IF (ANS .EG.*Y') IS = IC

WRITE (IC,140)
140 FOR'AT (/lx,' INPUT SEED FOR THL 4ANDOv 'U i>a

READ (IC,150) ISEED
150 FORMAT (I)

JE\ERAT 9)

C
C

C

C

C

C

C

C

...... 0* *0

I NF ', t, T I r. F R 0
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-RITE (IC,160)
160 FORMAT (/lX,'fO YOU tAT A PLOT? (Y/N)')

READ (IC,130) DPLOT
IF (DPLOT NE. ')

1 RITE (IC,170)
170 FOR'AT (/lX*,aHICt

IX,,

GO TO 1P

PLOT? 1 F
2 F

OR 6-VARiALK v/
OP 4-VARIAL'/)

RtEAD (ICs1P0) IPL
180 FORMAT (1)

185 CONTINUE

C

C

C

C
C

C

C

C

C

'ODEL DATA FILE? (Y/%)')

READ (IC,130) ANS
IF (AIS .NE. 'Yt) GO TO 260

IPUNCH = 27
WRITE (IC,2C3)

200 FORMAT (/1x,'K.NTER DATA FILE NAME ... )XXXXX.YYY')

WvRITE (IC9210)
210 FORIAT (/X, 'ENTER CO.'E!TZ T( IDEUTIF

s '(80 CHAR. 'AAX)t)
READ (IC9220) (PTEXT(I),1=1,1t,)

220 FORMAT (lLAb)

Y OUTPUT DATA '.

C
WIRITE (IC,240) 1PUiNCHPt.FILE,(FTEXT(1),1=1 ,1F)

240 FOR"AT (lX,15/lXqAl0/JX,16A_))
23C CONTI.UE

C
RETURN
ENJD

C
C ......................................................
C

SUBROJTINE START (ISEED)
C

ACTIVATE RAND ISEED TI-iES TO PROVDE A rIFFERE :T
START INC POINT I 74 THE GEi EP AT ION OF ANDYh NUrWEIF S
41TH EACH IJ-UT OF ISEED

DO 100 1 = 1,ISLO

X = PAND(0)

$

IPUNCH = 0
WRITE (IC,190)

190 FORMAT (/1X,CREATE LA."] SURFACE

C

C
C
C
C
C

C

C

FEAD ( IC 9110 ) PNF IL E
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100 C0NTI.Uf
C
c-

RETURN
FND

*.................... 0.*.. * .... *................................

SUHROUTINF READF (INISI)

THIS SU3?POGRA ' READ'; THE INPUT DATA FOR THE TOCHASTIC
HYDROMETEOROLOGICAL iUDEL.

DIMENSION TITLF(lt,3), BCCEF(8),
DIMENSION CCDfF(33), CCORL(30)
DIMENSION DRPbF(30), DR0RD(30)

DOULLE PRECISICN
DOUbLE PRECISION

ACOEF ( )

-RITEF, BLGCFF, TZ G.,
OUTPUT

T ( ), DE -LC(7)

REAL LAT(3), LONG(3)

CO M m. 0 N
CO 'EON

C M 0 N

CO A 3N
CO M MON
CO MO N
CO0 M x 0 N

CO'MON

CO MMO N

COMMUON

CO tiMON
COM~ MON'
CO - MO N
C 0MM 0 N

/TITLE /
/FILES/

/DA TFS/
/LOCATE/
/DC3UG/
/CLOJOS/
/ATMOS/
/PUFCL/ 1
/RA I N S /
/TFVPAR/
/WINDSP/

/WI N DI R/
/P DF DIR
/DE i4ONE/
/ D EJ T v 0/
/DEWDVS/

1 1 T L E
K I TEF, O'JT UT, HUGOFF

IYRIM'c,IUAY, LYR,LMO,L:DAY
LAT, LONG, TZO:.E
N>UG ,DE 3UG
CCbAR,CCSDCC IOGETACA.t
EN
NU.C C, C CPDF ,CC R D , CCA ,CC B3
TBAR. TRUAR, Lr3AR
TBIAS, TSDEV, TRHO, LC6AF,
TP Akb R , IP A1 S SSDP V- T D. R ~ H
S PS D T1,S PS DT 2 ,S S K EPH
DR BAR, DRDE V ,DRr,'H
%U,-DRDRP )F,DRRDJPAU h
TYPE, ACOFF

obA,D PS .EVD SKF4,F lW",
DWBIAS, Do;DEV, DWJLDRHO

T E P i V: A F ,

C

C READ THE GENERAL DATA SECTIO
C

NOTE: *DJklMY ' r EA0S ARE INUENTEb TO r:EAk THL
THE MAJOR SECTIONI OF THE Pi-JT UATA.
MAKE HANDLING THE DATA DECK LEASI EP A'.')
EXAMINATION OF THE DATA DECK EASIE[.

'C .K', ThA T .F- T
IT 17> Df IC'.FD 13
AS A MEA,#S TO MAK

READ (IN,10) DUMMY
10 FORMAT (A)

C
C.
co

C
C
C
C
C
C

C
C

C
C

C

C
C
C
C
C
C
C
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C
C READ THE TITLE CARDS (3)
C

DD 15 1 = 1,3
READ (IN,2C) (TIILE(JI),J=1,16)

20 F R &T (15A)
CO T INUE

C
C READ THE DATA FILL t.A&E2 FO-Z THE GE,%LRAL OjTt.T A14O DLEUc INFO
C

READ (19,30) WRITEF, OUTPUT, EUGCFF
30 FOR'AT (1GX,3A10)

C
C
C
C OPEN FILES FOR OUTPUT
C

I = 22
OPEl (UNIT=I9,DEVICE=IDSK ,ACCESSz=SE LOUT',F1LE=3UGOFF)
IF (IS .EQ. 5) GO TO 35
IS = 23
OPEA (U:'IT=ISEVICE=9DSK9,ACCESS=Z'S EGJTFlLE=zITEF)

55 CONTINUE
C
C
C
C READ DATES, LATITUDE* LONGITUDL, AND TIME ' 0'!
C

READ (IN,'C) IMC,0iAYIYRLM',LDAYLYA,
$ (LAT( I), 1=1,3) ,(L3NG( 1), 1=1,3) ,T 2E

40 FOR"'AT (1 OX,2, IX, I 21XIq4,IX, 12,1X, 12,IXIT4, 1X,
s 2 (FS.0,1 XF2.0,1XF2.0,1X), AID)

C

C READ DEBUG I 4FO
C
C DEBUG INFORIATION CA1 .;E OUTPUT FR)M SEVRLk"1. SJThROUTIr.ES rY INPLY
C READING IN THE APFP3PRIATL SULROUTI E NAiL. TH7E StU ITINE
C INCLUDE: TAU, DECL, SOLRAD, CLRSKY, COVER, ARVA, AND TEMkPS' 4 .
C NAMES. ARE LEFT JUSTIFIED.

C THIS FEATURE IS CURRENTLY DISABLED.
C

NBUG = 0
GO TO 51

C
READ (IN,50) %FUG,(DEiUG(I),1=,NeUC)

50 FORMAT (10XI2,6A10)
51 CONTI:Ul

C
C READ CLOUD A:.D RADIATIO\ DATA
C

READ ()N,1O) DUM-Y
C
C READ PAPAMETU CAFD
C
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READ (It.,L0) CCOAl, CCSD, CCRHO,
60 FORsAT (1UX,6F10. )

READ (.14,62) UJCC, CCA, CCP

62 FOf4AT (10XI2 ,8x,2F10.O)

PEAD (
READ (

64 FOR'AT

I , i)4

N ) )
(loX,

CCCPF (I) ,I1 L U CC)
(CC(r)'D( 1)9I=1 CC)

'vF o .0)
C
C READ RAIN MODEL PA9A F.TEiS
C

READ ( IN,10)
READ (IN,60) Tb H A', IRi3AR, OOL3AO

READ TEMPERATURE DATA

READ (Ir1,1 0) DUYY
READ (IN,7C) (6CGEF(I),I=1,3)

70 FOR4AT(l0X,4E12.5)
PEAD (IN,60) TDbIAS, TLKLEV, TD HO

C READ WIND SPEED PARArETE DATA
C

;EAD
READ
PE AD
READ

C
C
(

(

IN,(60) SPSKE

, >&A2, 

*', 2F1hHiC

SFPiT1, SPbT?
sV3T 1, 'PaT

C
C READ WIND DIRECTION DATA
C

READ
READ
READ
READ
REA D

C

I10
IN, 30 )
I , 6 2)
IN,6'4 )
I N, L4)

DU IY
LR BAR, DDEV, DRP0

U ', DR A ,6RB
(PPDF(I),I=1, U"ER)
(Dr OR D(I) , I =1, NJJ uR)

C
C READ DEgPOINT MODEL PARAMETE S

C
READ (IN,10)
READ (IN,10)

DU 'iY
TYPE

IF (TYPE.E0.I.REGPSI .09. TYPE.F .#INDEPI)

WRITE (IS,95) TYPE
9b FOR AT (/,/ ,T, 1**** )E4POINT Y)FIEL

$ T11, 'ONLY I %@1DEP''

STOP

TYPE
TYPE
TYPE

.Ec~. 'INDEP'
.EQ. 'PEGP3'
.EQ. '%C~RS'

P E AD
PEAD
READ

(I r,6O
(I i.70
(I%160

C
(

GO TO 100

TYPE -A, - I VALIW.
OF CC,0 s* A PE AtC C E PTAL

BA, DWSDFV, LwRpH
(ACEF(I), J1,F)

)

)

)

)

)

C

GA"I, EN

C
C

C

C

C

C

C
C

C
C

100 IF
IF
IF
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C
C
C
C ::::: INPUT DATA SUM;4ARY
C
C
C PRINT GFNERAL DATA
C
C

')RITE ( ISv493)
490 FOR'iAT (1H1,3(15(-H

C

C

C

'/))

*RITE (ISq,-,91)
491 FORMAT (lX,79(1H*)/)

WRITE (IS,492)
492 FORM'AT (1XT?3,'CCNSTRAIVEJ STCCHASTIC CLI 'ATF S1s'ULATIOO'/

$ T3.,' I-PUT SU-J A AR Y,/)

',IR ITE (1 4 91 )
C
C

DO 510
,P.ITF

5%0 FORMAT

J = I1 3
(I1 q'j00) (TITLE-(ItJ) T = 1 .1'_)

1H % 1:Ab)
5 1 c.1, T I NuE

' RITE (IS.491)

IF (IS.
WKITE (

515 FORfAT

$

EC4 .5) MRITEF = OCONSOLE'
1S,515) wRITEF, GUTPUT, 3U2OFF
(//1XTS1,'CUTPUT FILE 1.AVES'//T;1

T 1
T 3.1

I
,

* h I TEF
ICUTPUT
'nUfl FF

9 ,AI
,A1

0/
0/
0/i

WRITE (IS,491)

WRITE (IS,520) I'o,IDAYIYR,L'-:C,LUAYLY-
520 FORMAT (//T12,tBEG1NNING DATE ',Z ,2,'/,I2,',T4,I.,

$ 'EhDING DATE ',2X,02,'/1,12,*/914)

WRITE (IS,530) (LAT(I) ,1=1, 3), (LOG(I)9,I=,3) ,T70NF
560 FO~RAT(//1,'LATITUDE , FF X

I OLONGTTUDE = ',2XiF4.0siF3.0,gF.* 5X,*Tl*, ZCNa'E A * 10/

WRITE CIS,491)

IF (ThUG.Er.0) GO TO 545
WRITE S, 4 )D UG I , 1, UG

540 FURAI (/ /1X, ODE UG %',UB)UT l, - ' , 7A 1 0
b, i IIE (1 S 4 91)

545 COTI UF

C
C
C PR INT CLOU D AJD ZKY PARA'IE TFRS

C

c

C

C

C

C

C
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W5ITE (IS.53>)
tj 0  O A (IX, T28 U,'CLU A ) KY 'A AI L.T fl,

PR I !T ( 1C,5, I C) CC HAr CCS1,C. HI
r 1 FOR AT (IX, T-1, FA IR "A THL.R CL U C')V '/

T 31,'VAN*, I 42,F.T/
TS3,1ST. Ev. , T42,f . /
T 31,'LAG-I COEF. , T42,Ft.2//)

C

c

CC
CC

C

C

WRITE (IS,542) CCACC3
562 FORIAT (//T5,'LLFT 3C'\D CF HITT. =

$RIGHT HOJ,9 OF HIST. =

5'3 FOVrAT (//lXT23*'CLCU CIV iR IECAY C
$ T23, 9 ATlOSFHERIC TU bIDI

I TE
I TC
I T E
I TE
I TE

(IS,491)

IS 490)

(IS,491 )
(IS,49;)

(IS,4O1)

,F 1 0.4 t

F F T C' E

TYFFACE' T l' F4.1/
TY FACTTF = ',E a.1/)

C
C PRINT PHECIPITATION %OCEL PPAIETFRS
C

WPITF (IS,565) TEHARTRRAHi0BAF
'365 F aR"AT (/IX , T 25,'F RECIITAT I15 * EL DA ?A TVS'//

T23,'4EAo TIME BET.EE74 >r~tT.5,F7.2/

T23,'iMFA% STORH DUiATI% ,T,0,F7.2/
$ T23,'.EAN STOWM DEPTH'qT-JF7.'/)

C
WRITE (IS,491)

C
C

C PRINT TEM;PERATURE MOPEL PAPA"ETERS
C

WRITF (IS,*570) (3CCE-F(I),I=1#A)
'70 FORF< AT (//lXT26,0TE"PEtiATURE "ODEL P Ai'

$ T22, 30',2XE12.'j,4X, 'Si ',2',E12.5-/
$ T?2, 32',2XE12.5,'iX,*t'-3',2XE12.5/
$ T22, IU4,2XE12.5,t4X,9'-',2X*El2.5/

$ T22,'B6*,2X,E12.5,4X,'37,2XE12.i//)
C
C

A C TE ''//

WRITE (IS,580) TDBIAS, TDSDEV, TDRHO
580 FORMAT (lX, T3C,'STOCHASTIC COMPC; E'T'//

WRITE (IS,55 )
552 FORlAT (1XT23,'FAIFATHER CLOU CV(R

CALL PRnIST ( CCPDF, CCOQK, 'jJMCC )

H I ,TGR AM/
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T28,'TL PEF AT UrkE E;i I L S* ,2X, Ft .2/
T2k,'ST. DEVIATI0N ',2 F6.2/
T289'LAC-1 COR. COEF.',2XF6.2 /)

C
C

WR I TE
WR I TE
WP I TE

I ITE.
vRI TE

CIS,491)
(IS, 490)
(IS, 441)
(IS,'4 2)
(IS,491)

PRINT WIND SPEED MOnLL PARAYETERS

W*RITE (IS,600) SPE"RISPOT1sSPb Ac2sP T2
SPSD V, PS FT 1, SPSV2 vSiT2

SO0 FOP'AT (/T29,sI ' SPEE" PARAMETFE'S'//
$ T21,'MI HOURLY MEA% = ,F 4.1, AT I,F
$ T21,'MAX HcOURLY MEAN 9 ',F4.,' A T WF

$ T21,'MIIN HGU'kLY ST DEV= ',F4.1, A-T ,F
$ T21,'MAX HGURLY S L)EV= ',F'i.1,* AT , IF

' U

S. ,* HOUR P //s

SPSKEW,bl SP H-
'SKEW CJEFFICIE'T
'LAG-1 COLFF1CIENT

FF-.2/
F .2/)

C

C -
C
C PPINT WINJr DIRECTI0'N MODEL PARA'METEI.S

bRITE (IS,620)
r20 FORAAT (//T27,

$ T31,
T 131,

$ T 1,

DRAR, DEVqDRRH0
'vI\D DI'<ECTION PARAMETE ' //
'p EAN',T42,F6.2/
* -T. DEV.',42,Ft.2//
OLA"17-1 CGEF9,T42iFS.2//)

WRITE (IS,630)
630 FORVAT (/T20, 'IND DIkL-CTIO' HISTOGRAM'/)

CALL PPDIST ( ORFOF, DROJFD, NUMDK )

JPITF (IS,662) DRA*DRB
632 FORf'AT (//T', 'LEFT BC3U%' OF

$ ORIGHT boULU OF
HIlT. t vF1 0 ,Xi
HI.T. = 1 0.4/

WR ITE (IS,491)

IF (TYPE .EO. ORFGRS') GO To 665

PR 1T DE.POINT MODEL PAR AE T ER ... 'IN'RE SL Ub'T GE JER A T IL'N'

WRITE (US,640) DWfAR, D*SDEV, DrWRHO

C

C
C
C

WPITE
601 FORIAT

s

I S,601)
(/ T2 ,

T29,

C

C
C

C

C

C

c

C
C
C
C
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640 FORhAT C//T? T, 7 ',E 'Pi'T X 3rDEL F AMA T -:S //
$ T31,'MEAN.',T42,F6.2/
$ T31, ST EVvT42,F6. /
$ T31,'L4G-1 CFFlT42,Fo.2//)

Ft ITE ( IS9491)

GD TO 700

665 CONTINUE

PR INT DEW POINT MODEL PA' AP'ETEFS ... EGr E YIO ' TYPE '

WR I TE
670 FORMAT

$ T22,
$ T22,
$ T22,

( IS, 7 0) ( A CDEF ( I) , 1 , )
(/T21, rEPJINT NOD)EL kFGFSS I t CjCFFiCIEFTS.//

'A0',2X ,E[12.,q94X,'Al', 2X,E1 2.5/
'A 2' ,2 X ,E1? .5,'X, 'A 3',2 X E1 2. 5/

C

C

C

C
C

C
C

C

C

0 -. HO

ONENT PA''AM( CE.: '/
,?X,FC.2/

',2X, F6.2~:/
',2X,Fb.2//)

%ITE (i,491)

700 CONTIUF
C
C

RETURN
END

C
C...................................................

SUBROUTINE PRDIST ( H, OR, NmAX)
C
C PPINT Q.UT THE I NPUT PROeA3iLITY MASS FUiJCl 10%
C
C
C

COMM'ON /10/ INI ,II

DI;ENSION ORD(N40AX)
DIMENSI ON 11(NAX)
DIE*SION F MT 6) F *T1 (10)

DATA FMT
DATA FMT1

/t(TR
/' C ~
I'

,'10

6', 79 91

,2(7H--, '-----9,t)) /
39,9 49 5,
8ee 9V~9 10'/

DO 100 J = 1,N'AX,10

wRITE (IS,680) D :IA , DWDEVv
b80 FOR.AT (//T2,'STOChA-TIC C AP

$ T28,'jDE4POINT lBAS
$ T28,'ST DEVIATION

T28,'LAG-1 COR COEF

C

C

C

C
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IMAX = 10
IF( J+1C .GT. !AX ) IhAX = NMAX - J +

WR ITE (IS ,200 ) (H(I+J-1) ,I1, I AX)
200 FOQPAT (1H ,1X, HIST ,10(1XF4.2))

F'1TC3) FIFT1(1VAX)

WRITE (ISF,'T)

WRITE (S1,400) (CRf(I+J-1 .I=],1AX)
400 FORMAT(IH ,lX,*O;[j V-,U(lXF6.2)//)

I

100 CONTINUL

R FT U RIN
FND

C
C.
c

&U9ROUTINE DATEI

DATEI IITIALIZES THE UATE COUNTERS.
JULIAN DATES ARtE USED.

J.JLDAT.
JE G IN.
JlL FtD.
JR A NG E.
JULRLF.
JULRLL.
JSTART.

INITIAL YEAR
IITIAL ONTH
INITIAL DAY
LAST YEAR

LAST MONTH
LAST DAY

.5

LUN

1 OF CU,' ENT YEAe
;MONTHLY PRfM!ETlR

';UTHLY PAr:ArETErr

CURPENT JULIAN DATE
JULIAN DATE AT EEGINING OF
JULIAN DATE AT END OF RUN

LENGTH OF RU%!
JAN 1 OF INITIAL YLAk
JULIAN DATE FELATIVh To JAt
rFELATIVr JULIAV DATE TO 3ECI
ESTIMATION RANGL
RELAIIVF JULIAt DATE TO EN:

LTIMATION RANGE
YEAR COUNTER

NXLPYR... JULIAN DATE OF DEC 31 OF ijEXI LEA9  YEAP

COMMON /DATES/ IYR, IMO, 1DAY, LYR, L,:Ov L-AY

C

C

C
C

C
C

C

C

C

C

IY R
I MO
IDAY
LYR
LMO
LDAY

C
C
C
C
C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C
C
C

JSTOP

JYEA .

...................................... &......................... & 0 0& 00 00 00 * 0 6a 00 0

.

.

.

.

.

.
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COMMON /JUATE ,/ JiJLf2AT, J'L> EL, J?;EGI N,
$ ,JSTART9 J3T)P, JR EN ) 9

CO~MMO /13/ IREAD, IA':ITE 9 h'UG

J 'LE %',l
JYEAk

JRANC%, NXL'Y

INTEGER Ic6LG, CAL(12)

DATA CAL /31,28,31,30,31,30,31931,30,31 ,3, 1/

SET DEbUG FLAG

IDBUG = 0

DETER'INE INITIAL JULIAN DATES

C

C

C
C

C

C
C
C
C

C
C

C
C
C
C
C

C

C

C

C
C
C
C
C
C

C

C

C

C

C

C

(IMQIDAYIYRJEGIN)
(LM!O.LDAY,LYRJULErD)

1 I, 1,IYRJULPEF)

EGIN -
LENJLD -
EGIN -

JULR EF
JfDEGIN + I

DETERMINE THE r\EXT GCCURANCF (.F 12/M/(LEA YEA)
(IE:. THE 3E6TH DAY OF THE YEAR)

LASTLP = IY - MO( IYRi)

CALL JUL1AN (12131 ,LASTLPNXLPYR)

IF (JULDAT .GE . NXLPYR) NXLPYR = NXLPYR +

NOTE... 1461 = 365 + 365 + 365, + 3t 6

THIS SECTION DEFrI.LS
PARAMFiR EST IMATION

JYEAR IY4
JSTART JJLREL + )
LD = CAL(L4")

CALL JULIAI ( L-C, LDq

VAPIAJLES N''EDFD FOR

I Y ,

1461

'O, T1LY

JDATE )

JSTGP = JDATE - JULPEF + 1
JREND = JSTP

IF (JYEAR - MOOC JYEAR-, )) 65,70,6 3
IF (IrO.Er.2 .AND. IDAY.E.28) JRE.D

CONTINUE
1

CALL JULIAN
CALL JULIAN
CALL JULIAN

JULkEL = Jb

JRANGE = JU

JULDAT = Jb

70
65
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ENTRY DATE

THE INEXT S-CTION IS USED EACH DAY Tm U GATE
THE jULlAN DATE COUNTF>z IF AtJAL PARA!L1ES ARE UcED.

JULREL = JULRLL + 1
JULDAT = JULDAT + 1

CHECK FOR END OF YEAR

IF (JULREL .LE. 6j) GO TO 100
IF (JULREL .GT. 366) GO TO 200

CHECK FOR LEAP YEAR

IF (JULDAT.E.NXLPYR) GO TO 200_

YES, THERE ARE 366 CAYS THIS YEAR.
UPDATE NXLPYR TO NEXT LEAP YEA .

C

C

C
C
C

C
C
C
C

C
C
C

C
C
C

Cc

C
C

c

C
C

C
C
C
C

C
C

C

C
C
C
C

C

C
C

IF( IDB3UG .NE. 0 ) GO To 900

50 CONTINU1

RETURN

RESET RELATIVE JULIAN DATE

210C JULREL = 1

100 CONTINUE
IF( 'IDBUG .NE. 0 ) GO

110 RETURN
TO 900

ENTRY DATEM

TillS SECT ioN I USED LACH DAY TO
IF MOITHLY PARAMETER ESTI:AATIO

UPDATE THi JULIA! DAIF C:U T
IS USE !.

JULREL = JULREL * I
JULrIA4 = JJLDA1 + 1

IF (JULREL .LE. JREND) G0 TO 400

UPDATE THE JULIAN COU'JNTERS

NXLPYR = -4XLPYK + 14nI
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JYEAR = JYEAR + 1

CALL JULIAN (I'Mo,01,JYEARvJDEG1N)
CALL JULIAN (01,01,JYEARJULREF)

JLJLREL = JiEGIN - JJLR[F + 1
JSTART = JJLFEL

CALL JULIAN (IMO,01,JYEARtJULOAT)

C

C

C

C

C

C

C

C
c
C

C

C
C

C

C
C

C

CALL JULIAN ( L1O, LD, JYEAR, JUATE )

JSTOP = JDATE -
JREND = JSTCP

JULREF + 1

IF(JYEAR - UOD(JYEAR,4)) 400,410,400
410 IF (LMO.EQ.2 .A!D. LDAY.E0'.2o) JREtD = qJ:ED + 1
400 CONTINUE

IF ( IDBUG .. E. 0 ) G'! TO 901

RETURN

900 CONTI1NUE

DEBUG INFO-RMATION FOk JULIAN DATE CALC.'LATIO'S

WRITE (IWRITE,920) JULDATJULRELJ3EGIN YJLENDoJPANGEXLPYD
s

920 FORMAT
$

$

,JSTART JcT3P ,JPEJ,,jy1iJY A-
(1H ,'JULDAT=',I10,3X, 'JJLkEL=',9 1.3-X,
/2X,'JULEADZ',1, A ,
/2X99J'STA'sT=tIlO93X,*JSTr)P , I ,3 ,

3Xv*JYEr-AR=9qIl0)

JE(I = I P I I',11

0:4 L F y F v1

C

RETURN
C
C

F N D
C
C ....... .. . .........................................................................................
C

SUBROUTINE DATT( IYATEIMO, IDAYIYk)
C
C CONVERT JJLIAN DATE TO CALENDE DATE
C

INTEGER CAL(12,?)
DATA CAL/0,31,59,90,120,V1U,181,212,243,27.,0'i04,334,

1 0,31,60,91,121t152,182,213,244,274,305,335 /
Il=(IDATE-1)/1461

LD = CAL(LN.0)

r

G

,.j3

9
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12=IDATF-(I1*14l)

l<=I2C=14f 1
C
C
C

IF(12.LE.365) G1 TO 10
IF(12.LE.730) GO TO 20
IF(I2.LE.1Ch5) 30 TO 3C

I4=12-1095
3C TO 40

10 13=0
14=12
14=I2-365
GO TO 40

20 13=1
CC TO 40

30 13=2
14 =12-730

40 IYR=1900+1"+(4*11)
I"vDX=I
IF(13.EQ.3)INDX=2
DO 130 1=2,12
IF(14.LL.CAL(1,IIX))) GO TO 200

100 COTi NUE
I M3= 12

IDAY=I4-CAL(12,*1',DX)
RETUR W

200 IMO=I--1
I0AY=I4-CAL(I-1,9I'.DX)
RETURN
END

C
C
C
C

...... ... ..... . 0 ........ ... .... ......... *0 *...

SUBROUTINE JULIAN(MODAY- ,ANJS)
INTEGER ASCAL(12),DAYR
DATA CAL /31 9 2Es31,30,31930,51,31,3093lq30,31/

CbMPUTE JULIAN DATE FROM JAN. 1P 1973

I =YR-1 9 00
ANS=ANS4365'*I
CAL(2)=28
IF (M0D(YR,4).L!.C) CAL(2)=2 9

J=MQ-1
IF(J.EJ.0) 00 TO 20
DO 10 IllJ
ANS=AS+CALCI)

10 CONTINjUL
20 CONTINUE

ANS=ANS+DA
RE TURN
END

C
C
C
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.., &... v... a.... 0 g 0 * 0 0e 0 3a 0 * 0 O**0 0 @*S***** CaO 0

FUNCTION DMS(A)

FUNCTI)N LMS CONVEPT.- AGLES FXP-E.SSE0 IN
DEGREES, -I UTES AA D SECO PS TO RADIA;,;

DIMENSION A(3)
REAL MINUTE

DEGREE = A(1)
MINUTE = A(2)
SECONO = A(C3)

DMS = DEG;EE*3.14159/1s0. + MItUTE*3.1415 '/1&0./1f.
1 + SECOND*3.14159/180./6G./bO.

RETURN
END

..O...............................

FUNCTION TAU (ST)

COMYON
COM 7ON
C0MMO 
DOUBLE
DATA I

/0q,?IT/ PHI
/13/ Ir-EAJ,

PRECISION
TAU /'TAU'/

*THETAS,TPETALFPETW
IJR I T E,9 1l I Hu G

9 DF S U G
ITAUOEL-UG(l)

THETAS = LONGI1UCE OF STAl.DA R MLF\IDIA' ( -'D IA ')
75TH MERIDIA FOP EASTEi<' STANDA TI -
90TH MLRIDIAN FU'F CENTRAL STA';DA;> TIE
105TH MEID!AN FCR "OUNTAIN STA'i1ARD rI 'E
120TH MERIDIAN FCR PACIFIC STAIJAtD TIIE

THETAL = LONGITUDE OF OASSERVFRS MERIDIAN (C AADIA4')
- LOCAL HOUP
- STANDARD TI

OBSERVER IN
MIDNIGHT (E

= +1 FOk EAST
= DIFFERENCE

A.D f'EAN SO
FOR HEAT TR

ANGLE
L IN THE TIME ZONE OF THE
HOURS COUNTEC FROM

6- 0.00 TO 24.00)
L OGITUDE, -1 FOR tE T LCN

bETwEEN TRUE SOLAR TIE
LAR TI.%E (USUALLY NEGLECTED
ANSFER CO!'PUTATIONS)

GITUDE

FUNCTION SUBROUTIE TAU CONVERTS THE OH3E VERS
STANDARD TIME TO LOCAL HOUR ANGLE IN RADIAtJS

OBTAIN TI E DIFFERENCE BETWEEN STANDARD MRIDIAN AND
OBSERVERS IERIDIAN (HOURS)

C
C.
C

C
C
C
C

C
C

C

C
C..
C

C

TAU
ST

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C
C
C
C
C
C
C
C

EP
ET
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DTSL = EP*(THETAS - THFTAL)* 12.0/35.141-3
c
C COMPUTE O5SERVLRS HOU' ANGLE (RADIANS). E +1 Fur,
C M0R'ING AX: E = -1 FJR AFTERIuON (I.E. SOLARXDCDN)
C

IF (ST.GT.12. + DTSL -ET) E = -1.0000
IF (ST.LE.12. + PT'L -ET) F = +1.0000

C
TAU = (ST + E*12. - DTSL + ET) * 3.14159/12.0

C
IF (TAU.GT.o6.283165) TAU = TAU - b.283195
IF (TAU.LT.0.0) TAU = TAU + 6.283185

C
C
C DE9UG OPTION
C

IF (NBUG.EQ.0) GO TO 100
00 200 1 = 1,t.BUG

C
IF (DEi3UG(I).!E.ITAU) GO 10 200
'dR1TE (I4'UG,93) STPHITHET STTHETAL, PFTw,DTL,TAU

250 FOR"AT (////IHi , 'FU4CT IO TAU' , 2x,
1 'ST =*,F6.3,2Xq*HI =',F6.*3 2X,' THE TAS = , TAL =9
2 F6.3,2X,'EP =*,F&.3,2X,'ET =',F6.3,2X,4* ,FE.5,2X,
3 'DTSL =9,F6.3,2X,*TAU =9,F6.3)

200 CONTl'UE
C

100 CONTI'NUE
C

RETURN
END

C
C ................................................ ................

C
SU BROUTINE DECL (JDELTASRSS)
INTEGER RJO
COMAON /0EVIT/ PHI ,THETAS,THETAL ,EPFT w
COMMOZ4 /1 1/ IREAD, IWRITE, JWBUG
COMMON /DBsUG/ NBUGOEBJG
DOUBLE PRECISION IDECLDEBUG(1)
DATA IDECL/'DECL'/

C
C DELTA = DECLINATION OF IHE SUN (RADIAi)
C PHI = GBSERVERS LATITUDE (RADIANS)
C THETAS = LONGITUDE OF STANDAMXD !'CE IOIAN (iADIA'1)
C 7tTH MErIDI AN FOP LASTERN STANDA T IrE
C 90TH t ERIDIAN FOD CENTRAL STAIA0) TI J:
C 105TH MER IDI AN F-)R AOtJTAIN SI AN .'AN lIME
C 120TH MER IDIAN4 FOR PACIFIC STAN)DAYD TIE
C THETAL = LONGIlUDE OF OHSERVER ERIDIAN (kADIANS)
C RJD = rELATIVE JULIAN DATE (I.E. UIIH R:S'ECT TC JAN 1)
C ST = STANJARD TIME IN THL TIiE ZONE OF THE OBSERVER
C IN HOURS COUNTED FrFOM MIDNIGHT (c.G.b.00 TO 24.00)
C EP = +1 FOR EAST LONGITUDE -1 FOR WECT LONGITUCD
C ET = DIFFEPENCE 6E1dLEN TRUE SOLAR TI-L AND
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MEAN SOLArn TI'E (UsUALLY \JCGLECTE - FWR
HEAT TFRAN-FER CO3PUTTAMTONS)

COMPUTE TI E UIFFEfiEN'CE 1ETWEEN STANDARD 'FI A- AND

OSERVERS M'ERTDIAN (HnUR$)

DTSL = EP*(THETAS - THETAL)t 3.81972

COMPUTE DECLINATI-hN OF THE SUN (RAPIANS)

DELTA = 0.4093*CnS(O.0172*(172. - FL)AT(*'JD)) )

COMPUTE HJUt ANGLE AT SUNSET (RADiANS)

TSS = ACOS(-TAq(DELTA)*TAN(PHI))
COMPUTE STANDARD TIME CF SU! ST (HOURS)

SS = TSS*3.81972 + 12. +DTKL -ET

COMPUTE HOUR ANGLE OF SUNRISE (RADIANS)

TSR = 6.283185 - TSS

COMPUTE STANDARD TIME OF SUNRISE (HOUW.)

SR = TSR*Z.81972 -12. + DVTL -ET

CONVERT SUNRISL IN STANDAPD T1'-!E TO LOCAL riuF

SR = SR - DTSL

CONVERT SUNSET IN STADARD TIOE TO LOCAL TIV4[

SS = SS - DTSL

C
C DEBUG OPTION
C

IF (NBUG.EQ.O) GO TO 300
DO 100 1 = 1,NBUG

C
IF (DEBtUG(I).NE.IDECL) GO TO 100
WRITE (IWBUG,200) RJDDTSLDELTATSSS',TSR,SR

200 FOR'"AT (////,1H ,0SURROUTINE DLCL t,'**-At RU =1,
1 I5,' DTSL =*,F6.3,' DELTA =*,F6.3,* Th =9 F6.3,
2 ' SS =qF6.3,2X,'TSRi =,Fb.3,2XvSR = *,F6..)

100 CONTINUE
C

3OU CONTINUE
C

RETURN
END

C

r
C

C
C
C

C
C
C

C
C
C
C

C
C

C

C
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C. . . . . . . . . . . . . . .
C

SUBROUTINE RAINST (TET ,DJSINCE ,STHCU vJ E0 ,JHEXT)
C
C

ROUTINE TO IiITIALIZE THE tAINFALL 'cDEL. TII:; F
THAT THE BEGINNIG OF THE rON-TH 3CCijRS RA*'0"LY
A'" INTRA- OR Ay I'4TER-STOrP2 PERIOD ACCOCIVNG "1C
PROBABILITY DISTRIFUTIO.

CUT IE I f UR F
' I I'-)I G EI IH E-
T fE A FP kCPRI A T

COMMON /RAINS/ TEMEAN, TRIEEAN, DMEA'l
COMMON /RAINI/ ITRITB

DATA ON1/'ON1/, OFF/l0FF'/

C
TSU M = 0.0
DEBUG OFF

C
C GENERATE THE TIME SINCE THE LAST STOPM.
C

CALL EXPO (TBMEANTSINCE)
C
C NOw BEGIN TO GENERAT A SEGUENCE OF iTORl. THAT

C TO THE BEGION ING OF THE iON TH.
C

100 CALL EXPO (TL-MEA'JTb)
TSUM = TSUM + TB

C
C ARE WE UP TO THE STARTING POINT YET?
C

IF (TSUM .GE. TSP4CE) G3 TO 2C0
C
C IF NUT, GENERATE A STORM DURATION.
C

CALL EXPO (TFMEANTR)
TSUM = TSUM + TR

ARE WE UP TO THE STARTING POINT YET?
GENERA.TE THE NEXT INTERSTORM PERIOD.

IF N.'T, GO 6ACK A.ND

IF (T*SUM .LT. TSINCE) GO TO 100

IN THIS CASE, THE MONTH EbifS DURING A STO. * fETERINE TP'E
TILL END OF STORN! (TTEOS) AND TURN STOI,? FLAG 0.

TTEOS = TSUM - TSINCE

STORA = ON
JSINCL. = 0
TB = 0.0

CU!4PUTE THE STORM DEPTH GIVEN STORM DURATPV'.

ALPHA = TR/TRIEAN
BETA = DVEA%
CALL GAMMAD (ALPHAflETAD)

C
C
C
C
C

C
C

C
C
C
C

C
C
C

,.ILL I'FINC J.:
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ADJUST STORY DEPTH TO REFLECT
CURRENT iONTi.

ONLY THE POPTl,-l' DUlfklG THE

) O*(TTL3/TR)
TR = TTE)S

C
C CONVERT TR TO NEAREST INTEGEr VALUE
C

CALL ROUOD (TRITR)
IF (ITR .LG. 0) ITR =
JHREGS = ITR

1

RETURN

200 CONTINUE

IN THIS CASE, THE MONTH BEGlt'S DURIN; AN I T"-TfoR'A PFRIOD.
DETERMINE TI.lE TILL NEXT STORM-. TU'N STOR2 LAG 'FF.

TTNEXT
STORM
TR

0

= TSUM - TSINCE
= OFF
= U.0
= 0.0

CLOUD COVER MODEL WILL ALSO NEEU THE
ENDED.

TI E INCE THE LATE'2T STO 

TSINCE = TB - TT!EXT
C
C CONVERT TTNEXT TO NEAREST INTEGER
C

CALL ROUND (TTNEXT,1TB)
IF (ITE .E. 0) ITB = 1
JHNEXT = ITB
CA.LL ROUND(TSINCE ,JSINCE)

C
C
C

RETURN
END

C

C
SUBROUTINE ROUND (X,IX)

C
C ROUND IS A ROUTINE THAT CONVERTS A REAL VALU' , TO THE EA~kET
C INTEGER VALUE. IN OTHER WdORDS, IX 13 ROJNOED UP ,HEN NECE$SAIY.
C

IX = INT(X)
RX = AINT(X)

C
C
C
C

C
C

C
C

C
C
C
C

C
C
C
C
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C

C CHECK IF X IS NEGATIVE OR POSITIVE.
C

IF (X) 100.200,300
100 IF (4AS(X-kX) GT.
200 RETURN
300 IF (A3S(X-RX) .GT.

O..Do) IX = IX

0.5)

- 1

IX = IX + 1

RETURN
END

C
C...................................@00....................--...
C

SUeROUTINE PCPN (T ,TkD, STOu MJH'JR ,JH E0 So.JHEX T sJSlCE , AI )
C
C PCPN CHECKS TO SEE IF WE APE CURRENTLY I ' A ,T01! OR fET 6EEN
C STOQRMS AND COP'JTES THE H3UPLY RAINFALL TOTAL ACCflRDINGLY.

C 4HLN NECESSARY, PCPN SELECTS NEw' TIMES BETWE2 $Tc.MS, STCR-'

C DURATIONS, AND STORM DEPTH,. THE HOURLY COU'.-TES ARE AL:A
C UPDATED FOR TIME TILL NEXT STORM AND T1 4 FI TILL ED :F C F'4T
C STORM.
C

COMMON /RAINS/
COMMON /RAINS/

ITRTT r
T*IEANTR;EANLyEAN

C
DATA OJ/O0*/, OFF/'OFF'/

C
C
C CHECK IF STORkl FLAG IS ON OR OFF. IF STOR" FLAG IS 0'., GO TO THE
C STORM SECTION.
C

IF ( STORM .E'. ON ) Go TO 200
C

STORM FLAG IS OFF. !iOW CHECK IF WE
STORM PERIOD.

HAVE EDEAD THt LATI El I'JTFR-

IF ( JHOUR .GT. JHNEXT ) GO TO 130

STILL IN HETWEEN STORMS. THEREFORE
ALSO INCREMENT THE COUNTER FOR TIME

JSINJCL = JSIN.CE + 1

SET RAI4 = 0.0 A%'D
SINCE LAC T STOR'.

FETUQ'.

0 = 0.0
RAIN = 0.0
RETURN

100 CONTINUE

GENjERATE A NEW STORM. FIRST, TURN STORM FLAG ON.
STORM DURATION. THEN SELECT A STORM DEPTH

SECODU, S.ELECT A

STONM = ON

C
C
C

C
C
C

C

C
C

C
C

C

C
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CALL EXPO (T AEANTR)
ALPHA = TR/TR EAN
RETA = DEAA
CALL GAMMAD CALPHA,8ETAD)

C
C CONVERT STORM DUkATION TO THE 'EAREST INTLGE> VALUE.
C

CALL ROUND (TrITq)
C
C MINIMUM STORM DURATION IS ONE HOIUL.
C

IF (ITR 9E ;e C) IT'i

C UPDATE TME TIME TILL END OF STCRM.
C

JHREOS JHOUR + ITR - 1
JSINaCE 0

C

C COMPUTE THE HOURLY RAINJFALL DEcTH
C

RAIN = D/FLOAT(ITR)
C

RETURN
C
C
C

200 CONTINUE
C
C

STORM FLAG IS 0. NOW CHECK TO SEE IF THE ST.:M ! )Ff.

IF (JHOUR .GT. Jk'iEOS) GO TO 300

THE STORA IS STILL GOING ON. THEREFJRE, COMPUTE FAIN AND R T '.

RAIN = D/FLOAT(ITR)
JSINCE = 0

RETURA

300 CONTINUE

STORM = OFF

STORM ENDED. SELECT THE NEXT TIM" E:TWEE' ST>,.

CALL EXPO (TBMEANTB)

COVERT TIME BETwEEN STORMS TO NEAREST INTFEGE- VALUE.

CALL ROUND (TSIT;3)

MINIMUM TIME LET4EEN STORMS IS O5,F HOUR.

C
C

C
C
C

C

C

C

C

C
C
C
C

C
C
C

C
C
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C

C
C
C

C

IF (IT4 .EQ. 0) IT6 = 1

UPDATE THE TIME TILL NEXT STORM.

JHNEXT = JHOUR + IT9 - 1
JSI,!CE 1

RAIN = 0.0

RETURN
EN D

C
C...................................
C

SUBROUTINE EXPO (EF-,T)
C

COMM0'4 /SEED/ ISEED
C

SUBROUTINE TO GENEPATE EXPO'ENTIALLY ZIST TuTFD ANDOV N'JAR1E7
EM = MEAN OF THE DISTRIEUTION
T = RA.DM VARIABLE

C GENERATE U(0,1)
C

IX = ISEED
CXXXXXCALL RANDU (IXI''TEO,R)

CALL. RANDI (IXISEEDR)
C
C TAKE THE INVERSE OF THE EXPONEUTIAL P9F
C

T = -EM*ALOG( )
RET U R N
END

C

0. ...... ...................................... * . *. 0 ........ ..

SUBROUTINE GAMMAD (ALPHAbETAX)
C

COK'MON /WARN/ IWARN
COMMON. /SLED/ ISEED
COMMON /10/ INISIB

C
U 1.0.

X = 0.0
K = IFIX(ALPHA)
GAM = ALPHA - FLOAT(K)

C
C WR]TE (5,900) UXKGA MgALPHABLTA

900 FORMAT (1HCSU=',E12.5,2X, X',[12.5,2x, 'K=II5,Z>,
1 *GAM=*,E12.5,2X, *ALPHA=* ,E12.o,2X, *HETA=9,
2 E1?.5)

C
C
C

C
C
C

C.
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IF (K.E . 0) GO TO 100
C

DO 50 1 = 1,K
Ix = ISEEG

CXXXX CALL RANDO (IXISlDR)
CALL RAND1 (IXISEEDR)
U = R*U

C
C 'WRITE (5,920) I, P, U

920 FORMAT (1HO, 'TRACE 1 O,'
1 VU= VE12.5)

C
50 CONTINUE

C

I= ',15,2X, '.= 9,E12.5*2Xo

X = -ALOG(U)

IF (GAM.GE. 0.000001 ) GO TO 100

X = BETA*X
C
C iRITE (5,930) X

930 FORMAT (iHO,
C

RETURN
C

100 CONTI:UE
IX = ISEE)

CXXXX CALL RANDU
CALL RA;vD1
7 = -ALOG

C
C 4RITF

940
C
C
C

'TrACE 2 ',2X,

(IXISEEDR)
(IX,ICELDH)

(1 )

(5,940) RZ
FORMAT (1HO, 9 TRACE 3 *o P= 0,E12.5, Z= ',E12. )

DO 200 J = 1,100
IX = ISEE)

CXXXX CALL RANDU (IXISEEDUI)
CALL RAND1 (IXtISELDtU1)
IX = ISEED

CXXXX CALL RANDU (IXqISEEDU2)
CALL RANDI (IXISEEDU2'

C
C
C COMPUTE THE VALUES OF E11 AND EN
C
C IF EM AND EN ARE COMPUTED DIRECTLY AS:
C
C EM U1**(I.0/GAM)
C E% U2**(1.0/(1.0-GAV))
C

A MACHINE UNDERFLOW O OVFRFLO';:
CONDITIONS CAN BE ANTICIPATED BY
LOG (BASE 10) OF EM-AND EN. THE

CAN EASILY OCCUR. THECE
FIRST CALCULATING Tt-'E
VALID RA4GE OF LCG(Lll-)

C

r

C
C
C

WX= 9 ,E1?.5)
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AND LOG(E,) IS MACHIE DEPEN.DENT IUT HAS EVE>THELESS

BEEN SET TO BLTWE -37.0 AD +37.0 I THI^z ROCR A'.
IF A VALUE CF HAS BELN FOUND BEL04 THIS RAUGE, A DEFAULT
OF LOG(EM OR EN) = -37.0 13 USED. IF A VALLEY OHAS BfEN
FOU\D ABOVE THIS R ANGE, THEN LCO (E, GR E.) = 437.0.
Em AND LN ARE THEN FOUXD BY TAKING THE APP-1OPRIATE ANTILOGS.

EML10 = (1.0/GAM)*ALOG10(U1)

C

C
C
C

C
C

C

C

C

C

C

C

C

C

C

C

C
C

C

C

C

C

ENL10 = (1.0/(1.0 - GAF))*ALOG10(J2)

IF ( EL10 .GE. -37.0 .AND
ENL1O .LE. +37.0

I A
IF (
IF t

IAARN + 1
ENL10 .GT. +37.0 )
ENL10 .LT. -37.0 )

) GO TO 120

[4L10 = +37.6
ENL10 = -37.0

120 EN = 10.0**ENL10

WRITE (5,950) JU1,U2,CM*ENEML1,ENLI0
950 FORMAT (1HO,*TRACE 4 ',* J= ',15,' '-1= ',12.5,

1 ' U2= *,E12.5, ' E= ',E12. 5 .' EU= *L12.,
0) 9 EML10=*%E12.tv E L9= ,12 E

IF (EM +EN .LE.
200 CONTINUE

1.0) GO TO 300

WRITL (1:,500)
500 FORMAT(C END OF DO LOOP

STOP
IN BETA SUBSFCTION OF GAMMAD t)

C

C
300 Y = EM/(EM + El)

C
X = BETA*(X + Y*Z)

C
RFTURN
END

C
C............. .......... *.*...............-

1
IF ( EML10 .GE. -Z7.0 .A.D.

E'L1O .LE. +37.0 ) GO TO 110

IVARN = IWARN + 1
IF C EML10 .GT. +37.0 ) E ML10 = +37.0
IF C EMI-10 .LT. -37.0 ) EML10 = -37.0

1

110 E A = 10.0**E,"LIO
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C
SUBROUTINE kANDU ( IXIYYFL)

C GENERATES A UNIFORM DISTRIBUTION
C

IY = IX*65539
IF (IY) 10,20,20

10 IY = IY + 2147493647 + 1
20 YFL IY

YFL YFLA.466613LL-9
C

RETURN
C
C

ENTRY RAND1 (IXIYYFL)
C

YFL = RVAND(0)
C
C

RFTURN
END

C

C
SUBROUTINE STAT(X,&UMUSGSUr3,X3AiXV4-,Xz &Fd,')

C
C ROUTINE TO COMPUTE THE FIRST THREE IOMENTS OF ITLREST
C --- MEAv --- VARIAr4CE --- SKFW COEFFICIE T -----------
C XBAR XVAR XSKE !
C

TRACE = 'OFF'
IF (TRACE .EQ. 'O *) wRITE' (5,901)

901 FORMAT (' STAT1')
C

SUM = X + SUM
SUMSQ= X*X + SUVSQ
SUM3 = X**3.0 + SU 3

C
IF (TRACE .EQ. 'On') WRITE (5,902)

902 FOF'M1AT (0 STAT2')
C
C
C UPDATE THE MEAN AND VARIANCL C0J"PUTATION
C

X3AR = SUN/ N
XVAR = SUMSU/N -- XBAR*XEAR
IF (XSKEW .LT. -990.0) PET.JURN
XM3 = SUM3/N - 3.o*XRAP*SUMiSq/% + 2.O+X AG* 0

C
IF (TRACE .EQ, VON*) WRITE (5,903)

903 FORMAT (t STAT3')
C

IF (N .LE. 2) RETURN
C
C COMPUTE SKEW COEFFICIENT
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IF (XVAP .GT. 0.00001) GO TO 100
XSKEW = 0.0
GO TO 999

100 CONTINUE
C

FACT3R FLOAT(N*%)/FL1AT - 'J-2 )
XSKF= FACTOk*Xv3/(XVAn*S1FT(XVA1)

C
IF (TPACE .Et. '3AI) WRITE (5,90'4)

90 FORAT (I STAT49)
IF (TRACE .EC. 'u') *RITE (5,905) , AKi, FACTCr-, XVt

905 FORI'AT (110,3(E12.5,2X))
999 RETURN

END
C
C........................ ...............

c
SUBROUTINE HGRAM (H,1AXUTBASE)

C

C SUBROUTINE TO UPDATE THE FRELUENCY HISTCG: AM
C

COMMON /Io/ INISIb
INTEGER H
DIMENSION H(IA)

C

UO 100 I = 1,1A
IF(X.GT.bASE+I*DT) GO TO 100
H ( I ) = H ( I ) + I
RET URN

100 CONTINUE
C

H(I) = H(I) + 1
AMAX = BASE + IA*DT

C
WRITE (IS,900)AMAXX

900 FoRtIAT (1H ,A VALUE GREATER THAI *E12.5q* WAS FGUN.a X .
1 E12.5)

C
RETURN
END

C
C .............................................-..

C

SUBRHJTINE PRItijTH (H,NMAXDTBASE TITLE ,NDATA)
C
C PRINT OUT NORMALIZED HISTDGRAMS OF GE 4ERATED DATA
C
C
C

COMMON /10 / JN,TL ,
C

INTEG[R Hi
- U;ENSION HBN:iAX )
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') I ME CN S 1 N
CIMIENSION

TITLE( 1
1 A( 10)

C
C N ORMALIZE THE HISTOGkAM ELEMENTS
C
C GO TO 60

DO 50 I = 1,NMAX
N H(I)
X 100.0*(FLOAT(N)/FLOAT(NDA1A))

CALL ROUND (X,1H)
C IF(JAAX.E . 11)l'RITE( ., D01) IvN ' X9%9X, 1H

501 F 0R SA T (15 *1 X ,15,1 X,11 ,11 X qE 12. 1 X I1 1-)
H(I) = IH

50 CONTINUE
60 CONTI:4UE

WRITE (ISq10)
910 FO R MAT (1H1,1S(5H )/1H+,1 7(H fh

;RITE (IS,9000) (TITLE(I)9I=1,S)
900 FORMAT (1lti ,14X,9HI STOGRA> OF ',5A5,9 (OEFRCE T)t/)

DO 100 J = 1,NAX,10
IMAX = 10
IF( J+10 .GT. %MAX ) IHlAX = N'AX - J + I

GO TO 199
196 DO 198 I1,IAX

I? = II + j - 1
WR ITE (5,197) IZ, IIJ, IiAXN7AXH(IZ)

197 FORIAT(5I5,120)
198 CONT INUE
199 CONTINUE

FRITE (IS ,200)(H(I+J-1),I=1 NAX)
200 FORMAT (IH 910(2X9I5))

WRITE (IS,300)
300 FORMAT (1H ,10(7H--------

DO 350.K = 1,10
350 TA(K) = (K-1+J)*DT + BASE

WRITE (IS,400)(TA(K),K=1,10)
400 FORMAT(1H ,10(1XF6.2)//)

100 CONTIVUE
C
C

RETURN
END

C
C.......................... 0* .... *...............

C

C
C

C
C

C

C

C

C

C
C
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C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

DOUbL L
DOUBLE
DI MENS
DIMENS

PRECISI ON
PR E C I S 1 N

ION PDF(1)
ION RHO(l)

CLEARR AUTYP
ISOLRD,DEBUG(1)

, COORD(l)

,CCUAR(1),CCSD(1)s3 TA(1), -Ar'(1)
INTEGEH SEASON(1)
INTEGER RJD
CO"MO' /3R5IT/ PHI,TtiETASTHETALEPETt
COMMON /RTYPE/ RAL;TYP
COMMON /SEED/ ISEED
COMMON /DBUG/ 1'BUGDE3UG
COMMON /10/ INISI
DATA ISOLRD /9'OLRAD'/
DATA CLEAR /OCLEARSKYO/

C
C
C COMPUTE DECLINATION, SUNiISE AND SUNSET
C

CALL DECL (RJDDELTASRSS)
C
C
C SCREENING TO DETERMINE THE PROPER INTERVAL OF INTEGRATION
C

IF (ST2.LE.ST1) GO TO 100
IF (STI.LE.SR.AND.&T2.LE.SR) 60 TO 120
IF (sTI.LG.SR.AO.ST?.Gr.sR.AN .J12.LE.%) GD TO 130
IF (STI.LE.SR.AND.5T2.GE.$S) GO TO 140
I (ST1.GE.SR.ANC.ST2.LE. S) GO 10 1 ,
IF (STI.LE.SS.AND.ST?.GE.S) GO TO 160
IF (ST1.GL.SS.AND.ST2.GE.SS) GO TO 120

C

SURROUTINE SOLRAD (RJD ,STIST2,TTRs.iAXCCACCB,DF ,bC 'V 'D,
SWR,CLDBETAGA',CC bARCCSDRH0,SfAS%:)

SUBROUTINE SOLRAD COYFUTES VNCIDE4T SOLAR
PADIATIO.; 01. THE GROJwU OR 9Y THE TOP 'F A
VEGETAL CAtUPY DURINO A SPECIFIED INTErFVAL OF TI<F

STI = eEGINNING OF IriTERVAL - STANDARD TI'
ST2 = END OF INTERVAL - ZTANDA,) TIAL
CSKY = CLEAR SKY RADIATIO. - LANGLY
CLD = CLOUD COVER (0.0 - CLD - 1.c)
S'R = TOTAL INCIDENT SOLAR RADIATION - LANGLY
SR = SU'jRISL
SS = SUNSET
TI = PEGINING OF ITERVAL OF INTEGrkATIO - LOCAL HOUR AN1
T2 = END OF IJNTERVAL OF INTE3RATION - LDCAL HOUR A'GLF

RJD = RELATIVE JULIAN DATE
SIALPH = SIN(ALPHA)
PDF = PROBALILITY DENSITY FUNCTION ([I CRETF)

FOR NOISE TERv IN CLOUD COVER ;'EL
RADTYP = INDICATES IF USER WANTS CLRSKY CALCJLATIOS ONLY
COORD = COORDINATES OF THE INTERVALS OF FkJF
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C ST2 IS IN THE AM WHILE ST1 113 TILL I P-1
C

100 CONTINUE
IF (ST2.GT.SR) GO TO 160

C
C NO SHORTWAVE RADIATION IN THIS INTERVAL
C

120 CSKY = 0.0
TI = TAU(T1)
T2 = TAU(ST2)
SIALPH = 999.
GO TO 800

C
C PART OF INTERVAL COMES AFTER SUNRISE. SET --:E^1;NNING
C OF INTERVAL EQUAL TO THE LOCAL HOUR AVGLE *2F I UI$E.
C THEN CONVERT ENDING TIME TO LOCAL HOUR ANGLE.
C

130 TI = TAU(SR)
T2 = TAU(ST2)
GO TO 500

C
C INTEGRATION INTERVAL INCLUDES ENTIRE INTECVAL FROM SUNRISE
C TO SUNSET
C

140 TI = TAU(SR)
T2 = TAU(SS)
60 TO 500

C
C INTEGRATION It4TEPVAL IS F TIRELY ITHPI: SWNZHIfE PEPIU -
C

150 TI = TAU(STI)
T2 = TAU(ST?)
GO TO 500

C
C ENDING TINE OCCURS AFTER SU'SET
C

160 TI = TAU(ST1)
T2 = TAU(SS)

C
C COMPUTE CLEAR SKY SOLAR RADIATION POR THE
C INTERVAL Ti TO T2
C

500 CONTINUE
CALL CLRSKY (RJD.T1,T2,NMAXCSKYSIALPHrJ:LTA)

C
C DETERAINE CLOUD COVER
C

800 CONTINUE
IF (RADTYP.EQ.CLEAR) GO TO 900

C GO TO 801
CALL COVER (RJDCCACCGP0FNCOORDSEASO.,TRT, 3ETAGAMCCPAR,
1 CCSURHOCLD)

R01 CONTINUE
C
C COMPUTE CLOUDY SKY SOLAR -ADIATION
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C
= CSKY*(. - 0.5*CLD*CLD)

GO TO 950
C

900 SWR = CSKY
C

?50 CONTINUE
C
C DEBUG OPTION
C

IF (N3UG.EG.0) GO TO 1100
DO 1000 1 = 1,9J'UG

C
IF (DEDUG(I).NE.ISOLRD) GO TO 1000
WRITE (IB,1050)RJEST1,ST2,SR,$ST1 ,T2,

1050 FOR"AT (///,IH %*SUCBROLTINE SOLRAU*,2Xv

1 I4,2X,ST1 =*,F7.3,2XsOST2 =',F7.3,X9
2 F7.3,2X,'SS =,F7.3,2XsT1 =',F7.3,2X,
3 F7.3/T20,'CSKY =',F12.2,2X,*SIALPH =9,
4 2X,'CLD =fF7.3)

1000 CONTINUE
C
1100 CONTINUL

RETURN
END

C

CS A"I ALPHt CL5

F8. ,

C ...... ........................... 0. .. .. . 00.* 0*.00.0.0.0 .0

C
C

SUBROUTINE CL R:KY (RJDT1,T2,N'AXCSKYSIALPH,9ELTA)
C
C SUBROUTINE TO tUMERICALLY ITEG<ATE THE
C EGUATION FOR CLEAR SKY RADIATIO'4. SIMPSO 'S
C RULE IS USED.
C

DELTA = DECLINATION OF THE SUN (4ADIA.J)
PHI OBSERVERS LATITUDE (RADIANS)
E % = TURBIDITY FACTOR

= 2.0 FOR CLEAR MOUNTAPN AIR
= A-5 FOR SMOGGY URBAN AREAS

W = SOLAR CONSTANT = 120. LANGLY/HtF
v IS READ IN AS A VARIA;LE TO ALL1iW THE USEF.
WHICH VALUE OF d IS APPROPRIATE.

RJD = RELATIVE JULIAN DATE
T1 = HOUR ANGLE AT EEGItNIf.G OF INTENVAL
T2 = HOUR ANGLE AT LED OF IfiTERVAL
N;MAX = NUMBER OF SUBINTERVAL. = 2949,6 .
CSKY = FINAL VALUE OF F I CLEAR SKY RADIATION
SIALPH = SIN (ALPHA), WH1EPE ALOHA IS THE ANGLE

OF RADIATION ', ITH THE HO'IZONTAL (RAUIANS)
ALPHA = ANGLE OF RADIATION (RADIANS)

REFERENCE
TI

FOR SimPSONqS RULE
PROGRAMMABLE 58/517 MASTER LIBRA;Y

TO CHOOCE

TEXAS INSTRUMENTS INCORPOPATED, 9

C
C
C
C 1977 P29-31
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C
COM 11ON /DRUG/ NGLJ~,DLHJUG
COMMON /ORBIT/ PHI, THETAS, TH LTALFPET,
COM ON /ATMDS/ EN
COMON /10/ If.,1SIB
INTEGER RJD
DOUBLE PRECISION ICSKYO[CLIG(I)
DATA ICSKY /'CLbSKY'/

IS DEBUG REQUESTED FOR SUDIROUTINl CLRSKY?

IHUG = C
IF (C6UG.EQ.0) GO TO 910
DO 900 I = 1,NEUG

IF (DE9UG(I).NE.ICSKY)
IBUG = 1
GO TO q10

900 CONTINUE

GO TO 9CO

C
910 CONTINUE

C
IF (IUG.EQ.0) GO TO 10
--RITE (Ib,930) RJDT1,T2,MAX

930 FORiAT (////,1HO,'SU[,R3UTlNE CLRSKY',2Y, Ji = ,
1 15,2X,'T1 =',F6.,'IT2 =',F6.3*2X,'NMAX ',I )

C
10 CONTINUE

C
C
C DO LOOP PERFORMS
C

x = 0.0
F=0.000
IMAX = NMAX + 1

C
C

D = (T2 - T1)/NMAX
IF*(D.GE.0.0) GO TO
D = ( 6.26318 - TI +

70 CONTINUE

INTEGRATION BY SVIPSON'S -'ULF

70
T2 )/NMAX

C
C

DO 100 NN= 1,IMAX
C

N=NN-1
C
C COMPUTE CURRENT HOUR ANGLE
C

T = Ti + N*D
C
C COMPUTE SIN(ALPHA)
C

SIALPH = SIN(DELTA)*SIN(PHI) + COS(DELTA)*COS(PH)*CCCS(T)

C
C
C
C

C
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C
C CHECK TO PREVENT DIVISION BY ZERO OR USIV; ZER0
C AS THE AR&UME.T OF A LOG FUNCTIO4
C
C
C
C CONSIDER THE TERM
C
C
C Y = ( 0.128 - 0.054*ALCG10(I./SIALPH))
C IHEN ALPHA APPROACHES ZERO, THE DECAY FU"CTI2- STARTS TO : 2 uA.

C THIS OCCURS DUE TO POLES THAT EXI! T AT THL EKE c OF ThL INTE vAL
C OF INTEGRATION. AN APPROXIMATION TO THF DE CAY FUNCTICN f A
C rADE THAT CONSISTED CF A STFAIGHT LINE EXT:AF-LATTO% OF TiE
C DECAY FUNCTION FR9- ALPHA = 0.016 TO ZERO.
C
C

ALPHA = ASIN(SIALPH)
IF (ALPHA .GT. 0.C16)
IF C ALPHA .LT. 0.0 )
IF ( SIALPH *LT. 3.0

GO TO 40
ALPHA = 0.0
) SIALPH = 0.0

X = 1.293454*ALPHA*SIALPH

GO TO 45

40 CONTINUE

X=(EXP(-EN*(0.128 - 0.054*ALOGI(1./SIALPH))/SIAL H))*:.IALPH

45 CONTI:UE
C

IF (MOD(N,2).NE.0) GO TO 200
M=2
IF (N.EQ.0) M=1
IF (\.EQ.vMAX) M=l
F=F + M*X
GO TO 50

C
200 F=F * *X

C
C DEBUG OP ION
C

50 IF (IBUG.E(.0) GO TO 100
WRITE (IB, 9 20) ,NTSIALPH,XF

920 FORMAT (1H ,T2:,'N =',I4,2X,'T =',F6.3,2X*SIALPH =', F6.2,
1 2X,'X =*,El2.3,62X,'F =IE12.3)

C
100 CONTINUE

C
F = F*D/3.0

C
C COMPUTE CORRECTION FACTOR FOR ELLIPTICAL 'F1T

C
C

C

C

C

C

C
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1.000 + 0.017*CIS(6.2832*FLOAT(186 - *Jr-)/3b.)
C

CSKY = (12.0*60.0/3.1416)*F*W/(R*")
C

C DEBUG GPTION
C

IF (QBUG.Eu.0) GO TO 300
WRITE (IB9' '40) Fq- ',vWoC KY

940 FORMAT (1H ,T25,F =tE12.3,2X,s ,F6.3,
1 ow =',F8.3,2X,'CSKY =,E12.3)

300 CONTINUE
RE TURN
E ND

C
C.......................
C
C

SUEROUTINE COVER (RJDA
1CCSDt HO, CL )

C
INTEGER RJDSEASCN(1)
DIMENSION PDF(1) ,C'ORD(1)
DI' ENSION Rh0( 1) ,CCRAR(1),CCSD(1),BETA(),CA1)
COMMON /CLDCOV/ Cl
COMMON /LEAP/ LCHECK
COMMO\ /SEAS/ %SEAS
C0MM.0% /Di3UG/ 'IBUGDEBUG
COMMON /10/ INISI3
COMM0ON /STORMS/ STORM
DOUBLE PRECISION ICOVER,uEBi!G(1)
DATA ICOV;R /COVER'/
DATA ON/0N*/, OFF/'OFF'/

SEASON = ARRAY CONTAINING RELATIVE JULIAN UATES OF ThE FI-$.T DAY
OF EACH SEA2ON

PDF = DISCRETE PRDABILITY ESITY FUNCTIO% OF CLOUC Cr VER
COORD = COORDINATES OF PDF (I.E. INTERVAL')
N = NUBLR OF INTERVALS IN PJF. DIMENION 2F PCF

AND COORD IS N* (NUMBER OF SLASO.S OF CLOUD
COVER PARAMETERS)

ISEAS = CURRENT SEASON
TB = TIME BETWEEN STORMS (HOURS)
T = TIME SINCE LAST STORM (HOURS)
CCBAR = MEAN CLOU COVER
CCSD = STANDAPD DEVIATION OF CLOUD COVE:
RHO LAG-1 AUTOCORRELATION COEFFICIEiT
BETA = TRANSITION DECAY PARAMETLR
GAv = TRANSITION DECAY PARAMETER
NSEAS = NUMBER OF SEASONS PER YEAR
ARV = RANUOM VARIATE FOR THE NOISE TERM IN THE CLCULJ C:')VER

MODEL
Cl = PREVIOUS VALUE OF THE AR(l) PROCES
C2 = CURRENT VALUE OF THE AR(i) PROCESS
V. = VALUE OF THE MODULATION FUNCTION

C

C

,BPDFqN9CGORD,9SEASCNT T %'ETA,9GAV ,CC- 4,
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CLD = CLOUD COVER

DETERMINE THE CURRENT SEASON

IF (NSEAS.GT.I) GO TO
ISEAS = 1
G3 TO 150

50

50 COGTINUE
IF (RUD .LT. SEAS3t( SEAS+LCHECK*NSEAS)) C) TO 6C

ISEAS = NSEAS
GO TO 150

60 CONTINUE

DO 100 1,NSEAS
IF (RJD.GE.SEASO!,(I + LCHECK*NSEAS))
ISEAS = 1-1
GO TO 150

100 CONTINUE
WRITE (IS,160)

160 FORMAT (IPL,///,'SLASO4 SELECTIO'j FA
STOP

150 CONTINUE

COMPUTE STOCHASTIC COMPONENT

ARV = ARVA(PDF,N,A,B,COOR),ISEAS)
C

C2 = RHO(ISEAS)*C1 + ShRT(1.-kHO (IS
I (ARV - CCBAR(ISEAS))

C 2 + CCBAR(ISEAS)*(1. - RliO(ISEAS))

GO TO 100

ILED I ' JFRCUTPA COVEi ')

CHECK TO SEE IF A STORM
MODULATION FUNCTION. IF
THE MODULATION FUNCTION.

IS GOING UN.
STORM IS 0,4,

IF (STORM .El. OFF) GO TO 200
CLD = 1.0
GO TO 300

200 CONTINUE
C
C COMPUTE MJDULATIOj FUNjCTION
C

E AS) *, I f,(I -" A ) )*

IF NO :- rt .* Co( UL!T[ Trl
SET CLJ 1.0 ANd iY-PA-'

BEXP = bLTA(ISEAS)*T
GEXP = GAM(ISEAS)*(Tb-T)

CHECK TO SEE IF LEXP OR GEXP WILL CAUSE A MAC11NE
UNDERFLOW WHEN USED AS THE ARGU'IE.,T IN THE EXP FUNCTION.

IF (BEXP .GT.
IF (GEXP .GT.

37.0*ALOG(10.)) 3EXP =37.0*ALfol(10.O)
57.0.ALOG(10.)) GEXP =37.0*ALOG(10.0)

C

C
C
C

C

C
C

C
C
C
C
C

C
C
C
C
C

C
C
C
C

C
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P = (1.0 -cXP(-6EXP))*(I.o -EXP(-GEXP))

COMPUTE AVERAGE CLnUD COVER FOR INTERVAL

CLD = CCBA-UISEAS)
IF (CLi.GT.1.0) CLU
IF (CLD.LT.O.0) CLD

300 CONTINUE

+ (1.0 - CCBAP(ISEAS))*(l.0 -P) + C2*P
- 1.00
- 0.00

C

C DEBUG OPTION
C

IF (NBUG.EQ.0) GO TO 910
DO 900 I = 19ENBUG
IF (DEUG(I).NE.ICOVER) GC TO 900
WRITE (.IB,2O) RJDvISEASC1,C2,A<V 9PCL.D

920 FORfIAT (///IH ,'SUbROUTINE COVER ,2X,tJ) =9*15,2X
1 *ISEAS =9,14,2X,'C1 =09F7.3,2XC2 =6,F7.3,
2 'ARVA =9,F6.3,2X,*P =',F(.3,2X,'CLD =',F5.3)

C
WRITE (IB,930) BETA( I'EAS) ,GAr(ISEAS) ,TT

930 FORMAT (1H ,' ETA= ',E12.5,2X,'GA= ,E12. ,2X,
$ 'TB= ',E12.:,2Xv9T= ',E12.5)

900 CONTINUE
C

a1n CONTINUE
C
C SAVE CURRENT VALUF OF THE STOCHASTIC CO''PONE',T F31,
C USE I'4 THE NEXT TISE PERIGD
C

Cl = C2
C

RFTURN
E D

C
C.............*.. ...................... ... . . ..*.. -.*-*. . -- -

C
C

FUNCTiON ARVA (POF,N, A,E,COORD,ISEA;)
C

FUNCTION ARVA SELECTS A RAN')OM VA9'1ABLE Fi<)N
ARBITRARY DISCRETE PkD-BABILITY "ASS FUNCTILN

PDF
N
A
B
I SEED
COORD

REAL P
COMMON
COMMON

A f

DISCRETE PRObABILITY lDNSITY FU\CTIO
NUMBER OF INTERVALS
LUWER LIi1IT OF UJ(APB)

UPPER LI4IT OF U(AB)
SEED FOR RANDU
CONTAINS COORDINATES CF THE INTEKVAL&
OF PDF. (COORD(I-1).LT.X.AD.X.LE.CCOOD(I))

DF(1),
/SFED/
/DBUG/

PEAK, CJORD
ISEED
NBUS',DEBUG

(1)

C
C
C
C

C
C
C
C
C
C
C
C
C
C
C
C
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COMMON /10/ INqISIB
DOUBLE PRECISION IARVADEbUC(1)
DATA IARVA /OARVA#/

FIND THE PEAK OF IuE .DISTIOUTIO,

PEAe = 0.0
00 100 1 = 1,
IF (PDF((ISEAS-1)*'. +I).GT

100 CONTINUE
.fEAK) PEAK rPSF((ISAS-1)\ +1)

C SELECT THE FIRST RANDOM r NUMkER FROM U(At3)
C

150 IX = ISt ED
CALL RAND1 (IXISEEDR)

C CALL RANOU (IXISLEDR)
Ul = A + (S-A) * R

C

C FIND WHICH INTERVAL U1 BELOGS TO
C

DO 200 1 = 1,%
IF (U1 .GT. CO0RD((I3 EAS-1)*N + 1 ))
J= (ISFAS-1)*fN +1
GO TO 300

200 CONTINUE
WdRITE (IS,250)

250 FORMAT (1H1, SULRO)TINE ARVA -- U1
10THAN THE MAXIMUt.U INTERVAL FOR THE DI

STOP
300 CONTINUE

C
C CALCULATE THE SELECTION CTITERION

C
F= PDF(J)/PEAO"
IX = ISEED
CALL RAND1 (IX,ISEEDU2)

C CALL RAND' (IXISEED,U2)
C
C DEB.UG OPTION
C

IF (N8UG.EQ.0) GO TO 600
DO 500 I =1,TBUG
IF (DEkUG(I).NE.IARVA) GO TO 500
WRITE (IDq550) PEAKtklU2,F

550 FOR'AT (///lH ,'FUNCTION ARVA',2X,'PEAK

1 'U1 =',F6.3,?X,*U2 =*,F6.3,2X,'F =9,F6
500 CONTINUE

T3 2LUC

I G A E ,

SC-ET E KF')

Fe s~ .
.3)

600 CONTINUE

ACCEPT OR REJECT U1

IF (U2.GT.F) GO 10 150
ARVA= U
RETUR \4

C
C
C

C

C

C
C
C
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END
C
C.. . .. . .. . . ( p C vA 'V. . . . . . . . . . . . . ........ . ......

SUBROUTINE MARkKOV (N,PDF,COORU,A,s,XBAR,XrDEV,XHO,XLAG1,K, X)

AARKOV IS A GENERAL ROUTINE TO CO(>PUTE A S
GENERATED HY A FIRST OROE, MARh.OV Pi'OCESS.

TOCHASTIC VARIATE

DIMENSION PDF(1),CORD(1),X8AR(1),XDCV(l)RRH (1)

"SEAS = 1

GO TO (200,300) K

200 CONTINUE

SECTION 1 -- USE THIS SECTION WHEN ARV IS
AN ARRITRA:Y PDF WITH EA. =
STANDARD DEVIATIO I X'EV

iELECTL) FRO[
XbA A:J

C DETERMItNE THL RA LOM VARI ATE
C

ARV = ARVA (PDFNARCODMSEA,)
C

X XAR (NSEAS) + AS XHC(NSEAS)*(XLAG1 - X'AK SEES)) +
- hT (.-X Ho NS A)*XRho SE AS) )*A'-A~-V-x An (:V:E ) A S )

C
C

GO TO 800
300 CONTTINUE

SECTION 2 -- USE THIS SECTI01: WHE- ADV
STANDARil.EU NOrMAL DITfR

ARV = ARVA (PDFN,AFRCOORD,NSEA-)
CALL NORMAL (ARV)
X= XBAR(NSEAS) + XRHo(NSEAS)*(XLA&1

$ . SC<RT (1. 0-XRHO(NSE AS)*XRHO (USEAS

I:>c RA'- A
IBUTIt C \(0, )

)

- X3As i!'EAS)) +
) ) * ( A v*Xfi[V(NJZEAS) )

PO0 CONTINUE

XLAG1 COULD BE SET E'UAL TO X AT THIS FltINT O'f CHECKEJJ FO;
NEGATIVE %.UMBERS. HOWEVEr THE NATURE 07 ThlEE CHECKS CEPE4hS
ON THE VARIATE BEING GENERATED. THEREF-IRr:, THKSE CHECKS ANE
MADE IN THE CALLI'4G ROUTIhE WHERE THE T)ENTITY OF THE VARIATE
IS KNOWN ALONG WlITH THE PECULIARITIES ASSCIATLD %ITH lT.

IDEBUG = 0
IF (IDEGUG .EQ.0) PETURN
WRITE (5,100) X9AR (NSFAS) ,XCEV (NSEAS) ,XRH')(NSEAS) ,ARVXLAL1,X

100 FORMAT (/IX,6(E1I.4,1X))

C

C
C

C
C

C

C

C
C
C
C
C

C
C
C
C

C
C

C
C

C
C
C
C
C
C
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RETURN
END

C
C ..................................................

C
SUBROUTINE LVMITS (OTSL,R,S,TO,RHO,T12,SIc''A,T 3)

C
C FIND LIMITS FflR TE>PEP.ATLRE IN1EG9AT ION
C

To= - DTSL
T23 = 23.00 - [DTSL

C
IF (DTSL.LT.O.O) GO TO 50

C
C FIND LIMITS OF INTEGRATION WHEN~ OBSERVER. 1S
C WEST OF THE STArNDARD MEIU1AN
C
C FOR SUNRFISE
C

RHO =AINT(R+..) - DTSL
IF (RHC .LT. Rt) RHO = RHO + 1

C
C FOR SUINSET
C

SIGMA AINTCS+1) - DTSL
IF (SICMA .LT. 5) SIGM4A = SIGMA + 1

C'
C FOR LOCAL NOON
C

T12 = 13.0 - DTSL
C

GO TO 75
C

SO CONTINUE
C
C FIND LIMITS OF INTEGRATION WdHEN OBSERVFR
C IS EAST OF THE STANDA"D MEFIDlAN
C.

RHO = A1%T(R) - DTSL
IF (RHO .LT. F) RHO RHO + 1

C
SIGMA AINT(S) - UTSL
IF (SIGMA .LT. 5) SIGMA =SIGMA + 1

C
112 =12.0 - DTGL

C
7'3 CON TINUE

C
RETURN
E ND

C
C ....................-... .. ..o....----..---o---e .**

C
SUBROUTINF TEMPK (DELTA,PHI,B3, TPRIME, KO, Ki, K2, K3, K4, Kb, K'6)
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C
C SlBRtlf3UTINL TEpPK COfAFPUES THL
C FOR THF TEMPEPATURE EGUATION
C
C

DELTA
PHI
B
TPRIE
K0-K6
80-6
p
B2P2

REAL KOK
DIMENSION

B

B

B

Bo
B1

B2
F,3

COEFFICIE T.

ULCLI'4ATICN OF SUN IN RADIANS
LATITUCE IN RALI)ANS
VECTOR OF REGRESSION COEFFICIE'%T
YESTERDAY'S TE'PERATU E AT 11 rP!
COLFFICIETS IN TE*PERATURE EflUATIO';
EQUIVALENCED VARIAdLES WITH " VECTOR iLEMEf:TS
CONSTANT = 2*PI/24
INTERMEDIATE VARIABLE USED FREGUrTLY

l,2,K3,K4,K',K6
M(1)

(1)
(2)
(3)
(4)

P = 3.14159/12.0
P2P2 = i31*B1 + D*P

KO = TPkIVE

KI = BO/81

K2 = B2*SIl4 (DELTA)*SI.C(PHI)/,1

K3 = Bl*52*CCS(OELTA)*COS(PHI) /32P2

K4 = P*B2*COS(DELTA)*COS(PHI)/B2P2

K5 = .P*S3i*COS (DELTA) *COS(PHI) /P2

K6 = P*B1*B3*COS(DELTA)*COS(PHI)/B2.2

RETURN
END

C
C
C... ....... . ...... 0.... . . . * ...... . ..... . . ...... *..

C
SUBROUTINE TEMPS.N ( ST, [TSL, R,S,B, KO, 1,K2,3,K4,0t,K6,

$ CLD, KBAR, GTO, ''SP, DR, HTMPLAG, THAT, T )
C
C

INTEGER JOBUG
DOUBLE PRECISION DE3UG(I), DTEvPS
REAL K0,KIK2,K3,K4,K5,K6

C
C
C
C

CC
C
C
C
C
C
C

C

C

C

C

C

C

C

C

C
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REAL 10i,11,12,I3,4,15,I6, 17,

DTI ENS10N BC1)

COMM 2 N
CV*-'ON
CO % ON
co 10 v3

/ I NTEG/ I C, 11,12 p1 .5, 14,15, 16,17
/IQ/ I EAD, I RTr, I4SUG
/DBUG/ NPU&, DEHUG
/SWITCH/ S.ICHli SWICH!2

DATA DTEMPS / *TEMPSN I /

STATEMENT FUNCTIONS FOR

FUNCi(AB)
FUNC2(A)
FUNC3(b)

INT EGR ALS

K2*(EXP(1*A) - EXP(Ci*
EXP (31 *A)*(K3 *COS (P*A)
EXP (i3 1 * El ) * (K6* I N (P * 6 )

SET DEbUG FLAG

IDBUG = 1

SET ,,ITCHES THAT

I? ANIJ I,)

S )
+

)
K4e1 * i N ( * A) )
KS*C ;S( *b))

C
C
C
C
C

C

C
C
C
C
C

C
C
C
C
C

C
C

ArEL US.ED

SW:ICH1 = 1
SWICH2 = 0

B1
54
B 5
86
B 7

[3B(2)
z [3(5)

= (6)BC?)

= 8(7)
.= B(8)

C
C
C8000 WRITE (5,9000) (B(J),J=1,8)
C9000 FORMAT (1HO,'TEMPS B VELTOR6,5X,
C
C

4( E1 .*S , oX ) / T 2 0 4CE 1 2.5, X))

IF ( SWICH1 .Ei. 0 ) KDAk = 1.000000

P = 3.14159/12.00000

CONVERT STANDARD TIME TO LOCAL II'F

T = TAU(ST)* 12.0/3.14159 - 12.0

C

C

DETERMINL .HICH PTEDICTO.ES

C

C

C
C
C
C

C



.ANJ). T .LT. 0.0

.AD. T .GT. 24.
T = T + 24.00

) T = T - 24.00

) ,) TO 7
) C0 T) u

C
C
C IN ADOITION TO SU.RISE AND SU!SET DETERI'I THF LIAITS
C OF THE KANGES OF THE TEMPERATUkE E'JATIoN.
C

TO = -DTSL
T12 = 12.0 - DTSL
T23 23.0 - UTSL

C
TP TO - 1.0

C

IF(IDUG.E.0) ,,RITE (IRITE910)
10 FORMAT (1H ,T40p6(?XvElO.3)/)

THE FORM OF INTEGRALS 11,
FOR ALL TIMES OF THE DAY.
FORM DEPENDING ON THE TIME

CO4PUTE 11, 14,

11 = Ki*(EXPCB1*T)

14, 15,
12 AND
OF DAY.

I', A*:J 17 APF THE SA"E
I3 4ILL VARY I.:

15, 16, 17

- EXP('l*TP))

IF ( SWICHI .Ef. 3 ) GO TO 40

PP =(1.-FXP(-31))*EXP(E1*T)/B1
0G3 1.79E-8*(1.UO+0.17*CLD**2.)
14 = 84*QB*PP + 14

*(TMPLAG+4E0.)**f,.

40 CON TI4UE

IF ( S4ICH2 .EC. 0 ) Gi TO 50

15 = 35*GTO*PP + I5

50 CO'TIN4UE

C

C
C

C
C
C
C
C

C

C

C

C
C

C

C

C

C

C

C

C

C
C
C
C

C
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IF ( ST .LT. 0.5
IF ( ST .GT.22.5
IF ( T .LT. 0.0 )
IF ( T.GT. 24.00

5 CONTINUE

16 = B6*WSPkPP + If-
17 = 37*WDR*PP + 17

CALCULATE SUBTOTAL

TO i,q T 12 v.7, -l 3,sT '
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SUBTOT = 11 + 14 + 15 + IS + 17

IF ( T .GT. R ) G0 TO 1O0

Xi I1 G HT AiD 6EFoPE JUPISE

C
C
C~******* RA'GE 1 -- AFTER
C
C
c

GTT = SUBTOT
C

GO TO 900
c
C

100 IF C T .GT. R + 1.00 ) ;0 TO 200
C
C
C******** RANGE 2 -- FIRST HOUR CR FRACT10"' AF TE- SL.R Is
C
C
C
C

T2 = FU% C1(Tk) - FUNC2(T)
12 = 12*KqAR

13 = FUNC3(T) -
13 = KBAR*I3

+ FUNC?(R)

F U NC 3 C R )

C
GTT = 12 + 13 + SUETOT

C
GO TO 900

C
C
C

200 IF( T .OT. T12 ) GO TO 250
C
C
C******** RANGE 3 -- AFTER SUNRISE AND BEFORE NON
C

Qi = FUNC1(TT-1.0)
Q2 = FUNC2(T)
03 = FUNC2(T-1.0)

C

991

T12: FUNC1(TT-1.0) -
12 T12*KBAR + 12

FUNC2(T) + FU"NC?(T-1.C)

IF( IDBUG.E r.0) WRITE (1B'U ,991 ) KBAPR, 12
FORMAT (2x, *KSAR Yp 2([A2.59,X))

T13 = FUNC3(T) - f-UNC3(T-1.0)
13 = T13*KBAR + 13

C
C
C

C

C

C

C
C
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GTT = 12 + 13 + SUHT)T
C

GO TO f00
C
C
C

250 IF ( T .GT. T12 + 1.0 ) GO TO 1300
C

C
C
C******* iANGE 4 -- FIRST HOUK AFTER LOCAL 14Oi
C

T12 = FUNC1(TT-1.0) - FUN1'C?(T) + FUNC2(T-1.0)
12 = T12*KBAR + 12

C
T13 = FUNC3(12.0) - FUNIC3(T-1.0)
13 = TI3*KBAR + 13

C
GTT = 12 + 13 + SUDITOT
GO TO 900

C
300 IF ( T .GT. S ) CO TO 400

C

c
C
C

TI2-= EUNC1(TT-1.0) - FUNC2(T) + FU'JC2(T-1.P)
12 = T12*KiAr + 12

c
C

GTT = I, + 13 + SUr3TOT
C

GO TO 900
C
C
C

400 IF
C
C

C
C

T12
12

C
C

GTT
C

GO
C
C
C

500 CON
C

(T .GT. S+1.0 ) GO TO 00

RAINGE 6 -- FI7 ST HOUP AFTER SUNSFT

= FUNC1(ST-1.b) - FU'OC2(S) + FUNC2(T-1.0)
= T12*KBAR + 12

= 12 + I + SUBTOT

TO 900

TINUL
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C

C******** PANc&E 7 -- AFTER SUI.SET
C
C
C NOTE: 12 DCES NOT CHAf GE THE\i T .GT. S
C 13 DOES %3T CHANGE ArIEN 1 .GT. 1
C THUS USE ThE PREVIOUSLY CG-LJTED VALU F
C THAT HAVE EtE'j STOREP IN THE C ON /1
C

.0

FT' EC/
I' 1 A- ; 13

GTT = 12 + 13 + SUETOT

;00 CONTI'4 UE

NOW THAT THE FUCTION GTT HAS r'EEN
COMPUTE THE TE"PERATURL AT TI1E T.

990 FORiAT ( 2X, 'GTT *,8(E12.5,34))

EVALJATEf,

THAT- = K0*EX PC-b1*(T-TP)) + GT *CXP(-I *T

CP010 wPITE (5,9010) THAT,KO,B1,TTPGTT
C9010 FOR'-AT (iHO, 'TErPSN9, 6(L12.5,5X))
C
C
C

RETURN
5990 CONTINUE

C * *-*** ***7**** *** * * *** **** ** *****t* * ** ** ***

C
C-
C
C

****************************

DEBUG INFORMATION FOP TEPSN

C
WRITE (5,6000)

6000 FORMAT (1HI/2(1l+,100(1H )/)9IH+9,25( 4H***A ))

C
WPITE (5,6005)

6005 FORMAT (1H ,10(4H***),T'i4,UE"U(; TEPJN* T(1,I0(41**h*)//)

C
WRITE (5,6010)

(,010 FORMAT (1K ,*T
13X

C
WRITE (bC020)

T, TP, k, S
IML PAPA'-I.' fLR, ',7X,1.T,12X., IWP,1SX,1H;
,1H'/ I 5X ,4 )( ,F I .4))

C
C

C
C
Cr

C
C
C

C
C
C

C

112 9 , 1' I ,% I (, 917
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6-120 FOR 1AT (//1 H , 7X, ,0' ,1 X, 'K.1 * ,12X, 'K , 1. ' K , 12X,
$ 'K4t,12X, *K5' 12X,*K ')

c
WRITE (5960,50)K0,"IK1,KieK3,K49K5,K6

6030 FORMAT (1H ,8(3XPI1.4))
C

6040 FORNIAT

C

15 01I 0 )
I/,1H ,7 2H 60,12X 2H C,1X2XL7,)12x , 3,12iH)

12X 92H11t35 12 X, H B 6,12 X,92 HB)7)

C
WRI TE

63)5 FORMAT
RIT E

C

(b,6035)

(/I H 6X,3HCLD, 10X,6HTPLAG,9X,3Hv
(5, 603O) CL , TVPLAG, AS, WDR

WRITE (5,6050)
6050 FORMAT (//1H v6X,2,HGTT,

12 X,2HI ,12X
C

12X,2H11,12X,2H12,1
,2H16,1)X,2H1 7)

P XHAkR)

.X Y,1 2 H ,2 14

'.RI TE ( '-'96 03 0) GTTi 1, 12,I 3,9 4,jI ,I6 I7
WRITE (5,60t0)

6tC FOR"AT (//ill ,5X,4HTIIE,11X,4HTF-P)
C

4RITE (5,9 030) TTHAT
C

WRITE ( q,6070)
6070 FOR;;AT (//ill ,25(4H****))

C
C
C
C****** *** * * **** ****** * *** ***** ******** * **** * * * A A**** * ****,****

C ** ***** * *** ** *** ** *** ** * ** ***** * ***** ** *** A A*** A* A* * *** * * AAA A*

C
C

ENL)
C
C.
C

C

C
C
C
C
C
C
C

C

C

.. 00.................0................

SUBROUTINF LONGWV (TFITF2,TDF1,TI)F2,CLr1,CLF2,L4)

CO"IPUTE LONGWAVE RADIATI0%

TC.....TEMPERATURE IN DEGREES CELSIUS
CLLI....CLOUD CrlVER (C<= CLD >=1)
La.... .CCAPUTE1) LONGWAVE RADIATION
TDC....L.DEWPOINT TEMPEkATURE I!! DEG C
VP.....VtPOR PPESSURE IN MILLIbARS
SVP....SATURATED VAPOR PRESSU.RF IN MILLIBALS

REAL LW
C

COMMON /VAPCRP/ VP

WdRI TE ( 516050 ) (P ( '1),9 x-1,8 )



- 347 -

C
C
C
C CONVERT DEG F TO DEG C
C

TUAVE = (TDFI+TDF2)/2.
TAVE = (TF1+TF2)/2.l

TC (TAVE -
TDC (TDAVE - 32.O)*(b.0/9.0)

C
c
C CONVERT CELSIUS TO KELVIN
C

TK = TC + 273.16
C
C
C DEFINE THE VALUE OF THE STEPHE N-BGLTZ-Al CO"ST ANT
C (CAL/(Cr!**2 * * K**4))
C

S 0.826E-10
C
C
C DEFINE THE VALUE OF ATMOSPfERIC FiAISSIVTTY
C

CALL VAPOR (TCTCCVPq,,VP)
C

E =.0.70 + 5.9bE-05*VP*EXP(1500./TK)
C
C
C COMPUTE LON3WAVE RADIATION
C

Lw = E*S*TK**4.0
C
C
C ACCOUNT FOR CLOUDTNLSS
C

C C 1.0 + 0.17*CLD**2.0 )
C

LW C*LW
C
C
C COMPUTE TOTAL LONGWAVE FOR 3NE HOUR CIE. 60 INUTES)
C

LU= LW*60.0
C
C

RLTURN
E fiD

C
S...,...U ...................... .................................

C
SUflROUTItNE UEWSIM (COEF4JE'4LA G, TEMP,CL.U, .. IP, 4SF ,DEW)

C
C
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DE7ASIM U;rS THE FOLLOWING iODLL TJ GLNERATE

TD(T) = AO + AI*TD(T-I) + A2*TMP + A,5*CLD +

:4wP 114 TS

A4 +T A

DIMENSION ACOEF(1)

GENERATE TODAY'S DE4POINTS

DEW = ACOEF() +ACOEF(n)*DE4 * LAG +ACOFr( .)*TF>4 +
$ ACOEF(4)*CLD + ACCEF(5)*WDIR +ACOEF(t)*w-F

R ET UR N
END

a.. ........................... ...... ,0 * 0 *.Oeaee*................

N, 9A, 9 ,C,9D,9E,9A 'JMl XX T )SUBROJTINE MSTAT (

ACCUMULATE RAW SUMS AND RAW SU'AS OF SrJ4ARES ANJD CFGSS PRol'UCTS

D1MENS1ON AN,()CN,()LN,~SMtX(,)X5

00 103

LOA.)

X 1)
X 2)
X(3)
X(4)
X 5),

I =1,N

DATA INTO wURK

A I)

CCI)C( I
DCI)
E I)

AR RAY

COMUTE RAW SU"S

DO 200 J = 1,5

RAWSUM(J) = RAWSUM(J) + X(J)

DO 20J K = 1,5

XXI(KJ) XXT(KJ) + X(K)*X(J)

200 CONJTI.,UE

100 CONTIFUE

RETURfJ

C
C
C
C
C

C
C
C
C
C

C
C

C
C..
C

C
C
C
C
C

C
C

C
C
C

C
C
C
C

C

C

C

C

C

C
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C
C..
C
C

C
C
C
C
C

END

SU9ROUTINE FSTAT (IDIM,RAWSU,XXTiEA,.CIV AT,CO AT.'DATA)

COMPUTE THE M'EANJ VECTGR, THE C'2VAR IANCE .AT IX, AND THE
CORRELATION FATRIX

DIPE"J 1ION RA'AcJ9(TDIPl), XXT(ILI , D M , M A ( D V

DI MEN.SI.*rN MMT(5,:)
REAL MEAN,MMT

COMPUTE MLANS AND AVFNAGE CFOSS PRODUCTS

00 100 I = 1,101M
!EA\(I) = RASU(I)/:DATA

DO 100 J = 1,IJIM
XXT(JI) = XXT(J,I)/VLATA

100 CONTINUL

MULTIPLY THE Mr.AN VECTOP LY IT TRA1SPC.SF

00 200 I 1,II
DO 200 J 1,I1M

MIMT(J,1) = MEAN(J)*:,IEAN(I)
200 CONTI'UE

COMPUTE COVARIANCE MATRIX

DO 300 I = 1,IOIM
00 300 J = 1,IDI1'

COV'IAT(JI) = XXT(J,I)
300 CONTINUE

- MMT(JI)

COMPUTE THE CORRELATION MAT[fIX

00 400 I = 19IDI,
DO 400 J = 1,IDIP

CORMAT(J,I) = COVMAT(JI)/S 9 TC(COVMAAT(J,J)*C) MAl (1,1))
400 CONTINUE

C
C

R ETUP N
F ND

C
C........................................................ -
C

C
C
C
C

C
C
C
C

C
C
C
C

C
C
C
C
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SUBROU$INE RAWLAG (IDIJPFDATA, ll ,SUN! , U'l!.XhAFXVARvX KE f
$ ~N R,9R)

UPDATE ARRAY FOR AUTOCO RRLATION ANALYSIS

10I4.....:)IMINSTON OF DATA ARRAY AND 4AX LAG
JP.......POINTER FOR CURRrNT OR LATEST DATUM
DATA.....oDATA A~rmAY ( A 'CICULAr' QATA ARRAY )
R........SUM OF SQUARES ANDC) CROSS-PRODUCT ARRAY

DIMENSION DATA(IDII), R(IDI M )
COMMON /10/ INISIB

C
C
C
C
C

C
C
C
C

C

C

C
C
C
C
C
C
C

C

C

C

C

C

C

C

C

C

C

C

C

C

REFERENCE FOR THE EGUATIONS TO COLPUTE AUToCoRELATIoN:

HAAIJ, CHARLES T.;STATISTICAL METHOD: i. HYDROLOCY,
IOWA STATE UNIVERSITY PRLSS,19T7, PAGE 2'8, EQ (11.13)

IF (HUG .E'. 'ON') WRITE
910 FORP'AT (* RA.LAG19)

X = DATA(JP)
CALL STAT (XSU',SUMS'tSU

00 100 K = I,IUIM

IF (BUG .EQ. #ON*) WRITE
920 FORMAT (t RAWLAG2*)

IF (HUG .En. 'ON' )

(5,910)

M3,X3ARXVARX )KEi'o,'R)

(5,920)

w;RITE (Hs,900) KvJPIK

R(K) = R(K) + DATA(JP)*DATA(IK)

1K = IK - 1
IF (IK .LE. 0) IK = IK + IDIM

100 CONTINUE

900 FORMAT (1X,'K= 9,12,2X,'JP=,I2,2X,'IK=I,]?)

RETUR4N
END

BUG = 9OFF9
TK = JP

C
C

C
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C..............................................................
C

3U0ROUTINL AUTOCO (MLAG, RHG, XbAM-, XVAlv 'tN. TITLL)

DETERMINE THE AUFTOCiRRELAT1ON FUNCTION. THE 4xiNuh LAG IS "LAC.

C
C REFERENCE FOR THE E0UATIGOS TO CO(PUTE AUTIC VRELATIOr :

C
C HAAN, CHARLE S T.;STATISTIC:-L METHOD IN HY;-RGLCGY,
C IOWA STATE UNIVEHSITY PRESS,1977, PA5F 228, Fu (11.15)
C
C

C MLAG.....MAXItJM LAG
C RHO....... RAW DATA IN --- AUTOCORRELATION OUT
C X8AR.....MEAN OF CURRENT DATA TYPE
C XVAR.....VARIANCE OF CURRENT DATA TYPEe-
C NN.......NUMHER OF DATA POINTS 114 "nTH
C
C

DIMENSION RHO("MLAG)
DIMENSION TITLE(i)
COMMON /Io/ It, IS, IB

BUG = 'OFF'
IF (BUG .EA.
IF (6UG .Erl.

0ONt) 'RITE
'ON') kRITF

(IK,1900)
( I ,ti )910)

(TI'LF(,i),
(RW3(Kl),K= I 4:LAC),jA

XVAC

DO 100 K = 1,MLAG

RHOCK) = (RH0(K) - NN*XbAt*XDAP)/(('JN-1)*X A )

100 CONTINUE

IF (BUG .En. 'ON') '*;RITE kll,9910) (PM:(K,,K:1,PLAC)

MAkITE (IS ,900)
900 FORMAT (1H1,15(5H

WRITE (IS,910) (TITLE(,-),,1,)
910 FORMAT (1H ,1X* ''A010CORKELATIO2' FUNCT1O% FJk *,A /)

WRITE (IS,920) (KK0,11),(<HO(K),K1,12)
920 FOR MAT (7XLAG ',1215/6X,13(5H------)/7X'H0

RI TE ( IS,992 0) Kt K =12v2 3) ( R HO ) K 13 24)
C
9900 FORMAT
9910 FORMAT

$

( IX,916 A5 )
(lXw4(6F1l0.2/)/lX,9Nt,= *, lo,5X,9XbA, I

t XVA(=A

',12F5.2/)

,F1 0.2,
,F1 0.2//)

Rf TURN
END

C
C
C

$
C

C

C

C

C

C

C

C

C
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C................................ .............
C

SUBROUTINE MARGA' (N,PDFC(OPD,A, PX'3A FXDF V.Xf HOSKE,XLAS 1 ,X, A.V)
C
C GLNERATE THE NEXT DATUm cF A FIRST O.iiDER @AR VV PROCESS WHFE
C VARIATES AkE GAMMA DI.T1'iUTE0.
C
C N........-l M.% ER OF O.:DI..ATES INW P'~F
C PDF...... ARR AY CONTAT I41 ELE 'E.INTS CF PROPAB1LI TY DI rTRILUTI ,:.
C FUNCTI1N4 (HISTO'JRAM FORV) 'wHICH I; n (0,1).
C CORoF.... CGORDINATES OF VDF
C A........LEFT BOUND OF POF
C 6........RIGHT BOUND OF PDF
C XbAR.....PPOCESS NEANi
C XDEV.....kPOCESS STA7)AR, DEVIATION
C XRH0.....PrOCE&S LAG-1 AUTOCoRRELATION C3EFFICIEFr
C XLAG1....*PREVl3US VALUE CF PROCESS o
C SKEW.....GA.AIA DISTR1.iUT1ON SKEW COEFFICIENT
C X........CURRENT VALUL OF THE PROCESS
C
C
C kEFERENCE:
C HAAN, CHARLES T.;STATISTICAL METHOD- INi HYDFOLCGY,
C IOWA STATE UvIVF4SITY PRLSS, 1977
C
C

DIMENSION P)F(1),COOFL(i),XL:AR(i),XDEV(1),XRHt(1),SKr (1)
C
C SET NUMbR OF SEASONS TO ONE
C

NSEAS = 1
C
C EVALUATE RANDOM COMPONENT DISTf\IF3!lTfD ACCO'DDiG Tt' PDF
C
C 10 ARV = AFVA (PDF,N,A,E,COHfjNSEAS)

10 CALL '0eRMAL (ARV)
C
C TO CONTFACT THE FROhLEF OF 7JDDF. SHIFT" IN A GEEATED TIM, -- E IF-
C WHOSE VARIATE IS SKEwLD AD HAS A HIGH (LG. 5 EA1ER THAI% .8) LAG-1
C AUTOCORRELATIOg CCEFFICIL T, RESTRICT THE USAGE 3F THE TAIL (F THE
C N(0,1) T 1AT CAUSES TV,.POBL E.
C
C BY RESTRICTING EXCUR1ONJS INT3 THE OFFENDIt.G TAIL TO Ab'3CLUTE VALJtE'
C BELOW 2.8, ONLY 0.26 PESCENT OF THE UISTqIBJTIO, IS FESTrICTEC.
C
C l. IF THE SKEW IS NEGATIVF, RESTRICT THE :EGATiVE TAIL OF %(0,1)
C 2. IF THE SKEkI IS POSTTIVE, RESTRICT THL P 'SITIVE TAIL OF %(0,1)
C

IF (A3S(AV) .LE. 2.F) GO TO 40
C

IF (ARV) 20, 40, 30
20 IF (S<Ew(jSEAS)) 10, 4 , 40
30 IF (SKEW(INSCAS)) 40, 409 10

C
40 CONTINUE
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a

EVALUATE RANDOM COMFONENT

CSE = (1.0 -XHC('SEAS)*A3..)(N\S~As)/
$ (1.0 - XHCO( EAS)*A2.2)*A1.5

E = (2.O/CSL)*dI.O+CE*AR
$ - 2.O/CSE

V/".0 - CSE*CSF/36.)*-J.C

C
C GENERATE THE NEXT VALUE OF THE PR! CClS
C

X X6AR(NSEAS) + XRH0(t.ZEA';)*(XLAG1 - X3A'(N&FA')) +
$ E*XJEV ('SEA S) *SRT (I.0- D(H 1 C EA A)*X tHo~ P NEAS) )

C

C
C XLAG1 COULD BE SET EGUAL TO X AT THIS POI>7T Ci CHECKED F'C

C NEGATIVE N UMItE S. H-O.EVER THE -NATURE CF iLE>E CHiLCKS -EPL LD
C ON THE VARIATE BEI4G GENERATED. THEREFCRE, THfSV CHEC s AIF

C MADE IN THE CALLIr rlOUTIE 'AHEPE THE I*E :TITY *)i THE VA'I TATE
C IS KNOWN ALOVi WITH THK PECULIARITIES A:SSCIATED ,ITH IT.

C
IDEU'G = G
IF (IDELUG .E';.0) LETL N
WRITE (5,100) XEA2(%ELAS),

$ ,SKEW,CSE,E
100 FORMAT (/1X,6(E11.4,1X))

RETUR'I
END

C
C ......................................................... a.......

C
SUBROUT INE PUNCH (IPUNCH, RAINN, VP, SPM , S ., L ., TE >P')

CONVERT THE DATA GENEHATLD BY THE CC-S "O[DEL
COM'IATA5LE WITH ILLY'S LANn? SURFACE MODEL.

10 O.ATA .ITH LNITz.

C *******************A**

C***~** INPUT VARIAbLEN
C****A***********i1#
C
C
C

C
C
C
C
C
C

IPUN CH
R AlI N '1

VP

SWR
LW
T F PM

UNIT NU'V'EP FOR OUTPUT DATA FILE
PRECIPITATIO IN MM/HR
VAPOR PRE2SURE iN MILLIARS

oIN5 PlED I N M/EC
SOLAR RA2I ATION It. LANGLFYS/HR
LCjNGW'AVE KADIAT10 : IN LA'GLEYS/HR
TEMPERATUrE IN DEC C

C A************************ ****A* **************

C * OUTPUT VARIAbLES ****A**A****A********A***A*A*** *****

C
C PRECIP ... PPECIP'I TAT ION IN Cf/SLE

C
C
C
C

C

C
C
C

**A*A******A*A*A**A*AAAAAAAA AA**AA*

* * * A** ** A A A **** A * * ** * A A * A * A** A * *A*

*AAAA*AA*A*A *A* A*A*A*A**A

*** A ** * A * A *

** A A * A. **

AAA*A*A****

X ,IEV ("":EAS),-pX;H3( tE S , R VXL A, 1,9X

..

..



C RnOVA ... ATfLR VA#-'Ojk Lf ; ITY 1. G;:AMS/C.*a:
C UA . 'I %) SPE E IN CM/* IC
C RADS ... SHORT*AVE RAPIAT1VM 114 LA'iGLEY/:EC
C RADLU ... LOGWAVE ADIATIV. I,% LANGLEY/FE C
C TEMPM ... TEPCPATUJN IPi DEG C
C
C+~***~************** ****** **************************

C

REAL i..
C.
C
C***** PNECIPITATIuON CCNVERSIcY
C CM/~EC z (MM/Hf)(C/1O:{)'(M3O0jEC)
C

PRECUP = RAIN/36O0.cc
C
C
C***** VAPJR DENSITY CQ;VEiRSI3'
C

C
C
C
C****
C
C

C
C
C
C
C

C

ar

RHOVA = (D.b22/2.876E+06) * VP / (273.16 + Tr>1CM)

W I11 SPEED CONVE14SIO.
Cm/.'LC = (M/SCC)*(10CM/M)

UA = JSPM*100.00

RADIATION CONVE LSIOc:
LAN'LEY/SE-C (LANGEY/Hi)*(H9/36,0.)

RADS = SWR/3600.
RADLD Li/3600.

C***** DATA OUTPUT SECTION
C
C WRITF

4R I TE
900 FORMIA T

C

(IPUNCH,90 0
(IPIJNCH.9O0)

(6E 1 0 * 3)

) PPfCIP, PHOVA, UA, A
RA~iMo VP , WSP'lg SWJRs L WA

C***A******~**************** ***********************************

C
RETUR4
END

C
C...................................................................
C

SUBRUJTINE PLOT (IM, IIH MIAXTE;PDElS I-',W RLCLDrAI ',
$ WSP,&.;IR ,STOR', IPL , T5, TE)

C
C DATA PLOTTING SUPOUTINE
C
C I?.......CURREiT MONTH

'kPDL '
TEMPv

T EM PM
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CJRrENT DAY
CURF 4 T V4OU9
;'A XI'lUM %Ui-ER GF LINES 3EF-ORE ;EW T:TLF An D HFA C I%"
T M PER AT J R F
DL4POINT TE-PERATU!E
SHOPT AVE AI A ATIO
LON'3 WAVL RADIATIO.Nj
CLCJD C(:.VE;
R AI:,F ALL
wIN'W SPEED
WIND CIPECTION
FLAG FOR WHI CH Ca 3IN ATIO 0F OATA I; PLOTlED
IPL = 1 TETMP, CEW, SR, 4t"L, CLC, A%[ )AI\ PLOTTED

IPL = 2 SWRo WfRL, CLL, RAIN PLOTTE'L
IPL = 3 WSP, WDIR PULTTED
O'/OFF FLAG TO DrTE 1INF. IF IT I RA Ik INO
BEGINNI:4 OF TET%-ERATURE R4,G4 F C'O GMViN.tATF cCLF
END OF TEMPERATUr<E RA'D FOR ORDINATE SCAL

DIMENSI ON SY'4HOL(135)
INTEGER CALC12)
INTEGER PPTE[ P, P:DEW, PP(Ff, PP;4R,

COMMO3' /L INES/ NL INE .
COMMO /10/ 11, I S, 1b
DATA CAL /31,28,31,30,51,ZO,31,31,30

PPL'WlP o PPCL

,31 , 3 0 ,31 /
C
C

IC =

C
C
C SET UP PAGE HEADINGS

IF (NLINES .GT. 0) GO TO 200

wRITE (lC9870)
870 FORMAT(1H1,11O(IH )/1H+ ,110(H ))

GO TO (100,120,140) IPL
A .0

100 CONTINUE
CALL ROUND
CALL ROUND

(TE, TF)
(T ,IT b)

C

C

C
C HEADINGS FOR PLOTTING 6 DATA POINTS
C

WRITE
880 FORMAT

wRITE
881 FORMAT

$

( IC,&60)
01H 9112(1H9*))

(IC,881)
(1H ,3Xq CONST RAItED TOCHASTIC CLIV.ATE SI NULATIO 0

I (CSCS) *,8X)

ID.......
I..
NM A X....
TEMP.
D E .. ...
S.iR .

.R L.
C L D......
k A IN.
SP......
D IR.....

I PL..

STOR lo...
T5.......
T E....

I-

C

C

C

C



WRI TL
882 FOR!,A

tR I TE
401 FORMA-

$

(IC,8F2)

( IC,9C1)
r (1H ,T1,tHOUI<LY TENPERATU-ES (DFG C)', T71,

I(LA NGLY/h0UR) v T105,'CLOUP (*)*)
I*ADIA TlO 0

WRITE (IC,9&2)
90' FOPRA r (lH ,Tl,*(T = TEMP, 0 7 DEW PT)',T ,'(S = S CFT 1AVE,

V O'L = LONG .AVF)',T104 ,****RA1l***')
INCR - 10
WRITE (IC,903) ( I,1=ITF,ITEI\CH), (II=28,20)

90 F0RP VA r (1H , 9T k, p511 GsTb0,4I10, 103,*0 .5 1 9
WRITE (IC,904)

404 F R.A f 1H l "/LL:HR.* j ( H--
$ 4H ---. , (H - - )

NLINES = 14LINES

GO TO 200

8
oV

C

C ** ** *** *** * *** * *** * *** *** ** * ** ** *** * * * * ** ** ** * ** **** ** *** * *** ** ** *** *

C
C

12% CONTI 'JUL
C
C W"ITE HEADINGS FOP 4 VARIABLE PLOT
C

RI TE
P90 FOR'AT
900 FOR*jAT

$

1C, 890)
(1H ,63(1H:))
(1H ,8X,' CON.CLPTUAL

9' (CSCS)
STOCHASTIC CLUATf

0' 8X)
WRITE (IC,900)
WRITE (IC,891)

891 FORMAT (18 ,63(1H:)/)
WRITF (IC,910)

910 F 3RtIAT (l9 ,TH , ADIAT10% (LA' LY/
UKITE (ICw9l1)

911 FORMA T (1H , TiS, ( HOR WJAVE, L
9*** RAIN **0)

WRITE (IC,912) (1,I=1V,70,20)
912 FORMAT (1H ,T6,4I10,T'4,0 .5

WRITE (IC ,913) , ,
916 FORMAT (IH ,M / D H . , (H -- )

HOUP) ', T5. 'CL CUL

1')

4H---.2(5H----+))

(*) )

C
NLINES = NLINES + 8

C
GO TO 200

c
C *** **** ** ** ****** ****** * ***** * ***** **** * ** ** * ** * *** * **** ****** *** *** ***

C
140 CO'ITINUE

C
C RFSERVED FOR HEADINGS FO

C
C

'.ID AND -WIND DIRECTIO!

C * * * * ** * *** ** *** * * * * *** * * * * 4 * * * ** * ** * * * *** * * * t * 1- ** * * * * **** * * ** * * * * * * * . * *

C

C

C-16

SI ItL A TI 10



- 3 -Z7- -

200 CONT14UE

DETERMINE PLOTTIN.G POSITIONS

INITIALIZE THE PLOTTI G POINT OFF'E T

PPOFF 1
IR I = 1

GO TO (210,220,230) IPL

DETERMINE PLOTTING POSITIONS

210 TT = TEMP
CALL ROUN2 (TTIT)

DO = DEw
CALL ROUND (DU,IDA)

ADD PLOTTING POSITIO' OFF'SET

FIRiT. CONVERT Tti TO UNITS OF :

TB1 = TB
CALL ROUND (T;i,ITis1)

ACCOUNT FOR THE OFFSET FPO' THE

ITB0 = IT91 - 5

ADD PLOTTING POSITION OFFSET

PPTE'MP IT -ITOD

PPDEA = ID, - ITb0
PPOFF 49 + PPOF F

C
IRMIJ4 PPOFF

C

IF (PPTEMP .GT. PPOFF)
IF (PPDLW .GT. PPDFF)

c
220 CONTINUE

C
.,W = SWR'/,.0
CALL ROUNI) (St,1SW)
WoL = w):)L/2.0
CALL ROUND (CW LI'L)

C
PPSWR = ISw + PPOFF
PPL WR = I WL + PPOF F
PP3FF = 44 + PPCFF

C
IF (CPSWR .GT. PP9FF)
IF (PPLWR .GT. PPOFF)

LFA'T SItE OF THE GRAPH 70 T?.

PPTE'P z PPOFF
PPjF z PPOFF

PP = PPC)FF
PPL P =PPDF:



6 rM p

CLDY = CLU*10.
CALL ROUND (CLOY91CL)

IF
IF

(ICLD .LT. 0) ICLJ 0
(ICLD .GT. 10) ICLl 10

PPCLD = ICLD + PP7 FF
PPOFF = PPOFF + 10

IF (PPCLD .r.
NPMAX = PPOF

PPDFF) PCLD = cPOFF

GO TO 20
C
C

C ****,**********************h*******~************~***********

C
C

230 CONTPIJE
C
C ESERVED) FOP SETTING PLOTTI.'G POS iTli'JS FCTR >1ND A\3 'WITD D1~'TCTI J.

C
250 CO\JTI'IUE

C
C~*******~***********h*******~***tt******i****** *****t******************

C SET UP SY'OL ARRAY
C

DO 300 I = 1,135
SYM LAI) = 1
IF (I .NE.
IF (1J'INE3S
SY M R I) =

3f0 CON TI UE

23) G(; TO 500
.GE. T'AX-1) GO

9,*

TO 0C%

GO TO (305 ,520*600 ) IL

30 5 CO1TI JUE
GO TO 31
IF (I )W'
DO 311 1
SYMR3O (I

313 CONTI UE
311 CONTI JE

.LT. 10) C0 TC 31
10D,IDW'10(

) 9I9!

DO 33) 1 FPtEvPPTEFPf
SYMBOLCI) -

330 CONTI JUE

SYMBOL(PPDEW) = 900
SYMe:E-OL. (PPTEP)= 'TT

320 CONTI JUE

C

C

C

c

C

C

C

C

C
C



DO 360
SYMBOL

360 CONTIl
SYMBOL
SYMBOL

I = IR-' I \,PPSWR
(I) = ^
LE
(PPS H.) = '$9

(PLnR) = VLO

SYmBOL(NOmAX) = $Is
SYMBOL(NPr-MAX-10) = *If
SYMBOL(PPCLD) = 9*9
SYMBOL(l) = 'It
SYMBOL(%PAX-54) = II'

C********************* *** 9

C
C

* ** * * * * * * * * * * * * * * * ** * * * * * ***** * *# * * * * * * * * * * *

IF (STORM .EQ. 'OFF') GO TO 370
C

NPMAX = NPvAX - 10
C
C PLOT DATA IF STORM IS 0NI'
C

GO TO (40,410) IPL
C

400 WRITE (IC,950)
950 FORMAT (H ,J2,

GO TO 500

'41n WRITE (IC,960)
960 FORMAT (1H ,12,

GO TO 500

#/ 912, ' :t 91 2 9014;'lo * * *9 9,4 el .1 X999)

I 1, 1H,( SYM601-( I),.I=1, P AX) 9, AP

*/* ,12-, * : , 1 2,4' A 1,f ** ** , F4 . 1 ,1X, ' )

370 CONTINUE

WRITE (IC,970)
970 FORIAT (1 9129

IM, ID,H,(SYMbOL( I ), 1 1,NPM AX)
'/9112 ' :, 12t120 41)

500 CONTINUE

NLINES = NLINES + 1
IF (ID.EQ.CAL(IM) .AND. IH.E(;.23)
IF (NLINES *GE. NMIP) NLINES = '

NLINES = 0

IF (NLINES .GT. 0) GO TO 600
GO TO (560,570) IPL

560 iRITF (IC,90i)
WRITE (IC, 9 303) (1,1=1 THqITEINCE), (II=2J9BO,-C)
GO T 0 6C0

570 WRITE (IC,913)
<RITEf (IC,912) ( , = 0 7 , 0

600 CONTINUE
RETURN

C

C

C

C

C

C

C



APPENDIX F

TEMPERATURE MODEL PARAMETER ESTIMATION PROGRAM LISTING
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C
C.. ............... ........- U.**..*-**.**.*** * . "

C
PROGR A . T EMPER

C

PPOCRAM TEMPER I
THE DETE"'INISTIC
IS CURREqTLY SET L
PERIODS Ar\L TO BE
IN ORDER THAT THE

PROGRAMMER:

US:~2 TO ESTI ATF
C0^POET OF THE

!P OR V ViTHLY PA'
USEG, J3ROUTINE
DATE COTiERS APE

DAVIT C. CURTTIS
NORTHEAST IVLR FO3FECAST
705 BLOOMFIELD AVE
8L00'FFIELD, CT 5 6 L,2

THE cGPESKI-I. Cu{FFICI -T F

rE PE ATU E l'EL. ThF 1 4
VETE- ESTI 'ATIO'. IF A Y T
",ATE I ILL HA1 E TO "E AMrIFIF

UPDATED RCPFPL'.

CE N TEl?

(203) 244-2520

INTEGER RANGE
INTEGE i SLASON(12)

REAL*R DEBUG(20)
REALAR TZONFTZ(4)
REAL K6AROR

r)IME N 3 T0
D I MEN SI ON
D1MEN S ION
DI MENS I ON
DIMENSION
C I MEN SI ON

X Y ( F) X X T 8 )
A (3.) 3(3)
T PR I ME (25), T HAT (2 5)
K5A2O3(2 ), ,RTEM'( 2?r),
WSPFED(25), DIR(25)
AC [EF(P), CJEF(8)

CLOJn(2 L)

s

C 0MMO / IC./ I r'E Ab,91 loR IT E-pI W ,U G-oIPAR l, I -C-s
CoMMo0N /UI'UG/ NFIG, .SEEUG
COMMON /SEAS/ NSEAS
COMMON /ORBIT/ PHlThETASTHETALEP9E:Tw
COMMON /SUN/ DELTA, DTSLv SRSS
COMMOA /JDATES/ JiJL;AT, JULREL, JiGP') JUL

,J:TART, JST.)P, JREND, JY~

COMMON /DATES/ IYR, 100, IDAY, LYR, L , L

COMMO* /YSTAT/ YSJA, YSUMS0% Y&EA4, RStYUAP

E , 
A%
AY

ORANGE, NXLPYi

DATA T7/8hEASTE.RN ,RHCE'4TRAL , HM0UTAI; , HP/CFC IC

3E T INPUT/OUTPUT UNIT NUM RS

IREAD
IdRIT E
IWBLIG
IPARM
IBCOE

21
5

23
24
25

C
C
C
C
C
C
C
C
C
C
C

C
C
C

C

C

C

C
C
C

C
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C

C
C
C CALL TRANSLATOR FP)GRA' FOR INTEFrACTIVE IN'PUT
C

CALL TQTE'P (IREAD)
C
C
C
C
COOOC300OGOOOOO3000000.......PFN........0C00000000000oo0o0CO(0
C
C DATA FILE DEFINITION:
C

DCCTP. DAT
DCCTyP.3UT
DCCTM0.0 UG,
DCCTMP.PRM
DCHCGF*DAT

OPE N
IF (I
OP E 4

8. CONTI
OPEN
cPEN
OPEN

INFUT DATA FILE
OUTPUT DATA FILE
DELU DATA FILE -
OBEFRVED DATA FILE
REGRESSION COEFFICIENT OUTPUT FILE

U 11T = IR EA 0 E V IC 0 S K 9 v C CE S S=*SEIG I F I LE 1 C CTI-*P. T'
,91TE .EZ. ') GO TO P

UNIT= I RI TF 9DEVICCE= IUSK IACCESS=9SEG-OUT't FI LE= IDCCTvir.0*0LJ )
UE
(UNIT=IWdUG,DEVIC = SK,ACCFSS=9SE,6UTtFILE=LCCT".P. 6 L)
(UNIT=IPARM,:EVIC =9lSK.,9 r 'ISE'g , ,F ILE =' CCl..Fp * )

(UNIT=ICOEDEVICE'L=vKtACCESS=SE6iT.FILE='CLCOF .DAT')
C
C3OOGO0OOoOcOouOOoo00o........nPEN........ooooo:oOOOOOOOOCOOCO
C
C
C INPUT DATA SECTION

CXXXXXPEAL) (IREAD.100) IREAL, I4,rITE, I.UG
CX1n0 FOR':AT (31U)
C

READ (IREA0,110) 'ILUG9 (DEFUG(I), I=1 ,\fH ')
110 FORMA (I5,PX,7(At,2X)/(1CX,7(A8,2X)))

C
8000 WRITE (IwRI1E,9000) *Nb'G
9t;00 FORMAT (iH0,*NBUC=',2X,110)

READ
120 FORPA

WR I T?

(IREAD,120) IDAYIMOJYRLDAYLfOLY,
T (2 Xp,12pD6YIX, 12Y1 1 XYI)
(IWRlTE912O)IDAYvIM091YRvLL'AYtLI"09LY*

READ ( IREAD,140) (A(1) ,I=1,3),(El(I),I=1,3),TZONE

C
C
C
C
C
C

C

C
C
C
C
C
C
C

.

.

..

..

..

..

..
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140 FORIAT (2(3Fr.: ,5X),T51,A&)f

CONVERT DEGREES TO RADIAN

a

PHI = DSCA)
THETAL = DMS(-)

c

C

C
C

C
C

C

C

c

C

210 IF (TZ NE.NE.TZ( )
THETAS = 105.0*2.0
GO TO 3JU

220 IF (TZ0NE.NE.TZ(4)
THETAS = 120.0*2.0
GO TO 300

233 W4PITE

240 FORMAT
t4P ITE

250 FORMAT
1 8s5H*
2A8,5H*
3A8,5H*

STA"4UARb -- pEIoA0 OF THE

,

) GO TO 220
*3.1415q/3 0.fu

) GO TO 2?9
*3.1'15 /360.0

(IWRITE,240)
(iH1,'TI"E ZONE

(ItJ' ITE,250) TZO'K
(1111 ,T10997.EQUEcl

****/T10, AVAILAE

* ** */1T36, 5 H *****,

REiU[ ST ED
Eg(Tz CI), 3
TEL TIME
LE TI: E Zr
A8,5H *** *

A8,51. ****

300 CONTINJE

READ (IREAD,260) EMETW
260 FORMAT (16F5.0/9F.0)

READ DATA BOUND VALUES
TL3... TEPERATURF LOW."R
TU5...TEPEkATURL JPPER
4UB...WIQD SPEED JPPER

IS NOT VALIL!///)
zl, 4)
=E'o 136,fH***..

E S , T3 b, *****
/T3&,5jH** ***,

HOt x D
SL 0

READ ( FREAO,260) TLB, TUL3, WJB
C

C
C INITIALIZE THE ARRAYS USE7J IN rHE KGRESSGN ALGORITHI.
C

DO 100 1 = 1,8

CHECK THE TI %E ZONE T0 GET THE PROFP P
OPSFR VER LOCATION

IF (TZONE.NL.TZ (1U GO TO 2-0
THETAS = 75.0*2.0*3.14159/3tQ.0
GO TO 300

200 IF (TZ3NE.NEL.TZ(C)) GO TO 210
IHETAS = 90.0*2.0*3.141b9/,6O.
GO TO 3f0

C

C

C

C
C

C
C

C
C
C
C

r
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XY(I) = 0.0
00 110 J =1,8

XXI (J,I) = 0.0
100 CONTI t!1E

YSUM
Y S U SQ
YME AN

0.0
0.0
0.0

IRANK = 7

0

lITIALIZE THE DATE VARIABLE$

CALL bATE1

EVILUATi OBSE
TEMPERATURE

VED DATA T1.1 WVUL3P COLFFICIET'. FCF THE
, 0 ) r L.

32k- CONTPIUE

FOR EACH DAY, 25 OBSERVATIONS OF
PARAMETEi LSTIIATIO . THE DATA T

11PP-w ";DNI6HTv 1"p-, ... , 11A".
It. THIS FORMAT, THE 11PM O$SEPVAT
LOCATIONj FOR DAY IN A40 IN THE IST

READ
READ
READ
REAL)

EACH DATA TYrF APE JSFL IN Tr4F
iVE SEUE1CF 1iS:

IC APPEA'S TJICF. It' THE 2'T1i
L )CATION F OAY + 1.

IPAR' ,260,Ex% =34 ) TP;I-L
IPAR',260,F? = 3 ) CL'UD
IPARM'260,ElD=34) WSPEED

IPAR3ls260tE';D.= .34 1 ) DIR

CHECK I':PUT DOTA TO MAKE SU E DATA ARE ;ITHIN
RFASONAbLE EUNDr.

DO 32? LL = 1,25

L = LL
IF (TPRlFE(L).GE.TLK *AD. TF-IME(L).LF

CALL GCHECr ( JULREL, 1, TPRIMFE, L
307 IF (CL E(L).E.0.0.A NU.CLJVUCL).LE.E.

CALL CCHECk C JUL REL, 2, CL')UD , L)
32 IF (WSPLED(L).GE.0. 0.A,.D 1PFLD(L).LE.

CALL UCHECK ( JUL FL, 3. iSPEED, L )

.TUb)G-i TC 327

G0) G,) TC 328

vUf) GC TO 329

C
C

C
C
C
C
C

C
C
C
C

C
C:
C:
C:

C
C
C
C

C
C
C
C
C
C
C
C

C
C
C
C
C

C

(

(

(

(



IF (wDIR(L).GE.. 00.A NF. DI)l*) .L .3c.e )
CALL UCHECK ( JULFEL, 4, IR , L )

G; TE 3.

326 CONTINUE

ESTIPATE RADIATION :%TTENuATI3 : DUET TO CL'U Cr)/E

DO 330 1 = 1,2-
KEAROB(I) =1. -
IF(WOIR(I) .GT.

33 CO'TINUE

CALL DATA AlJALY.SIS ifUTIf.ES

CALL PRoIEST (TPRIEKAROBCLCUG TEPwSEED4 D
$ XXTXY)

UPDATE THE DATL COUnTERS
ENTRY DATE ... FO' YEAPL PA' AoETf-.
ENTRY DAT L!... FOR 3'NTt-tY PA A,.ETL

lR, IRA '. ,

FlTIaTJIOr
ESTY'ATor,

C-----CALL DATE
CALL DATE .A

C
C
C CHECK TO SEE IF: END OF TEST P, RIOC HAS *EE': REACHED
C
C

IF ( JJLDAT .LL. JULENL ) GE TO c25
C

345 CONTINUE
C
C

DETERMINE THE *A* COEFFICIE-1t

CALL COEF ( IfANK,, X<T% XY, ACOEF)

DETERMINE THE * 3' CUEFFI CIET'

CALL ATUB (ACOEFtACOEF)

WRITE (IWRITE,600)
f00 FORMAT (l1l1/,2(1H+,I00(1H )/),lH ,'

............................S.

TFlr'ER AlkU Mf O EL PAPA 1 T : ',#

329

C

C

C
C

C

cC
C
C
C

C
C
c
c
C
C

C
C

C
C

C
C

C
C

C
C
C
C
C

0.*6-5 -ACL CU' (I)**?.
F'O. ) 1O() =A I S(4 ' :' (I)0.



*'fSTI"'AT ION PROGRA' oUIPUT'///)

WRITE (14RITC,610) (ACOFF(I),1=1,?)
610 FORMAT (1H ,T24, *A CEFFICIE'Tst//

$ Ii ,12Xp2HA0,1 X, fl1A1,12X,2HA2,12 ,2HA'/
H1 ,4X,4(, ,EI .')//

I lH ,I2Xm2A4, XdA5, 12Xt2HA6,1?,22PA7/
lIH ,4X ,4(YqEII;. )///)

W RITEF ( IW R ITE9620) ( f C
f2r FORM'Ar (1H ,T 4, 'H C:

$ 1H ,12X,2>3,1

$ 1H ,4X,4(2X,F1
$ 1H ,12X,2HB4,1
$ 1H ,4X,4(2XE1

WRITE (IRCOL,625) (BC(
62j FORMAT ( OBCOEF 0- f,

'WRITE (IWRITE,63,) YP1 AN*,
630 FORMAT (1H ,4X97HYMEA,

$ 1OHRSQUARLD = ,2X

uEF (1), I =i )
FFICIFT' 9//
X ,) 1

X

I X 2H2,I2X1 2 i3/

I12X 2H~ 12X,2 7

fF I) I= 1, )
E12./*EOEF4-7 It r 1 .*

,FR5 .2)
1 CX,

STOP
EN 1)

0..000. 0000000. 00. 00..00. .00.0...........0...................

SU3ROJTINL TRTEMP (IRI AD)

INTEGErS Al (o)
REAL*8 FILE
REAL*A DEDUG(20),TZONi , T(4)
DIMENSION A(3), (3),9 C (7)
DIMENSION TPR1ME(.>r

IC = 5

WRITE (IC,9T5)
90' FORMAT (i!,jTl,

1 * 7OLLC'4ING:'
2 T15, OACTION',
3 THo, I1. TYPE *
4 T10, '2. TYPE '

/
'IF !. INPUT DATA FILE EXIST!, YOU CA% DO THE ',

o 0, L SPC ';L IT 15, ...... *T a 0 00 00 .

'CLDFILE'' ',T3 EXI3TING INiUf FILE V' UE*'/
*7EWF!LE99 ',T30r, 'INPUT N'W ATA AS kEGUESTED*//)

C

C
C

C

C
C
C

C

C
C
CO
C

C

C
C

C
C
C
C

C

- C L, -

$



- 37-

READ (IC,906) FILL
906 FORVAT (24)

IF ( FiLE
IF C FILE

.E0. 'CL)FILE'

.Eg. ONEAIFILEIP
) ;:ETIUR*4
) GO TO 14

WRITE (IC, 9 07) FILE
907 FORMAT ciHO,'IVALID ItrUT FILE DESIG'%ATI3'N ,T3r,'*****',A.

2 ****i*1/6X**VALIj OESI3NAT1Z,.S ARFAeq

4:3 S35,*****LLFiLE******/
4 135, ******N.F ILE*****'//)

STOP
I,

14 CONTINEIJ

SET UP OuTPUT FILL To RECIEVE TRAMILATEC INPUT LATA

C
C00000000000000000000...... . .0Pf. ... . .. .f0 C0)O000009000OCO
C

OPEN (UNIT= IRE AUDLVICE=tLS@K ,ACCESS= I UTFILE 'CCT.>A '
C
C 00000 Ci00000000 000000........*ODPEN........ 000000000000000000
C
C
C
C
C
C

W.RITE (IC,920)
920 FORMAT (1H0,INPLUT DEBUG

READ (IC,20) NbUG, (
20 FOPRVAT ( I, 7A/(7A))

INFO -

DEeUG(I), I

4RITE ( IREAD,25 ) NHUG9 (
25 FORMAT ( 15, SX, 7(A8,2X)/

= 1,NHUG )

0EKUG(I) I=1 1 -'-G)
(lox ,7(A8,2X)))

WRITE (IC,930)
930 FORMAT (1H0,'INPUT BEGINNING DAY, MONTH, YEAR

s 'YEAR AND LivDIN5 DAY, MONTH, YEAR')
(4 DIGI' IN 9,

C

C
C
C

C

C

C
C
C

C
C
C
C

C

C
C

C

C

C

C

C

C

C
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READ (IC,30) ILAYIMO,IYEARsLDAY*LM0,LYEA'
30 FORvAT (61)

WRITE (IREAD965) IDAY, 1MO, IYEAR, LDAY, LvO, LYFAR
35 FOR ?AAT (2(3X9I2-pl7Xv 2-p1Xol4))

WRITE (IC,950)
950 FORMAT (1H0,'1NPUT STATI10 LAT-LOJG IN )MS

ST AT ION')

C
C
C

C

c
C
C

C
C

C

C
C

C
C

C
C

C
C
C

WRITE (IREAD,55) (A(I),I=1,3),
55 FOR' AT (2(3F5.2,5x),T51,A8)

WRITE (IC9960)
960 FORMAT (lH0,* INPUT EP, ET, wO

READ (IC,60) EP, FT. W
60 FOR'-AT (3F)

WRITE (IRFAD,65) EP,
65 FOR 'AT ( 3F5.2)

wRITE (IC,70)
70 FORMAT (110,' IJPUT

$ ' TEMP LOWER BOUN 3

A14D TIMF ZQt-E

F (I) ,1,) , TZON4E

C B I), II ,C),TZUXE:

T, TV

DATA CHECK VALUES'/
TEMP UPPER SOUND, W!I"2D SPEED UPPER

READ (IC,60) TLB, TUB, WUB

WRITE (IREAD,970) TLP, TUB, wUE
970 FORMAT (3F5.0)

C
CCCCCCCCCCCCCCCCCCCCCC........CLOSE.......CCCCCCCC
C

CCCCCCCCCCCC

CLOSE (UNIT=IREADDEVICE=DSKtACCESS=E"JUT*,FILE= I DCCTmP.DAT"I
C
CCCCCCCCCCCCCCCCCCCCCC.......CLOSE....... CCCCCCCCCCCCCCCCCCC

C
RETURN

1
,.F 9

READ (IC950) (A(I),I=1,3), (
50 FORMAT ( 6F, A)

C
C

C

C

BOUNDel
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C
C
C .......... .................................................

C
SUBROUTINE DATE

C
DATE1 INITIALIZES THE DATE
JULIAN DATES ARE JlED.

JUL DAT...
JBE GIN...
JUL ED...
JR A NE ..

JULREF...
JULREL...
JSTAPT...

JSTOP .

JYE AR ..

COUTEf-RS.

INITIAL YEAR
INITIAL XUATH
INITI AL DAY
LAST YEAR
LAST 1OT14TH
LAST DAY

CURREN;T JULIAN DATE
JULIAN DATE AT EGI%*4
JULItN EIATE AT E ID 3F
LENGTH rtF RUN.
.JAN I OF PIdTIAL YEAM
JULIA'J DATE RELATIVIF
RELATIVE JULIAN DATF
ESTI;IATIC''. RANGE
RELATIVE JULIAt DATE
ESTP1ATIOr RANGL
YEAR COUNTER

ING OF
RU.

TO JA. 1 Or CUiENT YLAP
TO HI PG rHLY P A AMrE Tr

TO ENlD ',uNTHLY PARPA-F TE

C
C
C
C
C
C
C
C
C

C
C
C
C
C
C
C
C
C

C
C
C
C
C
C

C

C

/DATES/ IYR,9 IV-', IDAY9
/JDATES/ JULDAT, JULr EL

,JSTART, JSTOP,
/10/ IREAD, IWRITE,

LY', L"O, LDAY
, Jo'EGIN, JILENr), J'ANGE,

J4END, JYLAR
IWbUG, IPARP, IrCOE

INTEGER IDBUG

SET DEBUG FLAG

ID3UG = 0

DETERMINE INITIAL JULIAN DATEP

JUL I A A
J HL I AN
JUL I AN

(1 O, IflAY,1YRJhEG IN)
(LHOqLDAYLYRJULE ND)

( I, 1,91 Y-1 JOL, [F )

JULREL = JBEGIN - JULREF

0 O*

.. *

JYR
140
IDAY
LYR
L ?
LDAY

NXLPYR... JULIAN DATE OF DEC 31 OF NEXT LFAP YEAR

COMMON
C 3M ON

$
C3MMON

C

C
C
C

C
C
C
C
C

C

c

CALL
CALL
CALL

. IN

N XLI-Y
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JRANGE = JULED - JEEGIN + 1
JULDAT = JEEGIN - 1

DETERMINE THE NEXT OCCJRA.CE OF 12/31/(LEA YEAr)
(IC. THF 3t6TH DAY OF THE YEAP)

LASTLP = IYR - "
40O)(IYR,4)

CALL JULIAN (12,31,LASTLPNXLPYf)

IF (JULDAT .GE. NXLPYR) NXLPYR = NXLPYR + 1461

NOTE... 1461 = 365 + 365 + 36r + 36A

C THIS SECTION DEFINES VARIABLES NEEDED FOR
C PARAMETER ESTIMATION
C

VMO %T HLY

JYEAR IYR
JSTART = JULREL + 1
CALL JULIAN ( L,1, LDAY, IYR, JOATE )
JST00 = JDATE - JULPEF + I
JREND = JSTOP

IF (JYEAR - rD.)(JYEAR,4)) (5,70,6;
70 IF (WIO.E.2 .AN. IDAY.E.2 ') Jt END = J1 T P
65 CO; TINUE

ENTRY DATE

THE NEXT SECTION IS USLD EACH DAY TO UfPATE
THE JULIAN DATE COUNTERS.

JULREL = JULREL + 1
JULDAT = JULDAT + 1

CHECK FOR END OF YEAR

IF (JULREL .LE.
IF (JJLREL .GT.

6 5 G TO 100
3,6) GO TO 200

CHECK FOR LEAP YEAR

IF (JULDAT.EP..XLPYR) GO TO 20i

YES, THERE ARE 366 DAYS THIS YEAR.
UPDATE NXLPYR TO NEXT LEAP YEAn.

NXLPYR = NXLPYR + 14&1

IF( ID-3UG .NE. 0 ) GO TO 900

C
C
C
C
C

C

C

C
C
C
C
C

1

C

C
C
C
C

C
C
C
C

C
C
C

C
C
C
C

C
C
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C
C

C
C

C

C

50 CONTINUE

RETUR 4

RESET riELATIVE JULIA% DATE

200 JULREL = 1
C
C

100 C09 TV'UE
IFC ID5UG .NE. 0 ) G0 TO 900

110 RETURN
C
C

ENTRY DATEM
C
C THIS SECTION IS UsED EACH DAY TO jPDATF THI- Ji-LIAt I A1[ CCDT.
C IF MONTHLY PARAMETER E TI*ATION IS USED.
C

JULREL = JULREL * 1
JULDAT = JULDAT + 1

C
IF (JULREL .LE. JRENJ) GO TO 4C0

C
C UPDATE THE JULIAN COUNTEPS
C

JULREL = JSTART
JYLAR = JYEAR + 1
LALL JULIAll (IMOIDAYJYEARJULGAT)
JRED = JSTOP
IF(JYLAR - "'0D(JYEAR,4)) 400,41U,400

410 IF (LMO.EQ.2 *AND. LDAY.E 1 .28) JREND = J1E +
400 CONTINUE

C
IF ( IDBUG .NE. 0 ) GO TO 900

C
C

C
C

RETURN.

900 CONTINUE

DEBUG INFORMATION FOR JULIAN DATE CALCULATIONS

.PITE (1LBUG,920) JULDITJULRELJBEGINJULNDJRA*NGENYLPYR
,JSTAR TJSTOP9JREND, JYEA

FORMAT (1H ,*JULDAT',110,3X,'JULREL=,1 .3X,'JVG1N',1(,5X,

/?X ,JULEND=l,I10,3X*JRAN3-' =91, T 3Xq *NXL L'YF'=,I1O.
/2X,*9JSTART=,I110,3X,9JSTGP =*,I10,pXq'JREND =',11C,

3X,*JYEAR=*,I10)

C
C

920

$

$

A ,.
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RE TU R N

END

................ ... ........ ....... ....... O......O O .....

SUB ROUTIt*E DATT(10ATEIO, IDAYIYP)

CONVERT JULIAN DATE TO CALENDEI ATE

INTEGEk CAL(12,2)
DATA CAL/O ,3159,90,120,151 ,181,212,243,27-3,304,334,

1 09 3 1q60, 9ll 2l1l 5 2 ,l82g213244,2749305-2335 /
11=(IDATE-1)/1461
12=IDATE-(11*1461)

1<=12<=1461

IF(12.LE.365) GO TO 1
IF(12.LE.730) GO TO 2
IF(12.LE.100 5) GC TO
13=3
14=12-1095
GO TO 40

10 13=0
14 12
1 4=12-365
GO TO 40

20 13=1
GO TO 40

30 13=2
14=12-730

40 IYR=1900+I3+(4*I1)
INDX=1
IF(13.E C.3)1 N DX=2
DO 100 1=2,12
IF(I4.LL.CAL(I, 1'H)X))

100 CONTINUE
I MO=12

IDA Y=I 4-C A L(12*eI ND'X)
RETUR.

200 IMO=I-1
IDAY=T4-CAL(I-1,I1>,s0X)
RETURN
END

0
0
30

GO TO 200

C
C
C * v ............... . ......... . . . . . . 0 a

C
SUBROUTINE JULIAN(MO,0UAYRANS)
INTEGER ArvS ,CAL (12) ,DA ,YR
DATA CAL /31,28,31,30,31,30,31,3

C

C

C
C

C
C...
C

C
C
C

C
C
C

1v30q3i*3ov3i/
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COPUTE JULIAN LATE FROM JAN. *1, 1973

ANS= 0
I=Y R-190 0
AtjS=A'jS+365* I
CAL (2) =28
IF ( "0;j(YR94 )E *0) CAL (2)=27i
J=MD-1
IFlJ.Ei.0) GO TO 20
DO 10 I=l, J
AtS=ANS+CAL( I)

10 CONTI'JUE
20 CoNTIUE

A N S = A N S +D A
RETR JR
END

C
C............... . 0e* .. g..........0.........-.-.ee*****

C
FUNCTION DMS(A)

C
C FUNCTION DNS CONVFRTS ANGLEI LXPRESSED I'
C DEGREES, MINUTES A\D SLCOND& TO RADIAJ
C

DIVEPJSION A(-')
REAL MINUTE

C
C

DEGPEE
MINUTE
SE COND

ACI)
AC2)
A (3)

DMS = DEGREE*3.14159/160. + MINUTE*3.
1 + SECON*3.14159/180./60./CO.

C
RE TUR.4
E ND

C

C
FUNCTION TAU(ST)

ColO'q /ORBIT/ PHITHETASTHETALEPET%4
COM"ON /10/ IREAD, IWRITE, IWBUG, IPAR ,*
C,N0f /DHUG/ NBUL ,DEBUG

REAL*H ITAUDF JdG(20)
DATA ITAU /OTAU'/

14C)E

THETAS LONGITUDE OF 'STANDARD MErrIDIA 4 (lt-DIAN!cl%)
7bTH MER D 0IAN FOrl EASTE--i STANDAK) TI'L
90TH 1ERIDIAN FOR CENTRAL STANDA' TIF
105TH MERIDIAij F'iR MOUNTAIN STANARD TIME
120TH MERIDIAN FOR PACIFIC STADA.D TIME

THETAL LONGITUDE OF OESCRVERS MERICIAX (.ADIANS)

C

C

C

C
C
C

C
C
C
C
C

14 15ci/l0./60.
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TAU
ST

EP
ET

= LOCAL HOUR ANGLE
= STANDARD TIME IN THE TI"E Zo"E OF THE

OBSERVE; IN HOURS COUTEwL FRO."
MIDNIGHT (EG. 0.00 T3 24.o00)

= +1 FOR EAST LONGI ITUDE, -1 FOR fE T LrN GI TUDF
= DIFFERENCE -BETWEEj TRUE SOLAR TIv;

AND FEAN SOLAR T I1E ( U$ ALLY 't GLEClE,
FOR hEAT TRA'N.SFEP COMPUTATIO%'7)

C FUNCTION SUBROUTI'F TAU CONVERTS THE RVE%
C STANDARD TIMF TO LOCAL HOUR ANGLL IN RADIANiS
C
C OBTAIN TIME DIFFECENCL BET4EFN STA'4DARD ME I.IAgN AND
C OBSERVERS MERIDIAN4 (HUOURS)
C

DTSL = EP*(THETAS - THETAL)* 12.O/3o6141r9
C
C COMPUTE ORSERVERS HOUR
C MORNING AND E = -1 FOR
C

ANGLE (RADIANS). E = +1 F"F
AFTERO'N (I.F. OLARr.0J)

IF (ST.GT.12. + DTSL -ET) E = -1.0030
IF (ST.LE.12. + CTSL -ET) E = +1.0000

TAU = (ST + E*12. - GTSL + ET) * 3.i41f/12.C

IF (TAU.GT.6.28318 ) TAU = TAU - 6.283185
IF (TAU.LT.O.0) TAU = TAU + 6.283185

DEBUG OPT1ON

IF (4BUG.Eo.0) GO TO 100
DO 200 I = 1,'d3UG

IF (DEbUG(I).E.ITAU) GO 10 200
WRITE (IWBUG,250) 3T,PHITHETA2,THETAL,7Pi

250 FORMAT (////1H ,'FUNCTION TAUtl, ?X,
I OST =',F6.3,2X,'P1I =*,Fr.3,2X,*THETAS =',F6.
2 F6.3*2X,'EP =',F'.3,2XOFT =*,FC.3,2X,*W =',F
3 *DTSL =',F6.3,2X%9'TAU =9%F6.3)

200 CONTINUE

T, ,DTSiL, TAU

3,2X,'THFTAL
0 .,2X ,

C
100 CONTINUE

C
R ETUR N
END

C
C .............................
C

SUBROUTINE PRMEST ( TPRI4E, KPAROii, CLOUD' GRTEMP, SPED,
WIR, IRANK, XXT, XY)

PRMEST IS THE CONTROLLI1JG SUBROUTI NE Fk'i THE PARAPETER ETi'A TJ

C
C
C
C
C
C
C
C
C
C

C

C

C
C
C
C

C

C
C
C
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FOR THE TEkPERATlJRE P\OJLCITON R'UTP.*E
BASLD 0% TC)AY'S O3SERVEFD TUMPS., CLD C2VEP, ETC,

DETERVINJES THE PARA-ETE.S ECESSARY TO -IOJECT
TEMPER ATURF S FOR TO;' QD3.

DVAENSION TDRI'AE(1)g
r1IM ENSION KEAR08(I),
IMENIcl wSPECD(),

REAL (BAR, KBAROB
INTEGER RANGE, IUeUG

C 0 MoQ 4
COMMON
Co M rio 1

/SUN/
/OR; i IT 
/JJATES/

$
COMMOJ /DATES/
COMMON /Ij/

XXT(CP), XY(R)
CLIOJ(l), GRTEAP(1 )
ADIR( 1)

DELTA, DTSL, S, SS
PHI, THETAS, THETAL, EP, r TW
JULDAT, JULRLL, J-EGIN, dJ LFN), J

,JCTART, JCTCPo JrE.D, JYEA
IYR, I IDAY, LYR, L fl, LDAY
I"EAJ, I'DITE, IUG, 1rA M, 1CoE

ANGE, NXLPY'

SET DEBUG FLAG

T08UG = 0

COMPUTE THE AGLE ADJUST'EENT tBETWFFEj THE
STA.NDARD MERILIAN OF THE O-SERVER'S TI-* 70jE AND THE
OBSERVER'S LOCAL MERIDIA4.

DTSL = LP*(THETAS-THETAL)*3.8197?

COMPUTE THE DECLINATION OF THE SUN

CALL DECL (JULRELDELTA, SRSS)

DETERMINE THE LIMITS OF INTEGRATIO"4 FOj THF
GENERATION ALGO:I TH*

CALL LIMI
IF ( I

WRI

TE>PERATURE

TS (DTSL, SRSSTORHOT12,SIGMAtT23)
DBUG .EG.O ) GO TO 9hi
TE(IW4UG,950)DELTADTLTORH3,s ,T12,;IGA,sST23,PHI
FORMAT (T?,.'U8kOUTINE PRMET'/Tc, 'DELTA=" ,XFO.v4,

T20,'DTSL =*,IXF0.4,T40,#T = ',1XF1O.4q,
T60-p"RHO =9,lXqF10.4, T6O, fSr? =tvlXtFl0.4/
T2 ,* T12 = ,1XF10.4,T20,9SIGMAr,1X ,F1C..4,
T40,*SS =',1XF0.4,T60,'T23 =9,1XF10.4,
T80,9"Hl =9,1X9F10.4)

951 CONTINUE
C

C
C
C
C
C
C

PR EST

C
C

C
C
C
C

C
C
C
C
C
C
C
C
C

C

C

C
C

C
CC

C
C

950

$

$

$
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INITIALI/E THF cTA N PAR 0 TIML COJtjTtfP.

ST = 0.0

C
C
C
C
C

C
C
C
C
C

SIGHA, CLD, KBA", TGD, hSP*
k ANGE, T)

IF ( IDBUG .EC. 0 ) GO TO 9L1
WRI TE (I WBUC,960) ST, T PLA ,,PUI

Wd)R, Xl.X2,X'.,X4,Y'qX6X7,

9 XI, X2. (3, X4, X',X ., 7, A (,

CONTINUE

DETERMINE THE HOUR<LY TEMPERATURE CiIA\GF

Y TPRIME(I) - TPRIVE(I-1)

UPDATE REGFLSSION MATRIX AND V'ECTO!

CALL REGRES (Y., X vXeX3,X4,X5,X6,X7,XY, IRA KXXT)
GO TO 830
IF(ST.LT.22.5) GO TO 830

ARITE(5j850)JJLDAT,((XXT(IZIY),1Y=1,If ANK),1Z=1,I1ArcK)
P-50 FORMAT(1X,7HJULDAT=,1X,I7/7(IX,7(E11.4)/))
S40 COVTTINUE
830 CO'JTINUE

$

965
962

IF ( IDBUG .EQ. 0 ) GO TO %62
WRITE (IIWUG,96") STqTYTPRIME(J

,X',X5,XF,X7
FOR4A T(OST=',F4.0,2X,*T=,F7. 3,2X

tTPI1=,F7.3,2X,'X=,F7.3,2X,
2X,'X4=*,E7.2,2X,X5=*,E7.2,2X

CO 4 TI N U E

)TP R IM F( I- 1)sX IX 2 9

,y =' r 7 .3,* TP I r ,F 3
*X 2 , 12 * 5e 2 X, X 3 = ,I2

9( ,X = ,F7.2,2X,*X7=9,F7.2)

REGIN LOOP TO ANALYZE TODAYIS TEqPERATU"ES. CO'PUTF
THE SET OF COEFFICIENTS FOR THE TEPERATURE PFCJFCTI( S.

DO 200 I 2,25

TMPLAG TPRIMC(l-1)
KDAR KBARCi(I)
TGD GRTEMP(I)
CLD = CLO'JD(I)
WSP =WSPEEU)(I)
*DR WDIR(I)

COMPUTE THE PREDICT.RS X1, X2, X3, X49 Xr, X6, X7

CALL x1X2X3 (STqTtPLAGPiIflELTATCSR, T12v,'.ST23.,Tho,

C

C
C
C

C
C

$

$

(61
C
C
C

C
C
C
C

C

96 r FOR'jAT ( T2 *S Tz*,FS.*p1 T FPL A 1 = IpF - .o1,9 PH I e F 16.4,
t X =097 (I X t1710.')) 9 R A'G t-= 1 12)
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IF ( ID3UG .EQ. C ) GO TO 916

DEDUC STATF*ENTS....CHECK ATRIX OPLRATIOl RESULTS

DO 910 II = 1,19ANK
910 4W ITE (IW' UG,900) (XXT(TI,J),J=1,IRA' )
900 FOR'AT (1x/9 XXT=*,1X.v(F 2.5,X))

'RITE (I-,EUG,9C3) (XY(J),J=1, I;RAV()
903 FORMAT (lX/' XY=',1X,6(F12.5,5X))

916 CONTINUE

C

C
C
C

C

C
C
C
C

C
C

C
200 CONTINUE

RETUP N
END

.... *...................................a *a...... .......... ..

SUBROUTINE COEF

SUt3ROUTI.E CCEF
REUUTRED FOR

DIMENSION
DIMENSION

(IRANK, XXT, XY, ACOEF )

DETERMINES THE REGRESST N
THE TEMPERATURE IODEL.

COEFFICIE.TS

LhOF'K(E), M.OFK(8)9 A(64)
XXT(8,8), XY(&), ACDEF(8) ,XXTI:,V(8,8)

INTEGER RANGE, If0UG

COMMON /10/ IREAD, IWRITE, IW1,UG, IPAP , 1BC0lE
COMMON /JDATES/ JU1 DAT, JULFEL, JFEGIN, J. LEND,

S,.JSTART, JSTOP, JREND, JYEAr'
COMMON /YSTAT/ YSU'l, YSUr'SQ, Y"EAN, RSOUAR

JPANGF, NXL VY

SET DEBUG FLAG

IOBUG = 0

PiHf:N IRANK IS LESS THAN THE PROGm AM DIMENS1ONS
FOR XXT, PRU5LEM, WILL OCCUR HENi XXT IS INVE TED.
THESE PRODLEMS AR ISE UU TO THE 6AY DATA IS STORE)

UPDATE THE STANDARD TIYE CUNTER

ST = ST + 1.0 -

C
C
C.
C

C
C
C
C
C
C

C

C

C
C
C
C

C
C
C
C
C
C
C
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IN MATRIX FOR-. THE
TO VLCTOR FOR0, A(L).

SOLUTIO IS TO CC"VERT XXT(J,1)

DO 205 1 = IIRANK
DO 205 1 = 1,IRA:.K

JJ = (I-1)*IRANK + J
A(JJ) = XXT(J.),I)

J,,JJA(JJ),XXT(J,1)I TF( I G U E .1) WRITE ( IWEUGP204)
FOR; AT (1H0,3I:59 2(2XvE1f-.')) ip
CO"JTINUE

INVERT THE REGFESSION P*ATRIX, XXT.

CALL MINV (AIRANKDXXTLvORK, MWORK)

DO 365 I = 1,IRAljK
DO 305 J = 1,IRA'K
XXTlfV(J,1) = A((1-1) *IRANK + J)

IF ( IDDUG .EC. 0 ) GO TO 921
00 920 1 = IIRANK

920 iRITE (IjbUGq 04) (XXT1NV(IJ),J=1,IRAVK)
904q FORMAT (1X/9 XXTINV= ,2XC(Fl2.5,3X))

921 CONTINUE

DETERMINE THE REGRE)SION COEFFICIENT<

CALL MATMLT (XYXX TINVACOEFIRAPNK)

SINC PREDICTER X5 IS NOT BEING U-EE), THE ELELNT OF ACLF
HAVE BEEN REARRAN7ED SLIGHTLY (SEE SULIROUTINE X1X2X3).
NOJ REOPDER ACCEF.

ACOEF(8)
ACOEF(7)
ACOEF(6)

ACOLF( 7)
AC CE F 6)
0.0

C
C
C
C
C
C
C

C

C

20
205

S05

C

C

C

C

C

C
C
C

C
C

C

C

C
C
C
C

C
C
C
C
C
C

C
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AXY = 0

COMPUTE JULTIPLE CQEFFTCIENT OF DETERMTNA TI2N

00 400 1 = 1,8
400 AXY = ACOEF(I) XY(l) + AXY

XXTYY XXT(11)*YAEA''*YmEAN

RSQUAR (AXY-XXTYY)/(YSUM'Sc-XXTYY)

IF ( IDBUG .EG. I ) GC! TO 919
WRITE (IWBUG,918) JULREL, DXXT, (AWEF(IJ)TJ=lIRRANK)

318 FORMAT (1H ,JULREL=*,I5v,"X,9TLET. OF XXT=*'F1 2 .5/
$ ' AC0FF=,,8(2XEll.4))

wRITE (TW,3UG,9!0)
930 FORMAT (1H ,3HAXY

% 8HXXT (1,)
919 CONTIAUE

AXYXXTYYXXT(1,1),Y YSUi
,1XE12.5,5X,5HXXTYY, X, 1?.5L,5x

1x 9E 12. 5x,6Y~o 9 "XEl 25)

R FTUR N
E ND

.. *.*.................... ..9...............................*..09

SUBROUTINE DECL (RJDDELTASRSS)
INTEGER RJD
COMMON /ORBIT/ PHITHETASTHETALLPETW
COMMON /10/ IREAD. IW'11TE, I;UG, 1 A<,
COMMON /DBUG/ NHUG,0E;UG
REAL*8 IDECLDEBUG(20)
DATA IDECL/ODECL'/

DELTA
PHI
THETAS

THETAL
RJo
ST

I BCOE

= DECLINATION OF THE SUN (RADIANS)
= OBSERVERS LATITUDE (RADIANS)
= LONGITUDE QF STANDARD MERIDIAN (RADIANS)

75TH MERIDI AN FOR EASTERN STANDAr) TI* E
90TH MERIDIAN FOR CENTRAL STAI'DARo TI'E
105TH MERIDIAN FOR MOUNTAIN STA74DAR) TI"F
120TH MERIDIAN FOR PACIFIC STANDA D TIME

= LONGITUDE OF OBSFRVERS MERIDIAN (RADIANS)
= RELATIVE JULIAN DATE (I.E. WITH -:SPFCT TO JA ;
= STANDARri TIME IN THE TI 'E ZONE OF THE OBSEFVER

IN HOURS COUNTED FROM MIONIGHT ([.G.0.00 TO 24
= +1 FOR LAST LONGITUDE, -1 FO- e.E'.T LONGITUDE
= DIFFERENCE BETWEEN TRUE SOLAR TI-IE AND

!'EAN SOLAR TIIME (U UALLY NEGLECTEf) FOQ
HEAT TRA'lSFER COtPUTAIImiS)

1)

.00)

C COMPUTE TIME DIFFERENCL BETWEEN STANDARJ MEr IrIAN AND

C
C
C
C
C
C

C

C

C
C

C

C

C
C
C

C
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C O8SEKVERS VERIDIA7 (HOURS)
C

DTSL = EP*(THETAS - THETAL)* 3.81972
C
C COMPUTE DECLINATIONi OF THE SUl (RADIANS)
C

DELTA 0.4096*CjC(0.0172*C(17?. - FLUATC-.JD)) )
C

C COMPUTE HOUR ANGLE AT SUNSET (RADIANS)
C

TSS = ACOS(-TAn (0CLTA)*TAN0( HI))
C COMPUTE STANDARD TIME OF 1 UAIKST (HfJRS)
C

SS = TSS*3.81972 + 12. +DTSL -ET
C
C COMPUTE HOUR ANGLE OF SUNRISF (RADIA)S'
C

TSR = 6.283185 - TSS
C
C COMPUTE STANDARD TIME OF SUNRISE (HOUR)
C

SR = TSR*3.81972 -12. + DTSL -ET
C
C
C CONVERT SUNRISE IN STAJDA-D TI,'E TO LOCAL INE
C

SR = SR - DTSL
C
C CONVERT SUNSET IN STA'J)ARU T1"F TO LOCAL TIIME
C

SS =SS - TSL
C
C
C DEBUG OPTION
C

IF (NPUG.EQ.0) GO TO 300
00 100 1 = 1,d3UG

C
IF (DEBUG(I). E.IECL) 0 TO 1C0
WRITE (I 13UG,200). RJDDTL, ELTATSSSSTSR.SR

200 FORMAT (////91H ,'SUB3IOUTINE DICL *g****'** - JD =*
1 15,' DTSL =9,F6.3,' DELTA =1,F6.3, T; =*,F6.3,
2 ' SS =9,F6.3,2X,'TSR =',F6.3,2X,'SR = **F6.)

100 CONTINUL
C

300 CONTINJE
C

RETURN
END

C
C0

C
SUBROUTINE LMr'ITS (DTSLRSTOROfT12,SI&MA,T?3)

C FIND LIHITS FOR TEMPERATUPE INTEGF;ATION
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C
C

TO = - DTSL
T23 = 23.00 - DTSL

C
IF (DTSL.LT.0.0) GO TO 50

C
C FIND LIMITS OF INTEGRATIOiN, .HEN OBSERVER IS
C WEST IF THE STANDARD mERIDIAt
C
C FOR SUNRISE
C

RHO = AINT(R+1.0) - DT'L
IF (RHO .LT. R) RHO = RHO + 1

C
C FOR SUNSET
C

SIGMA = AINT(S+1) - OTSL
IF (SIGMA .LT. S) SIGMA SIGMA + 1

C
C FOR LOCAL NOON

T12 = 13.0 - DTSL

C
GO TO 75

C
50 CONTI'iUE

C
C FIND LIMITS OF IVTEGR ATIr wHEN O3SErV ER
C IS EAST OF THE .TANDAR D MEFI DIA%
C

RHO = AINT(R) - DTSL
IF (RHO .LT. R) RHO = RHO + 1

C
SIGMA = AINT(S) - LTSL
IF (SIGMA .LT. S) SIGMA = SIGMA + 1

C
T12 = 12.0 - DTSL

C
75 CONTINUE

C
RET U R,4
END

C
C....... eee*ee..................................... . . . . . . * . * * *

SUBROUTINE X1X2X3 C ST, T"PLAG, PHI, ELT4, TO, , T12, S, T2',
$ RHO, SIGMA, CLD, KBAR, TGD, WSP, Xl*X2,X3,XA,Xb,Xr-,X7,
$ RANGET)

C
C
C CO*PUTE THE PREDICTERS X1,...,X7.
C

C
ST ... LOCAL -T ANDARU TIMEC
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T
TMPLAG
PHI
DELTA
R
S
TO
RHO
T12
SIGMA
T23

0 00

0...

0 00
. 00

LOCAL TIME
TEMDERATURE AT PREVIOUS TIME
STATION LATITUDE (ADIAS)
OECLINAT1ON (RADIANS)
LOCAL SUNR'I{E
LOCAL SUSET
VALUE OF T AT LOCAL STA\PARJ
FIPST 09SERVATIOJ 3qHUR AFTE
FIF<ST OBSERVATION HOUR AFTFR
FI's r OrSERVATIOw HOJR AFTE;,
V AL-j E OF T AT LOCAL STANiDARD

INTEGER RANGE, IDRUG
INTEGER SWICH1, S4ICH2
REAL KBAP
COMMON /SWITCH/ S.ICH1,
COMMONJ /10/ IPEAD, IWRI

S. 1IC i"
TE, IiPJG,

PERIOD

MlU)'-IZ;HT
S'0 N - ISE
LOCAL NOON
S U L F T
2303 Hi (IE 1I P)

I5AR , I iCGE

SWICH1 = 1
S4ICH2 = 0

A = 0.0005
PI = .5.I4159o
IDBUG = 0

COIVLPT STANDAr<D TIME TO LOCAL TIML

T = TAU(ST)*(12.0/PI) - 12.0

IF ( T .GT. 24.0 T = T -240

IF ( T .LT. 9.0 )T = T 24.0

Xl IS JUST THE LAG-1 TEMPER ATURE

Xl = TMPLAG A -

DETERMINE THE APPROPRIATE RA"JGE FO' X2 AND X3

... 6EFORE SUNRISE 000

IF ( TO *LF. T .AND. T .LT. R ) CO TO 190

... SUJRISE ...

IF ( RHO- A
1 RHO+ A

.LE. T .AND.

.GE. T ) GO TO 200

C
C
C
C
C
C
C
C
C
C
C
C

C
C

C
C
C

C
C

C

C

C
C
C
C
C

C
C
C

C
C
C
C

C
C

C
C



C
C
C ... MORNING HOURS
C

.0

IF ( RHO+A .LE. T .AaD. T .LE. 12 ) GC TG 300

... NOON

IF ( T12- A .LE. T .AND.
1 T12+ A .G,. T

C
C
C ... AFTERNOON HOUrS
C

IF ( T12+ A .LE. T .AND.
C
C
C ... SUNSET
C

IF ( SIG!MA- A .LE. T
1 SIGMA+ A .GE. T

C

... EVENING HOURS

IF C SIGMA+A .LE. T

) GO TO 400

T .LT. S
0

.AND.
) GO TO

) G 0 TO 00

600

.AND. T .LE. 123 ) 1,') 700
C
C
C----------------------------------------------------------------------
C

100 X2 = 0.0
X3 = 0.0
RANGE = I
GO TO 900

C
C-------------------------------------------------------------------------------
C

200 A = PI*k/12.0.
B = PI*P0/12.0

C .9

X2 = (RHO-R)*SIN(PHI)*SI,4(DELTA)
X2 =X2 - (12.0/PI)*COS(DLLTA)tCOS(PHT)*(7:TN(' ) - SIV(t) )

C
X3 = COS(DELTA)*COS(PHI)*(COS(A)-COS(B))
RANGE = 2
G'o TO '00

C----------------------------------------------------------------------
C

300 A = PI*T/12.0
B = PI*(T-1.0)/12.0

C
X2 = SIN(L)LLTA)*Sl,(PlHD)
X2 = X2 - (12.0/PI)*COS(DELTA)*COS(PHI)*(S1N(A)-1IC(U))

C

C
C
C
C

C
C
C
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X3 = COS(DELTA)*CCS(PHI)*(COS(U)-COS(A))
RANGE = 3
GO TO 900

C
C ----------------------------------------------------------------------
C

400 A = PI*T/12.0
6 = PI*(T-1.0)/12.0
C Pl*(T12-1.0)/12.0

C
X2 = SIN(DELTA)*S1'j(PHI)
X2 X2 - (12.0/PA)*COS(DLTA)*CS(PHI)CSIN(A)SI.f))

C
X3 = COS(DELTA)*COS(PHI)*(CGS(C)+1.0)

C
RANGE = 4
GO TO 900

C
C----------------------------------------------------------------------
C

500 A PI*T/12.0
B PI*(T-1.0)/12.0

C
X2 = SIJ(-ELTA)*SItj(PHI)
X2 X2 - (12.0/PI)*COS(DELTA)*CO (PHI)*(IN4 (A)-SIl'(r))

C
X3 0.0
RANGE = 5
GO TO 900

C
C----------------------------------------------------------------------
C

600 A = PI*S/12.0
B PI*(SIGMtA-1.0)/12.0

C
X2 (S-SIGvA+1.0)*SIN(DELTA)*SIN(PHI)
X2 = X2 + (12.0/FI)*COs(DELTA)*COs(PI)*(EIN(4)-SI:A))

C
X3 0.0
RAN4GE = 6
GO TO 900

C
C----------------------------------------------------------------------
C

700 X2 = 0.0
X3 = 0.0
RANGE = 7

C
C----------------------------------------------------------------------
C

900 CONTINUE
C
C

IF ( SWICHI 1 .Ec. 0 ) GO TO 905
C
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X2 = B A-*X2
X3 = KBAR*X3

0

905 X4 1 .579E-8*(1.00+0.17*CLD*2. )*(TMPLAG+'46D.)*.
X5 TGD*SWICH2
X6 WSP
X7 = WDR

IF ( IDBUG.E&.0) RETURN

WRITE (IWBUG,909) CLD9 KPAR, TGD
909 FORMAT (0H0, ,CLD=',E12.5,2X, ,KBA\=tq,12.5,2X, *TG

$ E12.5)
WRITE(IVAUG,910) ST, Xl, X2, X3, X4, XI9U(, RAICE,

910 )
RETUR '
END

r=t

T, A,

*..............................***.*..................

SUBROUTINE REGRES C Y, X1, X2, X3o X4, X5, X6, x7, XY, N, AXT

SLT UP THE VECTOR XY AND THE MATRIX XXT THAT A:F
NECESSARY TO ESTIMATE THE REQUIIED TEMFrrATuL.E ErUATIO
COEFFICIENTS. THIS SU[R3UTIPJE IS CALLED O CE EACH
TIME PERIOD. (I.E. EVERY TIME THE TE 'PERATULE CrHl!LE, Y,
IS COMPUTED)

Y......TEMiPEPATURE.
X1.....PRE)ICTOr Xl IN THrL
X2.....PREDICloR X2 IN THE

X3......PREDICTOF( X._ IN THE
XY4.....PREOIC1Gv X4 IN THE
X5.....PE,)ICTr)P X5 IN THE
X6.....PREDICTOP X6 IN THE

X7.....PREDICTOR X7 IN THE
XY.....VECTOR OPTAINED BY

BY TMlEBSERVED
ELEMENT! OF XY A

)

CHANGE IN LAST TISE PEr IOD
TE PERATURE O L
TE PERATURC ' 0 EL
TE:PERATJR-.E 'o EL
TEM'EVATU-E O EL
TEMPERATURC 'OEEL
TE PEPATURE '0DEL
TE"PERATURE "O;'EL

NIJLTIPLYING THE P-EDICTCP VALUES
TEMPERATUJE CHAGr'. ( THE
RE SUMMATIONeJ)

N......DIPENY4SION OF XY
XXT....MATRIX OBTAINED BY POSTAULTIPLYI

X BY ITS TRANSPOSL. (THE LLE
SUMMATIONS)

DIMENSION XY(8), XXT(8,9), X(8)

COMMON /YSTAT/ YSUM, YSUMSQ, YIEAI, RSOUA'

JG THE VECT(r
ENTE OF XXT ARE

C
C
C

C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C

C
C
C
C

X(1) = 1.0

C

C
C
C

C

PUT PREDICTOR VALUES IN PREDICTOP VECTOR



X2 3= X2
X(3) = X2

X(4 5 X34
X(5)=.X
X(6) X6
X(1) X7
X(8) X5

C
C9000 4RITE (5,0000) (X(J),J1,0)
C9000 FORMAT (1H0,'REGRE2 X VECTORt',iX,4(E 2. ,:>x)/T22,4(E2o5,pt))
C
C
C
C

C UPDATE THE XY VECTOR
C

DO 100 1 ,
XY(I) = X(I)*Y + XYCI)

100 CONJTINUE
C
C
C UPDATE THE XXT MATRIX
C

DO 200 I =1
DO 2C0 d = 1,N
XXT(J,I) = X(J)'X(I) +XXT(J,I)

?00 CONTINUE

C
C UPDATE Y STATISTICS
C

YSUM =Y + YSUM
YSUM5J =Y*Y + YSUMSQ
YMEA = YSUV/XXT(1,1)

C
C

RE TUR N
END

C

C

C
C SU'3ROUTINE '-INiV
C
C PURPOSE
C INVERT A MATRIX
C
C USAGE
C CALL t-INV(A,N,D,L,M)
C
C DESCR1PTION~ OF PARAMETERS
C A - INPUT MATRIX, DESTi<OYED TN COMPUTATION AND 5REPLACED BY
C RESULTANT INVERSE.
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C N - ORDER OF MATPIX A 0
C n - RESULTANT DETERvINANT
C L - WORK VECTOR OF LE GTH N
C - WORK VECTOR OF LENGTH N
C
C REMARKS
C "MATRIX A MUST BE A GENERAL I'.ATRIX
C

SUBROUTINES AND FU'CTION SUFPROGRAvS R-(UIFED
C NONE
C
C METHOD
C THE STAtJDARD GAUSS-JORDAN METHOD IS. USFED'. THE DETER;' IA\T
C IS ALSO CALCULATED. A DETERPINANT OF ZE-O 1%!DICATES THAT
C THE !ATRIX IS SINGULAr:.
C
C ......................................
C

SUBROUTINF MINV(AqN,, Lm)
DIMENSION A(1),L(1)9 ( 1)

C
C ....................................
C
C IF A DOUbLE PRECISION VERSION OF THIS -OUTI F i [E SIRED, T F
C C IN COLUMN 1 SHOULD EL RE'AUVLD FPOC THI DOUBLE PPECISI'.

C STATEMENT 'WHICH FOLLOWS.
C
C DOUBLE PRECISION AODFIGAHOLD
C
C THE C MUST ALSO BE REMOVED FROfi DOUbLE FRECISICiN STATE-NT'
C APPEARING IN OTHER ROUTINES USED IN Cj',JUCTIOr. ITH THIJ
C RCUTINE.
C
C THE DOUBLE PRECISION VERSION OF THIS SUBROUTINL VUS1 ALSE
C CO'4TAIN DOUBLE PRECISION FORTRAN FUNCTIJNS. ABS IN STATE-E7T
C 10 MUST BE CHAN,1EG TO DAbS.
C
C ................ ..
C
C SEARCH FOR LARGEST ELEMENT
C

D 1.0
N K- N
00 80 K=1,N
NK=NK+Ni
L (K)K
M K) K
KK=NK+K
BIGA=A ( KK)
DO 20 J=KN
I Z=N* ( J-1 )
DO 20 I=KN
1J=IZ+l

10 IF( A3S(fIGA)- ABS(A(IJ))) 15,?0,20
15 BIGA=A(IJ)



L(K)=I
M(K)=J

20 CONTINUE
C
C INTERCHANGE ROWS
C

J=L (K)
IF(J-K) 3b,35,25

25 KI=K-'
00 30 I=1,N
K I =KI + N
HOLD=-A(KI)
JI=KI-K+J
A(KI)=A(JI)

30 A(JI) =HOLD
C
C INTERCHA:GE COLUMNS
C

35 I=M(K)
IF(I-K) 45,45,36

38 JP=N* ( I -1 )
00 40 J=l.N
JK=NK+J
Ji=JP+J
HOLC=-A (JK)
A(JK)=A(JI)

40 A(JI) =HOLD
C
C DIVIDE COLUMN HY MINUS PIVOT (VALUF. IF PIVOT LLE+FNT I1
C CONTAINED IN bIGA)

41 IF(R16A) 48,46,48
46 D=0.0

RE TURN
4A DO 55 I=1,N

IF(I-K) 50,55,50
50 IK=IjK+I

A(IK)=A(IK)/(-BIGA)
55 CONTINUE

C
C REDUCE MATRIX -
C

DO 65 I=1,N
IK=NK+I
HOLD=A(IK)
IJ=I-N
DO 65 J=1,N
IJ=IJ+N
IF(I-K) 60,65,60

60 IF(J-K) 62,65,62
62 KJ=IJ-I+K

A(IJ)=HOLD*A(Kj)+A(I )
IF(ABS(A(IJ)).GT.1.E 37.OR.ABS(A(IJ)).LT.1.E-37)JPITE(',936)A(IJ)

936 FORMAT(1X,'A(IJ)=, lXE12.5)
65 CONTINUE

- 8 B -
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DIVIDE ROi BY PIVOT

KJ=K-N
00 75 J=1,N
KJ=KJ+N
IF(J-K) 70,75,70

70 A(KJ)=A(KJ)/61GA
75 CO'JTINUE

C
C
C

C

CC
).LT.37.1) G. Tr, 77

WRITE(5,800)
800 FOR M AT(/// ,1X, '3UBRGJTIE MI V: :TEI 'NT

s *MACHINE CAPACITY. CALCULATION IS G;L'TE
s 'PROCESSING CONTINUESO///)

GO TO 76
77 CONTINUE

D=D*BIGA
IF (D.GT.1.E 20) ITE(5,925)D

935 FORMAT(iX, 9D:,1X,E12.5)
76 CONTIAUE

-17E EXCFED.
THA' 1.E+37.

REPLACE PIVOT EY RECIPROCAL

A(KK)=1.0/BIGA
80 CONTI'4U

FINAL ROW AND COLUMN INTERCHANGE

K=N
100 K=(K-1)

IF(K) 150,150,105
105 I=L(K)

IF(I-K) 120,120,108
108 JI=N*(K-1)

JR=14*(1-1)
DO 110 J=1,N
JK=JQ+J
HOLD=A(JK)
JI=JR+J
A(JK)=-A(JI)

110 A(JI) =HOLD
120 J=M (K)

IF(J-K) 100,100,125
125 KI=K-N

DO 130 I=1,N
K I =K I +
HOLD=A(KI)
J I=KI - K+J
A(Kl)=-A(JI)

130 A(JI) =HOLD

PRO)UCT OF PIVOTS
IF((ALOG10(D)+ALOGI0(5IGA)
IF (IFLAG.GT.0) GO TO 76
IFLAG=1

C
C
C

C
C
C

''l/x,



GO TO 100
150 RETUr4

EN
C
Co. gee. . . .. . . .. . . ..........gec .ec e e * ae e ...... ee.... . *0*ge 0

C
SUBR UTINE MA TML T CA, , C, N)

MATMLT POST MULTIPLIES AN
VECTOR, A, iF LENGTH N.
OF LENGTH N.

DIMENSION A(8), h(8,8), C(3)

X N NATRIX tY A
THF RESULT IS A VECTOR, C,

p

00 50 1 = 1,N
50 C(I) = 0.0

DO 100 J 19N
00 100 1 =1

CCI) f I (IJ)*A(J) + C(I)

100 CONTINUE

RET UR

0 0J 0
... . . . . . .. . . . . .............. ecg e e c c e ...g ....e... .......

SUBROUTINE ATOB (AB)

DERIVE THE TEMPERATURE MODEL COEFICIENTrl I.E.
ELEMLNTS OF VECTOR 8) FROM THE REGRLSSTCN VECTrR A

A .p
A...eREGRESSION COEFFICIENT VECTOR
D.....VECTOR OF TEMPERATURL :OCGEL COEFFICIENT2

AC 1)
A(2)
A(3)
A(4)
A(5)
A 6)
A 7)
A()

AO
Al
A2
A3
A4
A5
A6
A7

B(1)
B(2)
8(3)
8(4)
8(5)
3(6)

B 7)
B(8)

9lBi

c2
93
c54

b 6
B 7

C
C
C
C
C
C
C
C

C
C

C
C

C

C

C

C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C

C
C
C
C
C

C
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niMENSION A(1)vB(l)

DETERMINE B1

B(2) z -ALOG(1.0+A(2))

DA = e(2)/(-A(2))

C

C
C
C
C
C

C

C
C

C

C

C

C

C

C

C

C

C

GO TO 100

C8000 ARITE (5,900) (8(J),J=1,8)
C 900 FORMAT (iH0. 08 VLCTCR*, 3X,4(E1?.5,bX)/Tl,,4(12.C,y))
C
C
C

RE TU R
END

C
C

C............. ............. ............. .. . .. .... e.........

C
SUBROUTINE DCH-ECK (JULREL, ID, DATA, L )

C
DIMENSION DATA(i), TYPE(4), FMT(15)

C C

DATA FMT /'(1H ,8HJULF[L =,1X,13, ''XXXX DATA OJT OF EOUND)S'',

$2X,E12.b,3X,''L ='*,2X,12) '/
C

DATA TYPE(1 )/@TE!AP*/, TYPL(?)/'CLU'/, TYPU(3)/'WSP'/,
$ TYPEC4)/*JDIN'/

C
C WRITE (b,I0O) FMT

100 F OR1A T (1H ,1U (1X, A5) /)
C

FMTC6) = TYPECID)
C

C RTTE (5,fMT) JULREL, DATA(L), L

C

C

DETERMINE B1S

DO 100 I = lg

IF ( I .EQ. 2 )

B(I) = A(I)*BA

100 CONTI'JUE
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RETURN
E ND
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