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PREFACE

This report is one of a series of publications which describe various

studies undertaken under the sponsorship of the Technology Adaptation

Program at the Massachusetts Institute of Technology.

The United States Deapartment of State, through the Agency for

International Development, awarded the Massachusetts Institute of Technology

a contract to provide support at MIT for the development, in conjunction

with institutions in selected developing countries, of capabilities useful

in the adaptation of technologies and problem-solving techniques to the

needs of those countries. This particular study describes research

conducted in conjunction with Cairo University, Cairo, Egypt.

In the process of making this TAP supported study some insight has

been gained into how appropriate technologies can be identified and

adapted to the needs of developing countries per se, and it is expected

that the recommendations developed will serve as a guide to other developing

countries for the solution of similar problems which may be encountered

there.

Fred Moavenzadeh

Program Director
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ABSTRACT

The infiltration losses along the streams of a basin are included

into the Instantaneous Unit Hydrograph (IUH). The IUH is derived as a

function of the basin geomorphologic and physiographic characteristics,

and the response of the individual channels to upstream and lateral in-

flows. This response is obtained by solving the linearized continuity

and momentum equations, including infiltration losses terms, for the

boundary conditions established by the definition of a linear system

reponse to an instantaneous unit input. A methodology is proposed for

the estimation of the parameters involved in the channel response. Based

on this result, a procedure is suggested to include infiltration losses

in the common linear reservoir representation of channel segments.

Comparisons indicate that this approximation is adequate.
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Chapter 1

INTRODUCTION

1.1 Motivation

Recently, methodologies have been proposed to relate river response

to basin geomorphology (Rodriguez-Iturbe and Valdes, 1979), which are use-

ful in the estimation of the hydrologic behavior in regions with sparse

or no data. The Instantaneous Unit Hydrograph, IUH, is interpreted as the

probability density function (PDF) of the travel time spent by a drop to

reach the outlet of the basin, which is function of the geomorphology

quantified by the Horton numbers, and the response of individual channels,

assumed to behave like linear reservoirs. This IUH is called the Geomor-

phologic IUH.

In its derivation, the Strahler's channel ordering scheme is used,

which allows to express the cumulative density function (CDF) of the time

that a drop takes to travel to the outlet of the basin. In their study

it was assumed that no infiltraiton occured in the channels. Later

Kirshen and Bras (1982) studied the importance of the linear reservoir

assumption for channel response. They used a general linear solution to

the one dimensional equations of motion in wide prismatic channels as

given by Harley (1967) to obtain the theoretical linear response function

(the IUH) as a function of several physiographic factors (slope and

Froude number) and the parameters required for linearization. The compar-

ison of the hydrographs produced using the exponential assumption

(Rodriguez-Iturbe et al., 1979) and those using the linearization proced-

ures of Kirshen and Bras (1982) showed significant difference in the shape
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of the hydrographs. However, no definite conclusion were obtained from

their study. Again the effect of infiltration losses in the channel

was not considered.

1.2 Scope of Study

The main topic to be addressed in this work is to include the chan-

nel infiltration losses in the equations of motion. The goal is to ob-

tain a physically based response for individual channels, which could

be incorporated in the geomorphologic theory. This will allow the veri-

fication of the linear reservoir behavior assumption adopted by

Rodriguez-Iturbe and Valdes (1979).

Chapter 2 of this report reviews the most important aspects of the

theory of the Geomorphologic, IUH. Chapter 3 presents the derivation of

two analytical expressions of the approximate linear response of a channel

with infiltration losses due to upstream and lateral inflows, respectively.

These responses, which describe the movement of the flood wave along the

channel, are interpreted in this study as the PDFs of the time a drop

spends travelling to reach the outlet of the channel. Three PDF's are

then used in Chapter 4 to obtain the IUH and discharge hydrographs of

three basins: Morovis and Unibon in Puerto Rico and Wadi Umm Salam in

Egypt. The results are compared to equivalent GIUH using the exponential

assumption but also accounting for infiltration losses. Chapter 5 presents

the summary and conclusions.
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Chapter 2

THE GEOMORPHOLOGIC IUH

2.1 Introduction

The so-called Geomorphologic Unit Hydrograph, (GIUH), developed re-

cently by Rodriguez-Iturbe and Valdes (1979), and further studied by

Gupta et al., (1980), gives an analytical expression for the response of

a basin in terms of its macro-catchment characteristics, or catchment geo-

morphology. The GIUH uses the exponential distribution to represent the

travel time in individual channels. The Instantaneous Unit Hydrograph

(IUH) is interpreted as the probability density function (PDF) of the

travel time of a drop of water landing anywhere in the basin. The geo-

morphology is quantified by the Horton's numbers, which involve parameters

that affect the basin response, such as areas, stream densities and

lengths of the channels.

This chapter summarizes the derivation of the geomorphologic unit

hydrograph. For further details, the reader is referred to the original

papers or to Kirshen and Bras (1982). The original GIUH will later be

compared to a result that uses an analytical channel response based on

the equations of motion for unsteady flow including the infiltration

losses in the channels.

2.2 The IUH and its Probabilistic Interpretation

In linear system theory, the response of a continuous system to an

arbitrary input is defined by the convolution equation:

t

Q(t) = i(T)h(t-T)dT

17



In hydrology, Q(t) is the discharge at time t and i(t) is the intensity

of the effective precipitation as a function of time. The function h(t)

is the characteristic response of the basin and is usually called the

Instantaneous Unit Hydrograph, since it is the response to an instantan-

eous impulse of unit volume applied uniformly over the basin. In other

words, this is the distribution of the unit volume at the outlet of the

basin. The IUH has units of inverse time; its possible values are non-

negative, by definition its area is equal to 1. The above proper-

ties are similar to those of probability density functions. Indeed,

Gupta et al., (1980) prove the common hypothesis that the IUH is the pro-

bability density function of the time that an individual drop of water,

falling at a random point in the basin requires to travel to the outlet

of the basin.

2.3 Structure of the Drainage Network

Throughout many years, the effect of climate and geology on catchment

topography produces an erosional pattern which is characterized by a net-

work of channels. Horton (1945) proposed a method for classifying streams

by an ordering scheme and postulated two empirical laws: the law of

stream lengths and the law of stream numbers. Strahler (1957) proposed

a similar ordering scheme, that has one to one correspondence with

Horton's scheme. It is illustrated in Figure 2.1, and the procedure is

as follows:

1. Channels that originate at a source are defined to be first

order streams.

2. When two streams of order i join, a stream of order i+1 is created.

18
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HT Trapping state

Third order basin with Strahler's ordering scheme

(From Rodriguez-Iturbe and Valdes, 1979)

Figure 2.1
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3. When two streams of different order join, the channel segment

immediately downstream has the higher of the orders of the two

combining streams.

4. The order of the basin, a, is the highest stream order.

The quantitative expressions of Horton's laws are:

N1
Law of stream numbers: RB N

i+1

Law of stream lengths: RL L
i-l

Schumm (1956) proposed a Horton-type law for drainage areas:

A1
Law of stream areas: R -

A Aj.

where Ni is the number of streams of order i, Li is the average length of

a stream of order i, and Ai is the mean area of the sub-basin of order i.

RB, RL, and RA represent, respectively, the bifurcation, length and area

ratios, which are characteristics of the geomorphology of the basin. For

natural basins the normal values are between three and five for RB, between

1.5 and 3.5 for RL, and between three and six for RA.

2.4 Derivation of the Geomorphologic Unit Hydrograph

A drop of water, travelling throughout a basin can make transitions

from streams of lower order to streams of higher order. Assume a third

order basin (0=3). The drop, falling randomly on the basin may follow

20



a finite number of paths to reach the outlet. In terms of the different

orders, streams and areas, the paths may be characterized as:

si = a(1) + r(1) + r(2) + r(3) * OUTLET

s2 = a(1) + r(1) + r(3) + OUTLET
(2.2)

s3 = a(2) + r(2) + r(3) + OUTLET

si = a(3) + r(3) + OUTLET

where a(i) defines the area contributing to streams of order i and r(i)

represents a stream of order i.

All possible paths fall into one of the above sequences. Figure 2.2

is a representation of the basin in terms of all alternative paths.

From now on, it is assumed that the time that a drop spends as

overland flow is negligible (Rodriguez-Iturbe and Valdes, 1979). There-

fore, the probability that a drop reaches the outlet at a given time is

a function of the probability that a drop initially falls in an area

draining to a channel or order i(i1,...,0), the transition probabil-

ities to channels of higher order, pij, j=i+1,...,0, and the PDF of the

time spent in a channel of the corresponding order.

According to Gupta et al., (1980), the cumulative density function

of the time that a drop takes to travel to the outlet of the basin i.s

given by

P(TB < t) = P (Ts < t) P(s) (2.3)
S ES

where P(-) represents the probability of the event given in parenthesis,

TB is the travel time to the outlet of the basin, Ts is the travel time

through a path s, belonging to S, the set of all possible paths.

21
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Basin representation in terms of alternative paths

Figure 2.2
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The travel time, Ts, in a particular path, a(i) + r(i) +...+ r(Q) +

OUTLET, where i {1,. ..01, must be equal to the sum of travel times in

the elements of the path:

T = r(i) =T+ r() (2.4)

where Tr(i) is the travel time in a stream of order i. It was assumed

that Ta(i) = 0. Given that there exist several streams of a given order,

Tr(i) may be considered an independent random variable with a given pro-

(i)
bability density function, f T (t), so that the cumulative density func-

tion Ts is the convolution of the individual cumulative density functions,

(i)
F T(t):

s (1) (G2)
FT(t) = FT (t)*...*F T(t) (2.5)

where * indicates the convolution operation.

The probability of a given path s is:

P(s) = 0i - p ... Pk A (2.6)

where Oi is the probability that a drop falls in an area draining to a

stream of order i and pij is the transition probability from streams of

order i to streams of order j. Rodriguez-Iturbe and Valdes (1979) show

that the initial and transition probabilities are functions only of the

geomorphology of the basin. Table 2.1 gives the expressions for a basin

of order 3.
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Table 2.1

Initial and Transition Probabilities
for a Basin of Order 3

2

01 R 2RB

A

3 . --2
_ "B-t RB - Z KB

2 R 2
A RA( 2RBl)

R R - 3R + 2R
0 1- B _B B B
3 R 2

A RA 2P -1)A 

2 2
+ 2RB - 2

P 1 2  2

2
R - 3RB + 2

P13 22 RB - RB

p23 
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Now that Equation 2.3 is fully defined in terms of geomorphologic

parameters and the PDFs of the travel time in the different streams, the

ge-omorphologic IUH is obtained by calculating the derivative of

P(TB 4 t:

h(t) =dP(TBt)

dt

', (i) . (Q)
= f (t)*...If (t)P(s) (2.7)

T T

Rodriguez-Iturbe and Valdes (1979) argue for an exponential behavior

of the travel time in individual channels of a given order:

(i) ~it
f T (t) = AXe (2.8)

where

Xi = v/Li (2.9)

They use the assumption that for a given rainfall-runoff event the vel-

ocity at any moment is approximately the same throughout the whole drain-

age network (Pilgrim 1977). For the stream of the hignest order, they

(Q)
prefer to modify the exponential assumption, such that f T (t) becomes:

*2 ~t
f T(t) = te (2.10)

where

*
XS1 2 2

The following results correspond to a basin of order 3. Remember-

ing the possible paths in a basin of this order and their corresponding

probabilities, Equation 2.7 is:
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h(t) = 0 P f (1)t)*f (2)(t)*f (3)(t) + 13 T (t)*f (3(t)1 12 T + 0 P f3 l)

+ E2f ( )*f (t) + 03f (3 t)2T) T (t 3 fT~
(2.11)

(1) (2) (3)
where f T (t) and f T (t) are given by Equation 2.8, whereas f T (t) is

given by Equation 2.10. These convolution operations can easily be per-

formed using Laplace transforms:

{e S+Xt (2

*

.12)

*2

{*2 t e = x Q 2

e (s+ 2)
(2.13)

Then,

h(t) = 01 P 12

+ 1 P 13/'

A *2{ ~l 2 3
s+A s+2A * 2J

1 2 (s+A3 )

A*3

s+ + * )2
1s+3

S *2

+ 02,P s+X2 3*~ 2
2(+3

+ 03f 1

*2{ 3 * 2}
(s+A3

26
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and after some calculations of the inverse Laplace transforms, the final

expression for the geomorphologic IUH is:

-e t -2t
h(t) = 0 P X 2 2 + e2

.1 12 1 23 k -.~2(A2*1 ( )2( )

1 3 2 1 2 3 1 2

*

3Xt

+ [2X 3-X1-X2 + (X 1 -X3)(Y2 3X)tle }
*9**

-X t t
*2e -11-(X 3- 1 W

+ -1 P13 X1 3 (X* X)2
3 1

-(Xt -X t
2e - [1-( 3 -X 2)t]e 3*2 3t

+ 02 2 3 * 2 + 03 3 te (2.15)

(3 2

The GIUH, h(t), can be convoluted with a specific rainfall event

in order to get the discharge hydrograph. Under the assumption that the

effective rainfall can be represented by an event with constant intensity

ie during a period te, an analytical expression for the discharge hydro-

graph is obtained as follows:

The expression for the rainfall event is given by:

i(t) = ie[u(t) - u(t-te)] (2.16)

where u(t) is the unit step function. Given that the operation involved

in Equation 2.1 is a convolution, the Laplace transforms can be used

again to calculate Q(t). The Laplace transform of i(t) is:

-t S
1-e e= 1 (2.17)~LL\/.J S e
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Therefore,

*2 -t s
) p 1 1 X2 3  1-eQ(t) = 1 P12f I+A s+X (X*)2 sej1 21+ s+2 (s+A3 )2 s )

*2 -t s
+ fP 1 A3  1-e

+ 1 1 3  s+A1 (s+A) 2  s ej

*2 -t S

+ 0 2 3 1-e
2 (s+X*)2 s e

*2 -t s

+ 0 -1 3 * -e

(s+X3)

i}e (2.18)

After some manipulations, the expression for the discharge hydrograph

becomes:

*2 -D *2

Q(t) = A bi E 1 2 X 2AX 2  +1 13 X3 2 13 bie A *) 2 (X -X ) ( 1
1 -3 2 1 3- .

0 PX X*2
3 12 1 2

+ A 3 (bie X* 2 (t-X2- 3 1- 2)

+ 2 *2
+ (A2 {

-X it l-(t-te
- e -1-e U(t-t e)

-2 t X2 (t-te
- e - 1-e u (t-t ))

+ A bi 1- 1P 1 2 1 X 2  3 2A 3 -X 1 2)

3 el ( *) 2 ( * XA2

1 3 2 3

*

1 13 1 3
* 2

1 3)

*
02 A2 X3
( X* 2

2 3

1 -e2 2(t-t }
1-eu(t-te

*

SP12 1 2 11 P3 1 02  A * t
+ A 3 bi e+ + * + 3 - t+l)e +u(t-t

1XA3 2 3 1 3 2 3 ~

-A (t-t )
+ e e

-3 (t-t)
u(t-t) + A3(t-t ) e e u(t-te 3 e .e

28

(2.19)
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where A3 is the area of the basin in km2, t and te are given in hours,

ie in cm/hr and b is 1/0.36 in order to obtain Q(t) in m3 /sec.

2.5 The Peak and Time to Peak of the IUH

The most important characteristics of the IUH are its peak, qp, and

time to peak, tp, the shape being less critical and adequately represented

by a triangle. Unfortunately, the sum of exponential functions in the

IUH expression (Equation 2.15) does not lend itself to mathematical mani-

pulation in order to obtain the maximum of the function. Therefore, from

regression analyses, Rodriguez-Iturbe and Valdes (1979) obtained the fol-

lowing expressions for qp and tp:

1.31 0.43
q = R (2.20)

p L v

0.44L -0.38 (2.21)

where LQ is the length in km of the highest order stream and v is the

peak velocity of the response in m/s; tp and qp are given in hours and

inverse hours, respectively. With the definition of these two parameters,

the revision of the geomorphologic theory of the instantaneous unit hydro-

graph has been completed.
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Chapter 3

THE RESPONSE OF A CHANNEL: INFILTRATION LOSSES EFFECT

3.1 Introduction

Calculating the course of a flood wave is known in hydrology as

flood routing. There are several flood routing procedures. They differ

in the nature of the governing equations used to describe the wave move-

ment, and on the assumptions and approximations introduced. In this

chapter, an approximate linear solution to the one-dimensional unsteady

flow equations in a wide rectangular channel (including infiltration

losses) will be found. The solution will correspond to initial conditions

imposed by the definition of the IUH. The first result is the response

channel to an instantaneous input at the upstream end. From this solu-

tion, the response to an instantaneous uniform input along the channel

will be derived.

3.2 Linear Solution to the Equations of Motion

The one-dimensional equations of motion for unsteady flow in a wide

rectangular open channel including infiltration losses are given by:
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Continuity:

S 3 (3.1)

Momentum:

x+ v 3V + 1 V v xt) = S - S (3.2)
ax g 5x g5t gy I o f

where

g = gravitational acceleration [LT-2]

v = mean velocity [LT- 1]

y = depth [L]

q = vy = discharge per unit width [L2T'I]

so = slope of the channel bottom

Sf = friction slope

x = space coordinate, measured downstream along the channel [L]

t = time coordinate [T]

qg(xt) = infiltration rate [LT~ ]

The Chezy formula is used to describe the frictional effects,

2
S ~v
f 2 (3.3)

C y

where C is the Chezy coefficient.
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Eliminating the velocity from the momentum equation, retaining q and

y as the dependent variables, differentiating Equation 3.1 with respect to

x and Equation 3.2 with respect to t and combining them with Equation

3.3, the following second order partial differential equation of motion

results:

32 2 2 2
3 3q2 2 at(gy -q ax 2 - 2qy ";t3x ~ a 2 ~ 2 atax at C

+ 2q(3q -a- ) - 3 2) I -(x)
ax at ax at (ga-q x

+ 3gy2 ( y) 9%+ 3gy2 a) q (x,t)
o ax ax 0 ax I

- 2yq (xt) (3.4)I at

The above equation is highly non-linear. Its linearization is per-

formed according to the following definitions and assumptions:

q Eqo + 6q o >> 6q
(3.5)

y yO + 6y yO >> 6y

where qo and yo are a reference discharge and a reference depth, and 6q

and Sy are perturbations about these values. Substituting Equation 3.5

into Equation 3.4 and eliminating any second order differential terms

(perturbations are here assumed small), the linearized equation of motion

is:
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3  2) 2 q 2 2 6  2 326q 2 _6"
(gyo - 0 ) 2 - 2q~y O xY - 2 q - 3gSOyo x

ox 
t 

0at 2

3 S 0 36= _ 3 2 M i(x, )
- 2gy o q t - - _ 

0yx '
0 J

+ 3gS y2 [q (xt)]L - I (xt) (3.6)

where C has been assumed constant and equal to the value corresponding to

the reference state, i.e.,

C 1/2 3/2
So y00 0

and [-]L is the linearized expression of the argument, given the specific

representation of the infiltration losses. An adequate representation of

these losses [Burkham (1970a, b)] is:

ql(x,t) = Kqa

where a is about 0.8. For tractability reasons it is assumed here that a

is equal to 1, and then the dimension of K, the infiltration coefficient,

is L-1. Therefore,

[ql(x,t)]L = K(qo + 6q) (3.7)

q (xjt) = K 36 (3.8)
[x I -JL D

Introducing Equations 3.7 and 3.8 into 3.6, the linearized equation

of motion becomes:
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22 2
3 2 -2q a6q 2 a 63 3 g 2 36q(gy - q 2 ) - 2q y y - 3gS yo o a 2  oo axat o 2 0 o ax3x at

S
2 o _6 _ 3 2 gS 2

- 3gy - = (gy - q ) K + 3gS y Kq
0 qo at 0 0 ax 0 0 0

+ 3gSy 2 K6q - 2y Kq (3.9)
0 0 0 O at

For given initial and boundary conditions, analytical solutions of

this equation may be obtained. In this study, the interest is on the

response of a channel to a drop entering anywhere along its length.

This will be found by first using the response of the channel to an input

at its most upstream point.

3.3 Channel's Response to a Pulsed Upstream Inflow

The purpose of the derivation of the response of a channel to a drop

entering anywhere along its length is its posterior utilization in the

geomorphologic IUH. Therefore, the response of the channel will be ob-

tained for using boundary conditions implied by the definition of the

IUH:

6q(O,t) = 6(t)

where 6(t) is the delta function:

Before the application of the delta function, the flow is in steady

state. It may be expressed as (see Appendix A):

q(x,t) = q1e~Kx t 4 0

where qj is the flow at x=0. Then, in terms of the linearization scheme,

there exists a perturbation about qo. Recalling Equation 3.5a and the

above expression, 6q(x,t) is:
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6q(x,t) = q(x,t)-qo = qle-Kx - qo t < 0

As explained in Appendix A, the reference flow qo is assumed equal

to qj. Therefore, the initial conditions for solving Equation 3.9 are:

-Kx

6q(x,0) = 0e -

and

36q(x,t) = 0
at

t=O

The solution of Equation 3.9 is based on the Laplace transform

method. Harley (1967), O'Meara (1969), Dahl (1981), and Kirshen and Bras

(1982) among others, have used the Laplace transform method to solve

problems of unsteady flow in open channels. A detailed description of

the solution procedure is presented in Appendix A. The solution has the

following form:

6q(x,t) = qoe~Kx - qo + w(x,t)e~Kx

The first two terms of the above equation correspond to the value of

the perturbation before the application of the delta function, and the

third term represents the effect of the latter, which is the main interest

here. Therefore, the net response of the infiltration channel to an in-

stantaneous input at its most upstream point, at time t and at a distance

x is:

h(x,t) = w(x,t)e-Kx
or,

h(x,t) = exp(-px)6(t-x/c1 )

I [d 2 ((t-x/c )(t-x/c 2 ))2 /al
+ exp(-rt+zx)(d/a)x u(t-x/c1 ) (3.10)

((t-x/c1 )(t-x/,'c 2 )) 2
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where

a = __ _
2 2

gy (1-F )

c = V0 + (gyo)'

C 2 =v0 - (gy)

2
d = -b

4 ac

S 2+F 2

b 0 0 +
ovo (1+F 2)2

0

2 SK 3 0 1_ + - K --
4 2 yo 1-F 2

0

S 2-F
0 0

p 2y (1+F )F

S gS F2

r =g -- + 0
v 2v

0 0

3 K
- KF0 + -

- Kv (1-F 2
2 0 0

S
Z 0 K 3 2z - - - + - KF

2y 2 2 0
0

V= - reference velocity
0 yO

V

F= 0 =
(gy )

reference Froude number

1 [*1 = first order modified Bessel function of the the first kind.

u(-) = unit step function.
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K F2
K 0

vo 1-F2
0

9
4

S 2
0

yo2
YO

1
2 2

(1-F )0



This solution is valid for Froude numbers less than 1. For Froude

numbers between 1 and 2 the first order modified Bessel function of the

first kind, I[-], will change to the first order Bessel function of the

first kind, J[-], whose solution will contain imaginary terms, implying

oscillations in the discharge and water surface.

It is important to note that when K=0, Equation 3.10 reduces to the

same solution obtained by Harley (1967) and used later by Kirshen and

Bras (1982).

For a fixed value of x, the area under h(x,t), denoted Ah, is equal

-Kt
to e , as it is shown in Appendix A. It represents the fraction of the

perturbation that reaches point x. By definition of the delta function,

1-Ah is the fraction of it that infiltrates along the interval [0, x];

if K = 0, All = 1. In the special case in which x=L, where L is the

length of the channel, h(L,t) will be referred to as the upstream inflow

IUH and will be denoted as:

u(t) = h(Lt) (3.11)

If I is the infiltrated percentage of the flow in a channel of length L,

the infiltration coefficient may be expressed as a function of I and L:

K ln(l-I/100) (3.12)
L

As a result, for a given value of the infiltration coefficient, the

losses will be larger as the length of the channel increases.

Figures 3.1 to 3.4 show the upstream inflow IUH for different infil-

tration losses and different characteristics of the channel. The slope

of the bottom of the channel and the reference depth and velocity were

chosen such that the implicit Manning's roughness coefficient was between
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0.030 and 0.065, a reasonable range for natural channels. As it can be

seen, the reduction in the value of the peak is almost proportional to I,

and the time to peak does not change. If the length of the channel is

increased by a factor of two, as it is the case in Figures 3.1 and 3.2,

the form of u(t) changes from a very rapid response to a relatively slow

one, indicating that the wave was attenuated in the second half of the

channel. Kirshen and Bras (1982) give a physical interpretation of Equa-

tion 3.10: the first term represents the dynamic component of the wave

and occurs at time t=L/ci, time when the wavefront, moving with a dynamic

propagation speed c1= vo + (gyo) , reaches the downstream end of the chan-

nel; the second term, constitutes the kinematic component, whose center

of mass is moving with a mean velocity equal to 1.5vo, indicating that it

dissipates slower than the dynamic component. As one could expect, both

components are affected by infiltration losses. Looking at the expression

for the parameter p in Equation 3.10, if F0 is less than 1/3, the infil-

tion reduces the dynamic part of the response. For F0 greater than 1/3

the dynamic response is enhanced. Given the complicated expression for

the kinematic component, no general relationship with K can be inferred.

Finally, note that in order to make the values of I equal, the cor-

responding values of K in Figure 3.2 had to be reduced to half of those

in Figure 3.1.

The response of the channel to an instantaneous input at its most

upstream point h(x,t), can be interpreted as the conditional PDF of the

time that a drop entering at the upstream extreme of the channel spends

travelling a given distance x, fTIX(x,t). This PDF is a mixed type dis-

tribution: a continuous part defined by h(x,t) itself, with an area
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equal to e-Kx and a discrete part given by a spike at infinity with

a value of 1-e-KX. Formally,

h(x~t) t > 0
f TX = (3.13)

I P I(x t) = 1-e t = 00

The continuous part involves the travel time of those drops that

reach point x, whereas the spike represents the travel time that a drop

that infiltrates along the interval [O,x] takes to reach x(i.e., the

infiltration event constitutes an absorbing state). The probabilistic

interpretation of the upstream inflow IUH, u(t), where x=L, beomes:

{h(L,t) t > 0
fT(t)= (3.14)

P (t) = 1-e

u
Figure 3.5 shows fT(t).

3.4 The Lateral Inflow Response

Recalling the derivation of the geomorphologic IUH, the PDF of the

travel time of a drop entering anywhere in the channel and travelling to

its outlet is required. Kirshen and Bras (1982) derived this PDF for the

case of no infiltration losses. This section will present its derivation

considering these losses.

For a given channel of length L, the landing spot y of the drop must

be between 0, the upstream end, and L, the outlet of the channel. The

probability that the drop lands at y is the same for all y within the in-

terval [0,LI. Let x=L-y be defined as the distance between the landing

spot and the outlet. Therefore, the following PDF of x may be estab-

lished:
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1 0 < x < L

fX( x) L -- (3.15a)
0 otherwise

In the previous section, the conditional PDF of a drop's travel time

along a given distance x, fTIX(x,t), was given. The interest here is the

PDF of the travel time of a drop landing anywhere along the length of the

channel, which is given by the unconditional PDF corresponding to fT|X(x,t),

r
denoted fT(t):

f (t) = fT(x,t)fx(x)dx

or using Equation 3.13:

-L

h(x,t)fx(x)dx t > 0

f (t) = (3.15b)

joPTI (x~t)f x(x)dx 
t = 00

In the above equation, the first term constitutes the continuous

r
part of fT(t), and the second one the discrete part with a spike at

r
infinity. Introducing Equation 3.15a, fT(t) becomes:

h(x,t)dx t > 0

f (t) =. J (3.16)

0PTI X(x,t)dx 
t =
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Evaluation of the first term of this equation, in which h(x,t) is

given by Equation 3.10, yields:

r(t) = h(x,t)dx = gl(t) + g2 (t)

S 1 exp(-pc t)
g1(t) = 0

0

(3.17)

(3.18)
t < L/c

t > L/c

L1

gt) = (d/a) iexp(-rt)
g2 t) = LLhr

where Lt =

1[d((t-x/c I)(t-x/c 2))"/a]
xexp(zx) 1 dx

((t-x/c )(t-x/c 2))

c t

(3.19)

t < L/c

t > L/c

Since a closed form solution of the above integral does not exist, it

must be evaluated numerically.

On the other hand, the second term of Equation 3.16 is:

0
pTX (t,x) dx

(3-20)

Therefore,
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rt) Wt > 0

f T = -KL (3.21)
P T(t) = 1 -(1-e )/IKT t-

where Equations 3.18 and 3.19 define the expression for r(t). Figure 3.6

shows this PDF. The continuous part involves the travel time of a drop

that enters the channel anywhere and reaches the outlet, while the value

of the spike is the probability that a drop landing anywhere infiltrates

before the outlet. The area under the continuous part, Ar, is equal to

(1-e-KL)/KL, as it is proven in Appendix A. This quantity added to the

value of the spike at infinity results a total area of 1, a property of

any probability density function. Besides, Ar represents the fraction of

the water that enters along the channel and reaches the outlet.

The term r(t) may be interpreted as the lateral inflow response,

i.e., the response of the channel to an instantaneous input at every

point along its length. As a result, an individual wave will be origin-

ated at each point. The total response due to the wave fronts is given

by Equation 3.18. This response is zero after t=L/cl since at this time

all the wave fronts, travelling at the dynamic velocity ci = vo +

X

(gyo)', have reached the outlet of the channel. The total response due

to the wave bodies is given by Equation 3.19. In this equation, for

t < L/cl, the upper integration limit is L1 = c1 t, which means that

waves originating between the outlet and Ll can contribute to the re-

sponse at the outlet at time t; however, those waves starting beyond Ll

cannot yet contribute. For t > L/cl, all waves are contributing to the

response and the upper limit changes to Ll = L. Figure 3.7 shows the rel-

ative contributions of wave fronts and wave bodies to the lateral inflow

response, for a fixed value of the infiltration coefficient.
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Similarly to the upstream inflow response, if I is the infiltrated

percentage of the flow in a channel of length L, the corresponding infil-

tration coefficient can be expressed as an implicit function of I and L

(see Equation 3.21):

-KL
KL = (3.22)

1-I/100

Plots of r(t) for infiltration losses of 0, 10 and 30 percent, and

different characteristics of the channel are presented in Figures 3.8 to

3.11. As it can be observed, the ordinate of each curve starts at the

corresponding value of cl/L (see Equation 3.17), independent of the in-

filtration losses. Figures 3.8 and 3.9 correspond to a very steep channel

(the reference Froude number is 0.95), for two values of its length, i.e.,

1 and 2 km. respectively. In both the response is very fast, and a high

percentage of the drops respond before t=c1 /L; for I=0, the shape of the

response is basically rectangular; however, as I increases, it tends to

decay. Figure 3.10 shows the responses for a channel of lesser slope with

a length of 1 km. and reference depth and velocity of 1.0 m and 1.5m/s.,

respectively. In this case, they follow closely the shape of an expo-

nential decay. Finally, in Figure 3.11, the lateral inflow responses

are plotted for a longer channel and less rapid reference flow. Their

shape lie between that of Figure 3.10 and those of Figures 3.8 and 3.9.
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The fact that the ordinate of r(t) starts at the value cl/L, inde-

pendent of I, along with the shape similitude, in some cases, of the lat-

eral inflow response with an exponential decay, suggests a modification

to the linear reservoir response, assumed in the geomorphologic IUH by

Rodriguez-Iturbe and Valdes (1979). In order to take into account the

infiltration losses the following distribution time in channels may be

assumed:

re(t) = e t (3.23)

where,

c

L

and X is computed such that the are under re(t) is 1-1:

c 1
L(1-I/100)

Figures 3.12 to 3.17 present some comparisons between the linearized

solution r(t), and the exponential approximation re(t), of the lateral in-

flow response. Figures 3.12 and 3.13 show the comparison for a channel

with a length of 5 km, a bottom slope of 3 m/km and reference depth and

velocity of 1 m and 1.5 m/s, respectively. Infiltration losses of 0 and

30 percent are used, respectively. As can be seen, the linearized solu-

tion responds slower at the beginning, but after approximately 0.2 hours,

it becomes faster. In the case of the infiltration losses of 30 percent,

the two curves are closer than for zero losses. In Figures 3.14 and

3.15, the responses are plotted for the same channel but with a length of

1 km only. The comparison shows similar results as before, but now the

curves are much closer. Figure 3.16 plots r(t) and re(t) for the same
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channel of Figure 3.8 with no infiltration losses, whereas Figure 3.17

presents the comparison for the channel of Figure 3.9 with I=30 percent.

In general, the shorter for channel and the bigger the losses, the simi-

larity of r(t) and re(t) increases.

3.5 Summary

This chapter presents the derivation of two analytical expressions

for the approximated linear response of a channel with infiltration los-

ses. The first one corresponds to the response to an instantaneous in-

put at the upstream of the channel, denoted u(t). The other response

constitutes that to an instantaneous input originating anywhere along

the channel, r(t). Both of them are functions of the infiltration coef-

ficient, the channel slope and length, and the reference depth and velo-

city. From the characteristics of r(t), a modification to the conceptual

linear reservoir response, was proposed in order to take into account

the infiltration losses.

The responses, which describe the movement of the flood wave along

the channel, are interpreted as the PDFs of the time that a drop spends

travelling to reach the outlet of the channel. These PDFs will be used

in the next chapter to determine the IUL and the discharge hydrograph of

a given basin.
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Chapter 4

THE BASIN IUH AND DISCHARGE HYDROGRAPH

4.1 Introduction

Chapter 2 presented the derivation of the geomorphologic IUh, and

the resulting expression for the discharge hydrograph when the GIUH is

convoluted with a rainfall input of constant effective intensity and

given duration. In Chapter 3, a physically based linear channel respone

was obtained from the equations of motion for unsteady flow, including

infilLtatiLLl lsse8. ThIe LepOse U_ Lile CinnLL Was iLLpLetdU thLeI

probability density function of the amount of time that an individual

drop of water takes to travel to the outlet of the channel. This chapter

utilizes this PDF, which is more physically based than the linear reser-

voir assumption, in the expressions for the geomorphologic IUH.

4.2 The Basin IUH and Discharge Hydrograph-Linearized Solution

Equation 3.21 gives the analytical expression for the PDF of the

travel time needed by a drop entering anywhere along the channel to reach

r
the outlet, fT(t), which results from the linearized solution of the

r
equations of motion. Replacing fT(t) in Equation 2.11, the IUH becomes:

h(t) = P1 2 fr() (t)*fr(2) t)*fr(3) (t) + OP f r(l)(t)*fr(3)(M

+ 02 (t) *fr (3)(t) + 0 r(3) (t) (4.1)
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As in Equation 2.11, the solution of this equation may be calculated

r(i)
using Laplace transforms. The Laplace transform of fT (t) is (see

Equation A.23):

SL 
-K

r {frT(t) e W (x,s)dx
Ti L

[e - (4.2)
B LJ

where

B = -(a. s2 + bis + ci) + eis + fi + Ki (4.3)

In the above expressions, the subscript i indicates the order of the

channel, W(x, s) is the Laplace transform of fT(t), L is the length of

the channel, K is the infiltration factor, a, b, c are defined in Equation

3.10, and e and f are:

V
0

e = 2
gy (1-F )

S
K + 3 o 1
2 2 y (1-F )

0

where the right hand side parameters have been defined previously. Pro-

ceeding in a similar manner as in Chapter 2, the basin IUH is then:
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h(t) = O p1 2  
1  B L B1 2 B 2 L 2  B L B 3 L 3 _

+ B1p 13 B B BL 3~ eB3L3Ie-JJ

+ 62 { L eB2L2 B L B3L3B

S11 2 2 3 3

+ B 
B3  eB3 L 

Unfortunatply, the above equation cannot be solved analytically, and a

subroutine (IMSL, 1980) is used to solve it numerically. The same occurs

with the discharge hydrograph Q(t), which results from the convolution of

h(t), as given by Equation 4.4, with a rainfall event, represented by Equa-

tion 2.16. The corresponding expression for Q(t) is

1 12Ae3 1 B B L L 2 L2
Q(t) = b B L L 2 e

B 3 L 3 -t es
B3L3j1-e

B 3 L3  s e}

QP1 3A 3 X1 B L B3 L3 _ 1-e

b B L B 3 L 3  s e

-t s
O2A ___ r 2 L2 ~ 1 rB3L3j l-e *

+ B2 L2  e BL3 3e s ef

E) 3 3 B L 3 - t s
+3 A3 1 . 1 { e (B3L3] 1e (4.5)

bB3L ' se
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where A3 is the area of the basin, te is given in hr., ie in cm/hr. and

b is a conversion factor equal to 0.36 in order to obtain Q(t) in m3/sec.

Before further discussion of h(t) and Q(t), the following sub-

section deals with the estimation of the parameters involved in Equation

4.4.

4.2.1 Parameter Estimation

In order to calculate the IUH derived from the linearized solution,

for a given basin, two sets of parameters must be estimated: parameters

representing the physiographic characteristics of the basin and individual

channels, and parameter representing the dynamic component of the response.

The physiographic characteristics of the basin are expressed in

terms of the Horton's numbers, RA, RB and RL. The characteristics of the

individual channels are lumped according to stream order. The average

channel length and the geometric mean of the slope are used to represent

the channel's physiographic characteristics. All the above parameters may

be estimated easily from topographic maps, aerial photographs, or satel-

lite imagery.

The reference depth y0, reference velocity vo and the infiltration

factor, K, represent the dynamic component of the response. These para-

meters, are also lumped according to the order of the stream, and their

estimation may involve field inspections and some engineering judgement.

Following is a proposed procedure to estimate yo and vo based on Manning's

equation, and on the expressions ci = vo + (gyo)2 and F0 = Vo/(gygf
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1. From visual inspection, estimate, for each order stream i, the

average Manning's roughness coefficient n and the Froude number

under steady state conditions, F0 .

2. Using the estimated values of So for each order, calculate the

respective values of the celerity of the wave flood as

c = n F 3 g2 (1+F0 )/S 0 .5 (4.6)

3. Calculate yo and vo for each order stream.

y 0 = c1  2 (4.7)

g (i+Fo)

c F
v = 1+0 (4.8)
0 1+F

0

where g is the gravitational acceleration in m/sec 2, and the units of c,

and vo are m/sec, and yo is given in m.

The procedure can be modified slightly, in case another estimate

of the celerity of the wave is available. In step 2, instead of calcu-

lating ci, Equation 4.6 can be solved for Fo by trial and error.

If one assumes that ci is related somehow to the specific rainfall

event for which the IUH is being calculated (greater the intensity, greater

the velocity of the flood wave), then there does not exist an unique IUH

characteristic of the basin. This means that the nonlinearities present

in the rainfall-runoff process are reflected in such a way that the IUH

would be a function of both the rainfall input and the geomorphology, as

Rodriguez-Iturbe et al., (1982) recognize. However, no attempt is made

here to relate the celerity of the flood wave to the rainfall input char-

acteristics.
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Finally the infiltration factor, K, may be estimated from iso-

lated streamflow measurements performed in reaches where no inflows from

tributaries are present. From these measurements, the percentage of the

flow infiltrated can be evaluated and introduced in Equation 3.12 to ob-

tain an estimate of K.

4.2.2 Hydrographs for Three Basins

In this sub-section the IUhs and discnarge hydrographs for three

basins are presented. The first two correspond to sub-basins of the

Indio basin, located in Puerto Rico, namely Morovis and Unibon basins,

which have been studied in the context of the geomorphologic IUH by Valdes

et al., (1979) and Kirshen and Bras (1982). For these basins Rodriguez-Iturbe

et al. (1979) give the parameters and the discharge hydrographs resulting

from a kinematic wave rainfall-runoff model. Some of these results will

be used to check the hydrographs obtained here. Figure 4.1 shows the gen-

eral layout of the Morovis and Unibon basins.

The third basin is Wadi Umm Salam, also studied by Kirshen and Bras

(1982). This is a sub-basin of Wadi Abad, one of the largest wadis in

Upper Egypt. Wadis like Wadi Umm Salam are subject to occasional flash

floods, which cause damages to the downstream villages. Usually there

are no rainfall or streamflow measurements at any location within the wadi.

Thus, the geomorphologic IUH constitutes a useful tool to estimate the

discharge due to specific storms in these wadis. In concept, only a

topographic map or aerial photograph, estimation of the storm charcteris-

tics, and perhaps a field inspection are required. Figure 4.2 presents

the general layout of Wadi Umm Salam.
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MOROVIS BASIN

UNIBON

BASIN

Figure 4.1 General layout of Morovis and Unibon basins

Figure 4.2 General layout of Wadi Umm Salam
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TABLE 4.1

Comparisons Between the Rainfall-Runoff Model and the

Linearized Solution

Rainfall-Runoff

Model

(m3/s)

103

112

188

194

(hr)

2.2

3.0

2.0

3.0

Linearized
Solution

(m3/s)

103

106

(hr)

1.5

1.5

181 1.6

1.7183

63

Basin te

(cm/hr)

Morovis

Unibon

(hr)

2

3

3

3

3

3

3

3



Figures 4.3, 4.4, and 4.5 show the IUHs for the above basins using

different combinations of the infiltration losses in the channels. Each

figure contains the information on the values of I and the physiographic

characteristics of the basin and the channels. The values of vo and yo

were estimated according to the modified procedure proposed in sub-section

4.2.1, assuming a velocity of the wave flood of 3 m/sec. and an estimated

value of the Manning's coefficient of about 0.067 for Morovis and Unibon

(very steep channels, presumably with big rocks in the bed), and about

0.045 for Wadi Umm Salam. The responses of Morovis and Unibon are very

similar, Morovis resnonding faster. The response of Wadi Umm Salam is

slower, since it is not as mountainous as the others. The effect of the

infiltration losses is clearly illustraced with the differences in the

height and area under the IUHs.

Figures 4.6 and 4.7 present the discharge hydrographs for Morovis

and Unibon basins when the IUHs of Figures 4.3 and 4.4 are convoluted with

an effective rainfall of 3 cm/hr intensity and a duration of 2 hours.

Similar hydrographs were obtained for a three-hour assumption. Table 4.1

compares the main characteristics of the discharge hydrographs obtained

here for the Unibon and Morovis basins (I=0 percent) and those obtained

by Rodriguez-Iturbe et al., (1979) using a rainfall-runoff model. As it

can be seen, the agreement in the peaks is good, although in the case of

Unibon, the peak velocity given by the rainfall-runoff model was 4 m/sec,

greater than the 3 m/sec used for the velocity of the wave in the linear-

ized solution. It is important to note that no adjustement of the linear-

ized solution hydrographs, modifying vo and yo, was made. This means that
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if the estimation of n was correct, the proposed procedure to estimate

vo and yo is adequate.

There are no rainfall-runoff results in Wadi Umm Salam to which the

hydrographs obtained here can be compared. However, Figures 4.8 to 4.11

present the hydrographs corresponding to rainfall with a return period

of 100 years, for storm durations of 2.0, 1.5, 1.0 and 0.5 hours, and in-

tensities of 1.8, 2.4, 3.7, and 7.3 cm/hr respectively (Kirshen and Bras,

1982). Again, the effect of the channel infiltration losses is signifi-

cant.

An interesting exercise would be the comparison between the IUHs and

discharge hydrographs obtained by Equations 4.4 and 4.5 and those produced

by Equations 2.15 and 2.19. However, these comparisons would be valid

only for I=0 percent. Therefore, Equations 2.15 and 2.19 must be modified

slightly to allow comparisons for I greater than zero. This is done in

the next section.

4.3 Linearized Solution vs. Exponential Assumption: A Comparison

Equations 2.15 and 2.19 give the IUH and the discharge hydrographs,

when the linear reservoir assumption is used to represent the behavior of

the channels forming the drainage network. These expressions are valid

when no infiltration losses are considered. However, in Chapter 3, a mod-

ification to the linear reservoir response was proposed to account for

infiltration. It is given by Equation 3.23. Its probabilistic interpre-

tation is:
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t~ t > 0
f M(t) =-K.L. (4.9)

p(t) = 1-(1-e )/K.L t =0

where,

C

1 (4.10)
L.
1

and

c7
= 1(4.11)
S L (1-I J3100)

Rodriguez-lturbe and Valdes (1979) used Equation 2.10 to represent

the PDF of the travel time in the streams of highest order. This equa-

tion also has to be modified for infiltration losses, i.e.,

*

P te Q t > 0
f (t) = -K L (4.12)

T (t (t) = 1-(1-e )/K L t =0

* *

where the following criteria are used to calculate pI and XQ
( 2)

- The mean waiting time of the continuous part of f T (t) as given by

Equation 4.9 must be equal to the mean waiting time of the continuous

( 2)
part of f T (t) as given by Equation 4.12 (this was the criterion used

by Rodriguez-Iturbe and Valdes, 1979):

*

rcx -Xgt *2 2
Py 0 te d (t = y* t 2e >1Qtdt

OJo

or
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*2
-- Q (4.13)

2 *3

(Q)
- The area under the continuous part of f T (t) as given by Equation 4.9

(Q)
must be equal to the area under the continuous part of f T (t) as given

by Equation 4.12.

A t *2 f t
p- e dt = e te

or

*2
Q (4.14)

S*2

* *2
Then, from Equations 4.13 and 4.14, P, and AQ may be calculated as:

X* 2 (4.15)A = 2A (-5

*2 (4.16)

Therefore, the expressions for the IUH and the discharge hydrograph

with the modified linear assumption which takes into account infiltration

losses in the channels are (third order basin):
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-x1t -x2 t

h(t) = p p 2 2 e + 2
* 22 1 2 3 *2

( 1 A 3 A 2 A 1) ( 2 3) -i2 )
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e
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*2 -e t+ ) 113te 3
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91 12 1 2 3 1 13 1 3 et-y~-Q(t) = A3bie * 2l+ f 2i 1-e -e U(t-ti

13 3 2 1 1 3 1 )1

E) P p *20
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Figures 4.12 to 4.15 show some comparisons between IUHs based on the

linearized solution (Equation 4.4) and IUHs based on the modified linear

reservoir assumption (Equation 4.17). Figures 4.12 and 4.13 correspond

to Morovis and Unibon basins for the case of no infiltration losses. As

it can be seen, the linearized solution is "more rectangular" than the

exponential, which is smoother, but in general terms, the agreement is

good. Figures 4.14 and 4.15 show the IUH's for Unibon basin and Wadi

Umm Salam, when the percentage of infiltration losses are 15, 10, and 5

percent for streams of order 1, 2, and 3 respectively. The Unibon results

show a better agreement than Wadi Umm Salam. Figures 4.16 to 4.19 present

comparisons of discharges from the three basins studied here. As it is

shown in these figures, both solutions give similar hydrographs, in terms

of shape, peak discharge and time to peak, which permit conclude that

both the linearized solution and the exponential assumption yield similar

results.

4.4 Linearized Solution Ilydrographs. Another Basin Representation

Kirshen and Bras (1982) used the PDFs of the travel time needed by

u
a drop that enter the channel at its most upstream point fT(t) and any-

r
where along its length, fT(t), to improve the representation of the basin

by increasing the possible paths that a drop can take to reach the outlet

of the basin. Referring to Figure 2.1, the flow contributing to some

higher order streams is in part due to flow from the junction of two
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Basin iuh - exponential vs linearized solution

(Basin representation 1)

Characteristics

Order 1 2 3 Order 1 2 3

0.0 0.0 0.0 yo(m) 0.25 0.30 0.30
Linearazed solution v, (m/s) 1.47 1.31 1.34

Exponential assumption 0 0.94 0.76 0.78
S,(m/km) 71.90 32.10 39.20

RR-5.00 Rg-3.20 RL-2.7 0  L (km) 1.10 3.00 8.00

p12=0.85 p13-0.15

-&1-0.41 e2-0.29 -&3-0.30
p(sI)-0.35 p(s2)=0.06 p(s3)=0.29 p(s4)=0.30

Figure 4.12
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IM~~

Order 1 2 3 Order 1 2 3

0.0 0.0 0.0 y0 (m) 0.24- 0.28 0.37
Linearized solut on v,(m/s) 1.50 1.40 1.25

A Exponentla! assumpt;on F, 0.98 0.85 0.66
SQ(m/km) 82.70 46.60 23.30

Rn-5.60 Re-4.00 RL-2.80 L (kn) 1.1.0 3.10 8.60

pl2=0. 79 p13-0.21
e-0.51 &2-0.31 -&3-0.J.8

p(sl)=0.40 p(s2 F0.11 p s3)=0.31 ps4)=..13

Figure 4.13
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(as;n representation 1)

Characteristicsi

I(%)

Order :1. 2 3 Order 1 2

15.0 10.0 5.0
0 Linearized solut;on
A Exponential assumpt~on

R- 5 .60 R8- 4 .00 RL-2. 8 0

p(sI)=0.40 p(s4):0. 18

Figure 4.14
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Basin uh- exponentiaI vs !inear;zed soIutonr.

(Basir representation 1)

Characteristics!

%)

1 2 3

15.0 10.0 5.0
LInearized solution

Exponential assumption

Rq-S.00 Ra-4.00 RL- 2 .80

p(s1)=0.50

Order

Y, (m)

v, (m/s)

s (m/km)
L (km)

1

0.39
1.05
0.54
8.00
1.30

P12=0.79 p13-0.21

O.1-0.64 -2-0.30 -&3-0.06

p(s2)=0.14 . pes3)=0.30 p

2

0. -0
1.01
0.51
7.00
3.60

3

0.+.1
0.98
0.49
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10.00

(54)=0. 06

Figure 4.15
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Discharge hydrograph - exponentia! vs linearized solution

(Basin representation 1)

Characteristics-

1 -3. O cm/hr t-2.0 hr A-13. 0 km2

I(%)

Order 1 2 3 Or-der 1. 2 3

10.0 10.0 10.0 y0 (m) 0.25 0.30 0.30
LinearIzed solution v,(m/s) 1.47 1.31 1.34
Exponential assumption 0.94 0.76 0.78

S,(m/km) 71.90 32.10 39.20
RA-5.00 Re-3.20 RL-2.70 L (km) 1.10 3.00 8.00

p12-0.85 p13 -0.15
&1-0.41 -&2-0.29 -G3=0.30

p(si)=0.35 p(s2)-0.06 p(s3)=0.29 p(s 4 )=0. 3 0

Figure 4.16
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I(M)

1 2 3 Order 1 2 3

10.0 10.0 10.0
Linearized solution .
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RR-5.6 0 Re-4.00 RL-2.80

p12-0.79 p13 -0.21
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Figure 4.17
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(9asin representation 1)

Char acter;st;csi

i -3. 7 cm/hr t-1. O hr

Order 1 2 .M

10.0 10.0 10.0
Linearized solut;on

A Exponential assumpt on

RS-S.00 Re.'4.00 RL-2.80

AR-39. 0 Kn2

Order

y, m)
v0 (m/s)

F0

so (m/km)
L (kn)

1

0.39
1.05
0.54
8.00
1.30

p(sl)=0.50

p12-G. 79

O1=0.64 -2=0.

p(s2)=0.i4

p13 -0 .21

30 &3=0.06

p(s3)=0.30 p(s4) =0. 06

Figure 4.18
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t-1.5 hr

1 2 3
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Linearized solut;on

Exponential a'sumptLOn
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-1- 0.64 492=0.30
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Figure 4.19
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two streams of one order lower. Streams of this type respond according

to the upstream inflow response. Therefore, the transitions may be dif-

ferentiated in two: one representing those drops that enter along the

channel laterally, r(i), and one representing those drops that enter at

the channels upstream end,

sible paths are:

si = a(1)

S2 = a(1)

s3 = a(1)

s4 = a(1)

s5 = a(2)

s6 = a(2)

s7 = a(3)

s8 = a(l)

r(1)

r(1)

r(i)

r(1)

r(2)

r(2)

r(3)

r(1)

u(i). Then, for a third order basin, the pos-

+ r(2) + r(3) + OUTLET

+ u(2) + r(3) + OUTLET

> r(2) * u(3) + OUTLET

* r(3) + OUTLET

> r(3) > OUTLET

" u(3) + OUTLET

" OUTLET

+ u(3) * OUTLET

Figure 4.20 schematizes these paths. In order to account for the addi-

tional paths, the transition probabilities previously presented need to

be modified. They are given in Table 4.2.

The extension of the expressions for h(t) and Q(t) is straigthforward.

Following the definition of h(t) (see Equation 2.7) and Q(t), the summa-

tion over the eight possible paths of the convoluted terms can be easily

written in a similar way as Equations 4.4 and 4.5, by using the modified

u(i)
transition probabilities of Table 4.2 and the Laplace transform of fT (t):

B .L
f=UM (t) e (4.19)

where Bi has been defined in Equation 4.3 and Li is the length of the

stream of order i.
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TABLE 4.2

Transition Probabilities for a Third Order Basin-Basin

Representation 2 (from Kirshen and Bras, 1982)

2_2
=(R -.2RB)

P% 
B

r1 r2  RB(2RB-l)

P 2
ru = -

22 RB

R 2 3RB+ 2

P B
*1r3  RB(2RB-1)

P RB-2

r2r3  RB

= 2

P -

P P
u2 u3 r2u3
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Figures 4.21, 4.22, and 4.23 present the IUHs resulting from this

new basin representation. As it can be seen, their shape is very unusual

for an instantaneous unit hydrograph. The response of the main paths can

be determined from the figures.

However, when the discharge hydrographs are calculated and compared

to those with the exponential assumption (Equation 4.18), the results are

surprising (see Figures 4.24 to 4.31). They are very similar in the

cases of Morovis and Unibon basins; for Wadi Umm Salam, the peak discharge

is almost the same, although the time to peak is delayed in the linearized

solution with respect to the exponential assu1Aption.

A general conclusion from this chapter can be drawn: given that the

linearized solution of the response of the channels is more physically

based than the linear reservoir assumption, and given that the comparisons

of h(t) and Q(t) evaluated with both of them, gave good results, then the

use of linear reservoir assumption seem to be good and easy to use approxima-

tion in the h(t) and Q(t). It should be added that although the linearized

solutions were obtained assuming small perturbations, the use of the results

was accordingly limited. This follows general hydrologic practice.
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MOROVIS 8ASTN

Basin- iuh for dJFferent ;nfiltration losses

(Casin representation 2)

Characteristics

I M)

Order 1. 2 3 Order 1 2 3

0.0 0.0 0.0 ya (m) 0.25 0.30 0.30
10.0 10.0 10.0 v0 (m/s) 1.47 1.31 1.34

9 15.0 10.0 5.0 F0  0.94 0.76 0.78
S,(m/km) 71.90 32.10 39.20

RRS-5.00 Re-3.20 RL- 2 .70 L (km) 1.10 3.00 8.00

&1-0.41 -2-0.29 -&3-0.30

prIr2-0.22 priu2-0.63 prlr3-0.15 pr2r3-0.37

pr2u3-0.63 pu2r3-0.37 pu2u3-0.63

p(s1)=0.03 p(s2)=0.10 p(s3)=0.06 p(s4)=0.06

p(s5)=0.11 p(s6)=0.18 p(s7)=0.30 p(s8)=0.16

Figure 4.21
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UNIBON BASIN

Basin Iuh for difrerent infiitration losses

(Bas i n representat I on 2)

Characteristcs:

Order 1 2 3 Order 1 2 3

0.0 0.0 0.G y,(m) 0.24 0.28 0.37
10.0 10.0 10.6 v,(m/s) 1.50 1. 0 1.25

19 15.0 10.0 5.C F0  0.98 0.85 0.66
S,(m/km) 82.70 46.60 23.30

RRg5.60 Re-4.00 RL-2.8 0 L Ckm) 1.10 3.10 8.60

1-0 -& 2=0.31 -&3-0.18

prir2-0.29 prlu2-0.50 prlr3-0.21 pr2r3-0.50

pr2u3-0.50 pu2r3-0.50 pu2u3-0.50

p(sl)=0.07 p(s2)=0.13 p(s3)=G.07 p(s4)=o.11-

p(sS)=0.16 p(s6)--0.16 p(s7)=0.18 p(s8)=0.13

Figure 4.22
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Basin iuh for difFerent InfiHtratIon losses

(Basin represent ation 2)

Characterlsticsi

I M)

Order

0
A
(D

1

0.0
10.0
15.0

2 3

0.0
10.0
10.0

Order

0.0
10.0
5.0

RA-S.00 R9 -4.00 RL-2.80

y, Cm)
v 0 Cm/s)

F0
So (m/kM)
L (km)

1

0.39
1.05
0.54
8.00
1.30

2

0.40
1.01

0.51
7.00
3.60

3

0.41
0.98
0.49

6.50
1.0.00

-1-0.64 -&2-0.30 -&3-0.06

prir2-0.29 prn12-0.50 prir3-0.21 pr-2r3-0.50

pr2u3-0.50 pu2r3-0.50 pu2u3-0.50

p(si)=0.09 p(s2)?0.16 p(s3=0.09 p(s4)=0.14

p(s5)=0.15 p(s63=0.15 p(s7)=0.06 p(ss)=0.16

Figure 4.23
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MOROVIS BASIN

DIscharge hydrograph - exponentual vs Inearized solutIon

(Basin representation 2)

Characteristics:

1-3.0 cm/hr t-2.0 hr A-13.0 km2

I(%)

Order 1 2 3 Order 1 2 3

0.0 0.0 0.0 y,(m) 0.25 0.30 0.30
0 Linearized solut;on v,(m/s) 1.47 1.31 1.34
A Exponential assumption FO 0.94 0.76 0.78

S, (m/km) 71.90 32.10 39.20
A R -5.00 Re- 3 .2 0 RL- 2 .7O L (km) 1.10 3.00 8.00

-0.4 -&2-0.29 e&3-0.30

prir2=0.22 prtu2vC0.63 prtr3=0.15 pr2r3=0.37

pr2u3=0.63 pu2r3=0.37 pu2u3-0.63

p(s1)=0.03 p(s2)=: .10 p(s3)=0.06 p(s4)=0.06

p(s5)=O.t1 p(s6)70.18 p(s7)=0.30 p(sB)=0.16

Figure 4.24
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MOROVIS BASIN

DIscharge hydrograph - exponential vs linearized solution

(8asin representation 2)

Characteristicsi

1-3.0 cm/hr t-2.0 hr A-13.0 km 2

I(%)

Order 1 2 3 Order 1 2 3

15.0 10.0 5.0 y,(m) 0.25 0.30 0.30
Linear;zed solution vO(m/s) 1.&-7 1.31 1.34

1 ExponentIal assumptIon F0  0.94 0.76 0.78
S,(m/km) 71.90 32.10 39.20

A R -5.00 Re-3.20 RL- 2 .70 L (km) 1.10 3.00 8.00

-&1--0.41 -2-0.29 <&3-0.30
prlr2=0.22 prIu2=0.63 pr1r3'=0.15 pr2r3=0.37

pr2u3=0.63 pu2r3=0.37 pu2u3=0.63
p(s1)=0.0-3  p(s2)=0.10 p(s3)=0.06 p(s4)=0.06

p(s5)=0.11 p(s 6 )=0.18 p(s7 )=0. 3 0 p(s8)=0.t6

Figure 4.25
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MOROVIS BASIN

Discharge hydrograph -- exponential vs linearized solution

(Basin representation 2)

Character;stics:

1-3.0 cm/hr t-3.0 hr A-13.0 km2

I(M)

Order

A R -5.00

1 2 3

10.0 10.0 10.0
Lnearized solution
Exponential assumpt;on

R0 -3.20 RL-2. 70

-1- 0. 41 2= 0. 29 -&3-0.30
prir2=0.22 pr1u2=0V.63 prir3=0.15 pr2r3=0.37

pr2u3-0.63 pu2r3-0.37 pu2u3=0.63

p(sl)=0. 03  p(s2)-C.I p(s3)=0.06 p(s4 )=0.06

p(s5)=0.11 p(s6)=0.18 p(s7)=0.30 p(s8)=0.16

Figure 4,26
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UNIBON BASIN

DI scharge hydrograph - exponent i aI vs linearized solution

(Basin representation 2)

Characteristics!

1-3.0 cm/hr t-2.0 hr A-23.0 km2

I(M)

Order 1 2 3 Order 1 2 3

0.0 0.0 0.0 Y, (M) 0.24 0.28 0.37
Linearized solutio.n v,(m/s) 1.50 1.40 1.25

1 Exponential assumption F, 0.98 0.85 0.66

S0 (M/kM) 82.70 46.60 23.30
RA-5.6 0  Re-4.00 RL-2 .8 0  L (km) 1.10 3.10 8.60

&1-0.51 &2-0.31 &3-0.18

prlr2=0.29 prlu2=0.50 prlr3=0.21 pr2r3=0.50

pr2u3-0.50 pu2r3-0.50 pu2u3-0.50

p(st)=0.0 7  p(s2)=0.13 p(s3)=0.07 pCs4 )=O.ll

p(s5)=0.16 p(s6)=0.16 p(s7)=0.18 p(s8 )=0.13

Figure 4.27
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UNIBON BASIN

Di scharge hydrograph - exponent 1 al vs linearized solution

(Bas in representat-on 2)

Characteristics!

1-3.0 cm/hr t-2.O hr A=23.0 km2

I(M)

Order 1 2 3 Order 1 2 3

15.0 10.0 5.0 y,(m) 0.24 0.28 0.37
0 Linearized solution v, (m/s) 1.50 1.4-0 1.25
1 Exponential assumption F0  0.98 0.85 0.66

% (m/km) 82.70 46.60 23.30
RR-5.60 R1-4.00 RL- 2 .80 L (kim) 1.10 3.10 8.60

-&1-0.51 e2-0.31 e3-0. I8

pr1r2=0.29 prlu2=0.50 prlr3=0.21 pr2r3=0.50

pr2u3-0.50 pu2r3-0.50 pu2u3-0.50

p(sl)=0.07 p(s2 C.i23 p(s3 )=0.0 7  p(s4)=0.11
p(s5)=0.16 p(s6)rD.16 p(s7)=0.18 p(s8)=0.13

Figure 4.28
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Di scharge hy drograph - exponent ;a! vs !i near I zed solution

(Basin representation 2)

Characteristics

-3.0 cm/hr t-3.0 hr q-23.0 km2

I(%)

Order 1 2 3 Order 1 2 3
10.0 10.0 10.0 y0 (m) 0.24 0.28 0.37

0 Linearized solution vo (m/s) 1.50 1.40 1.25
Exponential assumption FQ 0.98 0.85 0.66

SO(m/km) 82.70 46.60 23.30
Rq-5.60 RS- 4 .00 RL-2.80 L (km) 1.10 3.10 8.60

1-0-& 2-0.31 -&3-0.18

prlr2=0.29 prlu2=0.50 prtr3=0.21 pr2r3=0.50
pr2u3-0.50 pu2r3-0.50 pu2u3-0.50

p(si)=0.07  p(s2)=0.i3 p(s3)=0.07 p(s4)=0.11
p(s5)=0.16 p(s6)70.16 p(s7)=0.18 p(s8)=0.13

Figure 4.29
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WADI UMM SALAM

Di scharge hydrograph - exponent i al vs I I near i zed so l ut i on

(9asin representation 2)

Characterist;cst

11.8 cm/hr t-2.0 hr A-39.0 km2

I(%)

Order 1 2 3 Order 1 2 3

15.0 10.0 5.0 y,(m) 0.39 0.40 0.41
0 Linearized solution v, (m/s) 1.05 1.01 0.98

Exponential assumption F0  0.54 0.5:L 0.49

S (m/kn) 8.00 7.00 6.50
RR-5.00 RS-4.00 RL-2.80 L (km) 1.30 3.60 10.00

-&1-0.64 &2-0.30 -3-0.06

prlr2=0.29 pr1u2--0.50 prlr3=0.21 pr2r3=0.50.

pr2u3-0.50 pu2r3-40.50 pu2u3-0.50

p(s1)=0.09 p(s2 )=G.16 p(s3 )=0.09 p(s 4 )=0.14

p(sS)=0.15 p(s6)=0.15 p(s7)=0.06 p(s8)=0.16

Figure 4.30
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Discharge hydrograph - e<ponent af vs I Inearized solution

(Bas;n representation 2)

Character st ics

1-3.7 cm/hr t-1.0 hr A39.0 km2

I( M

Order 1. 2 3

0.0 0.0 0.0
Linearized solut ion

Exponential assunption

Rr-5.00 Re-4.00 RL- 2 .8 0

-&1-0 .64

prir2=0.29 prlu2=0

pr2u3-0.50

ps1)=0.09 p(s2)=O

p(s5)=0.15 p(s6)=0

Order

y Cm)
va (m/s)
F0
so (m/km)
L (km)

1 2

0.39 0.40
1.05 1.01
0.54 0.51
8.00 7.00
1.30 3.60

3

0.41
0.98
0.49
6.50
10. 00

&2-0.30 -3-0.06

.50 prIr3=0.21 pr2r3=0.50

pu2r3-'0.50 pu2u3=0.50

.16 p(s3)=0.09 p(s 4 )=0.14

.15 p(s'7)=0.06 p(s8)=0.16

Figure 4.31
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Chapter 5

SUMMARY AND CONCLUSIONS

5.1 Summary and Conclusions

The main topic addressed in this work has been the representation

of the channel infiltration losses in the geomorphologic IUH.

The response of the channel to an instantaneous input, considering

infiltration losses, was successfully obtained through the linearization

of the governing equations of motion. This response, physically based,

1,7n then in or=r te Tt th t or 'f th% Gv-rho o i T% V -Ins;-+ ., -:+1--,- T_ ntaneous
W k & _L4 % 4 . L .LLV L ~L %JA Y %J 1 LILr_ %J_7VHU L V jJLJULLL-. JLL6 LdLL dLe

Unit Hydrograph to obtain the characteristics response of the whole basin,

which was compared with the one resulting when the response of the chan-

nel is assumed to behave like a linear reservoir, (exponential travel time)

modified for infiltration channel losses. Comparisons of the discharge

hydrographs indicate that the latter assumption is adequate and is a lot

easier to use. That may be considered a verification of the GIUH.

The value of the obtained linear changes response lies not only on

its use in the geomorphologic IUH theory but also in its potential in

traditional hydraulic routing applications. For the first time explicit

accounting of channel infiltration is made in an analytical physically

based linear model of channel response.
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APPENDIX A

ANALYTICAL LINEAR SOLUTION OF THE UPSTREAM CHANNEL IUH AND SOME

MATHEMATICAL PROPERTIES

A.1 The Linearized Equation of Motion

The final expression of the linearized equation of motion obtained

in Chapter 3 (Equation 3.9) is:

3gy03q 2) -2 a 
2 y 0 ~0 ax -2qy axat

2 a2aq 36g 2
YO t2 -3gSo ax Yo

-2gy = - gyO-q K + 3g y Kq.

+ 3gS y2 KSq - 2y Kq at
0 0 0 0 at

(A.1)

where 6q represents the perturbation about the reference discharge qo.

Equation A.1 may be written as:

A D26q + B + C a26 + D + E a6+ F6q + G = 0
2 axat 2 at axax at

(A.2)

where

2
A = (gyo - vO )

B = -2vo

C = -1

G = -3gS Kq 0

D = 2Kv0 - 2gSo/vO
2

E = (gyo - vo)K - 3gSO

F = -3gSOK

Let the perturbation be related to w(x,t), a new variable, as

Sq(x,t) = - + [w(x,t) + ] e ax
F F
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where a is a constant to be determined. Substituting Equation A.3 into

Equation A.2, the latter becomes

2 2 22w a 2w a 2w aw ~
A 2+ B a + C + (aB+D) + (2atA+E) -L-

2 9t2x 2 t ax

+ (a 2A+aE+F)w + (a A+aE+F) = 0 (A.4)
F

a is chosen such that

a2A + aE + F = 0

i.e,

-K
a 

F
AF

From now on, it is assumed that a = -K, and therefore Equation A.4

may be written as

2 2 2
A 2+ B atax + C + (D-KB)

ax at

+ (E-2KA) w = 0 (A.5)
ax

which is an homogeneous partial differential equation whose solution is

desired for the case of a pulsed upstream inflow.

A.2 Boundary and Initial Conditions

Before the application of the input to the channel, the flow is

steady state and the governing equation is:

a = -q (x,t)axI

or specifically,

= -Kq
dx
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where q is the discharge per unit width. Integrating from the upstream

point of the channel (x=0, q=qj) to an arbitrary point (x=x, q=q), the

solution for the steady state problem is:

-Kx
q(x,t) =qle t < 0 (A.6)

The reference discharge qo, around which the linearization is done,

has to be chosen according to the steady state solution (Equation A.6)

and, for a channel of length L, it could be the mean value, i.e.,

1 L -Kx
q qe dx

0

However, for practical reasons, qo is assumed equal to qj. Therefore,

before the application of the input, the perturbation is q-qo. Figure

A.1 shows the perturbations before and after the input is applied.

At x=0 and t=0, a delta function is introduced into the channel,

6q(0,t) = 6(t)

Replacing this expression in Equation A.3 and solving for w(U,t),

w(0,t) = 6(t) (A.7)

As noted above, prior to the delta function,

-Kx
6q(x,0) = qoe - qo (A.8)

which implies that

w(xO) = 0 (A.9)

[w(x,t)] =0 (A.10)

t=0

Equations A.7, A.9 and A.10 are the boundary and initial conditions

for solving Equation A.5 which will be done using Laplace transforms.
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ropagated input
at t=t1

6q(x1 ,t ) 6q(x 3,t )

6q(x ,:) )

- ~ ~ ~ ~ -Reference discharge

6q(x4 ,O)

Steady state flow

q=q0 e (t<O)

0 x x2 x3 X4 x5 L x

Reference discharge and propagated perturbation

Figure A.1
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A.3 Linear Solution

The Laplace transform with respect to y of w(x,t) is defined as

t w(xt) = W(xs) = f e w(x,t)dt

Taking the Laplace transform with respect to t on both sides of

Equation A.5 and using conditions A.9 and A.10, the following second

order homogeneous ordinary differential equation is obtained,

0 W 4 + --~+ T W= 0 (A.11)
2 ax

where

= A

= Bs + E - 2KA

2
= Cs + (D-KB)s

The solution of this equation is:

f-(Bs+E-2KA) + [Bs+E-2KA) - 4A(Cs2+(D-KB)s) ]
W(xps) Y 4 -

2A (A.12)

+2 -(Bs+E-2KA) - [(Bs+E-2KA) - 4A(Cs +(D-KB)s)] 2 }
t 2A

where Yi and Y2 are constants to be determined using the boundary condi-

tion and some properties of the Laplace transform.

For any Laplace transform.

lim W(xs) = 0
s+C*

Therefore, as s tends to infinity the exponential part of the first

term in Equation A.12 tends also to infinity, and y1 has to be set equal

to zero. On the other hand, the upstream boundary condition is a delta
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function and, for this particular function, the Laplace transform is 1.

Then,

W(O,s) = f w(0,t) = e t6 dt = 1

or

W(O,s) = Y2 exp(O)'= Y2 = 1

and therefore,

W(x,s) = exp

2 22
-(Bs+E-2KA) - [(Bs+E-2KA) - 4A(Cs +(D-KB)s)1

2A

or,

W(x,s) = exp{-x(as 2+bs+c)' + exs+fx}

B 2-4AC

4A 2

C = (2KA-E)
2

4A
2

b = 2BE-4AD

4A

2KA-E
2A

In order to obtain the solution of w(x,t) and therefore the solution

of dq(x,t), it is necessary to calculate the inverse Laplace transform of

W(x,s). Following the same procedure used by Harley (1967), Equation

A.13 can be rewritten as:

W(x,s) = exp[-(a'-e)xs-(b/2a'-f)x (A.14)

1 1 1
+ exp(exs+fx)[ep- s+sc))ep-x22 a2xs)

Therefore,
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w(x,t) = f 5 [W(x,s)] = exp[-(b/2a -f)x]fl{exp[-(a-e)xs]}

+ exp(fx) {exp(exs)[exp(-x(as +bs+c)2 )-exp(-bx/2a a xs)]}

To evaluate the first term of the right hand side of the last equation,

the the translation formula is used:

e[-msFe(s)] = u(t-m)f(t-m)
where

u(t) = if t < 0
U if t > 0

For this particular case,

m = (a2-e)x and F(s) = 1

The inverse Laplace transform of F(s) = 1 is f(t) = 6(t) and then,

exp[-(b/2a f)x]r 1{exp[-a'-e)xs]}

exp[-(b/2a'-f)x] 6[t-(a -e)xl

For the second term of Equation A.15, Doetsch (1961), pp. 241, gives the

inverse Laplace transform of

exp[-x(as2+bs+c)2 -exp(-bx/2a 2-a2xs)

as

r
0

) 2 2
Iy[d'(t -ax )-/a]

(d/a) x exp(-bt/2a) 2 2I (t -ax )

I

t < t <ax

t > a2

d = (b/2) 2 -ac
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I,[-] = first order modified Bessel function of the first kind.

Using this result and the translation formula again, the inverse

Laplace transform of the second term of Equation A.15 is

2 2I [d2((t+ex) -ax )2/a] 1
exp(fx)(d/a)2x exp(-b(t+ex)/2a) 2 2 J u[t-(a -e)x]

((t+ex) -ax

Finally, w(x,t) is

x I
w(x~ot) = exp[-(b/2a 2-f)x] 6 [t-(a:2-e)x]

2 2 1
Ig -(t+ex) -ax )/a]

+e r')(/ 2xexp- -tx)2' 2 2 1 ULL- - .
((t+ex) -ax

Recalling Equation A.3, 6q(x,t) is related to w(x,t) by

-Kx -Kx
6q(x,t) = qoe -qo + w(x,t)e (A.17)

The first two terms of the above equation correspond to the value of the

perturbation before the introduction of the impulse function (see Equation

A.8), whose effect is represented by the last term of Equation A.17.

Therefore, the channel response to an impulse function at its most up-

stream point (x=O) including infiltration losses is given by

-Kx
h(x,t) = e w(x,t)

or,

1 1h(x,t) = exp[-(b/2a2 -f+K)x] 6[t-(a'-e)x]

3 2 2 -N
S1 [d2( (t+ex) -ax )-/a]

+ exp[(f-K)x](d/a)2x exp(-b(t+ex)/2a) 2 2
((t+ex) -ax

u[t-(a2-e)x]

After some manipulations, Equation A.19 can be expressed as:
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h(x,t) = exp(-rt+zx)(d/a)-x u(t-x/c1 )

+ exp(-px)

((t-x/c 1) (t-x/c2))

6 (t-x/c 1 )

where,

_ 1a = 2
gy (1-F )

i = 09 + (gy0)2

c 2  v0 0(gy0

d ac

b 0-

K
2

c = +
4

2+F 2

2+
(1+F2)20

K
v

0

Ks 11 K s 1 -
2 yo 1-F 2

0

F2
0

1-F 2
0

+9
4

s2

2
YO

1

(1-F2)20

s0 2-F 3 K
p - KF +-

2y o 1+F )F 2 0 2

r =g v+ 2v o Kv1-F0)
0 0

s
0

z = -
2y

+ 3 KF
2 2 0

0 0

vv

F- 0
0 .
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A.4 Evaluation of the Area Under h(xt)

The area under h(x,t), keeping x fixed, may be obtained using the de-

finition of the Laplace transform. The Laplace transform of h(x,t) is

-st
H(x,t) = Je h(x,t)dt

H (x, 0) h(x,t)dt = Ah

which is the desired area. Introducing Equation A.18 into A.21,

-Kx ro -st
H(x,s) = e e w(x,t)dt

0
-Kx

= e W(x,s)

From Equation A.13,

At s=0,

-Kx 2
H(x,s) = e exp{-x(as +bs+c)2+exs+fx}

-Kx
H(x,0) = e exp{x(f-vc)}

But

f = -/c

Therefore, using Equation A.22

A h
-Kx

=e
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A.5 Evaluation of the Area Under r(t)

If Ar is the area under r(t):

ro

A = r(t)dt

From Equation 3.15

A= dt L h(x,t)dx

The Laplace transform of r(t) is:

R(s) = [r(t)]

rw -st
= e r(t)dt

- F rd-st jL

= dt e h(x,t)dx

0 0

Introducing Equation A.18:

R(s) = dte

0 0

L -Kx=dxe
L 0 JO

-Kx
e w(x,t)dx

-st

e w(x,t)dt

L -KxL 0
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At s=O, Ar = R(O). Recalling from Section A.4 that W(x,s) = 1 for all x,

1 fL -Kx
A = e dx
r L .

0

1 -KL
KL
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