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PREFACE

This report is one of a series of publications which describe various

studies undertaken under the sponsorship of the Technology Adaptation

Program at the Massachusetts Institute of Technology.

The United States Deapartment of State, through the Agency for

International Development, awarded the Massachusetts Institute of Technology

a contract to provide support at MIT for the development, in conjunction

with institutions in selected developing countries, of capabilities useful

in the adaptation of technologies and problem-solving techniques to the

needs of those countries. This particular study describes research

conducted in conjunction with Cairo University, Cairo, Egypt.

In the process of making this TAP supported study some insight has

been gained into how appropriate technologies can be identified and

adapted to the needs of developing countries per se, and it is expected

that the recommendations developed will serve as a guide to other developing

countries for the solution of similar problems which may be encountered

there.

Fred Moavenzaden

Program Director

2 0750483



ABSTRACT

The geomorphoclimatic theory is used, along with the joint probabil-

ity density function of storm duration and storm intensity and the repre-

sentation of the infiltration process, to derive the flood frequency dis-

tribution for a given catchment. The infiltration process is represented

by two different approaches: a simple time averaged potential infiltra-

tion rate and a more realistic model based on Philip's infiltration equa-

tion. The resulting flood frequency distributions are in analytical form,

containing only few climatologic and physiographic parameters of the catch-

ment. These frequency distributions are tested against historic records

from arid and wet climates with very satisfactory results. They will be

very valuable in the design of flood control systems since they provide a

theoretical basis for estimating flood frequencies in the absence of

streamflow records.
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Chapter 1

INTRODUCTION

1.1 Motivation

Quantification of hydrologic behavior in regions of sparse data is one of

the most challenging problems in the field. Lack of data is common in

the majority of the river systems of the world, particularly those in in-

accessible or underdeveloped regions. Ideally, it should be possible to

estimate basin response using information available through field obser-

vations, climatic records and or remote sensing. Methodologies

have been suggested to relate river response to basin geomorphology

(Rodriguez-Iturbe and Valdes, 1979), in which the Instantaneous Unit Hy-

drograph is interpreted as the probability density function of the travel

time that a drop of water, landing anywhere in the basin, takes to reach

the outlet. Geomorphology is quantified by basic parameters like the

Horton numbers, which are easily obtained from generally available topo-

graphic information. This basin response is called the Geomorphologic

Instantaneous Unit Hydrograph (GIUH). Recently, Rodriguez-Iturbe et al.,

(1982) introduced the Geomorphoclimatic Instantaneous Unit Hydrograph,

GcIUH which is a stochastic reinterpretation of the latter, implied by

the stochasticity of the effective rainfall. Hebson and Wood (1982)

derived a flood frequency distribution from the joint probability density

function of the intensity and duration of the effective precipitation

proposed by Eagleson (1972), and the GIUH as the catchment rainfall-runoff

relationship, with good results. Kirshen and Bras (1982) worried about

the exponential travel time distribution for channels assumed in the

GIUH, and proposed a time distribution based on the linearized equations

13



of motion. Finally, Cordova and Rodriguez-Iturbe (1982) used the Geomor-

phoclimatic Instantaneous Unit Hydrograph and the direct runoff given

by the U.S. Soil Conservation Service method to calculate flood frequen-

cies from registered maximum annual depths of total rainfall for differ-

ent durations.

1.2 Objectives

In this report, two theoretical flood frequency distributions will

be derived. They will be based on parameters representing the effective

precipitation and the Geomorphoclimatic Instantaneous Unit Hydrograph,

(GcIUH). The GcIUH is a stochastic reinterpretation of the hydrogeomor-

phologic response, of Rodriguez-Iturbe and Valdes (1979). Stochasticity

is introduced through effective rainfall of the region. The first flood

frequency result corresponds to a conceptual model of the infiltration

given by an average potential rate. The second approach uses a physically

based model of the infiltration process. The resulting frequency curves

are a function of the basin's climatic and geomorphologic parameters as

well as estimates of vegetative canopy density and effective soil porosity.

This means that in principle all regions of the world could be "hydrolog-

ically" mapped with reasonable efforts.

14



Chapter 2

THE GEOMORPHOCLIMATIC IUH

2.1 Introduction

Rodriguez-Iturbe and Valdes (1979), linked in an analytical manner

the geomorphologic parameters of a given catchment with its hydrologic

response. The result is the Geomorphologic Instantaneous Unit Hydrograph,

GIUH. In their work expressions for the main characteristics of the GIUH,

namely the peak and time to peak, were presented; both of them are fun-

ctions of v, the peak velocity of the response.

According to Rodriguez-Iturbe et al., (1982), if an effective rain-

fall, represented by an intensity (ie), constant throughout the duration

te, is assumed to occur over the basin, then the parameters ie, and te

must be reflected in the velocity v. This velocity may then be analytically

expressed as a function of them. Besides, since ie and te are random

variables, whose joint distribution represents the influence of climate

on the GIUH, then qp and tp are also random variables, whose distribu-

tions depend on the geomorphology of the basin and on the joint dis-

tribution of ie and te. Consequently, through its parameterization in

terms of qp and tp, the IUH can be interpreted as a stochastic unit im-

pulse response function, called the Geomorphoclimatic IUH by Rodriguez-

Iturbe et al., (1982). In this chapter some relevant aspects of the

geomorphoclimatic theory which will be useful in Chapter 4 will be pre-

sented.
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2.2 Derived Distribution Technique

The derived distribution technique is well established in probability

theory (e.g., Freeman, 1963, and Benjamin and Cornell, 1970). It provides

a tool to derive the density function of a dependent variable(s) from ran-

dom variables whose joint density function is known. The following is

the conceptual framework. Suppose that a variable y is related to a vec-

tor of parameters, E, by a function g:

y = g(e) (2.1)

The elements of vector 0 are random variables with a given joint pro-

bability density function f(O) and a corresponding cumulative distribution

F(O). Due to the randomness of 0, y is also a random variable with cumu-

lative distribution given by

F (y) = Prob[y'<y] = J f ®()dO (2.2)

in which Ry represents the region, within the possible values of 0, where

y' < y. Obviously, the PDF of y is

d
fY(y) = dy F (y) (2.3)

In some cases interest is centered in deriving the joint distribution

of n random variables that have a one-to-one relationship with respect to

other n random variables with a known joint distribution. That joint dis-

stribution may be found by using the method of Jacobians (Freeman, 1963).

When n is two, the method is as follows: assume that x1 and x2 are ran-

dom variables whose joint distribution fX , X2 (x1, x2 ) is known, and

that they are related to yl and y2, by one-to-one functions:

16



-1
X1 = g1 (Y1, Y2)

-1
X2 ~ 92 (Y1, Y2)

then, the joint distribution of yl and Y2 is given by:

(2.4)

2 2' = , X

where the last term of the right hand side is the absolute value of the

Jacobian. In the simplest case in which n is equal to one, the distri-

bution of y is:

f(y)= () f -1y)] (2.5)

2.3 Probability Density Functions of the Peak and Time to Peak of the GIUH

The expressions for the peak and time to peak of the GIUH

(Rodriguez-Iturbe and Valdes, 1979) are:

1.31 0.43
qp L L v

0. 4 4 L . -0.38
S v (RAJ RL

(2.6)

(2.7)
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where LQ is the length in km of the highest order stream, RB, RA and RL

are the Horton's numbers and v is the peak velocity in m/s. Using g as

given by Equation 2.6 in Equation 2.5, the PDF of qp is:

f (q) = 1. q (2.8)
Q P 0.43 V0.43 p1.31 R .1. 3 1 RL

In order to complete the derivation of fQ(qp), the distribution of v

needs to be determined. It can be derived from the joint distribution of

ie and te, since these variables are related to v through the kinematic

wave approximation of the equations of motion. Note that v at a given

time during the storm has been assumed constant throughout the basin

(Rodriguez-Iturbe and Valdes, 1979). Notice that the kinematic wave is an

approximation and this is just one way of doing it.

According to this approximation, the average first order subcatchment

has a concentration time given by hagleson (1970):

- 1-M '1/m

t =

(s ~

where

i A,-
* L e

as and ms are the kinematic wave parameters of the average first order

channel (ms=5/3 for rectangular channels), and Al and L1 represent the

average area and average stream length of the first order subcatchments.
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Since the velocity is assumed constant throughout the basin then, a

first order subcatchment may be exclusively used throughout the analysis.

The expression of the peak velocity depends on the relative duration of

the effective rainfall with respect to the concentration time. Speci-

fically,

- - ms-1
v = as(Aliete/Ll) if te 4 tc (2.9)

1/ms _ 1-1/ms
v = as (Alie) otherwise (2.10)

Accordingly, fy(v) is composed of two terms, i.e.,

(1) (2)
fV(v) = wf v (v) + (1-w) f v (v) (2.11)

(1) (2)
where w = Prob[te < tc], f V (v) stands for the case te < tc and f V (v)

for the case te > tc. From Equations 2.9 and 2.10, it can be seen that

(1)
f V (v) may be derived from the joint distribution of ie and te, whereas
(2)

f V (v) can be obtained from the marginal distribution of ie only.

Rodriguez-Iturbe et al., (1982) assume that ie and te are independent

random variables with exponential distributions. This assumption is accep-

table at least for events beyond a certain threshold, and is more adequate

for describing total precipitation. Then,

- Oeie
fIe (ie) - 0ee (2.12)

- 6ete
fT (te) = 6ee (2.13)
e

and therefore,

FI T (iete) = Oe 6e exp(-aeie-6ete) (2.14)
e, e
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From the above equation, Eagleson (1981) obtained the PDF of the

effective storm depth, h, which is defined as the product of ie and te:

h = iete

fil(h) = 2 6e 6eKo[ 2 (ae 6eh)2 ]

(2.15)

(2.16)

where Ko[-] is the modified Bessel function of the second kind and zero

order

(1)
2.3.1 Derivation of f v (v)

Replacing Equation 2.15 in Equation 2.9, the expression of the peak

velocity becomes:

v = as(Ilh/lE)ms-I

Using this relation in Equation 2.5, the PDF of v may be written as:

(L) ( = (2-mS)/(ms

V 0'(. )A (s s

L 1/(m -1)]
1s -

However, fH(-) has already been defined. Therefore, introducing fHj(') as

given by Equation 2.16, the distribution of v is:

e e R

(Ms1)aA RA 1

(2-ms s 2) L R ( - 1/2(m-

s ASRA S

(2.17)

(1)
where the definitions of RA and RL have been used to express f V (v) in

terms of L and A .

20
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(2)
2.3.2 Derivation of f V (v)

When 'the peak velocity is given by Equation 2.10, its distribution

can also be derived following processes similar to those of the past sec-

tion:

f( ) = m / 
V (m -1)

V (MIs 1k sT)

m s / Ms
fv

e R a /(ms
-Is -

or, using Equation 2.12

m /(m -1)

e[121 /(m-l)]
ARA_ s s

(2.18)

In order to completely define the general expression of the distribu-

tion of v, the probability that te 4 tc must be evaluated. The expres-

sion obtained by Rodriguez-Iturbe et al., (1982) is

-2a'F(Jl
w1- -2P? 3+l) (2.19)

where

2/7 5/7 ( - -2/7 1-2 5/7 -3/7

Rodriguez-Iturbe et al., (1982) studied the order of magnitude of w

and concluded that it is very small, justifying the following approxima-

tion for fV(v):

(2)
fy(v) = f V (v)

Therefore, recalling Equation 2.8, the PDF of qp, in its final form,

21
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is:

3/2 5/2
fQ(qp) = 3.534 Hqp exp(-1.412 TIqP ) (2.20)

-1
where qp is given in hr , and

SL5/2
S=/2 

(2.21)
A RL3/2

In the above equation, the units are as follows: $e(hr/cm), LQ(Km), A (Km2)
-1 -1/3

and caQ(sec m ). The latter is defined as:

S

= 2/3 (2.22)
n b

where S, nq and bQ are the slope, the Manning roughness coefficient and

the width (in m) of the stream of order Q.

Proceeding in a similar manner as done for qp, the PDF of tp can

easily be derived. The expression for this:

-7/2 -5/2

fT(tp) = 0.6561 tP exp(-0.262H tp ) (2.23)

where tp is given in hours, and the ratio RB/RA has been replaced by its

most probable value of 0.80 as suggested by Rodriguez-Iturbe et al., (1979).

Finally, for a specific effective rainfall with an intensity ie, the

peak and time to peak of the Geoiiorphoclimatic IUH1 can be written as:

q 0.871 (2.24)
p 2/5

e

t= 0.5851/5 (2.25)
e

where

22



5/2

II. -(2.26)

e iA 3/2
e Qi'Q

The above equations will be utilized in Chapter 4, when flood fre-

quency distributions for a given basin are derived from the Geomorphocli-

matic IUH and two different expressions for the joint probability density

function of ie and te, which are developed in the next chapter.
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Chapter 3

JOINT DISTRIBUTION OF THE EFFECTIVE INTENSITY AND DURATION

3.1 Introduction

In the preceeding chapter, the derivation of the Geomorphoclimatic

IUH was based on the assumption that the joint distribution of the effec-

tive intensity and duration of the rainfall events is the result of in-

dependent exponential distributions for each variable. Unfortunately,

in practice neither the effective intensity, ie, nor its corresponding

duration, te, can be measured in the field in order to estimate the par-

ameters of the distributions. Only gross precipitation measurements are

available from historical records. However, the joint distribution of

ie and te may be derived from the joint PDF of the gross precipitation,

represented by an intensity i, and a storm duration tr, and a model that

describes the infiltration process. This model may be conceptual or phys-

ically based. In this chapter, the marginal distributions of i and tr

are assumed independent and exponentially distributed. This type of dis-

tribution is more adequate for i and tr than for ie and te, as used by

Rodriguez-Iturbe et al., (1982). The joint distribution, which is the

product of the marginals, will be coupled to two models of the infiltra-

tion process: a conceptual one in which the infiltration is assumed to

be constant and equal for all the rainfall events, and a physically

based one, in which the infiltration process is described by the Philip

equation (Philip, 1960).
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3.2 Observed Distributions of Storm Properties

To perform rainfall data analysis, an independent storm event must

be defined. Grace and Eagleson (1966) used the rank correlation coeffi-

cient to establish the minimum interstorm time above which two successive

storms may be considered independent events. Grayman and Eagleson (1969),

using five years of hourly rainfall data at Boston, found that the storm

intensity and duration, and the time between storms are distributed ex-

ponentially. Restrepo and Eagleson (1982) concluded, however, that the

rank correlation coefficient assures that storm depths are linearly inde-

pendent, but it does not necessarily imply that the storms are indepen-

dent events. Under the assumption that the arrivals of independent

storm events are Poisson distributed, it may be shown that the storm in-

terarrival time is exponentially distributed. Using this assumption,

Restrepo and Eagleson (1982) proposed, as criterion to define indepen-

dence, finding the time between storms which yields a coefficient of var-

iation equal to 1, an implicit condition in the exponential distribution.

For twelve stations located in different sites in the United States and

Colombia, representing different climates, Restrepo and Eagleson (1982)

found that, under the above criterion, the exponential distribution pro-

vides a good representation of the interarrival time, the time between

storms and the storm duration. However, the exponential was not as good

a model of storm intensity.

In this work, it will be assumed that the point storm duration, av-

erage point storm intensity and interstorm time, denoted tb, are exponen-

tially distributed. Formally,
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f (i) = e , i > 0

- 6 tr
f (t) 6 e , tr > 0 (3.1)

r

-'Ytb
f (t Y eb t > 0 (3.2)
~T (b)=be-
b

where
* -1
S= m.-1

6 M
t
r

-1
Y = tb

where mi, mt , and mt are the mean storm intensity, mean storm duration
r b

and mean interarrival time, respectively.

By definition, the total point storm depth, h, is the product of i

and tr. If the conditional distribution of h given tr is defined as

follows (Eagleson, 1972).

-1 - (h/tr)

fH|Tr (h, tr) = 0 tr e

then it can be proven that i and tr are independent, and therefore, the

joint distribution of i and tr becomes:

* *

fITr (i, tr) = 6 6exp(-j3 I - 6tr)
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In order to reduce the average point rainfall depth to the average

areal rainfall depth, the U. S. Weather Bureau (1957-1960) has proposed

the following correction factor:

1/4 1/4
K = 1 -exp(-1.1 tr ) + exp(-1.1 tr - 0.003861AS)

where tr is given in hours and AQ, the catchment area, in km2 . Eagleson

(1972) made a simplification of the above equation replacing tr by its

mean value, i.e.,

K = 1-exp(-1.16
1/4 -1/4

) + exp(-1.16 - 0.003861Ag)

Therefore, assuming that the areal storm duration is equal to the point

storm duration the areal storm intensity becomes.

ir = Ki,

and then its distribution is defined as

* *
. 3 -f3 i /K

f (i ~ e r
I r K
r

or

fI (ir) =. e
r

(3.4)
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where

= S*/K

Finally, the joint distribution of the areal storm intensity and storm

duration is

fl T (ir, tr) = c6 exp(-Oir - 6tr) (3.5)
r' r

3.3 Derivation of the Distribution of i. and t, Based on a Conceptual

Model of the Infiltration Process

Eagleson (1972) included infiltration effects as a spatially averaged

potential loss rate, p, substracted from the average areal rainfall

intensity for each storm event:

i - r =
if ir > 4 (3.6a)

te = tr

ie = 0
if ir < (3.6b)

te = 0

When ir > p there is a one-to-one relationship between pairs of ie,

te, and ir, tr, and therefore, from the joint PDF of ir and tr (Equation

3.5), the distribution of ie and te may be calculated by derived

distributions, as explained in Section 3.2. Consequently,

ir = 1e + +

tr = te

and applying Equation 2.4, the desired distribution is:
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fI T (ie, te) = e exp(-fte-ie) ie, te > 0 (3.7)
Se, e

When ir is less than or equal to p, all the rainfall is infiltrated.

In terms of the distribution of ie and te, this situation is represented

by a spike at ie = 0 and te = 0, whose value is given by:

P e 10t e) = 2' r~ )dir dtr e e 0

, I f' _6 exp(- i -6t )di dt
0 0 r]r

p(ie, te) = 1-e , ie=te=0 (3.8)

Therefore, Equations 3.7 and 3.8 completely define the distribution

of ie and tee

According to Eagleson (1972), the infiltration loss rate may be

estimated as follows:

Let n = average annual number of rainfall excess events

0 = average annual number of independent rainfall events

P = average annual point rainfall depth.

R = average annual runoff

Rd = average annual direct runoff

Defining

= R/P

and

= Rd/R
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Then, on the average,

Pti $2 = nE[iete]

where E[-] is the expected value of the argument. Assuming that

E[iete] ~ E[itr] lO
then

n=P2

On the other hand,

nr
0 (fi) di r= e

which gives

$1 42 = e

and solving for 4:

= -- ln(4l $ (3.9)

Eagleson (1972) presents typical values for $1 and $2 for different

basins in USA.

In the next section, the derivation of the joint distribution of ie

and te using a physically based model of the infiltration process will be

presented.
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3.4 Derivation of the Distribution of i. and t, Using a Physically Based

Model for the Infiltration Process

3.4.1 Infiltration and Surface Runoff

The soil infiltration rate is the flux of water which the soil

can absorb through its surface when it is maintained in contact with water

at atmospheric pressure (Cordoba and Bras, 1979). It depends on the

initial moisture conditions and the texture, structure and uniformity of

the soil profile. As long as the rate of water supply is smaller than

the soil infiltration capacity, water penetrates as fast as it is supplied,

and the supply rate determines the actual infiltration rate. On the

other hand, when the supply rate exceeds the soil infiltration capacity,

the latter determines the actual infiltration rate.

The one-dimensional concentration dependent equation of the diffusion

process in unsaturated media is:

,Do = a. 0]= K(O)[rD(0) -L] = (3.10)
t 3z 3z z

where 0 is the effective volumetric moisture content, t is time, K(O) is

the effective hydraulic conductivity, D(G) is the diffusivity and z is

the vertical direction. Philip (1960) integrated the above equation for the

following boundary conditions:

for t = 0 and z > 0 0 = 0

for t > 0 and z = 0 0 = Os

where 00 is a initial constant soil moisture content and Os is the soil

moisture content at saturation condition.

Using Philip's solution, Eagleson (1978) represented the infiltration

*
capacity f1 by
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* 1 -1
f =-S.t + a
S2 1

(3.11)

where the term a is the gravitational infiltration rate (it takes into

account also the water table influence), and Si is the infiltration

sorptivity, embodying capillarity. The expressions for a and Si are:

a = 1 K(l) (1 + sc) - w
2 [

Si = 2(1-so) [5nK(1)(1)$i(d,so)]/3mn}Y"

(3.12)

(3.13)

= 3.14159...

= saturated effective conductivity of soil

= initial (uniform) soil moisture concentration in the sur-

face boundary layer.

$(1) = saturated matrix potential of soil

#i(d~so) = dimensionless sorption diffusivity of soil

n = effective porosity of soil

c = pore disconnectedness index

m = pore size distribution index

w = apparent velocity of capillary rise from water table.

For different soil textures, Eagleson (1978) gives typical values of the

above parametes.

A typical storm situation over a given catchment is shown in Figure

3.1, in which the several soil types presented in the latter are assumed

to be lumped into a single represeintative soil.

According to Equation 3.11, at the beginning of the storm event, the

infiltration capacity of the soil will commonly be greater than the inten-

sity of the rainfall. The surface soil moisture will then adjust itself

32
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to this value. The infiltration capacity will decrease with time because

the water already infiltrated increases the soil moisture content. The

soil moisture content will increase up to some time to at which the soil
*

surface may reach saturation and fi = ir For t between to and tr sur-

face runoff will be generated. This runoff, Rs, is indicated by the

shaded area of Figure 3.1, and it represents the effective rainfall.

Eagleson (1978) gives an approximation for to, and calculates Rs in

a consistent manner with that approximation. The expressions for

these two variables are:

2
S.

t - i(3.14)
0 2(1 -a)2

Rs ~ (ir-a)tr - Si(tr/2) (3.15)

3.4.2 Derivation of the Distribution of ie an te

The effective rainfall will be represented, as before, by an inten-

sity ie, constant through the duration te, as shown in Figure 3.1. Con-

sequently,
te tr - to (3.16)

i= Rs/te (3.17)

The above two equations defined through Equations 3.12 to 3.15 will

allow the derivation of f, , T (iete),
e e

Looking at the relation between the storm characteristics and the

infiltration capacity, three cases can be defined. They are presented in

Figure 3.2. Cases 1 and 2 do not produce surface runoff, case 3 does.

In case 1 the duration of the storm event is not enough for the soil

surface to reach saturation conditions, and in case 2 the intensity of
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the rainfall is less than the gravitational infiltration and therefore,

the soil surface will never be saturated. As it is shown in Figure 3.2,

the critical parameter in establishing surface runoff is tr: if tr is

greater than to, runoff will be produced. Figure 3.3 shows the runoff

producing region in the plane ir - tre The shaded areas represent those

storms that do not generate surface runoff (cases 1 and 2). Therefore,

the integration of fIr, Tr (irtr) over the shaded areas will give the

probability of no effective rainfall from storm event. This is

Prob[i = 0,t = 0 = f (i ,t ) di dte e 12I Tr r r r

where R1, 2 is the shaded area of Figure 3.3, or replacing R1 , 2 and

using Equation 3.5:

Prob[i e 09te = 01 = i 2[r 6exp(-Ii - t )di dt
e eJo 0 r ]r r

= 1 - 6e exp(- 6t - S.(2t ) 2)dtJ r i r r

This last integral does not have an exact solution. However, it may be

analytically approximated in the same manner as Eagleson (1972). He

shows that for

COo -K 3
I = K exp(-Kx-K2x )dx

a good approximation is:

-a/K 3 -a
Io e a P(a+l) (3.18)

provided a is of order unity, where

1/(K3+1)
a Kl(K 2 K3/Kl)
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t = t =2/2(i - a)2

3

i r

Surface runoff generating areas in the ir- tr plane

(shaded areas = no runoff)

Figure 3.3
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Therefore,

Prob[ie=O, te=0] 1 - exp(-Sa-2a)r(a+1)a (3.19)
where

2/3

a= 62 (3.20)

The above expression represents the discrete part of the joint pro-

bability distribution of ie and te. The continuous part will be calcu-

lated as:

fI T (iete) = fI IT (ie,te)-fT (te) (3.21)
e, e e e e

3.4.2.1 Evaluation of fT (te)
e

Figure 3.4 shows the plant ir-tr where the dashed lines represent

different values of te, e.g., te and te 2 . The shaded area corresponds

to values of te between 0 and te . Therefore, integration of

fJ ,T (ir, tr) over that area will give the probability that te is between
r r

0 and te 1, i.e.,

Frob[O < t < t ] = f' J4~t c50exP(-6t -i)dtldi[t +t
e el r r r_ r

0

= T exp[ -6S2/2(i 2a)2]{l-exp(-6t }}di
a [ r_ i r- e I r

Let y = ir-a. Then,

Prob[O < t < t] = e [1-exp(-6t )] exp(-y-6S /2y2)dy (3.22)

where the last integral is a function of f, 6 and Si but not of te . It

may be approximated in the same manner as before by using Equation 3.18.

However, in order to preserve the properties of any PDF, it is evaluated

indirectly as follows. The probability that te is equal to zero has been
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already calculated: it is given by Equation 3.19 since te is equal to

zero if and only if ie is also equal to zero. Therefore, using Equations

3.19 and 3.22, the cumulative probability density function of te can be

expressed as:

-Oa -6te
FT (te) = Prob[te=ol + Oe [1-e ]K(S,6,Si)

e

where

Prob[te=o] = 1 -exp(-Oa-2a)r(a+1)a

and

exp(- y-6S /2y 2)dy

K(O,6,Si) is then calculated such that

FT (te) + 1 as te + 0
e

Consequently,

-2a -a
K(6,S,S1) = e r(a+1)a /6

and

which gives

-a
FT e(te) = 1- r(a+1)a exp(-Sa-2 a-6te);

-a

fT (te) = 6r(a+1)a exp(-Sa-2a-6te);
e

with
-a

pTe (te) = 1 - r(a+1)a exp(-Oa-2a)

where a is given by Equation 3.20.

(3.23)

te > 0

(3.24)

, te = 0
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3.4.2.2 Evaluation of Fe IT (ie,te)

As noted above, when te is zero, ie is also zero, and the probability

that ie is zero given that te is zero may be evaluated by Equation 3.19.

For ie and-te greater than zero, replacing Equation 3.15 in Equation 3.17:

ie = [(ir-a)tr - Si(tr/2)"I/te

But tr = to + te, which replaced in the above equation yields:

2
ie = (ir-a)(1+to/te) - Si(l/te + to/te) /2 (3.25)

Define c=te/to. From Equation 3.14 the following relation holds:

(ir-a) = Si/(2to)

Replacing c and the above equation in Equation 3.25, yields

ie = Si {(1 + 1/c) - (1/c + 1/c2)5}/(2to)

or

i= K(c) (ir-a) (3.26)

where
K(c) = [1+c - (1+c)2]/c (3.27)

In order to make Equation 3.26 tractable, K(c) as given by Equation

3.27, has to be approximated by some other function. The approximation

chosen here is

0.09229
K(c) = 0.60729c (3.28)

which is compared to the exact one in Figure 3.5.

Introducing the above function into Equation 3.26:

0.09229

ie ~ 0.60729(te/to) (ir-a)

and recalling the definition of to:

-0.1846 0.09229 1.1846

ie ~ 0.6474 Si te (ir-a) (3.29)
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This approximation of ie allows an explicit solution for ir

0.1558 -0.0779 0.8442

ir ~ 1.4434 Si te ie (3.30)

-1
which can be used as g (ie) in Equation 2.5 to easily obtain the condi-

itonal distribution of ie given te:

0.1558 -0.0779

fe IT (ie,te) = 1.21850(Si/te) te

-exp(-1.44345Si
0.1558 0.8442 -0.0779

ie te

ie, te > 0

3.4.2.3 Evaluation of fl ,T (iete)
e e

Replacing Equations 3.24 and 3.31 in the expression given by Equation

3.21, the joint distribution of the intensity and duration of the effec-

tive rainfall in terms of the parameters of the joint distribution of the

intensity and duration of the total precipitation, and the average charac-

teristics of the soils of the basin is

fI ,T (ie,te)
e e

-a 0.1558 -0.0779
= 1.218506exp(-Sa-2a)P(a+1)a (Si/ie) te

-exp(-6te + 1.44340Si

for ie, te > 0

).1558 0.8442 -0.0779

ie te )

with

pe ,Te(Iete) = 1 - exp(-a-2a)(a+1)a

for ie = te = 0

where a is given by Equation 3.20
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3.5 Summary

In this chapter two expressions for the joint probability distribu-

tion of the intensity and duration of the effective rainfall have been

derived. Both of them use the same joint distribution of the intensity

and duration of the total precipitation, which is given as the product

of independent exponential distributions; however, the infiltration pro-

cess has been represented in two different manners. In the first case

a simple average potential loss rate was used, whereas the second case

is based on a physical model of the infiltration process, the Philip

equation.

These expressions of the joint distribution of ie and te will be

used in the next chapter to derive the flood frequency distribution for a

particular basin.
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Chapter 4

DERIVED FLOOD FREQUENCY DISTRIBUTION

4.1 Introduction

The design of water resources systems demands quantification of

future events for which no exact time of occurrence can be forecasted

(Linsley et al., 1982). Hence, the probability that the event of interest

(usually floods or droughts) will equal or exceed a specified value must

be given. These probabilites are important for the economic and social

evaluation of a project, since they are helpful in determining risks as-

sociated with proposed designs or anticipated operating schemes.

The probability of a flood peak of a given magnitude is often de-

scribed by its return period. The return period or recurrence interval,

TE, of a flood is the expected number of years before the occurrence of

a flood of equal or greater magnitude. The probability that a TE-year

flood will be exceeded in any given year is 1/TE. Numerous statistical

distributions have been suggested to fit data in order to gain informa-

tion on the magnitude of floods with longer return periods than those

associated with the observations. This means that observed floods are

required to perform traditional frequency analysis.

Nevertheless, theoretical flood frequency distributions may be de-

rived.from appropriate climatic distributions and catchment parameters,

using a suitable catchment rainfall-runoff relationship. Eagleson (1972)

analytically derived the flood frequency distribution for a V shape plane
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assuming exponential distributions for the effective intensity and dura-

tion of the rainfall events, and the kinematic wave equations for relat-

ing these parameters and the catchment characteristics to the dynamics

of overland and streamflow. Distributions for more complex catchiaent

representations were not mathematically tractable. However, his relation

agrees well with observations from three Connecticut catchments. Chan

and Bras (1978, 1979) derived, based on Eagleson's approach, the frequency

distribution for the volume of water above a given threshold discharge,

which is applicable in the design of storage devices, flood control sys-

tems and storm waters treatment facilities in urban areas. Hebson and

Wood (1982) derived a flood frequency distribution from the same distri-

bution of the effective rainfall parameters used by Eagleson (1972) and

the Geomorphologic Instantaneous Unit hydrograph (GIUH) proposed by

Rodriguez-Iturbe and Valdes (1979), also with good results.

Derived flood frequency distributions provide a theoretical basis

for estimating flood frequency in the absence of streamflow records and

for extrapolating empirical estimates based on short records, using only

accessible climatic data and catchment parameters.

In this chapter the derivation of two flood frequency distributions

are presented. They are based on the Geomorphoclimatic Instantaneous Unit

Hydrograph (see Chapter 2) and the distributions of the intensity and

duration of the effective rainfall derived in the last chapter. Verifi-

cation with observed floods in three catchments will also be performed.
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4.2 Probability Distribution of the Peak Discharge

The main characteristics of the IUH are the peak, qp, and time to

peak, tp. According to Henderson (1963), if these two parameters are

correctly estimated, the real shape of the IUH is not very important,

and a triangular approximation is generally adequate for prediction pur-

poses. In the case of triangular IUH, Henderson (1963) gives the follow-

ing expre sion for the peak discharge at the outlet of the basin, Qp

2i t A t
Q = b 1i- i for t < t (4.la)
p tb L 2 tbJ e b

Qp = ieAQ for te > tb (4.lb)

where ie is the intensity of the effective rainfall, constant through a

duration te, Ag is the basin area, and tb is the base time of the IUH.

For a triangular IUH:

qptb = 2

and therefore, Equation 4.1 becomes:

Qp = ieteAj qp(1-qpte/ 4 ) for te < 2/qp (4.2a)

Qp = ieAQ for te > 2/qp (4.2b)

In the context of the Geomorphoclimatic theory, Rodriguez-Iturbe

et al., (1982) express the peak of the IUH (see Equations 2.24 and 2.26)

as:

0.871

q p 12/5 (4.3)

e
where

5/2
Q 3/2 (4.4)

iA 3/2
e IeARL Q
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where LQ is the length of the stream of highest order in Km, a2 is the

kinematic wave parameter of this stream, whose units are sec~ m-1/3.

is given in cm/hr, A. in Km2 and q in inverse hours.

Consequently, Equation 4.3 may be introduced into Equation 4.2 to

obtain the following expression:

7/5 2/5
Qp = 0.871KjAS ie te(-0.87lKiie tel4 ); (4 .5a)

for t < 2 1-2/5
e 0.871K e

Q IA for t > 2 -2/5 (4.5b)p e' e - 0.871K e

where KI is defined as:

2/5 3/5

-= (4.6)
K, L

Solving for te from Equation 4.5a:

t = 2 -2/5p (4.7)
e 0.871K e L AiJ

Note from the above equation that when ie is equal to Qp/AQ, te becomes

the limiting value in Equation 4.5

The peak discharge is a random variable. Its random nature arises

from the randomness of ie and te. Figure 4.1 presents the ie-te plane with

the areas where Equations 4.5a and 4.5b apply. For a particular value of

Qp, Equation 4.7 (or 4.5a) is valid for ie greater than or equal to Qp/A Z,

as Figure 4.2 shows. This equation is plotted with the dashed-dotted

line. Besides, the vertical dashed line corresponds to Equation 4.5b for

the same value of Qp. Consequently, the shaded area in Figure 4.2 repre-

sents the region of the ie-te plane where the peak discharge is less than

or equal to that particular value of Qp. In other words, it is the inte-
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gration area for evaluating the cumulative probability distribution of

Qp, i.e.;

F Q(Q ) = fI T et )di dteFQ(Q) e e e ee

or defining R:

*

rQ r r>-
F Q ) = i [ I fIT (i et e)dte die +

o Jo e e

e f (i t )dt |di (4.8)
*Q I , T e e e ej e

where te is given by Equation 4.7 and Qp = Qp/AQ

Before using the joint distributions of ie and te derived in the

previous chapter, the next section presents a manner to evaluate the re-

curence interval of the floods from FQ(Qp).

4.3 Recurrence Interval

FQ(Qp) represents the probability of occurrence of a flood event for

all times. Coumonly, in engineering practice, extreme value distribu-

tions of floods are obtained from annual exceedance series, which are ex-

pressed as a function of the recurrence interval, i.e., the interval

measured in years during which an event of specified magnitude will be

equalled or exceeded once on the average.

According to Eagleson (1972), and following the presentation of Chan

and Bras (1979), the exceedance probability of a flood with a magnitude

QE is:
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FE(QE) E Prob[Qp > QE] = 1-FQ(QE) (4.9)

Define

N = number of years of observations of an event (peak flow in

this case).

n = average number of observations per year

nN = total number of observations

If the values of the observations of the event are arranged in de-

creasing order of magnitude, with order number m=1 for the maximum value,

and m=nN for the minimum one, an ordered series may be conformed with ex-

pected probability of exceedance given approximately by:

FE E ) Prob[Q > E nN+1

For an annual exceedance series, only the N highest values from the nN

values have to be considered, i.e.,

I m 1(4.11)
PE NE ) Prob[QP > annual -+ TN 

an(4.11) basis

where TE is the recurrence interval or return period in years. Dividing

Equation 4.11 by Equation 4.10:

P E(QFrm) nN+1 (L r
FE (QE ) N+l TE) LFE(E

m m

Frequently, N>>1, then the above equation becomes

l1 3 nN

F~ LF(Q %~ N
TE) FE E)

or

=nFE(QE ) nil-FQ(QE (.2
E n In
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where, in the case considered here, FQ(-) is given by Equation 4.8.

4.4 Flood Frequency Distribution derived from the Conceptual Infiltration

Model

The joint distribution of the intensity and duration of the effec-

tive rainfall, derived from the representation of the infiltration as an

average potential rate (see Section 3.3) may be used in Equation 4.8 in

order to obtain the CDF of the peak discharge, FQ(Qp). Using Equations

3.7 and 3.8, which define the distribution of the effective rainfall,

with Equation 4.8, results, after some calculations, in

F (Q )e exp- i + 0.871K -2/5 Q die (4.13)
FQQ) =1 Q * .7K1e / ef e

p
*

where Qp is equal to Qp/Aq.

The above integral cannot be calculated analytically and numerical

methods must be invoked to solve it. The asymptotic behavior of FQ(Qp)

can be checked easily: as Qp tends to infinity, the lower and upper

limits of the integral become the same and the integral tends to zero; it

follows that:

FQ(Qp) = 1 as Qp + oo,

fulfilling the CDF's property. On the other extreme, when Qp is equal to

zero, the integral analytically collapses to 1/ so:

FQ(O) = 1 - e

which is the value of the spike at the origin (ie=te=O), as given by

Equation 3.8.

52



Futhermore, the return period is given by:

1 -6# 0 2 -2/5*
E e j exp- + ii

IT e 0.871K e p(1 i e die (4.14)

where mv is the average annual number of independent rainfall events.

In the next subsection, the flood frequency distribution for a par-

ticular basin, based on the above equation, will be evaluated and com-

pared with a frequency distribution based on streamflow records.

4.4.1 Flood Frequency Distribution: A Particular Case.

The flood frequency distribution derived above will be compared with

observations from a particular catchment. The one chosen in this work is

the Davidson River catchment located in the rugged Appalachian Mountains

of western North Carolina. It is one of the catchments reported by Hebson

and Wood (1982), Table 4.1 summarizes pertinent geomorphologic and cli-

matic characteristics. Figure 4.3 shows the resulting flood frequency

distribution. As it can be seen, the derived distribution does not have

the same slope as the observed data (plotted according to the Weibull's

plotting position formula), for small floods it overestimates a given re-

recurrence interval, while for large floods, the tendency is the opposite.

It is important to note that the value of the area used in the calcula-

tions, unlike Hebson and Wood (1982), is the total catchment area; this

should correspond to the contributing area producing runoff, and therefore,

the implicit assumption by Hebson and Wood is that the contributing area

follows the law of stream areas, which is calculated using total drainage

areas. This assumption is not an obvious extension of the mentioned law.

Figure 4.4, uses half the area, as Hebson and Wood, and a $ of 0.72,

53



TABLE 4.1

Geomorphologic and Climatic Characteristics of

Davidson River Catchment (from Hebson and Wood, 1982)

Basin Order:
A 2

RA

RB

RL

6

mV

41

#2

-3

= 104.6 Km2

= 4.80

= 3.96

- 2.41

= 8.8 Km

= 2.46 hr/cm

- 0.19/hr

= 24

= 0.61

= 0.103

= 1.05 cm/hr
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which gives a much better agreement between the derived distribution and

the observations. Apparently the flood frequency distribution resulting

from the conceptual infiltration model can reproduce the Davidson data

only after considerable calibration. Further research is needed in this

area.

4.5 Flood Frequency Distribution Derived from the Physically Based Infil-

tration Model

The flood frequency distribution may also be obtained from the

joint probability density function of the intensity and duration of the

effective rainfall, already derived in Chapter 3 from a physically based

model of the infiltration process.

In this case, Equation 4.8 is:

F Q(Q ) = 1 - exp(- a-2a)r(a+l)aG + f Q I fI T e(iet e)dte] die

(4.15)

+ r [ft I [JT e' e)dt e]die

p

where fI ,T (ie,te) is given by Equation 3.32. The first two terms of
e e

the above equation represent the value of the spike at Qp equal to zero.

Introducing Equation 3.32, the third term of Equation 3.15 becomes:

fI (ete)dt di e
0 e e

*o -6 ~e j Q *-k k~ P.j
A x e t ik exp(-1.4434 S i t )di dt

Jo - JO eiee e
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where

* -T k
A = 1.21856S exp(- a-2a)r(a+1)cy Si

j = -0.0779

k = 0.1558

= 0.8442

Letting y=ie, the inner integral can be evaluated, and after some calcu-

lations, the final result of the above integration exercise is:

-a F k *k texp (-a-2a)r(a+l)a - exp- I1.4434S. Q t + 6t e] dt (4.16)

Similarly, the fourth term of Equation 4.15 becomes:

*

rt
I e f (i t )dt ]di =

Q P JO e' e
p

*

A -ki e tj exp-[6t + Z.44346S. i tidt di (4.17)*_ t + e .44 i e s e] e

The inner integral cannot be evaluated analytically, and since its

upper integration limit is function of ie, it is not possible to change

the integration order as done in the evaluation of the third term of Equ-

ation 4.15. Therefore, there are two possibilities for dealing with the

above expression: one is to evaluate it numerically (a double integral),
*

or to approximate te with a more tractable function that allows the evalua-

tion of the inner integral analytically (in this way, computer time will

be reduced in the calculation of FQ(Qp)). The latter was chosen here.
*

The expression for te is (Equation 4.7):

* 2 .-2/5 [ *1
t = 2 7-1-/[1-(1-Q */i )1 (4.18)e 0.871K e p e

10
U)~



with the condition that ie must be greater than or equal to Qp. The ap-

proximation adopted affects only the last factor of the above equation,

i.e.,

[1 - (-Qp/ie) 2 (Qp/ie)

(0.80482q

= (0.65295Q

*
~(0.5Qp/ie)

3.1358 * *

QP < ie < l.2Qp

* 1.36396 * *

p/ie) 1.2Qp < ie < 2Qp

S 1.10812 **

P/ie) 2Qp < ie < 5Qp

5Qp < 1 e < 0

Figure 4.5 shows this approximation. As it can be seen, it is very

close to the original function, which is represented by the solid line.

Consequently, the double integral given by Equation 4.17 is split up into

a sum of four double integrals, whose integration limits are determined

as follows:

* *

* -0.4 * 3.1
te = 2 ie (Qp/ie)

or solving for ie:

*3.1358

ie 1 - i = (2Qp

358
/0.871K1

1/3.5358
/0.87lKite)

*-0.4
For ie = Qp, then te = 2.2962Qp

*r *
For ie = 1.*2Qp, then te = 1.2051Qp

/Ki

0.4
/Ki
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* *

* 1.36396
(0.80482Qp/ie) /0.871KI

1/1.76396* 1.36396
te2 -e = [2(0.80482Qp)

*

For ie = 1.2Qp, then

*
For ie = 2Qp, then

/0.87 1Kite]

**-

te = 1.238Qp

* *-
te = 0.5028Qp

* *

* -i
te = 2e

0.4 * 1.10812
(0. 6 5 2 9 5 Qp/ie)

* 1.10812

/0.871K 1

1/1.50812

i e ie = [2(0.65295Qp)
3

*

For ie = 2Qp, then

*
For ie = 5Qp, then

/0.8 7lKite]

* *

te =0.50337Qp

* *-(

te = 0.12 64Qp

*
4. 5 Qp < e <

* * -1.4
te = Qp ie /0. 671K1

* 1/1.4

ie4 =e = (Qp/0.8 7lKlte)4*

For ie = 5Qp, then

For ie = c, then

**-0.4
te = 0.1206Qp /Kj

*
te = 0.

60

0.4* -i
te= 21,

(4.21)

/K 1

/Kj

(4.22)

/KI

/Kj

(4.23)
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As one can suspect, the fact that an explicit expression for ie

could be found will allow, for each split double integral, the interchange

of the integration order and the analytical evaluation of the resulting

inner integral.

Figure 4.6 shows the ie-te plane, where the shaded area constitutes

the integration region for the fourth term of Equation 4.15. Then, it

follows that this term may be expressed as:

- f I ,T (ie~t )dt eldie

Q - o e e
p

Dt i t ieL 4 eT eit )di dt + 3  3 IeT et )di dt

0 fQ* Ie2 e it e -Q Teee e
P 4 P

t i t i

+ 2  f eT et )di idt + t ,T e It )di dt

e3 P 2
(4.24)

where the integral is given by Equation 3.32, ie1 ie2 e3 and i4 are

given by Equations 4.20 to 4.23, and te to te, are defined as

*-0.4

te1 = 2.2962Qp /Kj

*-0.4

te2 = 1.2216Qp /Kj (4.25)

*-0.4
te3 = 0.5033Qp /Kj

*-0.4

te4 = 0.12 35Qp /K 1
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The inner integrals of Equation 4.24 can be evaluated analytically

in a similar manner to that used to calculate the third term of Equation

4.15. As a result, each right hand side component of Equation 4.24 has

the following form:

t

exp(-a-sa)P(+1)c{ exp-L6t + 1.4434S t dt

tL
i+1

t

-exp- 6t + 1.4434Sk tj i dt (4.26b)
Jt e 1+ e 1 e

where te. is given by Equation 4.25, and e. by Equations 4.20 to 4.23.
1 1

Replacing Equation 4.26 in Equation 4.24, adding Equation 4.16 and

the spike at Qp=O, and after some manipulations, the expression for the

cumulative distribution of Qp becomes:

FQ(Qp) = 1 - 6exp(Sa-2a)r(a+1)cY I + (4.26b)
Qi=1

where

I= *-O.4/K 1exp- 6t + 1.44340S t Q dt (4.27)
j 2 .2 9 6 2 QO IK

and,

rb.Q 0.4/k 1  +d. /e
J exp-16t + 1.4434a [2 2(C Q )/0.871K t dt,

S *-O.4 /K Le ie P1 e,
a iQ * (4.28)

where the coefficients ai, bi, ci, di, and ei are listed in Table 4.2.

Integrals I and Ji must be evaluated numerically. However, the

asymptotic behavior of FQ(Qp) when Qp tends to infinity may be verified

as follows: as Qp + co the lower limit of I tends to zero as well as
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TABLE 4.2

Coefficients of Ji

0

2 0.1235

3 0.5033

4 1.2216

bi

0.1235

0.5033

1.2216

2.2962
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1

ci

0.5

0.6529

0.8048

1.0

1.0

1.1081

1.3640

3.1358

1.4

1.5081

1.7640

3.5358



the integrand, so that I tends to zero; in addition, as Qp tends

to infinity the lower and upper limits of Ji become the same, so that Ji

tends also to zero. Therefore,

FQ(Qp) + 1 as Qp + o

On the other extreme, when Qp is equal to zero, Ji becomes zero and I

transforms to:

Co -6t
e e dt

Joe

and therefore,
-a

FQ(O) = 1 - exp(-a-2a)r(al)a

which is the value of the spike at (iete) equal to (0,0), in agreement

with Equation 3.32.

It is important to note that the distribution just derived is con-

ditional on the initial soil moisture concentration, since Philip's solu-

tion of the one-dimensional equation of the diffusion process is based

on an initial condition given by a uniform soil moisture content (see

Section 3.4.1).

Finally, the exceedance probability of floods, FQ(Qp), may be related

to the annual exceedance reccurrence interval through Equation 3.12. Ap-

pendix B contains the Fortran program to calculate it. Figures 4.7 to

4.11 present the derived flood frequency distributions for an hypothetical

basin, whose relevant geomorphologic and climatic parameters are listed

below:
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AQ = 13Km2

LQ = 8 Km

RL = 2.70

mi = 0.4 cm/hr

mt = 3hr
r

mv = 50

The purpose of these figures is to show the effect of some variables

in the resulting flood frequency distribution. It is assumed that the

variability in time and space of soil moisture is such that it is best

to parameterize basin response in terms of some average soil moisture

concentration, so* In Figure 4.7, the number of independent rainfall

events in the year mv varies between 40 and 60, showing an increment of

the magnitude of floods as mv increases. Figure 4.8 presents the distri-

bution for three values of a,, namely 0.5, 1.0, and 1.5 s1 m1 3 , showing

slight sensitivity to this parameter. In practice, this is advantageous

since the estimation of ac may involve the subjective estimation of

Manning's n. Figure 4.9 compares the flood frequency distribution result-

ing from two different types of soils, which may represent the lumped

soil characteristics of the basin. They are silty loam and clay loam,

whose typical properties, taken from Eagleson (1978), are listed below:

Parameter Silty Loam Clay Loam

n 0.35 0.35

K(1)[cm/hr] 0.357 0.084

T(1)[cm] 166 19

m 0.667 0.286
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As it can be seen from the figure, the effect of the type of soil in the

flood frequency distribution is very important: clay loam is more imper-

vious than silty loam and can produce more surface runoff. In this ex-

ample, the difference in flood magnitude for a given recurrence interval

differ by a factor of two or three.

Figure 4.10 presents the flood frequency distribution when the cli-

matic parameters, mi, and mt , change to 0.3 cm/hr and 4 hr, respectively,
r

the soil is silty loam and the remaining parameters are the same as those

given in the previous figure. This curve, compared with the correspond-

ing one of Figure 4.9 gives lower values of the flood for a particular

return interval. This means that for this specific case, the intensity

is more important than the duration in relation with the magnitude of the

floods.

In Figure 4.11, the sensitivity of the flood frequency distribution

to the value of the average soil moisture is shown. As it is seen, its

effect is appreciable with the obvious behavior: as so increases, more

surface runoff is produced and therefore the magnitude of floods increases.

From the above analysis, soil parameters and soil moisture conditions

must be secured in order to obtain the flood frequency distribution for a

particular basin. Under the assumption that lumped soil parameters (ef-

fective porosity, saturated conductivity and pore disconnectedness index)

may be determined from field samples, only soil moisture conditions need

to be evaluated. If this is the case, one could, in principle, derive

the PDF of uniform initial soil moisture for the storm events from phys-

ically based models of the infiltration and exfiltration processes (e.g.,

Eagleson 1978) and relevant climatic random variables with predefined

probability distributions. However, given the Markovian nature involved
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in the infiltration-exfiltration chain, (Cordova and Bras, 1981) the

soil moisture at the beginning of the rainfall event will be a function

of the soil moisture at the beginning of the previous interstorm event,

and viceversa; and therefore, the PDF of interest could be calculated

only implicitly. To avoid the above difficulty, it is proposed here to

fit, from the results of enough simulations of the infiltration-

exfiltration events, a beta distribution as the PDF of the initial soil

moisture concentration, in such a way that the two parameters of this

distribution are function of climatic parameters and soil properties.

This is done in Appendix A using Eagleson's infiltration and exfiltra-

tion models (1978) and the results of 50 simulations for a wide range

of climates and several types of soil. The resulting fitted beta distri-

bution is:

1 r-1 t-r-l

f(l -s) (4.29)S 0 B o 0

0 so 1; r < t

where

- - 2
t = s0(1-so)/as - 1 (4.30)

-2 - 2
r = s0(1-sO)/as - 1 (4.31)

B = P(r) r(t-r)/r(t)

and from the regression analysis of the results of the above simulations,

the expressions for so and as are:

so = 0.2761 mt /mt + 0.02628Xn[mi/(1M+Mkv)ep]
r b

1/6
+ 0.3 767 [ T(l)n/mt K(1)m] - 0.15 (4.32)

b
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where

M = vegetation canopy density

kv = ratio of potential rates of transpiration and soil surface

evaporation

with a coefficient of determination R2 equal to 0.94, and

as = 0.0753m - 0.009 4mt + 0.0816mb
r b

+ 7.50ev - 0.0915n - 0.00095K(1) + 0.838/kn[T(1)]

+ 0.0555m2 + 0.3858 (4.33)

with R2 equal to 0.61. This equation requires that time be given in

hours and length in centimeters.

In the above equations, mtb is the mean time between storms and ep

is the average potential rate of evaporation from bare soil.

Now that a distribution of so has been defined, the marginal cumula-

tive distribution of Qp may be found by:

rl
F Q(Q) = J FQj5 (Qg,s)f (s 0 )ds 0  (4.34)

where FQjS(Qp,so) is given by Equation 4.26. However, a first order ap-

proximation with so, (Equation 4.32), as the representative initial

soil moisture concentration, will be attempted. This will be done for two

basins: Santa Paula Creek Basin in California and Nashua River Basin in

Massachusetts, for which climatic and soil data were available from

Eagleson (1978).
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4.5.1 Santa Paula Creek and Nashua River Basins

Santa Paula Creek basin has an area of 103.6 km
2 and is located in

Santa Paula Canyon in Ventura County, about 80 km northwest of Los Angeles.

This is the representative arid climate catchnment used by Eagleson (1978)

to verify his model of the annual water balance. The climatic parameters

of this basin are listed below:

mi = 0.1 cm/hr

mt = 34.3 hr
r

mt = 250 hr
r

ep = 0.0114 cm/hr

M ~ 0.40

kv = 1.0

my 15.7

The type of soil that gave the best fit of the frequency of annual basin

yield was silty loam, whose properties have been presented before; there-

fore, this type of soil will be used here.

The above data allow the evaluation of so by means of Equation 4.32:

so = 0.32

From topographic maps, the relevant geomorphologic parameters are evalu-

ated:

RL = 2.3

LQ = 16.9 km

Besides, it is assumed that aQ, the kinematic parameter is equal to

1 sec-1m-1/ 3 . Figure 4.12 shows the resulting flood frequency distribu-
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tion. As it can be seen, it is much lower than the observations (obtained

from the U.S. Geological Survey, Water Supply Papers), indicating that

the soil is so permeable that the produced surface runoff is not enough

to match the historical flood peaks. In the same figure, the flood fre-

quency distribution, using clay loam instead of silty loam is plotted,

showing a better agreement with the observations. Sensitivity analysis

of the soil parameters showed that the more important ones are the satur-

ated permeability K(1) and the pore size distribution index m, which

defines the asymptotic infiltration rate capacity, a, whose value is very

important in the surface runoff generation (see Figure 3.2).

The wet basin of the Nashua River was the other climate adopted by

Eagleson (1978) in his analysis. Specifically, he used the catchment

corresponding to the Southern branch of the Nashua River, with an area of

280 km2 , located north of Worcester, Massachusetts. The climatic parame-

ters of this catchment are:

mi = 0.084 cm/hr

mt = 7.7 hr
r

mtb = 72 hr

ep = 0.0063 cm/hr

M ~0.80

kv = 1.00

mv= 109

Clay loam was the soil which gave better agreement of the frequency of

annual basin yield, and therefore, the long term average soil moisture

concentration is calculated by Equation 4.32 as
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so = 0.42

Unfortunately, this branch of the Nashua River does not have flood records

in order to compare the derived distribution. However, the northern

branch does, with the characteristic that its area (277km2 ) is almost the

same that the one of the southern branch. To check the hydrologic homo-

geneity of the two branches, Table 4.3 lists the mean annual discharge

for concurrent years. It can be seen that the values are very similar.

Therefore, it is assumed that the results of Eagleson's analysis for the

southern branch may be adopted in the northern one, whose catchment has

the following geomorphologic parameters:

RL = 3

LQ = 22km

-1-1/3
The value of ao is assumed to be equal to 1.5 sec 1 m .

Figure 4.13 plots the derived flood frequency distribution for the

northern branch of the Nashua River. Also plotted are the observations

obtained form the U.S. Geological Survey, Water Supply Papers. The de-

rived distribution overestimates the floods for return periods less than

ten years; otherwise, it underestimates the floods, but in general terms

there is an acceptable agreement between the distribution and the data.

From the two derived frequency distributions, it seems that the re-

sults of the annual basin yield do not give the adequate soil parameters

to reproduce the observed flood peaks. However, using ecological optimal-

ity concepts in the annual water balance, adequate soil parameters may be

obtained. Given measures of soil porosity and vegetation canopy density,

it is possible to determine the properities of the soil (i.e., hydraulic

conductivity and connectivity) and the average soil moisture. This will

be presented in the next sub-section.
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TABLE 4.3

Mean Annual Discharge for the Sourthern and Northern Branches

of the Nashua River (from U.S. Geological Survey,

Water Supply Papers)

Year Southern Branch Northern Branch

1936 232 226

1937 210 213

1938 293 290

1939 227 214

1940 191 172

1941 113 111

1942 142 137

1943 184 185

1944 133 165

1945 194 201

1946 200 200

1947 155 158

1948 189 187

1950 131 140

1951 109 121

1961 207 209

1962 186 172

1963 177 189

1964 137 153

1965 90 81
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4.5.2 Ecological Optimality in Water-Limited Natural Soil-Vegetation

Systems

Eagleson (1982) uses his dynamic water balance model (1978) to quan-

tify ecological optimality hypotheses of water-limited natural vegeta-

tion systems, concerning their equilibrium with respect to canopy M,

species water use kv, and hydraulic properties of the soil. Two different

optimalities may be defined. If water is limiting, short-term ecological

pressure will act to minimize water demand stress through adjustment of

both canopy density and plant species so that the soil moisture is maxi-

mized. On the other hand, a natural soil-vegetation system will develop

gradually and synergistically, through vegetation-induced changes in soil

structure, toward a set of hydraulic soil properties for which minimum

stress canopy density of a given species is maximum in a specified cli-

mate. Then, maximization of biomass productivity, kk eP, will control

the long-term joint development of soil and vegetation.

Combination of the above optimalities determines the climatic climax
*

vegetation canopy density M0, and the species water use coefficient kv.

Also obtained are the saturated permeability, pore disconnectedness index,

and the average soil moisture concentration, as a function only of the

climate characteristics and the effective porosity of the soil. This is

very interesting in the context of the flood frequency distribution, since

a prior calculation of the climatic climax parameters by means of the an-

nual water balance model will give the required independent soil parame-

ters [K(1) and c] along with the average initial soil moisture concentra-

tion. Eagleson and Tellers (1982) suggest a procedure to compute the

climatic climax soil and vegetation properties. When M is known (e.g.,
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by remote sensing) it is as follows:

1. Calculate the equilibrium plant coefficient, kv, as:

kv = -0.0018 + 2.26M - 6.73M2 + 15.10M3 if M < 0.42
V0  (4.35)

kv = 1 if M > 0.42
0

2. Given the value of the effective porosity n, solve the water

balance equation (see Appendix A of Eagleson, 1982) for sO using

the following empirical relations:

(c-3 )4i (c,so) = 0.75 (4.36)

1.425 - 0.375(c+1)/2

li(c,so) = 1/[5/3 + 0.5(c+1)(1+so ) ] (4.37)

c+5
k(1) = (0.058/s0 ) (4.38)

where c is the soil pore disconnectedness index and k(1) is the saturated

intrinsic permeability of the soil [cm2 ]. With this value of so, calcu-

late c and K(1) from Equations 4.36 to 4.38 and evaluate the soil parame-

ters used in Equation 4.26 of the derived flood frequency distribution:

m = 2/(c-3) (4.39)

K(1) = 3x108k(1) (4.40)

() = 7.45x10- 2 (n/k(1) ) (4.41)

where
log1 0 () = 0.150 + 0.065c + 0.035c 2

In the above equations, K(1) is given in cm/hr and T(1) in cm.

Eagleson and Tellers (1982) give the climatic climax soil properties
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TABLE 4.4

Climate Climax Soil Parameters for Santa Paula and Nashua Catchments:

Parameter

n

c

k(1), cm
2

so

m

K(1), cm/hr

T(1), cm

Santa Paula

0.30

5.15

14.9x10~11

0.55

0.93

0.044

650

Nashua

0.35

4.75

5.57x10-1 1

0.72

1.14

0.017

1400
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[K(1) and c] and the average soil moisture concentration for Santa Paula

Creek and Nashua River catchments. The values are listed in Table 4.4,

along with m, K(1) and Y(1) calculated from Equations 4.39 to 4.41.

4.5.3 Flood Frequency Distribution for Santa Paula and Nashua using

Climatic Climax Soil Parameters

Values listed in Table 4.4 may be used to evaluate the flood frequency

distributions for Santa Paula Creek and the northern branch of the Nashua

River. Figure 4.14 plots the one corresponding to Santa Paula. As it

can be seen, the agreement with the observations in remarkable. As an

interesting comment, the value of so, given by Equation 4.32 turns out to

be 0.56, practically the same value obtained by the ecological optimality.

Figure 4.15 shows the flood frequency distribution corresponding to the

second river. The agreement is not as good but still satisfactory.

Therefore, based on the above results, it is proposed here to evaluate

the flood frequency distributions using the climatic climax parameters.

The only parameters required, besides the climatic and geomorphologic

characteristics, are the vegetation canopy density and the effective

soil porosity.
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Chapter 5

SUMMARY AND CONCLUSIONS

5.1 Summary and Conclusions

In this work, two flood frequency distributions were derived, using

the Geomorphoclimatic Instantaneous Unit Hydrograph as the basis for the

rainfall-runoff relationship, along with the previously derived joint

distributions of the intensity and duration of the effective rainfall.

The first one corresponds to a conceptual model of the infiltration

given by an average potential rate, whose determination usually involves

information from other basins. The second one uses a physically based

model of the infiltration process and it may be adequately calculated

using climatic climax soil parameters resulting from ecological optimal-

ity concepts at an annual basis. This theoretical distribution, besides

being based on physical grounds, may be evaluated for a particular basin

with its own climatic and geomorphologic parameters as well as estimates

of vegetative canopy density and effective soil porosity. This means

that the distribution can be obtained with little or no on-site stream-

flow records, implying that in principle all regions of the world could

be "hydrologically" mapped with reasonable efforts.
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APPENDIX A

A FITTED PROBABILITY DENSITY FUNCTION FOR THE INITIAL

SOIL MOISTURE CONCENTRATION

A.1 Conservation of Water Mass Equation

In the short term, the equation of conservation of water for an ho-

mogeneous soil, considering a layer of characteristic depth Z may be

written as:

nZ -i - e -r -p (A.1)
t r T s

where,

s = effective soil moisture saturation

n = effective soil porosity

eT = actual rate of evapotranspiration

rs = rate of surface runoff

p = rate of percolation

In general, the right hand side terms are function of time, and then,

ds =1 [1 (t) - e (t) - r (t) - p(t)] (A.2)
dt nZ r T s

Integrating,

ds = [i (t) - e (t) - r(t) - p(t)]dt (A.3)
nZ j r T S

Therefore, in order to describe the soil moisture concentration,

models for the different water balance components are needed. First, and

recalling the representation of the rainfall event used in this work, the

intensity is assumed to be constant during the duration of the storm. On

the other hand, the infiltration and exfiltration models proposed by
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Eagleson (1978) are adopted here to evaluate eT(t) and rs(t). Finally,

percolation is assumed constant throughtout the duration of the event

(infiltration or exfiltration), although its magnitude is determined by

the initial soil moisture of the corresponding event.

A.2 Rainfall Event Case

The representation of the components of the water balance during a

rainfall event are as follows:

Precipitation: rectangular pulse of constant intensity ir and duration tr*

Evapotranspiration: no evapotranspiration.

Surface runoff: defined as the substraction of the infiltration rate

capacity from the rainfall intensity. The infiltration

rate capacity is defined as (Eagleson, 1978)

* 1 -1
f1(t) = S t + a (A.4)

where

Si = 2(1-so){[5nK(1)T(1)pi(dso)]/3mR}

a = K(1)(1+so)/2 - w,

where all the above parameters have been described in Section 6.4 and so

is the initial constant value of the degree of saturation for the infil-

tration process. Figure 3.1 illustrates this process.

c
Percolation: defined as K(1)so according to Eagleson (1978).

After integration of Equation A.3, the following expression is obtained:

(j) (j) (j)c
s 1 = s o + [irtr-K(1)s o tr]/nZ, 0 < tr < to

(A.5)

(j) (j) + 1 (j)c
s 1 = s o + [irto+Si(t-to) + a (tr-to) - K(1)s o tr]/nZ tr > to
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where si is the final value of the degree of saturation for the infiltra-

tion process, the superscript j is a relative index of the location of

the event in time, and to is the time from the beginning of the storm

when surface runoff begins to be produced, expressed as:

2 2
to = Si/2(ir-a) (A.6)

A.3 Exfiltration Event Case

The representation of the components of the water balance during an

interstorm period are:

Precipitation: no precipitation

Evapotranspiration: the potential rate of evaporation e p(t) is replaced

by its long-term average value ep. Extending the

infiltration equation of Philip, Eagleson (1978)

has represented the exfiltration rate capacity by

f (t) = 1 S t~ + a (A.7)
e 2 e e

where

1+d/2
Se = 2sl [nK(1)'(1)4e(d)/mI]

ae = w - Mkv ep

where Se is the exfiltration desorptivity, ae is the asymptotic exfiltra-

tion capacity, e(d) is the dimensionless desorption diffusivity of

soil, d is the diffusivity index of soil, M is the vegetated fraction of

surface, kv is the ratio of potential rate of transpiration and soil

surface evaporation, and sl is the initial value of the degree of satura-
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tion of the soil for the exfiltration process. When the exfiltration

rate capacity is greater than ep, the rate of evapotranspiration is as-

sumed to be equal to this limiting potential value; otherwise, it will

be equal to the former. Figure A.1 illustrates the above process.

Surface Runoff: no surface runoff.

Percolation: defined in the same manner as for the rainfall event case.

After integration of Equation A.3, with the water balance components

defined above, the final value of the degree of saturation for the exfil-

tration process is:

(j+1) (j) (j)c
so = s 1 - [eptb+K(l)s I tb]/nZ, 0 < tb < te

(A.8)

(j+1) (j) } 1 (j)c
so = s 1 - [eptb+Se(tb -te ) + ae(tb-te) + K(1)s I tb]/nZ,

tb > te

(j)
where Se is a function of s 1 , tb is the duration of the interstorm per-

iod and te is the time from the beginning of this period when the soil

begins to govern the exfiltration process, which may be expressed as:

S e M2k +(1-M)w/e
t= eM + v p (A.9)
e -2 ,,-w/e I2(1+Mk -W/i )

2e (1+Mk -w . v p
p V p

A.4 The Distribution of s.

In Equation A.5 and A.8, the independent variables involved are ir,

tr, and tb' All these three variables may be represented adequately by

exponential distributions, i.e.,
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- ir
fi (ir) = Se > ir > , > 0 (A.10)

r

-6tr 
(.1

fT (fr) = 6e , tr > 0, 0
r

fT (tb) = ye , tb > 0, y > 0 (A.12)
b

Therefore, in principle, one could derive the PDFs of so and si

from the mentioned equations and the above distributions. However, the

infiltration and exfiltration are interdependent Markov process which

make the mathematics untractable.

A Monte Carlo approach is taken here. A distribution is fitted to

the results of enough simulations experiments, based in Equations A.5

and A.8 for different combinations of climate and type of soil. The sim-

ulation procedure is as follows: given a climate and soil, (1) for j=1

(j)
assume an initial value of s 0 ; (2) generate, using an exponential

pseudo-random number algorithm, a value of ir and tr; (3) using Equation

(j)
A.5 calculate the soil saturation at the end of the storm event s 1 ;(4)

generate a value of tb with the previous pseudo-random number algorithm

(j)
and calculate, by means of Equation A.8 and s 1 of step 3, the final

value of the degree of saturation for the exfiltration process, which is

equivalent to the initial value of soil moisture for the next infiltra-

j+1
tion event so , (5) go step 2 and continue until j=N, where N is defined

a priori.

Before the distribution is chosen, it is required to specify the

magnitude of Z, the depth of the layer of soil considered in the conser-

vation of mass (see Equation A.1). In this work, it is assumed that Z

is a measure of the penetration depth of the wet and dry fronts during
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storm and interstorm periods respectively. This penetration depth has

two components (Eagleson, 1978): a diffusive component zi given by

z= 4(Dt)2

and a gravitational seepage component z2 , given by the6 product of seepage

velocity and time. The appropriate soil moisture saturation for the

evaluation of this seepage velocity is that at the initial soil moisture

saturation, s, i.e.,

z (s)t (A.13)
2 n

Consequently, Z is given by:

Z = zl+z2 = 4(Dt) + K(s)t/n (A.13)

where n is the effective soil porosity. For a storm event, the charac-

teristic time is the storm duration tr and D=Di, the sorption diffusi-

tivity. In the case of an interstorm period, the characteristic time

becomes the interstorm duration tb and D=De, the desorption diffusivity.

Since tr and tb are random variables, Z is also a random variable, whose

distribution can be derived using the procedure explained in Section 5.2.

However, the interest here is not its PDF but a representative value to

perform the simulations, and the most adequate is its expected value,

which turns to be for infiltration:

Zi = E[zl+z2] = 4(l.5)(Di/ ) + K(s0 )/ n (A.14)

and

Ze = E[zl+z2] = 4r(1.5)(De/) 2 + K(so)/6n (A.15)

where Di and De are the sorption and desorption diffusivities evaluated

at the mean value of the soil moisture concentration so:
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f (t)= St -1/2/2 + a
e e4

Exfiltrated volume

t

Representation of the exfiltration process

Figure A.1

99

Rates

e
p

t
e

tb

I

I I --j-

e



Di = 5K(1)T(1)>i(d,so)/3mn

- d
De = K(1)(1)so e(d)/mn

The value of Z used in Equations A.5 and A.8 will be the big-

gest be-tween Zi and Ze, which can be evaluated only if so is known before

the simulation. However, it is not, and therefore a trial and error

simulation procedure is required: (1) pick a value of so; (2) evaluate

Zi and Ze using Equations A.14 and A.15 and choose Z = max{Zi,Ze}; (3)

perform the simulation according to the procedure outlined before and

compute so; (4) compare this value with the one used in step 2; if they

are different, modify so properly and go to step 2, otherwise terminate

(j)
the procedure keeping the simulated values of s .

For the present case, the best distribution to be fitted is a beta

distribution, since it is simple and very flexible, and is limited in

its basic form for values between 0 and 1, the same range over which soil

moisture concentration may vary. This distribution is defined as:

f (s) = sr-l(1-s t-r-1
S 0 B o 0

(A.16)

O < s < 1, r < t
- 0 -

where
- - 2

t = so(1-so)/Cs - 1 (A.17)

-2 - 2
r = s0 (1-so)/as - 1 (A.18)

B - r(r)r(t-r) (A.19)
r(t)

in which so is the mean of the initial soil moisture concentration and

as is its variance.
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Figure A.2 presents the distribution of the initial soil moisture

concentration resulting from the simulations and the corresponding fitted

beta distribution. For each case all the climatic and soil characteris-

tics information is given, as well as the values of Z, s2 a, t and r.

The number of generated values of so in each simulation was 2000, and

(1)
basically, the results are independent of the initial value of s . The

units used here are hours for time and centimeters for length. The sim-

ulations cover a wide range of climates: from the wet tropical climate

of Santa Rita, Colombia, to the arid climates of Santa Paula, California,

and Sudan; they include also typical climates for the northeastern region

of the United States. These climates were combined with different types

of soil (Eagleson, 1978), i.e., silty loam, clay loam, sandy loam and

clay, with the purpose of obtaining "general" expressions for so and as

from regression analyses, which are:

so = 0.2761 tr/tb + 0.02628Zn[ir/(1-M+Mkv)ep]

- 1/6 . (A.19)
+ 0.3767[(1)n/tbK(l)mI - 0.15

with a coefficient of determination R2 of 0.94, and,

as = 0.0753ir - 0.009 4tr + 0.081 6 tb

+ 7.50ev - 0.0915n - 0.00095K(1) + 0.8 38/Xn[T(1)] (A.20)

+ 0.0555m2 + 0.3858

with R2 equal to 0.61.

Using the above two equations, the parameters of the beta distribution

can be fitted by means of Equations A.17 and A.18.
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APPENDIX B

COMPUTER PROGRAM
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C
C
C *******************************************************

C
C
C THIS PROGRAM CALCULATES THE FLOOD FREQUENCY CURVE
C FOR A GIVEN BASIN USING THE GEOMORPHOCLIMATIC IUH
C AND THE INFILTRATION LOSSES REPRESENTED BY
C EAGLESON (1972 AND 1978).
C
C PROGRAM WRITTEN BY MARIO A. DIAZ-GRANADOS, AT THE
C PARSONS LABORATORY FOR WATER RESOURCES AND
C HYDRODYNAMICS, M.I.T., CAMBRIDGE, MASS. 02139.
C
C
C **************t*************** ******k*******************
C
C

EXTERNAL F1,F2,F
DIMENSION Q(200,3) ,FQ(200,3) ,T(200,3) ,AI (4) ,BI (4),
DIMENSION X1O(200),Y10(200),B12(3),NCAR(3),VA(3)
DIMENSION CI(4),DI(4),NPUN(3),EI(4)
DIMENSION THI(28),QHI(28)
CHARACTER *40 B12
REAL K1,MNU
COMMON/XI OMA/BSTAR,DELTA, QP, XK1, S
COMMON/XIOMA2/ II
DATA AI/0.00010.1235,C.5033,1.2216/
DATA BI/0.1235,0.5033,1.2216,2.2962/
PRINT,'PRINT NUMBER OF CURVES'
READ(5,*)NCUR
PRINT,'PRINT 1 IF EAGLESON 72, PRINT 2 IF FACLESON 78'
READ(5,*)NEAG
GO TO(16,17),NEAG
PRINT,'IF CHANGE SO, PRINT 1; IF ALPHA, PRINT 2;

& IF MNU, PRINT 3; IF SOIL, PRINT 4'
READ(5,*)NCON
PRINT,'PRINT MIR(CM/HR), MTR(HR), AREA(KM2), RL, XL(KM)
&,ALFA(1/(S.M**(1/3))), DELTAI(CM/HR), MNU'
READ(5,*)BETA1,DELTA1,ARL,XL,ALFA,DELTAI,MNU
PRINT,'PRINT SO, N(POROSITY), K1(CM/HR), PHIl(CM),

& XM(PORE SIZE), W(CM/HR)'
READ(5,*)SOXNK1,PHI1,XM,W
PI=3.14159
GO TO 80

16 PRINT,'PRINT MIR(CM/HR),MTR(HR),AREA(KM2),RL,XL(KM),
&ALFA(1/S.M(1/3))),PHI(CM/HR),DELTAI(CM/HR),MNU'
READ(5,*)BETA1,DELTA1,ARL,XL,ALFAPHIDELTAIMNU
PRINT,'PRINT 1 IF ALFA, 2 IF MNU, 3 IF PHI'
READ(5,*)MCON
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80 DO 99 I=1,NCUR
GO TO(81,82),NEAG

81 GO TO(91,92,94),MCON
82 GO TO(90,91,92,93),NCON
90 PRINT,'PRINT SO'

IF(I.EQ.1)VA(1)=SO
IF(I.EQ.1)GO TO 2
READ(5,*)SO
VA(I)=SO
GO TO 2

91 PRINT,'PRINT ALFA'
IF(I.EQ.1)VA(1)=ALFA
IF(I.EQ.1)GO TO 2
READ(5,*)ALFA
VA(I)=ALFA
GO TO 2

92 PRINT,'PRINT MNU'
IF(I.EQ.1)VA(1)=MNU
IF(I.EQ.1)GO TO 2
READ(5,*)MNU
VA(I)=MNU
GO TO 2

93 IF(I.EQ.1)GO TO 2
PRINT,'PRINT N,K1,PHI1,XM'
READ(5,*)XN,K1,PHI1,XM
PRINT,'PRINT TYPE OF SOIL'
READ(5,310)B12(I)
PRINT,'PRINT NUMBER OF CHARACTERS IN THE PREVIO
READ(5,*)NCAR(I)
GO TO 2

94 PRINT,'PRINT PHI'
IF(I.EQ.1)VA(1)=PHI
IF(I.EQ.1)GO TO 2
READ(5,*)PHI
VA(I)=PHI

2 BETA=1./BETA1
DELTA=1./DELTA1
XK1=(A*RL)**0.4*ALFA**0.6/XL
XK=1.-EXP(-1.1*DELTA**-0.25)
XK=XK+EXP(-1.1*DELTA**-0.25-0.003861*A)
BSTAR=BETA/XK
GO TO(84,83),NEAG

83 C=(2.+3.*XM)/XM
D=C-1./XM-1.
CALL SOIL(SO,C,D,FII)
S=2.*(1.-SO)*(5.*XN*K1*PHI1*FII/(3.*XM*PI))**O.
AO=K1*(1.+S0**C)*0.5-W
SIGMA=DELTA*(S*BSTAR/(2.8284*DELTA))**(2./3.)
GA=GAMMA(SIGMA+1.)
CONST=DELTA*EXP(-BSTAR*AO)*EXP(-2.*SIGMA)*GA/SI

US LINE'

5

GMA**SIGMA
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CONSTI=CONST/DELTA
SPIKE=1.-CONST1
AERR=0.0
RERR=0.001
NN=0
DEL=0.0

1 DEL=DEL+DELTAI
NN=NN+1
QP=DEL
XINF=2.2962*QP**-0.4/XK1
AREA=0.0
NV=0

5 XSUP=XINF+15.
EDEL=0.001
ARE=TEGRAL(Fl,XINF,XSUP,EDEL)
NV=NV+1
AREA=AREA+ARE
IF(NV.EQ.1)GO TO 10
IF(ABS((AREA-ARE1)/AREA).LE.0.001)GO TO 20

10 ARE1=AREA
XI NF=XSUP
GO TO 5

20 AREA1=0.
DO 30 '1=1,4
XINF=AI(II)*QP**-0.4/XK1
XSUP=BI(II)*QP**-0.4/XK1
EDEL=0.001
ARE=TEGRAL(F2,XINF,XSUP,EDEL)
AREA1=AREA1+ARE

30 CONTINUE
AREAT=AREA+AREA1
FQ(NNI)=1.-CONST*AREAT
Q(NNI)=QP*A/0.36

T(NNI)=1./(MNU*(1.-FQ(NN,I)))
IF(T(NN,I).GT.100..)GO TO 35
IF(T(NN,I).GE.1.01)GO TO 1
NN=NN-1
GO TO 1

35 NN=NN-1
NPUN(I)=NN
DO 40 J=1,NN
T(J,I)=1.522*(ALOG(T(J,I))-ALOG(1.01))

40 CONTINUE
GO TO 99

84 AERR=0.0
RERR=0.001
NN=0
DEL=0.

401 DEL=DEL+DELTAI
NN=NN+1

120



QP=DEL
XINF=QP
AREA=0.
NV= 0

405 XSUP=XINF+1.
EDEL=0.001
ARE=TEGRAL(F,XINF,XSUP,EDEL)
NV=NV+1
AREA=AREA+ARE
IF(NV.EQ.1)GO TO 410
IF(ABS((AREA-ARE1)/AREA).LE.0.001)GO TO 420

410 AREI=AREA
XINF=XSUP
GO TO 405

420 FQ(NNI)=1.-BSTAR*EXP(-BSTAR*PHI)*AREA
Q(NN,I)=QP*A/0.36
T(NN,I)=1./(MNU*(l.-FQ(NN,I)))
IF(T(NNI).GT.100.)GO TO 435
IF(T(NNI).GE.1.01)GO TO 401
NN=NN-1
GO TO 401

435 NN=NN-1
NPUN(I)=NN
DO 440 J=1,NN
T(JI)=1.522*(ALOG(T(J,I))-ALOG(1.01))

440 CONTINUE
99 CONTINUE

QMAX=0.
QMIN=9999.
DO 105 J=1,NCUR
NN=NPUN(J)
DO 104 I=1,NN
IF(Q(IJ).GT.QMAX)QMAX=Q(I,J)
IF(Q(I ,J).LT.QMIN)QMIN=Q(I,J)

104 CONTINUE
105 CONTINUE

PRINT,'PRINT 1 IF COMPARISON WITH OBSERVATIONS'
READ(5,*)MCOM
IF(MCOM.NE.1)GO TO 222
PRINT,'PRINT FILE NUMBER OF HISTORICAL DATA'
READ(5,*)NFILO
READ(NFILO,*)NPOINTS
READ(NFILO,*)(QHI(I),I=1,NPOINTS)
XNPON=NPOINTS
DO 226 I=1,NPOINTS
THI(I)=(XNPON+1.)/(XNPON+1.-I)
THI(I)=1.522*(ALOG(THI(I))-ALOG(1.01))

226 CONTINUE
IF(QHI(NPOINTS).GT.QMAX)QMAX=QHI(NPOINTS)

222 CONTINUE
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PRINT,'QMIN=',QMIN,'QMAX=',QMAX
PRINT,'PRINT QMINQMAXQDELTA'
READ(5,*)QMINQMAXQDELTA
PRINT,'PRINT BASIN NAME'
READ(5,310)B12(1)
XDEL1=1.
YDEL1=(QMAX-QMIN)/4.
DO- 800 J=1,NCUR
IJ=J-1
NNPU=NPUN(J)
DO 700 I=1,NNPU
X1O(I)=T(I ,J)
Y1O(I)=Q(I,J)

THE FOLLOWING SUBROUTINE PLOTS
DISTRIBUTION. THIS SUBROUTINE I
IN THIS PROGRAM, AND THEREFORE
MUST BE USED.

CALL SCLGPH(X10,Y1ONNPU,0.04
800 CONTINUE

IF(MCOM.NE.1)GO TO 900
CALL SCLGPH(THIQHI,-NPOINTS,

900 CONTINUE
STOP
END

C
C
C
C

EACH FLOOD FREQUENCY
S NOT SELF CONTAINED
AN APPROPIATE ONE

,IJ,0.01,XDEL1,QMINYDEL1)

0.04,5,0.01,XDEL1,QMINYDEL1)

REAL FUNCTION F1(X)
REAL X
COMMON/XIOMA/BSTAR,DELTA,QP,XK1, S
F1=0.0
ARG=DELTA*X+1
IF(ARG.GT.-88
RETURN
END

.4434*BSTAR*S**0.1558*X**-0.0779*QP**0.8442

.)F1=EXP(-ARG)

REAL FUNCTION F2(X)
REAL X
DIMENSION CI(4),DI(4),EI
COMMON/XIOMA/BSTAR,DELTA
COMMON/X I OMA 2/I I

4)
QPXK1 ,S

(
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DAT A CI/0.5,0.65295,Q.80482,1.O/
DATA DI/1.0,1.10812,1.36396,3.1358/
DATA EI/1.4,1.50812,1.76396,3.5358/
F2=0.0
C=CI(II)
D=DI(II)
E=EI(II)
ARG=DELTA*X+1.4434*BSTAR*S**0.1558*X**-0.0779
ARG=ARG*(2.*(C*QP)**D/(0.871*XK1*X))**(0.8442/E)
IF(ARG.GT.-88.)F2=EXP(-ARG)
RETURN
END

REAL FUNCTION F(X)
REAL X
COMM.ON/XI OMA/BSTARDELTA, QP, XK1, S
F=0.0
ARG=BSTAR*X+2.*DELTA*(1.-SQRT(1.-QP/X))/(0.871*XK1*X**0.4)
IF(ARG.GT.-88)F=EXP(-ARG)
RETURN
END

REAL FUNCTION TEGRAL(FI,A,B,EDEL)

THIS FUNCTION USES THE ROMBERG INTEGRATION
INTEGRATE FI FROM A TO B

METHOD TO

EXTERNAL FI
DIMENSION T(30,30)
T(1,1)=(B-A)*(FI(A)+FI(B))/2
T(1,2)=T(1,1)/2+(B-A)*FI((A+B)/2)/2
T(2,1)=(4*T(1,2)-T(1,1))/3
J=3

5 DX=(B-A)/2**(J-1)
X=A-DX
N=2**(J-2)
SUM=0.
DO 10 I=1,N
X=X+2.*DX
SUM=SUM+FI(X)

10 CONTINUE
T(1,J)=T(1,J-1)/2+DX*SUM
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DO 20 L=2,J
K=J+1-L
T(L,K)=(4**(L-1)*T(L-1,K+1)-T(L-1

20 CONTINUE
TT=ABS((T(J,1)-T(J-1,1))/T(J,1))
IF(TT.LE.EDEL)GO TO 30
J=J+1
IF(J.GT.30)PRINT,'WARNING TEGRAL:
GO TO 5

30 TEGRAL=T(J,1)
RETURN
END

C
C

RK))/(4**(L-I)-I)

MATRIX DIMENSION > 30'

SUBROUTINE SOIL(SO,C,D,FII)

THIS SUBROUTINE CALCULATES THE DIMENSIONLESS
INFILTRATION DIFFUSIVITY.

N=D
L=N+1
A=0.
DO 10 I=1,N
CALL BINOM(NI,B)
A=A+(1./(N+5./3.-I)

10 CONTINUE
FINF=(1.-SO)**N*(1.
A=0.
DO 11 I=1,L
CALL BINOM(L,I,B)
A=A+(1./(L+5./3.-I)

11 CONTINUE
FISUP=(1.-SO)**L*(1
TA=N
TB=L
Q=(ALOG(D)-ALOG(TA)
FII=EXP(ALOG(FINF)+
RETURN
END

C
C
C
C

)*B*(SO/(1.-SO))**I

/(N+5./3.)+A)

)*B*(SO/(1.-S0))**I

./(L+5./3.)+A)

)/(ALOG(TB)-ALOG(TA))
(ALOG(FISUP)-ALOG(FINF))*Q)

SUBROUTINE BINOM(NIN,B)
C
C
C THIS SUBROUTINE EVALUATES THE BINOMIAL COEFFICIENT.
C
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C
J=1
DO 1 I=1,NI

1 J=J*I
K=1
KK=NI -N
DO 2 I=1,KK
K=K*I

2 CONTINUE
L=1
DO 3 I=1,N

3 L=L*I
A=J
C=K
D=L
B=A/(C*D)
RETURN
END

C
C
C
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