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ABSTRACT

Three topics related to the real time forecasting of river flows are

studied. First, the usefulness of nonlinear filtering procedures in

connection with a conceptual rainfall-runoff model is investigated. By

means of a case study it is determined that only filters which employ

future information to correct the past (smoothers) could potentially

improve forecasts over the simpler extended Kalman filter. The quality of

the predictions is heavily dependent on the nature of the assigned error of

the conceptual rainfall-runoff model.

The second topic deals with the estimation of the conceptual model

error using the maximum likelihood method and consistency conditions on

model residuals. The utility of the procedures is tested in practical

appl-ications. It is shown the simplified maximum likelihood procedure

gives excellent forecasting results independent on the initial conditions,

but raises some questions as to the sensitivity of the soil moisture

accounting part of the model.

- The third topic deals with the forecasting on a basin composed of

several interconnected sub-basins. Decomposition procedures are proposed

to forecast on sub-basins separately, using upstream flow predictions as

inputs to downstream basins. When tested in practice, these methods

provide reliable and inexpensive forecasts.
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Chapter 1

INTRODUCTION

1.1 Scope of Study

It is important to properly forecast river flows. Obvious needs

arise in the operation of flood control reservoirs, in the planning of

actions during times of floods, and in the maintenance of minimum flow

levels for navigation and water quality purposes.

This work studies three topics related to the real time forecast-

ing of river flows:

a. Assessment of the usefulness of nonlinear forecasting

techniques,

b. Development of procedures to properly quantify the errors of

the rainfall-runoff model being used, and

c. Development of techniques to forecast flows in a large scale

basin composed of several sub-basins.

The forecasting of river flows requires the use of mathematical

models to approximate the very complex process that transforms rain-

fall into runoff. This transformation is known to be of nonlinear

nature, partly due to dependence on antecedent moisture conditions.

This inherent nonlinearity has led to the development of several non-

linear rainfall-runoff models. The first topic of study deals with

procedures that follow such nonlinearities, as opposed to techniques

that require a linearized rainfall-runoff representation.
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The type of hydrologic model that is used in this work belongs to

the class of conceptual models. These models do not represent the

physical laws exactly, but rather express them in a simplified way.

In any typical stochastic forecasting procedure, i.e., Kalman filter,

the predictions are a function of model error or the level of confi-

dence (trust) given to the model. Model error is hard to quantify.

It basically measures the differences between reality and the model

that approximates it. The second topic on this work deals with the

proper quantification of such differences in order to obtain more ac-

curate flow predictions.

The third problem addressed in this work concerns the efficient

forecasting of river flows on a large scale basin, composed of several

interconnected sub-basins. Dimensionality problems are common when

attempts are made to simultaneously predict at all points. By prop-

erly dealing with sub-basins separately, computational savings may be

obtained and the overall quality of the predictions could be main-

tained.

1.2 Literature Review

This section reviews work done in forecasting river flows, using

conceptual hydrologic models and a filtering mechanism. A review of

the use of models which are based only on input-output data represen-

tations (black-box or systems-theoretic models) is not presented

here. For such a case, the reader is referred to Sorooshian (1983).
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The first attempt to use conceptual models within a stochastic

filtering framework was that of Kitanidis and Bras (1978). These

authors developed the state-space formulation of the National Weather

Service River Forecast System (NWSRFS-Sacramento) model, Peck (1976),

and used it together with a linear router model to obtain six hours

lead discharge predictions using evapotranspiration and precipitation

records as known inputs. The obtained results showed the advantage of

updating the model states from discharge observations (stochastic fil-

tering approach) as opposed to a deterministic propagation of the

model dynamics.

Due to the existence of discontinuous threshold type functions on

the original Sacramento model formulation, Kitanidis and Bras (1978)

used not only Taylor linearizations but also stochastic linearizations

in order to apply Kalman filtering techniques. The use of the Sacra-

mento model, in a stochastic mode, gave better extended forecasts (for

lead times greater than six hours) than black-box models with time

varying parameters.

The model parameters employed by Kitanidis and Bras (1978) were

computed using the manual calibration procedure described in Peck

(1976). Methods to obtain such parameters automatically, using the

maximum likelihood approach, have been suggested by Goldstein and

Larimore (1980), Restrepo-Posada and Bras (1982), and Sorooshian, et

al. (1982). These procedures differ on the way the maximization prob-

lem is numerically solved. Although these works show the potential of

the maximum likelihood approach, the existence of non-unique optima,
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extended likelihood valleys, high correlation between some parameters

and non-identifiable parameters are recognized problems.

More realistic channel models than the single linear reservoir

used by Kitanidis and Bras (1978) have been proposed. Georgakakos and

Bras (1980) developed a nonlinear channel router which, when used in

connection with the Sacramento model, preserves the most important

characteristics of the hydrograph. A method to obtain the channel

model parameters was also given by these authors. Goldstein and Lari-

more (1980) used canonical correlation principles to obtain a reduced

order state-space representation of the unit hydrograph.

Georgakakos and Bras (1982) developed a station precipitation

model in state-space form. Based on surface temperature, pressure and

dew point temperature, their model produces as output the precipita-

tion rate. By coupling such a model with the Sacramento model and the

nonlinear channel router of Georgakakos and Bras (1980), a general and

realistic rainfall-runoff model was obtained. Results obtained using

the model in a stochastic filtering framework indicated that the coup-

ling of the precipitation to the soil and channel models by the filter

is of considerable value to river flow forecasting.

Bergstrom and Forsman (1973) and Bergstrom (1975) developed a

simple nonlinear conceptual hydrologic model, HBV-2, that produces the

outflow discharge from a basin, using daily precipitation records as a

known input. Such model, which explicitly takes into account snow

melting, was employed by Fjeld and Aam (1980) to produce daily
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discharge predictions using the Kalman filtering methodology. By

approximating the optimal gains for a given level of trust on the

model equations, these authors avoided the need of propagating in time

the error covariance matrix of the model five states. When daily

discharge forecasts were used as inputs to control a hydroelectric

power system in Norway, significant savings of water and energy were

obtained.

Takara et al. (1983) developed an algorithm for real time

forecasting of flows on a basin composed by several sub-basins.

Precipitation is modelled in an stochastic fashion, and its

predictions are obtained using a moving average method. The dynamics

on the sub-basins are approximated as nonlinear reservoirs that have

effective (lagged) rainfall as input. The channel routing is made by

using a cascade of nonlinear reservoirs. Because the sub-basins are

interconnected, the ordering on the river network (upstream to

downstream) is followed to obtain the predictions using the extended

Kalman filter. The updatings of the composite storage vector, that

represents the basin, are done from available discharge observations.

In a case study at the Yura River in Japan, Takara et al. (1983) found

satisfactory one-hour lead results using their real time algorithm

with colored noise in the model dynamics. The quality of the flow

predictions decreased as the lead time was increased to four hours.
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1.3 Report Outline

The organization of this report is as follows. Chapter 2 des-

cribes the rainfall-runoff model to be used in this work. The way

model error is introduced is also discussed in this chapter. Chapter

3 presents the theoretical aspects of the nonlinear filtering proced-

dures. Chapter 4 includes the results of using the nonlinear filters

and the rainfall-runoff model in a case study. Precedures to properly

quantify the errors of the rainfall-runoff model are developed in

Chapter 5. Results of applying such methods to a case study are pre-

sented in Chapter 6. Chapter 7 describes efficient techniques to

forecast precipitation and river flows in a large scale basin. The

results found using such procedures are included in Chapter 8. The

conclusions and recommendations for future research are given in

Chapter 9.
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Chapter 2

A CONCEPTUAL RAINFALL-RUNOFF MODEL

2.1 Introduction

This chapter describes the conceptual rainfall-runoff model em-

ployed in this work. The hydrologic response of a basin is approxi-

mated by coupling a station precipitation model, a soil moisture ac-

counting procedure and a channel routing scheme.

The rainfall-runoff model produces as output the precipitation

rate over the area of interest and the discharge at the outlet of the

basin. The model is driven by four inputs: temperature, pressure,

dew point temperature, and the potential evapotranspiration over the

basin area.

A brief description of the model equations in state-space form is

given in the following sections of this chapter.

2.2 The Station Precipitation Model

The first component of the rainfall-runoff model is the station

precipitation model of Georgakakos and Bras (1982). This spatially

lumped parameter model has as inputs the surface temperature, To,

pressure, P0, and dew point temperature, Td. It produces as out-

put the precipitation volume rate over the basin.

The model is based on atmospheric thermodynamics and cloud

microphysics principles. The dynamic equation is a balance equation

for the condensed water equivalent mass within a cloud column, Xp:
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dX
- =I(u a)-O(ua)X (2.1)

dt p, -p -p4 lp

The function I(up'ap) represents the rate of moisture input

into the clouds. It is computed from the pseudo-adiabatic ascent of

surface air characterized by the input vector of meteorological

Tvariables u = T Po Td The function 0(u, a ) is the output rate

of moisture from the cloud column per unit of equivalent water mass.

Two output components are considered by this function: water that

leaves the column's top due to updraft velocity, and water that leaves

the cloud's bottom, basically composed by the larger droplets.

The vector ap denotes the precipitation model parameters,

T= [ 1, 4]. The parameter s. is the ratio of the updraft velocity

to the square root of the potential thermal energy per unit mass of

ascending air at the height of average updraft velocity. If el in-

creases, the updraft velocity increases giving a higher moisture input

rate I( p.,Ap), a higher moisture output at the cloud's top and a

lower moisture output at the cloud's bottom, which overall tends to

give lower mass output 0(pap)Xp. The input mass of condensed

water is distributed in different droplet diameters according to an

exponential particle size distribution. The average diameter of par-

ticles in the cloud is the second parameter S4 . If 64 increases,

the heavier the particles become and consequently the higher the mass

output.

8



The observation equation of the model gives the precipitation

volume rate at the ground, Zp:

ZP =(u , a )X (2.2)

The precipitation rate function Cu ,a ) accounts for that part

of the water mass which on leaving the cloud bottom reaches the

ground. Evaporation of the falling particles, below the cloud, is

taken into account by this function. The parameter vector affects

(u~a ) the same way as it affects ON a ), i.e., a higher e

reduces the precipitation rate while a higher 64 increases it.

The actual expressions for the functions I(u ,a ), O(u ,a ) and

(u ,ap) are given in Georgakakos and Bras (1982).

2.3 The Soil Moisture Accounting Model

The second component of the rainfall-runoff model is a modified

version of the NWSRFS or Sacramento Model derived by Peck (1976). The

representative soil-column in the basin is divided in six components.

The balance equations of the water volumes stored in the different

elements represent the soil model dynamic equations. The model is

driven by the precipitation and evapotranspiration rates over the

basin, and produces as the output the water flow into the river, which

after routing will give the outflow discharge from the basin.

The original Sacramento model contains threshold type functions

to account for the dynamics of some of its components, i.e., these

components respond only when a threshold storage is reached. In the
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modified version these discontinuous functions are replaced by con-

tinuous power functions, which consequently allow responses at all

times with higher values of element discharge as the threshold is ap-

proached.

The Sacramento model variables and parameters are summarized in

Table 2.1. The model equations are:

UPPER ZONE TENSION ELEMENT

dX= r - rX1  1C-.- ]T . X -up e
X1
x01l

(2.3)

UPPER ZONE FREE ELEMENT

X m
12) 2]

X2

- duX 2 - C1(1 + ey )
x2

(2.4)

LOWER ZONE TENSION ELEMENT

- C (1 + ey ) X2
X 0x2

( - P) 3 3

X3

Xl
- u (1 - -)e

dX 2 X m

X 0
, p

dX 3

x 3
+ X+3 (2.5)
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LOWER ZONE FREE PRIMARY ELEMENT

dX 4
=

0
-djX 4 + C (1 + eye)

2

2 x
5

X

) 0
4

[ - (1
X m

- Pf)11 3
x3

+ i]

LOWER ZONE FREE SECONDARY ELEMENT

-d" X5 + C 1 (1 + sy0)

X 2

- (1 - P f)

X X
S[(i - C2 -) ]

5 4

ADDITIONAL

dX 6
= [i-

IMPERVIOUS STORAGE ELEMENT

( 6 x1)2
0x3

Xl
-u - [1e 01l

X m
(" ) 1
01l p

X -X )2

X 0x3

X X -X
- u (l - 1)(6

1 1 3

X m2

0x2 ^pX

X m 1 0
1

11

(2.6)

dX 5
= - 11

X m
-(13) 31

X3

(2.7)

(2.8)



Table 2.1

Soil Moisture Accounting Model Variables

Symbol Description

STATE VARIABLES

X1 Upper zone tension water content [MM]

X2 Upper zone free water content [MM]

X3 Lower zone tension water content [MM]

X4 Lower zone free primary water content [MM]

X5 Lower zone free secondary water content [MM]

X6 Additional impervious storage [MM]

INPUT VARIABLES

*X p Instantaneous precipitation rate [MM/6HRS]

ue Instantaneous evapotranspiration demand [MM/6HRS]

PARAMETERS

X 0 Upper zone tension water capacity [MM]

X 0Upper zone free water capacity [MM]

X0 Lower zone tension water capacity [MM]x3
X 0Lower zone free primary water capacity [MM]

X0 Lower zone free secondary water capacity [MM]
5

d u Upper zone instantaneous drainage coefficient [l/HRS]
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Table 2.1 (continued)

dj Lower zone primary instantaneous drainage coefficient
[l/HRS]

d" Lower zone secondary instantaneous drainage
coefficient [l/HRS]

Parameter in percolation function

6 Exponent in percolation function

Pf Fraction of percolated water assigned to the lower
zone free water elements

11 Parameter of Fraction of base flow not appearing in
river flow

01 Fraction of the basin that becomes impervious when
tension water requirements are met

02 Fraction of the basin that is permanently impervious

mj Exponent on upper zone tension outflow approximation

M2 Exponent on upper zone free outflow approximation

M3 Exponent on lower zone tension outflow approximation

OUTPUT VARIABLES

Uc Input volume to the river [MM)

AUXILIARY VARIABLES

Cl Maximum drainage from lower zone free aquifers,

C = dj X4 + d' X5

y Fraction of lower zone elements which is empty,

yl X3 + X 4 + X 5

X0 + X0 + X0

C 2  Fraction of maximum drainage from lower zone free
aquifers provided by the primary component,

C2 = dj X2/C1
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INPUT VOLUME TO THE CHANNEL

d'X + d' X5A
tc = (dux 2 + 1 4+ , X 5)( 1 - 0 2  + xp02

x~~~~ + x xM1 )

+ (X6 -12 ^ m ) + X 1 (l ) ( _ 02)
x 0o 4, x P 0  2201

3 1 1 2

+ [1 - ( 6  X1 2] (2)2 ( ) (2.9)

3 X2 1

2.4 The Channel Router Model

The last component of the rainfall-runoff model is the conceptual

channel router of Georgakakos and Bras (1980). The channel is

modelled as a series of nonlinear reservoirs. The model is driven by

the volume of water produced by the soil, and produces as the output

the discharge from the basin. The dynamic equations of the router are

the balance equations of its components. If Si denotes the storage

on the ith reservoir, the balance equations are:

dS.

=Pi u +a. m a = 0

i = 1,2,...,n (2.10)

The constants Pi, ai, i=1,2,...n, m and the number of

reservoirs, n, constitute the router parameters. The instantaneous

discharge at the basin outlet, Zc, is the outflow from the last

reservoir, or
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Z= anS (2.11)

2.5 Summary of the Rainfall-Runoff Model Structure

The rainfall-runoff model can be summarized in state-space form

by the following dynamic and observation equations,

DYNAMIC EQUATIONS:

dd- X , = f (Xi, u a ) RAINFALL

d X= (X Xs, u, ue; a ) SOIL (2.12)

d X P 9(X , 2 X . ue; 4 as, ac) CHANNEL

OBSERVATION EQUATIONS:

Z = h (X , u ; a!) MEAN AREAL PRECIPITATION

(2.13)

ZC = h c(XC; c) DISCHARGE

The variables X , Xs and -c represent respectively the state

variables of the precipitation, soil and channel sections of the

model,

X = [Xi X2 x3 x4 x5 x 6

T= S S2 ... Sn

The input variables of the model are ue and the vector

The parameter values of the different model components are respec-
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tively ap, as, and ac. From the previously described expres-

sions for functions fp9 f f C, hp, and hc, it can be concluded that

the precipitation component is linear with respect to the state Xp,

but nonlinear with respect to the inputs; while the soil and channel

components are both nonlinear with respect to the states and linear

with respect to the inputs. Figure 2.1 summarizes the model

processes, states, parameters inputs and observations.

2.6 Stochastic Representation of the Rainfall-Runoff Process

If the conceptual rainfall-runoff model is used in practical

applications, the modelled processes will differ from reality. This

discrepancy can be attributed to some of the following causes:

a. Errors in the model structure

b. Errors in the model parameters

c. Errors in the model inputs

d. Errors in the model observations

Inaccurate representations of the physical phenomenon result in

errors of type (a). The conceptual rainfall-runoff model uses lumped

parameters to describe a spatially distributed process and therefore

errors in model structure are to be expected. Not properly calibrated

parameters give rise to errors of type (b). Errors of types (c) and

Cd) arise from inaccuracies in the observation mechanisms or in the

transformation of actual observations into model observations (e.g.,

the computation of averaged values from point values).
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Some of the above errors are treated explicitly in this work by

interpreting the rainfall-runoff mechanism as a stochastic process.The

conceptual rainfall-runoff model becomes a stochastic nonlinear

dynamic system with the following dynamic and observation equations:

DYNAMIC EQUATIONS

X(t) = f(X(t), u(t), t) + w(t) (2.14)dt-

OBSERVATION EQUATIONS

Z(tk) = h(X(tk), u(tk), tk) + v(tk) k=O,l,2,... (2.15)

The stochastic components w(t) and v(tk) are typically modelled

as zero mean Gaussian processes. The vectors X, u and Z represent

respectively the states, inputs and observations of the model.

Given the stochastic nature of the additive noises w(t) and

v(tk), the states and observations, at any particular time, become

random variables. The prediction problem then becomes the estimation

of the states from the random observations. This problem will be

fully explored in Chapter 3.
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Chapter 3

STATE ESTIMATION OF NONLINEAR DYNAMIC SYSTEMS

3.1 Introduction

For several reasons, the state estimation of nonlinear dynamic

systems is considerably more difficult than that of linear dynamic

systems. Under the most reasonable Bayesian criteria, the optimal

state estimate is the state's conditional mean given the observa-

tions. For linear dynamic systems, if the dynamics and observations

noises are Gaussian, then the conditional distribution of the states

given the observations is also Gaussian. This implies that the state

conditional mean can be obtained from linear operations on the

observations via the well known Kalman filter procedure. On the other

hand, nonlinear dynamic systems, even with Gaussian dynamics and

observation noises, will not result in Gaussian distributions for the

conditional states given the observations. This means that it is no

longer possible to stay in the domain of correlation theory (means and

covariances), but the whole conditional distribution function must be

considered. In general, it is not easy to obtain such conditional

distribution.

Several approximations to the problem of state estimation (fil-

tering) of nonlinear dynamic systems have been proposed. There are

two major groupings of approximations:

a. Those that approximate the whole state conditional distri-

bution function with a finite set of parameters, and
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b. Those that approximate the nonlinear functions with linear

ones and then apply linear filtering results.

Approximations in group (a) are based on parametrizations of the

state conditional distribution function by finite series expansions or

the use of distribution functions characterized by a finite number of

parameters. Sorenson and Stubberud (1968) propose to approximate the

density function in terms of Hermite polynomials (Edgeworth Expan-

sions). Alpsach and Sorenson (1972) suggest the use of Gaussian

sums. Common to all of the procedures, within this group, is the need

to obtain non-obvious discretizations of the states and the need to

store considerable amount of information. For these reasons filters

of type (a) will not be considered in conjunction with the rainfall-

runoff model.

The approximate estimators of type (b) have been the most popular

in practical applications. These filters will be used together with

the rainfall-runoff model and will be described in the following.

3.2 Linearized Kalman Filter

The general nonlinear dynamic system with observations at dis-

crete times is given by:

dtSX(t) = _f_(X(t), u(t), t) + w(t)
(3.1)

Z(tk) = h(X(tk Y U(tk). tk) + v(tk), k=0,l,2,...
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where:

X(t): state vector at time t

u(t): -inputs vector at time t

Z(tk): observations vector at time tk

f(*): nonlinear dynamics function

h(*): nonlinear observations function

w(t): continuous dynamics noise

v(tk): discrete observations noise

The additive noise random components are assumed zero mean inde-

pendent Gaussian random vectors. w(t) has spectral density matrix

Q(t) and v(tk) has covariance matrix R(tk).

In order to apply linear filtering results, the nonlinear dyna-

mics and observations functions are linearized about given state and

inputs trajectories X*(t) and u*(t). This results in the following

approximation:

d
tX(t) = f(X*(t),u*(t),t) + F(X*(t),u*(t),t)(X(t) - X*(t)) + w'(t)

Z(t k) = h(X*(t k),u*(t k),t k) + H(X*(t k),u*(t k),tk )(X(t k) - X*(tk))

+ v'(tk) (3.2)

where F(-) and H(*) are respectively the linearization matricesl of

the dynamics and observation functions with respect to the states, and

First order derivatives in case of Taylor linearizations
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w' (t) and v' (tk) are trajectory dependent noise components defined

by:
w (t) = Fu(X*(t),u*(t),t)(u(t)-u*(t)) + w(t) (3.3)

v'(tk) = Hu(X*(tk), U*(tk),tk)(U(tk)-U*(tk)) + v(tk) (3.4)

with Fu(C) and Hu(*) being respectively the linearization ma-

tricesl of the dynamics and observations functions with respect to

the inputs.

If u*(t) is the expected value of the inputs, the noise compo-

nents are zero mean white Gaussian processes with spectral density

matrix Q'(t) and covariance matrix R'(tk) given by

Q'(t) = FU(X*(t),u*(t),t) Q (t) Fu(X*(t), u*(t),t)T + Q(t)

(3.5)
and

R'(tk) = Hu(X*(tk),u*(tk),tk)Qu(tk)Hu(X(tk),u*(tk ),tk)T + R(tk

(3.6)

where Qu(t) denotes the inputs covariance matrix at time t.

The linearized Kalman filter for the nonlinear system is obtained

by applying the linear Kalman filter to the linear system described by

Equations (3.2). If 1(t tk) and P(t tk) denote the state estimate

and its respective error covariance matrix at time t from information

up to time tk, the linearized Kalman filter equations are, Gelb

(1974):

1First order derivatives in case of Taylor linearizations.
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STATE ESTIMATE PROPAGATION,

(td t) = f(X*(t),u*(t),t) +

F(X*(t),u*(t),t) - [X(t tk) - X*(t)]

ERROR COVARIANCE PROPAGATION, ts[tktk+1)

d P(t tk) = F(X*(t),u*(t),t)P(tltk) + P(t tk)F(- ,-,-,T + Q'(t)

(3.7)

STATE ESTIMATE UPDATE, k=0,1 ,...

)=X(t k+1 Itk ) + Kk+l [Z(tk+1

- h(X*(tk+l),u*(tk+l),tk+1)

-{.(tk+1 I tk)

- H(X*(tk+1),u*(tk+1

- X*(t )11- k+1

ERROR COVARIANCE UPDATE, k=O,1,...

P(t k+l tk+l)

[I - Kk+e-H(-,-,,,)]P(tk+I tk)[I - Kk+l H(

+ K R' (t )K T
k+1 k+1 k+1
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(3.8)

T

(3.9)
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KALMAN GAIN

Kk+l = P(tk+l Itk)H(--,-)T[H(,,-)P(tk+1 k)H( -,-,)T + R'(tk+l 1

(3.10)

INITIAL CONDITIONS

X(t0 to) = X; P(t t ) = P0  (3.11)

If the linearization trajectory is known in advance, the error

covariance propagation and gain matrices can be computed off-line,

i.e., they do not depend on the current state estimate. Although this

represents computational and storage savings, the performance of the

filter heavily depends on the proper selection of the linearization

trajectory.

3.2.1 Extended Kalman Filter

A way to bypass the need of specifying the state linearization

trajectory in advance is to linearize about the current estimates

given by the filter. If such trajectory is employed, the error co-

variance and gain matrices can no longer be pre-computed, but large

initial linearization errors are less likely to propagate. Such fil-

tering procedure is called extended Kalman filter, EKF; its algorithm

is, Jazwinski (1970):
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STATE ESTIMATE PROPAGATION, te[tktk+1)

d(t tk = f(X(t Iltk), u*(t), t)

ERROR COVARIANCE PROPAGATION, te[tktk+1)

d P(t tk) = F(X(tltk),u*(t),t) P(tltk)

+ P(t tk)F(-,-,*)T + Q'(t)

STATE ESTIMATE UPDATE, k=0,1,...

X(tk+l Itk+1) = X(tk+l tk) +

Kk+l Z(tk+1) - h(X(tk+l Itk),u*(tk+l), tk+1)

ERROR COVARIANCE UPDATE, k=0,1,...

P(tk+l tk+1) = [I -Kk+l H(X(tk+l Itk, U*(tk+1) tk+

-P(tk+l Itk) [I - Kk+lH(-,*,- ]T + K R (t )KT
k+1 k+1 k+1

(3.15)

KALMAN GAIN

Kk+l = P(tk+lj tk)H(*,*,*)T

[H(e,*,*)P(tk+l tk)H( ,se

(3.12)

(3.13)

*) + R' (tk+1) (3.16)
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INITIAL CONDITIONS

1(t0 Ito) = 2; P(t01 t) = Po (3.17)

Notice that Equations (3.12) and (3.13) are coupled. The ex-

tended Kalman filter structure is shown in Figure 3.1.

3.3 Iterated Extended Kalman Filter

Local iteration algorithms have been developed to approximate the

nonlinear filtering problem. Denham and Pines (1966) introduced the

iterated extended Kalman filter, IEKF. The propagation stage of this

filter is the same as in the extended Kalman filter, but relineariza-

tions are made during the updating stage (to the observations func-

tions) until convergence is reached. The algorithm for this filter

is:

STATE ESTIMATE PROPAGATION, teltktk+l)

A!(t Itk f(X(t tk),u*(t),t) (3.18)

ERROR COVARIANCE PROPAGATION, teltktk+l)

- P(t tk= F(i(t tk),u*(t),t)P(t tk) + P(t tk)F(*,-,-)T

+ Q'(t) (3.19)
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UPDATED STATE INITIALIZATION

n-1 = X(tk+1 tk 
( 2

i=l,2,.. ,E

'n X(tk~~k-+1 = (k+ tk) + [Z(tk+l h

- H(n i u*(t k+ ),qt k+l ) ft( t k+l t k

GAIN MATRIX ITERATIONS, i=1,2,...,t

K = P(t tk)H(n.u*(tk) t T.k+ ( k+l k+ k+ k+ R

[He(eeP (t k+ll Itk)H(,,s) T+ R' (t k+l ]

STATE ESTIMATE UPDATE, k=0,1,...

X(tk+l tk+ 1  = +

ERROR COVARIANCE UPDATE, k=0,1,...

P(tk+l tk+l) = [I - K H( , u*k+1 ),k+1 )]Pk+1

+ K +tR'(tk+1 k+1

UPDATED STATE ITERATIONS,

u*(tk ) tk

- l k. (3.21)

(3.22)

(3.23)

K - ]T

I tk)

)K + (3.24)
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INITIAL CONDITIONS

X(t0 Ito) = X ; P(t 0to) = P0  (3.25)

The local iterations limit, k, is defined such that n+ n ~

Note that improving the state and error covariance updated values not

only affects the current time step, but also future time steps, since

such estimated values become the initial conditions for the state and

error covariance propagation differential equations. The structure of

the iterated extended Kalman filter is represented in Figure 3.2.

3.4 Extended Linear Filter-Smoother and Iterated Extended Linear

Filter-Smoother

Information available in the future may be used in the past to

decrease linearization errors on the system nonlinear dynamic func-

tions. If future estimates are propagated into the past, better past

estimates will be obtained. If such past estimates serve as initial

conditions for new estimates in the future, better tracking of the

system dynamic nonlinearities will be achieved.

Better past estimates are obtained by using the linearized Kalman

filter on the backwards dynamic equations, with the previous forward

estimate as the linearization trajectory. For the interval

[tk,tk+l] the backwards filter algorithm is, Gelb (1974):
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t

Figure 3.2 Iterated Extended Kalman Filter Structure, IEKF-3
(with three local iterations)
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BACKWARDS STATE ESTIMATE PROPAGATION, TE[o,tk+l-tk), t = tk+1 -T

dAb(T) f (x(tltk),, t) -

F(X(tj tk,*()t)-[ [Z(T) - (t tk (3.26)

BACKWARDS ERROR COVARIANCE PROPAGATION, Te[Otk+1 - tk

d Pb(T) F((ttk),u*(t),t)P (T) Pb(r)F(-,-,-)T + Q'(t)

(3.27)

BACKWARDS STATE ESTIMATE UPDATE

[zt -h(X(tlt k ).9u* (t k)t k(tk) = (tk+1- tk) + Kbk(tk kk

- H(X(tk tk) ) b(tk+l-tk) - X(tk tk)}]

BACKWARDS ERROR COVARIANCE UPDATE

(3.28)

P,(tk) = [I - Kb kH(-,-,-)Pb (tk+l tk)[I - Kb kH(,,-)]T

+ K R' (t )K T
b k k b k

BACKWARDS GAIN

Kbk = b(tk+l-tk)H(-,-,-)T,

[H(k-,-, )Pb(tk+l-tk)H(-,*, T+ R'(t k)] (3.30)

31
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After use of this algorithm two estimates at time tk are known,

namely X(tkftk) and X (tk). A new initial condition for forwards

dynamic propagation is obtained by weighting these estimates according

to their error covariance matrices:

"(tkltk) Ps(tkltk)[P(tk tk) 1(tk tk) + %(tk) X1(tk)]

(3.31)

where

Ps(tk tk) -l = P(tkltk) + P (tk)-l (3.32)

Once these smoothed estimates are obtained, the extended Kalman

filter can be used again in the forwards dynamic equations. Because

more accurate initial conditions have been obtained at tk, better

estimates at tk+l are expected.

The extended linear filter-smoother, ELFS, is the combination of

a forward extended Kalman filter and a backwards linearized Kalman

filter. The procedure on any interval may be repeated for a fixed

number of backwards-forwards cycles, or for as many cycles until con-

vergence is achieved. The structure of this procedure is shown in

Figure 3.3.
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Figure 3.3

I 2 I 3

Extended Linear Filter-Smoother Structure, ELFS-1
(with one smoothing cycle)
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If the iterated extended Kalman filter is used in the forwards

dynamic propagations, linearization errors will be reduced on the dy-

namics function and in the observation function, Wishner, et al.

(1968). This filter is named iterated extended Kalman filter-

smoother, IELFS. Its structure is shown in Figure 3.4.

3.5 Second Order Gaussian Filter

When using the extended Kalman filter and other nonlinear filter-

ing approximations, first order Taylor expansions are usually used in

approximating nonlinear functions. In order to achieve increased

accuracy in the computation of the conditional mean of the states,

such functions may be approximated by higher order Taylor expansions.

The second order Gaussian filter has the same structure of the

extended Kalman filter. The linearization trajectory is also computed

by the filter itself. The algorithm for this filter is, Jazwinski

(1970):

STATE ESTIMATE PROPAGATION, te[tktk+l)

t tk -(x(t tk),U*(t),lt) + -1 82(F,P(t tk) (3.33)
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Figure 3.4 Iterated Extended Linear Filter-Smoother Structure, IELFS-3,1
(with one smoothing cycle and three local iterations)

35



ERROR COVARIANCE PROPAGATION, tE[t t k+)

d P(
tltk) = F(X(tltk),u*(t),t)P(tl tk)

+ P(t tk)F(*,*,-) T

STATE ESTIMATE UPDATE,

+ Q'(t)

k=O,1 , . .

X(tk+l tk ) + Kk+l [Z( tk+l

h(X(tk+l Itk).. *tk+1),tk+1 ) 2 (HP(tk+ tk2 - ~ k+ Ik.

(3.35)

ERROR COVARIANCE UPDATE,

P(tk+l tk+1) = [I

P(tk+l Itk) [I - Kk+l H( ]T + Kk+ R' (t )Kk~l k~l k+l k+l

(3.36)

+ R' (t k+) + A(t k+)1

(3.37)
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X(tk+l tk+1) =

k=O, 1 ,..

-Kk+H (X(tk+
1

GAIN MATRIX

Kk+l = P(tk+ll tk)H(-,-,-)T

[H(-b,,)P(tk+l tk)H( , -, -)T

tk ),U*(t k+ ),'t k+l
0



INITIAL CONDITIONS

X(t0 1 t) = ; P(tIt 0 ) = P0  (3.38)

The second order terms 32(F,P(tltk)) and 92(H,P(tk+lltk)) are

defined component-wise by:

p q

a 2 .
with [ 2 the matrix of second order derivatives of the

p q

ith component of f with respect to the states, evaluated at the

current state estimate.

The correction term on the gain, A(tk+l), depends on fourth

order moments of the system. It is defined by:

A(tk+ ) E {a2(H,[X(tk+l tk) - X(tk+l) ][x(tk+l tk) - X(tk+)

_2 (H,[x(tk+1 tk) - X(tk+l)][X(tk+1ltk) - X(tk+l) T)T

- I 2 (HP(tk+ Itk )) (HP(tk+l t )T (3.40)

where the expectation may be obtained from Gaussian moment factoring,

to give for the (ij) element of the correction:
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ak+1 1
1 =4 [r, s m,n

with Prm denoting the (

32 h1

axr axs rm sn + Prnsm ax maxn

(3.41)

0,m) element of P(tk+l tk).
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Chapter 4

PRACTICAL USE OF APPROXIMATE NONLINEAR FILTERS

4.1 Introduction

The results of applying the approximate nonlinear filters and the

rainfall-runoff model to a case study are presented in this chapter.

One step ahead forecasting as well as extended forecasting are con-

sidered.

Residual statistics and the least squares performance indices of

Kitanidis and Bras (1978) are used to compare the performance of the

different procedures.

Table 4.1 includes the nonzero elements on the linearization

matrices of the dynamics and observations of the rainfall-runoff

model. The actual expressions for these quantities are given in Ap-

pendix A. The second order derivatives, required to use the second

order Gaussian filter, are included in Appendix B.

4.2 Description of the Drainage Basin and of the Available Data

The drainage basin under consideration in the present study is

the Bird Creek basin near Sperry, Oklahoma. The area of the catchment

is 2344 km2(915.6 mi 2). Discharges every six-hours ("instanta-

neous") are measured at USGS Station No. 07177500. The average dis-

charge is 20 m3/sec with maximum recorded discharge of 2535.1
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Table 4.1

Linearization Matrices for the Rainfall-Runoff Model

Matrix F

p

X2

X3

X4

X5

X6

S 1

S 2

in-l

Sn

Matrix H

Z,

Z

c

X p X 1  X 2  X 3  X 4  X 5  X 6  Sl *2 S n-l Sn

T

T T

T T T T T T

T

T

T

T

T

X p

T

T T

T

T

T T

T T

T T

T T

T T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T T

... T

... T

X 1 X 2 X 3 X 4 X 5 X 6 Sl 'S2 ' *

T

Sn-l 5 n

T

40



Table 4.1 (continued)

Matrix Fu

X
p

Xl

X
2

X
3

X 4

X
5

X
6

Si

S2

n

T

T

T

T

T

T

T

T T T

MATRIX Hu

z
p

z
C

T

T

Uee

T

P0

T

T

T

Td

T

T

T

T

TT

T

T

T

T

T

P0

T

UeTd

T
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m3/sec and minimum of 0.22 m3/sec. Characteristics of the dis-

charge record are high peak and sharp hydrographs in the period from

April to September. It is common to have flows rising from near zero

to 200-250 m3/sec in a period of 18 hours.

Instantaneous mean areal temperature, pressure, dew point, and

precipitation data were provided by the NWS-Hydrologic Research Lab-

oratory. These data sets were obtained from point observations at

Tulsa, Oklahoma, 20 kms southeast of the basin's outlet.

Evapotranspiration demand was obtained from daily potential

evapotranspiration data provided by the NWS. Instantaneous evapo-

transpiration was found by distributing the daily values over time

intervals 0-6, 6-11, 12-18, and 18-24 hours, according to 0, 33, 67,

and 0 percent, respectively.

There was no snow accumulation nor ablation in the case study.

Table 4.2 includes the values of the parameters for the

rainfall-runoff model. These values were fixed in all the computa-

tions. The precipitation parameters are those in Georgakakos

(1982a). The soil parameters were estimated by the NWS staff based on

physiographic characteristics of the basin and input-output data. The

channel parameters are those of Georgakakos and Bras (1980), obtained

from input-output data for the month of July 1959.

The power functions, that approximate the threshold functions of

the original Sacramento model, all have exponents equal to two.
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Table 4.2

Parameter Values for the Rainfall-Runoff Model

SYMBOL VALUES

PRECIPITATION

Updraft velocity parameter el O.16x10-2

Cloud particle mean diameter E4 O.55x10-4

SOIL

Upper tension capacity X 120.01

Upper free capacity X 15.0

Lower tension capacity X0 160.03

Lower free primary capacity X 140.0

Lower free secondary capacity X 0 14.0

Interflow coefficient du 0.0891

Primary drainage coefficient di 0.0033

Secondary drainage coefficient do 0.0336

Percolation Parameter 48.0

Percolation Exponent E 2.1

Fraction to lower free P 0.02

Exponents on threshold approximation m1,m2 m3  2.0

Baseflow percent lost parameter 4 3.55
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Table 4.2 (continued)

SYMBOL VALUES

Additional impervious fraction a 1  0.17

Permanent impervious fraction 02 0.001

CHANNEL

Number of reservoirs n 3

Input fraction to Reservoir I P1  0.95

Input fraction to Reservoir 2 P2  0.05

Input fraction to Reservoir 3 P3  0

Exponent of router m 0.8

Parameter of Reservoir 1 a1 1.09

Parameter of Reservoir 2 a2 1.04

Parameter of Reservoir 3 a 1.08

3
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4.3 Review of the Comparison Indices

The least square indices of Kitanidis and Bras (1978) are re-

viewed in this section. These indices are the coefficients of effi-

ciency, determination, persistence and extrapolation.

The efficiency of a model was defined by Nash and Sutcliffe

(1970) as the proportion of the variance on the observed data accoun-

ted by the model. The efficiency coefficient is given by:

So- s (4.1)
E =

where So measures variability on the observed data and S measures

variability of the predictions, over N time steps:

N2
S= (z(t) - Z0

2  (4.2)
1=1

S= (zo (t) - 0(t1))2  (4.3)
i =1

with Z (t.) denoting the observation at time ti,, Z (t.) the prediction

at time t. and Z7 the observation mean over the N time steps.

Values of the efficiency coefficient close to one are indicative

of good performance.

Another measure of performance is the determination coefficient

of the linear regression line that relates the observations and the

predictions. It is defined by:
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N
I (Z(t ) - Zr(ti))2

D = 1 - (4.4)

with Zr(ti) denoting the estimate at time ti given by the re-

gression line. The coefficient of determination is always higher than

the coefficient of efficiency because the regression line removes sys-

tematic errors in the forecast. Again a value of D closer to one is

indicative of good performance.

The coefficient of persistance compares the model predictions

with predictions given by the previous observation. This coefficient

is given by:

P = 1- N
Z (t) - Z0(t 1_)) 2  (4.5)

i =1

This coefficient takes values less than or equal to one, with one in-

dicating perfect predictions.

The coefficient of extrapolation compares the model predictions

with predictions obtained by linearly extrapolating the two most

recent observations. If Zz(ti) denotes the extrapolated estimate

to time ti, from the two most recent observations in the past, the

coefficient of extrapolation is then:
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N 2
2 (Z (t.) - z(t))

Once again a value of L closer to one indicates better performance.

4.4 Case Study Results

4.4.1 One-step Ahead Predictions

The months of April and May of 1960 were used to make comparisons

among the different approximate nonlinear filters. Similar results

were obtained for July 1959 but these results are not reported here.

All stochastic runs, i.e., with filtering, were made with the

same set of initial conditions. The initial state mean and its ini-

tial diagonal error covariance matrix are included in Table 4.3.

The spectral density matrix Q(t) was assumed diagonal and con-

stant for all times. Several structures for this matrix were consi-

dered. Its standard deviations are included in Table 4.4. It was as-

sumed that the inputs were measured without error. This gives the ma-

trix Qu(t) equal to zero and consequently the spectral density ma-

trix for the linearized system, Q(t), is the same as Q(t). The input

values were also assumed perfectly predictable, i.e., the true inputs

at times tk and tk+l were used to obtain state estimates at time

tk+l-
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Table 4.3

Rainfall-Runoff Initial Mean and Initial Standard Deviations

Standard
Deviation [mm]

0.03

*0.3

0.1

0.3

0.3

0.1

0.1

0.001

0.001

0.001

State

x

x 1

x2

x3

X4

x5

x6

S3

S 2

S 3

Mean [mm]

1.0

10.0

12.0

10.0

10.0

11.0

0.0

0.05

0.05

0.05
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Table 4.4

Rainfall-Runoff Model Spectral

1

Density Standard Deviations

Q-Level

State 0 2 3 4 5

2

104

0.05

5

106

10-3

0.5

10

10-2

5

0.0187 0.187 1.87

0.0682 0.682 6.82

0.075 0.75

x p

xl1

x
2

x
3

x 
4

x
5

x6

S 1

S 2

S 3

0.70

0.17

0.17

7.5

0.70

0.17

0.17

20

10-4

10-

50

18.7

68.2

75

0.70

0.17

0.17

10 30

10-1 0.2

10-2 0.2

5 10

1.87 10

6.82 10

7.5 10

1 1

1.7 1

0.17 0.25
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The observations covariance matrix, R(t) = R(t)', for the

rainfall-runoff model is given in Table 4.5. The observation errors

in discharge are made of a constant error and an error directly pro-

portional to the discharge observation. On the other hand, the pre-

cipitation measurements error were assumed not related to precipita-

tion observations, but given by a constant value at all times.

Results of the use of the rainfall-runoff model in a determinis-

tic model (without filtering), to predict instantaneous mean areal

precipitation with a 6-hour lead are shown in Figure 4.1. Use of the

extended Kalman filter and Q of level 2 give the precipitation predic-

tions depicted in Figure 4.2. Notice the slight improvement due to

the use of filtering. The residual statistics (means, variation

coefficients, and autocorrelation of different lags) as well as the

least squares performance indices for the two procedures are included

in Table 4.6.

Because the precipitation portion of the rainfall-runoff model is

linear with respect to the state, and the error covariance of the in-

puts was taken equal to zero, no improvement in prediction of precipi-

tation is expected from the other approximations to nonlinear filter-

ing. Precipitation predictions were also found insensitive to the

spectral density matrix changes defined in Table 4.4.

Results for deterministic prediction of discharge are shown in

Figure 4.3. The residual statistics (means, variation coefficients,

skewness, and autocorrelations of different lags); statistics of the

series obtained by normalizing the residuals by their respective
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,Table 4.5

Rainfall-Runoff Model Observation Error Covariance Matrix

MAP

MAP

Discharge

1

0

Discharge

0

(0.05+0.1 Zc) 2

Zc - Discharge observation

MAP - Mean Areal Precipitation
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LEWEND
OBSERVATIONS

-PREDICTIONS
1-

20.7 41.4 62.1 82.8 103.5 124.
TIME STEP NUMBER

2 144.9 165.6 186.3 207.0

Figure 4.1 Deterministic Prediction
April-May 1960

of Precipitation, Bird Creek,

LEGEND
OBSERVATIONS

. PREDICTIONS

20.7 41.4 62.1 82.8 103.5 124.2 144.9
TINE STEP NUMBER

165.6 186.3 207.0

Figure 4.2 Stochastic Prediction of Precipitation, Bird Creek, April-May
1960, Q-4
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Table 4.6

Residual Statistics and Least Squares Performance

Indices for Precipitation

Mean

Variation Coefficient

Correlation lag 1

Correlation lag 2

Efficiency

Determi nati on

Persistence

Extrapolation

Deterministic

0.60

7.04

0.07

-0.15

0.03

0.07

0.26

0.71
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EKF

0.54

7.92

0.03

-0.18

0.02

0.08

0.26

0.70



62.1 82.8 103.5 124.2 144.9 165.6
TIME STEP NUMBER

186.3 207.0

Figure 4.3 Deterministic Prediction of Discharge, Bird Creek, April-May
1960
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standard deviations; and the least square indices for these results

are given in the first rows of Tables 4.7, 4.8, and 4.9.

The residual statistics, normalized residual statistics and least

squares performance indices for discharge, for the different nonlinear

filters and for the different spectral density matrices are contained

in Tables 4.7, 4.8, and 4.9, respectively.

The following remarks summarize the behavior of the different

nonlinear filters in predicting discharge:

1. The approximated nonlinear filters do better in reproducing

the discharge hydrograph than predictions obtained from de-

terministic use of the system dynamics.

2. The extended Kalman filter performance was not improved by

the iterated extended Kalman filter (convergent after six

iterations) or by the second order Gaussian filter. Because

the exponents of the nonlinear reservoirs that constitute the

channel have a value of 0.8, second order derivatives in the

channel includes terms of the form (0.8)(-0.2)S . For low

flows these terms give unrealistically high values that have

a detrimental effect on the predictions. The second order

filter was then restricted only to high flows, defined when

the storage of the last reservoir exceeds 0.2, but even for

high discharges this filter closely resembles the predictions

obtained by using the extended Kalman filter. Figures 4.4,

4.5, and 4.9 show the discharge predictions with these three

filters for Q of level 4.
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Table 4.7

Residual Statistics for Discharge

Q-Level Procedure Mean

DETERMINISTIC 0.26

Variation
Coefficient Skewness

2.56 2.09

La-

0.96

Autocorrelation

Lag-2 Lag-3 Lag-4

0.82 0.65 0.46

EKF

IEKF-6

ELFS-1

ELFS-2

IELFS-6,2

SOFG

EKF

IEKF-6

ELFS-1

ELFS-2

IELFS-6 ,2

SOGF

0.25

0.26

0.21

0.22

0.22

0.27

0.25

0.26

0.22

0.21

0.21

0.27

2.22

2.22

2.40

2.29

2.31

2.09

2.22

2.22

2.33

2.23

2.25

2.09

2.61

2.61

2.70

2.58

2.57

2.60

2.61

2.61

2.68

2.32

2.32

2.61

0.94

0.94

0.89

0.93

0.93

0.93

0.94

0.94

0.92

0.92

0.92

0.93

0.79

0.79

0.74

0.77

0.77

0.79

0.79

0.79

0.77

0.76

0.76

0.79

0.60

0.60

0.54

0.57

0.57

0.60

0.60

0.60

0.57

0.57

0.57

0.60

0.40

0.41

0.33

0.36

0.36

0.41

0.40

0.41

0.36

0.37

0.37

0.41
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Table 4.7 (continued)

Q-Level Procedure

EKF

IEKF-6

ELFS-1
2

ELFS-2

IELFS-6,2

SOGF

EKF

IEKF-6

ELFS-1

ELFS-2
3

IELFS-6,2

SOGF

ELFS-3

Mean

0.25

0.26

0.21

0.19

0.19

0.27

0.20

0.20

0.07

0.04

0.05

0.20

0.03

Variation
Coefficient Skewness

2.23 2.61

2.23 2.61

2.31 2.61

2.25 2.19

2.26 2.19

2.10 2.61

2.73

2.72

5.22

6.45

6.35

2.64

7.81

2.65

2.65

2.84

2.71

2.72

2.67

2.82

Lag-

0.94

0.94

0.92

0.91

0.91

0.93

0.93

0.93

0.88

0.78

0.78

0.93

0.73

Autocorrelation

Lag-2 Lag-3 Lag-4

0.79 0.60 0.40

0.79 O.60 0.41

d.77 0.57 0.35

0.74 0.56 0.38

0.74 0.56 0.38

0.79 0.60 0.41

0.78

0.78

0.67

0.46

0.48

0.77

0.36

0.58

0.58

0.43

0.26

0.29

0.58

0.15

0.37

0.37

0.21

0.16

0.18

0.37

0.08
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Table 4.7 (continued)

0-Level
Variation

Mean Coefficient SkewnessProcedure

EKF

IEKF-6

ELFS-1

ELFS-2

IELFS-6,2

SOGF

EKF

IEKF-6

ELFS-1

ELFS-2

IELFS-6,2

SOGF

3.56

4.22

2.14

2.13

2.15

2.64

2.50

2.63

2.00

2.24

2.14

2.28

2.69

2.57

3.04

3.07

3.05

2.82

2.95

2.94

3.02

2.66

2.60

2.97

Autocorrelation

Lag-i Lag-2 Lag-3 Lag-4

0.61

0.57

0.58

0.67

0.67

0.66

0.87

0.85

0.82

0.66

0.66

0.87

0.69

0.69

0.36

0.40

0.40

0.63

0.74

0.74

0.64

0.39

0.38

0.71

0.37

0.35

0.21

0.25

0.26

0.41

0.52

0.51

0.46

0.26

0.26

0.53

0.37

0.39

0.14

0.18

0.19

0.35

0.08

0.07

0.10

0.10

0.10

0.10

0.14

0.13

0.14

0.10

0.10

0.16
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0.34
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0.26

0.25
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Table 4.8

Normalized Residuals Statistics for Discharge

0-Level Procedure

DETERMINISTIC

EKF

IEKF-6

ELFS-1

ELFS-2

IELFS-6,2

SOGF

EKF

IEKF-6

ELFS-1

ELFS-2

IELFS-6,2

SOGF

Mean

0.91

0.88

0.94

0.70

0.76

0.80

0.90

0.88

0.94

0.74

0.73

0.76

0.91

Variation
Coefficient Skewness

2.30 1.70

1.99

1.96

2.23

2.11

2.09

1.94

1.99

1.96

2.13

2.09

2.07

1.93

1.93

1.89

1.96

1.90

1.86

2.01

1.92

1.88

1.94

1.81

1.82

2.00

Lag-l

0.94

0.92

0.92

0.87

0.91

0.90

0.91

0.92

0.92

0.90

0.91

0.89

0.91

Autocorrelations

Lag-2 Lag-3 Lag-4

0.80 0.64 0.46

0.78

0.78

0.74

0.77

0.76

0.76

0.78

0.78

0.77

0.75

0.74

0.76

0.62

0.63

0.57

0.59

0.59

0.59

0.62

0.63

0.59

0.58

0.57

0.59

0.45

0.46

0.39

0.41

0.42

0.42

0.45

0.46

0.40

0.41

0.41

0.43
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Table 4.8 (continued)

Normalized Residuals Statistics for Discharge

Procedure

EKF

IEKF-6

ELFS-1

ELFS-2

IELFS-6,2

SOGF

Mean

0.88

0.93

0.73

0.67

0.70

0.91

Variation
Coefficient

2.00

1.97

2.12

2.15

2.13

1.92

Autocorrelations

Skewness

1.92

1.89

1.89

1.78

1.81

1.97

Lag-

0.92

0.92

0.91

0.89

0.88

0.92

Lag-2

0.78

0.78

0.76

0.72

0.70

0.77

Lag-3

0.62

0.63

0.58

0.55

0.54

0.60

Lag-4

0.45

0.46

0.39

0.40

0.40

0.43

EKF

IEKF-6

ELFS-1

ELFS-2

IELFS-6,2

SOGF

ELFS-3

0-Level

2

3

0.63

0.69

0.13

0.07

0.11

0.66

0.04

2.73

2.62

10.2

16.8

10.1

2.6

27.4

1.90

1.90

1.08

1.35

1.92

1.90

1.12

0.91

0.91

0.82

0.72

0.72

0.91

0.69

0.75

0.75

0.56

0.36

0.38

0.75

0.30

0.57

0.58

0.33

0.16

0.20

0.57

0.10

0.39

0.41

0.14

0.08

0.11

0.39

0.04

60



Table 4.8 (continued)

Normalized Residuals Statistics for Discharge

Procedure

EKF

IEKF-6

ELFS-1

ELFS-2

IELFS-6,2

SOGF

Mean

0.17

0.22

0.31

0.33

0.39

0.27

Variation
Coefficient

4.96

4.32

2.14

2.08

2.03

2.99

Autocorrelations

Skewness

1.80

2.21

2.42

2.66

3.37

1.92

Laq-l

0.41

0.30

0.49

0.64

0.54

0.50

Lag-2

0.69

0.62

0.31

0.35

0.28

0.63

Lag-3

0.26

0.20

0.16

0.20

0.16

0.31

Lag-4

0.43

0.41

0.11

0.15

0.12

0.34

EKF

IEKF-6

ELFS-1

ELFS-2

IELFS-6,2

SOGF

0-Level

4

5

0.40

0.42

0.40

0.30

0.36

0.42

2.44

2.42

1.94

2.25

2.12

2.35

2.31

2.32

2.32

2.18

2.81

2.45

0.83

0.77

0.78

0.61

0.56

0.84

0.73

0.70

0.59

0.32

0.26

0.70

0.52

0.49

0.44

0.21

0.17

0.51

0.37

0.37

0.30

0.23

0.19

0.34
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Table 4.9

Least Squares Performance Indices for Discharge

Q-Level Procedure Efficiency Determination Persistence Extrapolation

DETERMINISTIC

EKF

IEKF-6

ELFS-1

ELFS-2

IELFS-6,2

SOGF

EKF

IEKF-6

ELFS-1

ELFS-2

IELFS-6,2

SOGF

0

0.07

0.32

0.30

0.49

0.47

0.46

0.28

0.32

0.30

0.47

0.54

0.54

0.29

0.37

0.80

0.79

0.80

0.85

0.84

0.74

0.80

0.79

0.84

0.88

0.88

0.75

-8.6

-5.9

-6.1

-4.2

-4.5

-4.6

-6.3

-5.9

-6.1

-4.4

-3.7

-3.7

-6.3

1

-19.3

-13.7

-14.1

-10.1

-10.6

-10.8

-14.6

-13.7

-14.1

-10.5

-8.9

-9.1

-14.5
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Table 4.9 (continued)

Q-Level Procedure

EKF

IEKF-6

ELFS-1
2

ELFS-2

Efficiency

0.33

0.31

0.50

0.62

Determination

0.80

0.79

0.86

0.89

Persistence

-5.9

-6.1

-4.2

-2.9

Extrapolation

-13.7

-14.1

- 9.9

- 7.4

IELFS-6,2

SOGF

EKF

IEKF-6

ELFS-1

ELFS-2

IELFS-6,2

SOGF

ELFS-3

3

0.61

0.30

0.41

0.39

0.75

0.85

0.84

0.41

0.87

0.89

0.76

0.74

0.73

0.80

0.87

0.87

0.73

0.88

-3.0

-6.2

-5.1

-5.3

-1.5

-0.5

-0.6

-5.1

-0.4

- 7.5

-14.2

-11.9

-12.3

- 4.4

- 2.2

- 2.4

-11.9

- 1.9
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Table 4.9 (continued)

Q-Level Procedure

EKF

IEKF-6

ELFS-1
4

ELFS-2

IELFS-6,2

SOGF

Efficiency

0.86

0.85

0.91

0.90

0.90

0.85

Determination Persistence Extrapolation

0.92 -0.44 -2.06

0.91 -0.52 -2.24

0.94 0.04 -1.04

0.93 -0.07 -1.26

0.93 -0.04 -1.21

0.91 -0.56 -2.30

EKF

IEKF-6

ELFS-1

ELFS-2

IELFS-6,2

SOGF

5

0.76

0.75

0.83

0.89

0.89

0.73

0.91

0.91

0.93

0.93

0.93

0.89

-1.5

-1.5

-0.8

-0.1

-0.1

-1.8

-4.3

-4.4

-2.7

-1.4

-1.4

-4.9
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3. The extended linear filter-smoother, computed after one or

two cycles, gives as good or better predictions that the ex-

tended Kalman filter. Generally the former gives higher

peaks and eliminates low flow oscillations often found by

using the extended Kalman filter. See Figures 4.4, 4.6, and

4.7. The extended Kalman filter discharge predictions oscil-

late when excessive updatings occur. This happens when the

predicted variance of the discharge observation is big com-

pared to the discharge observation variance specified by the

user. The extended linear filter-smoother predictions

oscillate less than those of the extended Kalman filter

because the use of future information in the past gives

generally lower predicted variances.

4. For Q of levels 0 to 3 the extended Kalman filter gave poor

results, as implied by autocorrelations of residuals and nor-

malized residuals close to one, and least squares indices far

from one. Although, the quality of the predictions improves

as the soil dynamics are trusted less (as Q moves from 0 to

3, see Table 4.4), the peaks remain badly underestimated, see

Figures 4.10 and 4.12. The extended linear filter-smoother

also underestimates the peaks for spectral density matrices

of levels 0 to 2, see Figure 4.11, but for Q of level 3 the

predictions obtained by this filter are very good, see Figure

4.13.
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5. The iterated extended linear filter-smoother gives about the

same predictions of the extended linear filter-smoother, see

Figures 4.7 and 4.8.

6. For spectral density matrices of levels 4 and 5, all the ap-

proximate nonlinear filters give good results, see Figures

4.4 to 4.9. Notice that although the procedures using smoo-

thing give the best results, the extended Kalman filter also

performs well.

7. All the approximate nonlinear filters have a timing error in

predicting the hydrographs. Usually predictions during the

rising limb lag the observations one time step, i.e., 6

hours. The extended Kalman filter follows best the recession

portion of the hydrograph, the extended linear filter-

smoother often decays one step behind.

8. The computational time is considerably increased by proce-

dures with smoothing due to the numerical integration of the

mean and error covariance differential equations, and due to

the storage of forward trajectories needed to linearize the

backwards differential equations. Table 4.10 includes the

CPU execution time required by the different filtering proce-

dures.

9. The means of the state predicted by the extended Kalman fil-

ter and the extended linear filter-smoother are in general

different. The states in the upper soil zones for the ex-

tended Kalman filter contain less water than the ones given
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Table 4.10

CPU Execution

Procedure

EKF

IEKF-6

ELFS-1

ELFS-2

ELFS-3

IELFS-6,2

SOGF

Time of the Nonlinear Filters

Seconds per time step*

4.4

5.0

44.0

82.5

121.0

84.2

16.7

*At PRIME 750 Computer
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by the extended linear filter-smoother, which are closer to

saturation. For the deep lower portion of the soil the re-

sult tends to be the opposite. See Figure 4.14 to 4.19 for Q

of level 3 and Figures 4.20 to 4.25 for Q of level 4. Recall

that although the rainfall-runoff model conserves the water

volume, the use of the updating step with any filter will

"create" additional water whenever is necessary. This up-

dating operation is the difference between the extended Kal-

man filter and the extended linear filter-smoother. The lat-

ter follows the model nonlinear dynamics better and commonly

updates more the states in the upper soil, resulting in

higher peaks.

4.4.2 Extended Forecasting

Extended forecasts were obtained with the rainfall-runoff model

for the month of May 1960. The extended Kalman filter and the ex-

tended linear filter-smoother, computed with 2 cycles, were used as

the filtering mechanisms.

The initial conditions were obtained by taking the predicted

state means and error standard deviations on May 1st from ELFS-2 one-

step predictions on the period April to May 1960, found using the

initial conditions given in Table 4.3.

Table 4.11 includes the least square performance indices for pre-

cipitation. As can be seen there is no decrease in performance as the
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Figure 4.16 Predicted Trajectories of Lower Zone Tension Volume, Q-3

LEGEND
ELFS-2

.. EKF

0o

U,

'0

0:

0.0 20.7 41.4 62.1 82.8 103.5 124.2 144.9 165.6
TIME STEP NUMBER

186.3 207.0

Figure 4.17 Predicted Trajectories of Lower Zone Free Primary Volume, Q-3

75

LEGEND
ELFS-2

__KF

1,

C"14
'4.

0

0



U.'

-t

0%

U,
1%

I~.

'.0
U,

U,
a,

* a

a a
* a

a.

Si

**'1

0.0 20.7 41.4 62.1 82.8 103.5 124.2
TIME STEP NUMBER

144.9 165.6 186.3

Predicted Trajectories of Lower Zone Free Secondary Volume,

LEGEND
ELFS-2
EKF

20.7 41.4 62.1 82.8 103.5 124.2 144.9 165.6 186.3 207
TIME STEP NUMBER

Figure 4.19 Predicted Trajectories of Additional Impervious Volume, Q-3

76

LEGEND
ELFS-2

..EKF

I, J1a a Ia

0%

Go0

a'
a a

I '

a a a ~
* a* a

a~

Figure 4.18

207.0

Q-3

a... 4
Ca a

a'
Ca 4

a'

Ca I
a'

'C

a

;.

0
I

0.0 .0



LEGEND
ELFS-2

-EKF

0.0 20.7 41.4 62.1 82.8 103.5 124.2
TIME STEP NUMBER

144.9 165.6 186.3 207.0

Predicted Trajectories of Upper Zone Tension Volume, Q-4

LEGEND
ELFS-2
-EKE---

20.7 41.4 62.1 82.8 103.5 124.2
TIME STEP NUMBER

144.9 165.6 186.3 207.0

Predicted Trajectories of Upper Zone Free Volume, Q-4

77

u~.
'.0

'.0

0%

0%
-t

"4

c~4

U,

'.0

"4

0

0

Figure 4.20

r-.0'

"4

U,

0

'.0.

0

C'.'

-t

0

"4

C.'J

0

0.0

Figure 4.21

~-vv

t\ h AAA A

0

02



LEGEND
ELFS-2
EKF

LEEN

C.,

x

C..'

%.C

en

0

C%4

0.0 20.7 41.4 62.1 82.8 103.5 124.2 144.9 165.6 186.3 207.0
TIME STEP NUMBER

Figure 4.22 Predicted Trajectories of Lower Zone Tension Volume, Q-4

LEGEND
ELFS-2

- EKF-

0-.0 07 4 . 21 8 . 0 . 2. 4 . 6 . 8 . 0 .

TIESEPNME

Fiue42 rdce raetre fLwrZn Fe rmr oue -

78



.EGEND
ELFS-2
EKF

0

C~4

0.0 20.7 41.4 62.1 82.8 103.5 124.2 144.9 165.6 186.3
TIME STEP NUMBER

Predicted Trajectories of Lower Zone Free Secondary Volume, Q-4

LEGEND
ELFS-2

-EKF - - - -

).0 20.7 41.4 62.1 82.8 103.5 124.2
TIME STEP NUMBER

144.8 165.6 186.3 207.0

Figure 4.25 Predicted Trajectories of Additional Impervious Volume, Q-4

79

C

C

Figure 4.24

207.0

0
0
"4

C.,

0.

C.,

0

'0

C..J

0
-w

"4

0-
CI

0

Cc

=*%* I

..... ........ ................. ....... ... I .................... ............... .... .........



Table 4.11

Extended Forecasting Least Squares Indices

Lead Time

Efficiency

Determination

Persistence

Extrapolation

6 hrs

-0.02

0.09

0.27

0.71

12 hrs

-0.02

0.05

0.51

0.72

for Precipitation

18 hrs

-0.02

0.05

0.42

0.72

24 hrs

-0.02

0.05

0.35

0.72

Q-level 3
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lead time increases. Predictions of precipitation 6 hours ahead do

not differ much from that 24 hours ahead. Recall that the inputs are

assumed known in advance, which means that temperature, pressure and

dew point are playing a dominant role in predicting precipitation.

This is explained from the fact that characteristic times for rainfall

are often less than 6 hours, and then the value of initial conditions

is lost after a few hours.

Tables 4.12 and 4.13 contain the least squares performance

indices for discharge if the filtering process is respectively the

extended Kalman filter and the extended linear filter-smoother. As

can be seen the quality of the predictions deteriorates as the lead

time increases. The tendencies obtained with one-step ahead

predictions are preserved by the extended forecasts, i.e., for Q of

level 0 both nonlinear filters give bad predictions, for Q of level 3

the extended linear filter-smoother gives better predictions, and for

Q of level 4 both nonlinear filters give the same quality of

predictions. See Figures 4.26 to 4.33.
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Table 4.12

Extended Forecasting Least Squares Indices for Discharge, EKF

Q-level 0

Lead Time 6 hrs 12 hrs 18 hrs 24 hrs

Efficiency 0.26 0.04 -0.18 -0.31

Determination 0.80 ~ 0.69 0.58 0.54

Persistence -6.51 -10.94 -13.04 -18.96

Extrapolation -17.08 -22.53 -27.70 -30.92

Q-level 3

Lead Time 6 hrs 12 hrs 18 hrs 24 hrs

Efficiency 0.35 0.18 0.01 -0.13

Determination 0.73 0.52 0.26 0.06

Persistence -5.57 -10.18 -12.53 -16.84

Extrapolation -14.83 -19.11 -23.27 -26.32

Q-level 4

Lead Time 6 hrs 12 hrs 18 hrs 24 hrs

Efficiency 0.85 0.58 0.20 -0.12

Determination 0.92 0.81 0.64 0.47

Persistence -0.54 -2.00 -3.14 -8.24

Extrapolation -2.72 -9.28 -18.55 -26.27
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Table 4.13

Extended Forecasting Least Squares Indices for Discharge, ELFS-2

Q-level 0

Lead Time 6 hrs 12 hrs 18 hrs 24 hrs

Efficiency 0.39 0.11 -0.14 -0.29

Determination 0.82 0.67 0.52 0.42

Persistence -5.15 -9.12 -13.24 -19.23

Extrapolation -13.82 -20.71 -26.82 -30.57

Q-level 3

Lead Time 6 hrs 12 hrs 18 hrs 24 hrs

Efficiency 0.65 0.48 0.30 0.13

Determination 0.76 0.59 0.41 0.24

Persistence -2.52 -4.96 -6.16 -10.20

Extrapolation -7.48 -11.64 -15.97 -20.16

Q-level 4

Lead Time 6 hrs 12 hrs 18 hrs 24 hrs

Efficiency 0.86 0.56 0.19 -0.11

Determi nati on 0.91 0.69 0.44 0.24

Persistence -0.36 -1.44 -4.20 -8.20

Extrapolation -2.28 -9.64 -18.72 -26.16

83



LEGEND
OBSERVATIONS

-PREDICTIONS -

W-4

0

C 71.4 83.3 95.2 107.1 119.0

Figure 4.26 Extended Forecast of Discharge, Bird Creek, May 1960,
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4.5 Summary

This chapter includes the results of applying the nonlinear

filtering procedures and the rainfall-runoff model to a case study.

It has been shown that the spectral density matrix of the system

dynamics noise plays a key role on the predictions of discharge.

Depending on Q, all procedures could give bad or good predictions.

The filtering procedures that include smoothing represent

generally improvements over the extended Kalman filter. However, the

computational time they require is considerably higher than that of

the extended Kalman filter.

As should be expected, extended forecasts decrease in quality as

the lead time increases, no matter what nonlinear filtering procedure

is being used. Precipitation extended forecasts do not degrade with

lead time, but this is due to the unrealistic assumption that the

inputs are known in advance.

88



Chapter 5

THE ESTIMATION OF THE DYNAMICS NOISE SPECTRAL DENSITY MATRIX OF A

NONLINEAR DYNAMIC SYSTEM

5.1 Introduction

The use of modern estimation techniques with dynamic systems re-

quires the complete specification of the system parameters. In par-

ticular the applicability of nonlinear filtering procedures depends on

the knowledge of the parameters of the physical system as well as the

parameters that describe the system stochastic behavior. The sto-

chastic components are usually modelled as zero mean independent Gaus-

sian processes that appear in an additive way on the dynamic equations

and on the system observation equations. The covariance matrices of

these Gaussian processes must be specified by the user before any es-

timate of the states of the system can be obtained. The covariance

matrix related to the observation equations is generally easier to ob-

tain than the covariance matrix related to the additive noise on the

dynamic equations. The noise on the observations depends on the ex-

pected accuracy of the measurements. The additive noise on the dy-

namic equations represent the modelling error, or the difference be-

tween reality and the model that approximates it, a harder property to

quantify.
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As the results of Chapter 4 suggest, the spectral density matrix

of the dynamics noise plays a key role on the quality of the predic-

tions. The emphasis in this chapter will be on describing simple and

non-expensive procedures to estimate such a matrix, under the assump-

tion that all the physical model parameters and the parameters that

specify the observations covariance matrix are known.

5.2 Problem Definition

The system under consideration is described by the following

equations:

dt
Dynamic Equations: X(t) = f(X(t),u(t),t) + w(t) (5.1)

Observation Equations: Z(tk) = h(X(tk),u(tk),tk) + v(tk

k=0,l,2,... (5.2)

with w(t) and v(tk) being the random components that account for er-

rors in the modelling of the physical system and in the measurements.

Vectors X, u, and Z represent the states, inputs and observations,

respectively, of the physical model, and f and h are generally non-

linear functions.

The processes w(t) and v(tk) are assumed zero-mean independent

Gaussian processes, independent of each other. w(t) has spectral den-

sity matrix Q(t) and v(tk) has covariance matrix R(tk),
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w(t) - N[0, Q(t)]

v(tk) N[O, R(tk)J (5.4)

Recall from Chapter 3 that Q(t) plays an additive role in the error

covariance propagation term of any of the nonlinear filters. This im-

plies that Q(t) plays a role in the computation of the filter gain

used in the updating calculations. Due to the nonlinearity of the

dynamic and observation functions f and h, and the subsequent lineari-

zation required by the nonlinear filters, the matrix Q(t) also affects

future state estimates.

All parameters that affect functions f and h as well as the pa-

rameters of matrices R(tk) are assumed known. The problem is how to

find matrices Q(t) such that overall performance of the filter is im-

proved.

Criteria to judge improvement in performance include:

a. Minimizing the one-step predicted residuals,

b. Maximizing the likelihood of the observations, and

c. Making the behavior of the filter consistent with its

expectations.

In the next section these criteria are fully explored. Given

that good performance with the extended Kalman filter implies good

performance with the other nonlinear filters, the procedures will be

tailored to the extended Kalman filter.

91

(5.3)



5.3 Procedures to Find the Spectral Density Matrix

The first procedure is to find Q(t) such that the sum of squares

of the one-step predicted residuals is minimized. This constitutes a

nonlinear optimization problem, which may be defined by

NAT
min [Z(tk) -h(X(tk Itk-1 ),u(tk),tk) T  kQ k=l

Z[ k Z(t hL(tk k1'-t)t) (5.5)

where Bk represents a weighting matrix.

Finding Q(t) using this formula will require the evaluation of

the derivatives of function h with respect to Q, which are not readily

available. Numerical computation of these derivatives is required,

which makes the use of this criteria expensive.

A second alternative consists on finding Q(t) such that the like-

lihood of the observations given Q(t) is maximized. If Q(t) is as-

sumed constant in time, the problem to be solved is:

max 1(Z(t1), ... , Z(tN)JQ) (5.6)
Q

or

max fZ(Z(t1 ), ... , Z(tN)IQ) (5.7)
Q

where fZ is the joint probability density function of the observa-

tions given Q.
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After linearizations of the observation functions, it can be

shown that this density function is asymptotically multivariable Gaus-

sian, Abramson (1968). The criteria can then be expressed in terms of

the logarithm of the likelihood function as:

max-- {2n1Bk + Z Bk k} (5.8)
Q k=l

where JBkj represents the determinant of matrix Bk, ALk repre-

sents the one-step predicted residuals and Bk denotes the covariance

matrix of the residuals,

Bk = R'(tk) + Hk(O,-,')P(tkltk-l)Hk( oe0) T  (5.9)

The use of this criteria requires the calculation of the deriva-

tives of Bk and A.Ik with respect to the unknown Q, and again these

are not readily available. Numerical calculation of such derivatives

may be obtained at a high cost. These derivatives may also be ap-

proximated. Simple approximations will be pursued in the next sec-

tion. Notice that the second term in Equation (5.8) is a weighted sum

of residuals over the N time steps.

A third idea was introduced by Jazwinski (1969) to overcome the

problem of filter divergence often found in filtering applications.

The object is to estimate Q(t) such that the predictions are consis-

tent with their expectations. The derivation is based on the discrete
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version of the extended Kalman filter error covariance propagation,

i.e., with Equation (3.13) replaced by:

P(t t) ~ k k+lk t) T t ) +k (5.10)k+l Ik kt t~ )9 kPktk k"k k+l'9 k 7k(-0

where

k t k+ (t T) Q'(T) k+1 (5.11)

with Q'(t) being the input dependent spectral density matrix after

linearizations, and with (k(tk+l, T) being the system transition

matrix between times T and tk+1, which results from the solution of,

dk(t, T)

dt = F(X(t tk, U(t), t) Ok (tT) (5.12)

with initial condition bk(T,T) = I, where I is the identity matrix.

Define the i-steps ahead predicted residuals by

Ak+ = Z(t k+) - E{Z(tk)|Z_(t ), ... t Z(t )1 (5.13)AZ Z.t - )+ k+i) (t) Z~kl

i.e., the difference between the actual and predicted observations us-

ing information up to i-time steps in the past. Then using the line-

arized version of the dynamic and observation equations, it is easy to

show that the i-steps ahead predicted residuals are, Jazwinski (1969),
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&Z = Hk+, k(tk+,tk )(X(tk) -X(tk tk

+ H ID (t - It(.4
+ k+i k+2,tk+i k+i-1 + (5.14)

where ~w(+Z--l is the discrete dynamics noise in the interval

[tk+I-1, tk+L) defined in terms of the Gaussian process w'(t) by

+ ftk+Z k- (t T ' (-t)dt (5.15)
Ik--i.k+ -1 k+ -

From Equation (5.14) it is easy to compute the covariance matrix

of the predicted residuals, i.e., for m > X

E[AZ AZT ]= H k+ k(tk+ytk)P tk kTtk+m'tk)Hk+m

X- T T
+ H k+1 . k-i (t k+V, tk+i k+i -1 k+1 ( k+m' tk+i )}H k+m

i=1

+ R'(t k+R,) 6 Ym (5.16)

Q(t) is defined such that the expected covariances of the pre-

dicted residuals equals the covariance matrix obtained from the fil-

ter, i.e., it is defined by the condition:

E[AZ AFT = AZ AZT (5.17)E [ A k, +m . k+i k

for 1 < LS m < me
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Note that condition (5.17) gives a filter with time lag M since

k+M observations have to occur in order to obtain the prediction at

time k+l. The simple case when M is equal to one is fully developed

later in this chapter.

5.4 Approximate Estimators of the Spectral Density Matrix, Q(t)

In this section approximate estimators of matrix Q(t) will be ob-

tained using the approaches of maximum likelihood and of consistency

of the residual covariance matrices.

5.4.1 Maximum Likelihood for System with Transition Matrix

Non-Dependent on Q(t)

If it is assumed that ' k does not depend on the unknown parame-

ters, then the derivatives of the likelihood function may be obtained

recursively. Recall that Equation (5.8), for Q(t) constant in time,

gives Q as the matrix that maximizes

N T-LN(Z(t ),...,Z(tN)IQ) = - n ( I n Bk + AZ B AZ) (5.18)
N 1 N 2 ~k=l 1-k =

The optimal Q matrix may be obtained using Newton's method. The

first order derivatives with respect to the unknowns gives

DLN N a T -l

= T II - XnIBk + Z(A4 B kA )1 (5.19)
aEk=l aE5s k k
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where s is the sth unknown of Q. If the observations lineariza-

tion matrix, Hk, is also non-dependent on Q, these derivatives are

3L N

a
1 N

k=l
Tr { (Bk - B 1 AZ AZ TBk-k -k--k k

- 2Bk A~ 3X(tk tk)-
-2Bk sW

3B k

ac s

H }i (5.20)

with Tr(A) the trace of matrix A.

The shown derivatives may be obtained as

a Bk aP(tkItk-1 HT
=Hk a3s k (5.21)

with 3P(tk tk-l)/3s satisfying the following recursive equa-

tion, Abramson (1968),

ap(tk tk-l)

s k-(tk,tk-)[I - Kk-lHk-l
3P(t k-I tk-2

as

[I - Kk-lHk-lI k- (tk,tk- ) T + s7 -

where Q k-1 is related to Q as in Equation

Similarly,

(5.11).

it is easy to show that 31(tkitk-, )/W satisfies the

following recursive equation:
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3X(t k It k-l tt )I 3X(t k-1 t k-2)
3Es k-( k ,k-)I k-l k-1 s +

[I - KP(tk-E-(tk- 2  T T -lKk-l Hk-l [1 - Kk-Hkl Hk1R' (tk-l k-

(5.23)

To compute the likelihood derivatives, Equations (5.22) and

(5.23) are solved simultaneously with initial conditions

aP(ti1t0) Ql(
s s (5.24)

and

3X(t t)
0 0 (5.25)

s~

Newton's method updates a given estimate of the unknown vector

using the following iterative calculations:

A A 2L - LNE . j - (---- E 1 (5.26)

where E is the current vector of unknown parameters and (32Ln /2

is the matrix of the likelihood second-order derivatives. Because

this matrix is not easily obtained, Abramson (1968) suggests the use

of the conditional information matrix which is known to approximate

for large N the negative of the second-order derivatives.
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Then if the information matrix, JN, is used, Newton's method

becomes
3L

= g a + N -I N
-Th -j-l Nj-l I s n

The conditional information matrix is defined by

N ( )E = EI(
aLN(Z(t )S...,Z(tN )jE j)aLN(O. ** )T A

)( T Z1

Abramson (1968) showed that the (s,t) element of the above matrix is

N j-l s N

k=l
{Tr(B- 3Bk B1k 7 k

+ 2Tr(Bk 1HkGk k-1H )

with G k-1 a matrix defined by

st
Gk Ik-i

T
Sx(tk tk-l) 3(tk tk-1 ^E sat Ij-1 I

which in turn satisfies the recursive equation,
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G st 4 ]s K H I T+Gk k-l k-1l[I - KkHk-lGk-1 k 2[I - Kk-lHk- +

I- KkH aP(tkltk2) [I - Kk -Hk T HkT- R' (tk-1 *Bk-1

R(k) -1] a P tk-l k-l) TT kl

R'(t F 1H [ - H P(t k-1t k-)[I-K H ITJ
k- Hk [I - Kk-lHk- t k [I - Kk-lHk1 kl

(5.30)

with initial condition

G st 0 (5.31)

Although the equations are recursive and appealing for computer

implementation, a considerable amount of storage and computations are

needed to obtain results. Computational cuts may be obtained if it is

assumed that the state covariance derivatives are more important than

the state mean derivatives with respect to the unknown parameters. In

this case the log-likelihood function derivatives reduce to

3LN 1 N -l T -l B
k I Tr{Bk - Bk AZk AZ B) }k (5.32)

i a k=lcdkioa k k

with the approximate conditional information matrix given by
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A stl N Tr1B 3B k 13Bk
k 

-C s TrB B (5.33)
k=l k 3 5  k at

5.4.1.1. Implementation Considerations

Computational savings are achieved by noticing that the informa-

tion matrix JN j-1), is symmetric.

The discrete noise covariance derivatives 3Tk/as are not easy to

obtain because they involve the computation of an integral whose inte-

grand ( k(t k+1T)) is only numerically obtainable. If the variations

of 'Dk on the interval (tk t k+) are small, then Q k may be approximated

by

ik k (tk)Q(tk+l - tk ) (t k) (5.34)

where 4k (tk) is the transition matrix associated with the beginning of

the interval, i.e.,

A (

'0k(tk) = exptF(X(tktk), U(tk), tk)l (5.35)

This approximation allows an easy computation of the discrete

noise covariance derivatives,
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k k s k+l - tk k(t k)

where 3Q/aOs is a matrix of zeros except for the location corre-

spondent to the sth unknown, where the value is one.

5.4.1.2 An Approximate Maximum Likelihood Solution Which Uses Second

Order Likelihood Derivatives

If it can be further assumed that the most important contribution

of the derivatives of the one-step residuals covariance comes from the

term involving matrix Q, then

a~ Hi t tk) k()H
k(tk) ,s (tt - k k )H

(5.37)

which gives the likelihood function derivatives as

3L N ~1 N
= -

og2 k=l
Tr{(Bk - B1 AZ A Z B )kk -k-k k

Hk k(tk) 3Q (t A TT00 tk(t k) H k

From this expression it is easy to compute the second order

derivatives, they are:
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2 k= Tr{- (Bk 1

a3t k
- BiAZ Bk ) }1

but aB k/at = - B 1aBk /atB and then

2 LN = 1
a tac

N 13B k 1 B k - B k I_3B_
I Tr{B k B k - Bk~AZ AZTBk B k

k=l k t 3E k k- k 3t k

- B B B 1AZ AZB } (5.40)

5.4.1.3 An Explicit Sub-Optimal and Simple Estimate

The following derivation follows Abramson (1968). Assume that

the state covariance derivatives are more important than the state

mean derivatives with respect to the unknown parameters. In this case

the likelihood function is given by Equation (5.32) or

LN 1 N _ P(tk tk-1) T
= - 1 TrIABk Hk s Hk} (5.41)

aE k=l

-1 -1 Bywhere ABk B Bk B Bk A4A,1B k .It can be easily shown that Equation

(5.41) is

8LN 1 N

3 k=l

TrHT AB1H 3P(tk tk-l)
k k k s

But
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(5.42)



k k k = ktk-l [P(tkItk-1) - P(tkltk)

- A P(tk t --k--k k I k4

where A 4 = X(tkltk) - 1(tk tk k-1).

Then the likelihood function derivatives are,

Tr{P(tkI tk-l ) -l[P(tkltk-l) - P(t AXTk Iktk ) _ -k

* P(tk tk- 1  aP(tks t

If 3P(tk tk-l)/305 is given by the term including Q, and if

tk - tk-l = 1, then,

Tr(P(tk tk-l k-l (tk-)P(tk- tk- k-1 (tk-1

(tk )T - P(tkjtk) - A4A JP(tk tk -1

k- T k-) (5.45)

or
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3L N

a

~~1 N

k=l

(5.44)

aL

3E s
= 1 N

k=l

T

+ Ak-l (t k-l) k-

k-1(tk-l 7



3L N 1 N AT )P1lt 1 T

= - 2 k 1 [ (t k-i P( k tk-l k-i ( tk-i k-i ( k-i

AXkAXT - P(tk ) + k-l (tk- )P(tk-l tk-i k-(t k-l'

kP(t k k k- 'kl(tkl ] rt (5.46)

with (r,t) denoting the location of the sth unknown of Q.

If it is further assumed that k-l (tk-l) and P(tkltk-1) are

approximately constant over time, then LN /,s = 0 is satisfied when
N N

N AA T T _
SIk-1(tk-) k- A(t k-1)T _ A T- P(tk tk)

k=l
+ k-l (tk-l )P(tk- Itk-1 )k-l (tk-) T = 0 (5.47)

from which the following estimator is obtained for the (r,t) element

of Q, after j iterations:

Art k 1 k- k-1) [Axk- + P(tkItk) - P(tk tk-1

AA A

+ Sk- (t k-1 j-1 k- (t k-1 k-l (t k-l) -1) Trt (5.48)

5.4.2 Estimation of Q(t) from Consistency of One-Step Ahead Residuals

Jazwinski's estimator becomes applicable in real time if Q(t) is

constant over two time steps. In this case the consistency condition

to be achieved is:
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E[A *Az~ = A -AZT (5.49)11 14+1*A~~l "Zk~ *-k+l

The expectation of the left-hand side is

E[AZ )=H (D(t t )Pt T S)HT
E AZ aT ]=H+kt+,k)(tkltk)sk(tk+l,tk)Hk~A k +l -+l k+l k k+l'9 k kt)kt~ ~

+ H Q kH + R'(tk) (5.50)k+1 kk+l k+l

If Qk is approximated using the transition matrix at the beginning

of the interval, condition (5.49) becomes,
A A~T t T A7 AT

H k+l k(tk)Q(tk)(tk+1 - tk) (tk ) H l k= A+l "Z+l

-k+l k k(tkk)P(tktk k(tk H - R(t k+l) (5.51)

If Q(tk+1) P Q(tk), this equation provides an estimate to be used

the next time step.

If the Q matrix is constant over say L time steps, a smoothed es-

timate of Q(t) may be obtained solving:

L H T L T

k=1 k (tk)Q(t)(tk+1 k) k (tk k k=1 1k +1

L ATT
-k (Hk+1 k (tk )P(tkltk)'(tk ) H+l + R' (tk+l)) (5.52)
k+l

In general, the linear Equations (5.51) and (5.52) are not easily

solvable for Q, because typically there are more unknowns than equa-
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tions. This means not all the elements of Q(t) can be estimated but

only as many as the number of independent conditions.

If estimates of Q(t) are obtained adaptively, i.e., changing the

matrix every time step, one basically obtains the MISP (mutually

interactive state/parameter estimation) estimator as described by

O'Connell (1980).

If more elements of Q(t) than the ones obtained from Equations

(5.51) or (5.52) are necessary, more consistency conditions must be

introduced.

5.4.2.1 Further Conditions on Residuals Useful in Estimating Q

Kitanidis and Bras (1978) used the previously explained consis-

tency of the lag zero covariance of the residuals as well as the con-

sistency on the higher lags correlation of the residuals to

estimate a constant in time and diagonal T (in discrete form). The

condition they employed is the well known whiteness of the residuals

if the filter is optimal. In this section it will be shown how to use

such conditions to obtain more equations from which elements of Q (in

continuous form) may be obtained.

The whiteness of the residuals condition states that if the fil-

ter is optimal the residual correlations of lags other than zero

should be zero. The expected correlation matrices are easily computed

using Equation (5.14). They are defined by
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C1 (k) = E[A k

These expectations are, Kitanidis and Bras (1978):

C 1 (k) = Hk k-l[P(tk-l Itk-2)H l

C(k)

- Kk-lBk-lI

k kA

H 
Hk'Zkl[I -Kk- lH k-l] 4k- [I -K k-2H k-2

[P(tk- t )H T - Kk-iBk-i I (5.55)

where Bk denotes the covariance matrix of the residuals.

The whiteness condition is satisfied if for all i:

P(tk-i Jtk-i-)H -

Premultiplying by Hk-i

the necessary condition:

k-iBk-i = 0

and expanding P(tk-i tk-i-l)

(5.56)

gives

H 0 k-i-1(tk-i-1)P(tk-i-l tk-i-1 k-i-1 (tk-i-1)H ki

+ Hk-i k-i-1(tk-i-A)Q(tk k-i-1(tk-i-)H k_ -H k-i K k-i0B =0k-i k-i k-i '

(5.57)

If Bk-i is assumed given from lag zero conditions,

tions provide the following additional conditions:

these equa-
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- H k-i k-i-1(tk-i-1)P(tk-i- tk-i-1 k-i-1(tk-i-1 H i

(5.58)

for all i.

If applied for say L lags, then the updating of the Q matrix are

made every L time steps, with smoothed conditions (5.58) according to

the number of equations over the period of L time steps, i.e., L lag-0

equations, L-1 lag- equations, and so on.

5.5 Summary

The problem of estimating the spectral noise covariance matrix of

a nonlinear stochastic dynamic system has been reviewed. The problem

is a nonlinear optimization problem generally solved exactly by nu-

merical methods. Simple approximations based on the maximum likeli-

hood approach and on the consistency of the filter residuals have been

presented. Results of applying these procedures to estimate the

spectral density matrix of the rainfall-runoff model are given in the

next chapter.
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Chapter 6

PRACTICAL ESTIMATION OF THE DYNAMICS NOISE SPECTRAL DENSITY MATRIX

6.1 Introduction

The results of applying the spectral density matrix estimation

techniques to the rainfall-runoff model are presented in this chap-

ter. One step ahead predictions were obtained for the Bird Creek

basin in Oklahoma, using the extended Kalman filter for the month of

May 1960.

The physical model parameters were those of Table 4.2, with the

observations noise covariance matrix characterized as in Table 4.5.

The covariance matrix of the inputs, Qu(t), was assumed, as in Chap-

ter 4, equal to zero; so that the spectral density matrix for the

linearized system equals Q(t).

All predictions were obtained from the same set of initial state

mean and standard deviations. The values of such conditions were the

same used in extended forecasting in Chapter 4.

6.2 Approximate Maximum Likelihood Results

A constant in time and diagonal spectral density matrix Q was

found using the approximate maximum likelihood procedure of Chapter

5. This approximate estimator main assumptions are that the transi-

tion matrix, Ok, and the linearization matrix of the observations,

Hk, both have near zero derivatives with respect to the unknown ele-

ments of Q. It is further assumed that predicted error covariance
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derivatives are more important than predicted state mean derivatives,

and that the most important contribution to the predicted error co-

variance derivatives comes from the derivatives of the discrete dynam-

ics noise covariance matrix. Under these assumptions the first and

second order likelihood derivatives are given by Equations (5.38) and

(5.40).

The estimates of the matrix Q were found using Newton's method,

i.e., Equation (5.26). Not only second order derivatives but also the

conditional information matrix (Equation (5.33)) was used to update

the estimates. The estimator was calculated from two different sets

of initial conditions: one which is the best matrix Q in Chapter 4,

and the other which gave the worst results in Chapter 4; i.e., Q

matrices of levels 4 and 0, respectively.

Lower and upper bounds were imposed on the estimates. If the ap-

proximate procedure gave negative standard deviations, a value of

10-5 was used. It was found that if no upper bound is employed, the

procedure often gives unrealistically high standard deviations which

when used in the next iteration lead to numerical problems in the in-

tegration of the differential equations of the error covariance of the

states. The upper bounds were obtained by trial and error by studying

the magnitudes of the states of the rainfall-runoff model.

The initial spectral density standard deviations and the upper

bounds for each state are given in Table 6.1.
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, Table 6.1

Initial Spectral Density Standard Deviations and Upper Bounds

Q-Level

State 0

2

10-4

x p

x 1

x
2

x
3

x4

x
5

x6

S
1

S2

S 3

4 Upper Bounds

10 100

10- 1

5

60

20

80

80

40

1.87

6.82

7.5

1

1.7

100

50

50

500.17

112

0.05

0.0187

0.0682

0.075

0.70

0.17

0.17



Given that each iteration requires considerable amount of compu-

tational time (around 10 CPU minutes for a month of data), a maximum

of 25 iterations was allowed. This implies that convergence may not

be achieved. The estimate was defined by the spectral density matrix,

giving the highest log-likelihood value during the 25 iterations.

Since bounds are being used it is possible to fail to have improvement

in the log-likelihood value from iteration to iteration. However,

higher log-likelihood values than those corresponding to the initial

conditions were always found.

Table 6.2 includes the estimated values of the Q matrix under

different initial conditions. This Table also includes the number of

data points used in the estimation, the mechanism used to iterate with

Newton's method and the number of iterations required to obtain the

estimates.

Tables 6.3, 6.4, and 6.5 summarize respectively the residual sta-

tistics, normalized residual statistics and least squares indices for

discharge predictions obtained from Q matrices estimated from a month

(124 points) of data; i.e., for Q of levels 6, 7, 8, and 9. Table 6.5

also includes the log-likelihood values for the period.

As is shown the approximate maximum likelihood procedure improves

the log-likelihood and the overall quality of the predictions. Better

predictions were found if the conditional information matrix is used

in Newton's method. In this case the results are excellent indepen-

dently of the initial condition and with similar convergent values,

(see Table 6.2 for Q of levels 6 and 8).
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Table 6.2

Approximate Maximum Likelihood Spectral Density Standard Deviations

Q-Level

7 8 9 10 11 12 13

100 100

60 10-5

16.46 10-5

10-5

10-5 10-5 10- 5

100 100 100 100 100 100

60 10-5 10-5 60 10-5 10-5

20 20 10-5 10-5 17.9 20

80 80 80

80 80 10-5 10-5 10-5

40 40 40 40 10-5

10-5 10-5 10- 5

Xp

X 1

X2

X 3

X 4

X 5

X 6

S 1

S 2

100

13.2 10-5

40 36 40

100 100

1.58 5.9

100 10-5

0.54 3.75

4.84 10-5

S
3

Initial Q

Data Points

Second
Corrections

Iterations

1.31 10-5

4 4

124

i

124

9 2

15 12

9.9

0.71 10-5

0 0

124 124

j 32

16 3

1.19 10-5 10-5 10-5

1.45 2.47 0.76 10-5

4 0 4 0

40 40 84 84

3

4

J J J

3 13 16

32 Second order derivatives
3 Conditonal information matrix
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Table 6.3

Discharge Residuals Statistics for Q Matrices Obtained by
Approximate Maximum Likelihood, 124 Data Points

Second
Q-Level Corrections

4 Reference

32

Variation
Mean Coefficient Skewness

0.117

-0.120

0.011

2.74

-3.08

28.6

2.31

0.24

Autocorrelations
Lag-l Lag-2 Lag-3 Lag-4

0.70 0.68 0.41 0.33

0.43 -0.17 -0.13 0.06

0.40 -0.22 0.59 -0.01 0.21

0 Reference

J

32

0.344 1.94

-0.008 -24.5

-0.056 -8.0

2.11

0.72

-2.1

0.94 0.79 0.59 0.38

0.32 -0.24 -0.11 '0.20

-0.20 0.12 0.19 -0.05

a2 Second order derivatives
J Conditional information matrix

H
H
U,

6

7

8

9

I -" - -.- -1111A..4..,.,.,*.M -.- "-,*---, I- - -



Table 6.4

Discharge Normalized Residuals Statistics for Q Matrices Obtained by
Approximate Maximum Likelihood, 124 Data Points

Second
Q-Level Corrections

Variation
Mean Coefficient Skewness

Autocorrelations
Lag-l Lag-2 Lag-3 Lag4

Reference

J

32

Reference

J2

a2

0.291

0.021

-0.206

1.150

-0.026

-0.76

3.27

8.21

-5.50

1.74

-13.92

-3.10

Second order derivatives
Conditional information matrix

4

6

7
I-A

0

8

9

a2
3

1.62

1.37

-0.13

1.49

-0.32

-1.60

0.56

0.45

-0.39

0.92

0.37

-0.10

0.68

-0.08

0.60

0.78

-0.26

0.10

0.35

0.05

-0.12

0.61

-0.14

0.19

0.38

0.24

0.25

0.43

0.19

-0.05



Table 6.5
Discharge Least Squares Indices and Model Log-Likelihood for Q

Matrices Obtained by Approximate Maximum Likelihood,
124 Data Points

Second Log
Q-Level Corrections Efficiency Determination Persistence Extrapolation Likelihood

4 Reference

6

7

J

32

H

0 Reference

8

9

32
J

J

32

0.85

0.96

0.87

0.27

0.94

0.73

Second order derivatives
Conditional information matrix

0.92

0.96

0.87

0.80

0.95

0.77

-0.55

0.59

-0.37

-6.51

0.44

-1.71

-2.73

0.00

-2.30

-17.10

-0.36

-5.52

-1104.8

- 683.2

- 547.8

-1600.5

- 615.3

- 760.2



Figures 6.1, 6.2, and 6.3 show the discharge lead-one predictions

for Q matrices of levels 4, 6, and 7. Notice that although Q of level

7 had a larger likelihood, Q of level 6 gives a better looking hydro-

graph and hence better least squares indices.

Figures 6.4, 6.5, and 6.6 show the lead-one discharge predictions

for Q matrices of levels 0, 8, and 9. Notice the improvement obtained

by using the Q matrix from the maximum likelihood procedure.

6.2.1 Sensitivity of the Estimation on the Number of Data Points

In an effort to study the sensitivity of the approximate maximum

likelihood method, the procedure was utilized with variable amounts of

information. The matrix Q was estimated using 40 and 84 data points

from the beginning of May 1960, which correspond respectively to using

information of the first and first two discharge peaks on the month.

The estimation was made using the conditional information matrix

in Newton's method. The two initial conditions of Table 6.1 were con-

sidered. The final estimates (matrices Q of levels 10, 11, 12, and

13), and the number of iterations necessary to obtain them are given

in Table 6.2. As is observed in this Table, the initial condition has

an effect on the final estimate for the short data set. As the number

of data points increases, the effect of the initial condition tends to

diminish, with the effect practically disappearing if the whole month

is employed.

118



U,

0.0 12.3 24.6 36.9 49.2 61.5 73.8
TIME STEP NUMBER

86.1 98.4 110.7 123.0

Figure 6.1 Stochastic Prediction of Discharge,- Bird Creek,
Q-4

May 1960, EKF,
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Figure 6.2 Stochastic Prediction of Discharge, Bird Creek,
Q-6

May 1960, EKF
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Figure 6.3 Stochastic Prediction of Discharge,
Q-7

Bird Creek, May 1960, EKF,
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LEGEND
OBSERVATIONS

.. PREDICTIONS

6.0 12.3 24.6 36.9 49.2 61.5 73.8
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Figure 6.4
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Discharge, Bird Creek, May 1960, EKF,
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Figure 6.5 Stochastic Prediction of Discharge, Bird Creek, May 1960, EKF,
Q-8
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OBSERVAT IONS
PREDICTIONS~

rr
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Figure 6.6 Stochastic Prediction
Q-9

of Discharge, Bird Creek, May 1960, EKF,
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Tables 6.6, 6.7, and 6.8 show the residual statistics, normalized

residual statistics and least squares indices for the lead-one dis-

charge predictions, when the matrices estimated using short data peri-

ods are used to forecast in the whole month of May 1960. Notice that

although the model likelihood increases as more data points are used

in the estimation of matrix Q, the quality of the statistics of re-

siduals and normalized residuals do not necessarily follow the same

pattern.

As can be seen in Figures 6.7 and 6.8 for starting matrix Q of

level 4, and in Figures 6.9 and 6.10 for starting matrix Q of level 0;

the more data points used in the estimation, the higher the predicted

peaks.

6.2.2 Local Sensitivity of the Approximate Maximum Likelihood

-stimnate-

To check the importance of spectral density values equal to the

upper or lower bounds, a sensitivity study in the vicinity of the ap-

proximate maximum likelihood estimate was performed. The results ob-

tained with the matrix Q of level 8 (see Table 6.2) are presented in

this section. Similar results were also obtained for the matrix Q of

level 6.

Table 6.9 includes the least squares indices for discharge pre-

dictions and the model log-likelihood value when one element of Q of
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Table 6.6

Discharge Residuals Statistics for Q Matrices Obtained by
Approximate Maximum Likelihood,

40 and 84 Data Points

Second
Q-Level Corrections

Variation
Mean Coefficient Skewness

Autocorrelations
LaJ- Lag-2 Lag-3 L'ag-4

4 Reference

J

J

0.117

0.257

2.74

1.77

-0.088 -6.66

2.31 0.70 0.68 0.41 0.33

2.10 0.92 0.75 0.56 0.37

-0.06 0.87 0.59 0.24 -0.08

0 Reference

11

13

J

0.344

0.225

0.026

1.94

1.85

13.4

2.11 0.94 0.79 0.59 0.38

2.05 0.91 0.74 0.54 0.34

1.99 0.76 0.40 0.16 0.08

J Conditional information matrix

10

12

4S



Table 6.7

Discharge Normalized Residuals Statistics for Q Matrices Obtained by
Approximate Maximum Likelihood,

40 and 84 Data Points

Second
Q-Level Corrections

4 Reference

10 J

12
H

Lu

J

Variation
Mean Coefficient

0.291

0.222

3.27

1.91

-0.174 -6.00

Skewness

1.62

2.20

-1.36

Autocorrelations

Lai-. Lag-2 Lag-3 Lag-4

0.56 0.68 0.35 0.38

0.93 0.76 0.56 0.35

0.84 0.54 0.20 -0.08

0 Reference

11 J

3

1.150

0.121

1.74

1.98

-0.310 -5.68

1.49

2.21

-0.33

0.92 0.78 0.61 0.43

0.92 0.75 0.54 0.33

0.55 0.18 0.12 0.08

3 Conditional information matrix

13



Table 6.8

Discharge Least Squares Indices and Model Log-Likelihood for Q Matrices
Obtained by Approximate Maximum Likelihood,

40 and 84 Data Points

Second Log
Q-Level Corrections Efficiency Determination Persistence Extrapolation Likelihood

4 Reference

10

12

J

0 Reference

11

12

J

J

J Conditional information matrix

C'

0.85

0.64

0.54

0.92

0.92

0.60

0.80

0.93

0.85

-0.55

-2.65

-3.66

-6.51

-1.97

-0.59

0.27

0.71

0.84

-2.73

-7.79

-10.23

-17.10

-6.15

-2.83

-1104.8

- 723.1

- 677.2

-1600.5

- 772.6

- 592.0
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level 8 is changed at a time. The changes consist in setting esti-

mated values which are at the upper bound to the lower bound and vice-

versa, and changing values which are between the bounds to the lower

bound.

As can be observed, the likelihood is affected only when elements

on the precipitation and channel portions of the model are changed.

The discharge least squares indices are insensitive to spectral

density changes of states in the soil, and also to changes in the

spectral density of the condensed water volume. The spectral density

values for the channel are the most sensitive in least squares

indices, although the likelihood of the model is not heavily affected.

The vicinity of the matrix Q of level 8 was further studied by

setting all possible combinations of upper bound spectral density val-

ues to their lower bounds. The results obtained for the discharge

least squares indices and model likelihood are shown in Table 6.10.

The results of Table 6.10 follow those of Table 6.9. Setting any

spectral density values of the soil states to zero, does not affect

either the model likelihood or the discharge least squares indices.

By changing the spectral density value of the precipitation state to

zero, the quality of the discharge predictions is only slightly de-

creased. The model likelihood is considerably decreased by having the

precipitation model error covariance propagate with zero spectral

density value. As can be seen in Figures 6.11 and 6.12, a larger

spectral density for Xp gives larger precipitation predictions.
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Table 6.9

Discharge Least Squares Indices and Model Log-Likelihood
One Dimensional Sensitivity, Q of Level 8

Spectral
Standard
Deviation
Changed

Reference

x
p

x 1

x
2

x
3

x4

x
5

x6

Si

S2

S 3

Efficiency

0.94

0.933

0.945

0.945

0.940

0.954

0.935

0.945

0.563

-0.31

0.563

Determination Persistence

0.95 0.44

0.934 0.318

0.946 0.436

0.946 0.436

0.942 0.389

0.954 0.529

0.938 0.339

0.946 0.439

0.883 -3.47

0.594 -12.42

0.845 -3.47

Extrapolation

-0.36

-0.643

-0.359

-0.357

-0.471

-0.135

-0.590

-0.352

-9.78

-31.30

-9.77

Log
Likelihood

-615.3

-1625.8

-615.3

-615.2

-616.8

-612.9

-616.6

-615.4

-669.7

-693.1

-728.4
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Table 6.10

Discharge Least Squares Indices and Model Log-Likelihood
High Dimensional Sensitivity, Q of Level 8

Spectral
Standard
Deviation
Changed Efficiency

Reference 0.94

X , S' 10.933.

X ,9X 2 0.931"

X ,9X 5 0.932

X ,Xx 2 0.944

X1 ,X5  0.939

X 2,X 5 0.938

X p ,Xlx ,X2 0.933

X p,X yX5 0.932

X p ,X2,X 5 0.931

X 1,X 2 ,X 5  0.939

Xp1 ,X 1 X 29X5 0.931

Determination

0.95

0.934

0.931

0.933

0.945

0.941

0.940

0.933

0.933

0.931

0.941

0.932

Log
Persistence Extrapolation Likelihood

0.44 -0.36 -615.3

0.318 -0.64 -1625.8

0.299 -0.69 -1626.3

0.305 -0.67 -1626.1

0.430 -0.37 - 615.4

0.376 -0.50 - 616.0

0.362 -0.54 - 616.1

0.311 -0.66 -1625.8

0.305 -0.67 -1626.1

0.291 -0.71 -1626.3

0.375 -0.50 - 615.9

0.291 -0.71 -1626.3
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When the spectral density element of precipitation is driven to zero,

the physical model is fully believed and then its predicted error

variance goes to zero. In this case, the residual variance for pre-

cipitation reduces to the mean areal precipitation observation vari-

ance (see Equation (5.9) and Table 4.1) and therefore takes a value of

one. Figure 6.13 gives the standard deviations of the residuals of

precipitation when the spectral density value provided by the approxi-

mate maximum likelihood method is used. Notice that the lower

bound for those values is one. The log-likelihood for precipitation

decreases when a zero spectral density value is used, because the sum

of squares of residuals for this case is much bigger than the sum of

the logarithms of residual mean areal precipitation variances when the

spectral density is not zero (see Equation (5.8) for one observation).

Figures 6.14 to 6.23 show the evolution in time of the predicted

states of the rainfall-runoff model, when using the spectral density

diagonal matrix of level 8 with values of elements corresponding to

states Xp, X1, X2, and X5 set to their lower bounds. Since

the precipitation and soil dynamics are fully believed, these graphs

represent the deterministic evolution of those states. The only

significant gain matrix elements are the ones related to the first and

last channel reservoirs (see Figures 6.24 and 6.25). Notice the large

magnitude of the gains on the first reservoir, which implies that what

is observed as discharge comes primarily from the updating mechanism
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Figure 6.17 Predicted Trajectory of Lower
Q-8, only channel non-zero
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Figure 6.18 Predicted
1960, Q-8,

Trajectory of Lower Zone Free Primary Volume, May
only channel non-zero
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Figure 6.21
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Figure 6.23 Predicted Trajectory of Volume on Third Reservoir,
Q-8, only channel non-zero
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of the filter and not from the soil output. Of course this is an

undesirable feature, but recall that conservation of mass is not

imposed at the updating step of the filter.

The fact that the filter is basically tracking the discharge ob-

servation is confirmed by looking at Figures 6.26 through 6.28, which

represent extended forecasts of discharge. Notice the lag in the rise

of the hydrograph and -the sudden drop of the forecasts, based on past

information of discharge. Observe, however, the good reproduction of

the time to peak and peak magnitudes when predictions are made six

hours ahead. Notice also that the extended forecasts produced using

matrix Q of level 8 with all but channel values set to zero gives

better results than previously found for the Q matrix of level 4 even

when using the nonlinear filter smoothers (see Figures 4.30 to 4.33).

6.2.3 Sensitivity of the Approximate Maximum Likelihood Estimate on

the Upper Bounds

Given that some of the spectral density values estimated by the

approximate maximum likelihood procedure attain the prespecified upper

bounds, the sensititivity of the estimates on such bounds was

studied. Two upper bounds, besides the one in Table 6.1, were consi-

dered. A total of 124 time steps were used in the estimation, with

the conditional information matrix used as the mechanism to iterate in
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Newton's method. The estimation was done using the spectral density

matrix of level 0 as the initial condition for the procedure.

Table 6.11 includes the different upper bounds and the spectral

density standard deviations obtained by imposing such bounds. Both

cases were found convergent after the number of iterations shown on

Table 6.11. Efforts to use a larger bound than the one given in the

fourth column of this table failed; after few iterations the differen-

tial equations that propagate the error covariance could not be nume-

rically integrated.

As can be observed in Table 6.11, the first set of bounds leads

to convergence similar in pattern to those given (Table 6.2) for

bounds in Table 6.1. However, the second set of limits led to

convergence to a different pattern, with discrepancies found on

parameters related to the states X3, X5, and S 2 -

Table 6.12 contains the discharge least squares indices and the

model log-likelihood when predictions are obtained using the conver-

gent spectral density matrices of Table 6.11, i.e., matrices of levels

14 and 15. Table 6.12 also includes the results obtained by setting

all spectral density values of non-channel states to the lower bound,

and also the previously discussed results obtained with the upper

bounds given in Table 6.1.

As the upper bound becomes larger, the obtained value for the

likelihood function grows and the discharge least square indices be-

come slightly better. If only positive spectral density values are
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Table 6.11

Upper Bounds Sensitivity and Their Corresponding Approximate
Maximum Likelihood Standard Deviation Estimates

Upper Bound

40

95

25

130

110

25

120

20

Q-1 4
40

95

25

10-5

25

10-5

13.8

10S 2

S
3

Initial Q

5

0

0.71

Upper Bound

200

200

100

200

200

100

200

40

20

10

0

Data Points 124

Second
Corrections J

Iterations 12

J Conditional information matrix

145

State

X
p

X2

X 2

X 3

X
4

X
5

X 6

S

Q-1 5
200

200

100

200

10-5

10-5

10-5

0.951

8.54

1.67

124

17



Table 6.12

Discharge Least Squares Indices and Model Log-Likelihood for
Variable Upper Bounds

Q-Level Efficiency Determination Persistence

14

8

15

0.934

0.945

0.958

14*

8*

15*

0.927

0.931

0.931

0.936

0.946

0.958

0.929

0.932

0.949

0.324

0.437

0.570

0.252

0.291

0.302

Log
Extrapolation Likelihood

-0.63

-0.36

-0.04

-0.80

-0.71

-0.68

*Spectral density values other than channel states set to zero.
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-486.4

-1626.8
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allowed in the channel states, the global likelihood is decreased due

to the lower precipitation residual variance, but as in the previous

section excellent results are still obtained for discharge

predictions.

Figure 6.29 shows the discharge predictions obtained using the

largest upper bound, i.e., for Q of level 15. Due to the high spec-

tral density value for the precipitation portion, a large predicted

peak occurred at time step 100. However, overall predictions are ex-

cellent, with small timing errors on both the rising and falling por-

tions of the hydrograph. Figure 6.30 depicts the discharge predic-

tions when all spectral density values except those correspondent to

the channel are set to zero. Notice the quality of the predictions.

Although the results of the approximate maximum likelihood proce-

dure suggest that the only spectral density elements that are impor-

tant are the ones corresponding to the channel states, it must be em-

phasized that these are only local results. If the spectral density

values for channel states are off the approximate maximum likelihood

values, the discharge predictions may then be sensitive to changes on

spectral density values for other states. The results of Chapter 4

are one example where spectral density values of states not in the

channel play a key role in the quality of the predictions.
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Figure 6.30 Stochastic Prediction of Discharge, Bird Creek, May 1960, Q-15
only channel non-zero
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6.2.4 Results from the Sub-Optimal Explicit Maximum Likelihood

Estimator

The explicit estimator described in Equation (5.48) was found

convergent (using a total number of time steps N of 124) to the zero

spectral density matrix. This implies that the predictions found by

using the Q matrix given by such formula coincide with the determinis-

tic propagation of the rainfall-runoff model, and therefore as in

Chapter 4 the results badly underestimate the hydrograph peaks. The

main reason for such a poor estimate is the fact that this simple es-

timate is obtained assuming that the system transition matrix is con-

stant in time, a condition that is not valid for different flow

regimes.

6.3 Results for Q Matrices Estimated from Consistency Conditions

Time varying and diagonal spectral density matrices Q(t) were ob-

tained using consistency conditions on the residuals covariance ma-

trix. Given that the physical model has two observations, and that

the precipitation is mostly an input to the rest of the model, the

Jazwinski's estimator (Equation (5.17)) provides only two independent

conditions for elements in Q(t).

The two conditions used correspond to consistency of actual with

expected variances of residuals. For this case the equations (5.51)

have a simple solution: they are two simultaneous equations with two

unknowns, with the characteristic matrix of the system being triangu-
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lar. The independent equation provides the spectral density value for

precipitation. Once this is obtained, its value is replaced in the

other linear equation to obtain the spectral density value of any

other prespecified state of the rainfall-runoff model.

Preliminary results suggested that the state to be used besides

the condensed water volume should be such that discharge is sensibly

affected. The estimator was then computed using either states in the

channel or the upper zone free volume.

As with the approximate maximum likelihood procedure, this adap-

tive estimator was bounded below and above. Notice that small values

in the transition matrix diagonal for the second selected state may

translate into large values of Q(t), and hence the necessity of the

upper bound (see Equation (5.51)).

Table 6.13 includes the discharge least squares indices when the

Jazwinski's estimator is used every time step. Also included are the

elements of matrix Q that are being changed from time to time and the

Q-level matrix that defines the elements which are not being changed.

Results obtained by not applying the Jazwinski's estimator, are also

presented in such table under the heading "Reference." As is shown,

performance may be'improved by the use of this estimator, but no defi-

nite trends are obtained: for a given spectral density matrix, a

given combination of states may improve performance, but that same

combination may decrease performance for other spectral density

matrices.
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Table 6.13

Discharge Least Squares Indices.
Adaptive Estimation of Q Matrix Every Time Step

Elements
Estimated Efficiency

Reference 0.266

XpSS3  0.098

Xps 2 0.816

XPS 1 0.710

XpX2 0.355

Determination Persistence

0.803 -6.51

0.611 -8.23

0.882 -0.88

0.745 -1.97

0.763 -5.60

Extrapolation

-17.1

-21.2

-3.5

-6.1

-14.9

Reference

XpS3
XpS 2

Xp,%S 1

XpX2

Reference

XpS3

Xp,Sl

Xp,2

Q-Level

0

0

0

0

0

0.848

0.764

0.828

0.875

0.857

0.945

0.838

0.936

0.696

0.936

0.925

0.896

0.880

0.892

0.934

0.946

0.854

0.937

0.727

0.937

-0.55

-1.42

-0.76

-0.28

-0.46

0.44

-0.66

0.35

-2.11

0.35

-2.7

-4.8

-3.2

-2.1

-2.5

-0.36

-2.99

-0.56

-6.50

-0.55
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As the reference performance improves, the estimator usefulness

seem to decrease. The estimator may give great improvements for poor

reference performance, as shown in Figure 6.31. Figures 6.32 and 6.33

show other cases for which good results were obtained.

Given the algebraic simplicity of the procedure, computational

time is not considerably increased. Therefore, it is recommended to

check several state combinations with past.data and see which (if any)

give together with a filtering procedure a useful forecasting tool.

Jazwinski's estimator was also employed assuming matrix Q is

constant over periods of two and four time steps. Results for the

obtained discharge least squares indices are shown in Table 6.14. The

tendency of the results indicate that the more often matrix Q is

changed the better. Notice that in some cases better results are

obtained for the estimator applied every four time steps; however, in

such cases there is no significant improvement over the reference

performance (see Table 6.13). Although more information is being used

by averaging the estimate over more than one time step, the rapid

changes that occur in the hydrograph will not be reproduced if the

currently used matrix Q does not present global hydrograph conditions

(see Figure 6.34).

Consistency conditions of lags other than zero were incorporated

to the estimator (see Equation (5.58)). The discharge least squares

indices obtained when such conditions are added are included in Table
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Table 6.14

Discharge Least Squares Indices.
Adaptive Estimation of Q Matrix,

Variable Estimation Lag

Q-Level

0

0

0

0

4

4

4

4

4

4

4

4

8

8

8

8

Esti-
mation

L Efficiency Determination Persistence Extrapolation
4 0.398 0.782 -5.1 -13.8

4 0.501 0.585 -4.1 -11.3

4 0.198 0.310 -7.2 -18.8

4 0.442 0.808 -4.7 -12.7

2 0.774 0.891 -1.3 -4.6

2 0.754 0.813 -1.5 -5.0

2 0.838 0.879 -0.6 -3.0

2 0.845 0.923 -0.6 -2.8

Elements
Estimated

Xp,S
3

Xp,S
2

XpSl

Xp,X
2

Xp,S
3

Xp,S
2

Xp,S 
1

Xp,1X 2

Xp, S3

Xp,S
2

XpSl

Xp,X
2

Xp,S
3

Xp,S
2

XpS
1

XpX
2

0.930

0.613

0.847

0.931

0.854

0.944

0.602

0.944

-0.7

-3.8

-1.1

-0.4

-1.9

0.4

-3.6

0.4

-3.1

-10.6

-4.0

-2.4

-5.9

-0.4

-10.1

-0.4
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0.833

0.531

0.798

0.862

0.718

0.944

0.548

0.943
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6.15. As is shown, no improvement resulted from having more condi-

tions. Two reasons may explain this: first, the matrix Q is updated

only after L+l time steps where L is the number of additional lags

considered; and second, given the way the estimator is defined, the

consistency conditions on residuals at lag zero are used in the defi-

nition of conditions for higher lags, leading to no additional inde-

pendent information.

6.4 Summary

This chapter describes the results of estimating the diagonal dy-

namics noise spectral density matrix for the rainfall-runoff model,

using the procedures described in Chapter 5.

The approximate maximum likelihood method gave better results if

the iterations were obtained by means of the conditional information

matrix on Newton's method. As more information is included, a more

reliable estimate is obtained. The final estimate was found sensitive

to upper bounds imposed to the spectral density standard deviations.

However, the estimate with all values equal to zero except for such

elements corresponding to channel states was found to give excellent

one-step ahead predictions (see Appendix C for an extensive analysis

of the use of such a matrix). This estimate, however, had the

undesirable property that the channel is driven primarily by the

discharge observations and not from the water outflow from the soil
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Table 6.15

Discharge Least Squares Indices.
Adaptive Estimation of Q Matrix Using
Consistency Conditions of Higher Lags

Elements
Q-Level Estimated

4 Reference

4 XPS32S

4 Xp ,S2'S1

4 XpX2 ' S1

4 XpAS2 'Sl'S 3

4

4

xp,S1 , S 3 ,X 2

XpX 2* SS2

Efficiency

0.85

0.582

-4.47

0.758

-0.33

0.134

Determination

0.92

0.634

0.323

0.761

0.333

0.308

-3.96 0.321

Persistence

-0.55

-3.28

-55.0

-1.47

-12.7

-7.9

Extrapolation

-2.73

-9.30

-133.9

-4.96

-32.0

-20.3

-49.7 -121.1

~--, -

H
u,
00~



component of the model, implying that perhaps with a simpler soil

model, the same quality of results might be obtained.

The estimation of the spectral density matrix based on consis-

tency conditions gave results that depend on the spectral density ma-

trix that is used. Better results were obtained if matrix Q is

changed every time step. The usefulness of the estimator tends to di-

minish as better reference values are used (obtained using a Q-matrix

constant in time). Due to its low computational cost, the use of such

estimator could be of help in cases where bad reference Q matrices are

being used.
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Chapter 7

FILTERING OF LARGE SCALE BASINS

7.1 Introduction

Serious computational problems may be encountered if the tech-

niques presented in Chapter 3 are applied to a large scale system.

This is primarily due to the large amount of calculations required in

the propagation and updating of the error covariance matrix. If there

are M subsystems and if on every one of them a model with n states is

used, the composite state vector that describes the large scale system

has nxM components, and therefore the error covariance matrix has di-

mension nxM by nxM. The number of computations required on the best

case, the extended Kalman filter, grow as (nxM)3 . With n on the or-

der of 10 for the rainfall-runoff model, a value of M greater than 5

may be problematic, especially if calculations for short forecast lead

times are obtained using a mini- or microprocessor.

Procedures to deal with the computational burden due to the error

covariance matrix have been given in the modern estimation theory li-

terature. They represent a trade-off between computational efficiency

and accuracy of the predictions.

Gelb (1974), in the section regarding suboptimal filter design,

mentions the idea of prior specification of the filter gain matrix.

If this can be done, the updating step becomes very simple. Also this

implies that if only mean characteristics are of interest, only the

state mean dynamic equations have to be solved.
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Figures 7.1 to 7.4 show gain time traces with respect to the two

observations for some of the states of the rainfall-runoff model

obtained for the Bird Creek basin. As can be observed, it is not easy

to approximate these traces with smooth functions of time.

An algorithm that estimates a portion of the state vector of a

linear dynamic system was proposed by Sims (1974). The difficulties

of applying this procedure lie on the specification of a decision

mechanism that selects at every time step the representative compon-

ents of the state vector. Only by extensive simulation studies, which

comprehend diverse meteorological conditions, such decision algorithm

may be defined.

Another way to decrease the computational burden due to the

propagation of the error covariance matrix is to decouple states which

naturally show weak connections. By doing this, it is possible to

break a high-order filter into several mutually exclusive low-order

filters. In the following section of this chapter, such an idea will

be applied to the filtering of a large scale basin composed of several

sub-basins.
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7.2 Block Diagonal Decomposition Filters

A hypothetical large scale basin is shown in Figure 7.5 It is

assumed that there are measurements of all input and observation vari-

ables, for all the sub-basins. The goal is to forecast mean areal

precipitation and discharge on and from each of the sub-basins without

treating the composite representation of all of them.

Two decomposition procedures which treat sub-basins separately

were introduced by Puente, et al. (1983) and by Georgakakos (1983).

Both procedures are based on the schematic representation of the large

scale basin given in Figure 7.6. The nodes on this Figure represent

the only physical interconnections taken into account by such

procedures, e.g., discharges from upstream sub-basins that flow into

downstream sub-basins. No dynamic connections between precipitation

and soil states in different sub-basins are assumed.

Both methods first forecast upstream and then downstream

sub-basins, using upstream discharge predictions as inputs to the

channel component of respective downstream sub-basins. Because

upstream discharge predictions not only affect the mean but also the

variance of downstream flows, the two methods supplement the spectral

density matrix of downstream sub-basins. This is done by adding a

time varying component to the user's assigned spectral density matrix

of downstream sub-basins, as in Equation (3.5), i.e.,

Qd(t)I = FdQ'(t)FdT + Qd (t) (7.1)
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Figure 7.5 Hypothetical Large Scale Basin
(after Georgakakos and Bras, 1982)
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Figure 7.6 Schematic Representation of a Large Scale Basin
(after Georgakakos and Bras, 1982)
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where Q'(t) denotes the upstream discharge input error at time t, Fd

the downstream dynamics linearization matrix with respect to the

upstream discharge input, and Qd(t) and Qd(t)' the originally

assigned and discharge input-related spectral density matrices for the

downstream sub-basin, respectively.

Because upstream discharges flow directly into the downstream

river, the downstream linearizaation matrix Fd (of dimension n x 1)

has non-zero values only for the downstream channel states. These

non-zero elements are the channel dynamics inflow partitioning

coefficients, e.g., for the ith channel state they equal Pi, see

Equation (2.10).

Although the precipitation states in different sub-basins are not

dynamically related, spatial correlations of their predicted errors

may be obtained. Both decomposition methods consider the composite

vector of precipitation states on the different sub-basins. The use

of a non-diagonal spectral density error matrix for such vector would

lead to a non-diagonal error covariance matrix of precipitation pre-

dictions, see Equation (3.7).

The difference between the two decomposition methods is that the

one of Puente, et al. (1983) also decouples the dynamic equations

within each sub-basin. Such procedure forecasts precipitation sepa-

rately from the rest of the model, and uses the rainfall predictions

as inputs to the soil and channel components. As with discharge in-

puts from tributary basins, the procedure of Puente, et al. (1983) ad-

justs the spectral density matrix of the soil-channel system by adding

the time varying known error from the predicted rainfall inputs.

167



The decomposition method of Georgakakos (1983) does not decouple

states within a basin and therefore accounts for correlations between

the precipitation and the soil-channel states within each sub-basin.

Tables 7.1 and 7.2 include the prediction-updating cycles for the

two decomposition methods. Notice that the required forecasting

ordering (from upstream to downstream sub-basins) is not needed on the

updating step.

Observe that both procedures update soil-channel states only from

respective discharge observations. The two methods differ in that the

procedure of Puente et al. (1983) updates the rainfall states only

from precipitation observations, while the method of Georgakakos

(1983) uses in addition discharge observations. Because Georgakakos'

method computes the rainfall states updatings in two stages, i.e.

first using precipitation observations (Step 3) and then using the

respective discharge observation (Step 5), an additional step is

supplemented (Step 4) in which the correlations between the rainfall

and the other states within each sub-basin are maintained after the

first stage of updatings.

Because the noise processes of partitioned subsystems and states

are properly supplemented, these decomposition methods provide a

theoretically sound solution of the filtering of the large scale

system, Wood (1981).

The next chapter gives the results of using such block diagonal

decomposition filters in a case study.
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Table 7.1

Decomposition Algorithm of Puente, et al. (1983)

Step 1: Predict the mean and error covariance matrix of precipi-
tation states in all sub-basins.

Step 2: Predict the means and error covariance matrices of soil-
channel states for all sub-basins. Make the predictions
following the river path (upstream to downstream), using
respective precipitation predictions and respective
upsteam discharge predictions from tributary sub-basins
as inputs. Include spectral density matrix changes due
to such inputs.

Step 3: Update the precipitation states mean and error covari-
ance matrix, from available mean areal precipitation.

Step 4: Update the soil-channel states means and error covari-
ance matrices for all sub-basins, using respective
discharge observations.
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Table 7.2

Decomposition Algorithm of Georgakakos (1983)

Step 1: Starting from upstream tributary basins, predict the
state means and error covariance matrices of the
rainfall-runoff model for every sub-basin. Use dis-
charge predictions from tributary basins as inputs when
necessary. Include spectral density matrix changes due
to such inputs.

Step 2: Predict the error covariance matrix of precipitation
states in different sub-basins.

Step 3: Update the mean and error covariance matrix of precipi-
tation states, using observations of mean areal precipi-
tation.

Step 4: Substitute the updated mean and error variance of the
precipitation state in place of the predicted error
variance for precipitation found in Step 1. In addition
change the cross-covariance elements in the predicted
error covariance matrix such that the correlations of
precipitation and other states found on Step 1 are
maintained using the precipitation variances of Step 3.
The above changes are done for each sub-basin.

Step 5: Update the mean and error covariance matrices of the
whole rainfall-runoff model for every sub-basin, using
respective discharge observations.

170



Chapter 8

PRACTICAL USE OF DECOMPOSITION PROCEDURES

8.1 Introduction

The results of applying the block diagonal decomposition methods

on a large basin are presented in this chapter. One step ahead pre-

dictions are considered. Also included are forecasts obtained by us-

ing global extended Kalman filters on the composite state vector

formed by the states of each sub-basin's rainfall-runoff model.

8.2 Description of the Drainage Basin and of the Available Data

The large basin considered in this study belongs to the Potomac

River basin with outlet at Millville, West Virginia. The basin is

subdivided into five sub-basins located along the north and south

forks of the Potomac River. Table 8.1 gives the name of the outlet of

each sub-basin together with the sub-basin's area and average eleva-

tion. Figure 8.1 is a schematic view of the basin. The north fork

runs through sub-basins with outlets at Cootes Store, Strasburg, and

Millville; while the south fork runs through sub-basins with outlets

at Lynnwood, Front Royal and Millville.

Instantaneous mean areal temperature, pressure, dew point and

precipitation data were provided for each of the sub-basins by the

NWS-Hydrologic Research Laboratory. The data sets were obtained aver-
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Table 8.1

Potomac River Sub-Basins Characteristics

Sub-Basin

Lynnwood

Front Royal

Cootes Store

Strasburg

Millville

Area [Km 2

2808

1445

544

1445

1632

Average Elevation [m]

600

300

700

400

200
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Figure 8.1 Sub-basin Network for the Potomac River Basin with outlet at
Millville
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aging point observations on and around the sub-basins, Georgakakos

(1984).

Evapotranspiration demand was obtained from daily potential

evapotranspiration data provided by the NWS. Instantaneous evapo-

transpiration was obtained weighting the daily values by 0, 0.33,

0.67, and 0, if the time interval in the day is respectively 0-6,

0-12, 12-18, and 18-24 hours.

Bi-hourly discharge values at the outlet of each sub-basin were

obtained from local USGS offices for the period October 1969 to Sep-

tember 1971. Table 8.2 includes the minimum, maximum and average

flows for each sub-basin. The sub-basins with outlets at Cootes Store

and Millville are fast responding with characteristic times of 12

hours; sub-basins with outlets at Lynnwood and Front Royal have char-

acteristic times of 18 hours; while the sub-basin at Strasburg is slow

responding with characteristic time of 30 hours. Low flows in the

large basin are frequent through the year.

Table 8.3 contains the parameters for the rainfall-runoff model

on each of the sub-basins. These values were fixed in all the compu-

tations. The precipitation parameters are the location independent

values given by Georgakakos (1982). The soil parameters were esti-

mated by the NWS staff through manual calibration and daily data. The

channel parameters preserve the routing characteristic times on each

sub-basin and were obtained from input-output six-hourly data.
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Table 8.2

Discharge Average, Maximum, and Minimum Values for the

Potomac River Basin, October 1969 to September 1971

Sub-Basin

Lynnwood

Front Royal

Cootes Store

Strasburg

Millville

Minimum

182.0

250.0

3.2

88.0

400.0

Discharge [cfs]
Maximum Average

21300

41600

6520

12000

50700

1017.5

1539.0

187.5

606.5

2702.0
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Table 8.3

Model Parameter Values for the Different

Sub-Basins on the Potomac Basin

Parameter

e

X4

X0

X0

X4

X5

d u

6

E

P f

IL

Lynnwood &
Front Royal

1.65 x 10-3

5.50 x 10-5

30

20

220

130

40

1.49 x 10-2

3.35 x 10-4

6.77 x 10-3

40

1.4

0.2

0

0

0.2

Cootes Store

1.65 x 10-3

5.50 x 10-5

70

17

75

19

21

1.20 x 10-2

1.27 x 10-3

5.80 x 10- 3

220

3.5

0.2

0

0.05

0.001

Strasburg

1.65 x 10-3

5.50 x 10-5

30

20

200

120

50

1.49 x 10-2

4.19 x 10-4

6.77 x 10-3

40

1.4

0.1

0

0

0.3

Millville

1.65 x 10-3

5.50 x 10-5

30

10

140

120

30

1.49 x 10-2

4.19 x 10-4

9.30 x 10-3

40

1.4

0.2

0

0

0.1
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Table 8.3 (continued)

Parameter

mj ,m2, m3

n

P2

P
3

P4

P
5

a
1

a
2

a
3

a
4

a
5

m

Lynnwood &
Front Royal

2

3

1.0

0.0

0.0

1.0

1.0

1.0

0.8

Cootes Store

2

2

1.0

0.0

1.0

1.0

0.8

Strasburg

2

5

1.0

0.0

0.0

0.0

0.0

1.0

1.0

1.0

1.0

1.0

0.8

Millville

2

2

1.0

0.0

1.0

1.0

0.8
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The power functions, that approximate the threshold functions of

the original Sacramento model, have all exponents equal to two for all

sub-basins.

8.3 Deterministic Discharge Predictions on the Large Scale Basin

The months of October and November of 1970 were used to compute

deterministic discharge predictions, decoupling states as in the de-

composition procedure of Puente, et al. (1983). Observed precipita-

tion values were used as inputs to the soil, and predicted discharge

values became inputs to downstream sub-basins. Snow accumulation and

ablation did not occur during this period of time.

The initial mean values used for the states on each of the sub-

basins are included in Table 8.4. Figures 8.2 to 8.6 show the deter-

ministic discharge observations and predictions on the various sub-

basins (see Figures 8.7 to 8.11 for the observed rainfall). As can be

seen, all sub-basins except the one with outlet at Cootes Store pre-

dict a big unrecorded discharge peak around time step 90. The basins

predicted response is very rapid, as implied by the steeply rising and

declining segments of the hydrographs. It is common for such sub-

basins to overpredict discharge, with the sub-basin with outlet at

Strasburg overpredicting the most. On the other hand, the sub-basin

with outlet at Cootes Store gives predictions that do not exceed the

observed discharges.
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Table 8.4

Initial State Means for the Different Sub-Basins

on the Potomac Basin

Lynnwood &
Front Royal

2

5

5

10

10

10

5

10-2

10- 2

10- 2

Cootes Store

2

10

5

10

10

10

5

10-2

10-2

Strasburg

2

5

5

Millville

2

5

2

10

10

10

5

10-2

10-2

10- 2

10-2

10-2

10

10

10

5

10-2

10- 2
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x

xl

X 2

x 3

x 4
X 5

x6

S 1
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A possible explanation of the poor performance of the determinis-

tic predictions is that the conceptual model parameters were not prop-

erly calibrated. For sub-basins other than Cootes Store the drainage

coefficient of the upper zone, du, seems too big in contrast to the

lower zone drainage coefficients, di and d", giving as a result low

percolation to lower aquifers and high interflow. In addition, the

upper zone tension capacities, X 0 and X0 may be :too small. For the

sub-basin with outlet at Cootes Store the upper zone tension capacity,

XV, seems too large, producing high infiltration and therefore low

discharge predictions.

Another possible cause of the discrepancies between the determin-

istic predictions and the discharge observations is that the rainfall

records contain errors. There are no rainfall gages in the sub-basin

with outlet at Cootes Store. But even for the rest of the sub-basins,

which all contain rainfall gages, the transition for point data to

areal averages could result in errors in the rainfall data.

8.4 Stochastic Predictions on the Large Basin

The conceptual rainfall-runoff model was used together with the

filtering algorithms to produce predictions of mean areal precipita-

tion as well as discharge over the large basin.
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Table 8.5 shows the spectral density standard deviations used on

each of the sub-basins. The values are based on the experience ac-

quired from the results of Chapter 6. A diagonal spectral density ma-

trix was assumed for the states of each sub-basin. Also, the dynamic

precipitation noises for all sub-basins were assumed uncorrelated.

The initial mean state vectors used on each sub-basin were the same

employed on the deterministic discharge predictions, i.e., those of

Table 8.4. The initial error covariance matrix for all sub-basins was

taken diagonal, with standard deviations of 10-1 for precipitation

and soil states and 10-4 for channel states. The observations noise

covariance matrix of Table 4.5 was used for all sub-basins.

In addition to the block-diagonal decomposition procedures of

Puente, et al. (1983) and Georgakakos (1983), two filters which use

off-block diagonal information were employed. First, a global filter

in two levels was obtained by forming a multivariable precipitation

model (as in the decomposition procedure of Puente, et al. (1983))

whose predictions serve as rainfall inputs to a global soil-channel

model that has as state vector the soil-channel states of all sub-

basins. The procedure uses off-block diagonal information resulting

from the linearization of channel equations with respect to tributary

inflows. Such information provides off-block diagonal error covari-

ances which allow the updating of soil-channel models not only from

their respective discharge observations,. but from discharges observed

in other sub-basins as well. The second off-block diagonal filter
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Table 8.5

Spectral Density Matrix Diagonal Standard Deviations for the

Different Sub-Basins on the Potomac Basin

Lynnwood &
Front Royal

20

10

10

10-5

20

10-5

1.0

1.0

0.17

Cootes Store

20

20

8

10-5

10

10-5

1.0

0.17

Strasburg

20

Millville

20

10

10

10

5

10-5

10-5

10-5

10-5

25 15

10-5 10-5

1.0

1.0

1.0

1.0

0.17

1.0

0.17
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considers all precipitation-soil-channel states as a global state;

with updating on all sub-basins depending on all observations of mean

areal precipitation and discharge.

The spectral density matrix of sub-basins with tributaries was

adjusted by the inflows variance using Equation 7.1. Such equation

was also employed to adjust the spectral density matrix of soil-chan-

nel models that use a separate multivariable precipitation model as

input in the filtering procedure.

All filtering methods were applied to the Potomac River basin for

the period starting October 12 and ending November 30 of 1970. All

methods yielded the same precipitation predictions, shown in Figures

8.7 to 8.11. Excessive predictions occur in all sub-basins, especi-

ally on the first half of the period considered. As was found for the

Bird Creek basin, the precipitation model inputs play a dominant role

on the rainfall predictions. As a result, the updating portion of the

filters has little effect. Possible causes for the overpredictions of

precipitation are calibration errors on the rainfall model, and more

likely errors resulting from the conversion of point input

meteorologic data to areal averages.

Figures 8.12 to 8.31 show the discharge predictions for all sub-

basins obtained when using the different filtering procedures. These

figures are ordered according to the filtering mechanism as follows:
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the decomposition procedure of Puente, et al., the decomposition pro-

cedure of Georgakakos, the global filter in two levels, and the global

filter.

As can be observed, rainfall excesses give discharge overpredic-

tions. The filtering mechanisms provide better predictions than those

obtained from deterministic propagation of the model dynamics, except

for the sub-basin with outlet at Strasburg. Notice that for that

sub-basin the deterministic predictions were in significant error,

relative to excess volume. The precipitation model overpredicts

rainfall resulting in even worst overpredictions, which could not be

corrected by the filter. The filtering mechanisms could possibly

result in better predictions at Strasburg with reduced observation

error.

Very good discharge predictions were obtained using any of the

filtering mechanisms for the sub-basins with outlets at Front Royal,

Cootes Store and in particular at the outlet of the total basin at

Millville. Notice that the excessive discharge predictions at Stras-

burg do not affect considerably the predictions at Millville.

Discharge predictions using the decomposition procedures show os-

cillatory behavior for low and some times medium flows in all sub-

basins. This oscillations may be decreased by increasing the assumed

discharge observation variance. Such periods are, however,

non-existent when using any of the global filters. The use of

discharge observations from other sub-basins therefore serves as a

stabilizing mechanism.
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Figure 8.21 Stochastic Prediction of Discharge, Millville, Decomposition
Procedure of Georgakakos, October 12 to November 30, 1970
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Figure 8.25 Stochastic Prediction of Discharge, Strasburg,
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Slightly better predictions were found with the decomposition

procedures of Puente, et al., (1983) over that of Georgakakos (1983).

Computational time is about the same for both procedures. Notice,

however, the better predictions obtained using the global filters.

Notice the very similar predictions obtained with the two global

filters. This implies that upodating soil-channel states from

precipitation observations has little effect compared to updatings

from discharge observations, and that no major detrimental effects are

caused by treating precipitation as an input to the soil-channel

components.

Although improved predictions were obtained using the two global

filters, the computational time they required was considerably higher,

due to the error covariance propagation of the composite state vec-

tors. Savings in such procedures may be achieved by filtering pre-

cipitation and soil components for each sub-basin separately and then

by considering all channel states jointly.
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8.5 Summary

This chapter includes the results of applying the block diagonal

decomposition approaches to a case study. Results obtained using two

global filters are also included.

Despite calibration errors on the rainfall-runoff model

parameters, and apparent inconsistencies on the areal averaged inputs

and precipitation observations, the decomposition procedures provide

reasonable results except for a sub-basin where excessive predicted

precipitation gives discharge overpredictions. The spectral density

matrices of the dynamic noises on the different sub-basins were speci-

fied using the experience acquired from the approximate maximum like-

lihood results of Chapter 6. Appendix D presents the results obtained

with the decomposition approaches, when the approximate maximum like-

lihood method described in Chapter 5 is applied to the decomposition

case study.

The more expensive global Kalman filters gave better discharge

predictions that do not oscillate, as was often the case for low flows

when using the decomposition approaches.
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Chapter 9

CONCLUSIONS AND RECOMMENDATIONS

9.1 Summary of Results

This work addressed three interconnected topics relevant to the

real time forecasting of river flows. First, we studied if better

predictions are obtained when more complex approximate nonlinear fil-

ters, other than the extended Kalman filter, are used in conjunction

with a nonlinear conceptual rainfall-runoff model. The results, ob-

tained for the Bird Creek basin in Oklahoma, showed that filters which

use future state estimates to obtain improved state estimates in the

past give generally better discharge predictions than the extended

Kalman filter. Such nonlinear filter-smoothers follow better the mo-

del dynamic's nonlinearities, but at a higher computational cost. For

the period under study the precipitation predictions underestimated

the rainfall observations. This lack of water was overcome by the

nonlinear filters during the updating step by "supplying" water to the

different states of the conceptual hydrologic model. The improved

predictions of the nonlinear filter-smoothers are due to increased

moisture in the soil components. Oscillations on the discharge pre-

dictions, often found when using the extended Kalman filter, were re-

duced with the use of the nonlinear filter-smoothers, due to their

lower discharge predicted variances.
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It was shown that even the nonlinear filter-smoothers could give

poor predictions if model errors are not properly specified. On the

other hand, it was found that when the model dynamics errors are sui-

tably quantified (a self-contained definition) no major improvement is

found by using the nonlinear filter-smoothers over the simpler exten-

ded Kalman filter, despite the fact that the two nonlinear filters

give different state trajectories. These results motivated the second

topic of this work, namely how to properly quantify the errors

inherent in the conceptual hydrologic model when using the extended

Kalman filter.

A simplified maximum likelihood method and an adaptive procedure

were developed to estimate the dynamics noise spectral density matrix

of the model dynamic equations. The off-line approximate maximum

likelihood method estimates a constant, in time, diagonal spectral

density matrix. The joint probability density function of the obser-

vations, over a period of time, is maximized using Newton's method.

The likelihood function derivatives, with respect to the unknown pa-

rameters, are computed assuming that their more important elements

come from derivatives of the current discrete dynamics error covari-

ance matrix. The adaptive procedure can only identify as many unknown

error parameters as there are observations of the rainfall-runoff

model, i.e., two. This estimator is based on internal consistency

conditions of the filter residuals.
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The results of estimating the model dynamics spectral density ma-

trix for the Bird Creek basin were excellent when using the approxi-

mate maximum likelihood method. The estimate, however, had the unde-

sirable property of having the channel primarily driven by previous

discharge observations rather than the water outflow from the soil

component of the conceptual model. Although excellent results were

obtained for one-step ahead predictions, which are explicitly accoun-

ted for in the likelihood function, the extended discharge forecasts

were simply tracking the observations. Although this is not appeal-

ing, no other spectral density matrix produced, when using the

extended Kalman filter, better extended forecasts (to higher leads).

Despite being inexpensive, when a good constant in time spectral

density matrix is used as initial condition, the adaptive estimator

does not necessarily give better predictions.

The third topic of study was the forecasting of flows on a large

scale basin, composed of several interconnected sub-basins. Large

amounts of calculations are required when forecasting techniques, such

as the extended Kalman filter, are used to estimate the composite

state vector that describes the large scale basin. An obvious way to

reduce the computational burden is by decoupling those states in dif-

ferent sub-basins which have weak connections. Two decomposition al-

gorithms which couple states in different sub-basins via precipitation

or through the existing river network were presented. Instead of
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working with the whole state error covariance matrix, these methods

consider only block diagonal sub-matrices at a lower cost but also

with a lower accuracy. The two block diagonal decomposition methods

were introduced by Puente, et al. (1983) and by Georgakakos (1983).

They differ in that the former procedure treats precipitation as an

input to soil-channel models on each sub-basin, while the latter

method conserves the state coupling between the precipitation state

and states in the other components of the conceptual model.

The decomposition methods were used to forecast on five inter-

connected sub-basins of the Potomac River. Despite apparent calibra-

tion errors in the rainfall-runoff parameters and inconsistencies on

the areal averaged meteorological inputs and precipitation observa-

tions, the decomposition approaches provided inexpensive and reason-

able results for all sub-basins except one where excessive precipita-

tion predictions gave discharge overpredictions.

The approximate maximum likelihood procedure of Chapter 5 was ap-

plied to estimate the spectral density matrices of sub-basins on the

large scale basin. Although the likelihood function was increased for

all sub-basins, the predictions do not look better than the ones ob-

tained using the initial conditions. The likelihood increased due to

changes in residual variances, but the residuals themselves were not

decreased.
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9.2 Recommendations for Future Research

The results obtained in this work stress the important role the

precipitation component plays on discharge predictions. If precipita-

tion is under (over) predicted, this will generally give under (over)

predictions of discharge. Also timing errors on precipitation will

generally transform into discharge timing errors. By using a filter,

the model states are updated in a way that they explain better the

current observations. If precipitation deficits (excesses) continue

over the next time step, such deficits (excesses) will likely occur on

discharge due to conservation of mass on the propagation stage of the

filter. Because the updating is made after the observations are

taken, the predictions will typically contain delays of at least one

time step.

Notice that the previous considerations are valid even for soil-

channel models whose parameters are calibrated such that they repro-

duce discharge observations when using the observed rainfall as an

input. Therefore, the value of soil-channel models is closely related

to the quality of the rainfall predictions.

The precipitation model of Georgakakos and Bras (1982) gives very

good predictions when observations are available each hour. In the

present study, data is available only every six hours, which goes

beyond the characteristic time of the rainfall event. This results in

behavior completely driven by the meteorological inputs. Filter

updating then becomes ineffective. Research should continue on the

area of rainfall modelling. Special emphasis should be given to the

transitions from no rain to rain and from rain to no rain. Instead of
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using fully believed observed input values, assumed perfectly ob-

served, as in the present study, such inputs should be modelled and

their predictions and variances used on the conceptual rainfall-runoff

model to obtain a truly, real-time prediction. The creation of relia-

ble data sets of meteorological inputs and rainfall observations is

necessary.

The fact that the maximum likelihood results were found insensi-

tive to soil updating suggests that a simpler scheme for the soil com-

ponent, other than the Sacramento model, could be used in conjunction

with the precipitation and channel components of the rainfall-runoff

model. Simple soil models should be developed and used in real time

discharge forecasting. Additional observations, other than rainfall

and discharge, should be included in rainfall-runoff modelling. Upper

soil storages measured using remote sensing represent a feasible ap-

proach in such a case. The work of Peck, et al. (1983) serves as

framework for the use of remotely sensed data.

It is not clear how to discriminate between equally good predic-

tions obtained from different state trajectories. It is not clear

which dynamics noise parameters can be estimated from known observa-

tions. Although no problems in estimating dynamics noise variances

were encountered in this work, identifiability problems may arise

(conditional information matrix singular) if nondiagonal spectral den-
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sity elements are estimated in addition to diagonal elements. Al-

though it is known that additional observations generally lead to bet-

ter state discrimination and more reliable estimates, these identifi-

ability issues should be studied further.

Better extended forecasts by the conceptual rainfall-runoff model

may be obtained if higher lead conditions are used in the approximate

maximum likelihood procedure used to estimate the dynamics noise spec-

tral density matrix. This could be accomplished by maximizing a

weighted sum of observations taken every time step, two time steps and

so on. Because the characteristic times of deep soil states is longer

than six hours, such weighted maximum likelihood method should provide

more accurate spectral density variances for such states, which may

translate into better extended forecasts. Notice, however, that if

precipitation deficits or excesses occur for long periods of time, the

use of more lead on the estimation of the error on the rainfall-runoff

model might not give better results.

The approximate maximum likelihood procedure used in this work

employed the very simple Newton's method to iterate on the unknown

spectral density matrix elements. The use of more complex methods,

with adjustable step sizes, is the next step to provide better esti-

mates. The work of Goldstein and Larimore (1980), Restrepo-Posada and

Bras (1982) and Sorooshian, et al., (1982) is relevant in such case.
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9.3 Computational Considerations

The major computational burden that is incurred when forecasting

with approximate nonlinear filters and a large conceptual hydrologic

model is due to the propagation in time of the model states mean and

error covariance matrix. The main reasons for such computational load

are: first, that there are many nonlinear differential equations that

need to be numerically solved (110 for Bird Creek), and second that

such equations are coupled together. When using the nonlinear

filter-smoothers not only the number of computations increase due to

repeated forwards-backwards cycles, but also storage is increased

because forward trajectories are needed to linearize the backwards

mean and error covariance dynamic equations.

Although the forecasting computational time for a single basin

(for observations taken every six hours) is below the limits of real

time forecasting (see Table 4.10), the simultaneous predictions on

several basins require a more than proportional computational time due

to the transfer of information between the several sites. This

stresses the need of reliable and yet fast forecasting procedures.

Attempts to reduce forecasting computational time should be

made. This could be accomplished by considering low order models

(other than the Sacramento model), or by identifying meteorological

conditions under which some equations of the Sacramento model could be

decoupled or simplified. Model simplicity could be a function of the

forecasting lead time to be considered.
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Computational savings not only are important in the real time

forecasting stage, but also during calibration of physical and noise

parameters of the conceptual model. Such savings are particularly

important if the maximum likelihood methodology is to be widely

employed in practice.
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Appendix A

RAINFALL-RUNOFF MODEL FIRST ORDER LINEARIZATION MATRICES

This appendix includes the first order derivatives of the

rainfall-runoff model. The derivatives of the station precipitation

model are those of Georgakakos and Bras (1982), and are not reproduced

here. The ordering of the model states and inputs are as in Table

4.1. The notation is also that of Table 4.1, with F and H denoting

the linearization matrices of the dynamicsl and observations with

respect to the states, and Fu and Hu denoting the linearization

matrices with respect to the inputs.

First the following notation is in order:

RXlM = ( ) (A.1)

Xm
RX2M = (0) 2 (A.2)

X 2

X m
RX3M = () 3 (A.3)

X3

X3 + X + X
y =1 - (A.4)

X0 + X0 + X0
3 4 5

1
af.

F(i,j) =
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C1 = diX 0 + d9iX5

C2 = djX40/CC2 =1

D3 = C I+ ey0 0 /

C-1 eX2 Oy 1

[Xo(Xo + x + X0)]

C1 x2ey 1(1 - P f)(1

[X2(X3 + X0 + Xo)]

- Pf )(1 - RX3M)

0 )X 4 /X + 1

- D7)

- RX3M)

D6 = 1 - (1

D7 = (C 2 X5 /X

D8 = D4*D6*D7

D9 = D4D6-(1

(A. 5)

(A. 6)

(A.7)

D4 =

D5 =

(A.8)

(A.9)

(A.10)

(A.11)

(A. 12)

(A.13)
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DO = C (l

RATi = 6
0
X3

+ y )/X

Xl
(A.15)

DFl = 1 - RAT1 2

The linearization elements are:

F(1,1) = - 0(up )

F(2,1) = (1 - RXlM)*'

m -1 m
F(2,2) = -X~m 1X /(X 1)

F(3,1) = RXlM'-(l - RX2M)

F(3,2) = mg4XP*(l - RX2M)-
m
X -1 m

, m -1
F(3,3) = - R~M+X-22/(R~lM~X~m2 X

m
)2 - d - D10

F(3,4) = D4

F(3,5) = D4

F(3,6) = D4
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(A.14)

(A.16)

-u /X 0

(A.17)

(A.18)

(A.19)

(A. 20)

(A.21)

(A. 22)

(A.23)

(A.24)

(A. 25)



F(4,2) = u *X3/[(X, + X3)*X ]

F(4,3) = D10-(1 - D6)

F(4,4) = -D3-(1 - P )m3X33  1/(XQ 3(1XfX X 3 3

- 0,( - X /X )/MX0 + XO) D5e 111 2

F(4,5) = -D5

F(4,6) = -D5

F(5,3) = D10-D6-D7

F(5,4) = D3-D7-(1 - P )Omrx3 /(X) 3) - D8

F(5,5) = -dj + D3-D6*(C 2 X5 IX - 1)/X2 - D8

F(5,6) = D3-D6C2 X4/(X -X) - D8

F(6,3) = D10*D6'(1 - D7)

F(6,4) = D3- (1 - P )-(1 - D7)m 3 3 /(X0 3

(A.32)

(A.33)

(A.34)

(A.35)

- D9 (A.36)
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(A.26)

(A.27)

(A.28)

(A.29)

(A.30)

(A.31)



F(6,5) = D3-D6 (1 - C2 X )/X 0 - D9

F(6,6) = -d - D3-D6-C2X4 /(X X2) - D9

F(7,1) = {1 - (1 - DF1)-RX1M}4 - DF1*RX2M-RXlM*$

F(7,2) = - Xn{(1 - DF)m X /(XO) m1

+ ue{( 6 - X )/[X (X0 + XO) + (1

m
- Xp RX2M{DF1-m 1X 1

1-1
/(XO)

- RXlM-RAT1-2/X 0

- X /X )/(XO +Xo) - 1/ l}

+ RXlM-2-RAT1/X01

F(7,3) = - X-DF*RX1Mm 22 2

F(7,7) = - $ XP-RXlM-RAT1-2/X0 - u (1p3 e

x

x01l

(A.40)

(A.41)

1

x l+ xo
1 3

+ 2*RAT1-RX1M-RX2M*-*X /X

For j=1,2,...,n:

A AA

F(7+j,1) = P {$o2 + RAT1-RAT1-*-RXM-OS1 + O-RXM-RX2M-

(1 - a - a2) + DF1-RXlM-RX2M- 3 11

(A.42)

(A.43)
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(A.37)

(A.38)

(A. 39)



F(7 + j,2) = P.{-2-RAT1-$-Xp RXIM* /X + RAT1 2 ^

0 x m1 -1 /(X)m 
1

1 m X / 1 ) p

nm1-1 0r 1m
X1 1 - RX2M(1 - a1 - 2

A n-m -1 m
+ 4 Xpa -RX2M*[DFl-m X 1 (X)J + 2-RAT1-RXlM/X03

F(7+j,3) = P {d u 1 -1a2) + -ORXM- (1-- 2)m 2 Xm2

A m -1 m 21
+ DF1-RXMM-aX m2X22 /(X0)2}

]} (A.44)

/ Xo )rn 2
2

(A.45)

F(7+j,5) = P {d(O

F(7+j,6) =

F(7+j,7) =

- a2)/(1 + )

P {d"R(1 - a - m2)1l +  )1

P J2-RAT1-OXp-RXlM-a /Xo -0( - RX2M)}

F(7+j,7+j) = -a -mS
J 3

F(7+j,7÷j-1) = a m rn - =23,,,

(A.46)

(A.47)

(A.48)

(A.49)

(A.50)
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H(1,1) = C( , ) (A.51)

The linearization matrices with respect to temperature, pressure

and dew-point temperature are included in Georgakakos and Bras

(1982). The derivatives with respect to evapotranspiration are:

Fu( 2,4 ) =-X X0 (A.52)

Fu (4,4) =-(1 - X 1/X )X 3/(Xo + XI) (A.53)

X - X
Fu (7,4) = -( - 6 1) - x /X0 (A.54)

x 0 + X3 1 (
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Appendix B

RAINFALL-RUNOFF MODEL SECOND ORDER EXPANSION MATRICES

This appendix includes

the rainfall-runoff model.

Table 4.1. The notation is

S(isjpk)

the nonzero second order derivatives of

The ordering of the model states is as in

as follows:

a2

1 3

3

(B.1)

(B.2)

with fk and hZ indicating the kth dynamic functi

observations function, respectively. Note that

these matrices are symmetric.

In addition to the notation of Appendix A,

is required:

on and the Xth

for a fixed function,

the following notation

FXl = m 1 (m1 - 1) X 1  /(X 1) 1

FX2 = m2 (m2 - 1) X22 /(X m 2

m -1 m
FX3 = m 1X 1 /(X) 1

(B.3)

(B.4)

(B.5)
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M2 -1 0m2
FX4 = m2 X22  /(X 2

FX5 = C -e- 0y /[(X + X2 + XI)-X0]

FX6 = Cg -sO (6 - J)y -

rn-i m
FX7 = m 3 /(X 0) 3

33 3

FX8 = C *(l + Cye )/X2

m -2
FX9 = m3 (m3 - 1)x3

FX10 = (C2 -'X5/X -

+ X 0x4 + X0) 2]

i)*-/X4

The elements of the second-order matrices are:

S(1,2,2) = - -FX3

S(2,2,2) = - * FX1
Ep-Fl

S(1,2,3) = -FX3 (1 - RX2M)

S(1,3,3) = - -RXlM-FX4
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(B.6)

(B.7)

(B.8)

(B.9)

(B.10)

(B.11 )

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

2/ 3

/(Xo 3



S(2,2,3) = 4Xp*FX1(1 - RX2M)

S(2,3,3) = - *X FX3-FX4

S(3,3,3) = -XP-RXM*FX2

S(3,4,3) = FX5

S(3,5,3) = FX5

S(3,6,3) = FX5

S(4,4,3) = -FX6-X 2

S(4,5,3) = -FX6'X2

S(4,6,3) = -FX6-X 2

S(5,5,3) = -FX6-X2

S(5,6,3) = -FX6-X 2

S(6,6,3) = -FX6-X2

S(2,4,4) = u /[X(X + X )]

(B.17)

(B.18)

(B.19)

(B.20)

(B.21)

(B.22)

(B.23)

(B.24)

(B.25)

(B.26)

(B.27)

(B.28)

(B.29)
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S(3,4,4) = -FX8-(1 - Pf)FX7 - (1 - Pf)(1 - RX3M)-FX5

S(3,5,4) = -(1 - RX3M)*FX5*(1 - P f)

S(3,6,4) = - (1 - RX3M)-FX5- (1 - P)

S(4,4,4) = -D3-(1 - P )FX9 + 2.0-FX5-X 2(1 - P )*FX7

+ FX6-X2(1 - P(1 - RX3M)

S(4,5,4) = FX5-X 2(1 - f)FX7 + FX6X2(1 - Pf) (1 - RX3M)

S(4,6,4) = S(4,5,4)

S(5,5,4) = FX6-X2(1 f) (1 - RX3M)

S(5,6,4) = S(5,5,4)

S(6,6,4) = S(5,5,4)

S(3,4,5) = FX8-D7(1 - P f)FX7 - FX5-D6-D7

S(3,5,5) = FX8oD6-FX10 - FX5oD6-D7
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(B.30)

(B.31)

(B.32)

(B.33)

(B.34)

(B.35)

(8.36)

(B.37)

(B.38)

(B.39)

(B.40)



S(3,'6,5) = FX8-D6C2 4XI(XX ) - FX5-D6-D7

S(4,4,5) = FX6-X20 D6-D7 + D3-D7-FX9-(1 - P )

- 2*FX5-X2 (1 f)FX7-D7

S(4,5,5) = -FX5-X 2 -D6-FX10 + FX6'X2 *D6-D7

+ D3-FX1O*FX7*(1 - P ) - FX5-X 2D7-FX7-(1 - P)

S(4,6,5) = -FX5-X 2 -D6*C2X4 /(X2X ) + FX6-X2-D6*D7

+ D3-C2X4/(X2.X-).( - Pf)-FX7 - FX5-X2*D70 - Pf)-FX7

S(5,5,5) = FX6X 2-D6*D7 - 2-FX5-X 2D6-FX10

S(5,6,5) = -FX5-X 2 -D6-C X4I(X2X ) + FX6-X2-D6-D7

+ D3-D6-C2/(X0X) - FX5-X2D6-FX10

S(6,6,5) = FX6-X2 -D6-D7 - 2.0-FX5-X2-D6.C2 *X4 /(X0X )

S(3,4,6) = FX8-(1 - D7)(1 - Pf )-FX7 - FX5-D6(1 - D7)

(B.42)

(B.43)

(B.44)

(B.45)

(B.46)

(B.47)

(B.48)
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S(3,5,6) = - FX8-D6-FX10 - FX5-D6(1 - D7)

S(3,6,6) = -FX8*D6-C2X4/(X2X ) - FX5 D6(1 - D7)

(B.49)

(B.50)

S(4,4,6) = -2-FX5-X 2 (1 - D7) - (1 - Pf)-FX7 + FX6-X 2 D6(1 - D7)

+ D3(1 - D7)FX9*(1 - Pf) (B.51)

S(4,5,6) = FX5-X 2 D6*FX10 + FX6*X2*D6(1 - D7) -

- D3-FX10FX7(1 - P f) - FX5X2(1 - D7)(1 - Pf)FX7 (B.52)

S(4,6,6) = FX5*X2D6-C2-X4/(X2XO) + FX6-X2-D6(1 - D7)

- D3-FX7(1 - P)C2 X4/(X'X5) - FX5-X2  D7)(1 - Pf)FX7

(B.53)

S(5,5,6) = FX5-X 2D6-FX10 + FX6-X2*D6(1 - D7) + FX5-X 2 D6-FX10

(B.54)

S(5,6,6) = FX5*X2-D6-C2 -X4/(X2Xo) + FX6-X2 -D6(1 - D7)

- D3-D6-C2/(XOX ) + FX5- *X2 D6*FX10

S(6,6,6) = 2*FX5-X2 -D6-C2 -X4/(X X) + FX6-X2 D6(1 - D7)

(B.55)

(B.56)
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A AS(1,2,7) = - -RATI 2-FX3 + 2-RAT1/X 0-RX JM-

- DF1-X2 /X FX3-$ - 2-RAT1/X -RXM*RX2M-$2 2 3

S(1,3,7) = -$ DFl*RXlM*FX4

A A

S019797) = -2*RAT1/X 0*RXM4 + 2-RAT1/X 0 -RXMMRX2M*3 3

A 2 A&0S(2,2,7) = -X RAT1 FX1 + Xp FX3-4.0-RAT1/X3 -

- 2 *0*u /(X 0[X0 + X0 ]) - $X RX2M-DF1-FX1
1 

X-1 3 p

- 0 X RX2M *FX3 o4.O RAT1/AX3 + 4X RX2Mo/X3

$XP-RXlM-2/(X )2

-RX1M

S(2,3,7) = -$X-FX4-(DFl-X3 + RX2M-2.0-RAT1/Xo)
p3

AA o 2
S(2,7,7) = -X FX3-2-RAT1/X3 + 4XP-URXM32.0/(X3 )

+ U /(X[Xo + X 1) - $X-RX2M-(RX1M-2/(X3)2

- FX3-2.0-RAT1/X0)

S(3,3,7) = -X pFX2-DF1-RXM

S(3,7,7) = 4Xp RXlM-FX4-2.0-RAT1/X

(B.60)

(B.61)

(B.62)

(B.63)

(B.64)
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(B.59)



S(7,7,7) = -2.0*XP-RX1M/ (X3) + X pRXlM-RX2M-2.0/(X) 2  (B.65)

For j=1,2,...,n:

S(1,2,7+j) = P.{48 -RAT1 2FX3 - 0 1 2RAT1RX1M/X 3

+ $FX3*RX2M-(1 - a 1 - 82) + DF1-RX2M-FX3* $ 1

+ 2.0*RAT1-RXlM-RX2M-*-8 /X } (B.66)

S(1,3,7+j) = P { -RX1M-FX4(1 - 81 - 82) + DF1-FX4-RXlM-- 1}

(B.67)

S(1,7,7+j) = P.{2.0RAT1-*-1 RXlM/X3

- 2.O-RAT1-RXlM-RX2M***$ /X 01 (B.68)

S(2,2,7+j) = P.{8 (X ([i - DF1]*FX1 - FX3-4.0-RAT1/X'

+ RXlM*2/(X0) 2) + *-XP-RX2M*FX-*(1 - ai - a2)

+ 81-X -+-RX2t-(FX3*4.0-RAT1/X' - RXlM-2.0/(X 3 2

+ DF1*FX)1 (B. 69)

S(2,3,7+j) = P {lX p(1 - 1a - a2 )FX3-FX4

+ *X,81.FX4(RXlM-2-RAT1/X0 + DF1-FX3)} (B.70)
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S(2,7,7+j) = P 1Xp{3* FX3-2.0-RAT1/X3 - RX1M2/ (X3)2

+ a RX2M(RXlM-2.0/(X3) 2 - FX3-2.0-RAT1/X3)}

S(3,3,7+j) = P *$Xp FX2{RXlM- (1 - 0 - 2

+ 8 RXlM-DF1}

S(3,7,7+j) = -P *a1 *Xp-$-RXIM-FX4-2.0-RATI/X

S(7,7,7+j) = P -X -$-2.0*RXlM/(X3)2 -1 (1 - RX2M)

S(7+j,7+j,7+j) = -a m(m-1)S -2
3 3

S(7+j-1,7+j-1,7+j) = a _m(m-1)s

T(7+n,7+n,2) = a m(m-1)Sm 2
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(B.72)

(B.73)

(B.74)

(R.75)

, j=2,...,n (B.76)

(B.77)



Appendix C

BROAD COMPARISON OF DISCHARGE PREDICTIONS USING DIFFERENT

SPECTRAL DENSITY MATRICES

The spectral density matrices used in the following comparison

are the matrix of level 4 (see Table 4.4) and a modified matrix of

level 8 (see Table 6.2). The latter was found by setting all state

variances to zero except those corresponding to the states of the

channel. The eight different time intervals of Table C.1 were

considered. All runs were made using the initial conditions employed

in Chapter 6. As in Chapters 4 and 6, no error was attributed

to the inputs.

Tables C.2, C.3, and C.4 present the residual statistics,

normalized residual statistics and least square indices for

discharge, respectively. Figures C.1 to C.16 show the predictions

obtained in the different runs with the different spectral density

matrices.

As it is observed, the spectral density matrix of level 8 with

all but channel elements set to zero gives consistently better results

than the Q matrix of level 4. Notice that although the matrix of

level 8 was found using maximum discharges of 3.52 mm (see Figures

C.11 and C.12) and a total of 124 data points, the use of such matrix

gives reasonably good predictions for hydrographs with higher peaks

(see Figures C.13 and C.15) for periods of time longer than one month

data. Only the record event of run No. 4 was not properly

reproduced.
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Table C.1

Time Intervals Used In Comparisons

Initial Date

Mar 1/58

May 1/58

Jul 1/59

Sep 1/59

Mar 1/60

May 3/60

May 1/61

Jul 1/61

Final Date

Apr 30/58

Jun 30/58

Jul 31/59

Oct 30/59

Apr 30/60

Jul 2/60

Jun 30/61

Aug 30/61
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Run No.

1

2

3

4

5

6

7

8



Table C.2

Discharge Residual Statistics for Different Runs

Variation
Run No. Mean Coefficient

-0.014

-0.004

-0.008

0.270

-0.009

-0.0004

0.003

0.018

-7.68

-5.01

-20.4

6.61

-11.0
-381.3

69.7

12.1

Skewness

0.404

-1.62

1.03

7.40

1.99

1.46

2.68

3.07

Lag-l

-0.093

-0.298

0.108

0.879

-0.027

0.382

0.446

0.566

Autocorrelation
Lag-2 Lag-3

-0.340

-0.032

-0.183

0.631

-0.455

-0.179

-0.146

0.029

0.325
0.195

0.022

0.385

0.060

-0.081

-0.146

-0.066

Q-level 8 with all but channel

1

2

3

4

5

6

7

8

0.017

-0.003

0.066

0.431

0.014

0.058

0.120

0.169

9.90
-13.9

3.70

4.93

10.0

4.19

4.00

3.64

elements set to

0.708 -

-2.72 -

1.52

6.24

1.79 -

3.33

4.90

3.64

zero

0.587

0.600

0.284

0.915

0.397

0.644

0.840

0.911

0.833

0.361

0.537

0.741

0.784

0.709

0.794

0.831

Q-level 4

239

Lag-4

0.004

-0.204

-0.067

0.224

0.058

0.165

0.029

0.139

-0.568

-0.276

0.039

0.558

-0.395

0.397

0.562

0.658

0.681

0.190

0.141

0.429

0.640

0.387

0.461

0.515



Table C.3

Discharge Normalized Residual Statistics for Different Runs

Variation
Run No. Mean Coefficient

1

2

3

4

5

6

7

8

-0.027

-0.006

-0.025

0.147

-0.019

-0.009

-0.008

0.023

-6.66

-5.12

-11.5

6.57

-8.62

-32.7

-50.4

16.0

Skewness

-0.257

-3.42

0.912

5.43

0.154

-0.239

1.65

2.74

0-level 8 with all but channel elements set

1

2

3

4

5

6

7

8

-0.0001

-0.027

0.173

0.329

-0.014

0.129

0.245

0.315

-6230.0

-8.13

5.07

4.49

-40.3

5.72

4.33

3.98

0.37

-4.95

1.01

3.37

1.53

2.29

2.70

2.62

Autocorrelations
Lag-i Lag-2 Lag-3

-0.060

-0.306

0.150

0.883

0.032

0.404

0.417

0.582

to zero

-0.602

-0.514

0.117

0.833

-0.446

0.444

0.588

0.776

-0.359

0.034

-0.201

0.697

-0.487

-0.215

-0.189

0.033

0.840

0.330

0.530

0.846

0.781

0.714

0.800

0.827

0.303

0.203

0.035

0.548

0.003

-0.102

-0.137

-0.072

-0.578

-0.269

-0.041

0.698

-0.431

0.276

0.445

0.602

Q-level 4

240

Lag-4

0.017

-0.204

-0.047

0.422

0.131

0.189

0.056

0.126

0.700

0.196

0.178

0.727

0.662

0.430

0.562

0.555



Table C.4

Discharge Least Squares Indices for Different Runs

Run No. Efficiency

1

2

3

4

5

6

7

8

0.909

0.839

0.937

0.615

0.915

0.938

0.931

0.961

Determination

0.915

0.878

0.940

0.746

0.926

0.939

0.931

0.964

Persistance

0.141

0.251

0.617

-3.00

0.130

0.291

-0.060

0.332

Extrapolation

-0.66

0.28

0.32

-3.94

-0.36

-0.65

-1.24

-0.62

Q-level 8 with all but channel

1

2

3

4

5

6

7

8

0.768

0.264

0.858

0.443

0.834

0.863

0.715

0.690

elements set to zero

0.774

0.537

0.889

0.757

0.836

0.923

0.841

0.891

Q-level 4

241

-1.191

-2.42

0.146

-4.80

-0.697

-0.570

-3.37

-4.25

-3.24

-2.29

-0.52

-6.15

-1.66

-2.66

-8.23
-11.7
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Figure C.17 show, for the different matrices, a histogram of the

difference in time between the predicted and observed hydrograph

peaks, for the eight runs made. Observed peaks higher than

0.43 mm/6 hrs. are included in that figure. Figure C.18 depicts, for

the significant peaks, the percent error in predicting the peak

magnitude. Such percent error is defined by:

(Predicted Peak - Observed Peak
Observed Peak x 100

Notice that about 50% of the peaks time to peak was correctly

forecasted irrelevant of the spectral density matrix used. Alihough

timing is not considerably different for the two spectral density

matrices, the peak magnitudes are better preserved with the Q matrix

of level 8 with only non-zero channel values. Notice that with the

modified matrix of level 8, 38.9% of the peak magnitudes were

predicted with less than 10 percent error, and 92% of the cases were

predicted with errors less than 30%. This matrix, however, tends to

overpredict the peak magnitude, while the Q matrix of level 4 tends to

underestimate the bigger peaks.
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Appendix D

APPROXIMATE MAXIMUM LIKELIHOOD ESTIMATION ON THE POTOMAC BASIN

The results obtained when using the approximate maximum likeli-

hood method of Chapter 5 to estimate the diagonal spectral density ma-

trices of the large basin on the Potomac River are presented in this

Appendix. The decomposition procedure of Georgakakos (1983) served as

the filtering mechanism used in the computations. Although the spec-

tral density matrix of upstream sub-basins affects the spectral den-

sity matrix of downstream tributary sub-basins, the precipitation and

discharge observations likelihood were maximized on an individual ba-

sis. The initial spectral density matrices were those on Table 8.5.

The upper bounds shown in Table D.1 were used to prevent unrealisti-

cally high estimates. Table D.2 contains the final spectral density

matrices and the initial and final log-likelihood values found on each

sub-basin. The approximate maximum likelihood procedure used the

conditional information and Newton's method in its search algorithm.

Due to cost and time restrictions the computations were carried for

only 10 iterations on each sub-basin. However, as can be observed in

Table D.2, the likelihood increased in all cases.

Figures 0.1 to D.10 show the discharge predictions on the Potomac

basin when using the decomposition procedures of Georgakakos (1983)
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Table D.1

Spectral Density Matrices Upper Bounds on the Potomac Basin

Cootes Store

30

70

25

80

30

45

160

50

50

All Others

30

40

25

180

130

45

160

50

50

50

50

50
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Table D.2

Spectral Density Estimates and Log-Likelihoods on the Potomac River

Front Royal

24.8

40

25

10-5

State Lynnwood

21.8

40

25

10-5

130

10-5

160

10-5

0.482

1.332

Cootes Store

20.2

40

10-5

10-5

30

x
p

x

x
2

x3

x
4

x
5

x
6

S 1

S 2

S
3

S
4

S
5

Strasburg

16.7

40

10-5

130

10-5

10-5

49.8

2.45

45.9

10-5

1.99

Millville

10-5

40

10-5

10- 5

130

10-5

160

28.5

4.53

Initial
Log-
Likelihood -963.1

Final
Log-
Likelihood -409.9

130

45

10-5

0.542

0.805

0.895

154.3

0.977

0.207

-1496.1

-416.7

-485.5

-294.9

-575.1

-350.0

-974.4

-478.0
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and Puente, et al. (1983), respectively, with the spectral density ma-

trices of Table D.2. As can be observed, the predictions do not ne-

cessarily look better than those obtained using the initial spectral

density matrices; see Figures 8.12 to 8.21. Notice that although for

the sub-basin at Strasburg slightly better results were now obtained;

the sub-basin at Lynnwood now gives oscillatory predictions due to the

high spectral density variance used at its last channel state, see

Table D.2. The likelihood was increased due to changes in residual

variances but not due to lower residuals.
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Stochastic Prediction of Discharge, Lynnwood, Decomposition
Procedure of Georgakakos, October 12 to November 30, 1970,
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Figure D.2 Stochastic Prediction of Discharge, Front Royal, Decomposition
Procedure of Georgakakos, October 12 to November 30, 1970,
Maximum Likelihood
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Figure D.3
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Stochastic Prediction of Discharge, Cootes Store, Decomposition
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Figure D.4 Stochastic Prediction of Discharge, Strasburg, Decomposition
Procedure of Georgakakos, October 12 to November 30, 1970,
Maximum Likelihood
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Figure D.5 Stochastic Prediction of Discharge, Millville, Decomposition
Procedure of Georgakakos, October 12 to November 30, 1970,
Maximum Likelihood
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0

C4

00

Stochastic Prediction of Discharge, Lynnwood, Decomposi
Procedure of Puente, et al., October 12 to November 30,
Maximum Likelihood

LEGEND
OBSERVATIONS
PREDICTIONS

0.0 19.9 39.8 59.7 79.6 99.5 119.4
TIME STEP NUMBER

139.3 159.2 179.1 199.0

Figure D.7 Stochastic Prediction of Discharge, Front Royal, Decomposition
Procedure of Puente,.et al., October 12 to November 30, 1970,
Maximum Likelihood
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Figure D.8 Stochastic Prediction of Discharge, Cootes
Procedure of Puente, et al.,
Maximum Likelihood
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Figure D.9 Stochastic Prediction of Discharge, Strasburg, Decomposition
Procedure of Puente, et al., October 12 to November 30, 1970,
Maximum Likelihood
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Figure D.10 Stochastic Prediction of Discharge, Millville, Decomposi
Procedure of Puente, et al., October 12 to November 30,
Maximum Likelihood
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