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ABSTRACT

Three topics related to the real time forecasting of river flows are
studied. First, the usefulness of nonlinear filtering procedures in
connection with a conceptual rainfall-runoff model 1is investigated. By
means of a case study it is determined that only filters which employ
future information to correct the past (smoothers) could potentially
improve forecasts over the simpler extended Kalman filter. The quality of
the predictions is heavily dependent on the nature of the assigned error of
the conceptual rainfall-runoff model.

The second topic deals with the estimation of the conceptual model
error using the maximum 1likelihood method and consistency conditions on
model residuals. The utility of the procedures is tested in practical
applications. It is shown the simplified maximum likelihood procedure
gives excellent forecasting results jndependent on the initial conditions,
but raises some questions as to the sensitivity of the soil moisture
accounting part of the model.

The third topic deals with the forecasting on a basin composed of
several interconnected sub-basins. Decomposition procedures are proposed
fo forecast on sub-basins separately, using upstream flow predictions as
inputs to downstream basins. When tested in practice, these methods

provide reliable and inexpensive forecasts.
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Chapter 1
INTRODUCTION

1.1 Scope of Study

It is important to properly forecast river flows. Obvious needs
arise in the operation of flood control reservoirs, in the planning of
actions during times of floods, and in the maintenance of minimum flow
levels for navigation and water quality purposes.

This work studies three topics related to the real time forecast-
ing of river flows:

a. Assessment of the usefulness of nonlinear forecasting

techniqhes,

b. Deve1opment‘of procedures to properly quantify the errors of

the rainfall-runoff model being used, and

c. Development of techniques to forecast flows in a large scale

basin composed of several sub-basins.

The forecasting of river flows requires the use of mathematical
models to approximate the very complex process that transforms rain-
fall into runoff. This transformation is known to be of nonlinear
nature, partly due to dependence on antecedent moisture conditions.
This inherent nonlinearity has led to the development of several non-
linear rainfall-runoff models. The first topic of study deals with
procedures that follow such nonlinearities, as opposed to techniques

that require a linearized rainfall-runoff representation.



The t&pe of hydrologic model that is used in this work belongs to
the class of conceptual models. These models do not represent the
physical laws exactly, but rather express them in a simplified way.

In any typical stochastic forecasting procedure, i.e., Kalman filter,
the predictions are a function of model error or the level of confi-
dence (trust) given to the model. Model error is hard to quantify.
It basically measures the differencés between reality and the model
that approximates it. The second topic on this work deals with the
proper quantification of such differences in order to obtain more ac-
curate flow predictions.

The third problem addressed in this work concerns the efficient
forecasting of river flows on a large scale basin, composed of several
interconnected sub-basins. Dimensionality problems are common when
;ttempts are made to simﬁ]taneous1y predict at all points. By prop-
erly dealing with sub-basins separately, computational savings may be
obtained and the overall quality of the predictions could be main-

tained.

1.2 Literature Review

This section reviews work done in forecasting river flows, using
conceptual hydrologic models and a filtering mechanism. A review of
the use of models which are based only on input-output data represen-
tations (black-box or systems-theoretic models) is not presented

here. For such a case, the reader is referred to Sorooshian (1983).



The first attempt to use conceptual models within a stochastic
filtering framework was that of Kitanidis and Bras (1978). These
authors developed the state-space formulation of the National Weather
Service River Forecast System (NWSRFS-Sacramento) model, Peck (1976),
and used it together with a linear router model to obtain six hours
lead discharge predictions using evapotranspiration and precipitation
records as known inputs. The obtained results showed the advantage of
updating the model states from discharge observations (stochastic fil-
tering approach) as opposed to a deterministic propagation of the
model dynamics.

Due to the existence of discontinuous threshold type functions on
the original Sacramento model formulation, Kitanidis and Bras (1978)
used not only Taylor linearizations but also stochastic linearizations
in order to apply Kalman filtering techniques. The use of the Sacra-
mento model, in a stbchastic mode, gave better extended forecasts (for
lead times greater than six hours) than black-box models with time
varying parameters.

The model parameters employed by Kitanidis and Bras (1978) were
computed using the manual calibration procedure described in Peck
(1976). Methods to obtain such parameters automatically, using the
maximum likelihood approach, have been suggested by Goldstein and
Larimore (1980), Restrepo-Posada and Bras (1982), and Sorooshian, et
al. (1982). These procedures differ on the way the maximization prob-
lem is numerically solved. Although these works show the potential of

the maximum likelihood approach, the existence of non-unique optima,



extended likelihood valleys, high correlation between some parameters
and non-identifiable parameters are recognized problems.

More realistic channel models than the single linear reservoir
used by Kitanidis and Bras (1978) have been probosed. Georgakakos and
Bras (1980) developed a nonlinear channel router which, when used in
connection with the Sacramento model, preserves the most important
characteristics of the hydrograph. A method to obtain the channel
model parameters was also given by these authors. Goldstein and Lari-
more (1980) used canonical correlation principles to obtain a reduced
order state-space representation of the unit hydrograph.

Georgakakos and Bras (1982) developed a station precipitation
model in state-space form., Based on surface temperature, pressure and
dew point temperature, their model produces as output the precipita-
tion rate. By coupling such a model with the Sacramento model and the
nonlinear channel router of Georgakakos_and Bras (1980), a general and
realistic rainfall-runoff model was obtained. Results obtained using
the model in a stochastic filtering framework indicated that the coup-
1ing of the precipitation to the soil and channel models by the filter
is of considerable value to river flow forecasting.

Bergstrom and Forsman (1973) and Bergstrom (1975) developed a
simple nonlinear conceptua1 hydrologic model, HBV-2, that produces the
outflow discharge from a basin, using daily precipitation records as a
known input. Such model, which explicitly takes into account snow

melting, was employed by Fjeld and Aam (1980) to produce daily



discharge predictions using the Kalman filtering methodology. By
approximating the optimal gains for a given level of trust on the
model equations, these authors avoided the need of propagating in time
the error covariance matrix of the model five states. When daily
discharge forecasts were used as inputs to control a hydroelectric
power system in Norway, significant savings of water and energy were
obtained.

Takara et al. (1983) developed an algorithm for real time
forecasting of flows on a basin composed by several sub-basins.
Precipitation is modelled in an stochastic fashion, and its
predictions are obtained using a moving average method. The dynamics
on the sub-basins are approximated as nonlinear reservoirs that have
effective (lagged) rainfall as input. The channel routing is made by
using a cascade of nonlinear reservoirs. Because the sub-basins are
interconnected, the ordering on the river network (upstream to
downstream) is followed to obtain the predictions using the extended
Kalman filter. The updatings of the composite storage vector, that
represents the basin, are done from available discharge observations.
In a case study at the Yura River in Japan, Takara et al. (1983) found
satisfactory one-hour lead results using their real time algorithm
with colored noise in the model dynamics. The quality of the flow

predictions decreased as the lead time was increased to four hours.



1.3 Report Outline

The organization of this report is as follows. Chapter 2 des-
cribes the rainfall-runoff model to be used in this work. The way
model error is introduced is also discussed in this chapter. Chapter
3 presents the theoretical aspects of the nonlinear filtering proced-
dures. Chapter 4 includes the results of using the nonlinear filters
and the rainfall-runoff model in a case study. Precedures to properly
quantify the errors of the rainfall-runoff model are developed in
Chapter.s. Results of applying such methods to a case study are pre-
sented in Chapter 6. Chapter 7 describes efficient techniques to
forecast precipitation and river flows in a large scale basin. The
results found using such procedures are included in Chapter 8. The
conclusions and recommendations for future research are given in

Chapter 9.



Chapter 2
A CONCEPTUAL RAINFALL-RUNOFF MODEL

2.1 Introduction

This chapter describes the conceptual rainfall-runoff model em-
ployed in this work. The hydrologic response of a basin is approxi-
mated by coupling a station precipitation model, a soil moisture ac-
counting procedure and a channel routing scheme.

The rainfall-runoff model produces as output the precipitation
rate over the area of interest and the discharge at the outlet of the
basin. The model is driven by four inputs: temperature, pressure,
dew point temperature, and the potential evapotranspiration over the
basin area.

A brief description of the model equations in state-space form is

given in the following sections of this chapter.

2.2 The Station Precipitation Model

The first component of the rainfall-runoff model is the station
precipitation model of Georgakakos and Bras (1982). This spatially
lumped parameter model has as inputs the surface temperature, Tos
pressure, Po, and dew point temperature, Tq. It produces as out-
put the precipitation volume rate over the basin.

The model is based on atmospheric thermodynamics and cloud
microphysics principles. The dynamic equation is a balance equation

for the condensed water equivalent mass within a cloud column, Xp:



g;ﬂ = I(gp, gp) - O(Ep’ gp)Xp , (2.1)

The function I(gp,gp) represents the rate of moisture input
into the clouds. It is computed from the pseudo-adiabatic ascent of
surface air characterized by the input vector of meteorological
variables 2; = [To P, Td]. The function O(Qb, gp) is the output rate
of moisture from the cloud column per'unit of equivalent water mass.
Two output components are considered by this function: water that
leaves the column's top due to updraft velocity, and water that leaves
the cloud's bottom, basically composed by the larger droplets.

The vector ap denotes the precipitation model parameters,
g; = [€],€4]. The parameter e, is the ratio of the updraft velocity
to the square root of the potential thermal energy per unit mass of
ascending air at the height of average updraft velocity. If € in-
creases, the updraft velocity increases giving a higher moisture input
rate I(up,ap), a higher moisture output at the cloud's top and a
Tower moisture output at the cloud's bottom, which overall tends to
give Tower mass output O(up,ap)Xp. The input mass of condensed
water is distributed in different droplet diameters according to an
exponential particle size distribution. The average diameter of par-
ticles in the cloud is the second parameter €4. If €4 increases,
the heavier the particles become and consequently the higher the mass

output.



The observation equation of the model gives the precipitation

volume rate at the ground, Zp:

Z = . 2.2
p ¢(gp gﬁ)xp ) (2.2)
The precipitation rate function ¢(gp,gp) accounts for that part
of the water mass which oh leaving the cloud bottom reaches the
ground. Evaporation of the falling particles, below the cloud, is
taken into accdﬁnt by this function. The parameter vector affects
¢(gp,gp) the same way as iﬁ affects O(gp,gp), i.e., a higher &
reduces the precipitation rate while a higher €4 increases it.
The actual expressions for the functions I{(u_,a ), O(Ep’ép) and

R =*p
¢(gp,gp) are given in Georgakakos and Bras (1982).

2.3 The Soil Moisture Accounting Model

The second component of the rainfall-runoff model is a modified
version of the NWSRFS or Sacramento Model derived by Peck (1976). The
representative soil-column in the basin is divided in six components.
The balance equations of the water volumes stored in the different
elements represent the soil model dynamic equations. The model is
driven by the precipitation and evapotranspiration rates over the
basin, and produces as the output the water flow into the river, which
after routing wi]ligive the outflow discharge from the basin.

The original Sacramento model contains threshold type functions
to account for the dynamics of some of its components, i.e., these

components respond only when a threshold storage is reached. In the



modified version these discontinuous functions are replaced by con-
tinuous power functions, which consequently allow responses at all
times with higher values of element discharge as the threshold is ap-
proached.

The Sacramento model variables and parameters are summarized in

Table 2.1. The model equations are:

UPPER ZONE TENSION ELEMENT

dXx Xy m a X
1 - [ - - f—l\ 1 - —-}-
7 = U O} ] ¢ Xp U =5 (2.3)
Xy X]
UPPER ZONE FREE ELEMENT
dX Xq My w X, m X
2 _ J1y™m _fa\m, ) 6, X2
- x°) ¢ X [1 (Xo) =%, - c(h +ey) o
1 2 2
(2.4)
LOWER ZONE TENSION ELEMENT
dX X X, m
3 _ 8, "2 _ - (03y73
T - C-l(] + €y ) ')'(-6' (1 Pf) [1 (Xo) ]
2 3
X X
1 3
ue(1 X—o) Xo " Xo (2.5)
1 1 3




LOWER ZONE FREE PRIMARY ELEMENT

dX X X, m
4 _ 8, "2 - (1 - - (33
i = “dpXg * G0 + ey ) 0 -0 Pf){1 (Xo) }H
2 3
X X
.[(C2_5_1)_i +1] (2.6)
X2 XS
5 4

LOWER ZONE FREE SECONDARY ELEMENT

X

>

dX m

5 _ _4qu 6y 214 _ - - (33
ra R 1-0-ra{ (Xo) }]
2 3
Xe X '
1 - ¢, 2) 2] ‘ (2.7)
Xg X
5 74
ADDITIONAL IMPERVIOUS STORAGE ELEMENT
dX X=X Xy my « Xq o X=X
2= - (202 (DM ex - u (- (2
x© x° ) e X0 x04x0
3 1 1 7173
X X =X X, m, X; m, «
ST S PR R A [ O R (2.8)
X X X X P
1 3 2 1
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Table 2.1

Soil Moisture Accounting Model Variables

Description
STATE VARIABLES

Upper zone tension water content [MM]

Upper zone free water content [MM]

Lower zone tension water content [MM]

Lower zone free primary water content [MM]
Lower zone free secondary water content [MM]

Additional impervious storage [MM]

INPUT VARIABLES

Instantaneous precipitation rate [MM/6HRS]
Instantaneous evapotranspiration demand [MM/6HRS]
PARAMETERS

Upper zone tension water capacity [MM]

Upper zone free water capacity [MM]

Lower zone tension water capacity [MM]

Lower zone free primary water capacity [MM]

Lower zone free secondary water capacity [MM]

Upper zone instantaneous drainage coefficient [1/HRS]

12



Table 2.1 (continued)

Lower zone primary instantaneous drainage coefficient
[1/HRS]

Lower zone secondary instantaneous drainage
coefficient [1/HRS]

Parameter in percolation function
Exponent in percolation function

Fraction of percolated water assigned to the lower
zone free water elements

Parameter of Fraction of base flow not appearing in
river flow

Fraction of the basin that becomes impervious when
tension water requirements are met

Fraction of the basin that is permanently impervious
Exponent on upper zone tension outflow approximation
Exponent on upper zone free outflow approximation
Exponent on lower zone tension outflow approximation
OUTPUT VARIABLES

Input volume to the river [MM]

AUXILIARY VARIABLES

Maximum drainage from lower zone free aquifers,

= dl Xo + dll XO

Cy = dy Xy *+ dg Xg

Fraction of lower zone elements which is empty,

X3+ X4 + Xg
0 (o] 0

y=1-

Fraction of maximum drainage from lower zone free
aquifers provided by the primary component,

= A4' yO
C2 = dz X4/C]

13



INPUT VOLUME TO THE CHANNEL

d'x, + d" X .
_ A R _ .
Uc = (duXZ + —m———)(l 61 32) + ¢ XDBZ
X - X A X m A~ X m X m
+ (2P e x () e ex (TR -8, -8y
X ) XO P XO XO
3 1 1 2
X X, m X, m, a
+[1- (12 (B2 (e xs, (2.9)
P
X3 Xo X

2.4 The Channel Router Model

The last component of the rainfall-runoff model is the conceptual
channel router of Georgakakos and Bras (1980). The channel is
modelled as a series of nonlinear reservoirs. The model is driven by
the volume of water produced by the soil, and produces as the output
the discharge from the basin. The dynamic equations of the router are
the balance equations of its components. If S; denotes the storage

on the ith reservoir, the balance equations are:

ds.

a "N U tig

i=1,2,.0.,n (2.10)
The constants Pj, aj, i=1,2,...n, m and the number of
reservoirs, n, constitute the router parameters. The instantaneous
discharge at the basin outlet, Zc, is the outflow from the last

reservoir, or

14



a s” (2.11)

N
[}

2.5 Summary of the Rainfall-Runoff Model Structure

The rainfall-runoff model can be summarized in state-space form
by the following dynamic and observation equations,

DYNAMIC EQUATIONS:

& Xy = £ 00, usa) RAINFALL
KX = £, X v, ugs a, ) SOIL (2.12)
g?lc = £(Xps X Xoo oy UG5 @p, A, ) CHANNEL
OBSERVATION EQUATIONS:
Z, = h (0, us a) MEAN AREAL PRECIPITATION
(2.13)
z,=h (X a) DISCHARGE

The variables X , X and represent respectively the state

P
variables of the precipitation, soil and channel sections of the

Xe

model,
xT = [X, X. X. X, X. X.]
-S 1 7273 74 "5 "6
T _
X-[Slsz...sn]

The input variables of the model are ue and the vector Up.

The parameter values of the different model components are respec-
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tively 2p, 3s, and ac. From the previously described expres-

sions for functions fp, j;, jk, hp, and hc, it can be concluded that
the precipitation component is linear with respect to the state Xps
but nonlinear with respect to the inputs; while the soil and channel
components are both nonlinear with respect to the states and linear
with respect to the inputs. Figure 2.1 summarizes the model

processes, states, parameters inputs and observations.

2.6 Stochastic Representation of the Rainfall-Runoff Process

If the conceptual rainfall-runoff model is used in practical
applications, the modelled processes will differ from reality. This
discrepancy can be attributed to some of the following causes:

a. Errors in the model structure

b. Errors in the model parameters

€. Errors in the model inputs

d. Errors in the model observations

Inaccurate representations of the physical phenomenon result in
errors of type (a). The conceptual rainfall-runoff model uses lumped
parameters to describe a spatially distributed process and therefore
errors in model structure are to be expected. Not properly calibrated
parameters give rise to errors of type (b). Errors of types (c) and
(d) arise from inaccuracies in the observation mechanisms or in the
transformation of actual observations into model observations (e.g.,

the computation of averaged values from point values).
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Some of the above errors are treated explicitly in this work by
interpreting the rainfall-runoff mechanism as a stochastic process.The
conceptual rainfall-runoff model becomes a stochastic nonlinear
dynamic system with the following dynamic and observation equations:

DYNAMIC EQUATIONS

& X(1) = £(X(t), u(t), t) + w(t) (2.14)

OBSERVATION EQUATIONS

2(t,) = h(X(t,), ult,), t,) + v(t,) k=0,1,2,...  (2.15)

The stochastic components w(t) and v(tg) are typically modelled
as zero mean Gaussian processes. The vectors X, u and Z represent
respectively the states, inputs and observations of the model.

Given the stochastic nature of the additive noises w(t) and
v(tg), the states and observations, at any particular time, become
random variables. The prediction problem then becomes the estimation
of the states from the random observations. This problem will be

fully explored in Chapter 3.
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Chapter 3
STATE ESTIMATION OF NONLINEAR DYNAMIC SYSTEMS

3.1 Introduction

For several reasons, the state estimation of nonlinear dynamic
systems is considerably more difficult than that of linear dynamic
systems. Under the most reasonable Bayesian criteria, the optimal
state estimate is the state's conditional mean given the observa-
tions. For linear dynamic systems, if the dynamics and observations
noises are Gaussian, then the conditional distribution of the states
given the observations is also Gaussian. This implies that the state
conditional mean can be obtained from linear operations on the
observations via the well known Kalman filter procedure. On the other
hand, nonlinear dynamic systems, even with Gaussian dynamics and
observation noises, will not result in Gaussian distributions for the
conditional states given the observations. This means that it is no
longer possible to stay in the domain of correlation theory (means and
covariances), but the whole conditional distribution function must be
considered. In general, it is not easy to obtain such conditional
distribution.

Several approximations to the problem of state estimation (fil-
tering) of nonlinear dynamic systems have been proposed. There are
two major groupings of approximations:

a. Those that approximate the whole state conditional distri-

bution function with a finite set of parameters, and
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b. Those that approximate the nonlinear functions with linear

ones and then apply linear filtering results.

Approximations in group (a) are based on parametrizations of the
state conditional distribution function by finite series expansions or
the use of distribution functions characterized by a finite number of
parameters. Sorenson and Stubberud (1968) propose to approximate the
density function in terms of Hermite polynomials (Edgeworth Expan-
sions). Alpsach and Sorenson (1972) suggest the use of Gaussian
sums. Common to all of the procedures, within this group, is the need
to obtain non-obvious discretizations of the states and the need to
store considerable amount of information. For these reasons filters
of type (a) will not be considered in conjunction with the rainfall-
runoff model.

The approximate estimators of type (b) have been the most popular
in practical applications. These filters will be used together with

the rainfall-runoff model and will be described in the following.

3.2 Linearized Kalman Filter

The general nonlinear dynamic system with observations at dis-

crete times is given by:

4 x(t) = £(x(t), u(t), t) + w(t)

(3.1)
2(t) = h(x(t), ult), t ) +v(t),  k=0,1,2,...
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where:

X(t): state vector at time t

u(t): -inputs vector at time t

Z(tg): observations vector at time ty

f(+): nonlinear dynamics function

h(*): nonlinear observations function

w(t): continuous dynamics noise

v(tg): discrete observations noise

The additive noise random components are assumed zero mean inde-
pendent Gaussian random vectors. w(t) has spectral density matrix
Q(t) and v(ty) has covariance matrix R(tg).

In order to apply linear filtering results, the nonlinear dyna-
mics and observations functions are linearized about given state and
inputs trajeétories X*(t) and u*(t). This results in the following

approximation:

FX*(t),ux(t),t) + FOX*(t),ux(t),t)(X(t) - X*(t)) + w'(t)

d
E:t'ﬁ(t)

WOt ) ux ()t ) + HO (e ) ux (g )Lt ) (X(E) - X*(t,))

Z(t))
+v'(t,) (3.2)

where F(+) and H(*) are respectively the linearization matrices! of

the dynamics and observation functions with respect to the states, and

T . R . . . .
First order derivatives in case of Taylor linearizations
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w'(t) and v'(tg) are trajectory dependent noise components defined

by:
w'(t) = FUx*(t),ux(t), t)(ult)-ux(t)) + w(t) (3.3)

vt = HUxx (), wr(t ), t ) (ult )-ur(t ) + v(t,) (3.4)

with FU(*) and HY(*) being respectively the linearization ma-
trices! of the dynamics and observations functions with respect to
the inputs.

If u*(t) is the expected value of the inputs, the noise compo-
nents are zero mean white Gaussian processes with spectral density

matrix Q'(t) and covariance matrix R'(tg) given by

)T+ q(t)

(3.5)

Q' (t) = FU(x*(t),ux(t),t) Q (1) FI(x*(t), ux(t),t

and
R'(t,) = H“(zf(tk),gf(tk),tk)Qu(tk)H“(&(tk),gf(tk),tk)T + R(t,)

(3.6)
where Qu(t) denotes the inputs covariance matrix at time t.

The linearized Kalman filter for the nonlinear system is obtained
by applying the linear Kalman fi1tér to the linear system described by
Equations (3.2). If_i(t ty) and P(t{tg) denote the state estimate
and its respective error covariance matrix at time t from information
up to time tg, the linearized Kalman filter equations are, Gelb

(1974):

1First order derivatives in case of Taylor linearizations.
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STATE ESTIMATE PROPAGATION, telty,tk+1)

40 X(tft) = £xs(e),u(e), ) + .
Fxx(0),ux(1), 8]+ DX(t]g) - X(0)] (3.6)

ERROR COVARIANCE PROPAGATION, telty,tk+1)

%f P(t|t,) = Flxx(e),ux(t), t)P(t]t,) + P(t tk)F(-,~,-,)T +Q'(¢)

(3.7)

STATE ESTIMATE UPDATE, k=0,1,...
X [fean) = Xt [B) * Ky [2064)
= B0t )ou* (0 ) s tyq) = HOXR () au (t g )uty )

“{x(t |t) = X<t 0} (3.8)

k+1

ERROR COVARIANCE UPDATE, k=0,1,...

P [Ben) =
* L] L] T
L1 = Ky oHOou s ) IP(t g | (LT = Kyqoi(e, 0, 0)]
+ K, LR (t, Kb (3.9)
k+1 k+1° 7 k+1 '



KALMAN GAIN

- L] L] L] T L] L] L L ) L] L] T ! -]
Kep = POty [BIHC oo ) THO o 0P (ty [ B R, + R (8 q) ]
(3.10)
INITIAL CONDITIONS
Xty [t,) = X5 Ple|ty) = Py (3.11)

If the linearization trajectory is known in advance, the error
covariance propagation and gain matrices can be computed off-line,
i.e., they do not depend on the current state estimate. Although this
represents computational and storage savings, the performance of the
filter heavily depends on the proper selection of the linearization

trajectory.

3.2.1 Extended Kalman Filter

A way to bypass the need of specifying the state linearization
trajectory in advance is to linearize about the current estimates
given by the filter. If such trajectory is employed, the error co-
variance and gain matrices can no longer be pre-computed, but large
initial linearization errors are less likely to propagate. Such fil-
tering procedure is called extended Kalman filter, EKF; its algorithm

is, Jazwinski (1970):
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STATE ESTIMATE PROPAGATION, te[ty,tyk+1)

§f7i t|t ) = fl x(t|tk , u*(t),t) (3.12)

ERROR COVARIANCE PROPAGATION, telty,ty+1)

o peft,) = FIX([t),ux(8), 1) Plt|t,)

AT L A
+ P(t|tk)F(-,°, )+ Q'(t) (3.13)

STATE ESTIMATE UPDATE, k=0,1,...

Xt 1]t =‘§(tk+1,tk) +

Keaq[Z0tpq) = (Xt [ o0 (t g )t )]

(3.14)
ERROR COVARIANCE UPDATE, k=0,1,...
PCta [ter) = [T = KB (g [ 100 0 (), by )]
NRSL . T
POt g [B LT = K HO o) T+ KR (0K 4
KALMAN GAIN
= L] L] L d T
Keer = POtegq [BIHC 00
[HCes s 0P (ty g [E HC, o 0T+ R (8, 0T (3.76)
2 R [ R IT T k+1 :
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INITIAL CONDITIONS

X(t |t) = X5 Pt |t,) =P, (3.17)

Notice that Equations (3.12) and (3.13) are coupled. The ex~

tended Kalman filter structure is shown in Figure 3.1.

3.3 Iterated Extended Kalman Filter

Local iteration algorithms have been developed to approximate the
nonlinear filtering problem. Denham and Pines (1966) introduced the
iterated extended Kalman filter, IEKF. The propagation stage‘of this
filter is the same as in the extended Kalman filter, but relineariza-
tions are made during the updating stage (to the observations func-
tions) until convergence is reached. The algorithm for this filter
is:

STATE ESTIMATE PROPAGATION, te[ty,tyk+1)

g—ti(tltk) = i(i(t t ), ux(t),t) (3.18)

ERROR COVARIANCE PROPAGATION, te[ty,ty+7)
d - e(e c e )T
aT Pt = F(i(t‘tk),g*(t),t)P(t'tk) *P(E[t IF(,0,0)

+ Q' (t) (3.19)
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Figure 3.1 Extended Kalman Filter Structure, EKF
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UPDATED STATE INITIALIZATION U

Iy = Xty

UPDATED STATE ITERATIONS, i=1,2,...,%

Ly = Xt [6) + Kl (25,00 - b 0 (e hatyyg)

- H(IH’Ef(tk+1)’tk+1)£¥(tk+1ltk) - 0.}

GAIN MATRIX ITERATIONS, i=1,2,...,%

o - T.
Kear = POt [ 5 M0 0% (8 0t )

O L C R T [ TEI LI L (tk+1)]

STATE ESTIMATE UPDATE, k=0,1,...

Xt [tear) = M

ERROR COVARIANCE UPDATE, k=0,1,...

- _ 2
P(tk+1,tk+1) = [1 Kk+1H(3&,gf(tk+]),tk+1)]P(tk+] Itk)

[ ) - z L] L L] T 2 ' 2
1= K Ha 0 T KR (0K
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(3.20)

(3.21)

(3.22)
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INITIAL CONDITIONS

Xty [ty) = X, 5 Pl |t)) = Py (3.25)

The local iterations limit, £, is defined such that Noyr = Ny
Note that improving the state and error covariance updated values not
only affects the current time step, but also future time steps, since
such estimated values become the initial conditions for the state and
error covariance propagation differential equations. The structure of

the iterated extended Kalman filter is represented in Figure 3.2.

3.4 Extended Linear Filter-Smoother and Iterated Extended Linear

Filter-Smoother

Information available in the future may be used in the past to
decrease linearization errors on the system nonlinear dynamic func-
tions., If future estimates are propagated into the past, better past
estimates will be obtained. If such past estimates serve as initial
conditions for new estimates in the future, better tracking of the
system dynamic nonlinearities will be achieved.

Better past estimates are obtained by using the linearized Kalman
filter on the backwards dynamic equations, with the previous forward
estimate as the linearization trajectory. For the interval

[tk,tk+1] the backwards filter algorithm is, Gelb (1974):
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Figure 3.2 Iterated Extended Kalman Filter Structure, IEKF-3
(with three local iterations) :
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-T

BACKWARDS STATE ESTIMATE PROPAGATION, T€[O,tk+.|-tk), t= tk+1

d Y = - " -
T X (1) = - £X(t]t)), ue (), t)
FOX(t[t ) ux (), t) (X, (7) - X(t[t,)] (3.26)
BACKWARDS ERROR COVARIANCE PROPAGATION, ef0,t,,, - t)
4 p (1) = - F(X(E|t, ) uk (), £)P, (%) = P (TIF(erere)T + Q' (1)
at b X(t]t),u Tty b > %
(3.27)
BACKWARDS STATE ESTIMATE UPDATE
X(t) = X (t -t )+ KbkL;(tk) - h(X(t |t dur(t ).t )
- HOXCt [t 00X (b g -t ) - XU [t 0 )] (3.28)
BACKWARDS ERROR COVARIANCE UPDATE
! - - L] L] L] - - L ) L] * T
Pp(t,) = [I Kka( 555t )P (4 - 1T Kka( »*50)]
+ K R'(t K (3.29)
b k'"b | .
k k
BACKWARDS GAIN
K, = P (t, . -t, H(*,,*) e
b, T b ka1 T
[H(*, o, )P, (£, o=t H(o, o, ) T+ R (£, )17 (3.30)
2T IR ey TH I T T k y
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After use of this algorithm two estimates at time tg are known,
name]y.i(tk tk) andllg(tk). A new initial condition for forwards
dynamic propagation is obtained by weighting these estimates according

to their error covariance matrices:

~

Xs(tk t) = Ps(tk'tk)[P(tkltk)'1 i(t:k ) + Pl')(tk)-] Xp(t)]

(3.31)

where

Pl [T = Uy ) ¢ p(y) (3.32)

Once these smoothed estimates are obtained, the extended Kalman
filter can be used again in the forwards dynamic equations. Because
more accurate initial conditions have been obtained at tg, better
estimates at ty4+] are expected.

The extended linear filter-smoother, ELFS, is the combination of
a forward extended Kalman filter and a backwards linearized Kalman
filter. The procedure on any interval may be repeated for a fixed
number of backwards-forwards cycles, or for as many cycles until con-
vergence is achieved. The structure of this procedure is shown in

Figure 3.3.
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Figure 3.3 Extended Linear Filter-Smoother Structure, ELFS-1
(with one smoothing cycle) ,
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If the iterated extended Kalman filter is used in the forwards
dynamic propagations, linearization errors will be reduced on the dy-
namics function and in the observation function, Wishner, et al.
(1968). This filter is named iterated extended Kalman filter-

smoother, IELFS. Its structure is shown in Figure 3.4.

3.5 Second Order Gaussian Filter

When using the extended Kalman filter and other nonlinear filter-
ing approximations, first order Taylor expansions are usually used in
approximating nonlinear functions. In order to achieve increased
accuracy in the computation of the conditional mean of the states,
such functions may be approximated by higher order Taylor expansions.

The second order Gaussian filter has the same structure of the
extended Kalman filter. The linearization trajectory is also computed
by the filter itself. The algorithm for this filter is, Jazwinski

(1970):

STATE ESTIMATE PROPAGATION, te[ty,ty+])

-3; _;g(t t) = j(igt t ), ux(t),t) +% az(F,P(tltk)) (3.33)
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Figure 3.4 Iterated Extended Linear Filter-Smoother Structure, IELFS-3,1
(with one smoothing cycle and three local iterations)
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ERROR COVARIANCE PROPAGATION, ts[tk’tkﬂ)

gf P(t’tk) = F(&(t,tk),gf(t),tJP(t'tk)

+ P(tltk)F(‘,‘,‘)T + Q' (t) | (3.34)

STATE ESTIMATE UPDATE, k=0,1,...
At |ten) = 2t [8) + K 205,90 -
h(X(t, 1 [t ), u%(ty 1), ten ) = 4 02(H,P(t,. )]
LN AR S | S8 RER ¥ | 7 — s k+1| k
(3.35)
ERROR COVARIANCE UPDATE, k=0,1,...
P(tk+],tk+1) =[1 - Kk+]H(5(tk+],tk),gr(tk+1),tk+])] .

T

: T
POt | B LT = K HOo o) 1T+ KGR (0K

(3.36)
GAIN MATRIX
- [ ] . . T.
Keat = Plgaq [BHC000)
T, g -1
[HCes e o dPCt [t MG, o) + RY(E 5) + At 1) ]
(3.37)
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INITIAL CONDITIONS

X(to|t)) = X3 P(xy[t) = P, (3.38)

The second order terms g?(F,P(t|tk)) and‘g?(H,P(tk+]'tk)) are

defined component-wise by:

2 %,
31(F,B) = trace {Lgyggyg]'B} (3.39)
3°f,
with [37—3%—] the matrix of second order derivatives of the
P qg

ith component of f with respect to the states, evaluated at the
current state estimate.
The correction term on the gain, A(tg+]), depends on fourth

order moments of the system. It is defined by:
Alt, ) = % E{2(H, [X(t, .- |0 = X(t,.1) 1IX(t, .0 [t ) - X(t, 1) ]T)e
k+1 2 "= Vo k+1, k = "k+17 4= k+1, k =*"k+1
2 v 9 T\T
(M X4 1) = Xt ) HXCE 1) - Xt 1)

- %'2?(H,P(tk+]ltk))é?(H,P(tk+1ltk))T (3.40)

where the expectation may be obtained from Gaussian moment factoring,

to give for the (i,j) element of the correction:
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a2y, a2 .

1 S
r,sgm,n 5Xr§Xs (Prmpsn * Prnpsm) 9Xm8Xn ]

(3.41)
with Ppy denoting the (r,m) element of P(ty+7/tk).
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Chapter 4
PRACTICAL USE OF APPROXIMATE NONLINEAR FILTERS

4.1 Introduction

The results of applying the approximate nonlinear filters and the
rainfall-runoff model to a case study are presented in this chapter.
One step ahead forecasting as well as extended forecasting are con-
sidered.

Residual statistics and the least squares performance indices of
Kitanidis and Bras (1978) are used to compare the performance of the
different procedures.

Table 4.1 includes the nonzero elements on the linearization
matrices of the dynamics and observations of the rainfall-runoff
model. The actual expressions for these quantities are given in Ap-
pendix A. The second order derivatives, required to use the second

order Gaussian filter, are included in Appendix B,

4.2 Description of the Drainage Basin and of the Available Data

The drainage basin under consideration in the present study is
the Bird Creek basin near Sperry, Oklahoma. The area of the catchment
is 2344 km2(915.6 mi2). Discharges every six-hours ("instanta-
neous") are measured at USGS Station No. 07177500, The average dis-

charge is 20 m3/sec with maximum recorded discharge of 2535.1
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Table 4.1

Linearization Matrices for the Rainfall-Runoff Model

Matrix F
Xp X] X2 X3 X4 X5 X6 S] 52
X T
p
. X1 T T
X2 T T T T T T
X3 T T T T T
X4 T T T T
X5 T T T T
X6 T T T T
S] T T T T T T T
S2 T T T T T T T T
Sn-1 T T T T T T
Sn T T 7T T T T
Matrix H
Xp X] X2 X3 X4 X5 X6 S] ..S2
ZP T
Z

40



Table 4.1 (continued)

Matrix FU
To P0 Td ue
X T
P T T
X.I T T T T
X2 T T T
X3 T
Xy
Xs
X6 T T T T
S-' T T T
52 T T T
Sn T T T
MATRIX HU
To Po Td Ug
Z T T T
p
Y4
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m3/sec and minimum of 0.22 m3/sec. Characteristics of the dis-
charge record are high peak and sharp hydrographs in the period from
April to September. It is common to have flows rising from near zero
to 200-250 m3/sec in a period of 18 hours.

Instantaneous mean areal temperature, pressure, dew point, and
precipitation data were provided by the NWS-Hydrologic Research Lab-
oratory. These data sets were obtained from point observations at
Tulsa, Oklahoma, 20 kms southeast of the basin's outlet.

Evapotranspiration demand was obtained from daily potential
evapotranspiration data provided by the NWS. Instantaneous evapo-
transpiration was found by distributing the daily values over time
intervals 0-6, 6-11, 12-18, and 18-24 hours, according to O, 33, 67,
and 0 percent, respectively.

There was no snow accumulation nor ablation in the case study.

Table 4.2 includes the values of the parameters for the
rainfall-runoff model. These values were fixed in all the computa-
tions. The precipitation parameters are those in Georgakakos
(1982a). The soil parameters were estimated by the NWS staff based on
physiographic characteristics of the basin and input-output data. The
channel parameters are those of Georgakakos and Bras (1980), obtained
from input-output data for the month of July 1959,

The power functions, that approximate the threshold functions of

the original Sacramento model, all have exponents equal to two.
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Table 4.2

Parameter Values for the Rainfall-Runoff Model

SYMBOL VALUES
PRECIPITATION
Updraft velocity parameter €9 0.16x10~2
Cloud particle mean diameter €4 0.55x10~4
SOIL
Upper tension capacity X? 120.0
Upper free capacity xg 15.0
Lower tension capacity | Xg 160.0
Lower free primary capacity XZ 140.0
Lower free secondary capacity Xg 14.0
Interflow coefficient du 0.0891
Primary drainage coefficient dé 0.0033
Secondary drainage coefficient d; 0.0336
Percolation Parameter € 48.0
Percolation Exponent C 2.1
Fraction to lower free Pf 0.02
Exponents on threshold approximation My sMy 5 My 2.0
Baseflow percent lost parameter u 3.55
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Table 4.2 (continued)

SYMBOL VALUES
Additional impervious fraction B] 0.17
Permanent impervious fraction 82 : 0.001

CHANNEL

Number of reservoirs n 3
Input fraction to Reservoir 1 P] 0.95
Input fraction to Reservoir 2 P2 0.05
Input fraction to Reservoir 3 P3 0
Exponent of router m 0.8
Parameter of Reservoir 1 ay 1.09
Parameter of Reservoir 2 a, 1.04
Parameter of Reservoir 3 a 1.08

3
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4.3 Review of the Comparison Indices

The least square indices of Kitanidis and Bras (1978) are re-
viewed in this section. These indices are the coefficients of effi-
ciency, determination, persistence and extrapolation.

The efficiency of a model was defined by Nash and Sutcliffe
(1970) as the proportion of the variance on the observed data accoun-

ted by the model. The efficiency coefficient is given by:

E = S0 =3 (4.1)

where S, measures variability on the observed data and S measures

variability of the predictions, over N time steps:

N - \2
Sy = .Z (Zo(ti) -Z,) (4.2)

i=1

- 2
S (Zo(ti) - Zo(ti)) (4.3)

L}
Il =

i=1

with Zo(ti) denoting the observation at time tss Zo(ti) the prediction

at time ti and‘fb the observation mean over the N time steps.

Values of the efficiency coefficient close to one are indicative
of good performance.

Another measure of performance is the determination coefficient
of the linear regression line that relates the observations and the

predictions., It is defined by:
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0~

2
1 (Zo(ti) - Zr(ti))
D=1- (4.4)

So

with Zp(t) denoting the estimate at time tj given by the re-
gression line. The coefficient of determination is always higher than
the coefficient of efficiency because the regression line removes sys-
tematic errors in the forecast. Again a value of D closer to one is
indicative of good performance.

The coefficient of persistance compares the model predictions
with predictions given by the previous observation. This coefficient

is given by:

S

2
(Zo(ti) -z, (t; ;) (4.5)

H o~z

i=1
This coefficient takes values less than or equal to one, with one in-
dicating perfect predictions.

The coefficient of extrapolation compares the model predictions
with predictions obtained by linearly extrapolating the two most
recent observations. If Zg(tj) denotes the extrapolated estimate
to time tj, from the two most recent observations in the past, the

coefficient of extrapolation is then:
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L=1- 2 (4.6)
2
(Zy(t5) = Z4(t)))

il =

i=1

Once again a value of L closer to one indicates better performance.

4.4 Case Study Results

4,4,1 One-step Ahead Predictions

The months of April and May of 1960 were used to make comparisons
among the different approximate nonlinear filters. Similar results
were obtained for July 1959 but these results are not reported here.

A11 stochastic runs, i.e., with filtering, were made with the
same set of initial conditions. The initial state mean and its ini-
tial diagonal error covariance matrix are included in Table 4.3.

The spectral density matrix Q(t) was assumed diagonal and con-
stant for all times. Several structures for this matrix were consi-
dered. 1Its standard deviations are included in Table 4.4, It was as-
sumed that the inputs were measured without error. This gives the ma-
trix Qy(t) equal to zero and consequently the spectral density ma-
trix for the linearized system, Q'(t), is the same as Q(t). The input
values were also assumed perfectly predictable, i.e., the true inputs

at times ty and tg4+] were used to obtain state estimates at time

tk+] .

47



Table 4.3

Rainfall-Runoff Initial Mean and Initial Standard Deviations

Standard
State Mean [mm] Deviation [mm]
X T. [ ]

p 0 0.03
X1 10.0 ‘0.3
X2 12.0 0.1
X3 10.0 0.3
X4 10.0 0.3
X5 11.0 0.1
X6 0.0 0.1
51 0.05 0.001
S2 0.05 0.001
S3 0.05 0.001
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Table 4.4

Rainfall-Runoff Model Spectral Density Standard Deviations

Q-Level

State 0 1 2 3 4 5
X, 2 5 10 20 10 30
Xy 107 10 10 10t 07 0.2
X, 1074 1073 1072 1071 1072 0.2
Xy 0.05 0.5 5 50 5 10
X, 0.0187 0.187  1.87 18.7 1.87 10
Xs 0.0682 0.682  6.82  68.2 6.82 10
Xe 0.075  0.75 7.5 75 7.5 10
5 0.70  0.70  0.70 0.70 1 1
s, 0.17  0.17 0.17 0.17 1.7 1
S, 0.17 0.17  0.17 0.17 0.17  0.25
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The observations covariance matrix, R(t) = R(t)', for the
rainfall-runoff model is given in Table 4.5. The observation errors
in discharge are made of a constant error and an error directly pro-
portional to the discharge observation. On the other hand, the pre-
cipitation measurements error were assumed not related to precipita-
tion observations, but given by a constant value at all times.

Results of the use of the rainfall-runoff model in a determinis-
tic model (without filtering), to predict instantaneous mean areal
precipitation with a 6-hour lead are shown in Figure 4.1. Use of the
extended Kalman filter and Q of level 2 give the precipitation predic-
tions depicted in Figure 4.2. Notice the slight improvement due to
the use of filtering. The residual statistics (means, variation
coefficients, and autocorrelation of different lags) as well as the
least squares performance indices for the two procedures are inc]dded
in Table 4.6.

Because the precipitation portion of the rainfall-runoff model is
linear with respect to the state, and the error covariance of the in-
puts was taken equal to zero, no improvement in prediction of precipi-
tation is expected from the other approximations to nonlinear filter-
ing. Precipitation predictions were also found insensitive to the
spectral density matrix changes defined in Table 4.4.

Results for deterministic prediction of discharge are shown in
Figure 4.3. The residual statistics (means, variation coefficients,
skewness, and autocorrelations of different lags); statistics of the

series obtained by normalizing the residuals by their respective
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*Table 4.5

Rainfall=Runoff Model Observation Error Covariance Matrix

MAP Discharge
MAP 1 ‘ 0
Discharge 0 (0.05+0.1 Zc)2

Z. - Discharge observation

MAP - Mean Areal Precipitation
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Figure 4.2 Stochastic Prediction of Precipitation, Bird Creek, April-May
1960, Q-4
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Table 4.6

Residual Statistics and Least Squares Performance

Indices for Precipitation

Deterministic EKF
Mean 0.60 0.54
Variation Coefficient 7.04 7.92
Correlation lag 1 0.07 0.03
Correlation lag 2 -0.15 | -0.18
Efficiency 0.03 0.02
Determination 0.07 0.08
Persistence 0.26 0.26
Extrapolation 0.71 0.70
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standard deviations; and the least square indices for these results

are given in the first rows of Tables 4.7, 4.8, and 4.9.

The residual statistics, normalized residual statistics and Teast

squares performance indices for discharge, for the different nonlinear

filters and for the different spectral density matrices are contained

in Tables 4.7, 4.8, and 4.9, respectively.

The following remarks summarize the behavior of the different

nonlinear filters in predicting discharge:

1.

The approximated noniinear filters do better in reproducing
the discharge hydrograph than predictions obtained from de-
terministic use of the system dynamics.

The extended Kalman filter performance was not improved by
the iterated extended Kalman filter (convergent after six
iterations) or by the second order Gaussian filter. Because
the exponents of the nonlinear reservoirs that constitute the

channel have a value of 0.8, second order derivatives in the

-1.2

channel includes terms of the form (0.8)(-0.2)Si . For low

flows these terms give unrealistically high values that have
a detrimental effect on the predictions. The second order
filter was then restricted only to high flows, defined when
the storage of the last reservoir exceeds 0.2, but even for
high discharges this filter closely resembles the predictions
obtained by using the extended Kalman filter. Figures 4.4,
4.5, and 4.9 show the discharge predictions with these three

filters for Q of level 4.
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Table 4,7

Residual Statistics for Discharge

Autocorrelation
Variation
Q-Level Procedure Mean Coefficient Skewness Lag-1 Lag-2 Lag-3 Lag-4
DETERMINISTIC 0.26 2.56 2.09 0.96 0.82 0.65 0.46
EKF 0.25 2,22 2.61 0.94 0.79 0.60 0.40
IEKF-6 0.26 2.22 2.61 0.94 0.79 0.60 0.47
ELFS-1 0.21 2.40 2.70 0.89 0.74 0.54 0.33
° ELFS-2 0.22 2.29 2.58 0.93 0.77 0.57 0.36
IELFS-6,2 0.22 2.31 2.57 0.93 0.77 0.57 0.36
SOFG 0.27 2.09 2.60 0.93 0.79 0.60 0.41
EKF 0.25 2.22 2.61 0.94 0.79 0.60 0.40
IEKF-6 0.26 2.22 2.61 0.94 0.79 0.60 0.41
ELFS-1 0.22 2.33 2.68 0.92 0.77 0.57 0.36
] ELFS-2 0.21 2.23 2.32 0.92 0.76 0.57 0.37
IELFS-6,2 0.21 2.25 2.32 0.92 0.76 0.57 0.37
SOGF 0.27 2.09 2.61 0.93 0.79 0.60 0.4
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Q-Level

Table 4.7 (continued)

Autocorrelation
Variation
Procedure Mean Coefficient Skewness Lag-1 Lag-2 Lag-3 Lag-4
EKF 0.25 2,23 2.61 0.94 0.79 0.60 0.40
IEKF-6  0.26  2.23 2.61  0.94 0.79 0.60 0.41
ELFS-1 0.21 2.31 2.61 0.92 d.77 0.57 0.35
ELFS-2 0.19 2.25 2.19 0.91 0.74 0.56 0.38
IELFS-6,2 0.19 2.26 2.19 0.91 0.74 0.56 0.38
SOGF 0.27 2.10 2,61 0.93 0.79 0.60 0.41
EKF 0.20 2.73 2.65 0.93 0.78 0.58 0.37
IEKF-6 0.20 2.72 2.65 0.93 0.78 0.58 0.37
ELFS-1 0.07 5.22 2.84 0.88 0.67 0.43 0.21
ELFS-2 0.04 6.45 2.7 0.78 0.46 0;26 0.16
IELFS-6,2 0.05 6.35 2.72 0.78 0.48 0.29 0.18
SOGF 0.20 2.64 2.67 0.93 0.77 0.58 0.37
ELFS-3 0.03 7.81 2.82 0.73 0.36 0.15 0.08
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Table 4.7 (continued)

Autocorrelation
Variation

Q-Level Procedure Mean Coefficient Skewness Lag-1 Lag-2 Lag-3 Lag-4
EKF 0.08 3.56 2.69 0.61 0.69 0.37 0.37
IEKF-6 0.07 4,22 2.57 0.57 0.69 0.35 0.39
ELFS-1 0.10 2.14 3.04 0.58 0.36 0.21 0.14

* ELFS-2 0.10 2,13 3.07 0.67 0.40 0.25 0.18
IELFS-6,2 0.10 2.15 3.05 0.67 0.40 0.26 0.19
SOGF 0.10 2.64 2.82 0.66 0.63 0.41 0.35
EKF 0.14  2.50 2.95  0.87 0.7 0.52 0.34
IEKF-6 0.13 2.63 2.94 0.85 0.74 0.51 0.34
ELFS-1 0.14 2.00 3.02 0.82 0.64 0.46 0.29

: ELFS-2 0.10 2.24 2.66 0.66 0.39 0.26 0.26
IELFS-6,2 0.70 2.14 2.60 0.66 0.38 0.26 0.25
SOGF 0.16 2.28 2.97 0.87 0.71 0.53 0.35
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Table 4.8

Normalized Residuals Statistics for Discharge

Autocorrelations
Variation

0-Level Procedure Mean Coefficient Skewness Lag-1 Lag-2 Lag-3 Lag-4
DETERMINISTIC 0.91 2.30 1.70 0.94 0.80 0.64 0.46

EKF 0.88 1.99 1.93 0.92 0.78 0.62 0.45

IEKF-6 0.94 1.96 1.89 0.92 0.78 0.63 0.46

ELFS-1 0.70 2.23 1.96 0.87 0.74 0.57 0.39

° ELFS-2 0.76 2.1 1.90 0.91 0.77 0.59 0.41
IELFS-6,2 0.80 2.09 1.86 0.90 0.76 0.59 0.42

~ SOGF 0.90 1.94 2.01 0.91 0.76 0.59 0.42

EKF 0.88 1.99 1.92 0.92 0.78 0.62 0.45

IEKF-6 0.94 1.96 1.88 0.92 0.78 0.63 0.46

ELFS-1 0.74 2.13 1.94 0.90 0.77 0.59 0.40

1 ELFS-2 0.73 2.09 1.81 0.917 0.75 0.58 0.41
IELFS-6,2 0.76 2.07 1.82 0.89 0.74 0.57 0.4

SOGF 0.91 1.93 2.00 0.91 0.76 0.59 0.43
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Table 4.8 (continued)

Normalized Residuals Statistics for Discharge

Autocorrelations
Variation

Q-Level Procedure Mean Coefficient Skewness Lag-1 Lag-2 Lag-3 Lag-4
EKF 0.88 2.00 1.92 0.92 0.78 0.62 0.45
IEKF-6 0.93  1.97 1.89 0.92 0.78 0.63 0.46
ELFS-1 0.73 2.12 1.89 0.91 0.76 0.58 0.39

‘ ELFS-2 0.67 2.15 1.78 0.89 0.72 0.55 0.40
IELFS-6,2 0.70 2.13 1.81 0.88 0.70 0.54 0.40
SOGF 0.91 1.92 1.97 0.92 0.77 0.60  0.43
EKF 0.63 2.73 1.90 0.91 0.75 0.57 0.39
IEKF-6 0.69 2.62 1.90 0.91 0.75 0.58 0.41
ELFS-1 0.13 10.2 1.08 0.82 0.56 0.33 0.14

’ ELFS=-2 0.07 16.8 1.35 0.72 0.36 0.6 0.08
IELFS-6,2 0.11 10.1 1.92 0.72 0.38 0.20 0.11
SOGF 0.66 2.6 1.90 0.91 0.75 0,57 0.39
ELFS-3 0.04 27.4 1.12 0.69 0.30 0.10 0.04
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Q-Level

Table 4.8 (continued)

Normalized Residuals Statistics for Discharge

Autocorrelations
Variation
Procedure Mean Coefficient Skewness Lag-1 Lag-2 Lag-3 Lag-4
EKF 0.17 4.96 1.80 0.41 0.69 0.26 0.43
IEKF-6 0.22 4,32 2.21 0.30 0.62 0.20 0.41
ELFS-1 0.31 2.14 2.42 0.49 0.31 0.16 0.0
ELFS-2 0.33 2.08 2.66 0.64 0.35 0.20 0.15
IELFS-6,2 0.39 2.03 3.37 0.54 0.28 0.16 0.12
SOGF 0.27 2.99 1.92 0.50 0.63 0.31 0.34
EKF 0.40 2.44 2.31 0.83 0.73 0.52 0.37
IEKF-6 0.42 2.42 2.32 0.77 0.70 0.49 0.37
ELFS-1 0.40 1.94 2.32 0.78 0.59 0.44 0.30
ELFS-2 0.30 2.25 2.18 0.61 0.32 0.21 0.23
IELFS-6,2 0.36 2.12 2.81 0.56 0.26 0.17 0.19
SOGF 0.42 2.35 2.45 0.84 0.70 0.51 0.34
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Table 4.9

Least Squares Performance Indices for Discharge

Q-Level Procedure Efficiency Determ{nation Persistence Extrapolation

DETERMINISTIC 0.07 0.37 -8.6 -19.3
EKF 0.32 0.80 -5.9 -13.7
IEKF-6 0.30 0.79 -6.1 -14.1
ELFS-1 1 0.49 0.80 -4.,2 -10.1
ELFS-2 0.47 0.85 -4.5 -10.6
IELFS-6,2 0.46 0.84 -4.6 -10.8
SOGF 0.28 0.74 -6.3 -14.6
EKF 0.32 0.80 -5.9 -13.7
IEKF-6 0.30 _ 0.79 -6.1 -14.1
ELF$-1 0.47 0.84 -4.4 -10.5
ELFS-2 0.54 0.88 =3.7 -8.9
IELFS-6,2 0.54 0.88 =3.7 -9.1
SOGF 0.29 0.75 -6.3 -14.5
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Table 4.9 (continued)

Q-Level Procedure Efficiency Determination Persistence Extrapolation
EKF 0.33 0.80 =5.9 -13.7
TIEKF-6 0.31 0.79 -6.1 -14.1
ELFS-1 0.50 0.86 -4.2 - 9.9
ELFS-2 0.62 0.89 =2.9 - 7.4
IELFS-6,2 0.61 0.89 -3.0 - 7.5
SOGF 0.30 0.76 -6.2 -14.2
EKF 0.41 0.74 -5.1 -11.9
IEKF-6 0.39 0.73 -5.3 -12.3
ELFS-1 0.75 0.80 -1.5 - 4.4
ELFS-2 0.85 0.87 -0.5 - 2.2
TIELFS-6,2 0.84 0.87 ~-0.6 - 2.4
SOGF 0.41 0.73 -5.1 -11.9
ELFS-3 0.87 0.88 -0.4 - 1.9
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Table 4.9 (continued)

Q-Level Procedure Efficiency Determination Persistence Extrapolation
EKF 0.86 0.92 -0.44 -2.06
IEKF-6 0.85 0.9 -0.52 -2.24
ELFS-1 0.91 0.94 0.04 -1.04
ELFS-2 0.90 0.93 -0.07 -1.26
IELFS-6,2 0.90 0.93 -0.04 -1.21
SOGF 0.85 0.91 -0.56 -2.30
EKF 0.76 0.9 -1.5 -4.3
IEKF-6 0.75 0.91 -1.5 -4.4
ELFS-1 0.83 0.93 -0.8 -2.7
ELFS-2 0.89 0.93 -0.1 -1.4
IELFS-6,2 0.89 0.93 -0.1 -1.4
SOGF 0.73 0.89 -1.8 -4.9
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3.

The extended linear filter-smoother, computed after one or
two cycles, gives as good or better predictions that the ex-
tended Kalman filter. Generally the former gives higher
peaks and eliminates low flow oscillations often found by
using the extended Kalman filter. See Figures 4.4, 4.6, and
4.7. The extended Kalman filter discharge predictions oscil-
late when excessive updatings occur. This happens when the
predicted variance of the discharge observation is big com-
pared to the discharge observation variance specified by the
user. The extended linear filter-smoother predictions
oscillate less than those of the extended Kalman filter
because the use of future information in the past gives
generally lower predicted variances.

For Q of levels 0 to 3 the extended Kalman filter gave pbor
results, as implied by autocorrelations of residuals and nor-
malized residuals close to one, and least squares indices far
from one. Although, the quality of the predictions improves
as the soil dynamics are trusted less (as Q moves from 0 to
3, see Table 4.4), the peaks remain badly underestimated, see
Figures 4.10 and 4.12. The extended linear filter-smoother
also underestimates the peaks for spectral density matrices
of levels 0 to 2, see Figure 4.11, but for Q of level 3 the
predictions obtained by this filter are very good, see Figure

4.13.
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The iterated extended linear filter-smoother gives about the
same predictions of the extended linear filter-smoother, see
Figures 4.7 and 4.8.

For spectral density matrices of levels 4 and 5, all the ap-
proximate nonlinear filters give good results, see Figures
4.4 to 4.9. Notice that although the procedures using smoo-
thing give the best results, the extended Kalman filter also
performs well,

A11 the approximate nonlinear filters have a timing error in
predicting the hydrographs. Usually predictions during the
rising limb lag the observations one time step, i.e., 6
hours. The extended Kalman filter follows best the recession
portion of the hydrograph, the extended Tinear filter-
smoother often decays one step behind.

The computational time is considerably increased by proce-
dures with smoothing due to the numerical integration of the
mean and error covariance differential equations, ahd due to
the storage of forward trajectories needed to linearize the
backwards differential equations. Table 4.10 includes the
CPU execution time required by the different filtering proce-
dures.

The means of the state predicted by the extended Kalman fil-
ter and the extended linear filter-smoother are in general
different. The states in the upper soil zones for the ex-

tended Kalman filter contain less water than the ones given

7



Table 4,10

CPU Execution Time of the Nonlinear Filters

Procedure Seconds per time step”®
EKF | 4.4

TEKF-6 5.0

ELFS-1 44.0

ELFS-2 82.5

ELFS-3 121.0

IELFS-6,2 84.2

SOGF 16.7

*At PRIME 750 Computer

72



by the extended linear filter-smoother, which are closer to
saturation. For the deep lower portion of the soil the re-
sult tends to be the opposite. See Figure 4.14 to 4,19 for Q
of level 3 and Figures 4.20 to 4.25 for Q of level 4, Recall
that although the rainfall-runoff model conserves the water
volume, the use of the updating step with any filter will
“"create" additional water whenever is necessary. This up-
dating operation is the difference between the extended Kal-
man filter and the extended linear filter-smoother. The lat-
ter follows the model nonlinear dynamics better and commonly
updates more the states in the upper soil, resulting in

higher peaks.

4.4.2 Extended Forecasting

Extended forecasts were obtained with the rainfall-runoff model
for the month of May 1960. The extended Kalman filter and the ex-
tended linear filter-smoother, computed with 2 cycles, were used as
the filtering mechanisms.

The initial conditions were obtained by taking the predicted.
state means and error standard deviations on May 1st from ELFS-2 6ne-
step predictions on the period April to May 1960, found using the
initial conditions given in Table 4.3.

Table 4.11 includes the least square performance indices for pre-

cipitation. As can be seen there is no decrease in performance as the
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Figure 4.19 Predicted Trajectories of Additional Impervious Volume, Q-3

76



LEGEND
ELFS~2

83.1

4%

33.2 49.9 66.5

16.5

0.0

0.0 20.7 41.4  62.1° 82.8 103.5 124.2 144.9 165.6 186.3 207.0
TIME STEP NUMBER

Figure 4.20 Predicted Trajectories of Upper Zone Tension Volume, Q-4
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Figure 4.23 Predicted Trajectories of Lower Zone Free Primary Volume, Q-4
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Figure 4.24 Predicted Trajectories of Lower Zone Free Secondary Volume, Q-4
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Figure 4.25 Predicted Trajectories of Additional Impervious Volume, Q-4
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Table 4.11

Extended Forecasting Least Squares Indices for Precipitation

Lead Time
Efficiency
Determination
Persistence

Extrapolation

Q-level 3

6 hrs
-0.02
0.09
0.27
0.71

80

12 hrs
-0.02
0.05
0.51
0.72

18 hrs 24 hrs

-0.02 -0.02
0.05 0.05
0.42 0.35
0.72 0.72



lead time increases. Predictions of precipitation 6 hours ahead do

" not differ much from that 24 hours ahead. Recall that the inputs are
assumed known in advance, which means that temperature, pressure and
dew point are playing a dominant role in predicting precipitation.
This is explained from the fact that characteristic times for rainfall
are often less than 6 hours, and then the value of initial conditions
is lost after a few hours.

Tables 4.12 and 4.13 contain the least squares performance
indices for discharge if the filtering process is respectively the
extended Kalman filter and the extended linear filter-smoother. As
can be seen the quality of the predictions deteriorates as the lead
time increases. The tendencies obtained with one-step ahead
predictions are preserved by the extended forecasts, i.e., for Q of
Tevel 0 both nonlinear filters give bad predictions, for Q of level 3
the extended linear filter-smoother gives better predictions, and for
Q of level 4 both nonlinear filters give the same quality of

predictions. See Figures 4.26 to 4.33.
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Table 4.12

Extended Forecasting Least Squares Indices for Discharge, EKF

Q-level O
Lead Time
Efficiency
Determination
Persistence

Extrapolation

Q-level 3
Lead Time
Efficiency
Determination
Persistence

Extrapolation

Q-level 4
Lead Time
Efficiency
Determination
Persistence

Extrapolation

6 hrs

0.26

0.80
-6.51"
-17.08

6 hrs
0.35
0.73
-5.57
-14.83

6 hrs
0.85
0.92
-0.54
=2.72

12 hrs
0.04
“0.69
-10.94
-22.53

12 hrs
0.18
0.52

-10.18
-19.11

12 hrs
0.58
0.81

-2.00

-9.28

82

18 hrs
-0.18

0.58
-13.04
-27.70

18 hrs
0.01
0.26

-12.53
=23.27

18 hrs
0.20
0.64

-3.14

-18.55

24 hrs
-0.31

0.54
-18.96
-30.92

24 hrs
-0.13

0.06
-16.84
~26.32

24 hrs
-0.12
0.47
-8.24
-26.27



Table 4.13

Extended Forecasting Least Squares Indices for Discharge, ELFS-2

Q-level O
Lead Time
Efficiency .
Determinat{Qn
Pergistencé

Extrapolation

Q-level 3
Lead Time
Efficiency
Determination
Persistence

Extrapolation

Q-level 4
Lead Time
Efficiency
Determination
Persistence

Extrapolation

6 hrs
0.39
0.82
-5.15
-13.82

6 hrs
0.65
0.76
-2.52
-7.48

6 hrs
0.86
0.91
-0.36
-2.28

12 hrs
0.1
0.67

-9.12

-20.7

12 hrs
0.48
0.59

-4.96

-11.64

12 hrs
0.56
0.69

-1.44

-9.64
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18 hrs
-0.14
0.52
-13.24
-26.82

18 hrs
0.30
0.41

-6.16

-15.97

18 hrs
0.19
0.44

-4.20

-18.72

24 hrs
-0.29
0.42
-19.23
-30.57

24 hrs
0.13
0.24

-10.20
-20.16

24 hrs
-0.11
0.24
-8.20
-26.16
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Figure 4.26 Extended Forecast of Discharge, Bird Creek, May 1960, Q-3, 6
hrs, EKF
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Figure 4.27 Extended Forecast of Discharge, Bird Creek, May 1960, Q-3, 12
hrs, EKF
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Figure 4.28 Extended Forecast of Discharge, Bird Creek, May 1960, Q-3, 6
hrs, ELFS-2
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Figure 4.29 Extended Forecast of Discharge, Bird Creek, May 1960, Q-3, 12
hrs, ELFS-2
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Figure 4.32 Extended Forecast of Discharge, Bird Creek, May 1960, Q-4, 6
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4.5 Summary

This chapter includes the results of applying the nonlinear
filtering procedures and the rainfall-runoff model to a case study.
It has been shown that the spectral density matrix of the system
dynamics noise plays a key role on the predictions of discharge.
Depending on Q, all procedures could give bad or good predictions.

The filtering procedures that include smoothing represent
generally improvements over the extended Kalman filter. However, the
computational time they require is considerably higher than that of
the extended Kalman filter,

As should be expected, extended forecasts decrease in quality as
the lead time increases, no matter what nonlinear filtering procedure
is being used. Precipitation extended forecasts do not degrade with
lead time, but this is due to the unrealistic assumption that the

inputs are known in advance.
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Chapter 5

THE ESTIMATION OF THE DYNAMICS NOISE SPECTRAL DENSITY MATRIX OF A
NONLINEAR DYNAMIC SYSTEM

5.1 Introduction

The use of modern estimation techniques with dynamic systems re-
quires the complete specification of the system parameters. In par-
ticular the applicability of nonlinear filtering procedures depends on
the knowledge of the parameters of the physical system as well as the
parameters that describe the system stochastic behavior. The sto-
chastic components are usually modelled as zero mean independent Gaus-
sian processes that appear in an additive way on the dynamic equations
and on the system observation equations. The covariance matrices of
these Gaussian processes must be specified by the user before any es-
timate of the states of the system can be obtained. The covariance
matrix related to the observation equations is generally easier to ob-
tain than the covariance matrix reTated to the additive noise on the
dynamic equations. The noise on the observations depends on the ex-
pected accuracy of the measurements. The additive noise on the dy-
namic equations represent the modelling error, or the difference be-
tween reality and the model that approximates it, a harder property to

quantify.
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As the results of Chapter 4 suggest, the spectral density matrix
of the dynamics noise plays a key role on the quality of the predic-
tions. The emphasis in this chapter will be on describing simple and
non-expeﬁsive procedures to estimate such a matrix, under the.assump-
tion that all the physical model parameters and the parameters that

specify the observations covariance matrix are known.

5.2 Problem Definition

The system under consideration is described by the following
equations:
d
d

Dynamic Equations: T X(t) = f(X(t),u(t),t) + w(t) (5.1)

Observation Equations: Z(t, ) = ﬂﬁl(tk)tg(tk),tk) +y(t,)
k=0,1,2,... (5.2)

with w(t) and v(tg) being the random components that account for er-
rors in the modelling of the physical system and in the measurements.
Vectors X, u, and Z represent the states, inputs and observations,
respectively, of the physical model, and f and h are generally non-
linear functions.

The processes w(t) and v(tyg) are assumed zero-mean independent
Gaussian processes, independent of each other. w(t) has spectral den-

sity matrix Q(t) and v(ty) has covariance matrix R(ty),
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w(t) ~ N[O, Q(t)] (5.3)

v(t, ) ~ N[O, R(t.)] (5.4)

Recall from Chapter 3 that Q(t) plays an additive ro]e.in the error
covariance propagation term of any of the nonlinear filters. This im-
plies that Q(t) plays a role in the computation of the filter gain
used in the updating calculations. Due to the nonlinearity of the
dynamic and observation functions f and h, and the subsequent lineari-
zation required by the nonlinear filters, the matrix Q(t) also affects
future state estimates.

A11 parameters that affect functions f and h as well as the pa-
rameters of matrices R(ty) are assumed known. The problem is how to
find matrices Q(t) such that overall performance of the filter is im-
proved.

Criteria to judge improvement in performance include:

a. Minimizing the one-step predicted residuals,

b. Maximizing the likelihood of the observations, and

C. Making the behavior of the filter consistent with its

expectations.

In the next section these criteria are fully explored. Given
that good performance with the extended Kalman filter implies good
performance with the other nonlinear filters, the procedures will be

tailored to the extended Kalman filter.
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5.3 Procedures to Find the Spectral Density Matrix

The first procedure is to find Q(t) such that the sum of squares
of the one-step predicted residuals is minimized. This constitutes a

nonlinear optimization problem, which may be defined by

N R
min ) [2(t,) - B0ty | tyq ult ), 8 )17 By
Q k=

[20t) = hX(t | top)oult, ), t)] (5.5)

where By represents a weighting matrix.

Finding Q(t) using this formula will require the evaluation of
the derivatives of function h with respect to Q, which are not readily
available. Numerical computation of these derivatives is required,
which makes the use of this criteria expensive.

A second alternative consists on finding Q(t) such that the like-
1ihood of the observations given Q(t) is maximized. If Q(t) is as-

sumed constant in time, the problem to be solved is:

max £(z(t)), ..., ZﬁtN)IQ) (5.6)
Q

or
mgx f,(Z(t)), ..., Z(ty)|Q) (5.7)

where fz is the joint probability density function of the observa-

tions given Q.
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After linearizations of the observation functions, it can be
shown that this density function is asymptotically multivariable Gaus-
sian, Abramson (1968). The criteria can then be expressed in terms of
the logarithm of the likelihood function as:

Z, By AZ (5.8)

1 N
max - = E]{ﬁn'Bkl + _*}

Q k

where lBkI represents the determinant of matrix By, AZg repre-
sents the one-step predicted residuals and Bk denotes the covariance

matrix of the residuals,

B, =R (tk) + Hk( »%s )P(tk tk_1)Hk( 5s°) (5.9)

k
The use of this criteria requires the calculation of the deriva-
tives of By and AZy with respect to the unknown Q, and again thesé
are not readily available. Numerical calculation of such derivatives
may be obtained at a high cost. These derivatives may also be ap-
proximated. Simple approximations will be pursued in the next sec-
tion. Notice that the second term in Equation (5.8) is a weighted sum
of residuals over the N time steps.
A third idea was introduced by Jazwinski (1969) to overcome the
problem of filter divergence often found in filtering applications.
The object is to estimate Q(t) such that the predictions are consis-

tent with their expectations. The derivation is based on the discrete
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version of the extended Kalman filter error covariance propagation,

i.e., with Equation (3.13) replaced by:

- T —
Pltear [ te) = 2ltaqs ) POt () 9t ,t) + T, (5.10)
where -
T, = 1% e (v ) Q'(7) @l (t, . ,T)dt O (5.11)
k tk k'“k+1? k' “k+1° 3.

with Q'(t) being the input dependent spectral density matrix after
linearizations, and with ®(ty4+7,T) being the system transition

matrix between times T and tk+1, which results from the solution of,

d¢k(t,t) A
—gr— = FX(t|t), ult), t) e (t,7) (5.12)

with initial condition ¢ (t,t) = I, where I is the identity matrix.

Define the %-steps ahead predicted residuals by

AZpyp = Zlty, ) - E{Z(t ) |2(t)), L, 2(t))] (5.13)

i.e., the difference between the actual and predicted observations us-
ing information up to %-time steps in the past. Then using the line-
arized version of the dynamic and observation equations, it is easy to

show that the %-steps ahead predicted residuals are, Jazwinski (1969),
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AZits = Heen O (baps ) (X(ED = X(t |t )
L
]
* By iz] Ui o Bag) Mgy + X (B (5.14)

where wx+2-1 s the discrete dynamics noise in the interval

[tg+2-1, tk+s) defined in terms of the Gaussian process w'(t) by

et

b ' (1)dT (5.15)
i ,

Pern-1{Epans

7Lzl
+
p— ]

From Equation (5.14) it is easy to compute the covariance matrix

of the predicted residuals, i.e., form > &

.
Elaz, ., —k+m] Hern (Bpago B IP(E [T )¢ Cerme B P e
2 N . ;
*Heenl L %ot (e bt Wit 21 %t me Bt e
+ Rt )8, (5.16)

Q(t) is defined such that the expected covariances of the pre-

dicted residuals equals the covariance matrix obtained from the fil-

ter, i.e., it is defined by the condition:

T
4;k+24;kﬂn (5.17)

E[AZ —k+4 —k+ ]

for 1 <%, m <M.
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Note that condition (5.17) gives a filter with time lag M since
k+1 observations have to occur in order to obtain the prediction at
time k+1. The simple case when M is equal to one is fully developed

later in this chapter.

5.4 Approximate Estimators of the Spectral Density Matrix, Q(t)

In this section approximate estimators of matrix Q(t) will be ob-
tained using the approaches of maximum likelihood and of consistency

of the residual covariance matrices.

5.4.1 Maximum Likelihood for System with Transition Matrix

Non-Dependent on Q(t)

If it is assumed that ¢ does not depend on the unknown parame-
ters, then the derivatives of the likelihood function may be obtained
recursively. Recall that Equation (5.8), for Q(t) constant in time,

gives Q as the matrix that maximizes

Tg-1

Z,B, ) (5.18)

B, AZ

Ly(Z(ty)sennsZlt) [Q) = - 3 ( Z Jnfe] v sz,

The optimal Q matrix may be obtained using Newton's method. The

first order derivatives with respect to the unknowns gives

aL N
N__1 3
— ="z 1 S5 ms ]|+ -—-(AZ By Azl)} (5.19)

agS k=1 9&S agS
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where &S is the sth unknown of Q. If the observations lineariza-

tion matrix, Hg, is also non-dependent on Q, these derivatives are

aL N 9B
N 1 z -1 -1 T,-1 k
—_—= - Tri{(,' - B, '47,487,B ') —
9gS 2 = k kK =%k =k 9£S
aX(t ,t )
5% T
- 2B, 87, SRy Hy (5.20)
with Tr(A) the trace of matrix A.
The shown derivatives may be obtained as
B Py (n4) g
— = H ———H, (5.21)
ags 3¢S
with 3P(tk|tk-1)/3£5 satisfying the following recursive equa-
tion, Abramson (1968),
P(t, |t ;) | #(t, |t )
ki k=1 k=11"k=-2
=@ (t ,t, _)[I =K, _qH, _4] .
7eS k=1 k-1 k=1"k-1 2eS
T T k-1
[T - KeoqHear 1 2eoq (gute ) + 2es (5.22)

where'ﬁk_] is related to Q as in Equation (5.11).
Similarly, it is easy to show that Q&(tﬁftijl)/ags satisfies the

following recursive equation:
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ax(t [te-q) aX(t, 1|t )
24 %] k-1 = k=11 k=2
=9 .(t,t,_){[I-K _H ;] +
9gS k=1""k?* k=1 k=1"k=1 9gS
aP(t, 1 ((t, _,)
k=1]""k-2 . T T o -1
(L= Kieq e - [1 - KiqHeq 1 HqRY ()42, o
(5.23)

To compute the 1ikelihood derivatives, Equations (5.22) and

(5.23) are‘solved simultaneously with initial conditions

BP(t”to) 30,

(5.24)
ags agS
and
AX(t,|tn)
_—__1|_0-= 0 (5.25)

3eS

Newton's method updates a given estimate of the unknown vector
using the following iterative calculations:
a2

Ej =84 - (___2N A ) [ £ (5.26)
J 3E Ej-] g |=j-1

~

where éj_] is the current vector of unknown parameters and F32Ln/3€2)
is the matrix of the likelihood second-order derivatives. Because
this matrix is not easily obtained, Abramson (1968) suggests the use
of the conditional information matrix which is known to approximate

for large N the negative of the second-order derivatives.
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Then if the information matrix, Jy, is used, Newton's method

becomes
aL

: - : -1 N PS
E‘] = Ej-] + JN(Ej_]) I 'Ej-] (5.27)

-~

The conditional information matrix is defined by

oLy (Z(ty),. 0 0uZlty) | E5) aLN(-,-,-)JT -

JN(é‘]) = E{( 3% )( 3E -E-J}

Abramson (1968) showed that the (s,t) element of the above matrix is

R N 3B 3B
1 -1 kK -1 k
g, St=L1 7 (re(g! X —)
-1 st T
+ 2Tr(B, Hkalk-1Hk)} (5.28)
. st . .
with G a matrix defined by
k|k-1
st Xty [te) | Al [tq)"
Ge -7 = E . T |85 (5.29)
| ags 14 J

which in turn satisfies the recursive equation,
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st - _ st _ T
lek-l = ol Kk-1Hk-1]Gk-1,k-2[I (RL Y R

Pt |ty -p)

T.T .. 1., .
= KM ] =5 [T = KyoqHag T H R (1) 7By
3P(t ,t )
\ -1 _ k=11 k-1 ) T.T
R*(t )" Hq [T = K _jH, ] ot [T - K _qH, 1710,
(5.30)
with initial condition
st _
67[p = 0 (5.31)

Although the equations are recursive and appealing for computer
implementation, a considerable amount of storage and computations are
needed to obtain results. Computational cuts may be obtained if it is
assumed that the state covariance derivatives are more important than
the state mean derivatives with respect to the unknown parameters. In

this case the log-likelihood function derivatives reduce to

oLy -1

T -1
K )

“Taz a7 B

kK S K

- B

i~

Tr{B
1

— } (5.32)

-1
2 k ags

ags k

with the approximate conditional information matrix given by
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. N 3B 3B
t_ 1 e I S B
(e, )% =5 1 TriB) — } (5.33)

5.4.1.1. Implementation Considerations

Computational savings are achieved by noticing that the informa-
tion matrix JN(éj_]), is symmetric.

The discrete noise covariance derivatives 35k/3§s are not easy to
obtain because they involve the computation of an integral whose inte-

grand (Qk(tk+1,1)) is only numerically obtainable. If the variations
of Qk on the interval (tk’tk+1) are small, then ﬁk may be approximated
by

T =3 -+ a7
Q = o (r)alt, 5 =t )9 (t,) (5.34)

where ¢k(tk) is the transition matrix associated with the beginning of

the interval, i.e.,

5k(tk) = exp{F(X(tk|tk),.g(tk), t )} (5.35)

This approximation allows an easy computation of the discrete

noise covariance derivatives,
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-
kK _ 4 3Q -+ 10 T
P ) Ses (1 = B () (5.36)

where 9Q/9&S is a matrix of zeros except for the location corre-

spondent to the sth unknown, where the value is one.

5.4.1.2 An Approximate Maximum Likelihood Solution Which Uses Second

Order Likelihood Derivatives

If it can be further assumed that the most important contribution
of the derivatives of the one-step residuals covariance comes from the

term involving matrix Q, then

9B -
k _ aQ

e e \TuT
-t) e (t)H (5.37)
2es pes ot T T Tk T

which gives the likelihood function derivatives as

3L N
N LI -1 _ p-l To-1
= - = Tr{(8, ' - B, 'AZ,4Z,B ')
Cu 3Q e ve (e 3 TyT
H 2, (t,) i (teeq = £ )0 (8 ) H ] (5.38)

From this expression it is easy to compute the second order

derivatives, they are:
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“laz,027871) K} (5.39)

but 33;1/a£t = - 3;1 aBk/aatB' , and then

-1 k-1 T.-1 ky .
—% B, AZ,4Z,B, ;E-S-} (5.40)

5.4.1.3 An Explicit Sub-Optimal and Simple Estimate

The following derivation follows Abramson (1968). Assume that
the state covariance derivatives are more important than the state
mean derivatives with respect to the unknown parameters. In this case

the likelihood function is given by Equation (5.32) or

aL N o 9P(t ft, _4)
_N__ % y Tr{ABk]Hk — Kkl k=17 HI} (5.41)
agS k=1 agS
where AB-1 = B-.I - B-]AZ Az B-] It can be easily shown that Equation
k k k =k =kk ° y q
(5.41) is
L N P(t |t )
N__1 Trp~] k] k-1
vl L TriH a8, H, ——-;gg—————} (5.42)

=
n
-

But
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Tan-lu . -1 _
H B, H = P(tkltk_]) [P(tk,tk_1) P(tkltk)

T -1
- AX A% ] P(tk|tk_]) (5.43)

where AX, =‘l(tk|tk) -_5(tk|tk_]).

Then the likelihood function derivatives are,

aL N
No__1 -1 - - T
s T 7L TP ) TP g ) - POy ) - ek ]

-1 OP(t |t _;)
* Pt [t )T -—-—EJ-iLQL-} (5.44)

agS

If oP(ty|tk-1)/938S is given by the term including Q, and if

tk - tk-1 = 1, then,

oLy,
agS

] “1rs : T
-3 Tr{P(tkltk_] I CHRYCHS LIC Y LR LAY S

ne~—m=

k=1

. . T T -1
+ O ()08 () - PO ) - A A IP(t [ty )

-~ aQ AT
¢k_1(tk_1) pre ? _q(t,q)} (5.45)

or
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B, S | g rel (¢, Pt [t,_ )70 {8, . (t, )08 (. )T
2 k=1 k=1""k-1 kl k-1 k=1""k=1 k=1""k=1

T - | - T
X MK = P [ + 9 (8 IPCY |t )8 (g )]

L 3

POty [te) ™ 8 (t, )" (5.46)

with (r,t) denoting the location of the sth unknown of Q.
If it is further assumed that ¢, _,(t, ) and P(tkltk-l) are

approximately constant over time, then 3LN/BES = 0 is satisfied when

N ~ ~
T T
kz] (9 (5000 g (1 1) - 8% 8% = Pt |t

-~ ~ T _
+ ot Pt 1) %1 (ty) }=o0 (5.47)

_ from which the following estimator is obtained for the (r,t) element

of Q, after j iterations:

T

art _ 1 5 -1 _
;- =g U L o (g )T Iaxax, + Ple[t) - Ple |t

J k

e~z

: k-1!

5 " LET -1\Tyrt
o () () 10 (5 )T )T (5.48)

5.4.2 Estimation of Q(t) from Consistency of One-Step Ahead Residuals

Jazwinski's estimator becomes applicable in real time if Q(t) is
constant over two time steps. In this case the consistency condition

to be achieved is:
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T 1. T
AZ 11 = 87, 402 (5.49)

EL Sk

gnh
The expectation of the left-hand side is

T o T T
ELAZ41 221 ] = M O s BOP O [ 10 9 (b My g
# H  THT o+ R () (5.50)
k1 0k k41 :

If Qx is approximated using the transition matrix at the beginning

of the interval, condition (5.49) becomes,

. Ty T T
e B IAUE ) By = IO My = 82002,
- e By (8 P(t |08 (6 0THT = R(t, 1) (5.51)
k1 T P B8 (G ) Ry = R, :

If Q(tg+1) =~ Q(tg), this equation provides an estimate to be used
the next time step.
If the Q matrix is constant over say L time steps, a smoothed es-

timate of Q(t) may be obtained solving:

Teo T . T
L MBI (kg = )8 (5 = oL L en
) ; RS h B
-k§1 (Haq 24 (B IPCE 1 D008 ) TH g+ R (8, 1)) (5.52)

In general, the linear Equations (5.51) and (5.52) are not easily

solvable for Q, because typically there are more unknowns than equa-
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tions. This means not all the elements of Q(t) can be estimated but
only as many as the number of independent conditions.

If estimates of Q(t) are obtained adaptively, i.e., changing the
matrix every time step, one basically obtains the MISP (mutually
interactive state/parameter estimation) estimator as described by
0'Conne]1 (1980).

If more elements of Q(t) than the ones obtained from Equations
(5.51) or (5.52) are necessary, more consistency conditions must be

introduced.

5.4.2.1 Further Conditions on Residuals Useful in Estimating Q

Kitanidis and Bras (1978) used the previously explained consis-
tency of the lag zero covariance of the residuals as well as the con-
sistency on the higher lags correlation of the residuals to
estimate a constant in time and diagonal Q (in discrete form). The
condition they employed is the well known whiteness of the residuals
if the filter is optimal., 1In this section it will be shown how to use
such conditions to obtain more eqdations from which elements of Q (in
continuous form) may be obtained.

The whiteness of the residuals condition states that if the fil-
ter is optimal the residual correlations of lags other than zero
should be zero. The expected correlation matrices are easily computed

using Equation (5.14). They are defined by
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c;(k) = E[AZ,AZ, . (5.53)
These expectations are, Kitanidis and Bras (1978):
€y (k) = Ky IP(t, [t IR = kB, 1]
1 k k-1 k=11"k-2""k=1 k=1"k-1
C.i(k) = Hk¢k_][1 - Kk-]Hk‘]]ék-ZEI - Kk_ZHk_ZJ s e e
[ ] M T -
Qk_i[P(tk_iltk_i_1)Hk_i KimiBr=i] (5.55)
where By denotes the covariance matrix of the residuals.
The whiteness condition is satisfied if for all i:
POt i |ty Mpcs = KeoiBios = O (5.56)
k=il k=i-1""k=i k=1"k=-1 *

Premultiplying by Hk-i and expanding P(tg-j|tk-i-1) gives

the necessary condition:

-~ -

T.T

B Phmi=1 Cmg o PO g | B o1 ) 0o (bmgar ) Hiey

+H .0 (t )Q(t, ) (t YWl . - u K B . =
k=i k=1=1"Ck=i-1? U i 8 ) sy = BeoiK =i Bemi

(5.57)

If Bk-i is assumed given from lag zero conditions, these equa-

tions provide the following additional conditions:
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. - T.T T
Himi ®h=i =1 Bag =108 0 g (8 i) B = HiRKeei 83224

~ T.T
= M ®mi-1 (mi a1 PO oy oo %=1 (Beio1 ) Hied

(5.58)

for all i.

If applied for say L lags, then the updating of the Q matrix are
made every L time steps, with smoothed conditions (5.58) according to
the number of equations over the period of L time steps, i.e., L lag-0

equations, L-1 lag-1 equations, and so on.

5.5 Summary

The problem of estimating the spectral noise covariance matrix of
a nonlinear stochastic dynamic system has been reviewed. The problem
is a nonlinear optimization problem generally solved exactly by nu-
merical methods. Simple approximations based on the maximum likeli-
hood approach and on the consistency of the filter residuals have been
presented. Results of applying these procedures to estimate the
spectral density matrix of the rainfall-runoff model are given in the

next chapter.
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Chapter 6
PRACTICAL ESTIMATION OF THE DYNAMICS NOISE SPECTRAL DENSITY MATRIX

6.1 Introduction

The results of applying the spectral density matrix estimation
techniques to the rainfall-runoff model are presented in this chap-
ter. One step ahead predictions were obtained for the Bird Creek
basin in Oklahoma, using the extended Kalman filter for the month of
May 1960.

The physical model parameters were those of Table 4.2, with the
observations noise covariance matrix characterized as in Table 4.5.
The covariance matrix of the inputs, Q,(t), was assumed,-as in Chap-
ter 4, equal to zero; so that the spectral density matrix for the
linearized system equals Q(t).

A11 predictions were obtained from the same set of initial state
mean and standard deviations. The values of such conditions were the

same used in extended forecasting in Chapter 4,

6.2 Approximate Maximum Likelihood Results

A constant in time and diagonal spectral density matrix Q was
found using the approximate maximum likelihood procedure of Chapter
5. This approximate estimator main assumptions are that the transi-
tion matrix, @y, and the linearization matrix of the observations,
Hk, both have near zero derivatives with respect to the unknown ele-

ments of Q. It is further assumed that predicted error covariance
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derivatives are more important than predicted state mean derivatives,
and that the most important contribution to the predicted error co-
variance derivatives comes from the derivatives of the discrete dynam-
ics noise covariance matrix. Under these assumptions the first and
second order 1ikelihood derivatives are given by Equations (5.38) and
(5.40).

The estimates of the matrix Q were found using Newton's method,
i.e., Equation (5.26). Not only second order derivatives but also the
conditional information matrix (Equation (5.33)) was used to update
the estimates. The estimator was calculated from two different sets
of initial condftions: one which is the best matrix Q in Chapter 4,
and the other which gave the worst resu]ts in Chapter 4; i.e., Q
matrices of levels 4 and 0, respectively.

Lower and upper bounds were imposed on the estimates. If the ap-
proximate procedure gave negative standard deviations, a value of
10-5 was used. It was found that if no upper bound is employed, the
procedure often gives unrealistically high standard deviations which
when used in the next iteration lead to numerical problems in the in-
tegration of the differential equations of the error covariance of the
states. The upper bounds were obtained by trial and error by studying
the‘magnitudes of the states of the rainfall-runoff model.

The initial spectral density standard deviations and the upper

bounds for each state are given in Table 6.1.
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. Table 6.1

Initial Spectral Density Standard Deviations and Upper Bounds

Q-Level
State 0 4 Upper Bounds
Xp 2 10 ~ 100
X, 1077 107! 60
X, 1074 1072 20
X3 0.05 5 80
X4 0.0187 1.87 80
X5 0.0682 6.82 40
X6 0.075 7.5 100
S 0.70 1 50
1
S2 0.17 1.7 50
53 0.17 0.17 50
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Gi&en that each iteration requires considerable amount of compu-
tational time (around 10 CPU minutes for a month of data), a maximum
of 25 iterations was allowed. This implies that convergence may not
be achieved. The estimate was defined by the spectral density matrix,
giving the highest log-likelihood value during the 25 iterations.
Since bounds are being used it is possible to fail to have improvement
in the log-likelihood value from'iteration to iteration. However,
higher log-likelihood values than those corresponding to the initial
conditions were always found.

Table 6.2 includes the estimated values of the Q matrix under'
different initial conditions. This Table also includes the number of
data points used in the estimation, the mechanism used to iterate with
Newton's method and the number of iterations required to obtain the
estimates.

Tables 6.3, 6.4, and 6.5 summarize respectively the residual sta-
tistics, normalized residual statistics and least squares indices for
discharge predictions obtained from Q matrices estimated from a month
(124 points) of data; i.e., for Q of levels 6, 7, 8, and 9. Table 6.5
also includes the log-likelihood values for the period.

As is shown the approximate maximum 1ikelihood procedure improves
the log-likelihood and the overall quality of the predictions. Better
predictions were found if the conditional information matrix is used
in Newton's method. In this case the results are excellent indepen-
dently of the initial condition and with similar convergent values,

(see Table 6.2 for Q of levels 6 and 8).
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Table 6.2

Approximate Maximum Likelihood Spectral Density Standard Deviations

Q-Level
State 6 7 8 9 10 1 12 13
X5 100 100 100 100 100 100 100 100
Xy 60 1077 60 107° 107 60 1070 107°
X, 16.46 10> 20 20 107° 107° 17.9 20
Xy 107 80 107° 1070 107° 80 80 80
X, 1075 1070 107 80 80 1070 107> 1070
Xs 40 40 0 40 107° a0 36 40
Xe 107° 107°  107° 100 100 100 100 1072
S5 17.97 0.79 13.2 10> 1.58 5.9 0.54 3.75
S, 107 4.8 107° 9.9 .19 107° 107° 107
S .31 107 0.71 107° 1.45  2.47 0.76 10°°
Initial Q 4 4 0 0 4 0 4 0
Data Points 124 124 124 124 40 40 84 84
Second
Corrections J 32 J 32 J J J J
Iterations 15 12 16 3 4 3 13 16
32 Second order derivatives
J Conditonal information matrix
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Table 6.3

Discharge Residuals Statistics for Q Matrices Obtained by
Approximate Maximum Likelihood, 124 Data Points

Second Variation Autocorrelations
Q-Level Corrections Mean Coefficient Skewness Lag-1 Lag-2 Lag-3 Lag-4
4 Reference  0.117  2.74 2.1 0.70 0.68 0.41 0.33
6 J -0.120 -3.08 0.24 0.43 -0.17 -0.13 0.06
7 32 0.011  28.6 0.40  -0.22 0.59 -0.01 0.21
0 Reference 0.344 1.94 2.1 0.94 0.79 0.59 0.38
8 J -0.008 -24.5 0.72 0.32 -0.24 -0.11 °0.20
9 »? -0.056  -8.0 =21 -0.20 0.12 0.19 -0.05

32 Second order derivatives
J Conditional information matrix
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Table 6.4

Discharge Normalized Residuals Statistics for Q Matrices Obtained by
Approximate Maximum Likelihood, 124 Data Points

Second Variation Autocorrelations

Q-Level Corrections Mean Coefficient Skewness Lag-1 Lag-2 Lag-3 Lag-4

4 Reference 0.291 3.27 1.62 0.56 0.68 0.35 0.38

6 J 0.021 8.21 1.37 0.45 -0.08 0.05 0.24

7 32 -0.206  -5.50 -0.13  -0.39 0.60 -0.12 0.25

0 Reference 1.150 1.74 1.49 0.92 0.78 0.61 0.43

8 J -0.026 -13.92 -0.32 0.37 -0.26 -0.14 0.19

9 a2 -0.76 -3.10 -1.60 -0.10 0.10 0.19 -0.05
32  Second order derivatives

J

Conditional information

matrix
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Table 6.5
Discharge Least Squares Indices and Model Log-Likelihood for Q
Matrices Obtained by Approximate Maximum Likelihood,
124 Data Points

Second Log
Q-Level Corrections Efficiency Determination Persistence Extrapolation Likelihood
4 Reference 0.85 0.92 -0.55 -2.73 -1104.8
6 J 0.96 0.96 0.59 0.00 - 683.2
7 a2 0.87 0.87 -0.37 -2.30 - 547.8
0 Reference 0.27 0.80 -6.51 -17.10 -1600.5
8 J 0.94 0.95 0.44 -0.36 - 615.3
9 a2 0.73 0.77 -1.71 -5,52 - 760.2

32 Second order derivatives
J Conditional information matrix



Figures 6.1, 6.2, and 6.3 show the discharge lead-one predictions
for Q matrices of levels 4, 6, and 7. Notice that although Q of level
7 had a larger likelihood, Q of level 6 gives a better looking hydro-
graph and hence better least squares indices.

Figures 6.4, 6.5, and 6.6 show the lead-one discharge predictions
for Q matrices of levels 0, 8, and 9. Notice the improvement obtaihed

by using the Q matrix from the maximum likelihood procedure.

6.2.1 Sensitivity of the Estimation on the Number of Data Points

In an effort to study the sensitivity of the approximate maximum
likelihood method, the procedure was utilized with variable amounts of
information. The matrix Q was estimated using 40 and 84 data points
from the beginning of May 1960, which correspond respectively to using
informatioh of the first and first two discharge peakskon the month.

The estimation was made using the conditional information matrix
in Newton's method. The two initial conditions of Table 6.1 were con-
sidered. The final estimates (matrices Q of levels 10, 11, 12, and
13), and the number of iterations necessary to obtain them are given
in Table 6.2. As is observed in this Table, the initial condition has
an effect on the final estimate for the short data set. As the number
of data points increases, the effect of the initial condition tends to
diminish, with the effect practically disappearing if the whole month

is employed.
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Tables 6.6, 6.7, and 6.8 show the residual statistics, normalized
residual statistics and least squares indices for the lead-one dis-
charge predictions, when the matrices estimated using short data peri-
ods are used to forecast in the whole month of May 1960. Notice that
although the model likelihood increases as more data points are used
in the estimation of matrix Q, the quality of the statistics of re-
siduals and normalized residuals do not necessarily follow the same
pattern.

As can be seen in Figures 6.7 and 6.8 for starting matrix Q of
level 4, and in Figures 6.9 and 6.10 for starting matrix Q of level 0;
the more data points used in the estimation, the higher the predicted

peaks.

6.2.2 Local Sensitivity of the Approximate Maximum Likelihood

s ——fEstimate

To check the importance of spectral density values equal to the
upper or lower bounds, a sensitivity study in the vicinity of the ap-
proximate maximum 1ikelihood estimate was performed. The results ob-
tained with the matrix Q of level 8 (see Table 6.2) are presented in
this section. Similar results were also obtained for the matrix Q of
level 6.

Table 6.9 includes the least squares indices for discharge pre-

dictions and the model log-likelihood value when one element of Q of
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Table 6.6

Discharge Residuals Statistics for Q Matrices Obtained by
Approximate Maximum Likelihood,

40 and 84 Data Points

Second Variation Autocorrelations
Q-Level Corrections Mean Coefficient Skewness Lag-1 Lag-2 Lag-3 Lag-4
4 Reference 0.117 2.74 2.31 0.70 0.68 0.41 0.33
10 J 0.257 1.77 2.10 0.92 0.75 0.5 0.37
12 J -0.088 -6.66 -0.06 0.87 0.59 0.24 -0.08
0 Reference 0.344 1.94 2,11 0.94 0.79 0.59 0.38
11 J 0.225 1.85 2.05 0.91 0.74 0.54 0.34
13 J 0.026 13.4 1.99 0.76 0.40 0.6 0.08

J Conditional information matrix
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Table 6.7

Discharge Normalized Residuals Statistics for Q Matrices Obtained by
Approximate Maximum Likelihood,
40 and 84 Data Points

Second Variation Autocorrelations
Q-Level Corrections _Mean (Coefficient Skewness Lag-1 Lag-2 Lag-3 Lag-4
4 Reference 0.291 3.27 1.62 0.56 0.68 0.35 0.38
10 J 0.222 1.91 2.20 0.93 0.76 0.56 0.35
12 -0.174  -6.00 -1.36 0.84 0.54 0.20 -0.08
0 Reference 1.150 1.74 1.49 0.92 0.78 0.61 0.43
n J 0.121 1.98 2.21 0.92 0.75 0.54 0.33
13 J -0.310 -5.68 -0.33 0.55 0.18 0.12 0.08

J Conditional information matrix
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Table 6.8

Obtained by Approximate Maximum Likelihood,

Second

40 and 84 Data Points

Discharge Least Squares Indices and Model Log-Likelihood for Q Matrices

Log

Q-Level Corrections Efficiency Determination Persistence Extrapolation Likelihood

4
10

12

1
12

Reference 0.85
J 0.64
J 0.54
Reference 0.27
J 0.71
J 0.84

0.92
0.92

0.60

0.80
0.93
0.85

Conditional information matrix

-0.55
-2.65

-3.66

-6.51
-1.97
-0.59

-2.73
~7.79
-10.23

-17.10
-6.15
-2.83

-1104.8
- 723.1
- 677.2

-1600.5
- 772.6
- 592.0
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level 8 is changed at a time. The changes consist in setting esti-
mated values which are at the upper bound to the lower bound and vice-
versa, and changing values which are between the bounds to the lower
bound.

As can be observed, the likelihood is affected only when elements
on the precipitation and channel poftions of the model are changed.
The discharge least squares indices are insensitive to spectral
density changes of states in the soil, and also to changes in the
spectral density of the condensed water volume. The spectral density
values for the channel are the most sensitive in least squares
indices, although the Tikelihood of the model is not heavily affected.

The vicinity of the matrix Q of level 8 was further studied by
setting all possible combinations of upper bound spectral density val-
ues to their lower bounds. The results obtained for the discharge
least squares indices and model likelihood are shown in Table 6.10.

The results of Table 6.10 follow those of Table 6.9. Setting any
spectral density values of the soil states to zero, does not affect
either the model likelihood or the discharge least squares indices.

By changing the spectral density value of the precipitation state to
zero, the quality of the discharge predictions is only slightly de-
creased. The model likelihood is considerably decreased by having the
precipitation model error covariance propagate with zero spectral
density value. As can be seen in Figures 6.11 and 6.12, a larger

spectral density for Xp gives larger precipitation predictions.
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Table 6.9

Discharge Least Squares Indices and Model Log-Likelihood
One Dimensional Sensitivity, Q of Level 8

Spectral

Standard

Deviation Log

Changed Efficiency Determination Persistence Extrapolation Likelihood

Reference 0.94 0.95 0.44 -0.36 -615.3
Xp 0.933 0.934 0.318 -0.643 -1625.8
X1 0.945 0.946 0.436 -0.359 -615.3
X2 0.945 0.946 0.436 -0.357 -615.2
X3 0.940 0.942 0.389 -0.471 -616.8
X4 0.954 0.954 0.529 -0.135 -612.9
X5 0.935 0.938 0.339 -0.590 -616.6
X6 0.945 0.946 0.439 -0.352 -615.4
S1 0.563 0.883 -3.47 -9.78 -669.7
52 -0.31 0.59%4 -12.42 -31.30 -693.1
53 0.563 0.845 -3.47 =-9.77 -728.4
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Table 6.10

Discharge Least Squares Indices and Model Log-Likelihood

High Dimensional Sensitivity, Q of Level 8

Spectral

Standard

Deviation Log
Changed Efficiency Determination Persistence Extrapolation Likelihood
Reference 0.94 0.95 0.44 -0.36 -615.3
Xp,X1 0.933 0.934 0.318 -0.64 -1625.8
Xp,x2 0.931 0.931 0.299 -0.69 -1626.3
Xp,Xs 0.932 0.933 0.305 -0.67 -1626.1
X1,X2 0.944 0.945 0.430 -0.37 - 615.4
X],X5 0.939 0.941 . 0.376 -0.50 - 616.0
XZ’XS 0.938 0.940 0.362 -0.54 - 616.1
Xp,X1,X2 0.933 0.933 0.311 -0.66 -1625.8
Xp,X1,X5 0.932 0.933 0.305 -0.67 -1626.1
Xp,XZ,X5 0.931 0.931 0.291 -0.71 -1626.3
X1,X2,X5 0.939 0.941 0.375 -0.50 - 615.9
Xp,X.‘,XZ,X5 0.931 0.932 0.291 -0.71 -1626.3
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Figure 6.11 Stochastic Prediction of Precipitation, Bird Creek, May 1960,
Q-8, with Q(1,1) =0
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When the spectral density element of precipitation is driven to zero,
the physical model is fully believed and then its predicted error
variance goes to zero. In this case, the residual variance for pre-
cipitation reduces to the mean areal precipitation observation vari-
ance (see Equation (5.9) and Table 4.1) and therefore takes a value of
one, Figure 6.13 gives the standard deviations of the residuals of
precipitation when the spectral density value provided by the approxi-
mate maximum Tikelihood method is used. Notice that the lower
.bound for those values is one. The log~likelihood for precipitation
decrease; when a zero spectral density value is used, because the sum
of squares of residuals for this case is much bigger than the sum of
the logarithms of residual mean areal precipitation variances when the
spectral density is not zero (see Equation (5.8) for one observation).
Figures 6.14 to 6.23 show the evolution in time of the predicted
states of the rainfall-runoff model, when using the spectral density
diagonal matrix of level 8 with values of elements corresponding to
states Xp, X7, X2, and X5 set to their Tower bounds. Since
the precipitation and soil dynamics are fully believed, these graphs
represent the deterministic evolution of those states. The only
significant gain matrix elements are the ones related to the first and
last channel reservoirs (see Figures 6.24 and 6.25); Notice the large
magnitude of the gains on the first reservoir, which implies that what

is observed as discharge comes primarily from the updating mechanism
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of the filter and not from the soil output. Of course this is an
undesirable feature, but recall that conservation of mass is not
imposed at the updating step of the filter.

The fact that the filter is basically tracking the discharge ob-
servation is confirmed by looking at Figures 6.26 through 6.28, which
represent extended forecasts of discharge. Notice the lag in the rise
of the hydrograph and the sudden drop of the forecasts, based on past
information of discharge. Observe, however, the good reproduction of
the time to peak and peak magnitudes when predictions are made six
hours ahead. Notice also that the extended forecasts produced using
matrix Q of level 8 with all but channel values set to zero gives
better results than previously found for the Q matrix of level 4 even

when using the nonlinear filter smoothers (see Figures 4.30 to 4.33).

6.2.3 Sensitivity of the Approximate Maximum Likelihood Estimate on

the Upper Bounds

Given that some of the spectral density values estimated by the
approximate maximum likelihood procedure attain the prespecified upper
bounds, the sensititivity of the estimates on such bounds was |
studied. Two upper bounds, besides the one in Table 6.1, were consi-
dered. A total of 124 time steps were used in the estimation, with

the conditional information matrix used as the mechanism to iterate in
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Newton's method. The estimation was done using the spectral density
matrix of level 0 as the initial condition for the procedure.

Table 6.11 includes the different upper bounds and the spectral
density standard deviations obtained by imposing such bounds. Both
cases were found convergent after the number of iterations shown on
Table 6.11. Efforts to use a larger bound than the one given in the
fourth column of this table failed; after few iterations the differen-
tial equations that propagate the error covariance could not be nume-
rically integrated.

As can be observed in Table 6,11, the first set of bounds leads
to convergence similar in pattern to those given (Table 6.2) for
bounds in Table 6.1. However, the second set of limits led to
convergence to a different pattern, with discrepancies found on
parameters related to the states X3, X5, and Sj.

Table 6.12 contains the discharge least squares indices and the
model log-Tikelihood when predictions are obtainéd using the conver-
gent spectral density matrices of Table 6.11, i.e., matrices of levels
14 and 15. Table 6.12 also includes the results obtained by setting
all spectral density values of non-channel stafes to the lower bound,
and also the previously discussed results obtained with the upper
bounds given in Table 6.1.

As the upper bound becomes larger, the obtained value for the
likelihood function grows and the discharge least square indices be-

come slightly better. If only positive spectral density values are
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Table 6.11

Upper Bounds Sensitivity and Their Corresponding Approximate

Maximum Likelihood Standard Deviation Estimates

State Upper Bound Q-14
X 40 40
p

X1 95 95

X2 25 25
-5

X3 130 10
-5

X4 110 10

X5 25 25
-5

X6 120 10

S] 20 13.8
-5

32 10 10

S3 5 0.71

Initial Q 0

Data Points 124

Second

Corrections J

Iterations 12

Conditional information matrix
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Upper Bound Q-15
200 200
200 200
100 100
200 200
200 1072
100 1073
200 107°

40 0.951
20 8.54
10 1.67
0
124
J
17



Table 6.12

Discharge Least Squares Indices and Model Log-Likelihood for
Variable Upper Bounds

Q-Level Efficiency Determination Persistence Extrapolation Liké?ghood
14 0.934 0.936 0.324 -0.63 -943.7
8 0.945 0.946 0.437 -0.36 -615.3
15 0.958 0.958 0.570 -0.04 -486.4
14* 0.927 0.929 0.252 -0.80 -1626.8
8* 0.931 0.932 0.291 =-0.71 -1626.3
15* 0.931 0.949 0.302 -0.68 -1731.2

*Spectral density values other than channel states set to zero.
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allowed in the channel states, the global likelihood is decreased due
to the lower precipitation residual variance, but as in the previous
section excellent results are still obtained for discharge
predictions.

Figure 6.29 shows the discharge predictions obtained using the
largest upper bound, i.e., for Q of level 15, Due to the high spec-
tral density value for the precipitation portion, a large predicted
peak occurred at time step 100. However, overall predictions are ex-
cellent, with small timing errors on both the rising and falling por-
tions of the hydrograph. Figure 6.30 depicts the discharge predic-
tions when all spectral density values except those correspondent to
the channel are set to zero. Notice the quality of the predictions.

Although the results of the approximate maximum 1ikelihood proce-
dure suggest that the only spectral density elements that are impor-
tant are the ones corresponding to the channel states, it must be em-
phasized that these are only local results. If the spectral density
values for channel states are off the approximate maximum likelihood
values, the discharge predictions may then be sensitive to changes on
spectral density values for other states. The results of Chapter 4
are one example where spectral density values of states not in the

channel play a key role in the quality of the predictions.
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6.2.4 Results from the Sub-Optimal Explicit Maximum Likelihood

‘

Estimator

The exp]iéit estimator described in Equation (5.48) was found
convergent (using a total number of time steps N of 124) to the zero
spectral density matrix. This implies that the predictions found by
using the Q matrix given by such formula coincide with the determinis-
tic propagation of the rainfall-runoff model, and therefore as in
Chapter 4 the results badly underestimate the hydrograph peaks. The
main reason for such a poor estimate is the fact that this simple es-
timate is obtained assuming that the system transition matrix is con-
stant in time, a condition that is not valid for different flow

regimes.

6.3 Results for Q Matrices Estimated from Consistency Conditions

Time varying and diagonal spectral density matrices Q(t) were ob-
tained using consistency conditions on the residuals covariance ma-
trix. Given that the physical model has two observations, and that
the precipitation is mostly an input to the rest of the model, the
Jazwinski's estimator (Equation (5.17)) provides only two independent
conditions for elements in Q(t).

The two conditions used correspond to consistency of actua]lwith
expected variances of residuals. For this case the equations (5.51)
have a simple solution: they are two simultaneous equations with two

unknowns, with the characteristic matrix of the system being triangu-

149



lar. The independent equation provides the spectral density value for
precipitation. Once this is obtained, its value is replaced in the
other linear equation to obtain the spectral density value of any
other prespecified state of the rainfall-runoff model.

Preliminary results suggested that the state to be used besides
the condensed water volume should be such that discharge is sensibly
affected. The estimator was then computed using either states in the
channel or the upper zone free volume.

As with the‘approximate maximum likelihood procedure, this adap-
tive estimator was bounded below and above. Notice that small values
in the transition matrix diagonal for the second selected state may
translate into large values of Q(t), and hence the necessity of the
upper bound (see Equation (5.51)).

Table 6.13 includes the discharge least squares indices when the
Jazwinski's estimator is used every time step. Also included are the
elements of matrix Q that are being changed from time to time and the
Q-level matrix that defines the elements which are not being changed.
Results obtained by not applying the Jazwinski's estimator, are also
presented in such table under the heading "Reference." As is shown,
performance may be improved by the use of this estimator, but no defi-
nite trends are obtained: for a given spectral density matrix, a
given combination of states may improve performance, but that same
combination may decrease performance for other spectral density

matrices.
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Table 6.13

Discharge Least Squares Indices.
Adaptive Estimation of Q Matrix Every Time Step

Elements
Q-Level Estimated Efficiency Determination Persistence Extrapolation

0 , Reference 0.266 0.803 -6.51 -17.1
0 Xp,S3 0.098 0.611 -8.23 -21.2
0 Xp,S2 0.816 0.882 -0.88 -3.5
0 Xp,S1 0.710 0.745 -1.97 -6.1
0 Xp,X2 0.355 0.763 -5.60 -14.9
4 Reference 0.848 0.925 -0.55 =2.7
4 Xp,33 0.764 0.896 -1.42 -4.8
4 Xp,S2 0.828 0.880 -0.76 -3.2
4 Xp,S] 0.875 0.892 -0.28 =2.1
4 Xp,X2 0.857 0.934 -0.46 -2.5
8 Reference 0.945 0.946 0.44 -0.36
8 Xp,S3 0.838 0.854 -0.66 -2.99
8 Xp,S2 0.936 0.937 0.35 -0.56
8 Xp,S1 0.696 0.727 =2.11 -6.50
8 Xp,X2 0.936 0.937 0.35 -0.55
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As the reference performance improves, the estimator usefulness
seem to decrease. The estimator may give great improvements for poor
reference performance, as shown in Figure 6.31. Figures 6.32 and 6.33
show other cases for which good results were obtained.

Given the algebraic simplicity of the procedure, computational
time is not considerably increased. Therefore, it is recommended to
check several state combinations with past,data and see which (if any)
give together with a filtering procedure a useful forecasting tool.

Jazwinski's estimator was also employed assuming matrix Q is
constant over periods of two and four time steps. Results for the
obtained discharge least squares indices are shown in Table 6.14. The
tendency of the results indicate that the more often matrix Q is
changed the better. Notice that in some cases better results are
obtained for the estimator applied every four time steps; however, in
such cases there is no significant improvement over the reference
performance (see Table 6.13). Although more information is being used
by averaging the estimate over more than one time step, the rapid
changes that occur in the hydrograph will not be reproduced if the
currently used matrix Q does not present global hydrograph conditions
(see Figure 6.34).

Consistency conditions of lags other than zero were incorporated
to the estimator (see Equation (5.58)). The discharge least squares

indices obtained when such conditions are added are included in Table
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Table 6.14

Discharge Least Squares Indices.
Adaptive Estimation of Q Matrix,
Variable Estimation Lag

Esti-
Elements mation
Q-Level Estimated Lag Efficiency Determination Persistence Extrapolation

0 Xp,S3 4 0.398 0.782 -5.1 -13.8
0 Xp,S2 4 0.501 0.585 -4.1 -11.3
0 Xp,S] 4 0.198 0.310 =7.2 -18.8
0 Xp,X2 4 0.442 0.808 -4.7 -12.7
4 Xp,S3 2 0.774 0.891 -1.3 -4.6
4 Xp,S2 2 0.754 0.813 -1.5 -5.0
4 Xp,S1 2 0.838 0.879 -0.6 -3.0
4 Xp,X2 2 0.845 0.923 -0.6 -2.8
4 ‘ Xp,S3 4 0.833 0.930 -0.7 =3.1
4 Xp,S2 4 0.531 0.613 -3.§ -10.6
4 Xp,S.I 4 0.798 0.847 -1.1 -4.0
4 Xp,X2 4 0.862 0.931 -0.4 =2.4
8 Xp,S3 4 0.718 0.854 -1.9 -5.9
8 Xp,S2 4 0.944 0.944 0.4 -0.4
8 Xp,S1 4 0.548 0.602 -3.6 =10.1
8 Xp,X2 4 0.943 0.944 0.4 -0.4
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6.15. As is shown, no improvement resulted from having more condi-
tions. Two reasons may explain this: first, the matrix Q is updated
only after L+1 time steps where L is the number of additional lags
considered; and second, given the way the estimator is defined, the
consistency conditions on residuals at lag zero are used in the defi-
nition of conditions for higher lags, leading to no additional inde-

pendent information.

6.4 Summary

This chapter describes the results of estimating the diagonal dy-
namics noise spectral density matrix for the rainfall-runoff model,
using the procedures described in Chapter 5.

The approximate maximum 1ikelihood method gave better results if
the iterations were obtained by means of the conditional information
matrix on Newton's method. As more information is included, a more
reliable estimate is obtained. The final estimate was found sensitive
to upper bounds imposed to the spectral density standard deviations.
However, the estimate with all values equal to zero except for such
elements corresponding to channel states was found to give excellent
one-step ahead predictions (see Appendix C for an extensive analysis
of the use of such a matrix). This estimate, however, had the
undesirable property that the channel is driven primarily by the

discharge observations and not from the water outflow from the soil
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Table 6.15

Discharge Least Squares Indices.
Adaptive Estimation of Q Matrix Using
Consistency Conditions of Higher Lags

Elements
Q-Level Estimated Efficiency Determination Persistence Extrapolation
4 Reference 0.85 0.92 -0.55 -2.73
4 Xp,S3,S] 0.582 0.634 -3.28 -9.30
4 Xp’SZ’S] -4.47 0.323 -55.0 ~-133.9
4 Xp,Xz,S] 0.758 0.761 -1.47 -4.96
4 Xp,SZ,S],S3 ~-0.33 0.333 -12.7 -32.0
4 Xp,S-I,S3,X2 0.]34 0.308 -7.9 -20.3
4 Xp,XZ,S],S2 -3.96 0.321 -49.7 -121.1




component of the model, implying that perhaps with a simpler soil
model, the same quality of results might be obtained.

The estimation of the spectral density matrix based on consis-
tency conditions gave results that depend on the spectral density ma-
trix that is used. Better results were obtained if matrix Q is
changed every time step. The usefulness of the estimator tends to di-
minish as better reference values are used (obtained using a Q-matrix
constant in time). Due to its low computational cost, the use of such
estimator could be of help in cases where bad reference Q matrices are

being used.
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Chapter 7
FILTERING OF LARGE SCALE BASINS

7.1 Introduction

Serious computational problems may be encountered if the tech-
niques presented in Chapter 3 are applied to a large scale system.
This is primarily due to the large amqunt of calculations required in
the propagation and updating of the error covariance matrix. If there
are M subsystems and if on every one of them a model with n states is
used, the composite state vector that describes the large scale system
has nxM components, and therefore the error covariance matrix has di-
mension nxM by nxM. The number of computations required on the best
case, the extended Kalman filter, grow as (an)3. With n on the or-
der of 10 for the rainfall-runoff model, a value of M greater than 5
may be problematic, especially if calculations for short forecast lead
times are obtained using a mini- or microprocessor.

Procedures to deal with the computational burden due to the error
covariance matrix have been given in the modern estimation theory 1i-
terature. They represent a trade-off between computational efficiency
and accuracy of the predictions.

Gelb (1974), in the section regarding suboptimal filter design,
mentions the idea of prior specification of the filter gain matrix.

If this can be done, the updating step becomes very simple. Also this
implies that if only mean characteristics are of interest, only the

state mean dynamic equations have to be solved.
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Figures 7.1 to 7.4 show gain time traces with respect to the two
observations for some of the states of the rainfall-runoff model
obtained for the Bird Creek basin. As can be observed, it is not easy
to approximate these traces with smooth functions of time.

An algorithm that estimates a portion of the state vector of a
linear dynamic system was proposed by Sims (1974). The difficu];ies
of applying this procedure lie on the specification of a decision
mechanism that selects at every time step the representative compon-
ents of the state vector. Only by extensive simulation studies, which
comprehend diverse meteorological conditions, such decision algorithm
may be defined.

Another way to decrease the computational burden due to the
propagation of the error covariance matrix is to decouple states which
naturally show weak connections. By doing this, it is possible to
break a high-order filter into several mutually exclusive low-order
filters. In the following section of this chapter, such an idea will
be applied to the filtering of a large scale basin composed of several

sub-basins.
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7.2 Block Diagonal Decomposition Filters

A hypothetical large scale basin is shown in Figure 7.5 It is
assumed that there are measurements of all input and observation vari-
ables, for all the sub-basins. The goal is to forecast mean areal
precipitation and discharge on and from each of the sub-basins without
treating the composite representation of all of them.

Two decomposition procedures which treat sub-basins separately
were introduced by Puente, et al. (1983) and by Georgakakos (1983).
Both procedures are based on the schematic representation of the large
scale basin given in Figure 7.6. The nodes on this Figure represent
the only physical interconnections taken into account by such
procedures, e.g., discharges from upstream sub-basins that flow into
downstream sub-basins. No dynamic connections between precipitation
and soil states in different sub-basins are assumed.

Both methods first forecast upstream and then downstream
sub-basins, using upstream discharge predictions as inputs to the
channel component of respective downstream sub-basins. Because
upstream'discharge predictions not only affect the mean but also the
variance of downstream flows, the two methods supplement the spectral
density matrix of downstream sub-basins. This is done by adding a
time varying component to the user's assigned spectral density matrix

of downstream sub-basins, as in Equation (3.5), i.e.,

;
odie)' = Fl (0F? + Qe (7.1)
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where Q&(t) denotes the upstream discharge input error at time t, Fd ~
the downstream dynamics linearization matrix with respect to the
upstream discharge input, and Qd(t) and Qd(t)' the originally

assigned and discharge input-related spectral density matrices for the
downstream sub-basin, respectively.

Because upstream discharges flow directly into the downstream
river, the downstream linearizaation matrix Fd (of dimension n x 1)
has non-zero values only for the downstream channel states. These
non-zero elements are the channel dynamics inflow partitioning
coefficients, e.g., for the ith channel state they equal Pj, see
Equation (2.10).

Although the precipitation states in different sub-basins are not
dynamically related, spatial correlations of their predicted errors
may be obtained. Both decomposition methods consider the composite
vector of precipitation states on the different sub-basins. The use
of a non-diagonal spectral density error matrix for such vector would
lead to a non-diagonal error covariance matrix of precipitation pre-
dictions, see Equation (3.7). |

The difference between the two decomposition methods is that the
one of Puente, et al. (1983) also decouples the dynamic equations
within each sub-basin. Such procedure forecasts precipitation sepa-
rately from the rest of the model, and uses the rainfall predictions
as inputs to the soil and channel components. As with discharge in-
puts from tributary basins, the procedure of Puente, et al. (1983) ad-
Jjusts the spectral density matrix of the soil-channel system by adding

the time varying known error from the predicted rainfall inputs.
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The decomposition method of Georgakakos (1983) does not decouple
states within a basin and therefore accounts for correlations between
the precipitation and the soil-channel states within each sub-basin.

Tables 7.1 and 7.2 include the prediction-updating cycles for the
two decomposition methods. Notice that the required forecasting
ordering (from upstream to downstream sub-basins) is not needed on the
updating step.

Observe that both procedures update soil-channel states only from
respective discharge observations. The two methods differ in that the
procedure of Puente et al. (1983) updates the rainfall states only
from precipitation observations, while the method of Georgakakos
(1983) uses in addition discharge observations. Because Georgakakos'
method computes the rainfall states updatings in two stages, i.e.
first using precipitation observations (Step 3) and then using the
respective discharge observation (Step 5), an additional step is
supplemented (Step 4) in which the correlations between the rainfall
and the other states within each sub-basin are maintained after the
first stage of updatings.

Because the noise processes of partitioned subsystems and states
are properly supplemented, these decomposition methods provide a
theoretically sound solution of the filtering of the large scale
system, Wood (1981),

The next chapter gives the results of using such block diagonal

decomposition filters in a case study.
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Table 7.1

Decomposition Algorithm of Puente, et al. (1983)

Step 1:

Step 2:

Step 3:

Step 4:

Predict the mean and error covariance matrix of precipi-
tation states in all sub-basins.

Predict the means and error covariance matrices of soil-
channel states for all sub-basins. Make the predictions
following the river path (upstream to downstream), using
respective precipitation predictions and respective
upsteam discharge predictions from tributary sub-basins
as inputs. Include spectral density matrix changes due
to such inputs.

Update the precipitation states mean and error covari-
ance matrix, from available mean areal precipitation.

Update the soil-channel states means and error covari-
ance matrices for all sub-basins, using respective
discharge observations.
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Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Table 7.2

Decomposition Algorithm of Georgakakos (1983)

Starting from upstream tributary basins, predict the
state means and error covariance matrices of the
rainfall-runoff model for every sub-basin. Use dis-
charge predictions from tributary basins as inputs when
necessary. Include spectral density matrix changes due
to such inputs.

Predict the error covariance matrix of precipitation
states in different sub-basins.

Update the mean and error covariance matrix of precipi-
tation states, using observations of mean areal precipi-
tation.

Substitute the updated mean and error variance of the
precipitation state in place of the predicted error
variance for precipitation found in Step 1. 1In addition
change the cross-covariance elements in the predicted
error covariance matrix such that the correlations of
precipitation and other states found on Step 1 are
maintained using the precipitation variances of Step 3.
The above changes are done for each sub-basin.

Update the mean and error covariance matrices of the
whole rainfall-runoff model for every sub-basin, using
respective discharge observations.
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Chapter 8
PRACTICAL USE OF DECOMPOSITION PROCEDURES

8.1 Introduction

The results of applying the block diagonal decomposition methods
on a large basin are presented in this chapter. One step ahead pre-
dictions are considered. Also included are forecasts obtained by us-
ing global extended Kalman filters on the composite state vector

formed by the states of each sub-basin's rainfall-runoff model.

8.2 Description of the Drainage Basin and of the Available Data

The large basin considered in this study belongs to the Potomac
River basin with outlet at Millville, West Virginia. The basin is
subdivided into five sub-basins located along the north and south
forks of the Potomac River. Table 8.1 gives the name of the outlet of
each sub-basin together with the sub-basin's area and average eleva-
tion. Figure 8.1 is a schematic view of the basin. The north fork
runs through sub-basins with outlets at Cootes'Store, Strasburg, and
Millville; while the south fork runs through sub-basins with outlets
at Lynnwood, Front Royal and Millville.

Instantaneous mean areal temperature, pressure, dew point and
precipitation data were provided for each of the sub-basins by the

NWS-Hydrologic Research Laboratory. The data sets were obtained aver-
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Table 8.1

Potomac River Sub-Basins Characteristics

Sub=-Basin

Lynnwood
Front Royal
Cootes Store
Strasburg
Millville

Area {KmZJ

2808
1445

544
1445
1632
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Average Elevation [m]

600
300
700
400
200



STRASBLRG MILLVILLE

COOTES
STORE

LYNWOOD %

Figure 8.1 Sub-basin Network for the Potomac River Basin with outlet at
Millville
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aging point observations on and around the sub-basins, Georgakakos
(1984).

Evapotranspiration demand was obtained from daily potential
evapotranspiration data provided by the NWS. Instantaneous evapo-
transpiration was obtained weighting the daily values by 0, 0.33,
0.67, and 0, if the time interval in the day is respectively 0-6,
0-12, 12-18, and 18-24 hours.

Bi-hourly discharge values at the outlet of each sub-basin were
obtained from local USGS offices for the period October 1969 to Sep-
tember 1971. Table 8.2 includes the minimum, maximum and average
flows for each sub-basin. The sub-basins with outlets at Cootes Store
and Millville are fast responding with characteristic times of 12
hours; sub-basins with outlets at Lynnwood and Front Royal have char-
acteristic times of 18 hours; while the sub-basin at Strasburg is slow
responding with characteristic time of 30 hours. Low flows in the
large basin are frequent through the year.

Table 8.3 contains the parameters for the rainfall-runoff model
on each of the sub-basins. These values were fixed in all the compu-
tations. The precipitation parameters are the location independent
values given by Georgakakos (1982). The soil parameters were esti-
mated by the NWS staff through manual calibration and daily data. The
channel parameters preserve the routing characteristic times on each

sub-basin and were obtained from input-output six-~hourly data.
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»Tab]e 8.2

Discharge Average, Maximum, and Minimum Values for the

Potomac River Basin, October 1969 to September 1971

Sub-Basin

Lynnwood
Front Royal
Cootes Store
Strasburg
Millville

Minimum

182.0
250.0
3.2
88.0
400.0
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Discharge [cfs]

Maximum Average
21300 1017.5
41600 1539.0
6520 187.5
12000 606.5
50700 2702.0



Parameter

Table 8.3

Model Parameter Values for the Different

Sub-Basins on the Potomac Basin

Lynnwood &
Front Royal

Cootes Store

1.65 x 1073
5.50 x 107
30
20
220
130
40

1.49 x 1072

3.35 x 1074

6.77 x 1073

40
1.4
0.2

0
0

0.2

1.65 x 1073

5.50 x 107>
70
17
75
19

21

1.20 x 10~

1.27 x 1073

5.80 x 1073

220
3.5
0.2

0.05
0.001
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Strasburg
1.65 x 1073
5.50 x 107
30

20

200

120

50

1.49 x 10°

4.19 x 1072

6.77 x 1073

40
1.4
0.1

0
0

0.3

Millville

1.65 x 1073

§.50 x 107°
30
10
140
120
30

1.49 x 1072

4.19 x 1074

9.30 x 1073

40
1.4
0.2

0
0

0.1



Table 8.3 (continued)

Lynnwood &

Parameter Front Royal Cootes Store Strasburg Millville
MysMy, Mg 2 2 2 2
n 3 2 5 2
P1 1.0 1.0 , 1.0 1.0
P, 0.0 0.0 0.0 0.0
P3 0.0 = 0.0 -
P4 -- -- 0.0 -
P5 -- -- 0.0 -
2 1.0 1.0 1.0 1.0
a, 1.0 1.0 1.0 1.0
a3 ].0 - 100 -
a4 - - 1.0 -
as - - 1.0 -
m 0.8 0.8 0.8 0.8
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The power functions, that approximate the threshold functions of
the original Sacramento model, have all exponents equal to two for all

sub-basins.

8.3 Deterministic Discharge Predictions on the Large Scale Basin

The months of October and November of 1970 were used to compute
deterministic discharge predictions, decoupling states as in the de-
composition procedure of Puente, et al. (1983). Observed precipita-
tion values were used as inputs to the soil, and predicted discharge
values became inputs to downstream sub-basins. Snow accumulation and
ablation did not occur during this period of time.

The initial mean values used for the states on each of the sub-
basins are included in Table 8.4, Figures 8.2 to 8.6 shbw the deter-
ministic discharge observations and predictions on the various sub-
basins (see Figures 8.7 to 8.11 for the observed rainfall). As can be
seen, all sub-basins except the one with outlet at Cootes Store pre-
dict a big unrecorded discharge peak around time step 90. The basins
predicted response is very rapid, as implied by the steeply rising and
declining segments of the hydrographs. It is common for such sub-
basins to overpredict discharge, with the sub-basin with outlet at
Strasburg overpredicting the most. On the other hand, the sub-basin
with outlet at Cootes Store gives predictions that do not exceed the

observed discharges.
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Table 8.4
Initial State Means for the Different Sub-Basins

on the Potomac Basin

Lynnwood &
Front Royal Cootes Store Strasburg Millville
2 2 2 2
5 10 5 5
5 5 5 2
10 10 10 10
10 10 10 10
10 10 10 10
5 5 5 5
1072 1072 1072 1072
1072 1072 1072 1072
1072 1072
1072
1072

17
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A possible explanation of the poor performance of the determinis-
tic predictions is that the conceptual model parameters were not prop-
erly calibrated. For sub-basins other than Cootes Store the drainage
coefficient of the upper zone, d,, seems too big in contrast to the
lower zone drainage coefficients, di and dz, giving as a result low
percolation to lower aquifers and high interflow. In addition, the
upper zone tension capacities, X? and Xg may be 'too small. For the
sub-basin with outlet at Cootes Store the upper zone tension capacity,
X?, seems too large, producing high infiltration and therefore low
discharge predictions.

Another possible cause of the discrepancies between the determin-
istic predictions and the discharge observations is that the rainfall
records contain errors. There are no rainfall gages in the sub-basin
with outlet at Cootes Store. But even for the rest of the sub-basins,
which all contain rainfall gages, the transition for point data to

areal averages could result in errors in the rainfall data.

8.4 Stochastic Predictions on the Large Basin

The conceptual rainfall-runoff model was used together with the
filtering algorithms to produce predictions of mean areal precipita-

tion as well as discharge over the large basin.
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Table 8.5 shows the spectral density standard deviations used on
each of the sub-basins. The values are based on the experience ac-
quired from the results of Chapter 6. A diagonal spectral density ma-
trix was assumed for the states of each sub-basin. Also, the dynamic
precipitation noises for all sub-basins were assumed uncorrelated.
The initial mean state vectors used on each sub-basin were the same
employed on the deterministic discharge predictions, i.e., those of
Table 8.4. The initial error covariance matrix for all sub-basins was
taken diagonal, with standard deviations of 1071 for precipitation
and soil states and 10”4 for channel states. The observations noise
covariance matrix of Table 4.5 was used for all sub-basins.

In addition to the block-diagonal decomposition procedures of
Puente, et al. (1983) and Georgakakos (1983), two filters which use
off-block diagonal information were employed. First, a global filter
in two levels was obtained by forming a multivariable precipitation
mode1 (as in the decomposition procedure of Puente, et al. (1983))
whose predictions serve as rainfall inputs to a global soil-channel
model that has as state vector the soil-channel states of all sub-
basins. The procedure uses off-block diagonal information resulting
from the linearization of channel equations with respect to tributary
inflows. Such information provides off-block diagonal error covari-
ances which allow the updating of soil-channel models not only from
their respective discharge observations, but from discharges observed

in other sub-basins as well. The second off-block diagonal filter
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Table 8.5

Spectral Density Matrix Diagonal Standard Deviations for the

Different Sub-Basins on the Potomac Basin

Lynnwood &
State Front Royal Cootes Store Strasburg Millville
Xp 20 20 20 20
X1 10 20 10 10
X2 10 8 10 5
Xy 107° 1075 1075 1073
X, 107° 107° 107° 107°
X5' 20 10 25 15
X 107° 1075 1073 107°
$ 1.0 1.0 1.0 1.0
S, 1.0 0.17 1.0 0.17
S3 0.17 1.0
S4 1.0
S5 0.17
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considers all precipitation-soil-channel states as a g]obé] state;
with updating on all sub-basins depending on all observations of mean
areal precipitation and discharge.

The spectral density matrix of sub-basins with tributaries was
adjusted by the inflows variance using Equation 7.1. Such equation
was also employed to adjust the spectral density matrix of soil=-chan-
nel models that use a separate multivariable precipitation model as
input in the filtering procedure.

A11 filtering methods were applied to the Potomac River basin for
the period starting October 12 and ending November 30 of 1970. A1l
methods yielded the same precipitation predictions, shown in Figures
8.7 to 8.11. Excessive predictions occur in all sub-basins, especi-
ally on the first half of the period considered. As was found for the
Bird Creek basin, the precipitation model inputs play a dominant role
on the rainfall predictions. As a result, the updating portion of the
filters has little effect. Possible causes for the overpredictions of
precipitation are calibration errors on the rainfall model, and more
likely errors resulting from the conversion of point input
meteorologic data to areal averages.

Figures 8.12 to 8.31 show the discharge predictions for all sub-
basins obtained when using the different filtering procedures. These

figures are ordered according to the filtering mechanism as follows:
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the decomposition procedure of Puente, et al., the decomposition pro-
cedure of Georgakakos, the global filter in two levels, and the global
filter.

As can be observed, rainfall excesses give discharge overpredic-
tions. The filtering mechanisms provide better predictions than those
obtained from deterministic propagation of the model dynamics, except
for the sub-basin with outlet at Strasburg. Notice that for that
sub-basin the deterministic predictions were in significant error,
relative to excess volume. The precipitation model overpredicts
rainfall resulting in even worst overpredictions, which could not be
corrected by the filter. The filtering mechanisms could possibly
result in better predictions at Strasburg with reduced observation
error,

Very good discharge predictions were obtained using any of the
filtering mechanisms for the sub-basins with outlets at Front Royal,
Cootes Store and in particular at the outlet of the total basin at
Millville. Notice that the excessive discharge predictions at Stras-
burg do not affect considerably the predictions at Millville.

Discharge predictions using the decomposition procedures show os-
cillatory behavior for low and some times medium flows in all sub-
basins. This oscillations may be decreased by increasing the assumed
discharge observation variance. Such periods are, however,
non-existent when using any of the global filters. The use of
discharge observations from other sub-basins therefore serves as a

stabilizing mechanism.
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Figure 8.14 Stochastic Prediction of Discharge, Cootes Store, Decomposition
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Figure 8.17 Stochastic Prediction of Discharge, Lynnwood, Decomposition
Procedure of Georgakakos, October 12 to November 30, 1970
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Figure 8.18 Stochastic Prediction of Discharge, Front Royal, Decomposition
Procedure of Georgakakos, October 12 to November 30, 1970
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Figure 8.19 Stochastic Prediction of Discharge, Cootes Store, Decomposition
Procedure of Georgakakos, October 12 to November 30, 1970
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Figure 8.20 Stochastic Prediction of Discharge, Strasburg, Decomposition
Procedure of Georgakakos, October 12 to November 30, 1970

195



LEGEND
OBSERVATIONS

PREDICTIONS

4.27 5.70 7.12

2.85

OUTFLOW DISCHARGE

1.42

0.0 19.9 39.8 59.7 79.6 99.5 119.4 139.3 159.2 179.1 199.0
TIME STEP NUMBER

Figure 8.21 Stochastic Prediction of Discharge, Millville, Decomposition
Procedure of Georgakakos, October 12 to November 30, 1970
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Figure 8.22 Stochastic Prediction of Discharge, Lynnwood, Global Filter in
Two Levels, October 12 to November 30, 1970
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Figure 8.23 Stochastic Prediction of Discharge, Front Royal, Global Filter
in Two Levels, October 12 to November 30, 1970
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Figure 8.24 Stochastic Prediction of Discharge, Cootes Store, Global Filter
in Two Levels, October 12 to November 30, 1970
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Figure 8.25 Stochastic Prediction of Discharge, Strasburg, Global Filter in
Two Levels, October 12 to November 30, 1970
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Figure 8.26 Stochastic Prediction of Discharge, Millville, Global Filter in
Two Levels, October 12 to November 30, 1970
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Figure 8.27 Stochastic Prediction of Discharge, Lynnwood, Global Filter,
October 12 to November 30, 1970
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Figure 8.28 Stochastic Prediction of Discharge, Front Royal, Global Filter,
October 12 to November 30, 1970
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Figure 8.29 Stochastic Prediction of Discharge, Cootes Store, Global
Filter, October 12 to November 30, 1970
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Figure 8.30 Stochastic Prediction of Discharge, Strasburg, Global Filter,
October 12 to November 30, 1970
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Figure 8.31 Stochastic Prediction of Discharge, Millville, Global Filter,
October 12 to November 30, 1970
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Slightly better predictions were found with the decomposition
procedures of Puente, et al., (1983) over that of Georgakakos (1983).
Computational time is about the same for both procedures. Notice,
however, the better predictions obtained using the global filters.

Notice the very similar predictions obtained with the two global
filters. This implies that upodating soil-channel states from
precipitation observations has little effect compared to updatings
from discharge observations, and that no major detrimental effects are
caused by treating precipitation as an input to the soil-channel
components,

Although improved predictions were obtained using the two global
filters, the computational time they required was considerably higher,
due to the error covariance propagation of the composite state vec-
tors. Savings in such procedures may be achieved by filtering pre-
cipitation and soil components for each sub-basin separately and then

by considering all channel states jointly.
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8.5 Summary
This chapter includes the results of applying the block diagonal

decomposition approaches to a case study. Results obtained using two
global filters are also included.

Despite calibration errors on the rainfall-runoff model
parameters, and apparent inconsistencies on the areal averaged inputs
and precipitation observations, the decomposition procedures provide
reasonable results except for a sub-basin where excessive predicted
precipitation gives discharge overpredictions. The spectral density
matrices of the dynamic noises on the different sub-basins were speci-
fied using the experience acquired from the approximate maximum like-
1ihood results of Chapter 6. Appendix D presents the results obtained
with the decomposition approaches, when the approximate maximum like-
1ihood method described in Chapter 5 is applied to the decomposition
case study.

The more expensive global Kalman filters gave better discharge
predictions that do not oscillate, as was often the case for low flows

when using the decomposition approaches.
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Chapter 9

CONCLUSIONS AND RECOMMENDATIONS

9.1 Summary of Results

This work addressed three interconnected topics relevant to the
real time forecasting of river flows. First, we studied if better
predictions are obtained when more complex approximate nonlinear fil-
ters, other than the extended Kalman filter, are used in conjunction
with a nonlinear conceptual rainfall-runoff model. The results, ob-
tained for the Bird Creek basin in Oklahoma, showed that filters which
use future state estimates to obtain improved state estimates in the
past give generally better discharge predictions than the extended
Kalman filter. Such nonlinear filter-smoothers follow better the mo-
del dynamic's nonlinearities, but at a higher computational cost. For
the period under‘study the precipitation predictions underestimated
the rainfall observations. This lack of water was overcome by the
nonlinear filters durfng the updating step by "supplying" water to the
different states of the conceptual hydrologic model. The improved
predictions of the nonlinear filter-smoothers are due to increased
moisture in the soil components. Oscillations on the discharge pre-
dictions, often found when using the extended Kalman filter, were re-
duced with the use of the nonlinear filter-smoothers, due to their

lower discharge predicted variances.
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It was shown that even the nonlinear filter-smoothers could give
poor predictions if model errors are not properly specified. On the
other hand, it was found that when the model dynamics errors are sui-
tably quantified (a self-contained definition) no major improvement is
found by using the nonlinear filter-smoothers over the simpler exten-
ded Kalman filter, despite the fact that the two nonlinear filters
give different state trajectories. These results motivated the second
topic of this work, namely how to properly quantify the errors
inherent in the conceptual hydrologic model when using the extended
Kalman filter.

A simplified maximum 1ikelihood method and an adaptive procedure
were developed to estimate the dynamics noise spectral density matrix
of the model dynamic equations. The off-line approximate maximum
1ikelihood method estimates a constant, in time, diagonal spectral
density matrix. The joint probability density function of the obser-
vations, over a period of time, is maximized using Newton's method.
The 1ikelihood function derivatives, with respect to the unknown pa-
rameters, are computed assuming that their more important elements
come from derivatives of the current discrete dynamics error covari-
ance matrix. The adaptive procedure can only identify as many unknown
error parameters as there are observations of the rainfall-runoff
model, i.e., two. This estimator is based on internal consistency

conditions of the filter residuals.
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The results of estimating the model dynamics spectral density ma-
trix for the Bird Creek basin were excellent when using the approxi-
mate maximum 1ikelihood method. The estimate, however, had the unde-
sirable property of having the channel primarily driven by previous
discharge observations rather than the water outflow from the soil
component of the conceptual model. Although excellent results were
obtained for one-step ahead predictions, which are explicitly accoun-
ted for in the likelihood function, the extended discharge forecasts
were simply tracking the observations. Although this is not appeal-
ing, no other spectral density matrix produced, when using the
extended Kalman filter, better extended forecasts (to higher leads).
Despite being inexpensivé, when a good constant in time spectral
density matrix is used as inftia] condition, the adaptive estimator
does not necessarily give better predictions.

The third topic of study was the forecasting of flows on a large
scale basin, composed of several interconnected sub-basins. Large
amounts of calculations are required when forecasting techniques, such
as the extended Kalman filter, are used to estimate the composite
state vector that describes the large scale basin. An obvious way to
reduce the computational burden is by decoupling those states in dif-
ferent sub-basins which have weak connections. Two decomposition al-
gorithms which couple states in different sub-basins via precipitation

or through the existing river network were presented. Instead of

207



working with the whole state error covariance matrix, these methods
consider only block diagonal sub-matrices at a lower cost but also
with a Tower accuracy. The two block diagonal decomposition methods
were introduced by Puente, et al. (1983) and by Georgakakos (1983).
They differ in that the former procedure treats precipitation as an
input to soil-channel models on each sub-basin, while the latter
method conserves the state coupling between the precipitation state
and states in the other components of the conceptual model.

The decomposition methods were used to forecast on five inter-

- connected sub-basins of the Potomac River. Despite apparent calibra-
tion errors in the rainfall-runoff parameters and inconsistencies on
the areal averaged meteorological inputs and precipitation observa-
tions, the decomposition approaches provided inexpensive and reason-
able results for all sub-basins except one where excessive precipita-
tion predictions gave discharge overpredictions.

The approximate maximum Tikelihood procedure of Chapter 5 was ap-
plied to estimate the spectral density matrices of sub-basins on the
large scale basin. Although the likelihood function was increased for
all sub-basins, the predictions do not look better than the ones ob-
tained using the initial conditions. The likelihood increased due to
changes in residual variances, but the residuals themselves were not

decreased.
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9.2 Recommendations for Future Research

The results obtained in this work stress the important role the
precipitation component plays on discharge predictions. If precipita-
tion is under (over) predicted, this will generally give under (over)
predictions of discharge. Also timing errors on precipitation will
generally transform into discharge timing errors. By using a filter,
the model states are updated in a way that they explain better the
current observations. If precipitation deficits (excesses) continue
over the next time step, such deficits (excesses) will likely occur on
discharge due to conservation of mass on the propagation stage of the
filter. Because the updating is made after the observations are
taken, the predictions will typically contain delays of at least one
time step.

Notice that the previous considerations are valid even for soil-
channel models whose parameters are calibrated such that they repro-
duce discharge observations when using the observed rainfall as an
input. Therefore, the value of soil-channel models is closely related
to the quality of the rainfall predictions.

The precipitation model of Georgakakos and Bras (1982) gives very
good predictions when observations are available each hour. In the
present study, data is available only every.six hours, which goes
beyond the characteristic time of the rainfall event. This results in
behavior completely driven by the meteorological inputs. Filter
updating then becomes 1neffettive. Research should continue on the
area of rainfall modelling. Special emphasis should be given to the

transitions from no rain to rain and from rain to no rain. Instead of
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using fully believed observed input values, assumed perfectly ob-
served, as in the present study, such inputs should be modelled and
their predictions and variances used on the conceptual rainfall-runoff
model to obtain a truly, real-time prediction. The creation of relia-
ble data sets of meteorological inputs and rainfall observations is
necessary.

The fact that the maximum likelihood results were found insensi-
tive to soil updating suggests that a simpler scheme for the soil com-
ponent, other than the Sacramento model, could be used in conjunction
with the precipitation and channel components of the rainfall-runoff
model. Simple soil models should be developed and used in real time
discharge forecasting. Additional observations, other than rainfall
and discharge, should be included in rainfall-runoff modelling. Upper
soil storages measured using remote sensing represent a feasible ap-
proach in such a case. The work of Peck, et al. (1983) serves as
framework for the use of remotely sensed data.

It is not clear how to discriminate between equally good predic-
tions obtained from different state trajectories. It is not clear
which dynamics noise parameters can be estimated from known observa-
tions. Although no problems in estimating dynamics noise variances
were encountered in this work, identifiability problems may arise

(conditional information matrix singular) if nondiagonal spectral den-
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sity elements are estimated in addition to diagonal elements. Al-
though it is known that additional observations generally lead to bet-
ter state discrimination and more reliable estimates, these identifi-
ability issues should be studied further,

Better extended forecasts by the conceptual fainfaT]-runoff model
may be obtained if higher lead conditions are used in the approximate
maximum likelihood procedure used to estimate the dynamics noise spec-
tral density matrix. This could be accomplished by maximizing a
weighted sum of observations taken every time step, two time steps and
so on. Because the characteristic times of deep soil states is longer
than six hours, such weighted maximum likelihood method should provide
more accurate spectral density variances for such states, which may
translate into better extended forecasts. Notice, however, that if
precipitation deficits or excesses occur for long periods of time, the
use of more lead on the estimation of the error on the rainfall-runoff
model might not give better results.

The approximate maximum 1ikelihood procedure used in this work
employed the very simple Newton's method to iterate on the unknown
spectral density matrix elements. The use of more complex methods,
with adjustable step sizes, is the next step to provide better esti-
mates. The work of Goldstein and Larimore (1980), Restrepo-Posada and

Bras (1982) and Sorooshian, et al., (1982) is relevant in such case.

211



9.3 Computational Considerations

The major computational burden that is incurred when forecasting
with approximate nonlinear filters and a large conceptual hydrologic
model is due to the propagation in time of the model states mean and
error covariance matrix. The main reasons for such computational load
are: first, that there are many nonlinear differential equations that
need to be numerically solved (110 for Bird Creek), and second that
such equations are coupled together. When using the nonlinear
filter-smoothers not only the number of computations increase due to
repeated forwards-backwards cycles, but also storage is increased
because forward trajectories are needed to linearize the backwards
mean and error covariance dynamic equations.

Although the forecasting computational time for a single basin
(for observations taken every six hours) is below the limits of real
time forecasting (see Table 4.10), the simultaneous predictions on
several basins require a more than proportional computational time due
to the transfer of information between the several sites. This
stresses the need of reliable and yet fast forecasting procedures.

Attempts to reduce forecasting computational time shou1d be
made. This could be accomplished by considering low order models
(other than the Sacramento model), or by identifying meteorological
conditions under which some equations of the Sacramento model could be
decoupled or simplified. Model simplicity could be a function of the

forecasting lead time to be considered.



Computational savings not only are important in the real time
forecasting stage, but also during calibration of physical and noise
parameters of the conceptual model. Such savings are particularly
important if the maximum 1ikelihood methodology is to be widely

employed in practice.
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Appendix A
RAINFALL-RUNOFF MODEL FIPST ORDER LINEARIZATION MATRICES

This appendix includes the first order derivatives of the
rainfall-runoff model. The derivatives of the station precipitation
model are those of Georgakakos and Bras (1982), and are not reproduced
here. The ordering of the model states and inputs are as in Table
4.1. The notation is also that of Table 4.1, with F and H denoting
the linearization matrices of the dynamics! and observations with
respect to the states, and FU and HU denoting the linearization
matrices with respect to the inputs.

First the following notation is in order:

X1 m]
RXTM = (“6) (A.1)
Xy
X, m
RX2M = (—-g-)_ 2 (A.2)
X3 |
X, m
RX3M = (-%) 3 (A.3)
X3
X. + X, + X
y=1- g g g (A.4)
X3+ Xy + Xg
1
3,
F(i,) = ™
j
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D3

D4

D5

D6

D7

D8

D9

L] o " 0
d2x4 + dzx5

140
dg X5 /C,

L ] e o
¢, X2(1 + €y )/X2

C,*eX 9y9-1

1°¢%2
[xg(xg + xz + xg)]

8-1
C1 €X26y

(1 - Pf)(1 - RX3M)

0/y0 . yO , ,O
[XZ(X3 + X4 + X5)]

1-01 - Pf)(1 - RX3M)

0 0
(C2 X5/X5 - 1)X4/X4 + 1

D4+D6+D7

D4+D6° (1 - D7)
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(A.5)

(A.6)

(A.7)

(A.8)

(A.9)

(A.70)

(A.11)

(A.12)

(A.13)



S . 0,40
D10 = C, (1 + ey )/X2

RATT1 = ——

DF1

1]
—
|
s
>
'}
—d

The linearization elements are:

F(1,1)

- )
O(Ep”-p)

F(2,1) = (1 - RXIM) 4

- my =1 o.M o
F(2,2) = =¢xmiXy /(X = u/x]

F(3,1) = RXIM=4+(1 - RX2M)

F(3,2) = m1°¢Xp'(1 - RX2M)*X, /(X1)

m, -1 m

2 0y 2 _ _
/(X9) < - d, - D10

F(3,3) = - RX'IM‘(b'Xp'mZ‘X2

F(3,4) = D4
F(3,5) = D4
F(3,6) = D4
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(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)



F(4,2)

F(4,3)

F(4,4)

F(4,5)
F(4,6)

F(5,3)
F(5,4)
F(5,5)

F(5,6)

F(6,3)

F(6,4)

o 0, ,0
ue X3/[(X1 + X3) X]]
D10+ (1 - D6)
m,-1 m
o (1 - 3 0, 3
-D3+(1 Pf)m3X3 /(X3)

- u, (1 - x1/x$)/(x$ + xg) - DS

-D5
-D5
D10+D6°D7
m=l oM
D307+ (1 = P)emyX,® /(x3) ° - D8

~d; + D3°D6*(C,X:/Xg - 1)/Xy - D

27°5"75

o_,0
D3 D6 C2 X4/(X5 X4) - D8

D10+D6+(1 - D7)

m3-1 0
D3¢ (1 - Pf)°(1 - D7)m3X3 /(X3)
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m

3 _ pg

(A.

(A.

(A.

(A.

(A.

(A

(A.

(A.

(A.

(A.

(A.

26)

27)

28)

29)

30)

.31)

32)

33)

34)

35)

36)



3 L] ® - o o -
F(6,5) = D3+D6*(1 - C, X /XZ)/X, = DI (A.37)
- - " - * [ ] o o -
F(6,6) = ~dj - D3D6°C,X,/(XgX,) = D9 (A.38)
F(7,1) = {1 - (1 - DF1)+RXIM}¢ = DFT+RX2M+RX1IM+¢ (A.39)
- ) m1-1 o m.l o
F(7,2) = - ¢xp{(1 = DF1)emyeX,  /(X]) ' - RX1M°RAT1'2/X3}

0,y0 0 o 0 o o
\ + ugl(Xg = X )/IXT (X7 + X3)T + (1 = X, /x9N (X3 +x3) = 1/x5}

e
- m1-1 o m1 o
- ¢prx2M{DF1-m1x1 /(x]) "+ RX1M'2°RAT1/X3} (A.40)
- m2-1 o m2
F(7,3)A= - ¢Xp°DF1°RX1M°m2X2 /(x2) (A.41)
N 0 X] 1
F(7,7) = - ¢ Xp'RX1M’RAT1'2/X3 - ue('l - '-3) o o
X2 x% + x
1 M 3
+ 2oRAT1-Rx1m-Rx2Mo¢~xp/xg (A.42)

For j=1’2,.." :

3

F(7+3,1)

Pj{¢82 + RATT-RATT*+RXTM*B, + ¢=RXTMRX2M-

(1 -8

;" By + DF]-RX1M°RX2M'¢B]} (A.43)
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i = -De vo . . 0 2‘ -
F(7 + j,2) = Pj{ 2°RAT1%¢ xp RXTM+B, /X3 + RATI ¢xp

m1-1 o m] ~ m]-l o m1
]m1x1 /(X1) + ¢Xpm1X1 /(X]) s RX2M(1 - B, - B,)

8 178

m, =1 m
RX2M*[DFTom. X, | /() 1, 2-RATTRXTM/XS1} (A.44)

171

+ ¢ XpB]

m n

A "'" H

. _ -a - . (1o - 2 0, 2

F(7+§,3) = pj{du(1 By=Bp) + X <RXIMe(1-8,-8,)m,X," /(X))
A m2-1 o m2

+ DFT-RXTM=4X +Bqm X,° /(X)) } (A.45)
F(7+3,5) = Pi{dy(1 - 8, - 8,)/(1 + w)} (A.46)
F(7+3,6) = P,{dg(1 - 8, = 8,)/(1 +w)} (A.47)
F(7+5,7) = Pj{2°RAT1°¢Xp'RX1M-B1/X3 «(1 - RX2M) } (A.48)

. . m=1
F(7+3,7+]) = -aj°mSj (A.49)

¢ g _ . m-1 .
F(7+j,7+3-1) = agqem Sj_1, J=2,3,...5N (A.50)
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H(T,1) = 6(u_,a.) (A.51)

u_,a
=’
The linearization matrices with respect to temperature, pressure

and dew-point temperature are included in Georgakakos and Bras

(1982). The derivatives with respect to evapotranspiration are:

FU(2,4) = -x]/x$ (A.52)
u (1 - 0o 0 0
FU(4,8) = -(1 = Xy/xxy/ (x] + X3) (A.53)
u o] X6 - X1 o
F(7,4) = -(1 - X1/X])(—3————3) - X1/X1 (A.54)
Xy + X3
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Appendix B

RAINFALL-RUNOFF MODEL SECOND ORDER EXPANSION MATRICES

This appendix includes the nonzero second order derivatives of
the rainfall-runoff model. The ordering of the model states is as in

Table 4.1. The notation is as follows:

2
i

3
S('i,j,k) =W (B.])
1

2
3 h2

T(i,3,2) = I (B.2)
i3

with fx and hg indicating the kth dynamic function and the 2th
observations function, respectively. Note that for a fixed function,
these matrices are symmetric.

In addition to the notation of Appendix A, the following notation

is required:

m1-2 o m1
FX1 = m (m] - 1) X /(x1) - (B.3)
m2-2 o} m2
FX2 = mz(m2 - 1) X2 /(X2) (B.4)
m]-1 m, :
FX3 = m X, /(x?) (B.5)
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_ 2 0, 2
FX4 = m2X2 /(XZ)
FX5 = Cyee+80y" 1/[ (X0 + X°
1 3 4
FX6 = C,+€0(8 = 1)y>~2/[x%(x% + X
1 273
m, =1 m
- 3 0, 3
FX7 = m3X3 /(X3)
0 o
FX8 = Cy°(1 + ey )/X
1 2
m,=2 m
- - 3 0, 3
FX9 = m3(m3 1)X3 /(X3)

m, -1 m

= L] o - L] o
FX10 = (C2 X5/X5 1) 1/X4

The elements of the second-order matrices are:

s(1,2,2)

S(2,2,2)

$(1,2,3)

$(1,3,3)

- $+FX3

= ¢X _<FX1
¢ p

¢°FX3 (1 - RX2M)

= ¢*RXIM<FX4

0 0
+ X5) X2]
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0
4

+ Xg)zl

(B.6)

(B.7)

(8.8)

(B.9)

(B.10)

(B.11)

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)



S(2,2,3)

s(2,3,3)

$(3,3,3)

$(3,4,3)

$(3,5,3)

$(3,6,3)

S(4,4,3)

S(4,5,3)

s(4,6,3)

S(5,5,3)

$(5,6,3)

S(6,6,3)

S(2,4,4)

$XTFX1+(1 - RX2M)
- X *FX3+FX4

-¢Xp’RX1M°FX2

FX5
FX5

FX5

-FX6°X2

-FX6'X2

-FX6°X2

-FX6°X2

-FX6'X2

-FX6°X2

ue/[X?(X$ + xg)}
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(B.17)

(B.18)

(B.19)

(B.20)

(B.21)

(B.22)

(B.23)

(B.24)

(B.25)

(B.26)

(B.27)

(B.28)

(B.29)



S(3,4,4)

$(3,5,4)

S(3,6,4)

S(4,4,4)

S(4,5,4)

S(4,6,4)

S(5,5,4)

$(5,6,4)

5(6,6,4)

$(3,4,5)

$(3,5,5)

-FX8+(1 - Pf)FX7 - - Pf)(1 - RX3M) *FX5
-(1 - RX3M)*FX5+(1 - Pf)

- (1 - RX3M)*FX5+(1 - Pf)

-D3+(1 - Pf)FX9 + 2.O°FX5°X2‘(1 - Pf)'FX7

+ FX6'X2(1 - Pf)(T - RX3M)

FX5‘X2(1 - Pf)FX7 + FX6'X2(1 - Pf)(l - RX3M)
S(4,5,4)
FX6°X2(1 - Pf)(1 - RX3M)

S(5,5,4)

S(5,5,4)
FX8-D7(1 - Pf)FX7 - FX5+D6°D7

FX8+D6°FX10 - FX5+D6°D7
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(B.30)

(B.31)

(B.32)

(B.33)

(B.34)

(B.35)

(B.36)

(B.37)

(B.38)

(B.39)

(B.40)



S(3,6,5)

S(4,4,5)

S(4,6,5) = -FX5<X

S(5,6,5) = ~FX5°<X

S(6,6,5) = FX6'X2°DG'D7 = 2,0°FX5°X

- L] L ] L o o - L] L]

= FX8+D6 C2 X4/(X4X5) FX5+D6+D7

= FX6°X2'06'D7 + D3°D7°FX9+(1 - Pf)
- 2'FX5'X2(1 - Pf)FX7°D7

S(4,5,5) = -FX5'X2°DG'FX10 + FX6'X2°06'D7

+ D3°FX10°FX7-(1 - Pf) - FXS‘XZ'D7°FX7'(1 - Pf)

0,0
2 D6 02X4/(X4X5) + FX6 X2 D6+D7

O o [ ] - [ ] - [ ] * - ®
+ D3 02x4/(x4 Xs) (1 Pf) FX7 - FX5 x2 D7 (1 Pf) FX7

S(5,5,5) = FX6°X2'DG°D7 - 2°FX5'X206'FX10

L] L L] 0 o L] L] L
D6 C2 X4/(X4X5) + FX6+X,*D6°+D7

2 2

L] o o - L] L]
+ D3+D6 Cz/(X4X5) FX5 XZDG FX10

; 0,0
2 D6 C2 X4/(X4X5)

S(3,4,6) = FX8+(1 - D7)(1 - Pf)°FX7 - FX5+D6(1 - D7)
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(B.41)

(B.42)

(B.43)

(B.44)

(B.45)

(B.46)

(B.47)

(B.48)



- FX8<D6°FX10 - FX5<D6(1 - D7) (B.49)

$(3,5,6) =
S(3,6,6) = -FX8'DG’C2X4/(X2X2) - FX5+D6(1 - D7) (B.50)
S(4,4,6) = -2‘FX5'X2(1 -D7)-(1 - Pf)’FX7 + FX6'X206(1 - D7)

+ D3(1 - D7)FX9+(1 - Pf) (B.51)
S(4,5,6) = FX5'X2'DB°FX10 + FX6'X2°06(1 - D7) -
- D3°FX10°FX7(1 - Pf) - FX5°X2(1 - 07)(1 - Pf)°FX7 (B.52)

OXO

S(4,6,6) = FX5°X aXs

D6'CZ°X4/(X ) + FX6°X2°06(1 - D7)

2
L - 0 o - * - -
- D3-FX7(1 Pf)C2X4/(X4X5) FX5 X2(1 D7) (1 Pf)FX7

(B.53)
5(5,5,6) = FXS-XZDG'FX10 + FX6°X2'D6(1 - D7) + Fxsoxzns-rx1o
(B.54)
-—1 * L ] of e oo L] L] -
5(5,6,6) = FX5°X,*D6C, x4/(x4x5) + FX6°X, D6(1 - D7)
[ ] L] 00 L ] * L ]
- D3+D6 c2/(x4x5) + FX5 x2 D6°FX10 (B.55)
- Je L] L ] of o oo [ ] -
S(6,6,6) = 2°FX5 X,*D6°C, x4/(x4x5) + FX6 x206(1 D7)  (B.56)
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$(1,2,7) = -4-RAT12+FX3 + 2+RAT1/X3*RXTH=6

- DF1'X2/XZFX3°¢ - 2-RAT1/xg-Rx1m-szm-¢ (B.57)
$(1,3,7) = =0+DF1+RXTM+FX4 (B.58)
$(1,7,7) = -2-RAT1/xg-Rx1m-¢ + 2°RAT1/X§°RX1M'RXZM°¢ (B.59)
$(2,2,7) = -¢XpRAT12FX1 + ¢xp-Fx3-4.o-RAT1/xg - ¢xp-Rx1m-2/(xg)2

ohe Or,0 0 - e .
- 2+¢ ue/(x][x1 + x3]) ¢prx2M DF1+FX1

- ¢XpRX2M'FX3'4.0'RAT1/Xg + ¢XpRX2M'2/(Xg)2 *RXTM (B.60)

$(2,3,7)

~4X_*FX4+ (DF1+X3 + Rx2M~2.o-RAT1/xg) (B.61)

$(2,7,7) -¢XpFX3'2'RAT1/Xg + ¢Xp°RXTM'2.O/(Xg)2

0r,0 o N . 1o 0,2
+u /0QIX] + X3 - ¢xp RX2Ms(RX1M 2/(x3)

- Fx3-2.o-RAT1/x§) (B.62)
5(3,3,7) = ~4X *FX2*DF1+RXIH (B.63)
$(3,7,7) = ¢Xp°RX1M°FX4'2.0'RAT1/X3 (B.64)
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$(7,7,7) = -2.0°¢xp-Rx1M/(x§)2 ¥ ¢prx1m-szm-2.0/(xg)2 (B.65)

For j=1,2,...,n:

2

$(1,2,7+3j) = Pj{¢B]°RAT1 FX3 - ¢B1°2°RAT1'RX1M/Xg

+ ¢FX3+RX2M*(1 - B, - 82) + DFT’RXZM’FX3°¢B]

1
+ 2.0;RAT1°RX1M°RX2M'¢'B1/Xg} (B.66)

S(1,3,7+3)

Pj{¢°RX1M°FX4(1 - B, - 82) + DF1'FX4°RX1M°¢‘BT}

1

(B.67)
$(1,7,7+3) = Pj{Z.O'RAT1'¢°B]'RX1M/Xg
- z.o-RAT1-Rx1m-szm-¢-s1/xg} (B.68)
$(2,2,7+j) = Pj{B]°Xp¢([1 - DF11FX1 - Fx3~4.o-RAT1/xg
[ ] o 2 “. L] [ ] [ ] - -
+ RXM=2/(X3) ) + ¢ X" RX2M=FX1 (1 - By = B,)
+ B]°Xp'¢'RX2M°(FX3°4.0°RAT]/Xg - Rxm-z.f)/(xg)2
+ DF1+FXx1)} (B.69)
$(2,3,7+3) = P;{oX (1 - By - B,)FX3-FX4
+ ¢xpe]-rx4(Rx1Mo2-RAT1/xg + DF1-FX3)} (B.70)
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° L] * ® 0 - L] [ ] o 2
pj¢xp{s1 FX3+2.0°RATT/X3 = B *RXTM2/(X3)

$(2,7,7+j) =
+ s]~Rx2M(Rx1m-2.0/(xg)2 - Fx3-2.o-RAT1/x§)}
(B.71)
$(3,3,7+4) = P;ooX +FX2{RXM-(1 - B, - B,)
+ B1°RX1M°DF1} (B.72)
$(3,7,7+3) = -Pj°81°Xp°¢°RX1M°FX4-2.0°RAT1/Xg (B.73)
§(7,7,7+3) = Pj°Xp'¢°2.0°RX1M/(Xg)2'81(1 - RXZM) (B.74)
. . . m=2
S(7+3,7+3,7+j) = -ajm(m-1)5j (B.75)
S(7+5-1,7+§-1,7+]) = aj_1om(m-1)s?:$ . §=2,....n (B.76)
' m=2
T(7+n,7+n,2) = ajm(m-l)Sn (B.77)
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Appendix C

BROAD COMPARISON OF DISCHARGE PREDICTIONS USIMG DIFFERENT

SPECTRAL DENSITY MATRICES

The spectral density matrices used in the following comparison
are the matrix of level 4 (see Table 4.4) and a modified matrix of
level 8 (see Table 6.2). The latter was found by setting all state
variances to zero except those corresponding to the states of the
channel. The eight different time intervals of Table C.1 were
considered. A1l runs were made using the initial conditions employed
in Chapter 6. As in Chapters 4 and 6, no error was attributed
to the inputs.

Tables C.2, C.3, and C.4 present the‘residua1 statistics,
normalized residual statistics and least square indices for
discharge, respectively. Figures C.1 to C.16 show the predictions
obtained in the different runs with the different spectral density
matrices.

As it is observed, the spectral density matrix of level 8 with
all but channel elements set to zero gives consistently better results
than the Q matrix of level 4. Notice that although the matrix of
level 8 was found using maximum discharges of 3.52 mm (see Figures
C.11 and C.12) and a total of 124 data points, the use of such matrix
gives reasonably good predictions for hydrographs with higher peaks
(see Figures C.13 and C.15) for periods of time longer than one month
data. Only the record event of run No. 4 was not properly

reproduced.

237



Table C.1

Time Intervals Used In Comparisons

Run No. Initial Date Final Date
1 Mar 1/58 Apr 30/58
2 May 1/58 Jun 30/58
3 Jul 1/59 Jul 31/59
4 Sep 1/59 Oct 30/59
5 Mar 1/60 Apr 30/60
6 May 3/60 Jul 2/60
7 May 1/61 Jun 30/61
8 Jul 1/61 Aug 30/61
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Table C.2

Discharge Residual Statistics for Different Runs

Variation Autocorrelations
Run No. Mean Coefficient Skewness Lag-1 Lag-2 Lag-3 Lag-4
1 -0.014 -7.68 0.404 -0.093 -0.340 0.325 0.004
2 -0.004 -5.01 -1.62 -0.298 -0.032 0.195 -0.204
3 -0.008 -20.4 1.03 0.108 -0.183 0.022 -0.067
4 0.270 6.61 7.40 0.879 0.631 0.385 0.224
5 -0.009 -11.0 1.99 -0.027 -0.455 0.060 0.058
6 -0.0004 -381.3 1.46 0.382 -0.179 -0.081 0.165
7 0.003 69.7 2,68 0.446 -0.146 -0.146 0.029
8 0.018 121 3.07 0.566 0.029 -0.066 0.139

Q-level 8 with all but channel elements set to zero

O N O O AW Ny —

Q-level 4

0.017
-0.003
0.066
0.431
0.014
0.058
0.120
0.169

9.90
-13.9
3.70
4.93
10.0
4.19
4.00
3.64

0.708
=2.72
1.52
6.24
1.79
3.33
4.90
3.64
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-0.587
-0.600
0.284
0.915
-0.397
0.644
0.840
0.91

0.833 -0.568 0.681
0.361 -0.276 0.190
0.537 0.039 0.141
0.741 0.558 0.429
0.784 -0.395 0.640
0.709 0.397 0.387
0.794 0,562 0.461
0.831 0.658 0.515



Discharge Normalized Residual Statistics for Different Runs

Table C.3

Variation Autocorrelations
Run No, Mean Coefficient Skewness Lag-1 Lag-2 Lag-3 Lag-4
1 -0.027 -6.66 -0.257 -0.060 -0.359 0.303 0.017
2 -0.006 -5.12 -3.42 -0.306 0.034 0.203 -0.204
3 -0.025 -11.5 0.912 0.150 -0.201 0.035 -0.047
4 0.147 6.57 5.43 0.883 0.697 0.548 0.422
5 -0.019 -8.62 0.154 0.032 -0.487 0.003 0.131
6 -0.009 -32.7 -0.239 0.404 -0.215 -0.102 0.189
7 -0.008 -50.4 1.65 0.417 -0.189 -0.137 0.056
8 0.023 16.0 2.74 0.582 0.033 -0.072 0.126
0-level 8 with all but channel elements set to zero
1 -0.0001 -6230.0 0.37 -0.602 0.840 -0.578 0.700
2 -0,027 -8.13 -4,95 -0.514 0.330 -0.269 0.196
3 0.173 5.07 1.01 0.117 0.530 -0.041 0.178
4 0.329 4,49 3.37 0.833 0.846 0.698 0.727
5 -0.014 -40.3 1.53 -0.446 0.781 -0.431 0.662
6 0.129 5.72 2.29 0.444 0,714 0.276 0.430
7 0.245 4,33 2.70 0.588 0.800 0.445 0.562
8 0.315 3.98 2.62 0.776 0.827 0.602 0.555
Q-level 4
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Table C.4

Discharge Least Squares Indices for Different Runs

Run No. Efficiency Determination Persistance Extrapolation
1 0.909 0.915 0.141 -0.66
2 0.839 0.878 0.251 0.28
3 0.937 - 0.940 0.617 0.32
4 0.615 0.746 -3.00 -3.94
5 0.915 0.926 0.130 -0.36
6 0.938 0.939 0.291 -0.65
7 0.931 0.931 -0.060 -1.24
8 0.961 0.964 0.332 -0.62

Q-level 8 with all but channel elements set to zero

1 0.768 0.774 -1.191 -3.24
2 0.264 0.537 -2.42 -2.29
3 0.858 0.889 0.146 -0.52
4 0.443 0.757 -4.80 -6.15
5 0.834 0.836 -0.697 -1.66
6 0.863 0.923 -0.570 ~2.66
7 0.715 0.841 -3.37 -8.23
8 0.690 0.891 -4.25 -11.7
Q-level 4
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Figure C.17 show, for the different matrices, a histogram of the
difference in time between the predicted and observed hydrograph
peaks, for the eight runs made. Observed peaks higher than
0.43 mm/6 hrs. are included in that figure. Figure C,18 depicts, for
the significant peaks, the percent error in predicting the peak

magnitude. Such percent error is defined by:

(Predicted Peak - Observed Peak) x 100
Observed Peak

Notice that about 50% of the peaks time to peak was correctly
forecasted irrelevant of the spectral density matrix used. Alihough
timing is not considerably different for the two spectral density
matrices, the peak magnitudes are better preserved with the Q matrix
of level 8 with only non-zero channel values. Notice that with the
modified matrix of level 8, 38.9% of the peak magnitudes were
predicted with less than 10 percent error, and 92% of the cases were
predicted with errors less than 30%. This matrix, however, tends to
overpredict the peak magnitude, while the Q matrix of level 4 tends to

underestimate the bigger .peaks.
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Appendix D

APPROXIMATE MAXIMUM LIKELIHOOD ESTIMATION ON THE POTOMAC BASIN

The results obtained when using the approximate maximum likeli-
hood method of Chapter 5 to estimate the diagonal spectral ansity ma-
trices of the large basin on the Potomac River are phgsented in this
Appendix. The decomposition procedure of Georgakakos (1983) served as
the filtering mechanism used in the computations. Although the spec-
tral density matrix of upstream sub-basins affects the spectral den-
sity matrix of downstream tributary sub-basins, the precipitation and
discharge observations 1ikelihood were maximized on an individual ba-
sis. The initial spectral density matrices were those on Table 8.5.
The upper bounds shown in Table D.1 were used to prevent unrealisti-
cally high estimates. ‘Tab1e D.2 contains the final spectral density
matrices and the initial and final Tog-likelihood values found on each
sub-basin. The approximate maximum 1ikelihood procedure used the
conditional information and Newton's method in its search algorithm.
Due to cost and time restrictions the computations were carried for
only 10 iterations on each sub-basin. However, as can be observed in
Table D.2, the likelihood increased in all cases.

Figures D.1 to D.10 show the discharge predictions on the Potomac

basin when using the decomposition procedures of Georgakakos (1983)
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Table D.1

Spectral Density Matrices Upper Bounds on the Potomac Basin

State Cootes Store A11 Others
Xp 30 30
X 70 40
X2 25 25
X3 80 180
X4 30 130
Xg 45 45
X6 160 160
s 50 50
52 50 50
S3 50
54 50
S5 50
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Table D.2

Spectral Density Estimates and Log-Likelihoods on the Potomac River

State Lynnwood Front Royal Cootes Store Strasburg Millville
X 21.8 24.8 20.2 16.7 107>
X, 40 40 40 40 40
X, 25 25 107> 1072 107°
Xy 107° 1073 107° 1070 107°
X, 130 130 30 130 130
X 107° 45 107° 107° 107>
X 160 107° 154.3 107° 160

6 [ ]
S, 107° 0.542 0.977 49.8 28.5
s, 0.482 0.805 0.207 2.45 4.53
S, 1.332 0.895 45.9
-5
Sy 10
s 1.99
5
Initial
Log~-
Likelihood =-963.1 -1496.1 -485.5 -575.1 -974.4
Final
Log-
Likelihood =-409.9 -416.7 -294.9 -350.0 -478.0
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and Puente, et al. (1983), respectively, with the spectral density ma-
trices of Table D.2. As can be observed, the predictions do not ne-
cessarily look better than those obtained using the initial spectral
density matrices; see Figures 8.12 to 8.21. Notice that although for
the sub-basin at Strasburg slightly better results were now obtained;
the sub-basin at Lynnwood now gives oscillatory predictions due to the
high spectral density variance used at its last channel state, see
Table D.2. The 1ikelihood was increased due to changes in residual

variances but not due to Tower residuals.
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Maximum Likelihood
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Figure D.8 Stochastic Prediction of Discharge, Cootes Store, Decomposition
Procedure of Puente, et al., October 12 to November 30, 1970,
Maximum Likelihood
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Figure D.9 Stochastic Prediction of Discharge, Strasburg, Decomposition

Procedure of Puente, et al., October 12 to November 30, 1970,
Maximum Likelihood
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Figure D.10 Stochastic Prediction of Discharge, Millville, Decomposition
Procedure of Puente, et al., October 12 to November 30, 1970,
Maximum Likelihood
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