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EULERIAN-LAGRANGIAN ANALYSIS OF POLLUTANT TRANSPORT

IN SHALLOW WATER

ABSTRACT

A numerical method for the solution of the two-dimensional,
unsteady, transport equation is formulated, and its accuracy is tested.

The method uses a Eulerian-Lagrangian approach, in which the
transport equation is divided into a diffusion equation (solved by a
finite element method) and a convection equation (solved by the method
of characteristics). This approach leads to results that are free of
spurious oscillations and excessive numerical damping, even in the case
where advection strongly dominates diffusion. For pure diffusion
problems, optimal accuracy is approached as the time-step, At, goes to
zero; conversely, for pure-convection problems, accuracy improves with
increasing At; for convection-diffusion problems the At leading to
optimal accuracy depends on the characteristics of the spatial
discretization and on the relative importance of convection and
diffusion.

The method is cost-effective in modeling pollutant transport in
coastal waters, as demonstrated by two prototype applications:
hypothetical sludge dumping in Massachusetts Bay and the thermal
discharge from Brayton Point Generating Station in Narragansett Bay.
Numerical diffusion is eliminated or greatly reduced, raising the need
for realistic estimation of dispersion coefficients. Costs (based on
CPU time) should not exceed those of conventional Eulerian methods and,
in some cases (e.g., problems involving predictions over several tidal
cycles), considerable savings may even be achieved.
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1. INTRODUCTION

The last few decades have seen an upsurge of numerical models for

circulation and pollutant transport in natural waters. Their popularity

is easily understandable: numerical models are relatively inexpensive,

versatile and easy to use; yet they are based on rather complete forms

of the equations of fluid mechanics, and therefore describe the relevant

phenomena with good detail.

However, recent years have found users and developers of numerical

models progressively more conscious of the limitations of their tools.

Indeed, it has often been stressed (although not so much implemented)

that models need to be calibrated and verified based on field data.

Also, drawbacks of available numerical techniques have been identified

and have become the subject of research.

One such drawback concerns the solution of the transport equation,

when convection is dominant over diffusion (or other diffusion-like

mechanisms). Most available numerical methods avoid spurious

oscillations only at the expense of artificial diffusion, introduced

explicitly in the data, or self-generated by the method. As a result,

plumes of pollutants tend to be, especially in the so-called

intermediate field, excessively diffused and damped.

The present work describes, tests and demonstrates the

cost-effectiveness of a numerical method characterized by low artificial

diffusion, even for convection-dominated transport problems.

The mathematical problem is stated in Chapter 2. The 2-D unsteady

form of the transport equation is selected, given that we are primarily

-10-



interested in the analysis of shallow coastal waters; however, no

conceptual difficulties should arise if the method is extended to 3-D.

Chapter 3 presents a brief review of methods available for the

solution of the stated problem. A clear distinction is made between

Eulerian, Eulerian-Lagrangian and Lagrangian methods; each of these

categories of methods represents a rather different solution approach

and results are likely to reflect these differences.

Chapter 4 describes the method developed in this study, which is

Eulerian-Lagrangian in concept. The method is based on the

decomposition of the transport equation into a diffusion equation,

solved by a finite element method, and a convection equation, solved by

the method of characteristics.

Chapter 5 presents the results of tests, performed by using the

proposed method to solve several problems with known exact solutions.

Results are rather satisfactory, showing a good ability in handling even

strongly convection-dominated problems with neither excessive damping

nor spurious oscillations.

Chapter 6 describes the application of the method to two prototype

examples: sludge dumping in Massachusetts Bay and thermal plume

calculations in Narragansett Bay. These applications are presented as

illustrations of the potential and drawbacks of the method, and are not

intended for direct impact assessment.

Chapter 7 presents the conclusions of our work, and identifies

future research needs.

-11-



2. MATHEMATICAL STATEMENT OF THE PROBLEM

The fate of a passive pollutant discharged in shallow water is

often appropriately described by the 2-D (depth-averaged) transport

equation

ac ac 1 a c
- + u.- (h D. + Q (2.1)at i ax. h ax. ij 3x.

where

c(x,y,t) - is the unknown depth-averaged concentration of the

pollutant

u.(x,y,t) - is the flow velocity in the i-direction
1

h(x,y,t) - is the flow depth

D. . (x,y,t) - are diffusion coefficients, forming a 2x2 tensor

Q(cxyt) - represents internal sources and sinks, and vertical
fluxes through the bottom and the surface of the flow

(i = 1,2; j = 1,2; x= x; y2 = y; u = u; u2 = v; summation

implied over repeated indices)

To complete the formulation, initial and boundary conditions must

be imposed. Such conditions will be considered to be of the form (Fig.

2.1)

c(x,y,t) = c0(x,y) at t = 0, in Q (2.2)

c(x,y,t) = c(x,y,t) at t > 0, on r (2.3)

qn(x~yt) = qn(x,y,t) at t > 0, on r2 (2.4)

where an overbar denotes a known quantity; qn represents a flux normal

to the boundary, and is defined as

ac A A
q = - D.. -- cos(n,x.) (2.5)
n ij 3x.
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Eq. (2.1) results from the principle of mass conservation, applied

to a pollutant dissolved or suspended passively in a turbulent quasi-

horizontal host fluid. The well-known derivation involves two averaging

processes: one over the time-scale of turbulence, and the other over the

flow depth (e.g., see Daily and Harleman, 1966). Two diffusion-like

mechanisms (turbulent diffusion, and shear-diffusion or 4ispersion)

result from these averages, each representing the bulk transport effect

of the part of the flow which is not explicitly represented. Turbulent

and shear diffusion are, in general, unsteady, non-homogeneous, and

orthotropic (with principal axis that do not necessarily coincide with x

and y, at each point). However, the ability to evaluate the appropriate

coefficients in natural waters is rather limited, which has often lead

to the assumption that Dij are constant in time and space.

Although turbulent and shear diffusion are several orders of

magnitude more efficient than molecular diffusion, their transport

ability is typically still secondary to convection by the part of the

flow that is explicitly represented by u, v and h. This leads to the

dominance, in Eq. (2.1), of hyperbolic (e.g. u 3c/ax) over parabolic

(e.g. Dxx 3 2c/ax 2 ) operators, which constitutes a major difficulty

for the numerical solution of the transport equation (see Chapter 3).

The term Q(cxyt) that appears on the right-hand side of Eq.

(2.1) is problem-dependent but typically introduces little challenge as

far as the numerical solution of the transport equation is concerned.

In the present work we will set

Q(cxyt) = p(xy,t) - K(xy,t) c(x,yt) (2.6)

where p represents a source, and -Kc a first-order decay mechanism.

-13-



3. REVIEW OF AVAILABLE SOLUTION METHODS

3.1 Introduction

Several numerical methods have been proposed to solve numerically

the transport equation. They typically fit in one of three categories:

Eulerian, Lagrangian, and Eulerian-Lagrangian methods.

Eulerian methods solve the Eulerian form of the transport equation

(e.g., Eq. 2.1) in the nodes of a fixed grid. As a consequence, they

require the simultaneous solution of hyperbolic and parabolic operators,

which has proved to be a hard task when the former dominate the latter

(see 3.2).

Lagrangian methods avoid the explicit treatment of hyperbolic

operators by solving the transport equation in a grid moving with the

flow.. Although potentially very accurate, this approach leads, in many

situations of interest (e.g., continuous sources and complex reversing

flows), to practical difficulties, linked to the grid displacement and

deformation.

Eulerian-Lagrangian methods constitute an intermediate approach.

The convenience of a fixed grid is retained, but, at some point of the

numerical procedure, the transport equation is treated in Lagrangian

form to avoid the explicit treatment of the hyperbolic operators.

Eulerian methods (EM) are currently the most popular ones, much

because of historical reasons. However, a major shift towards the use

of Eulerian-Lagrangian methods (ELM) may occur in the near future. The

review presented in the next section will be restricted to these two

categories. For completeness, we mention Varoglu and Finn, 1980, and

O'Neill and Lynch, 1980, as references on Lagrangian methods.

-14L-



3.2 Eulerian Methods

Methods in this category are typically based on the build-up and

solution of a single system of algebraic equations, where both

convective and diffusive terms are represented; unknowns are the

concentrations at a finite number of fixed locations (nodes) in the

computational domain. The transformation of the original differential

equation into such a system of algebraic equations is usually achieved

using either finite difference methods (FDM) or finite element methods

(FEM).

Relative merits of FDM and FEM have been widely discussed for

several years. While few uniformly accepted conclusions have been

reached, it is usually recognized that FEM

- handle more efficiently complicated land boundaries and internal

grid refinements;

- are more consistent in the treatment of boundary conditions and

in the set-up of interpolation procedures over the whole

computational domain;

while FDM

- are more intuitive to formulate, and tend to require less memory

capacity and CPU time, for a similar number of nodes;

- result in significantly easier procedures concerning preparation

and input of data.

FDM have been used in the solution of the transport equation since

the late 1950's. They typically discretize the computational domain

through the use of an orthogonal grid. Stretching transformations may

be used to provide some grid refinement. Over each grid element, the

differential transport equation is replaced by an algebraic equation,

-15-



where both the space- and time-derivatives are approximated by finite-

differences. The resulting system of algebraic equations is adjusted to

take into account the appropriate boundary conditions, and is then

solved to give the nodal concentrations.

Initial FDM used centered schemes to approximate both the

a ~ C - C.
convection and the diffusion terms (e.g u .u - ;

2 c. - 2c. + c axj J 2Ax

D - .J, D. j+ j - , where j denotes an arbitrary node).
ax2. J Ax

Such methods were typically plagued with spurious spatial oscillations

(wiggles). A careful analysis of the production of wiggles is presented

in Roache (1982) in the context of a one-dimensional, steady problem,

using a regular grid; major conclusions have proved to hold for

higher-dimensions, unsteady conditions, and (in a less straightforward

way) irregular grids. Wiggles are produced when

uAx
Pe = - > 2

D -

where Pe is the Peclet (or cell-Reynolds) number. The usefulness of

centered FDM is then reduced to the solution of diffusion-dominated

problems (where Pe < 2, with Ax in some practical range).

As a remedy for wiggles in convection-dominated problems (Pe > 2),

more recent FDM have used centered finite-differences only for the

diffusion terms, replacing the convective derivatives by upwinding

ac cic j -1 . J+1 c
differences (e.g., u ac = u. if u. > 0, and u.j AX Jj Ax

if uj < 0). Upwinding methods do avoid wiggles; however, they

introduce numerical diffusion in a way that increases with Pe and may

easily overshadow physical diffusion (Roache, 1982). The use of such

methods, therefore, corresponds to a re-statement of the physical

-16-



problem, which may not be acceptable. In spite of this limitation,

upwinding FDM have become popular tools in engineering practice.

An alternative approach (Flux-Corrected Transport Method) was

proposed by Book et al. (1975) in the form of the addition of "optimal"

artificial diffusion (the magnitude of the artificial diffusion is

systematically selected over the domain only as required to avoid

wiggles). Again, this approach leads to a re-statement of the problem.

FEM have become popular for the solution of the transport equation

since the early 1970's. The computational domain is divided into

elements of convenient shape, such as triangles or quadrilaterals.

Within each element information is concentrated in nodes, but may be

unambiguously interpolated to any other point using pre-selected

interpolation functions. The original partial differential equation is

then transformed into a system of ordinary differential equations in

time, using a weighted residual method. Numerical integration of this

system leads finally to a system of algebraic equations, whose solution

gives the nodal values of the concentration field.

The use of the weighted residual method requires the definition of

elementary weighted residuals; these result from the integration over

each element of the errors made in approximating the actual

concentration field,.weighted by pre-selected weighting functions; the

sum over the whole computational domain of the elementary residuals is

then forced to be zero, to minimize the approximation errors. Different

FEM result from different choices of interpolation and weighting

functions. In the early 1970's, most FEM solved the transport equation

using the same interpolation and weighting functions; such methods are

-17-



known as Galerkin-FEM (GA-FEM). They are the basis for the models

DISPER (Leimkuhler, 1974) and FETRA (Onishi, 1981), among others.

GA-FEM lead to "centered" approximations of the advective terms,

and present the same limitations as centered FDM: wiggles are produced

when the Peclet number exceeds a small critical value. Users of GA-FEM

have tried to extend the application of the method to convection-

dominated problems, through the adoption of uniform diffusion

coefficients which may be 1 to 2 orders of magnitude larger than the

physical ones.

In the late 1970's several attempts were made to account for the

flow direction, i.e., to "upwind" FEM. Petrov-Galerkin FEM (PG-FEM), as

presented by Christie et al. (1976) and extended by Heinrich et al.

(1977) and Heinrich and Zienkiewicz (1977) constitute one such attempt

which has been successful in avoiding wiggles. In these methods, the

weighting functions are not equal to the interpolation functions, but

are obtained from them by a change in shape that increases the relative

weight of upstream information in a way that depends on the element

geometry and the flow characteristics. Limitations of PG-FEM methods

include (a) introduction of artificial diffusion, as a function of the

local Peclet number (similar to upwinding FDM); (b) increased

computational effort required to generate the weighting functions from

the interpolation functions, at each element and at each time step, and

(c) difficulty in handling elements other than quadrilaterals.

A different upwinding procedure (much in the line of the

Flux-Corrected Transport Method in FDM) was proposed by Hughes (1979)

for 1-D, and was later extended to 2-D (Hughes and Brooks, 1979 and

Kelly et al., 1980). In this procedure, the weighting and interpola-

-18-



tion funtions are equal, like in standard GA-FEM. However, an

artificial anisotropic diffusion term, equivalent to the one that is

implicitely introduced by the PG-FEM, is computed and added to each

element at each time step. Methods using this procedure have not

received a unique designation, being sometimes referred to as

Balanced-Dissipation - FEM (BD-FEM). Results of BD-FEM have been

reported as indistinguishable from results obtained with PG-FEM.

However, BD-FEM are much less expensive and are more easily applied to

elements of any shape and dimensionality.

3.3 Eulerian-Lagrangian Methods

Eulerian-Lagrangian methods (ELM) represent an attempt to combine

the convenience of an Eulerian grid with the accuracy of a Lagrangian

treatment of convection. Typically, ELM decouple the transport equation

into two components (pure-convection and pure-diffusion), each being

solved by an appropriate technique. Most often, the convection equation

is solved by a backwards method of characteristics, while the diffusion

equation is solved by FDM (Holly and Preissmann, 1977; Glass and Rodi,

1982; Holly and Polatera, 1984). A few ELM using FEM to solve the

diffusion equation have been studied in recent years (Newman, 1981;

Newman and Sorek, 1982, Hasbani et al., 1983).

The general procedure behind a ELM is illustrated in Fig. 3.1. At

time tn parcels of fluid are identified with each node of the

numerical grid, and followed backwards along a streamline, until a

previous time tn-1 where the nodal concentrations are all known.

Concentrations-of the parcels at tn-1 are then found by interpola-

tion, and directly associated with the nodal concentrations at tn

-19-



(Fig. 3.la). This completes the solution of the convection equation. A

conventional centered FDM or FEM is then used to solve the diffusion

equation, using the newly computed concentrations as initial conditions

(Fig. 3.1b).

Cheng et al. 1984 uses a different Eulerian-Lagrangian approach.

The transport equation is written in Lagrangian form, but is not.

decoupled. As above, at any given time tn a parcel is associated with

each node and followed backwards, along a streamline, until tn-1-

Now, however, instead of using a numerical procedure for the diffusion

step, concentrations at tn are computed as the weighted average of

concentrations within clouds surrounding the parcels' position at

tn-1. As the size of the clouds is defined by means of the diffusion

coefficients and the time step, this procedure allows the simultaneous

solution of both convection and diffusion.

A systematic comparison of ELM, among themselves and with respect

to Eulerian and Lagrangian methods, is yet to be performed.

Nevertheless, reported results suggest that ELM represent the most

cost-efficient solution technique to solve transport problems. In

general, solutions tend to be "wiggle-free" and remarkably accurate

(very low numerical damping and diffusion) even for high Peclet numbers,

and the computer costs seem comparable to those of Eulerian methods.
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4. DESCRIPTION OF THE METHOD

4.1 Introduction

The method described in the next sections is Eulerian-Lagrangian,

in the terminology of Chapter 3. The transport equation is split into a

convection and a diffusion equation - the former being solved by the

method of characteristics, and the latter by a Galerkin finite element

method.

4.2 The Splitting Technique

The transport equation, Eq. 2.1, may be rewritten by expansion of

the derivatives on the right-hand side, and rearranged as

ac *3c 3 C
-+ u. --- := D + Q (4.1)at L ax. ij ax.ax.

1ij

*
where the apparent velocity u. is given by

* 1 3

u. = u. --- (hD..) (4.2)
1 1 h 3x. ij

We will discretize Eq. 4.1 in time, according to the scheme

n -1 a2
c +} = + aD } + Q} (4.3)

At u ax. n-1 D. ax.x. 3 n

which introduces an error of order (At). In the above, n denotes

current time, and n-i a previous time, a time-step, At, apart.

Defining an auxiliary variable cf, and making use of the

linearity of the transport equation, it is possible to decompose Eq. 4.3

into a convection and a diffusion equation,
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f n-i
c - c + } =ac (4.4)

At i x n-1
1

n f 2
C= {D.. C ' + {Q} (4.5)

A t ij3x.3x. n n
1 i

No error is directly introduced by decomposing Eq. 4.3, providing

that at each time step, Eq. 4.4 is solved first, by an explicit

technique, and Eq. 4.5 is solved next, by an implicit technique.

The variable cf may be interpreted as the concentration that

would be obtained at time n, if the only transport mechanism between n-i

*
and n was convection by the apparent velocity u. . However, cf can

not be rigidly identified with time n, as it becomes an initial

condition for the solution of the diffusion equation.

The initial (at the beginning of each step) and boundary conditions

of the full problem may be written in discretized form, as

c = n-i at n-1, in 0 (4.6)

n -
c = c at n, on r  (4.7)

n -
q = q at n, on r (4.8)

Using the auxiliary variable cf, we may take advantage of the

linearity of the problem to obtain, again without any decomposition

error, the two following sets of conditions
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c = n-l at n-1, in 2 (4.9)
for convection

c =c at n, on (410)

c = f at n-i, in Q (4.11)

en = c at n, on r 1 for diffusion (4.12)

qn = q at n, on r (4-13)
n n 2

The splitting technique used in most ELM is based on the same idea

of discretizing the original transport equation in time, and taking

advantage of the time-discrete form to decompose the equation. 1

Typically, however, the time-discretization is performed on the

transport equation written in the form of Eq. 2.1, rather than that of

Eq. 4.1. The splitting leads then to the equations

f n-i
c - c +{ u..- 0 (4.14)

A t a 3x. n-l

cn -cf aa

{ .- h D . . ) } + I Q 1 ( 4 .15 )
At hx. j x. n

1 J

For the general case where hDij is space-dependent the above

decomposition does not avoid the presence of hyperbolic components in

the diffusion equation, as is clear by expanding the derivatives in the

right-hand side of Eq. 4.15:

1An exception is the method described by Neuman and Sorek (1982), where

the decomposition is performed over the continuous form of the equation.
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n f 3hD.. 2
C - = _ l a') _+D. 4 c} + {Q} (4.16)

At h 3x. x 1 3 n

Clearly, if the hyperbolic terms in Eq. 4.16 dominate the parabolic ones

(e.g., due to large gradients in the flow depth), significant numerical

diffusion will occur.

4.3 Solution of the Diffusion Equation

4.3.1 Introduction

The diffusion equation is solved by a standard FEM, based on a

weighted residual Galerkin formulation. The time-discretization scheme

is implicit, based on a backward Euler's formula. S 4.3.2 to 4.3.4

present the details of the solution technique.

The selection of a FEM rather than a FDM (more conventional in an

Eulerian-Lagrangian context) was recommended by the superior ability of

the former to deal with irregular domains, and with internal grid

refinements.

It should be noticed that the use of an irregular FE grid increases

the complexity of the particle tracking algorithm required to solve the

convection equation (see 4.4.2). On the other hand, FEM, unlike FDM,

lead to the unambiguous definition of interpolation functions that cover

the whole domain. These functions are natural candidates to become the

basis of the interpolation procedure required to solve the convection

equation (see 4.4.3).
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4.3.2 The Weighted-Residual Statement

The diffusion problem will"be stated as governed by the differen-

tial equationi

2
3C = D.. a C C + p
9t ij 3x.3x.

i i

(4.17)

with initial conditions

C(xy,t) = 0 (x,y)

and boundary conditions

c(x,y,t) = c(x,y,t)

q (x,y,t) = qn(xyt)

at t = 0, in a

at t > 0, on r

at t > 0, on r2

A discrete representation of the space-domain is adopted, such that

the concentration is approximated by

c(x,y,t) = c(x,y,t) = C(x,y,t) +
j

(4.21)a.(t) 1xy)

1 Formally, the problem should be stated in the time-discrete form that

results from the splitting of operators - Eqs. 4.5 and 4.11-13. The

non-discretized form is adopted for the sake of simplicity; it

introduces no errors, providing that the discretization scheme used

before is kept while actually solving the equations (see 4.3.4).
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where ^ - denotes approximation due to the spatial discretiza-

tion

c(x,y,t) - is zero outside r 1 , and is known everywhere on r

N .(t)

q (xy)

NT

- are unknown coefficients

- are known interpolation functions

- is the number of nodes in the domain

This approximation introduces residuals over s, r1 and r2, defined

as

R(x,y)

T(x,y)

S(xy)

9c 2^
D + Kc - p

Ci C
= c -c

= q -qn n

in 9

on r

on r 2

(4.22)

(4.23)

(4.24)

We will satisfy the essential boundary condition Eq. 4.19 exactly,

which implies that the residual T(x,y) and the functions j must

vanish identically on P1. The errors in Q and on r2 will be

minimized in a weighting residual sense, by letting

(4.25)W = ff w R(x,y)dA + f w S(x,y)ds = 0
r
2

where W is the weighted-residual over the domain, and w is an arbitrary

weighting function.
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Introducing the definitions of the residuals R(x,y) and S(x,y) into

Eq. 4.25, the weighted residual over the whole domain becomes

ac 2 ^ A A

W = ff{w --- dA - D.. w I + KWC - wpdA + f w(q - q )ds (4.26)
t i 1 xx n n

Integration by parts of the term involving second derivatives, and

re-arrangement leads to the balanced weak form of the weighted residual

statement retained for our finite element formulation:

A A

w ff ac~d+ aw ac AwdsJ q -
W = dA + D.. -- + Kwc - wp}dA + f ds + ds = 0

at ij ax. x. n

(4.27)

4.3.3 The FEM Formulation

As in any FEM formulation, the domain is divided into elements.

The weighted residual over the domain, W, which is required to vanish by

e
Eq. 4.27, is evaluated as the sum of the elementary residuals, W

Following a Galerkin approach, we will restrict the weighting

functions to have the same shape as the interpolation functions, over

each element. Clearly, the weighting functions must now vanish on
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rl, as the interpolation functions do. Therefore, the integral over

rl on the right-hand side of the weighted residual statement,

f w q ds vanishes identically. Also, we may write over an element,

in a way consistent with Eq. 4.21,

C= (x,y) a (t)
- -e

T T
w = (x,y) w (t) =w (t) 4 (x,y)

(4.28)

(4.29)

where ae and we are column vectors containing the nodal concentra-

tions and the (arbitrary) nodal weights; is a row vector containing

the interpolation functions.

The weighted residual over an element then becomes:

T

W = wT W jTjdA) e + (f D.. -- :- dA) a +
e -t ej xx -eQe ne 1

+ ((f(T dA)a _ffT pdA + f q ds

e e 2

or equivalently,

e T w-
W = W T IM + (A + B ) a - P }

e =-e -e =- -e -e

(4.30)

(4.31)

where

T T
M = ff T * dA

e

9T 3
A = ff D - dA
-e A i j X-

e

B ff o Ti dA

e

geometric matrix

diffusion matrix

decay matrix

-28-

(4.32)

(4.33)

(4.34)



TT-
P = ff p dA - f (p qn ds source/boundary vector (4.35)
--e e - r 2~

e 2

The sum, over the whole domain, of the individual contributions of

the elements to the global weighted residual leads to the system of

ordinary differential equations

M + (B + A) = P (4.36)

where each global matrix represents the assemblage of the corresponding

elementary matrices.

In the above formulation, the highest derivatives involved in the

selected weighted residual statement are of first order. Therefore,

space-continuity requires that the interpolation functions be

first-derivative square integrable, i.e., have piece-wise continuous

first derivatives. In addition, convergence in the mean-square sense

requires that, within each element, the interpolation functions be at

least linear.

Linear interpolation functions, although admissible, were found to

be inadequate. Indeed, they allow an accurate solution of the diffusion

equation, but tend to introduce excessive numerical diffusion and

damping in the solution of the convection equation (see 4.4). The use

of at least quadratic interpolation functions is strongly recommended.
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4.3.4 Time-Discretization Scheme. Solution Strategy

To transform Eq. 4.36 into a system of algebraic equations, we have

adopted an implicit time-discretization scheme, based on a backward

Euler's formula:

[M + At(An + Bn)n = M + At Pn (4.37)

where the superscripts n and f denote current time and "previous" time

(after the convection equation has been solved).

The scheme is unconditionally stable and is consistent with the

splitting procedure described in 54.2.

From the analysis of Eqs. 4.32 to 4.34, we recognize that M is

always a symmetric, time-independent matrix, while in general A and B

are non-symmetric, time-dependent matrices. However, A will be

time-independent if Dij are time-independent. The same applies to B

with regard to K. Also, A will be symmetric if the diffusion

coefficients Dij (a) constitute a symmetric tensor and (b) are uniform

over each element (although they may vary from element to element).

Similarly, B will be symmetric if K may be considered uniform over each

element.

The best strategy for the solution of the system of Eq. 4.37

depends on the characteristics of the matrix Z = M + At(A + B n).

In the present work, we have dealt only with situations where Z is

symmetric and time-independent. To take advantage of this property, we

have solved the system by using an appropriate LLT - decomposition

method. The decomposition of Z is done only once; in each additional

time step, the required operations are limited to updating the load

vector, P, and performing appropriate forward and backward substitutions

to obtain the vector of nodal concentrations.
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It should be noted that, if the conventional splitting procedure

mentioned in 4.2 had been adopted, the definition of A would include

not only the diffusion coefficients Dij, as before, but also the flow

depth, h. Therefore, A would be time-independent only when Di1 is

time-independent, as before, and either (a) h is constant over each

element (in which case the explicit dependence of A on h vanishes), or

(b) h is time-independent. In many situations of interest (e.g.,

estuaries and coastal waters, with non-negligible depth gradients), the

requirements on Dij are much weaker than the requirement in h;

consequence, Qnlitting nrnrcdure used in this work may

lead to a time-independent Z, while the conventional splitting

procedure would lead to a time-dependent Z, and therefore to less

computational efficiency.

4.4 Solution of the Convection Equation

4.4.1 Introduction

The convection equation, which in continuous form may be written as

Dc ac * ac
-- - +u. -- = 0 (.8

Dt at +i ax.

with u. = u. - -- (D..h) (4.39)
1 h ax. 'j

J

states that the concentration of a particle following the apparent flow

(u*,v*) remains constant, i.e., that the concentration remains constant

along trajectories or characteristic lines defined by

dx. *
--- u (x I y't) (4.40)
dt
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We will solve the equation using this property. In each time step,

we allocate a fluid particle to each node of the finite element grid

used to solve the diffusion equation, and we proceed as illustrated

below.

Consider, at time n, the particle at node j, located at P

(xj,yj) (Fig. 4.1). This particle was previously at position (P',

n-1), having been driven from there by the apparent flow, along a

characteristic line. Tracking the characteristic line backwards, we can

determine P', and then determine c(P',n-1) by spatial interpolation at

time n-i (where the concentrations at the nodes of the finite element

grid are known). But by Eq. 4.38, c(P,n) = c(P',n-1) and the problem is

solved for node j; the procedure must now be repeated for each of the

remaining nodes.

The same basic procedure applies even if an inflow boundary is

crossed during the back-tracking (case of node Q, Fig. 4.1). Now,

however, the concentration at (Qn) is imposed directly from the

boundary condition, i.e., c(Q,n) = c(Q',n'). In outflow or closed

boundaries the back-trajectory of a particle is towards the interior of

the domain, and boundary conditions are not required.

The approach described has been called "step-wise method of

characteristics", "reverse method of characteristics" or "streakline

method". It clearly includes two main tasks:

* the stepwise back-tracking of the particles along the

characteristic lines, starting at each node of the fixed

computational grid, at each time n, and being carried until

time n-i (or until an inflow boundary is crossed);

* the spatial interpolation required to find the concentration

carried along the characteristic line.
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4.4.2 The Stepwise Particle-Tracking Algorithm

The stepwise tracking of a particle constitutes an initial-

value problem, governed by the set of ordinary differential equations

dx.
= u (x,y,t) i1,2} (4.41)

which must be solved backwards in time, with boundary conditions

x. = x. at time n (4.42)
1 i

In most FEM, the driving flow field (u,v,h) is given explicitely

only at the nodes of a (often irregular) grid; however, interpolation

functions that apply to each element allow the unambiguous definition of

(u*,v*) in the whole domain. Also, most FE circulation models only

compute the flow field at fixed times, requiring time-interpolation

procedures to complete the flow description. Exceptions include models

based on frequency-domain approaches, that explicitly establish the time

dependence on the u,v,h.

We have developed an element-per-element tracking algorithm that

accounts for the need of an element-based spatial interpolation of the

flow field, and is flexible to accomodate time-interpolation schemes,

when required.

We will refer to Fig. 4.2 to describe this algorithm. Consider a

particle at position (P, n) where P coincides with a node of the finite

element grid; at time n-i this particle was at (P'''', n-1), which we

want to determine. We first follow the particle backwards along its

characteristic line, until position (P', n-81 ).
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As only element Kl is involved, we may write:

m
u (x,y,t) = E Z (x,y;K ) u (t;K ) (4.43)

%=1

m
h(x,y,t) = E T (x,y;K1) h (t;K (4.44)

1=1

m
D. . (x,y,t) = E 6 (x,y;K ) D .. (t;K ) (4.45)

j,, 1 LJ% l

where *X , rZ and OX are elementary interpolation functions; uit,

hX and Dijk represent nodal values of ui, h and Dij; and m is

the number of nodes of the element. If the nodal quantities uit, hk

and DijX are known at all times between n and n-a (either directly or

*
by time-interpolation), u. may be computed everywhere, using Eq. 4.39.

Because we were constrained by the choice of circulation models, we

have used in this work linear interpolation of velocities and flow

depths, over 3-noded triangular elements. The diffusion coefficients

Dij were assumed constant over each element. The procedure is rather

general, though, and may be applied to any other consistent choice of

interpolation functions and element shapes.

Once u* and v* are defined, the solution of the initial-value

problem governed by Eqs. 4.41 and 4.42 determines (P', n-a1). Several

numerical solution techniques are available; we have selected a 4th

order Runge-Kutta method, with constant time-stepping. The time step,

6tK1 is selected to limit the truncation error per step to a

prescribed value. Once (P', n-al) is obtained, an evaluation of

(P, n) given (P', n-si) is performed, to assess the total error

between n and n-0l; if the total error is not found satisfactory,
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the time-step is reset, and the tracking between (P, n) and (P', n-f 1 )

is repeated.

Once (W', n-si) is known within satisfactory accuracy, the

functions u* and v* are replaced by equivalent ones applying over

element K2, and the particle is tracked along this element, back to

(P'', n-02)- The tracking is accomplished as before; a new

Runge-Kutta time step 6t K2 is selected in an attempt to account for

the variation of the flow characteristics from element to element.

The element-per-element tracking is continued until time n-i is

reached, or a boundary is crossed (whichever happens first).

4.4.3 The Interpolation Scheme

Consider again the finite element grid shown in Figure 4.2. Assume

that (P'''', n-1) was found by the particle tracking procedure, and lies

in element K4, say.

The concentration at (P'''', n-1) will not, in general, be

explicitly known. However, concentrations at the nodes of elements K4

are known at time n-1, and the finite element approximation used to

solve the diffusion equation inherently supplies a consistent way of

interpolating concentrations over the element.

Therefore,

m
c(P,n) = c(P'''',n-1) = i(x,y; K 4 ) c (n-1; K 4) (4.46)

i=i

where *i(x,y; K4) are interpolation functions, associated with the

finite element approximation for concentrations; ci are nodal

concentrations; and m is the number of nodes of the element.
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Preliminary tests showed that the use of linear interpolation

functions introduced too much numerical damping. This is supported by

the brief accuracy analysis for the solution of the convection equation,

presented in the appendix. We have therefore adopted quadratic

interpolation functions, defined to be consistent with the interpolation

functions for velocity and flow depth over triangular elements (now with

6 rather than 3 nodes).

4.5 Comments on Stability and Accuracy

The method has no stability limitations on the time step, At. For

the convection equation, unconditional stability is assured by the fact

that the concentration at the foot (P', say) of each characteristic line

is found by interpolation (over the element that contains P') rather

than by extrapolation. For the diffusion equation, unconditional

stability is assured by the implicit time-discretization scheme that was

adopted.

A formal analysis of the accuracy of the method is beyond the scope

of our work. Errors may arise in each of the three major components of

the method: the splitting technique, the solution of the diffusion

equation and the solution of the convection equation.

The error associated with the splitting technique results

exclusively from the time-discrete form adopted for the transport

equation (as pointed out in 4.2, for such discrete form, no additional

errors arise from the splitting of the full equation into two

sub-equations) and is of order O(At).

The diffusion equation that results from the splitting is already

in a time-discrete form. Errors inherent to the solution of this

equation are therefore due only to spatial approximations, and are
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estimated to be of order O(AZ) 3 , for quadratic interpolation

functions. This estimate is based on the theoretical bound of the

mean-square error in 1-D

c+2
c-c = (c-c)2 dA} 11 2 < d p+)fc 2(d 1/2

SI 9 dx
e e

where p is the order of the interpolation function.

Errors inherent to the solution of the convection equation may be

associated with both time and space discretizations. Time-discretiza-

tion errors arise during the particle tracking, where the time-step for

the solution of the hyperbolic equation, At, is broken into sub-steps,

6t; as a 4th order Runge-Kutta method is used, errors are estimated to

be of order (St) 4 .

Space-discretization errors arise in connection with the

interpolation of the concentrations at the feet of the characteristic

line. The magitude of these errors depends on factors such as shape and

length of the original concentration distribution or the source term,

the order of the interpolation functions and the discretization steps in

space and time. A simplified error analysis is presented in the

appendix, in which the damping error per time step is calculated for a

harmonic concentration field, as a function of the dimensionless

wavelength, M, and the decimal part of the Courant number, a.

Results obtained indicate that (a) the damping error per time step

decreases with the increase of the dimensionless wavelength, M;
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(b) the damping error per time step does not depend on the Courant

number, but on its decimal part, a; therefore the error per time step is

essentially independent of the order of magnitude of the time-step and

the total error after a given time decreases with increasing At

(decreasing number of time steps); (c) the damping error decreases

significantly when the order of the interpolation functions goes from

linear to quadratic.
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5. SOLUTION OF TEST PROBLEMS

5.1 Introduction

The numerical method described in Chapter 4 was used to solve

several problems with known exact solution. The analysis of the results

provides useful information on the characteristics of the method, that

is out of the reach of a theoretical accuracy analysis.

A quantitative basis for the analysis of the results is provided by

the set of error measures defined in Table 5.1. These measures concern

a variety of characteristics of the numerical solution: overall

accuracy, artificial damping (reduction of peak concentrations),

spreading and shifting of the concentration field, and spurious

oscillations. This variety of error measures is felt to be necessary,

because (a) different numerical methods introduce different types of

errors, and (b) the property of the exact solution that is of most

interest depends on the specific engineering application.

Test problems were solved using 2-D regular grids, with 6-noded

triangular elements. Each grid is characterized by its length, L, and

width, W, and by the size of the right-sides of the triangular elements,

At (which is twice the nodal spacing in the x and y directions, Ax and

Ay).

Most problems are, however, essentially 1-D, involving transport in

the x-direction alone. To assure proper dimensionality in these cases,

the initial and boundary conditions were imposed uniformly along the

y-axis; in addition, no-flux conditions were imposed at the lateral

boundaries, and high lateral diffusion was introduced.
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5.2 Pure Convection in a Steady Uniform Flow

We will consider first the 1-D transport of an instantaneous

Gaussian source of initial variance aox2 , by a uniform, steady

flow. The governing equation is

ac(xt) u (xt) 0 < x < 00 (5.1)
at ax

with initial and boundary conditions

(x - x )2
c(x,t) = m exp{- 0 } =0, -co < x <co (5.2)

V2n a 2a2
ox ox

c(x,t) = 0 t>0, x + co (5.3)

where m represents total mass (per unit width and depth and divided by

density), and xo is the original position of the center of mass.

These definitions yield concentrations in dimensionless units for this

and subsequent examples.

The exact solution corresponds to the undisturbed transport of the

source, i.e.,

(x 2
m(x - x - ut)

c(x,t) = exp- o-2--.j t>0, -co < x < eo(5.4)
/ 2ir a 2a

ox ox

Numerical solutions were found for the combinations of parameters shown

in Table 5.2. Results are partially documented in Tables 5.3 and 5.4

and Figs. 5.1 to 5.5.

For all runs, the numerical solutions are virtually exact regarding

total mass, position of the center of mass, and variance of the

concentration field (see in Tables 5.3 and 5.4 the values of the error

measures io, 11x, 1 xx, defined in Table 5.1). However, solutions
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may exhibit some overdamping and loss of symmetry, the latter in the

form of a shift in the position of the peak concentration and of the

presence of a quickly damped wake of negative concentrations.

Observed errors were found to be controlled by two major

parameters: the number of time steps required to reach the final

computational time, N = T/At, and the dimensionless source length,

M = 6a /At. To discuss the influence of N and M, let us consider
ox

first the integral error measure $, defined in Table 5.1.

Fig. 5.1 and Table 5.3 show that * decreases when N decreases.

This means (as T is fixed) that the numerical solution improves as At

innreAQes_ The reason is that the error per time step results almost

entirely from the interpolation procedure required to find the

concentration at the feet of the characteristic lines (4.4.3), and for

high enough values of M, is nearly independent of the actual At

(see.Appendix). Therefore, the total error at time T should be roughly

proportional to the number of required interpolations, i.e., to N.

Assuming * w Nn, we computed a best-fit value for n, by linear

regression of the logarithms of available pairs of ( ,N). The result,

shown in Fig. 5.2a, suggests that is indeed nearly linear, being

0.85
proportional to N.. The power n = 0.85 should not be interpreted

too rigidly, as it may vary with T and with the shape and length of the

source, for instance. The deviation from strict linear proportionality

results from a slight reduction of the error per time step from one time

step to the next (Fig. 5.3), which is due to the presence in the

solution of progressively lower frequency harmonics, generated by

numerical dispersion.

Fig. 5.4 and Table 5.4 show, in turn, that decreases as M

increases (keeping fixed the shape of the source). This is related to
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the interpolation procedure required to find the concentration at the

feet of the characteristic lines: larger M corresponds to smoother

profiles, and therefore to smaller interpolation errors. Fig. 5.5a

suggests that a M-2.8, where, again the value of the power of M

should not be taken too rigidly. It is of interest to define a

limit M above which errors are "small"; although such limit will depend

on the actual problem and on the meaning of "small", we tentatively

suggest that R be taken in the range 7 to 9.

The dependence of on M and N cannot be extrapolated directly to

other error measures. However, striking similarities exist in the

behaviour of * and e, the measure of the damping of the peak concentra-

tion: we found e c N0.85 (Fig. 5.2b) and e = M2.6 (Fig. 5.5b),

0.85 -2.8
which are to be compared with * = N and = M .

No significant spurious oscillations are found in the numerical

solutions in spite of the infinite Peclet number that characterizes the

runs. However, a small region of significant negative concentrations

appears in the wake of the source profile. Taking the absolute value of

the normalized maximum negative concentration, $, as a measure, it is

clear that the error decreases when N decreases or M increases; Figs.

5.2c and 5.5c explore the possibility of a simple dependence of the type

$ c N , * = M q; the former relation, with p = 1.4, seems roughly

adequate, but the latter is clearly inadequate.

The position of the peak concentration (unlike the position of the

center of mass of the concentration profile) is not preserved by the

numerical solution. As measured by E, the shift error tends to

decrease with increasing M (Fig. 5.5). Small values of N tend to keep (

small, although no monotonic dependence was found (Fig. 5.2d).
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5.3 Convection and Diffusion in a Steady Uniform Flow

We will consider now the 1-D convection and diffusion of the same

source used in 5.2. The problem is governed by the equation

2
ac(xt) + u ac(x,t) = D a c(x,t) -< x < (5.5)

at ax ax 2

and the initial and boundary conditions Eqs. 5.2 and 5.3. The exact

solution is

-2
c(x,t) m r - (5.6)

/2i a 22
x x

with

2 2
a = a + 2Dt (5.7)

x ox

X = x + ut (5.8)

The numerical solution of this problem was found for the combinations of

parameters shown in Table 5.5. Results are shown in Tables 5.6 to 5.8,

and Figs. 5.6 to 5.11.

The analysis of the results indicates clearly that the presence of

diffusion tends to improve the numerical solutions. This is due to the

fact that diffusion increases progressively the effective source length,

making the required interpolations of concentration more accurate.

Fig. 5.7 shows the dependence of and e on Pe, for M = 7 and

N = 72 (note the logarithmic scale of the axis of Pe). Errors are

rather small for low Pe (up to 4, say), increase significantly in the

region of moderate to high Pe (4 < Pe < 100, say) and then tend
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assymptotically to finite values as Pe goes to infinity.

For pure-convection problems, both * and c decrease monotonically

with decreasing N (i.e., increasing At). This was explained in 5.2 as

a consequence of the leading errors per time step being associated with

interpolations of concentration, and being essentially independent of

At. For convection-diffusion problems, 4 and e have minima at some

optimal value of N, which increases as Pe'decreases (see Fig. 5.9, for

Pe = 10). This is explained by the fact that, above the optimal value

of N, errors associated with interpolations of concentrations are

dominant; however, below the optimal value, errors inherent to the time

discretizations of the original differential equation, which are roughly

proportional to At (i.e. to N1 ), become dominant. Clearly, for

diffusion dominant problems and e should tend to decrease

monotonically with increasing N (decreasing At), except for round-off

errors in the vicinity of At = 0. Thus, unlike Eulerian methods,

Eulerian-Lagrangian methods present the challenge of selecting an

optimal At (see further discussion in 7.2). However, they have the

strong computational advantage that the optimal At is quite large when

convection is dominant.

We have seen that, for pure-convection problems, c and c strongly

depend on M. Such dependence is still present in convection-diffusion

problems, but is weaker, as illustrated in Fig. 5.11. This results from

the fact that diffusion tends to spread the original source profile,

increasing progressively the effective M seen in each computational

time. Minimal admissible values of M are therefore Pe-dependent and may

be somewhat smaller than those suggested in 5.2.
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The dependence of other error measures on Pe, M and N is partially

shown in Tables 5.6 to 5.8. Numerical solutions are always virtually

exact with regard to mass preservation, position of center of mass and

variance of the concentration profiles. Negative concentrations do

appear in the wake of the concentration profile, but they loose

significance as Pe decreases, N decreases or M increases; furthermore,

decreasing Pe decreases the influence of N and M. The same qualitative

comments apply to the error in the position of the peak concentration.

5.4 Convection and Diffusion in a Sinusoidal Uniform Flow

We will consider again the problem defined by Eq. 5.5 and the

initial and boundary conditions of Eqs. 5.2 and 5.3. However, we will

now let u be time-dependent; specifically,

u(t) = max sin(---) (5.9)

where Umax denotes velocity amplitude, and P denotes period.

The exact solution is given by Eq. 5.6, where, now

t
x = x0 + f u(t)dt (5.10)

0

Numerical solutions were found for two combinations of parameters,

corresponding to pure-convection (Pe = w) and to convection-dominated

(Pe = 20) conditions (Table 5.9). Results are shown in Figs. 5.12 to

5.14 and Table 5.10.
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As in previous tests, numerical solutions are virtually exact as

regards total mass and variance of the concentration profile. The same

is not true for the position of the center of mass, though, which may

exhibit a small shift, of the order of 1% of the total travel distance.

The shifts are greatest at half periods (t = 0.5P, 1.5P, 2.5P, etc.) and

become insignificant at full periods (t = P, 2P, 3P, etc.).

For this test problem, detectable errors have local maxima at half

periods, and local minima at full periods; this suggests that the errors

depend on the flow direction. As such, errors would accumulate while

the flow is in a same direction and would partially cancel out as the

direction of the flow reverses. This periodic effect is to be

superimposed on a long-term error trend, which depends on the relative

importance of convection and diffusion: pure-convection leads to

increasing error with time, while even moderate amounts of diffusion

lead to decreasing error (Fig. 5.14).

As a consequence of the periodic error trend, symmetry tends to be

better preserved for pure-sinusoidal than for steady flows, as suggested

by visual analysis of Figs. 5.12 and 5.13 (as compared to Figs. 5.6d and

5.6f), and quantified by the values of the error measures * and shown

in Table 5.10 (as compared to Table 5.6).

5.5 Convection and Diffusion of a Continuous Source in a Steady Uniform

Flow

In previous sections, we have dealt with the transport of

instantaneous sources. We will consider now the case of a continuous

Gaussian source of strength, m, in a steady uniform flow. The exact
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solution is given by the time integral of solutions of the form of

Eq. 5.6, with m = mdt, i.e.,

t - - 2

c(x,t) = f m (x -2) }dt < x < Co (5.11)
o /2ra 2a

x x

2
with a and x given by Eqs. 5.7 and 5.8.

x

The time-integral on the right-hand side of Eq. 5.11 has no closed

form solution, but may be easily solved numerically, supplying an

adequate reference solution. Numerical solutions were obtained for the

conditions shown in Table 5.11, and results are summarized in Table 5.12

and Fig. 5.15.

As expected, the continuous source problem is easier to solve than

the corresponding instantaneous source problem, since the concentration

profile is now much wider and smoother.

Numerical solutions show very good agreement with the reference

ones, even for Pe as high as 200: mass is preserved in a virtually exact

way, the L-2 norm, , remains low, and no significant negative

concentrations appear. It can be seen (Fig. 5.15) that the numerical

solutions exhibit a slight overshoot at the front edge of the

concentration profile that increases with increasing Pe. However, for

Pe = 200, the overshoot is still less than 2% of the maximum

concentration.
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5.6 Diffusion in a Depth-Variable Channel

To test our approach for handling depth variations (described in

4.2), we will consider the problem of an instantaneous source in a

depth-variable channel. Assuming a uniform diffusion coefficient D, the

governing equation for the depth-averaged concentration in 1-D is

written

ac ac D 3 (h C ( 2-+ -- =- -- (h-) (5.12)
t x h 3x ax

with initial and boundary conditions given by Eqs. 5.2 and 5.3.

The above problem does not have a general analytical solution.

However, for the case of pure-diffusion (u = 0), and with

ax
h(x) = h e (5.13)

Eq. 5.12 reduces to

2
ac ac _ c

-aD = - D ac (5.14)
t ax ax2

As the apparent velocity, -aD, is uniform, an exact solution is

available in the form

[x - (x - aD t)]
-(,Y 2m exp{- 2a0c~x,y) /2i a 2 } t>0, -co x o o (5.15)

x x

2 2
with a = a + 2Dt.

x ox

This solution shows that, as may be expected, depth variation

introduces an effective displacement of the depth-averaged concentration

profile towards small depths, as a way to preserve the total mass, while

net diffusion progresses toward large depths. In the particular
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case of a exponential depth-variation (Eq. 5.13), this displacement

takes place at a constant rate (see Eq. 5.15), because the effective

velocity of displacement is uniform; however, this will not be true for

other depth variations, which will in general lead to non-uniform

velocities. Table 5.13 characterizes the numerical runs, and results

are shown in Fig. 5.16.

We have considered first the case of ho = 3 m, a = 0.0003 m-1 ,

and xO = 8000 m. The values of ho and a correspond to an average

slope over the computational domain (0 < x < 16000 m) of 2.25%, and an

average slope in the zone of primary interest for the transport of the

concentration profile (4000 < x < 12000 m) of 1.25%. These slopes are

in the usual range for most coastal zones. The numerical results (Fig.

5.16a) show an excellent agreement with the exact ones, in all regards.

We have then increased the value of a to 0.003 m-1 , to test the

performance of the method for extremely high slopes, which in coastal

zones may occur at local discontinuities (e.g., navigation channels and

marine faults). The resulting bottom profile has averaged slopes, over

the entire domain (0 < x < 16000 m) and in the region of primary

interest (2000 < x < 10000 m), respectively, of 1.3 x 10 19% and

1.3 x 10 % (either of which approximate an infinite slope).

The numerical solution (Fig. 5.16b) shows good agreement with the

exact one, except for a spatial shift. Because depth is a function of

space, this shift is quite significant in terms of mass content (20% of

the original mass was lost after 9216 seconds). The reason for the
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shift error lies in the fact that the piecewise linear representation of

the depth variation used in the computation is too rough to simulate the

actual exponential form, leading to an incorrect evaluation of the

velocity of displacement.

Two alternative approaches are available to reduce the errors:

reduce At, the characteristic length of the elements, or increase the

order of the interpolation functions for h, within each element.

Following the latter approach, we used quadratic interpolation for h,

and came up with the results shown in Fig. 5.16c, which are in excellent

agreement with the exact solution.

It should be emphasized that the mass loss detected when a, linear

interpolation was used for h, results from ill-representation of the

depth-variation, rather than from the order of the interpolation

functions. (Indeed, using linear interpolation with smaller At would

have solved the problem.)

These results have implications on the expected accuracy of

convective diffusion calculations in 2-D variable depth flows where the

flow field u(t), v(t), h(t) must be specified (e.g., by a numerical

circulation model). In cases where a mass-conserving flow field is

computed on the basis of linear interpolations of velocity and depths,

the transport model should not result in additional mass loss.

Conversely, if the flow field is not conservative, no conservative

solution of the 2-D analog of Eq. 5.12 can be expected regardless of the

order of the interpolation functions used for u, v and h.
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5.7 Advancing Front

We will consider now the problem defined by

2
ac(x,t) + u ac(x,t) D a c(x,t) 0 < x < L (5.16)

at ax 2
ax

subject to the initial and boundary conditions

c(x,t) = 0 t=0, 0 < x < L (5.17)

c(x,t) = 1 t>0, x=0 (5.18)

c(x,t) = 0 t>0, x=L (5.19)

The problem differ- from previous ones in that nn 10ad is present, the

concentration field being imposed by a constant mass flux, specified

through constant velocity and upstream concentration. However, it shows

some similarity with the continuous load problem (5.4), which can be

seen to result also 'in an advancing front of concentrations.

The analytical solution, valid for L + co, is (Neuman and Sorek,

1982):

c(xt) = erfc(----) + exp( ) erfc( x+ut (5.20)
2VDt 2/Dt

The numerical solution was found for the set of parameters defined in

Table 5.14. The results obtained demonstrate (Fig. 5.17) that the

method can handle satisfactorily advancing front problems, although some

overshoot will appear for very high Pe.

5.8 Convection in a Flow in Rigid-Body Rotation

We will consider, as a last test problem, the transport by

convection of a 2-D cosine-hill source in a flow of counterclockwise
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rigid body rotation. This problem differs from those treated in

previous sections in two major ways: (a) it is fully 2-D and (b) it

involves a non-uniform flow field; the use of a cosine-hill instead of a

Gaussian source is of minor importance and was dictated by expediency in

using available auxiliary computer codes.

The problem is defined by

ac ac ac-
t + u - + v - 0at x 3y

(5.21)

with initial and boundary conditions

0.5 [1 + cos 2r

0

c(x,y,t) = 0

In the above

t=0, r<MAX/2

t=0, r>MAZ/2

t>0, r + co

r = [(x-x ) 2+ (y-y0
) 1/2

u =-Y

v = Wx

where w is the angular frequency of rotation.

Numerical solutions were found for the set of parameters indicated

below:
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c(x,y,t) = (5.22)

(5.23)

(5.24)

(5.25)

(5.26)



L = W = 1400 m

At = 100 m

At = 30 s

M 3

x 700 m (5.27)
0

y 1100 m

W = rad/s3A t

Results are shown in Fig. 5.18. After 5 hours, the cosine-hill

distribution has neither collapsed nor distorted excessively, even

though a small number of elements (note that M = 3) was used to

discretize the source. Mass, variance, and position of center of mass

are well reproduced, and no wiggles are present (although negative

concentrations do show up). These results suggest the method's adequacy

in fully 2-D problems, with non-uniform flow fields.
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6. ON THE APPLICATION OF THE METHOD TO THE ANALYSIS OF POLLUTANT

TRANSPORT IN COASTAL WATERS

6.1 Introduction

The method described in Chapter 4, and tested in Chapter 5, is the

basis for a computer code, whose primary objective is to simulate

pollutant transport in shallow coastal waters.

The application of the code will be illustrated in this chapter

through the analysis of sludge dumping in Massachusetts Bay and a power

plant discharge in Narragansett Bay. Our objective is to demonstrate

the cost-effectiveness of the code and to identify limitations and

desirable improvements. At this point, we have not attempted to

seriously calibrate or verify the model against actual field data (other

than by using the same model coefficients and parameters which have been

used in previous models and justified on the basis of field

measurements). Therefore the results should not be used directly for

actual impact assessments.

The circulation model TEA1 (Westerink, et al., 1984), was used to

provide the necessary flow input to the transport model. TEA performs a

finite element, frequency-domain solution of the linearized form of the

Navier-Stokes equation, and should become the basis for a fully

non-linear code, under current development.

TEA is formulated on the basis of triangular elements, with linear

elementary expansions, thus dictating the same choice of expansions for

tAcronym for Tidal Embayment Analysis
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velocity and depth in the transport model. The transport model,

however, uses quadratic expansions for concentration. These are defined

over the same triangular elements by adding three additional (mid-side)

nodes.

6.2 Sludge Dumping in Massachusetts Bay

6.2.1 Statement of the Problem and Circulation Analysis

The Metropolitan District Commission of the Commonweath of

MAQsa-htI-ttQ hAQ heen -n"QieringP Q0erAl Aa trnat ive for disonnsa1 nf

the sludge produced at the Wastewater Treatment Plants of Deer Island

and Nut Island. Disposal in Massachusetts Bay is one such alternative.

Possible sites include an area just outside of Boston Harbor, where

sludge would be conveyed through a submerged discharge, and an area

further offshore where dumping would be from a barge. We will simulate

the transport of sludge plumes released at locations that roughly

correspond to these two possibilities (Site 1 for the submerged

discharge, and Site 2 for the barge dumping - see Fig. 6.1).

We will concentrate the analysis on long-term dispersion, trying to

assess general tendencies of the plume movement. In particular, will

the plume quickly leave the bay towards the ocean, or will it remain in

the bay, contributing to a progressive increase of the pollution level?

We will consider, for both sites, a single instantaneous sludge source,

released at the beginning of the ebb tide, which we will follow for the

next six tidal cycles. The source has a Gaussian form, characterized by

standard deviations ax, ay, and total mass MT.
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The above schematization is consistent with our objective. For a

given calculation, the source may be considered to result from near

field, short-term, dilution of sludge discharged continuously for a few

hours. This is particularly meaningful for Site 2 where, for instance,

dumping may be concentrated in periods of three to six hours, n tides

apart, with n a design parameter.

Clearly the values of ax, ay should reflect the near field

dilution. However, this dilution depends on the mode and actual

characteristics of disposal, which have not yet been defined.

Therefore, we selected ax, ay based on possible scenarios; for Site

2, we set ax = 8400 m and ay = 4200, assuming the barge to describe

a long zigzag trajectory along a main axis; for Site 1, we set ax =

ay = 2000 m, assuming either a highly efficient vertical diffuser, or

a barge describing a shorter, more circular, motion.

As input for the transport model, we have used circulation patterns

obtained with the finite element grid shown in Fig. 6.1. The grid is

composed of 360 triangular elements, and has 215 corner nodes (the only

ones used for circulation calculations), out of a total of 789 corner

plus mid-side nodes (all of which are used for the transport calcula-

tions). The maximum difference between the numbers of the nodes within

the same element is 19, when corner nodes only are considered, and 75,

when all nodes are considered. The circulation is driven both by a

steady coastal current and a tidal fluctuation. The tidal forcing is

specified by prescribing tidal elevations at the ocean nodes, and

driving the system at a frequency corresponding to a period of T = 12.4

hours; tidal elevations vary linearly from Cape Ann to Cape Cod and no
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phase shifts are applied. The steady coastal current is simulated by

imposing a linear elevation gradient along the ocean boundary, and

driving the system at zero frequency. A constant depth of 50 m is

assumed over the whole bay.

Calibration of the resulting circulation pattern was brief, and

based only on tidal elevation data, available at Boston, Cape Ann and

Cape Cod (Westerink, 1984). Therefore, although results (Figs. 6.2 and

6.3) are qualitatively reasonable, given available field data and

previous numerical studies, they cannot claim to accurately predict

actual circulation. As water circulation is the major transport

mechanism for the sludge plume, it is clear that results of the

transport model can only be interpreted as estimates.

Sludge from the Wastewater Treatment Plants of Deer Island and Nut

Island contains non-degradable components (e.g. heavy metals). As

non-degradability constitutes a worst case condition in terms of

pollution, a decay coefficient of K = 0 was used in our calculations.

Sludge does tend to settle, resulting in deposition on the bottom, and

consequent loss from the water column. This mechanism is not considered

in the present analysis, because it is felt to be secondary to

horizontal transport, and not enough information is available for its

correct parameterization; however, the model can easily accomodate this

mechanism as a sink term.

Isotropic dispersion coefficients were used for all calculations.

For Site 1, D, = Dy = 0 while for Site 2 two sets of values were

used: Dx = Dy = 30 m 2/s and Dx = Dy= 0. The 30 m 2/s is in

the upper range expected for Massachusetts Bay (as reported by

Christodoulou et al., 1974) based on measured sediment plumes.
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6.2.2 Results of the Transport Model

Results of the transport model are shown in Figs. 6.4 and 6.5.

They are expressed as isoconcentration lines, each of which is

associated with a percentage of the maximum concentration of the

Gaussian original source,

c M T (6.1)
max 2w ha a

x y

where MT is the total mass of sludge released and h is the flow depth.

These results suggest that Site 2 is clearly preferable to Site 1,

as regards sludge dilution. Considering transport by convection alone,

results from Fig. 6.4 indicate that, due to the small velocities

prevailing near Boston Harbor, the sludge plume released at Site 1

undergoes almost no net drift and very little dilution, even after six

tidal cycles. Conversely, the sludge plume released at Site 2 tends to

leave the Bay towards the ocean, in a slow net motion. Note, however,

that Cape Cod may trap part of the plume inside the Bay, as suggested by

Fig. 6.5c and 6.5d; further time of computation would be necessary to

check this possibility. Tidal excursion, although still relatively

small, is much more efficient in promoting dilution at Site 2 than it

was for Site 1.

Fig. 6.5 also illustrates the effect of dispersion, for Site 2.

As referred to in Chapter 2, dispersion should be interpreted as a bulk

representation of purely convective mechanisms not explicitly

represented in the description of the flow field. Although not

negligible, especially in the zone of high initial concentrations,
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dispersion is seen to be secondary as compared to convection by the part

of the flow field explicitly represented in the model; the latter

controls the global position of the plume, and promotes a considerable

part of its dilution.

The numerical runs that provided the above results were performed

on a VAX 1178 computer using a time step of one hour. Tidal circulation

calculations using TEA required 2 CPU minutes. Transport calculations

with pure convection took 56 CPU minutes, while runs with convection and

dispersion took 68 CPU minutes, to simulate 75 prototype hours. Total

mass of the sludge plume was preserved within 3% accuracy, and no

spurious oscillations were observed, even for pure convection. Negative

concentrations were found to be restricted, in pure-convection runs, to

values of up to 2% of Cmax, and were concentrated in a small region in

the wake of the net motion of the plume. For runs involving convection

and dispersion, no significant negative concentrations were observed.

6.3 Thermal Discharge from Brayton Point Generating Station

6.3.1 Background

The previous example of sludge dumping dealt with a passive

discharge; i.e., because of the small quantities of effluent, it could

be assumed that the discharge did not disturb the ambient circulation.

By contrast thermal plumes from electric generating stations which

employ once through cooling have significant flow and momentum which may

affect the ambient circulation for distance of up to a kilometer or more

from the point of discharge. Water temperatures may be affected at even

greater distances. A major difficulty arises in trying to model such
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discharge plumes numerically due to the large variation in scales.

These may range from the order of a meter or so which characterizes the

dimensions of the discharge channel to the order of tens of kilometers

which may characterize the dimensions of the receiving waterbody which

governs such far field processes as tidal flushing and surface heat loss.

One approach to address the dilemma of scales was introduced by

Kaufman and Adams (1981) who were interested primarily in the resolution

of induced velocities and temperatures in the so-called intermediate

field, i.e., that region extending from several hundred meters to a

kilometer or so from the point of discharge. Recognizing that

intermediate field behavior was influenced by near field processes

(occurring at smaller scales) and far field processes (occurring at

larger scales) and that all the regions could not be adequately resolved

simultaneously, a hybrid approach was employed. Using the 2-D finite

element circulation and dispersion models CAFE and DISPER, the

intermediate and far fields were simulated numerically, while near field

mixing was represented using inner boundary conditions along a transition

circle corresponding to the edge of the near field. The location of the

transition circle, volumetric dilution, lateral and vertical entrainment

rates and the layer depth of the far field were computed from analytical

formulae describing the near field mixing of surface discharges. In this

manner, the effect of the near field on the far field could be

realistically modeled.

Several calculations were presented for both the Millstone Point

Nuclear Station on Long Island Sound and the Brayton Point Generating

Station on Mt. Hope Bay (part of Narragansett Bay). While basically

successful in producing 2-D descriptions of intermediate and far field
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velocity and temperature, the approach was limited by excessive computer

times dictated by the small grid sizes and time steps required by the two

models. The present example corresponds to the three unit discharge from

the Brayton Point Generating Station and includes the same basic

schematizations as introduced previously.

6.3.2 Statement of the Problem and Circulation Analysis

The station is located in Somerset, Massachusetts at the northern

end of Mt. Hope Bay which connects with Narragansett Bay to the south.

Fig. 6.6 shows the finite element discretization of Mt. Hope Bay used

for the circulation analysis. The grid contains 684 triangular elements

containing 411 corner nodes.

Ambient circulation is driven primarily by tidal forcing at the six

southern nodes (entrance to Narragansett Bay) where tidal amplitudes of

2.95 ft were specified. In addition to the tide, an inflow of 435 cfs

from the Tauton River, to the northeast of the site, was simulated as a

constant normal flux. In order to correspond with previous calculations,

simulations were performed with zero wind speed; however, they could

easily be run with non-zero speeds.

Induced circulation was generated by prescribing fluxes along the

transition circle. See Fig. 6.7 for greater detail. Flux into the

domain represents the diluted flow from three generating units. The

combined condenser flow rate is 1380 cfs and the volumetric dilution,

accounting for a shallow water condition, is 5.1; hence the diluted

flow rate is 5.1 x 1380 = 7000 cfs which was distributed as a normal

flux over the central elements south of the actual discharge. See Fig.

6.7. The horizontal entrainment factor is 1.3 which gives rise to an

outflow of 1.3 x 1380 = 1790 cfs distributed along the outer elements of
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the transition circle. The intake flow rate of 1380 cfs was simulated

as a normal flux along the east side of the discharge peninsula (above

the transition circle).

The radius of the transition circle was 1000 ft and the depth of

the intermediate/far field plume was 11.5 ft. The difference between

flow discharged into the domain and withdrawn from the domain by

horizontal entrainment and the station intake is presumed to downwell

(and, subsequently to enter the near field via vertical entrainment).

The downwelling was simulated as a normal flux out of the domain through

elements along the southeastern edge of the domain. Further details on

the schematization may be found in Kaufman and Adams (1981).

Circulation patterns were produced by prescribing 12.4 hr tidal

forcing and steady state plant generation (near field flux conditions).

Figs. 6.8 to 6.10 depict circulation patterns for two phases of the

tide. As noted by Westerink et al (1984) the expected jet-like behavior

at the edge of the near field is not fully simulated by TEA. This is

due mainly to the fact that the current version of TEA does not include

the non-linear momentum terms needed to simulate jet behavior. TEA

drives the discharge only by elevation gradients which accounts for the

rapid spreading of the jet as best illustrated in Figs. 6.9 and 6.10.

6.3.3 Temperature Predictions

Temperature simulations with the transport model require 6-noded

elements. The grid of Fig. 6.6 contained an excessive number of nodes

so only the northern portion of the grid was used as depicted in Fig.

6.11. This smaller grid contains 468 elements and 1037 nodes with a

maximum difference in node number per element of 80.
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The dependent variable in the transport calculation was

depth-average excess temperature. Thus initial temperatures in the

domain correspond to a background temperature of zero and the average

diluted discharge temperature entering the domain is 2.9*F (condenser

temperature rise of 14.8 *F divided by volumetric dilution of 5.1). For

these calculations, surface heat exchange was neglected, i.e. K = 0, but

linearized heat exchange could easily be incorporated. Two different

sets of isotropic horizontal dispersion coefficients were used,

Dx = Dy = 10 m 2/s and Dx = Dy = 0.

Calculations were made for one tidal cycle. Fig. 6.12 shows excess

temperature contours for the two tidal phases corresponding to the

velocities plotted in Figs. 6.8-6.10.

The calculated contours show reasonable agreement, in terms of

shape and area, with measured contours for three units (Kaufman and

Adams, 1981, pp. 104-105). In general, the calculated plumes are

somewhat wider and shorter than corresponding measurements; however, as

discussed previously, this is associated with the high lateral spreading

of the circulation model. In agreement with the measurements, but in

contrast with the previous calculations based on CAFE and DISPER, the

present calculations are noteworthy in being able to simulate sharp

temperature gradients (fronts) at the plume edges and in not predicting

significant intake circulation at any stage of the tide.

Finally, the computed isotherms illustrate sensitivity to the

horizontal dispersion coefficients. The larger of the two sets of

coefficients (10 m2/s) is the same as used by Kaufman and Adams

(1981). However, their choice was dictated by the desire to avoid
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wiggles in the computed temperature field. The smaller value of zero

dispersion is associated with pure convection. Based on a formula

presented by Christodoulou et al (1976), Kaufman and Adams (1981)

calculate that the true "physical" dispersion coefficient varies

throughout the domain but is generally less than 1 m2 /s and thus

closer to the case of pure convection. Comparison of the two

calculations in Fig. 6.12 indicates considerable sensitivity reinforcing

the need for more accurate determination of dispersion coefficients.

The numerical runs that provided the above results were performed

on a VAX 1178 using a time step of 30 minutes. Tidal circulation

calculations required 4 CPU minutes. Transport runs with pure

convection took 34 CPU minutes, while runs with convection and

dispersion took 44 CPU minutes to simulate 12.4 prototype hours.
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7. CONCLUSIONS AND AREAS FOR FUTURE RESEARCH

7.1 Summary

We have formulated and tested an Eulerian-Lagrangian method that

solves the 2-D, unsteady transport equation by the combined use of the

finite element method and the method of characteristics.

The method shows very satisfactory performance. In comparison with

analytical solutions, the numerical model introduces little numerical

damping and diffusion (Droviding that adecuate spatial discretization is

ensured) and is free from spurious oscillations. Mass and phase tend to

be preserved almost exactly.

Illustrative prototype applications of the method to pollutant

transport in coastal (shallow) waters demonstrate great promise. Costs

can be kept moderate, by appropriate (and rather unrestricted) choice of

the time step. Moreover, the method is able to address problems in the

full range between pure diffusion and pure convection without spurious

oscillations or excessive numerical damping and diffusion.

The facts that little numerical diffusion is introduced by the

method, even for pure convection problems, and that no input of

artificial diffusion is required to avoid spurious oscillations,

constitute a significant achievement, which should lead to a renewed

interest in properly understanding and quantifying ocean dispersion.

Indeed dispersion can now be simulated for its own sake, instead of

being used as a stabilizer for the numerical solution (as has often been

the case in Eulerian methods).
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7.2 Areas of Future Research

Future work could be useful in the following areas:

(1) Optimal Time Step

The trade-off between accuracy and cost is rather different, in the

present method (and in other ELM), than in conventional Eulerian

methods.

Indeed, in Eulerian methods, both accuracy and cost increase

monotonically as the number of time steps, N, increases (i.e., as the

time step, At, decreases). Therefore, except for round-off errors,

better accuracy always implies an increased cost.

In the present method, however, the dependence of the accuracy on N

is a function of the relative importance of convection and diffusion, as

measured by Pe. Fig. 7.la illustrates qualitatively such dependence.

For diffusion problems, optimal accuracy is obtained as N goes to

infinity (i.e., At goes to zero) as is the case in Eulerian methods.

For convection problems, though, leading errors per time step are

essentially independent of the actual time step, and therefore, optimal

accuracy is obtained as N goes to 1 (i.e., as At goes to T). For

convection-diffusion problems, optimal accuracy is obtained for a value

of N that decreases (i.e., for a value of At that increases) as Pe

increases.

Costs associated with the solution of the convection equation are

almost independent of N (and thus At). Indeed, for a given problem and

spatial discretization, cost is essentially a funcion of the total

computational time, T, and of the accuracy desired for the backtracking
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of particles along the characteristic lines. Costs associated with

diffusion, however, vary linearly with N. Fig. 7.1b shows the

qualitative dependence of costs on N for diffusion, convection and

convection-diffusion problems; note that costs are independent of Pe,

except for the limiting cases Pe = 0 and Pe = w, where the program skips

over convection and diffusion calculations, respectively.

Clearly, the value of N (and thus, At) that gives maximum accuracy

for a given cost is much closer to the value that gives optimal accuracy

independent of cost for convection-dominated problems than it is for

diffusion-dominated problems.

The above discussion suggests that the cost-efficiency of the

method depends on an appropriate selection of the time step, which could

be based, for a given type of problem, on curves of the form shown in

Fig. 7.la. Also, it is suggested that cost-efficiency could be

increased further either (i) by defining, within a run, time steps that

vary in time, and lead to optimal accuracy for the instantaneous value

of Pe; or (ii) by defining different time steps for diffusion and for

convection, the former being a fraction of the latter. The diffusion

time step should approach the convection time step as Pe increases.

(2) Optimal Interpolation

Another issue deserving further analysis is the optimum order of

the expansions for concentration. Unlike most conventional

formulations, an increase of order (e.g., increasing from quadratic to

cubic expansions) may prove cost-effective due to the fact that, for

convection-dominated problems, leading errors come from pure

interpolation procedures.
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For any given order of expansions, it is highly recommended that

triangular and quadrilateral elements be used simultaneously.

Quadrangles are more accurate than triangles of comparable order, and

should be used over most of the domain; triangles should be used only in

zones where a fine representation of complex geometries is necessary (in

which case quadrangles become cumbersome).

(3) Validation Tests

Extensive validation of the transport model, based on field and/or

physical model data is deemed essential. Such validation is not

intended as a test for the numerical formulation, which can be assessed

more effectively by solution of problems with exact solution. Emphasis

should rather be placed on identification and, when possible, correction

of limitations of the formulation of the governing equations.

Issues to address include evaluation of the depth-averaged

assumption (both for stratified and unstratified flows), quantification

of dispersion coefficients (taking into account both the dispersive

characteristics of prototype and the finite element discretization of

the domain), and simulation of near field dilution (for discharges in

the full range between negligible to strong initial momentum).

(4) Coupling with Circulation Model

The need for a model that provides the transport model with

accurate input on circulation is easily understandable, given that

convection is often the major transport mechanism. When strong

non-linearities are not present in the prototype, TEA is appropriate,

showing good accuracy and very low cost. Furthermore TEA yields results
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as a continuous function of time which is helpful for accurate tracking

of particles along the characteristic lines.

However, when non-linear effects are important (e.g., near capes or

near discharges with significant momentum), a model solving the

non-linear Navier-Stokes equations is required. Such model is now under

parallel development at MIT, as an improvement of TEA, and should be

used in the validation effort for the transport model.

The present work suggests that TEA (or other circulation models to

be coupled with the transport model) might want to use quadratic

expansions for velocities and elevations- Such a change would improve

compatibility with regard to the transport model, allowing

cost-efficient grids to be established for computation of both

circulation and transport. Also, it should represent a significant

improvement for the circulation model alone, in regards to local mass

preservation and general accuracy.

Fluxes represent natural boundary conditions in the finite element

formulation of TEA; as a consequence, some leakage through land

boundaries is unavoidable. The importance of the leakage, in terms of

water and pollutant balances, should be assessed and corrective measures

introduced as necessary. Such measures may include (i) definition of a

flux correction procedure for land boundaries to apply prior to the

transport calculations, and (ii) specification of fluxes as essential

boundary conditions in the formulation of TEA.
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Fig. 6.7 Brayton Point. Detail of the finite element grid near the
discharge.
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Table 5.1 - Definition of error measures

Value

Symbol Description Definition Comments Exact

Solution

L-2 error norm *(t) cnu(x,y, - cex(x,y,) 2dxdy1/ 2 Integral measure of
normalized by m() '00 the overall error of 0

the total mass the numerical solution

Error in the c e (t) - cnu (t) Point measure of

C peak concentration E(t) max max the artifical damping
normalized by the c ex t of the numerical
exact peak concen- max solution (numerical

tration damping)

Absolute value nu t Point measure of

of the maximum maxneg the spurious oscilla-

negative concen- t ex t tions in the numerical

tration, normal- max solution (wiggles)

ized by the exact
peak concentration

Error in the nu t Point measure of

position of the ((t) B 1 -max the phase shift 0
peak concentration ex introduced in the

max (t) numerical solution

0th moment of the 1 Integral measure

i concentration 0 (t) - cnu (x,y,t) dxdy of mass preservation 1

profile, normal-
ized by the exact
value

T



Table 5.1 - cont.

Value
for

Symbol Description Definition Comments Exact
Solution

xc nu(x,y,t) dxdy

y Error in the 1st i (t) e 1 - Integral measures of
moments of the f xcx(XY,t) dxdy the phase shifts
concentration S introduced in the 0
profile, normal- nu numerical solution
ized by their yc (x,yt) dxdy
exact values 

-

(t) - _

y ( f ycex(x,y,t) dxdy

- nu 2 nit

f[x - x] c (xy,t) dxdy

P Centered 2nd xx(t) ex 2 ex Integral measure of
moments of the f[x - E (x) c (xy,t) dxdy the artifical spread-
concentration S , ing of the numerical
profile, nu 2 nu solution (numerical
normalized by fly - E (y)] c (x,y,t) dxdy spreading)
the exact value y )- W S1 ex, 2 ex. (x__________

[y - y)2 c (xyt) dxdy

1-3



Table 5.2 - Convection in a steady uniform flow.

Run
1 2 3 4 5 6 7

Parampter

u (m/s) 0.5

mrjSs'm (m) 2 a

12 (m2) 2.17778xl105 1 . II I11x 10 5 3.6x 10 5 7.5111 Ix 10 5

x (m) 3000 5000

I. (M) 16000

W (M) 800

M 7 7 7 7 5 9 13

49 (M) 400

At (s) 128 256 512 1024 128

=0.16 0.32 0.64 1.28 0.16

-UAt

IjJ

Characteristics of the runs



Table 5.3 - Convection in a steady uniform flow. Error measures as a function

of N (t - T = 9216 s; M = 7)

Run N 0 e

-4
1 72 1.399x10 0.1287 0.0384 -0.0178 0.99998 0.00000 1.00002

-4
2 36 0.773x10 0.0762 0.0178 0.0074 1.00002 0.00000 1.00000

-4
3 18 0.369x10 0.0377 0.0049 -0.0011 0.99999 0.00000 0.99994

4 9 0.250x10 0.0227 0.0022 0.0017 0.99997 0.00000 1.00000'N)

4:-



Table 5.4 - Convection in a steady uniform flow. Error measures as a function of
M (t T - 9216 s; N = 72).

Pun N C 1x 1e

-4
5 5 3.027x10 0.2505 0.0647 0.0210 1.00003 0.00000 0.99991

-4
1 7 1.399x10 0.1287 0.0384 0.0178 0.99998 0.00000 1.00002

-4
6 9 0.695x10 0.0671 0.0184 0.0145 0.99998 0.00000 0.99997

-4
7 13 0.218x10 0.0219 0.0021 0.0103 0.99998 0.00000 1.00001

%-n
I



Table 5.5 - Convection and diffusion in a steady uniform flow.
Characteristics of the runs.

Run
8 9 10 11 12 13 14 15 16 17 18

Parameter

u (m/s) 0.5

D (m2/s) 100 50 20 10 5 20

'massf',m (m) ~o

2 2 2.1778x 10 5  1.11111x 105 3.60000x 5 7.5111Ix 105

x (m) 3000 6000

L (m) 16000

W (i) 800

H 7 5 9 13

At Cm) 400

At (s) 128 256 512 1024 128

At
Cu -a-0.16 0.32 0.64 1.28 0.16

Pe 2 4 10 20 40 10

0'%



Table 5.6 - Convection and diffusion in a steady uniform flow. Error measures
as a function of Pe (t T = 9216 s; M = 7; N = 72)

Run Pe C e 0 1, x I

-5
8 2 0.208x10 -0.0026 0.0000 0.0017 0.99997 0.00001 0.99993

-5
9 4 0.565x10 0.0020 0.0000 0.0017 1.00003 0.00000 1.00003

-5
10 10 2.320x10 0.0203 0.0016 0.0092 0.99997 0.00000 0.99999

-5
11 20 4.954x10 0.0459 0.0107 0.0126 0.99997 0.00000 1.00000

-5
12 40 7.960x10 0.0742 0.0250 0.0150 1.00002 0.00000 1.00001

-5
1 13.990x10 0.1287 0.0384 0.0178 0.99998 0.00000 1.00002

I



Table 5.7 - Convection and diffusion in a steady uniform flow. Error measures

as a function of N (t T = 9216 s; M = 7; Pe 10).

Run N 0' II Ij x

-5
10 72 2.32x10 0.0203 0.00160 0.0092 0.99997 0.00000 0.99999

-5
13 36 1.42x10 0.0103 0.00026 0.0049 1.00003 0.00000 0.99999

-5
14 18 0.62x10 -0.0025 0.00000 -0.0090 0.99999 0.00000 1.00000

15 9 0.77x10 -0.0020 0.00000 0.0000 0.99998 0.00000 0.99999
"|410 1 A

CO



Table 5.8 - Convection and diffusion in a steady uniform flow. Error measures
as a function of M (t - T = 9216 s; N = 72, Pe = 10).

Run M E 0 x XX

-5
16 5 3.27x10 0.0290 0.00449 0.01060 1.00004 0.00000 0.99997

-5
10 7 2.32x10 0.0203 0.00160 0.00920 0.99997 0.00000 0.99999

-5
17 9 1.59x10 0.0135 0.00025 0.00777 0.99998 0.00000 1.00001

-5 -7
18 13 0.75x10 0.0061 3.05x10 0.00535 1.00002 0.00000 1.00001



Table 5.9 - Convection and diffusion in a sinusoidal flow.
Characteristics of the runs.

0

Parameter U P D M x L W M At At Cu Pe
max m ox o max max

Run (m/s) (S) (m 2 (in) () ( (i) () (m) (m) (s)

19 10 20
5

-....-.. 0.5 9216 .- 2 ao 2.17778x 10 8000 16000 800 7 400 128 0.16
ox

20 0



Table 5.10 - Convection and diffusion in a sinusoidal flow.
Error measures as a function of time.
(M = 7; N = 288; T = 36866 s)

Run t t/P XE X y
(sec)

19 9216 1.0 2.04x10-5 0.0306 0.0007 0.0009 1.00002 0.00000 1.00002

(Pe=20) 13824 1.5 2.16x10-5 0.0313 0.0016 0.0058 1.00001 0.00021 1.00000

18432 2.0 1.76x10-5 0.0292 0.0006 0.0003 1.00000 0.00000 1.00002

27648 3.0 1.45x10-5 0.0259 0.0004 0.0001 1.00002 0.00000 1.00003

36864 4.0 1.21x10-5 0.0229 0.0002 0.0001 1.00000 0.00000 0.99999

20 4608 0.5 6.23x 10-5 0.0509 0.0114 0.0083 0.99999 0.00190 0.99998

(Pe=**) 9216 1.0 7.83x10-5 0.0978 0.0034 0.0034 1.00001 0.00001 1.00004

18432 2.0 12.63x10-5 0.1521 0.0014 0.0014 0.99999 0.00000 0.99996

27648 3.0 16.14x10-5 0.1908 0.0009 0.0009 1.00001 0.00000 0.99996
-5

36864. 4.0 18.90x10 0.2207 0.0006 0.0006 1.00006 0.00000 1.00010



Table 5.11 - Convection and diffusion of a continuous source in a steady
uniform flow. Characteristics of the runs.

Parameter U D 2 x L W M At At Cu Pe
ox 0

Run (m/S) (2/s) (m/s) (m 2 (m) (m) (m) (m) (S)

21 20 10

/2,~ a 5
22 0.5 5 2.17778x10 3000 16000 800 7 400 128 0.16 40ox

At

23 1200
f~3



Table 5.12 - Convection and diffusion of a continuous source in a steady uniform flow.
Error measures as a function of Pe (t T = 9216 s; M = 7, N = 72).

'J3

Run Pe 110

21 10 2.64x10-6 0.99999 0.0000

22 40 6.73x10-6 0.99996 0.0000

23 200 9.62x 10-6 0.99995 0.0001



Table 5.13 - Diffusion in a depth-variable steady flow.
Characteristics of the runs.

t I .Ii
mass' 2 Interpolat ion

Parameter D h a * a x L W M At At Cu Pe fntiolstfor
0 m ox 0 functions for

Run (2/s) (m) (m) (in) (in2) I(() (in) (i) (i) (s) depth, Ii

24 0.0003 0.12 linear

25 100 3 0.003 2.17778x 105 8000 16000 800 7 400 128 0.16 1.2 linear

26 0.003 1.2 quadratic
'JJ



Table 5.14 - Advancing front. Characteristics of the runs.

Run u D L W At At Cu Pe

(M/S) (m 2/s) (m) (M) (m) (S)

27 0.05 0.011 2.75 1.10 0.55 1 0.09 2.5

28 0.10 0.44x10-3 2.75 0.22 0.11 1 0.91 25

29 0.15 0.22x10-3 2.75 0.22 0.11 1 1.36 75

30 104 1 1.00 0.08 0.04 10-5 2.5 400

U,
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APPENDIX

FORMAL ACCURACY ANALYSIS OF THE SOLUTION OF CONVECTION

IN THE CASE OF A HARMONIC WAVE

A.1 Introduction

We consider the problem of a 1-D harmonic wave (e.g., representing

concentrations) being convected by a uniform flow, between times n and

n+l, a time step, At, apart.

The exact solution is the displacement, following the flow, of the

undisturbed wave. Formal comparison of this with the numerical solution

obtained by the method described in 4.4 enables the analysis of the

accuracy of the method.

As discussed in the text, the method includes the backtracking of

particles along characterisitc lines, and the interpolation for

concentrations at the foot of each characteristic line. The present

analysis assumes that the backtracking is performed exactly; therefore,

observed errors result from the interpolation procedure alone.

Two 1-D spatial discretization schemes will be considered, one

based on 2-noded elements (over which linear expansions apply), and the

other on 3-noded elements (over which quadratic expansions apply).

A.2 Linear Expansion

Consider the linear spatial discretization scheme illustrated in

Fig. A.l. At time n+l, the value at node j of a harmonic wave of unit
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amplitude may be expressed as:

c . = exp { i[Aj - *n]} (A.1)
j,n+l n+l

where X is a dimensionless wave number, defined as X = 27rA2/L; n+1 is

1 tn+l
a phase shift, defined as n+1 = *o + L f udt; At is the element

0

length (constant over the domain); and L is the wavelength.

As convection alone is being considered, the exact value of the

harmonic at (j,n+l) is equal to the value of the same harmonic at

(2,n) where I is the position, at time n, of the particle that is at

node j, at time n+l. Therefore

c. = c = exp {i[Xt - ] (A.2)
j,n+l Z,nn

or, as Z = j-a = K-a,

c . = exp(-iXa) exp{ i(X K - )} (A.3)
j ,n+l

where a is the decimal part of the dimensionless displacement, 6, of a

particle between instants n and n+l (Fig A.1); note that, in the case of

a steady flow, a coincides with the Courant number, Cu = uAt/At.

Now, if the harmonic wave is known only at time n, and we use the

method described in 54.4 to compute values at time n+l, we obtain

(because linear expansions apply over each element)

c nu = cnu (1-a) c + a c (A.4)
j,n+ Xn K,n K-l,n

Eq. (A.4) may be expanded using the definition of cK,n and

cK-l,n- We obtain, after rearrangement
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c. = {(1-a) + a exp(-iX)} exp{i(XK - n )} (A.5)
j ,n+1n

Comparison of Eqs. A.3 and A.5 shows that the interpolation required

to find cnu introduces errors in both the amplitude and the phase of
j~ln+l

the wave. Normalized measures of such errors may be defined as

Ic'n+ - cj,n+1 (A.6)

ac j ,n + 1 l

arg cjn+1} - arg {cj+
e = j n+X jn+1 (A.7)
phase X

Introducing Eqs. A.3 and A.5 into the above equations, expanding

and rearranging, we obtain

2 2 1/2
e = {[1-a(1-cosX)] + (asinX) } - 1 (A.8)
amp

1 -asinX
= - Iarctan[ I + Xa} (A.9)

phase X 1-a(1-cosX)

The amplitude and phase errors, given by Eqs. A.8 and A.9 are shown

in Fig. A.2 as a function of the dimensionless wave length M = L/A=

2/r/X, for different values of a.

A.3 Quadratic Expansion

Consider now the quadratic discretization illustrated in Fig. A.3.

Following the same approach as in A.2, we find
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C p= {[asin(2X) + bsinX] 2 + [acos(2X) + bcosX + d] 2 - 1 (A.10)
amp } -1 (.O

C1 tF asin(2X) + bsinX
phase x acos(2X) + bcosX + d

with

a = (2a-1)/2d (A.12)

b = 4X(1-a) (A.13)

c = (1-2a)(1-a) (A.14)

The amplitude and phase errors given by Eqs. A.10 and A.11 are

shown in Fig. A.4, as a function of the dimensionless wavelength, M, for

different values of a.
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