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ABSTRACT

The water distribution network design problem is to find the
optimal set of investments in pipelines that are needed to satisfy water
requirements. The strategy of this study has been first to define an
optimality criterion for ranking alternative investment opportunities
and then to formulate a mathematical programming model for solving the
optimal investment problem. The least cost optimality criterion leads
to a non-linear mathematical programming problem for which no computa-
tional methods exist that guarantee an optimal solution. Other existing
techniques that yield '"good" solutions are computationally inefficient.

The strategy taken in this study has been to modify the least

-cost problem so that linear programming could be applied to achieve a
solution to the modified form of the problem. Variables were transformed
to linearize the non-linear terms in the pipe flow formula. In this
way, the non-linear flow phenomenon is represented exactly. The resulting
linear programming model may be used to determine the pipe diameters of
pipes that must be added to the system to satisfy given sets of water
requirements that are expected to occur at a given future time.

Water requirements increase with increases in population and
economic productivity. To meet these growing requirements, excess capacity
must be provided. The problem of deciding how far into the future the
system should be planned is known as a capacity expansion problem. The
capacity expansion problem has been formulated as a dynamic programming

problem and applied to the water distfibution network expansion problem.
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Chapter 1

Introduction

The estimated annual investment for water distribution systems
in the United States is $1.5 billion or $7.50 per person (ASCE, 1969).(1)
The most costly parts of most water supply systems are the distribution
facilities, which include pipe networks as well as the pumping and
storage components. These complex systems must be designed to satisfy
a multitude of criteria imposed by many different water users, ranging

from lawn sprinkling and fire fighting to the various industrial and

domestic needs.

To design facilities to serve these diverse needs at minimum
cost is a challenging goal. It is evident that the economically
efficient allocation of resources to water distribution facilities is
unlikely without systematic, objective, and computationally efficient

design methodologies.

A complete consideration of a water distribution system design
should consist of the following items: (i) diameters and head losses
for all pipe elements (ii) multiple sources of supply (iii) pumping
stations (iv) elevated and ground storage reservoirs. An adequate
design, while giving least cost, should meet possible different demand
patterns which represent different times of day, various fire flow re-

quirements and special industrial uses.

Summary

A principal objective is to present a Linear Programming

Formulation of the optimal network design problem. Since this problem
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may be shown to involve a concave nonlinear minimum cost objective function
subject to linear constraints, many local optima exist making the global
optimum difficult to find. For practical purposes, approximate formu-
latiéns which eliminate the concave non-linearities should be useful.

One major benefit is the insight into the design problem which may be
gained. Another benefit is that ''good" solutions may be found although
they are not likely to be optimum according to the original objective
function. Important information may also be supplied by the dual solu-
tion indicating the binding constraints on the system and giving the

marginal costs associated with increasing the constraint levels.

In the next chapter, the linear programming model is presented.
Since water systems are usually constructed to supply growing water
demands, the time sequence of possible capacity expansions to meet growing
demands is considered in Chapter 3 in the context of a Dynamic Programming
application. This Dynamic Programming-Capacity Expansion model treats
the system as a "lumped" system. In Chapter 4 the Linear Programming
model is used as a suboptimization model to produce designs under various
conditions specified by the Dynamic Programming Model. This represents
an initial attempt to state the network design problem as a capacity
expansion problem. Much more work is needed to test the limitations of
the joint DP-LP model. Additional work also is needed to study more

completely the properties of the Linear Programming model.

Literature Review

A brief review of the work of most of the previous investigations

. (2)

on water distribution system analysis and design has been given by Pitchai

in 1966, so the objective here is to extend that review to include inves-
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tigations being reported since then. The following review of recent
literature has attempted to identify contributions both to analysis and
design aspects. Analysis and design are essentially different approaches.
In the former the focus is on understanding or evaluating; whereas, in

the latter, the focus is on making decisions.

In a relative narrow sense, we may call a distribution system
a design problem if the pipe diameters are unknown and are to be deter-
mined. In such cases, there usually exist a number of solutions which
satisfy the specified design criteria. The engineering practice is that

the solution which gives the least cost (or maximal benefit) is chosen.

If the set of pipe diameters 1s given, then the distribution
problem becomes an analysis problem. The analysis objective is to de-
termine for each node, the pressure, and to determine for each pipe, the
flow magnitude and direction. These flow conditions must satisfy the

following physical laws of the network:

(1) the algebraic sum of head loss around each loop must be zero;
(11) flow into each node must equal flow out of the node; and
(111) the proper relation between head loss and discharge must

be maintained for each pipe.

It has been demonstrated by Pitchal that there existsan unique solution

to the analysis problem.

Contributions to Water Distribution System Analysis

The preponderance of past work on distribution system has
concentrated upon solving the non-linear equations that describe their
hydraulic behavior. The pipe diameters are given, and the problem is

to solve for unknowns which in general may be pressure or consumption
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at the nodes or the resistance of the pipe. It can be shown that, for

a specific network with known consumptions, the problem is exactly
determined, i.e., there are as many equations as the unknowns. Because
of the nonlinearity of the equations, the solution is achieved by
successive iterations using a suitable scheme which achieves convergence.
If the consumptions at the nodes or the resistances of the pipes are

not all known, other information should be adequately supplied so that
the problem is reduced to an exactly determined problem. In general,

the methods of system analysis employed would depend upon the types of

unknowns existing in the distribution system.

The most recent and significant work on water distribution
system analysis was presented by Shamir and Howard(3) in 1968. They
applied the Newton-Raphson method to balance networks under very general
steady-state flow conditions. The Newton-Raphson technique is a root-
finding process which finds new improvements or corrections to the values
of the unknowns in each iteration. The improvements or corrections are
computed from the linearlized Taylor Series expansion, evaluated at the
present state of the solution. The network problem considered by Shaﬁir
and Howard may contain pipes, pumps, valves, etc., and unknowns may be
combinations of pressures, consumptions or element resistances. Govern-
ing equations used are the continuity equation at each node, so there
are N equations assuming there are N nodes. One can then solve for
N unknowns.

The Newton-Raphson method deals with the whole network at the
same time so that corrections are made simultaneously in order to account

for the joint interaction of all corrections. This method takes into
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account the effect of changing any one variable (pressure, consumption
or resistance) on the entire network. This latent sensitivity information
mades the Newton-Raphson method particularly useful for design purposes

also.

Like any iteration procedure to solve nonlinear equations,
the Newton-Raphson method may encounter convergence problems. In this
case, the mathematical criteria for convergence for all possible combina-
tions of unknowns have not been established. Therefore, it is not now
possible to test, a priori, for convergence of hydraulic network analysis
by the Newton-Raphson method. It has been observed by de Neufville

(4)

et al. (1969), that '"divergence may occur if a particular pipe in a

'

network is especially smaller than the others." As this particular small

pipe was artificially made larger, the divergence problem was eliminated.
It has been the experience of some investigators (Warga,(S) 1954; Pitchai,(z)

1966) that a good starting guess will usually lead to a solution.

Probably the method most commonly used for balancing a hydraulic
network is the Hardy Cross method.' The method is well suited for solution
by hand and is easily adapted for machine computation. The method can
be approached either by balancing flows or by balancing pressures. Both
the Hardy Cross and Newton-Raphson methods solve the nonlinear equations
by iterations. The Hardy Cross performs iterations on separate equations
one at a time, which requires small amounts of computer storage but may
need excessive computation time for a large network. Also, the Hardy
Cross method may not converge when a network contains some large pipe of
short length and relatively small flow (Dillingham,(6) 1967). Some pro-

cedures, such as using linear formula between discharge and head loss
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when the head loss is less than 1 foot, have been developed to handle
this difficulty. But still, there is no guarantee of convergence. In
addition, the Hardy Cross method does not readily provide a sensitivity

analysis.

Contributions to Water Distribution System Design

There never has been a comprehensive study to develop methods
for optimal design of pipe network, pumping and storage facilities.
Efforts have been devoted either to the optimal design techniques of
pipe network and pumping facilities (Pitchai,(l) 1966; Jacoby,(7) 1968) or
to economical trade-offs between the booster pumping with ground storage
reservoir and elevated storage (McPherson,(g) 1966). Since in the proposed
method of approach, storage costs are not considered, review of the
literature will be concentrated on work related to pipe network design,

including pumping facilities.

A few of the many alternate methods of formulating a minimum
cost design objective have been explored. A notable study was completed
by Pitchai(l). He formulated the design problem as a non-linear
integer programming problem which he solved with a random search technique.
Cost of pipes and annual cost of energy used are included in the objective

function to be minimized.* Constraints may be imposed, such as: minimum

permissible pipe sizes; maximum permissible head loss along a specified

*Not all energy costs appear to have been accounted for since the energy
costs are taken as the sum of all of the energy losses in the network.
This omits accounting for the energy released to the consumer as potential
energy associated with the pressures at the demand nodes.
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path; and operating pressures to coincide with characteristic curves
of pumps. The constraint on maximum permissible head loss along a speci-

fied path was used to augment the objective function as a penalty function.

A Newton-Raphson method was used for balancing the network.
The optimum was sought by a sequential, random sampling scheme. The
processes began with an initial guess of design diameters which served
as a so-called central design. That design was subsequently analyzed
with the Newton-Raphson method. By the defined cost function, the system
cost for that particular design was computed. The next step was to
generate randomly a set of designs about the central design. Then, the
corresponding design costs were determined, and the best design among
them was selected to serve as the central design of next random cast.
The results given show that the system cost decreases with the number of
casts, but there is no proof that the global optimum is found. Large
amounts of computer time are required. For example, the computer time
required for a design with one demand pattern for a 25-loop network with
only a single source of supply and no other pumps or reservoir was 8
minutes on an IBM 7094 computer. To study marginal sensitivity of design

to the constraints, the constraints must be changed and new designs run.

A design with multiple demand patterns was also considered.
The design procedures follow nearly the same way as when there is only
one demand pattern; except that for any set of design pipes, there will
be a system cost corresponding to each demand pattern. The largest one
among the different demand patterns is chosen as the representative
system cost. Moreover, the minimum cost among the alternate designs

is taken to be the total system cost. The design from this minimax
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approach appears to be very sensitive to the penalty assigned to the
violation of maximum allowable head loss along specified paths. If
the penalty imposed is very large, i.e., no violation of maxiﬁum allowable
head loss is allowed, one can anticipated that many trial and error pro-
cesses are required to get a set of feasible design diameters. No

discussion on this matter was given.

(7)

The second recent study (Jacoby, 1968) is very similar to the
previous study by Pitchai. One difference is that constraints were
stated as inequalities by Jacoby, in contrast to Pitchai's equality
constraints. The cost function and the constraints were combined to

"merit function' from which Jacoby sought the optimum by a gradient-

form a
random search iteration method. After the continuous solutions were
obtained, they were rounded to the nearest integer solutions. If these
round-off results were not feasible, the Hardy Cross method was applied
to eliminate this infeasibility. Because the objective function has many
local optima, the technique does not assure that the global optimum will
be found. The author of the method advises that 'caution should be used
to avoid local minima." To study sensitivity of the design to variation
in either parameters or constraints requifes changing these and again
running the program. In the paper, information on the computational

efficiency is not presented and an important question of handling multiple

loadings is not considered.

One common characteristic of these two existing optimal design
methodologies is that they use iterative search techniques to seek the
optimum designs. A major disadvantage of these is the relatively high

cost of the required computations compared to possible costs of other
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more direct methods and the method to be proposed here. Moreover, in
the two methods proposed above, there is no assurance that better designs

do not exist than the designs which are considered as optimum.

In another recent study, Karmeli et al. (1968)69) studied a
simple branched network, i.e., a network without loops, with only one source
of supply, and fomulated the design problem as a linear programming prob-
lem. Because the network is branched, the discharge that each pipe will
carry can be computed. The diameters taken into account for each pipe are
determined in advance. As a result, the friction loss per unit length
for each diameter to be considered can be computed. The decision variables
are the piezometric head at the sources and the length of each predeter-
mined diameter to be allocated to each branch of the tree-shaped network.
The constraints are the total length of each pipe and the minimum allow-
able piezometric head at each node. The method does not allow for multiple
demand patterns. v

(10) who used a random

One other study was made by Smith (1966),
search-steepest descent method to begin to explore the response surface,
followed by a linear programming procedure to guide the solution toward
an optimum. The constraints were specified as linear equalities. The
objective function was similar to that used by Pitchai and appears to

have the same discrepancy with respect to energy costs. Multiple demand

patterns were also accounted for.
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Chapter 2

LINEAR PROGRAMMING PIPE NETWORK OPTIMIZATION

Introduction

It appears possible to formulate the minimum cost network
design problem as a linear programming problem. This is an attractive
approach due to its computational efficiency and because its solution
promises to give valuable insights to the sensitivity analysis of demands
to the total system cost. In this chapter, the linear programming
problem will first be formulated for design of a new distribution system
for a single demand pattern with possible multiple sources of supply.

To this model, the capability will be added for designing new additions
to an existing pipe network system. Finally, additional generalization
to take care of the multiple demand pattern will be considered. Problems
involving multiple demand patterns have been formulated, but no compu-

tational experience exists for multiple demand patterns at this time.

The functions of the LP computer programs will subsequently
be described, and the results of an example using the LP program will be
given. Assumptions will be stated when they are made. Listings of all
computer programs are given in the appendix; it should be understood
these are experimental programs which have evolved out of this research

effort.

As this model is presented, it will clearly be shown that the
network cost minimization problem is essentially a non-linear problem.

By means of variable transformations, all constraints may be linearized,
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but the objective function remains non-linear. This could be dealt with
conveniently if the non-linear cost functions were convex. Unfortunately,
this function is concave so it becomes extremely difficult to find the
global optimum since many local optima may be shown to exist in this
case. No technique ever applied to the water distribution system opti-
mization problem can be claimed to have '"solved'" this problem in the
sense that the global optimum is given with certainty. For example,

(1

Pitchai and Jacoby(7) both used random search techniques which

do not necessarily lead to the global optimum.

Since there is no assurance the original non-linear problem
is solved by any existing technique, it seems that other formulations
of the problem may also have practical value. In many systems problems
other than water distribution systems, it has often been worthwhile to
create a linear version of the problem, even when the problem is not
basically linear, in order to gain the insights that linear formulations
are known to give. Thus, one of the important merits of a linear-pro-
gramming-water-distribution-model is an improved understanding of water
distribution design which may result from these insights. The value
of these kinds of insights was appreciated by the noted mathematician,
Hammingflj) who prefaced his famous book on numerical
analysis with the statement, 'The purpose of computing is insight, not
numbers.'" This might also be restated in terms of systems analysis or
mathematical programming. Hopefully, the numerical results from linear

programming models of water distribution systems may also be useful for

many applications.
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Linear Programming Model for One Demand Pattern

Constraints for Each Node. The formulation follows from the

observation that, at each node in the network the relation

P .
K, .d.. < -Q, =l,...,m 2-1
§ 1345 < - j ; (2-1)

must be satisfied. The index j indentifies a specific node and i identifies
a neighboring node; dij is the pipe diameter between nodes i and j; m is

the total number of nodes; p is a constant whose value is approximately

2.5, and Qj is the demand or supply rate at node j. The sign convention

is that flows into the nodes are considered negative and flows out, as
positive. The left hand side of Eq. 2-1 represents the algebraic sum

of flows in pipes connecting to node j. Kij is a measure of the potential
for conveying water between the nodes i and j and can be expressed

functionally as

where the sign of Kij is the same as that of Hij’ the head loss between
the nodes i and j. The terms f and Lij represent the friction coefficient
and pipe length, respectively. The Hazen-Williams formula, which is
commonly used for water distribution studies, was adopted to relate the

pipe discharge and head loss. Accordingly,
p=2.63
and

H
- -4 13.0.54 _
Kij 6.2 x 10 Cor (——lLij) (2-3)

This gives discharge in cubic feet per second if dijis in inches and

H.,., L,, are in feet.
1] 1]
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For a given pattern of demands imposed on the system, there
usually is a minimum pressure at each node that must be maintained.
This depends on the topographic elevations of the distribution system
service area and the residual energy that is required by codes imposed
by fire insurance underwriters or by requirements for normal operation
purposes. Determining these pressures requires sound engineering judg-
ment and must be done as a step in the design process. The actual
operating pressures will generally exceed these minimum pressures.
Designing the system to give adequate operating pressures should consider

the economics of allocating pressure losses throughout the system.

In this LP model, the operating pressure at each node must be
specified in advance of computing the optimum pipe diameters. This must
be done so that the quantity Hij is defined and may be used to compute

the magnitudes of the elements in the LP coefficient matrix. It follows,

therefore, that the LP model does not explicitly yield the optimum operating

pressures throughout the system and that the optimum diameters which
are given are related to the specific pressure pattern associated with

the set of values of Hij'

Analysis of the sensitivity of the cost of water distribution
systems to various parameters shows that cost is relatively insensitive
to pressure loss so that some variation from the true optimal operating
pressure should be acceptable. Moreover, near the optimal setting of
any unconstrained decision variable, small changes may be made in the
decision variables without affecting total costs. Operating pressures
are often constrained by required pressures at the extremities and are

essentially unconstrained in the interior of the system since the total
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head loss along a given path is fixed. To see if a given head loss

distribution along different paths is near optimal, the LP model can be
used successively for different distributions. If small changes in the

pressure pattern have little effect on cost, the pattern is near optimal.

The economics of allocating pressure losses is discussed in
an appendix. It provides an algorithm for allocating the pressure loss
along a pipeline, given the total pressure losses between the source
and the extremities. The total cost of pipelines alone is minimized,
and the algorithm is applicable only for a network which does not have
a loop path. The pressure head at each node may be determined by the
algorithm and the whole network system may then be designed using the
heads obtained. Proposed tree-shaped networks so designed will be

optimal in the least cost sense.

The node equations, Eq. 2-1, represent a set of m constraints,
assuming there are m nodes. Assume there are n pipes where n is
usually greater than m. For n > m, the implicit function theorem states
that the diameters of m of the pipes can be expressed in terms of sizes
arbitrarily assigned to the remaining n - m pipes. A unique solution,
therefore, does not exist, so it is meaningful to seek a minimum cost

solution.

Objective Function. Considering first the capital cost of

the installed pipe, the cost per linear foot of pipe is approximately

(Linaweaver et al., 1964)(12)

C,. =ad,. (2-4)

where o = .36.
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For tunnels, the cost per linear foot is approximately

_ 1.24 _cy.
Cjy = 1.1dy, (2-5)

The unit of’dij is inches. The cost expressed by Eqs. 2-4 and 2-5 has
considered the cost of the land, pipelines, and the costs of operation
and maintenance. Eqs. 2-4 and 2-5 are the result of cost analysis
over 50 oil, gas and water pipelines and about 20 tunnels. The costs
given here are based on an ENR cost index = 877. 1In engineering opti-
mization problems, estimating precise cost coefficients for each vartiable
is usually difficult. Since it is felt that there is no other'repre—
sentative formula, Eqs. 2-4 and 2-5 are used throughout this report
for pipe and tunnel costs. For clarity and convenience, from now on,
the index i shall denote pipes and index j shall denote nodes. More-
over, there shall always be n pipes and m nodes. The total cost

of all pipes in the network is then

3

n
- 1. -
C -_Z o Lyd, (2-6)

P y=1
Consider next the power cost. It seems clear that the cost of
energy required for pumping, which may be accounted for partly as loss
of head due to friction and partly as residual energy discharged as
pressure energy to the user, may constitute an important component of
the total system cost. This cost can be expressed as
demand

pipes nodes

Ce=a‘[ ) a;h; + § QjHj] (2-7)

where a 1s a constant to account for the price of a unit quantity of

energy, the duration of pumping, ‘units conversions; and pumping efficiency.
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Also, 9 = flow in pipe 1
hi = head loss in pipe i
Qj = demand at node j
Hj = residual energy head at node j

Expressing qy in terms of di by the Hazen-Williams formula, Eq. 2-7

becomes
demand
n "o nodes
c, = g a; d.F + § anHj (2-8)

v
where aijdepends, in part, on a and, in part, on the other terms besides

di in the Hazen-Williams Formula. Adding this pumping cost to the total

capital cost for pipes, the objective function becomes

demand
n 1.3 ' nodes
c=Jord " +a, a” + ] aQH, (2-9)
i i i i i E J ]

Because the required pressure Hj at node j is specified and is not a deci-
sion variable, the third term in Eq. 2-9 is a constant. It has no effect
in obtaining an optimal solution. Thus, we can drop it during the optimi-
zation process but we should consider it to get the actual total system

cost. If Hj were a decision variable, this term should remain in the ob-

jective function.

Non-linear Programming Model. The network design problem has now

been formulated as the following non-linear programming model:

n
. - 1.3
Min C = z OtLidi

P
+ a, d, (2-10)
i 1 1
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subject to

Y k.a.P o< -q, , §=1,...,m (2-11)
e i — Y
lESj

where sj is the set of pipes connecting to node j, and

d; >0 i=1,...,n

Both the objective function, Eq. 2-10, and the constraints, Eq. 2-11,
are nonlinear. It is to be noted that the pipe diameters, the decision
variables, are continuous variables in this model. Future investigation
should take the discrete set of available commercial diameters into

cosideration.

Linear Programming Model via Variable Transformation. It

appears possible to approximate the nonlinear optimization model by a

linear programming model. Substituting the relation
x, = dP (2-12)

into Eq. 2~11, we obtain the linearized constraint equations

. ) K, X, 5_—Qj j=1,...,m
ies,
J (2-13)
Xi > 0 i=l,...,n
The objective function, Eq. 2-10, can be rewritten as
n 1
Min C = ) oL.d 13 44 'k, (2-14)
i i'i i“i

which is nonlinear because of the first terms. Since the first terms
in Eq. 2-14 contain the only nonlinear terms remaining in the model,

examine these in more detail.
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By the Hazen-Williams formula, p takes the value of 2.63.
Eq. 2-4 can be written as

1/2

C., = aX.l'3/P ~ X, (2-15)
1 1

i
where Ci is the cost per unit length of pipe with sizes di in inches.
A linear approximation of Eq. 2-15 is

_ 1/2 ! -
Ci = aXi = Bi + BiXi (2-16)

t
where, as shown in Fig. 2-1, Bi and Bi are respectively the intercept
and the slope of the straight line which approximates the curve of

1
Eq. 2-15 within the range of variables between Xi and Xi . Both Bi

+1

and Bi are functions of Xi' Based on this linearization, the objective
function is redefined as

n ' n 1

Min C = g (B; L, + L;B.;X) + E a; X, (2-17)

Since the range of possible pipe sizes in a network may be
too large to justify a single linear function in place of the non-linear
cost function, a piece-wise linear function must be used. Any one pipe,
however, is expected to fall into a certain class of pipe sizes before
the design is run. On this basis, a single linear function for each

individual pipe is used.

When the LP run is made, the classes for pipes are changed
if a pipe does not fall in the proper range. The LP model then is rerun
until the optimal solution shows that the classes of pipe sizes are
correctly related to the pipe sizes. This procedure does not assure that
the global optimum of the non-linear programming model is reached. 1In
terms of the non-linear programming model, a local optimum may be reached

by this procedure.
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Thus, the following linear programming problem has been

developed-
) )
in C = L,B.%X, + ) a, ¥, (2-18)
i=1 17171 i=1 i
S.7T.
) X, X < =-Q. i=1l,...,x
isg ER T » Jmhheew
i (2173
X > n i=1l....,0

It does not necessarily seek the minimum cost design of the non-linear
model. The resultant design, nevertheless, would appear to be a ‘‘good"
design and conceivably could be more desirable from a practical point
of view than the original non-linear minimum cost design. This is be-
cause there exists no algorithm which guarantees to obtain the global
optimum of the original non-linear optimization problem. Very often,
the so-called optimal design is only one of the local optima which mav
not give a design as good as the one by linear programming problem
formulated. In addition, there always exists a wide range of uncertainty
in designating cost coefficients. Since the non-linear cost function
is concave, the linear programming model will actually tend to treat
small pipes preferentially to larger pipes since eéonomics of scale

are neglected.

Another noint worth mentioning is that a demand constraint at
each node may be treated as an equality, rather than an inequality, con-
straint. Because the cost function is monotonically increasing with

Trespect to the diameters, to supply more water than is needed will tend to
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increase pipe sizes of the system. It is then conceivable that the con-
straints corresponding to demand nodes will always be binding, i.e., will
have equality constraints instead of inequalities. The constraints
corresponding to supply nodes may or may not be binding depending on
whether the total amount of supply capacity is equal t6 or greater than

the total demands on the system.

It is well known for any non-degenerate basic feasible solution
of a linear programming problem with m constraints and n decision vari-
ables, that only m of the n variables have non-zero values. Therefore,

n-m pipe sizes must be zero so there are only m distinct pipes in the
optimal network. Moreover, the problem is non-degenerate if the m
constraints are linearly independent. Because the actual total amount

of supply should equal the total amount of demands of the water systems and
there are only m-1 independent node equations in a network of m nodes,

it follows that oniy m-1 rather than m distinct pipes exist in the op-
timal network. Such a network can be proved to look like a tree, so

there are no loops as actually occur in virtually all water systems.

As the result of having been able to specify the pressure

head required at each node, the following equation must be satisfied:

supply- demand
Eode pipe §ode
QH = E q.h, + Q,H (2-20)
L 1 Lo 947y : 58

The right-hand sides of Eq. 2-20 and Eq. 2-7 have the same meaning, so

we may write Eq. 2-7 in the form
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supply
node

c =a J Q (2-21)
P kzl Kk

Qk is the amountrto be supplied from the supply node K and Hk is the
head that‘this supply would be pumped against. For multiple sources
of supply, we may consider Qk as a decision variable. Additional
constraints would limit the allocation of the resources Qk so that the
amount supplied is less than or equal to the actual amount of available
supply. For .a network system which has a single source of supply like
New York City primary distribution water supply system, the pumping
cost expressed by Eq. 2-21 is constant and can be omitted from the ob-
jective function. Consequently, for this particular case, Eq. 2-18
can be written instead as
n
Min C = igl L;B.X (2-22)
The computer program attached in the appendix has used

Eq. 2-22 instead of Eq. 2-18.

Consideration of Existing Pipe Network. It seems clear that

existing as well as proposéd pipes can be included in the network. As

]
shown in Fig. 2-2, two decision variables, Xi and Xi , are assigned to

1
each branch where there is an existing pipe; Xi denotes the amount
of the existing pipe capacity, measured in terms of pipe diameter, that

is needed in the optimal network. Thus, the constraint
X, <d, (2-23)

where di is the existing diameter for pipe i, is added to limit the
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1
maximum size of the decision variable Xi corresponding to this existing

1
pipe. The unit cost of Xi could be taken as zero or a fraction of unit
costs of proposed pipes. Since the existing pipe may not be large enough,

additional capacity may be needed. The size of any additional pipe is

given by Xi'

Considerations of Multiple Demand Patterns

As this linear programming model was formulated, only a single
demand pattern was considered, but other demand patterns, which represent
various times of the day and various fire flow requirements, are equally
as important. As before, each pattern specifies the demands and the
operating pressures when that pattern occurs. Assuming that there are Yy

demand patterns, the constraints of the linear programming model would

become
} K, X < -Q. 2=1,...,
‘gz iy — QJ;c Y
iz = (2-1)n+l, (-1)m2,..., -~ in
(2-24)
jg = (2-)m+1,(2-Dm+2,..., Lm
and
Xil < Xdi (2-25)

where Xdi denotes the design pipe capacity for pipe i, and Xiz denotes
the pipe capacity required in branch i during demand pattern £. Eq. 2-25
states that the pipe capacity used for each demand pattern may not

exceed the design pipe capacity. This assures that the designed net-

work will work satisfactorily under different demand situations. The

objective function for multiple demand patterns is
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demand pattern and Bi and a
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n

|
Min C= }] (L8, +a, )X +§ 0X,. (2-26)
121 i i 77dyg 021 %

th

1
4 are as defined previously. For illus-

tration, consider a network design problem with two demand patterns

and with existing pipes. The constraints are

4% AP X ST

AZEZ + (AZ)ex*&ex - 9-2
] - Xy =0 (2-27)

X, - Xy <0

P
B & @0
In vector form, the objective function is

MinC=0X +0X, +CX +0X (2-28)

‘where

=1’ =2

210 3

CLN

(éi)ex

(éz)ex

= constraint matrix for demand patterns 1 and 2 with dimension
(m x n). n = no. of nodes, n = no. of pipes.

= pipe capacities used for patterns 1 and 2. [Note that they
have zero cost coefficients, and that both have dimensions
nx1.]

= get of actual design pipe capacities, which have non-zero
cost coefficients. Dimension (n x 1)

= gsubset of constraint matrix éi’ 52 containing columns cor-
responding to the existing pipes (m x NEP), NEP = no. of

existing pipes.
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X = get of decision variables corresponding to the existing

pipes. (NEP x 1)

gi, Q, = demand vector for pattern 1 and 2. (m x 1)
0 = zero vector. (n x 1)
gex = vector representing the known diameters of existing pipes.

(NEP x 1)

It is useful to know the dimensions of the constraint coefficients

matrix identified commonly by the symbol A. For a network of m nodes,

n pipes, NEP existing pipes and P demand patterns, the number of rows is
Pm + pn + NEP = P(mtn) + NEP ; (2-29)
and the number of columns is
Pn + n + NEP + [P(mtn) + NEP] (2-30)

The quantity in brackets is associated with the slack variables. A
contains mostly zero elements, but its dimensions could become too large,
even for large-scale computers, for moderate system designs with just

a few demand patterns. Therefore, to reduce the size of A matrix by
partitioning is desirable and may be possible. Future research is
required to find the best way to decompose large LP multiple demand

pattern distribution system models.

Computational experience is, thus far, limited to single
demand patterns. The formulation proposed for multiple demand patterns
requires further programming and investigations. For a single demand
pattern, the optimal design is a tree-shaped network without a loop.
However, for multiple demand patterns, loops may optimally occur as

actually found in practice.
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Some Features of the LP Formulation

This LP problem appears to have advantages over the original
non-linear problem in that the theory of linear programming has been
well developed and is computationally very efficient. It eliminates
the need to analyze numerous solutions in search of the optimum. 1In
addition, the economic interpretation of the dual solution has latent
value for improving existing design methodology. For example, some of
the binding constraints will represent fire flow requirements, and the
dual solution will indicate reduction in system cost that would attach
to a unit reduction in the fire flow requirement. Non-linear programming
models usually do not provide such convenient and straightforward

sensitivity analysis,

Computer Programs

A computer program has been developed and tested for the case
of single demand pattern with existing pipe network. The listings of
the program can be found in the appendix. The descriptions of the pro-
grams, their use and data formats for input and output information

are given below. The flow chart is shown in Fig. 2-3.

There are five subprograms in the LP pipe network optimizer,
namely MAIN program and subroutines NCOST, ORGLP, LPROG and SIMPLX.

Their functions can be briefly described as follows:

1) MAIN
It reads in all necessary input data for the computation.

The order of input is:
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CALL Subroutine NCOST either from
MAIN or from user's individual
program (passing pipes and nodes
conditions)

CALL Subroutine ORGLP to set up
coefficient matrix A and constraint
matrix B

Iteration through

YES

YES

Linear Programming routin
> 10

Compute cost coefficient from the
current iteration

CALL subroutine LPROG which
subsequently calls Subroutine
SIMPIX to obtain optimal solution

the cost
coefficients need to

be recomputed

Return with total design cost

‘and design diameters

FIGURE 2-3: Flow Chart of LP Optimizer
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(a) XNP, XNN, HWC, FACTOR (4F 10.1)

XNP = number of pipes (or tunnels)
XNN = no. of nodes
HWC = Hazen-Williams Coefficient

FACTOR = a scaling factor to scale the constraint coef-
ficients A and requirement matrix B so that they

have approximately the same orders of magnitude.

(b) XIP (I), XJN (I), XKN (I), FL (I), EXD (I), ESDIA (I),
(6F 10.1)

I = pipe index

XIP (I) = identification number for pipe I
XIJN (I) = upstream node for pipe I

XKN (I) = downstream node for pipe I

FL (I) = length of pipe I in feet

EXD (I) = existing Ith pipe diameter in inches

ESDIA (I) = identifier for estimated design diameter of
pipe I (piecewise linearization of cost function)

Let D = estimated pipe diameter in inches

then

ESDIA (I) =1 if 0 <D< 60
=2 if 60 <D < 120
=3 if 120 < D < 180
=4 if 180 < D < 240
=5 if 240 < D < 300
=6 if 300 < D

Note that the identifier ESDIA (I) given above is especially designed
for tunnel design for the New York City water supply tunnel system.

As a result of that, the tunnel cost function, Eq. 2-5, is used for
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obtaining the total tunnel system cost.
(c) XIN(I), Q(I), H(I) (3F 10.1)
I = node index

XIN(I) = identification number of node I

Q(I) = demand or supply at node I if a demand node, use
positive sign, otherwise, negative
H(I) = energy head at node I

Note: All variables in input data are real numbers for con-
venience in setting up data cards. If subroutine NCOST
is called directly without going through the main pro-
gram, all variables except HWC, FL(I), EXD(I), H(I),
should be integers.

MAIN program also writes out total system cost, the design
diameters, and the portion of existing pipe diameters used for that par-

ticular design.

(ii) Subroutine NCOST

This subroutine serves as a monitor program for the linear
programming optimizer. It calls subroutine ORGLP to set up proper A and
B matrices and then calls subroutine LPROG which subsequently calls
subroutine SIMPLX to solve the LP problem. Eventually, it returns the

desired design information to the MAIN program. The calling sequence is:

CALL NCOST (NN, NP, IN, IP, JN, KN, FL, EXD, Q, H, HWC,

TCOST, DIANEW, DIAUSE, KESDIA, OBJ, FLOW, FACTOR)

in which NN, NP, IN, IP, JN, KN, FL, EXD, Q, H, HWC, KESDIA are input from
the MAIN program. NN is the integer equivalent of XNN in MAIN program,

and
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DIANEW = New design diameters
DIAUSE = the portion of existing pipe diameter used.
OBJ = value of the optimal objective function from linear

programming routine. It is not equal to the total
system cost because the cost coefficients in LP
routine are not the actual cost coefficients. Actual
unit cost formula (2-4) or (2-5) should be used to
compute the total system cost after the design

diameter is determined.

(iii) Subroutine ORGLP

The function of this subroutine is essentially to set up an
augmented constraint matrix A and an augmented requirement vector B. Here
the term "augmented" is used because the first row of the A matrix con-

tains the coefficients in the objective function.

(iv) Subroutines LPROG and SIMPLX
Subroutine LPROG together with subroutine SIMPLX will solve a

linear programming problem of the form:

Minimize the objeétive function C X
Subject to the constraints A X = B
X2>0
where C and B are given 1 x n and m x 1
matrices respectively, A is a given m x n matrix

and X is a variable of n x 1 matrix

The calling sequence of subroutine LPROG is

CALL LPROG (ME, M, N, A, B, Z, DIA, OBJ)
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in which
ME = is the row dimension in the calling program of the
augmented matrix of coefficient, A.
M = the number of constraint equations plus 1 i.e.
P (mtn) + NEP + 1 (eq. 2-29)
N = number of variables (eq. 2-30)
A = augmented matrix of constraints coefficients
B = augmented matrix of requirements
Z = variable matrix containing the solution to the linear
programming problem after execution of the subroutine
DIA = variable matrix containing the solution to the primal
problem

OBJ = value of the objective function

Examples

The network used in the example is the New York City primary
water distribution tunnel system which is shown in Figure 2-4. Input data
are shown in Figure 2-5. Output results are respectively shown and par-

tially tabulated in Figures 2-6 and 2-7.

The computation was done on the M.I.T. Urban Systems Laboratory
IBM System 360/37 time sharing system. The table at Figure 2-7 indicates
how much of the existing capacity has been used. If the capacity of
existing tunnels is not adequate, the size of a new additional tunnel is in-
dicated. TFor example the existing 180 inch capacity of pipe 1 was needed,
as well as a new addition of 52 inch diameter. For pipe 9, no new pipe
is needed since only the capacity of 106 inches out of the existing capa-

city of 180 inches is actually required.
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The computation seems to be very efficient. It takes about 5
sec of C.P.U. time to solve a problem with a constraint matrix dimensioned
(40 x 60). The size of matrix which can be handled with the existing
program is estimated to be about (100 x 100). In other words, it can

handle approximately two demand patterns for the example given.
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HILLVIEW DOWNTAKE

1Q)
Tunnel g - ié6600
No. 1 -
(D L-15,500
L5\ p-204
f 2
©) 1-19,800
D-180 Q 15
O 3 @ \ L-21,100
-7,300 D-204
D-180
o 4 O 14
(4) 1-8,300 _
©| rezt00
05 O 13
()| L-8,600
D-180 1-12,200
@| 504
06
1-31,20
(6)\1-19,100 12 O D-72
D-180
(:) -14,500 ©
D-204
O 7
L-9,600
H\p-132 11
L-14,400
8 D-60

L-12,500 O
D-132 9 / D-204
()
L-6,900
D-180
10 ® ® 522
L-26,400

D-72

G 17

RICHMOND DOWNTAKE 021

Figure 2 -4: Existing System

@D.Q)....

NOTE:

1,2,... — Node Number

— Pipe Number
L - Tunnel Length (ft.)

D - Existing Tunnel Diameter
(in.)

Tunnel
No. 2

0
L-24,000
D-60

15

NODES 4,5,6,7,8 -
Manhattan
" 12,13,18,19 -
Queens
" 2,3,14,15 -
Bronx
" 9,11,20,21 -
Brooklyn
17 - Richmond
10 - zero
consumption

20

8,400 "
0 "



57.5

17

272.8

260.0

117.1

117.1

Figure 2-5: Input Data
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Tunnel ‘ // \\
No. 1 Z // \ D-204
/ , N\
D-180 o @ \\ ————— New Pipes
<:> % \ [::EE}-—— New pipe diameter
/ \ 15 D - Existing pipe
//D-180 \ diameter required
‘G,‘DB \
P @\ 2
/ D-180 \D-204
(4 O 14
e’ ) D-204
[p-180 ®)
5 013
e ' Tunnel
'V D-180 No. 2
06
O I
D-1
\ Lo .
\ D-72 180 -‘“"‘
'e)
\ D-132

Figure 2-6: Output Result
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TOTAL COST = 78084928, 00" DOELARS
L NEW . EXISTING USED
PIPE ~ DIAMETER DIAMETER ~ DIAMETER
1 52,02 ~180.00 © .180.00
2 49,90 - - 180.00 - 180.00
3 63.41° 180.00 ) ©180.00
4 55,59 180.00 L 180.00
5 57,25 180.00 - 180.00
6 59.19 180.00 180.00 -
7 59.06 132.00 - 132.00
8 54.95 0 132.00 132.00
9 0.0 180.00 106.33
10 0.0 204.00 204.00
11 116.21 204,00 204,00
12 125.25 204.00 204.00
13 126.87 204,00 204.00
14 133.07 204,00 204.00
15 126.52 204,00 204.00
16 19,52 72.00 72.00
17 91.83 72.00 72.00
18  -72.76 . 60.00 6£0.00
19 72.61 60.00 60.00]
20 0.0 60.00 60.00

21 54,82 72.00 72,00

Figure 2-7: Output Example
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Chapter 3

APPLICATION OF DYNAMIC PROGRAMMING TO CAPACITY EXPANSION

Introduction

In the preceding chapter, a method is presented for water dis-
tribution system design. This method considers the flow and pressure con-
ditions that may be typical for some particular period of time, but this
directly addresses the fact that system demands tend to increase with time
in response to population and economic growth. In other words, the pre-
vious method takes a representative snapshot of the system over a certain
period of time. For those conditions a system may be designed which
would behave according to the design criteria. Since the demand may be
growing with time, there arises the problem of how to make investments
over a period of time. This is called a "capacity expansion problem."
The solution should indicate when to build extra capacity, how much to
build and where to build. The investment problem is as complicated and
as complex as the water distribution system analysis problem. The
optimal time phasing of resource allocation is a central problem of de-
sign. It is the purpose of this chapter to de}ine the capacity expansion
problem and to show that the method of dynamic programming may be applied

to its solution.

Dynamic Programming Formulation

Dynamic programming is an important technique in non-linear
constrainted optimization problems. It can be applied to capacity ex-
pansion problems in more than one way so there are possible other for-

mulations than the one presented here.
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A basic assumption of economic analysis of engineering projects
is there exists an economic time horizon, T, beyond which there is no
value to future economic activity. This should not be confused with the
useful life of a particular component, such as a pipe or a pump, which
may be shorter than the length of the economic time horizon. The actual
value used for T is immaterial to the problem formulation. On the other

hand, T is assumed to exist and it takes on a finite value, however large.

The total period, I, may be partitioned into a number of sub-
periods, say N of them, possibly of unequal length. These sub-periods,
of length ti, may be called design periods; and it is the period of time
for which the capacity expansion, made at the beginning of the period,
will be adequate. The first design period may not actuélly begin until
existing capacity is exhausted. Then, additional capacity is required;
and it, together with the existing capacity, should be adequate for the

next ti years. At that time, additional capacity again will be required.

The cost of an additional unit of capacity is assumed to re-
main unchanged over the economic time horizon so the economic analysis
is done on a '"constant dollar' basis. However, a dollar of cost incurred
at different points in time are not economically equivalent so that some
adjustment must be made to compare alternative expansion plans where costs
are incurred at various times over the economic time horizon. The proper
adjustment is to correct future costs to present costs. So-called pre-
sent costs are measured in dollars, and the sum of the present costs of
each expansion capacity gives the total present cost of the entire pro-
ject. The present cost of a future expenditure is the amount of money

that could be invested now at interest rate i to yield amn amount equal
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to the expenditure at that future time. This may be interpreted as a
function of the interest rate, so the value used for i is of special

concern.

The appropriate value for i for public investment projects
should represent the social time preference for money. It is a measure
of how much a dollar must yield, in addition to its own value, over the
period of one year for any typical year. It is not likely to be equal
to the market interest rate at which money can be borrowed because that
interest rate includes a "hedge' against inflatipn which is needed to
assure that the initial dollar invested will return its own value. In
other words, the market interest rate may be assumed to represent the
sum of the social cost of capital plus an allowance for anticipated
monetary depreciation (Hirshleifer, et al., 1963).(13) Presumably the
value of i, interpreted as the social cost of capital only, should not
vary as price levels change. It may be argued that this, the real
marginal productivity of capital, is essentially independent of price

levels.

Returning to the capacity expansion problem, the best se-
quence of expansion is that one which gives the minimum total present
cost. The Dynamic Programming objective, then, is to find the minimum

cost sequence.

Let the optimum number of design periods in the economic time
horizon be n. Also, let tj be the length of the jth design period.

One constraint is that

tl+t2+...+tn=T v (3-1)
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Let the present cost of the expansion made during design period j be
r, (t.). This is a function of the length of the period, tj’ because
larger expansions are usually needed to satisfy longer periods. This
also is a function of j because the cost must be discounted to present
value, and discounting depends on the time of investment which depends,
indirectly, on the period. In other words, if c(tj) is the actual cost
of an expansion which is adequate, together with the existing capacity, for

the next t, years; the present cost, rj(tj) is

j
ry(ep) = S (3-2)
1+ T8 T,
The total present cost is
Fn = rl(tl) + r2(t2) + ... + rn(tn) (3-3)

so the objective is to minimize Fn(T),

In terms of Dynamic Programming, the times at which decisions
must be made are known as stages and the decision moves the process
from one so-called state to another. Schematically, this is illustrated

in Figure 3-1.

In terms of the capacity expansion problem, the stage is asso-
ciated with the design period (i.e. j denotes the stage). More specifical-
ly, j denotes the number of design periods remaining until the end of

the economic time horizon.

The decision to be made at stage j is the value of tj. This

moves the decision process from state Sj— to state Sj' The state of the

1

system is the time between the present time (i.e. t = 0) and the future time
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rj (tj)

FIGURE 3-1: Typical Dynamic Programming Stage
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~ o /Demand, Q
‘// A
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L Downstream
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FIGURE 3-2: Simple System Arrangement
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at which the expansion associated with tj must be made. This decision
process moves backward in time from the economic time horizon. It follows
that
S.=T , (3-4)
that

S, =T-=t (3-5)

1

and that, in general,

S, =S, - t, 3-6
h| j-1 k| (3-6)

If the state of the system at the beginning of stage j is Sj’ the

maximum possible value of t, is Sj—l'

The optional set of decisions [tl, t2, ces ’tn] is determined
through an ordered search of the alternatives. This search procedure
is based on Bellman's Optimality Principle which states that no matter
what decisions have been made, in time, up to the present, the optional
decision depends only on the immediate return from the present decision
and on the present value of subsequent returns if subsequent decisions

are made optionally thereafter.

To apply this principle, let the optimal value function be

denoted by fj—l(sj—l)' This gives the present value of returns sub-

sequent to stage j if the process leaves stage j in state j~1 and if all

decisions are made optimally in stages 1 to j-1.

The total return to be expected from decision tj at stage j, with

). This depends on the

optimal activity thereafter is rj(tj) + £ 1

. S.
J‘l(J‘

state upon entering stage j, since Sj_1 is equal to Sj + tj' The optional
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value function for stage j, according to the Optimality Principle is

£f.(S.) = min [r,(t,) + £,
3Gy . [y (tg) + £y
J

l(Sj + tj)] (3-7)

At each stage, a value of tj is determined. After n stages,
if n is the optimal number of design periods, the sum of all tj will be
equal to T. Accordingly, the value of fn(Sn) will be the minimum total
present cost. Also, Sn must be zero since this denotes the present

time if n is the optimal number of stages.

It is not until the optimization is complete that the optimum
number of stages is known. Therefore, some procedure is needed to test if
the current stage is the last stage. This is accomplished by comparing,
at stage j + 1, the quantities fj+l(0) and fj(O). If fj(O) is not larger
than fj+l(0), then it follows that n = j. 1If fj(O) is larger than
fj+l(0), adding another stage decreases the total present cost so at
least that additional stage is required. The quantity fO(O) may initially
be set equal to some large number because S0 must be equal to T, not

. zero.

Application to a Simple Water System

It appears possible to apply this approach to the problem of
capacity expansion for the water distribution system. In developing
such a dynamic programming model it appears rational, as a first step,
to consider the simple system arrangement of a reservoir connected to
a pipe discharging in response to the demand as shown in Fig. 3-2.

The discussion of this simple system will be given in the next section.

Considering this simple system arrangement will allow the following
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verification of the method before undertaking the entire network system:

(1) Dynamic programming does provide the optimum.

(2) The optimum occurs in a finite number of stages.

(3) The method is economical in terms of computer time.
These are not obviously satisfied as they would be in a linear programming
problem since there is no packaged program available and a dynamic
programming problem is solved by a tailor-made program. Development of
such a program for the simple system case should easily be adapted to the
total network case. Only the method for computing present costs at

each stage should be different.

Common to both applications is the model representation of

Fig. 3-3. The Tableau of Fig. 3-4 indicates how the method proceeds.

The simplified network considered is shown in Fig. 3-2. The
simplified system consists of a source reservoir of infinity capacity, a
pipe of length L and an outlet responding to an increasing demand. Assume
that the maximum allowable pressure loss along the pipe is given. As
the demand increases, the operating head loss along the pipe will in-
crease. An additional pipe is required when the head loss reaches the
allowable maximum value. Installation of larger pipe will have larger

replacement intervals but will require larger investments.

The data and formula used for computation are summarized as

follows:

The length of the pipe = 100,000 ft.
The economic time horizon = 35 years. (begins in year 1975

and ends in year 2010)
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FIGURE 3-3: Dynamic Programming Model
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0 0 0 r-ln rlo rlO 0
1 1 1 0 13 ‘11 11 1
2 2 0 19 12 T12 2
] 0
N N 0 1N TIN TiN N
1 0 1 720 To0 * T3
1 0 L1 To1 + T
0 2 20 Y20 T T12
9 1 1 21 Top ¥y
2 2 0 22 Tyo * Ty
l
|
N
I
I
I
|
1
2
N
|
[
|
N
FIGURE 3-4: Form of the Dynamic Programming Model Tableau
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The demand grows geometrically according to

Q(t) = Q0(1+g)t where Q, = Initial demand

g growth rate
The required diameter, D, expressed in terms of demand and

head loss, is

1.38 ¢0+38

0.38 (HL/L)O'2

CHW

in which the units are D[ft.] and Q[cfs.].

The capital cost of pipe per linear feet has the form

¢ = opt+25

in which the units are C[$/ft.] and where
o = 43.5 from year 1975-1982
a = 30.5 after year 1982 (This indiéates there might
be a breakthrough in construction technology
in year 1982 to reduce the cost.)
After discounting, the present value of the unit capital cost

would read

c o apl'2s

(141) "
The results of the tests for various key variables are tabulated in Table
3-1. The design periods are restricted to be multiples of 5 years.

One of the most interesting results shows the effects of future

cost changes on the optimal cycle time. The relationship illustrated in
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Discount G;Z‘;’Zh Cost |Optimal | Design | Periods PT°tal
Rate Change First Second Third Eesent
v % in Years Years Years $/i?t Ft.
° 1985-% e
10% .5% -30% 10. 15. 10. 720.
5. 1.0 -30. 10. 25. 0. 1247.
10 1.0 -30. 10. 15. 10. 1031.
2.5 1.0 0. 35. 0. 0 1423,
5. 1.0 0. 20, 15. 0. 1392.
10. 1.0 0. 15. 20. 0. 1157.
5. 1.0 +20. 35. 0. 0. 1423.
10. 1.0 +20. 15. 10. 10. 1198.
5. 3.0 -30. 10. 25. 0. 2420.
Table 3-1: Optimal Time Staging of Construction, for Simplified

System Shown in Figure 3-2, (Dynamic Programming

Solution)
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Fig. 3-5 was derived according to a method given by Manne which assumes
that cost remains constant in time. It indicates that as the interest
rate increases, it is optimal to defer construction and build a sequence
of smaller projects. It is seen to be very sensitive to the discount
rate and to be relatively insensitive to the growth rate. However,
due to possible breakthroughs in construction technology, the assump-

tion that cost remains constant with time is questionable.

Of primary importance is the length of the first period,
tl, since that is what must be presently designed for. The value of
tl is plotted with respect to the discount rate in Fig. 3-6 (from data
in Table 3-1). The relationship is similar to that in Fig. 3-5 which
was derived for constant cost over time. These results are very sensi-
tive to the time in which the cost change is expected to occur. For
this analysis, the cost was expected to change in 15 years from the
base year of 1970. Fig. 3-6 reflects the effects of such a change if it

could be forecast. Nevertheless, the optimal design staging now appears

equally dependent on any cost changes as well as the discount rate.

These considerations indicate that over an economic time hori-
zon of 30 to 40 years, the optimal expansion will consist of 2 to 3
separate projects. Since the number of states per stage and hence
the computational effort in the dynamic program is T/DT, where DT is
the time interval considered, it seems adequate to look at a time in-

terval of 10 years.

A typical dynamic programming tableau is presented in Table 3-2.

The optimality condition of negligible improvement from one stage to the
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17 Growth

3% Growth

| I I I

2.5 5 7.5 10.

Discount Rate (Per cent)

FIGURE 3-5: Manne Capacity Expansion Model
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Cost Increase

No Cost
Change

\\\\\\\\\\—; Cost Decrease
- A A

0 5 10

Discount Rate 7%

FIGURE 3-6: Optimal Length of First Design Period
VS. Discount Rate (Dynamic Programming

Solution)
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TABLE 3—2

STAGE 1
STATE DECISION | STATE IN RETURN
SI DI LASTSSTAGE g?c QI fI(SI)
years I-1 I = fI_1+RI = minQI
0 0 0 0 0 0
5 5 0 525 525 525
10 10 0 738 738 738
15 15 0 906 906 906
20 20 0 1051 1051 1051
25 25 0 1183 1183 1183
30 30 0 1306 1306 1306
35 35 0 1423 1423 1423

Table 3-2: Dynamic Programming Tableau

- Simplified System -

[

Example: T 35 years (1975-2010)

T

I

5 years

R = 5% Discount Rate

G = 1% Growth Rate
Hi = 25' Allowable Head Loss
C = -30% Cost Reduction in 1985
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Table 3-2 (continued)

STAGE 2
S1-1 Ry 9 £18p)
5 5 0 525 525 525
10 5 411 437
10 738 738 738
15 5 10 226 964
10 578 989
15 906 906 906
20 5 15 177 1083
10 10 318 1056
15 710 1235
20 0 1051 1051 1051
25 5 20 137 1188
10 15 249 1155
15 10 390 1128
20 823 1348
25 1183 1183 1128
30 5 25 109 1237
10 20 195 1246
15 15 305 1211
20 10 452 1190
25 927 1452
30 1306 1306 1190
35 5 30 85 1275
10 25 153 1281
15 20 239 2190
20 15 354 1260
25 10 509 1247
30 1023 1548
35 0 1423 1423 1247

Improvement

Cost After Stage 2 = 1247 .
176 % Continue




T

Table 3-2 (continued)
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Net Present Cost: $1247.

STAGE 3
St Pr S1-1 R % 160
5 5 0 525 525 525
10 411 937
10 738 738 738
5 10 226 964
15 10 578 989
15 0 906 906 906
5 15 177 1083
10 10 318 1056
20
15 710 1235
20 1051 1051 1051
5 20 139 1188
10 15 249 1155
25 15 10 390 1128
20 823 1348
25 0 1183 1183 1128
5 25 109 1237
10 20 195 1246
30 15 15 305 1211
20 10 452 1190
25 927 1452
30 1306 1306 1190
5 30 85 1275
10 25 153 1281
35 15 20 239 1290
20 15 354 1260
25 10 509 1247 |= OPT'L
30 1023 1548
35 0 1423 1423 1247
Cost After Stage 3 = 1247
Improvement = 0.0 (Terminate)
Optimal Solution: T1 = 10 years
T2 = 25 years




- 55 —

next occurs after 3 stages. The optimal expansion scheme is obtained

by reading the output back as shown. Note that for any state in stages
beyond stage 1, the decision corresponding either to no construction in
the current stage or to all construction in a previous stage (not shown
in Table 3-2) is redundant since these situations have been evaluated in
a previous stage. This would reduce substantially the number of enumera-
tions that must be considered. The computétion time (on an IBM System
1360 Model 67 time sharing computer) to do any row in Table 3-1 is in the

order of 1 second. Thus, the dynamic program is computationally efficient.

In this chapter, the applicability of dynamic programming to the
simplified system shown in Fig. 3-2 has been established. The effects
of discount rate, demand growth rate and possible cost change to the
optimal staging of water systems have also been studied. Application of
dynamic programming to a network system will be discussed in the next

chapter.
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Chapter 4

A JOINT LINEAR PROGRAMMING-DYNAMIC PROGRAMMING

MODEL FOR DISTRIBUTION SYSTEM DESIGN

Introduction

In the dynamic programming model, a cost function must be
defined. For the water network design problem, this cost function is
defined as the present value of the capital cost of satisfying demand
for an allocated time interval tj years in the future. For a given
economic time horizon of T years, the dynamic program would indicate the
optimal choice of design periods which gives the overall minimum present
cost. If a distribution system is to be expanded to satisfy demands for
the next tj years, this should be done optimally so that, in fact, all

costs are minimum.

At each stage of the Dynamic Programming model the cost func-
tion involves a Linear Programming network design to determine the
minimum network cost for the additional capacity required until the end
of the design period. Thus, there are two levels of optimization. The
inner level gives the minimum cost design to satisfy the demand for the
allocated tj years in the future and the outer level gives the optimal

staging over the economic time horizon.

Implicit in this procedure is an assumption that the existing
configuration of the network does not depend on the expansion path up
to that time. The validity of this assumption has not been tested. The
flow chart given in Fig. 4-1 indicates the relationship between the LP
model and the DP model. The example to be given should help make clear
the application of Dynamic Programming to the total network system. The

justification of this application is given in the next section.
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Read in INPUTS

\

For each stage T::>
For each state ::>>

i

I

CALL Subroutine DEMCAP

Y

CALL LP

CALL Subroutine COST OPTIMIZER

CALL Subroutine SELECT

CALL Subroutine NEW

YES

B T ———

PRINT OUTPUTS

END

Figure 4-1 : Flow Chart of Dynamic Programming Program
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Validity of Dynamic Programming to Total Network Problem

This particular Dynamic Programming model is applicable to
network design only if decisions made in different states lead to conse-
quences that are mutually independent. This is a critical factor in
transportation networks where the links in any system are dependent.

However, water supply networks may behave differently.

What is required is a definition of the appropriate existing
network for consideration of additional capacity in any stage. More-
over, this updated existing network must reflect an optimal expansion
policy up to that time. Since the linear programming formulation may
specify branching (parallel) pipes to be built, equivalent pipe networks
for the optimal expansion to each state must be defined after each stage.
Consider the example Table 3-2 of Chapter 3. Suppose one is in the second
stage, and SI = 30 years and the range of decisioms, DI’ are being con-

sidered. Each entry in the S column represents a different existing

I-1
system for input into the linear program, and the decision is to add
capacity DI after SI—l has been built. Clearly SI—l must itself cor-
respond to an optimal expansion involving one or more projects in
previous stages. To consider the third stage, the optimal (minimum
cost) expansions SI in the second stage become, after the hydraulically
equivalent network has been computed, the SI—l variable for the third

stage. This updating process prevents dependency and thus allows ap-

plication of the one-dimensional approach.

Computer Programs

A special computer program which links the Linear Program

and the Dynamic Program was prepared. The program consists of a main
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program and eight subprograms. The main program feads in input data,
writes out output results and serves as a monitor program which con-
trols the subsequent order of operations. The subroutine DEMCAP com-
putes the demands at each node. The sum of demands is taken to be the
total amount of supply. The subroutine COST calls the Linear Program-—
ming routine and converts the total system cost to net present value.
The subroutines NCOST, ORGLP, LPROG, SIMPLX together comprise the
Linear Programming model which has been explained in Chapter 2. The
subroutine SELECT chooses the minimum cost decision given the state of
the system. Subroutine NEW updates the existing system by using hy-
draulically equivalent pipes for two parallel pipes (existing and new
pipes). Figure 4-1 is a flow chart of the over-all program. The

listings in the program are given in Appendix B.

An example

The format of the input ddta is illustrated in detail in
Fig. 4-2. The example chosen is concerned with the reliability of the
existing New York City primary water supply tunnel system whose configura-
tion is shown schematically in Fig. 4-3. Studies of the system have
indicated that the failure of either pipe 1 or pipe 15 has the most
severe impact upon the syétem. Assuming that pipe 15 fails to function
it may be possible to meet the demands by constructing a pumping station
at node 9 and by constructing a long tunnel directly from node 1 to node
9 so that the demands at nodes 11, 12, 13, and 14 are supplied through
node 9. Since the minimum allowable head is 250 feet, the heads at
nodes 8 and 15 are taken to be 250 feet. The head at node 9 before

pumping is assumed to be 200 feet and after pumping 300 feet. The heads
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Figure 4-2

INPUT FIELD FORMAT

Group 1 (4 F 10.1)
(1) Economic Time Horizon in Years
(ii) Interval in Years of Each State
(iii) Discount Rate

(iv) Cost Reduction or Increase in the Future

Group 2 (4 F 10.1)

(1) Number of Pipes

(ii) Number of Nodes

(iii) Hazen-Williams Coefficient

(iv) Scaling Factor for Coefficient Matrix A

Group 3 (6 F 10.1)

(1) Pipe Identification Number

(ii) Upstream Node Number

(iii) Downstream Node Number

(iv) Length of the Pipe

v) Existing Pipe Diameter in Inches

(vi) Number Identifies the Estimate of Pipe Size

Group 4 (3 F 10.1)

(1) Node Identification Number
(i1i) Demand or Supply Rate in cfs

(iii) Energy Head in ft.
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Figure 4-2 (continued)

Group 5 (3 F 10.1)
(1) Initial Total Population in Millions
(ii) Total Population in Millions at the End of Economic
Time Horizon

(iii) Number of Boroughs

Group 6 (2 F 10.3)
(i) Number of Nodes Allocated to a Borough

(41) Initial Total Population in Millions in a Borough

Group 7 (10 F 5.1)

Location of Each Node Given in Borough Number
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and demands at each node for year 2010 are shown in Fig. 4-4. The

economic time horizon is here assumed to be 40 years. Also assumed is

a linear demand growth rate 0.074 and discount rate of 3 per cent.

The summary of the results of the dynamic program for this
particular example is tabulated in Fig. 4-5. The table indicates that
it is optimal to construct the additional facilities at the present
time to satisfy the demands of 40 years from now. The additional tun-
nels required are shown in dash lines in Fig. 4-4. The present invest-
ment for the tunnel alone is estimated to be 69 million dollars. This

does not include pumping costs.

In this example, the dynamic program called the Linear Pro-
gramming model 16 times. The CPU time taken for the whole computation
was about 40 seconds so only 2 seconds were used for computations by the

LP model. The computation is thus considered very efficient.



HILLVIEW DOWNTAKE
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L - 24,100
D - 204
13

L - 12,200
D - 204

D - 204

L - 6,900
D - 180

RICHMOND DOWNTAKE

NOTE:

1,2,... - Node Number
yo+.— Pipe Number

L - Tunnel Length(ft.)

D - Existing Tunnel
Diameter (in.)

Tunnel

No. 2

NODES:4,5,6,7,8,Manhattan
"12,13, Queens

" 2,3,14,15,Bronx
'"9,11, Brooklyn
"o17 Richmond
" 10 zero con-—
sumption

Figure 4-3: Existing System
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2264’(Supply in cfs)

Tunnel
No. 1

Tunnel
No. 2

104.

(Demand in cfs)
1.=90 J000
D-16§

(pressure head in ft)

40 years time horizon

linear demand growth rate =
0.074

264 . Discount rate = 37

Results indicate that it is

optimal to construct additiomal

tunnel now to satisfy demand

for the next 40 years

99.

1970 2010

New tunnels

D - New tunnel diameter
Pumping Station (in.)

Present Cost of tunnel
6.9 x 107 dollars

Figure 4-4: 1Input and Output Exhibits
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CAPACITY EXPANSION BY DYNAMIC PROGRAMMING

NEW YORK CITY DATA

DESIGN PERIOD = 40.0 YEARS
TIME INTERVAL = 10.0 YEARS
DISCOUNT RATE = 0.030

STATE DECISION STATE IN INCREMENTAL TOTAL  MINIMUM RETURN

LAST STAGE RETURN RETURN FOR THIS STATE
STAGE NO. 1
0.0 0.0 0.0 0.0 0.0
0.0
10.0 10.0 0.0 61147.4 0.0
61147.4
20.0 20.0 0.0 63785.8 0.0
63785.8
30.0 30.0 0.0 66136.4 0.0
, 66136.4
40.0 40.0 0.0 69007.2 0.0
69007.2
STAGE NO. 2
0.0
0.0 0.0 0.0 0.0
0.0
10.0
0.0 10.0 0.0 61147.4
10.0 0.0 61147.4 61147.4
61147.4
20.0
0.0 20.0 0.0 63785.8
10.0 10.0 11389.2 72536.6
20.0 0.0 63785.8 63785.8
63785.8
30.0
' 0.0 30.0 0.0 66136.4
10.0 20.0 8474.7 72260.4
20.0 10.0 15791.3 76938.6
30.0 0.0 66136.4 66136 .4
66136.4
40.0
0.0 40.0 0.0 69007.2
10.0 30.0 6529.9 72666 .4
20.0 20.0 12051.2 75836.9
30.0 10.0 19522.3 80669.8
40.0 0.0 69007.2 69007.2

69007.2

Figure 4-5 SUMMARY OF THE OUTPUT RESULTS
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APPENDIX A

COMPUTER PROGRAM LISTING

FOR LINEAR PROGRAMMING NETWORK MODEL
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DIMENSIGN IP(50),JN(50),KN(50),FL{50),
1EXD (50) , HL (50) , IN (50), Q(SO) H (50) ,DIAUSE (50) FLOE(SO),
2XIP(50) ,XIN(50), XKN(SO) XIN(SO),KESDIA(SO) ESDIA(SO) DIANEW (50)

IWRITE=6
JWRITE=6
. AWRITE(IWRITE 1)
1 -~ FORMAT (1X,' INPUT FILE NUMBER')
READ (5,2) IREAD
2 FORMAT(I1) T -

READ (IREAD,5001) XNP, NN, HWC, FACTOR
5001 FORMAT(4F10.1)
- NP=XNP
NN=XNN .
DO 10 I=1,NP
READ (IREAD, 5002) XIP(I) XJIN (I) ,XKN(I) , FL(T) , EXD(I) , ESDIA (I)
IP(I) =XIP(I)
JN(I)=XJN(T)
KN (I) =XKN(I)
KESDIA{I)=ESDIA(I)-
10 CONTINUE
5002 PORMAT(6F10.1)
DO 20 I=1,NN
READ (IREAL,5002) XIN{I),Q(I),H(I)
IN(I)=XIN(I)
20 CONTINUE
CALL NCOST(NN,NP,IN,IP,JN,KN,FL,EXD, Q H,HWC,TCOST, DIANEW,DIAUSE,
1KESDTA, 0BJ, FLOW, FACTOR) .
WEITE (JHRITE, 6009) TCOST
6009 FORHAT(//20X,'TOTAL COST =',¥15.2,1%X, 'DOLLARS')
OBJ=—-0BJ ‘ ‘
WRITE (JWRITE, 6005) {IP(I),DIANEW (I),EXD (I),DIAUSE(I),I=1
6005 FORMAT(///29X,' NEW ',5X,'EXISTING?',8X,' USED ',/20X,'PIPE?,u4X,

1'DIAMETER’,- ) uX,'DIAﬁETER'7K,'DIAMETER',/(20Xdi3,2X,F8.2,
25X,F8.2,8X,F8.2)) !

C WRITE{(JWRITE,6010) 0OBJ : -

6010 FORMAT {(1X,'OBJECTIVE FUNCTION=’,E12.5)

C WRITE (JWRITE, 105) . :

105 FORMAT (1X,!' FLOW IN EACH PIPE ARE }

C DO 106 I=1,NP .

c WRITE (JWRITE, 104) T,FLOW (I)

104  FORMAT (5X,3HQ0(,I2, 3H )«,FlO 3)
106 CONTINUE -
: END
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SUBROUTINF NCOST(NODES,NTUNL,INODES,ITUNL,IUP,IDOWN,FLGTH,
1EXIST,DEMND,HEAD,HWC,TCOST, DIANEW,DIAUSE, KESDIA OBJ,FLOW FACTOR)
DIMENSION INanS(SO),ITUNL(SO),IUP(SO),IDOHN(SO),FL”TH(SO),'
1EXIST (50), DEMND (50) ,HEAD(50) ,DIA (100), A(5000),KESDIA(50),
2DIANEY (50) ,SP{100), FLOw(SO),DIAUSE(SO) ISS({10) :
DIMENSION HL(SO),FK(JO),ALPPP(SO) KCODIA(SO),B(SO)
NMAX=5000 '
IWRITE=6 B
. JWRITE=8 : '
C COUNT THE NUMBER OF EXISTING PIPES.
NEP=0 ’
po 15 I=1,NTUNL
IF(EXIST(I)-.01) 15,15,16
16 NEP=NEP+1
15 CONTINUE
NSUPY=0
DO, 500 I=1,NODES
IF(DEMND{I))501,502,502
501 NSUPY=NSUPY+1
ISS(I+1)=1
GC TO 500
502 1SS (I+1)=0
500 CONTINUE
WRITE{IWRITE,S5)

55 FORMAT (1X,' INPUT INDICATOR, 1=PRINT OUT NODES ,NTUNL,NEP, 0=NOT')
READ(5,2) IPRIN1 ' ‘
2 FORMAT (I 1) _ =
IF (IPRIN1) 23,23,52 - - - e - S e
52 WRITE (JWRITE, 6001) NTUNL,NEP,NODES , .
6001 FORMAT (///10X,2LHTOTAL NUMBER OF PIPES = ,I3/
1 20X,27HEUMBER OF EXISTING PIPES = ,I3/
2 30X, 18HNUKBER OF NODES = ,I3)
23 DO 11 I=1,NTUNL
11 HL(I)=0.
DO S5 I=1,NTUNL’
17=0
JJ=0

DC 6 J=1,NODES
IF(IUP(I).EQ.INODES (J)) II=J
IF (IDOWN (I) . BQ.INODES (J)) JJ=J
6 CONTINUE
Ir(IIy 5,5,7
7 TF{JJ)5,5,9 -
9 - HL(I)"HFAD(II)—HEAD(JJ)
5 CONTINUE .

' WRITE(IWRITE, 56) SR R e - .

56 FPORHM T(?X,'IWPUT INDICRTOR, 1=PRINT NODES AND PIPES CONDITIONS,
1 0=NOT!') ‘
READ (5,2) IPRIN2
IF(IPRINZ) 100,1060,53

53 WRITE{(JWRITE, 6002)
6002 FORMAT(///12X,4HNODE,17X,8HEXTISTING, 5%, HEAD Loss',/1x 4UHPIPE,

14X,5HBEGIN, 2X,3HEND, 4X, SNLENG”H 4x, 8WDIAHETER)

Do 19 I=1,NTUNL
19 WRImF(JWRTTE 6003) ITUNL(I) I P(T) IDOWN(I),FLGTH(I),EXIGT(I),HL(]
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)
6003 FORMAT(I4,6X,I3,3X,13, 3X,F7 0 GX Fi. 0 6X,

WRITE (JWRITE, 6008)
FORKAT (//1X,'NODE?, 10x,'DEMAND(MPD)')
DO 25 I=1,NODES

WRITE (JWRITE, 60004) - INODES(I) DEMND(I) o

FORMAT (T4, 10X .F10.0)

F7.1)

DO 30 I=1,NTOUNL
FK(I)—.OOO62*H§C*FLGTH(I)**( 0. Sa)
N=NODES+NEP+1 -

N=NMAX/M

CALL ORGLP(M,N,1, FK EXIST DEMNWD,INODES,IUP, IDOﬁN NTUNL,NODES B,

1HL,NEP, JNRX, NSUPY,ISS FACTOR) .

ALPHA=1.1

ITEND=10

ITET=1 ‘ '
IF(ITET.GT.ITEND) GO TO 132
DO 21 I=1,NTUNL ,
KKK= KESDIA(I)

GO TO (121,122,123,124,125, 126), KKK
ALPHP (I)=3.72E-03 -

GO TO 21

ALPHP (I)=9.75E-04

GO TO 21

ALPHP (I) =4, auE-ou

GO TO 21

ALPHP (I)=2. 413 ou.'

GO TO 21 = = D DR o
ALPHP (I)=2. 16E- ou :

GO TO 21 PR . e 2 ,,m‘;"” [ ' = R

ALPHP (I} = 1.58E—0Q

CONTINUE S o O

DO 129 I=1,NTUNL

JJ=¥* (I~ 1)+1 -

A(JJ)= =ALPHP (I) *FLGTH (I)

WRITE (JWRITE,601) JJ,A(JJ)
FORMAT (11X, 'A( ‘,IS,')=‘,F11.2)

CONTINUE ' - :

IF(NSUPY) 503,503,504 -

DO 505 I=1,NSUPY

JJ=JJI+N
A (JJ) =0.
WRITE (JWRITE, 601)JJ A(JJ)
ICONTINOE
IF (NEP) 250,250,251

JJdJ= M*(NTUNL*WEP*NSUPY“1)+1 f“ﬁ“wmws A f’f:”"”rw o

'DO 253 K=1,NEP

JJ=JJ+H

A (JJ) =0

*WRITE(JWRITE 601) Ja, A(JJ)
JJI=33I+H :

A (J3J)=0.

WRITE (JWRITE, 601)JJJ A(JJJ)_* ;4Q¢;},;[;,5;QN_Q;WMHWM_WHmw“QA

kONTINUE |
CONTINUE



'_70;

. DO 254 I=1,JMAX

254  DIA(I)=0.

CALL LPROG (4, M,JHAX,A,B,SP, DIA ,0BJ)

DO 133 I=1,NTUNL

IF(DIA(I)—(GO *%2.63)) 181,181,182
181  KCODIA(I)= o

G0 TOo 133 '
182 IF(DIA(I)-(12O x%2, 53)) 183, 183 184
183 - KCODTA (I)= | |

. GO TO 133 ' :
184 IF (DIA(I)- (180.%%2, 63)) 185,185,186
185 KCODIA (I) 3 _ , »
GO TO 133

186  IF(DIA (I)- (240.%%2, 63)) 187, 187 188
187  KCODIA({(I)=4
‘ GO TO 133
188  IF (DIA(I)-(300.%%2.63)) 189,189,190 . .
189  KCCDIA (I)=5
GO TO 133
190  KCODIA(I)=6
133  CONTINUE
ICONT=0
DO 127 I=1,NTUNL
IF (KESDIA(I).NE. KCODIA(I)) ICONT=ICONT+1
127  CONTINUE
212 FORMAT (10F11.2)
IF (ICONT.EQ.0) GO TO 132 o e
DO 128 I=1,NTUNL
KESDIA(I)=KCODIA (1)
128  CONTINUE :
ITET=ITET+1
GO TO 131
132  WRITE(JWRITE, 13&)ITET
134  FORMAT {1X,'ITERATIONS DONE ON LPROG=',I10)
WRITE (JWRITE,212) (DIA(I),T=1,J4AX)
- KK=0
DC 50 I=1,NTUNL
103 DIANEW(I)—(DIA(I)*FACTOR)**(1 /2.63)
IF (EXIST (I)-.01) 255,255,256
256  KK=KK+1
DIAUSE(I)-(DIA(NTUNL+NSUPY+KK)*FACTOR)**(1 /2. 63) -
GO TO 50
255  DIAUSE (I)=0.
o IF (HL(I)) 101,102,101
C FLOW(I)-(FK(I)*(EIAFEW(I)**2 63+DIAUSE(I)**2 63)*
C 1ABS (HL (TI) ) **. SH*HL(I)/(ABS(HL(I))*1OO ))*100.
C GO TO 50
C FLOW (I) =0.
50 CONTINUE
'~ TCOST=0.
DO 35 I=1,NTUNL R
I¥ (DIANEW (I) .LE.O0.) GO TO 35

36 TCOST= TCOST+FLGTF(I)*1 1*DIANEW(I)**1 24
35 CONTINUE : ‘ :
RETURN

END



10

101
21

20
23

22
25

26
27
30

201
205

206

204

203
202
200

51

52

-71-

SUBROUTINE ORGLP {M,N,A,PK, EXD, Q IN JN KN NP NN, B HL, NEP JMAX,

1NSUPY, ISS,FACTOR)

DIMENSION A(H,N) ,FK(50), EXD(SO),FL(SO),Q(%O),IN(SO) JN(SO),
1KN(50),3(50),HL(50),7(50) 155(10) e

B (1) =0.
IWRITE=6
DO 10 K=1,NN" .
B (K+1) ABS(Q(K))

_J=1

DO 30. K=1 NN

S J=J+41 o

7.(J) =0. A

IF{O(K)) 1,1,2 .. ...
SIG=1,

‘GO TO 3

SIG=-1.

DO 25 I=1,NP

IF(HL(T)) 101,22,101

IF (JN(I) -IN(K)) 20,21,20 . . . e
AL, 1> bIG*“CTOR*F”I)*ABS(HL(I))** 54*HL(I)/ABS(HL(I))

GO TO 25
TIF (KN (I)-IN(K)) 22,23,22

A, I)=—bIG*FACTOR*fﬁ(I)*ABs(HL(I))**.Gu*HL(I)/Ass(nL(I))

GO TGO 25
A(J,I)=0. e L o .
7 (J) =7 (J) +A (J, I)**? PR =
Z (J) =SORT(Z (J))

IF(ABS (Z (J)) -. 00001) 26,26,30

WRITE(8,27) K ‘ e

FORMAT (1X, "NODE?, IS 'SHOULD BE IGNOBED')

CONTINUE . e
IF (NSUPY) 200,200, 201.

DO 202 I=1,NSUPY

KK=NP+I

DQ 203 KKK=2,J o

IF (ISS (KKK)) 204,208, 205

A (KKK, KK)=1. , S

ISS (KKK) =0. -

KKKK=KKK+1 .

DO 206 JJI=KKKK,J

A(JJ,KK)=0.

G0 TO 202

A (KKK, KK) =0. - I
CONTINUE : TR .
CONTINUE . ‘ NPT LTEN

CONSIDERATION OF EXISTING PIPFS

LL=0

DO 50 I=1,NP

»IF(PXD(I)— 01) 50,50,51 L
J=J+1 -
B (J) =EXD {T) *%2. 62/FALT0R
LL=LL+1 : T e
NNP=NP+LL+NSOPY ~ '
DO 52 K=1,NNP- ‘




DO 53 JJ=2,J -T2

53  A(JJ,NEP)= A (I, I)
CA(J,NND)=1.
50 CONTINUE

JEAX= NP+2*NEP+NSUPY ' R
ADD SLACK VARIABLES TO CORRESPONDING RXI'@TING PIPES

c
IF (NEP) 80,80,81. . . -
81 DO 60 K=1,NEP :
1= NP+NFP+K+NSUPY
CII=NN+14K

DO 70 KK=2,J
70 A (KK,TI)= 0.,

A(IT,I)=1.

60 CONTINUE :

80 WRITE {IWRITE, 63) - RPN

63 FORMAT (1X, ' INPUT INDICATOR 1=PRINT OUT A ﬂATRIX 0= NOT’)
READ (5,64) INDICA

64 FORMAT (T 1)
IF(INDICA) 65,65,66

66 WRITE(8,6001)

6001 FORMAT (' COEFFICIENT MATRIk')
DO 71 I=2,M

71 WRITE(8,6002) I, (A(I,K) ,K=1 ,JUAX) -

6002 TFORMAT (/1X,4HRO¥ ,I2,1X, 10F12. 10/(8X 10F12. 10))
WRITE(8,6003) »

6003 FORMAT (' CONSTRAINT ﬂATRIX')
WRITE (8,6004) (B(I),I=1,H)

6004 FORMAT (8X,10F11. 2)

65 RETURN

END
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"
6500
6502

N Wl

CTOL(3)

-73-

SUBROUTINE LPROG (ME,M,N,A,B,Z,DIA,OBJ)
DIMENSTON A(1),8(1) .7 (1),DIA (1), TITLE (1), INFIX(8) ,TOL (4),E (3000),

1 hOUT(?),nRR(R) JH(100) , X (100), P(100), {100) , KB {100)
CINFIX(1) = 4 S ,
INFIX(2) = N

INFIX (3) = ME

INFIX(Y4) = M

INFIX(5) = 2

INFIX(6) = 1.

INFIX(7) = 100

INFIX(8) =0

“TOL (1) =10.%% (~U)
TOL (2) =10.%% (-4)
=10, %% (-3}
TOL (4) 10. %% {(~10)
WRITE(6,92)
FORMAT (' OUTPUT FROM LPROG')
WRITE(6,91) N,ME,HM
FORMAT (' N=7,TI10,' HME=',T10,' HN=',I110)
PRM = 0. : -
B(1) =0.
CALL STMPLX (INFIX, ‘A, B, TOL,PRM,RKOUT,ERR,JH, X, P Y, KB, E)
Do 1 I=1,N : ;
Z(T)y = 0. ‘ ' ;
Do 2 I=1,8 . - - |
J = KB(I) {
Ir (J) 2,2,3 : : . |
Z(I) = X{J) ‘
CONTINUE
DO 5 I=1,N
DIA{I)=2(I)
OBJ = Y (1)
WRITE (6, 6300)(KOUL(I) I 1,7)
FORMAT (7110)
FORMAT (4E12.5)
RETURN
END.

oW




B S _74_
i e e | SUBROUTINE SIN“LX (INFIX,A B'TOL,PR”.KDUT' BRyJHy Xa Py Y, KB, E)ﬂw~mﬂ

NIMENSION I“rIYKB)yAll),R(I) TOL(4),KOUTLT), EQR{Q),JH(l)rX(I)c
1 PLLY, Y1) ,,KB(1),EL1),22(3), IOFIX(lb) » TERR{B):

e C e U O .. s e . e e e i e i e e e o e ot

FQUIVALENCE (INFLAG,INFIX(1) :.k(N , I0FIX(2) ) o

o AMELIOFIX{3) )y (M IOFIXL4)Y, IMF, InprxtsLy.,

(MC, IOFIX(5) )y ( NCUT, IOFIX{T) ) , { NVER, IODFIX{8) ),
{ X, IOFIX{9) ¥, (ITER, IOFIX(10) ), (INVC , IQFIX{11) ). »mm,«“,”
R LA s R ol o e e S s L e R T e S '
(INFS, I0FIX{14) ) 4 ( JT, ICFIX{15) ) ,{ LA , IOFIX(16) ),
(7701),TPIV), (77(2),TZERD),{ZZ(3),TCOST) ‘ ' o

~C S
‘ |

! B
O\m#‘»\)r‘-

_ . . Mf"VF INPUT§ ce s ZFRﬂ OUTPUTS
SR no 1340 1= sfmmwwmwwmwwm“mw-_“,wwm,“*w»wmwﬂﬁw,wwum~~m_mw_mw_m.
TERR{TY)
o INFIY{T1+8) —
1240 INFIX{IY) = INFIX(I) :
e LA = D e e i e , o R NENU— g
Ny 1398 I = 1 y 3 . )
1308 ZZOLY = TOUL LY e e e e e e
‘ TCOST = - ABS {TCNST)
P M I = P RM ot e e 2 et e e s et e+ et e
M2 = MERZ T ‘ ‘
e« INFS =1 o B e n e
C v CHFCK FOR ILLFGAI INPUT
o UTE UNY 1304 1305 e L3 Tl e e e e
1271 IF (M - MF ) 130%, 1304, 1372 | )
, 1272 IF (MF = MCY 1306, 1304,y 137 3 ot et e e e
T ORIy TTIE U NI4Ty TR A 13T A T e s e
1374 1F (ME - M ) 1304, 1375, 1375. _W,wmummwnwwwW*iwmeﬂwwmwwmw

1375 IF{~ MOD{INFLAG, 4) —1)11430,- 1370y100—w~»~~

]

Q
oo r
S o

C.
pe ST : ; ,
C  NEYW 1. . STARTS PHA%E [0 11 1 = S S S S -
C* ***SURPOUT[VE NFW (M,N, JH, X8, A, B, MF, ME )} /

c

. CINITIATE
Fo... . 1400 NN 1401 1 = 1, M. oo mm;WWWWﬁw&mehWﬂmum+WWM,+ww,mww_
1401 JHITI)Y = O /' ‘
LG o INSTALL SINGLETONS-— . . .. .. ol

KT = 0 - . .
e DL LA02 3 = Ty N ——

K3(J) =0 - A ,
KT o OMF b e e e e
KT + M S -

e T MM
’ Li

T

K =0 -




D0

1402 L =

MM

o LL

-75=

. TF (A{L)) 1404, 1403, 1404
1404 KN WKQ+1;MW;mwmﬁwmm@;wé,;mﬂpmm,wa,.m_ e i e i e
Lo =t ‘ '
- 1403, courxwusmﬁ.m»i‘“wu I e e v

C .

CHEFK WHETHER J IS CANDICATE.

T s

I (KQ -

1) 1402,

1405,

= Qe KT

1402 .

IF [ JH{TA) ) 1402, 1406:

C. .
1407

1406

1407, .

1402MMM

1407 -

IF (A(LQY*BLIA)) 1402,

JHETAY

J IS CANDIDATE.

1402
-.C
RN FND ﬂ

o G

c :
1220 CC

INSTALL oo

 ¥-3 ) ‘
CKBL3Y = LA I,ijiﬁyjj:::nfm;;wMwwwfM“;;;W;;;:;NM:EMQ_MJ_MMJ
KT = XT + ME ’ - o

F MEw e e e et e e e e e et e e e i

NI INUE~< e eoatie ‘:;:‘:“‘;;:,v“ o :‘;T,.""_::I':f.’ ity B e S <‘~W“~w~

VER. 1.
S sk e ook QU

(“Ahﬁﬁﬂ'

1100 AS
AS
IF
“IN
NU

R B B
1122

S~ FORMS INVERSE FROM..

RRPUTINF VER ( A,

By JHy X,

CINITIATE

SIGN 1102

T KPIV. . ‘5;

Y, ICFIX, TPIV, M

2

T KJIMY
1121, 1122...

STGN
(LA)

Ve

MVR . =

1114
1121,

NUMVR,w}lmWMN

.O,__ e e e e e et et e

e -t e e . O i Ly . ek e A TR s g 3 o s e i Y

)

KB e e
Ey KBy

A A AP < T BN R T oy, 2 Sh AP B s I 5w 1% 8 IS S S

- : no 1ot Ly M2 e e — —
: 1101 F(I) D..- wwmmw;wwwww
_ MM=1 - - h.w,‘mw_-Ai“w,wwm B . ~
e e 50 10 T B T G [ . O SO SIS -
E(MM) =1.,0 o -
T X T Y = BT Y s e e e e o o ot et e ot e . .
11L13°MM = MM + M ¢+ ] g
e DN 1110 ¢ _;MF, M. : - S
IF (JH(T)Y) 1111, 1110, 1111
e TLLY JHETY = 123450 ot i s i e
1110 CONTINUE ' R '
. INFS = } e e e e e e e e e e e e i
C FOQM IAVERQE :
e 2 e nno11922 JT= 1, N . el IS B
IF { XB{JT)) 600 }102‘, 600 ‘
e 60D CALL UMY {JTy Ay Ey My Y )
T C ' CHCOSE PIVOT S -
e XIVG TY = D e e e e e
DO 1104 1 = MF, M




1105

1106

. 1104 .

JHCIRY

CIF (JHLI)

1F (ABS
IR.. .=

TY = ABS

IF
BAY
KB(JT) =

n ug

KBLJST).
GN TO 900
CALL PlV

- 123
(Yen
B O

(Y

CONTINUE . .__

(TY - TPIV.. )
pIVNT,

s PR

60 TO 1102

T
IR

= TY ) 1104,

v | '476f-’
45 ) 1104,

n,

TYEST pIvOT
1107,
ROW 1R,

P IVO Y e o s e s e e 7 e o s i i . e 38 e o i =

1108, 110
COLUMN JT

S g e S L A SO R A T e bl S 8 Bt R e . SN, RS U G s P TR S WO i AP < o iR # 7L N S G 5

1105,
11049

‘1108

1104 .
1106 -

N

(IR,

CONTINUE

DN 1109

JHLTY = 0

CONTINUE © oo e

CH%END OF  VER

1112
1109
e B oS

C
100

i
)
1

i

: oéﬁf)ﬁrﬂr)ni'

1200

~1202

-1203
1205

1208.

1206

1201 .

G
c

S XCK- 1.

ASSIGN ..
ASSIGN
ASSIGN..

JIN. =

NEG =0 °
B0 1291 I

IF

X{r1)
GO TO 1201
IF
IF

X{1)
JHET)

NEG = Lo

JIN = 1

CONTINUE o
C*’END NF XCX . '

- o 1= et oo+ N U

IR0 JHLT) -

705
1000
- 221

=.MF,.
{ ABS [X(I)
= N0 - e

)

RESET AQTIFICIALS,_Mww“vmmN"mm-Mmme"waﬂwm S

1 =1
123

T0
10

X CHECKER - .o o
s *#xSUBRNDUTINE XCK (

s P

129

) 1201,

T0 !

Yy M’ Ev Zt

XY

M -
’
45 . ) 1109, 1112,.1109 .
NDEL. - dermm
KJMY
KPP T Vo e et e e e s e s o e e e | -
...... PERFORM ONE ITERATION. ...
M, MF, JH, X, TZERC, JIN )
QCSET X A“D CHECK FOR INFEAQIQILITIES
Mo i v -
} — TZERD) 1292, 1203, 1202
8y 1201y 1205 - o oo
1206, 1201 '



' : : =77~ S ' : - :

c . . CHECK CHANGE OF PHASE,, GO BACK TO INVERT [F GONE_ INFEAS. .
IF LINFS - JIN ) 132C, 500, 200 ' ‘ ' R S
BECOME FEASIBLE f:wiu_uNM;wam“;mww;;Ww,g,;mwmwm;f

)

200 INFS = 0 _ o | | R
201 PMIX = 0.0 - L

GET 1 GET ®RICES. . .. .
*****SUBRDUTINE GET ( M, MC, MF, JH, X, P, E, INF PWIX"_: ‘

M OAaA

Laa e T S 5
| CPRIMAL PRICES . ... .o oo .

(@]

502 NN 503 J =1, M '
PRI = EMMM )
503 MM =MM &+ M , . . -
oo IR UUINFS Y 501, 599y SOL.
c i COMPOSITE PRICES ‘
1 D0 S04  J = L M e e e e e e e
4 PLJY = PLJ)*x PMIX - o
NN 595 1 = MF, . M_. S . : : -
M3 = - i .
c e TFE D XTI ) 506y 50T 0 S T e e em e+ it e < et e et e
506 NN 503 J = 1, M~ : » :
: PUJY = PUUY b B MM ) o e o o ot e e e e e s 55 e i e e
508 MM = MM 3+ M
e GOTO 505 e e
507 IF (JH{1)) 505, 509, 5CS5
509 NN 510 J = le¢ M o
P{J) = P{J) - E(MM ) o
STO MM = MM Mo e et e
505 CONTINUE '
r .
599 CONTINUE v _ ,
CHORAND MF  GET oo oo o e e e i e e

T Y P R L PTG B A I DT L1 T R AR N AT, VoA TSR S SIS R 8 50

e e s s s s e e s e e e e g e s s i ety ok i i i AL e e e e e e s A o 4 e s e i i i o e o = woma s e es ke | n e Rose e ah 2| ot . e o o e e et et

-

e N e MIN D= .- SELECTS COLUMN THD ENTER BASTS e
#ptox SHRROYTINE MIN ( JT, N, M, A, P, KB, ME, TCOST )}

[ e e Tn}

e

700 JT = 0 , : L
CUBR = TEOST e

Wou

ST0L N0 702 UM = Yy N e e
g ' - SKIP COLUMNS IN BASIS
703 IF [ KB(JM) ) 702, 300, 702 S VA S I S S A
300 CALL NDEL { JM, DT, M, A,-P) S o ' _

709 IF (. DT = BB ) 708, 702, 702 . . ..
708 BB = OT ' B I

4]




c

702

Co

JT = UM
cQ VTINUF

Qe

203

. 600
619

601
606

602
605

4699

G

C

CGOTTO ST T I

Camy 1
£ sk A% SURRDUT INE

I3

‘*Zg;f

.i3+;MMMM£6%;M;6%; gbbwwﬂwuwf » V -TN-_* - - B
ALL COSTS NON-NEGATIVE... K.=.3 0OR &

K

3 + INFS

T3 MULTIPLY.
JMY (JT, A,

NN 610
Y{ry =o.
L =
LL 0
no. 605
LpP
1F
no

I

I=
Le + 1
{A{LP))
606 J

: 1Mo

6901,
1+

502,

NGRQALLthiE

JTXME. - ME. ...

aasxéwrNVFRss £ COLUMN JT

Ey

Yo 1 SN

M, -ME b

S S S e e (T e 4% N ST X M W o € . o % TS o % £ Y e o . et i R 0. P i R St 5
-
vy s PR o - e e A

e e - . omm BRSBTS A

L = L + 1. oot et e e e e e
YiJ)y = v(J) + Q(LP) * F(LL)
10 T 8 T30 L TS
LL = LL + M ’
CONTINUE. e oo e e e e o
GD TN XKJIMY T, {71000 » 1114 5 - 1392 ) e
CHXEND NF JMY '
ROW SELF(TIQN——C04?QSITE e i e

c

ROW 1.
Coexrerx SRR 0T INE

ROW { IQr

G-
1700

1041

1047
1043
1048
1044

.nn.

IR
AA
IA

N

1050 [ = MF,
(X(1Y ) 1050,
ABS {YL{I) ) -
Y1
JHIT) ) 1043,
1050, 1048,
1050,

0

IF
Yi=
IF
T
IF  (IA)

IF Yoy v

1041

=.0.0. ST

TP1V )
llolf‘l' I3

My

?

10

1050,

1060, 1050, 1042

MF, JH, Xy Yy TPIV )

1050

C AMONG EOS. WITH X‘O, FIMD MAX ABS(Y) AMONG APTIFICIALS, OR, IF NUNE,
GFT MAX PNSTITIVE Y(I) AMONG REALS. i e e e o

1063, .
50 :
1045.

IF (ra) 1045, 1046, 1045




e IF XY - AA ) 1004, 1005, 1010

1045 IF | I - AA ). 1050, 1050, 1047 o

1047 AA.
: IR e : S ' o
_1050C CONTINUE i e e L e
IF(IR)1099,1001, 1099 : = - Co
1001 AA=1.05+20 ) ’ .
c ' FIND wlﬁ._elyOI.AvnNr PASITIVE FOUATIONS- o :
DO 1012 IT = MF , M . e e e e B
IF ( Y(ITY - 7TPIV ) 1010, 1010, 1002 o T
1002 IF { X(IT) ) 1010, 1010, 1003 _
1003 XY = X{IT) / Y(IT) : ' : : T

1005 IF { JH(IT)) 11710, 1004, 1010
1004 AA Y e e e e e e e
IR IT
1010 CONTINUE -«
IF (NES) 17016, 1099, 1016 _
C  FIND PIVAT AMONG NEGATIVE EQUATIONS, IN WHICH X/Y IS LESS THAN THE..
C MIMTMUM X/Y IN THE POSITIVE EQUATIONS, THAT HAS THE LARGEST ABSF(Y)
A 0L 6 BB = = TP IV o e e e e e e e e e
DN 1039 1 = MF , M , '
: IF {(xX{1)) 1012, 193¢, 103@ S et e et e e e
1012 IF ( Y(D) - 88 ) 10227 1030, 1030
1022 1F . {. Y{I) * AA .-  X(I) . ) 1024, 10244 103D i e e
1024 B8R = VY{(I]) '
.. IR .. = | [ i s o o 1 8 47 e o i v w1 e o e o A Ao e st e £t et et e et e e
?,0 CONTINUE B . '
O CON T INUE i e e e e s e e et
NP OF ROW

: TEST PTVQT
N6 . IF{ IR ) 207y 207y 210 i e
. NOJ PTVOT ,

207 K = .85 il - S it e o 2 o e e e o

257 - 1F (PMIX) ?Olo 400, 701

Y pio e ITERATIUN LIMIT FOR rUTVOFF

210 IF ([TFR —MCUT ) - 900, 160, 163
. N S e PIVOT FOUND -
C o
L PIV 1 PIVAT.. PIVOTS ON GIVEN ROW -
CxEXxXXSPYRRDYTINE . PIV - { IR, Y, M, E, X, NUMer TECDL )
o G e e LEAVE TRANSFORMED TOLUMN IN YU oo

c - co T S

‘,qgj NUMDY = NUMPVY 4+ L5 o o

YI = =-Y(IR)

CvIR) = -1, ﬁ/‘m.,, S ' e e e e e
C ' ' o TRANSFORM INVFRSE




e L= QHW,._wggm;*ﬂfgwwwmwmmmfn.,@_ww;" e
903 D0 904 L = IR, M2, M - . o
e IF CLUELL) ) 995, 914y 905 i e
914 LL = LU+ M B R
e B0 TR 900G e e i e e
905 XY = FE(L) / YI S T o T -
LY S0 e oo o e e it e e e ol : s
no 906 T =.1'.”f~k3v B T
PO . LL= LL +1.. i e i o e i e ,...w;.‘,.,..,_w—a.;....-...-—-....m...‘_...,..,_.....'w..,._.._;_..t...._..,.;......._;.'gﬂ..v.,_-m._...‘..‘-.-. -
Q06 E(LL) = E{LL} #XY* Y(I) : . ; Sl
904 CONTINUE. ‘muwmw,"nM«*-"-_m;_m,;; e e e o et £ e e
co. T TRANQF”RM R ERN R
DU XY = X{IR) / YI
X{1) = 0O,
[ DN 908 T Y g M i e m 2 o one e e e S e e e e e e e s s et e i e
908 X(T1) = (1) +XY* Y{1n . v
oo i __RESTORE Y(IR ).w_,,m e e e e e e e i 2 e e
Y{ IR ) = -Y1
e o S o -
999 GN TO KPIV , ( 221, 1102 ) -
LT E NTY  OIF P IV o o oo e e e oo e e et 2o i o 542 e e e £ 3t 2

220 o T A = JHUI R o o s et mrom et e e -8 75 o i e e e S e £ . R e
IF { 1A ) 213, 213, 214 T
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APPENDIX B

JOINT LINEAR PROGRAMMING-DYNAMIC PROGRAMMING

MODEL COMPUTER LISTINGS
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CAPACITY EXPANSION FOR NEW YORK CITY BY DYNAMIC PROGRAMMING
WILLIAM MADDAUS ROOM 1-371 HIT SPRING, 1969
DYNAMIC PROGRAMMING MONITOR E
DIMENSTION IUP(50),IDOWX(50),ITUNL(50),FLGTH(50), H(SO),
1LXIS”(50),£ESDIA(50) INODES (50) YIP(SO),XJN(SO) XKN (50) ,
1XIN(60)'LOC(SO),r(10),NUﬂ(10),FSDIA(%0),XNU'(10),XL0C(50)
COMMON/DYNAMC/T,J,K,N,DELT, DR, G, HL,ALFB5, NODES, NTUNL, S (10,10) ,
1D{10,10,10) ,R(10, 10 10) Q(1O 10, 10) ,F (10, 10),ISTATE(1O 10), -
2DESIGN (30,10, 10),FXCON(3O 10y, DIAS (30, 10, 10),QF(50) IWRITE
C READ PARAMETERS . _ ;
IWRITE=8
. WRITE(6 101) '
101 ORMAT {(1X, 'INPUT FILE NUMBER') .
READ(S 102) IREAD
102  FORMAT(I1)
. READ(IREAD, 100) T, DELT DR, G ALF85
100  FORMAT(5F10.1)
WRITE (IKRITE, 106) T,DELT,DR,G, ALFSS
106  FORMAT(1X,'INPUT DATA'SF8. 3) ,
‘ READ (IREAD,5001) XNP, XNN,HWL FACTOR
5001  FORMAT (4F10.1) ,
NTUNL=XNP
NODES=XNN :
DO 2 IF=1,NTUNL
READ (IREAD, 500 2) XIP(IF),XJN(I”),XKN(IF),FLGTH(IF) EXIST(IF),
1ESDIA (IF)
ITUNL (IF)=XIP(IF)
IUP (IF) =XJN(IF)
IDOWN (IF) =XKN (IF)
KESDIA (IF) = VGDIA(IF)
2 © CONTINUE . B
5002  FORMAT (6F10.1) |
po 3 1J=1,NODES . "
READ (IREAD,5002) IN(IJ),OF(IJ),H(IJ)
INODES (1J) =XIN (TJ) - .

oo’

3 CONTINUE
READ (IREAD,5001) POI,POF,XND.
ND=XND
WRITL(IWRITL,103)-ND«

103 FORMAT (5I5) '

WRITE (IWRITE, 5002) POI,POF
po 7 1=%,ND . '
READ(IREAD,5003) XN,POP .. -

NUM(I) =XN
P (I) =POP
. c WRITE (IKRITE, 5005)&UM(I) P(I)

7 CONTINUE

’ READ (IREAD, soou)(XLOC(I) =1, NODES)
po 8 I=1,NODES -
LOC(I)—XLOC(I)

c WRITE (TWRITE,5006) LOL(I)

8 CONTINUE . ,

5003  FORMAT (2F10.3)

5004  FORMAT (10FS. 1)_ S

5005 FORMAT(110,910;3),:~




5006

110

10

rs

115

30 -

, - -84~
FORMAT (101I5)
N=T/DELT+1
=1
K=1
THE COST FOR STATE ZERO IS ZERO
WRITE (IWRITE,110) I
Do 5 I=1,N - :
S (I, 1)=0. : '
OR%AT(SX,'STAGE NUHBER'I2)
D(I,1, 1)—0.
R(I,1,1)=0."
F(I,1)=O.
CONTINUE
I=1
FOR STAGE 1
DO 6 L=1,NTUNL
EXCON (L, 1) =EXIST (L) , S .
TP=0. ' ' '
DO 10. J=2,N
TP=TP+DELT
S(1,J)=TP ~ . -
D(I,J,K)=
YFAR=1970.+ (J-1) *DELT
CALL DENCAP(NODES,LOC,QF,POI,POF,P,NUM,YEAR,T) _
CALL COST (INODES,ITUNL,IUP,IDOWN,FLGTH,H,HWC,EXIST,KESDIA, FACTOR)
F(I,J)=R(I,J,K)
CONTINUE S o S e
CALL NEW ‘
FOR ALL SUCCEEDIKG STAGES
DO 50 I=2,N
WRITE(6,110) I
WRITE (IWRITE,110) T
FOR EACH STATE
DO 45 L=1,NTUNL
DO 45 J=1,N : - o ;
DIAS(L,J,d)=0.0 . -
DO 40 J=2,N
WRITE (IWRITE, 115) J
WRITE(6,115) J
FORMAT (2X, 'STATE NO.'I2)
TP=TP+DELT.
S(1,d)=TpP . .
FOR "'EACH DECISON ,
TD=0. R
D(I,J,1)=0 - e
R(I,J, 1= o B T
YEAR=1970. +(J- 1)*DELT '
CALL DEMCAP (NODES,LOC,QF, POI POF,P,NUM,YEAR,T)
DO 30 K=2,J : :
TD=TD+DELT
D(L,J,K)=TD ' ‘
CALL COST(INODES TT?NL IUP IDPWV FLGTH,H,HWC, EXIST KESDIA,FACTOR)
CONTINUE , ‘

CALL SELECT



40

125

50
60
120
200
205

210

215

220

225

85
230

235
90
92
240
95

- -85-

CONTINUE
NSTAGE=T -

CALL NEW .

XPROV=F (I-1,H) -F (I, N)

¥RITE (IWRTTE, 125) T,F(I,N),XPROV
FORMAT(///,5X,'COST AFTER STAGE'I2,2X'IS $°'

1F12.1,5X, '*IMPROVEMENT = $'F10.1//) .

IF(XPROV .LT. 100.0) GO TO 60 -

CONTINUE -

WRITE (IWRITE,120) F(I,X)

FORMAT (15X, ' HININUM STAGED CONSTRUCTION COST
WRITE(IWRITE, 200)

= S'F12.1)

TORMAT (////20X'CAPACITY EXPANSICN BY DYNAMIC PROGRAﬁMING’//)

WRITE (TWRITE,205)
FOR%AT(/?%x'wva YORK CITY DATA'/)
WRITE (IWRITE,210) T,DELT,DR

FORMAL(?OX,'DESIGN PERIOD ='F5.1,2X'YEARS',/30X'TIME INTERVAL "F

15.1,2X'YEARS!' /30X ' DISCOUNT RATE -'FS 3)
WRITL(INRITE 215)

FORMAT (//25X*STATE'3X'D FCISION'ZX'STATE IN'UX'INCREMENTAL'2X'TOTA.
TLY3X'MINIHMUN RETURN'/U3X'LAST STAGE'SX!'RETURN'S5X? RETURN'ZX FOR THI .

2S5 STATE!//)
DO 95 I=1,NSTAGE
WRITE(IWRITE,220) I
FORMAT{/,5X, 'STAGE NO.'I3)
Do 95 J=1,N
IF(I .GT. 1) GO TO 85
DEC=D(T,J,1)
PREVD=0.0
WRITE (IWRITE, ?25) $(1,J) ,BDEC,DPREVD,R(I,J,1)
FORMAT (20%X,3F10.1, 3%,2F10.1)
F(I,J)=R(I,d,N) .
GO TO 92
WRITE(IWRITE,230) S(I,d)
FORMAT (20X,F10.1)
DO 90 ¥=1,J
DEC=D(I,J,K)
PREVD=S (I,J) -DEC"

,0(1,d,1)

WRITE (IWRITEZ,235) DEC,PREVD,R(I,J,K),0(I,J,K)

FORMAT (30X,2F10.1,3%,2P10.1)
'CDWTIRUF
RITE (IWRITE,240) F(I,J)
FORMAT (7T4%,710.1)
CONTINUOE :
END
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snaaouwrnw DE ACAP(NODES LoC, QF, POT, pof P,NUH, YFAR »T)
DIMENSION P(10),NUM(10) NY(10) cn(10) c1(10) LOC(SO) Qr(SO)
MY=2
IWRITE=8 -
ND=6 I . B ST
NY(?)-1970.v L
NY (MY) = YEAR .
D=1./T . . '
 R= (POF poz)/(pox*w)
DT=NY (MY) -NY (1)
DO 18 I=1,ND S
.CA(") P(I)*(1 +R*DT)
DN=NUM (I) :
CA (1) =150. O*CA(I)/DN
CM(I)=1.5%CA(T). S R
18 CONTINUE -
0suM=0.0 ; e Bl s
DO 25 I=2,NODES . :
LOCNOD=LOC(I) - -
QF (I) =CM (LOCNOD)
QSUM=QSUM+QF (I) -
25 CONTINUE
Qw(1)=—(qum+1oo,)
WRITE(IWRITE,100) YEAR,R :
100  FORMAT (/10X'YEAR —'910 1, sx'caoaTn RATE ='F10. u/)
RETURN ) .
END '
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SUBROUTINE COST (INODES, ITUNL,IUP,IDORWN,FLGTH,H,HWC,EXIST,K IA,
1FACTOR) : _
CAPACITY EXPANSICN FOR NEW YORK CITY BY DYNAMIC PROGRAMMING
WILLIAM MADDAUS ROOM 1-371 MIT . SPRING,1969 =

THIS SUBROUTINE CALLS THE OPTIMIZATION ROUTINE AND CONVERTS

THE TUNNEL DIAMETER COST TO A NET PRESENT COST

DIMENSION. IUP({50) ,IDOWN (50), ITUNL {(50) FLGTH(%O),H(SO),

1 TCOST(%O),DIANEW(%O) EXISW(SO),INODES(SO),DIAUSE(SO) KESDIA(SO)-'
coMMON/DYNAMC/T,Jd,K,N,DELT,DR,G,HL,BLF85,NODES, NTUNL, 9(10 10) ,
1D(10,10,10) ,R (10, 10 10) Q(10 10 10) ,F(10,10) ,ISTATE (10,10),
2DESIGV(3O 10, 10) nxcou(Bo 10),DIAS(30 10 10) QF(SO),IWRITE
IREAD=5 _ o
IF(I .EQ. 1) GO ‘T0 3

DO 2 L=1,NTUNL

EXIST (L) =EXCON(L,J-K+1)

WRITE(IWRITE,301)I,J,K

"FORMAT (3110)

WRITE (IWRITE,200) (EXIST(L), L 1,NTUNL)

"FORMAT( 10F11.2)

CALL NCOST(NODES,NTUNL, INODES ITUNL,IUP,IDOWN, FLGTH EXIST,
1QF,H,H4C,TC,DIANEW,DI AUSE,KXESDIA, FACTOR)
wRITE(IWQITF 302)TC

FORMAT (' TCOST=',F11.1)

HRITE(IWRITE 201)

FORMAT (! ”****EXISLING DIAMETERS*****')
ARITE (I¥RITE,200) (EXIST (L) ,L=1,NTUNL)
WRITE (IWRITE,204)

FORMAT (! *%x%¥JSED DIAMETER¥*%%%1)

WRITE (IWRITE,200) (DIAUSE(L),L=1,NTUNL)
WRITE (IWRITE,202)-

FORMAT (' *%¥*x%XNEW DIAMETER®*%%%1)

WRITE (IWRITE,200) (DIANEW(L),L=1,NTUNL)
WRITE (IWRITE,203) : :

FORMAT (! %% %% DEMANDX* k%% 1)
WRITE(IKRITE,200) (QF (L) ,L=1, NODES)

TCOST (K) =TC

DG 5 L=1,NTUNL .
DIAS(L,J,K)=DIANFW(L)
ALF75=43.5

IF(I .GT. 1) GO TO 6
XINT= (J-1) *DELT
XPREV=0.0

COSCHG=1.0" e

R (I,J,K)=TCOST (K)

DO 8 L=1,NTUNL :
DESIGN(L,J, l)vDIAVEW(L)
DO 9 L=1,NTUNL -
Excow(h,a) =EXIST (L)
ISTATE(J,1) =3

G0 TO 19 S
XINT=(K-1) *DELT . -
XPREV= (J-1) *DELT-XINT ; T
COST INCREASE OR DECREASE IN 1982 . .
IF (XPREV .GT. 7.0) GO TO 10

. COSCHG=1.0




GO TO 15 ,
10 COSCHG= ALr85/ALF75
15  TCOST (K) =TCOST (K) *CCSCHG
c NET PRESENT COST
18 . R(I,J,K)= TCOST(K)/((1+DR)**XPREV) .
19 WRITE(IWRITE,100) K,XINT,XPREV, TCOST(K) R(I J K)“

100 FORKAT(1X,'COST',I10, u(ax F10.1)).
RETURN :
END -
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SUBROUTINE NCOST (NODES,NTUNL,INODES,ITUNL,IOP,IDOWN,FLGTH,
1EXIST,DEMND,HEAD,HWC,TCOST,DIANEW, DIAUSE KESDIA FAPTOR)
DINENSION INODES (50) ,ITUKNL (50) ,IUP(50), IDONN(SO) FLGTH (50),
1EXIST (50) ,DEMND (50) , HEAD(SO) DIA(lOO) A {15000) , KESDIA(SO),
2DIANEW (50) ,SP (100), FLOH(SO),DIAUSE(SO) ISS(10) ~
DIMENSION HL(50), FK(SO) ALPHP (50) ,KCODIA (50), B(SG)
NKAX=15000" , , : .
IWRITE=8 . e e e e e e e e e ”-,.L.._m‘.‘ -
C COUNT THE NUMBER OF EXISTING PIPES : o
NEP=0
DC 15 I=1, NTUNL o
: IF(EXIST(I)—.01) 15;15,16
16 NEP=NEP+1 o
15 CONTINUE
NSUPY=0
DO 500 I=1,NODES
IF (DEMND(I)) 501,502,502
501 NSUPY=NSUPY+1
ISS(I+1)=1
GG TO 500
502 ISS (I+1)=0 . :
500 CONTINUE . ' |

c WRITE (6,55) ,
55 FORMAT (1X,' INPUT INDICATOR, 1=PRINT OUT NODES ,NTUNL,NEP, 0=NOT')
C READ (5,2) IPRIN1 ‘ A o

2 FORMAT (I1) k

c IF (IPRIN1) 23,23,52

! WRITE(IWRITE,6001) NTUNL,NEP,NCDES,FACTOR
6001 FORMAT (///10X,28HTOTAL NUMBER OF PIPES = ,I3/

1 20X,27HNUMBER OF EXISTING PIPES = ,I3/
2 30X, 18HNUMBER OF NODES = ,13,
3 40X,'FACTOR=',F10.5) s

23 DC 11 I=1,NTUNL .
11 HL (I) =0. A :

DO 5 I=1,NTUNL

11=0

JJ=0

DG 6 J=1,NODES : ;

IF (TUP (I) .EQ.INODES (J)) II=d o SR

- -IF(IDOWN(I) .EQ. INODES(J}) JJI=J , S
6 CONTINUE ' :
© IF(II) 5,5,7

7 IF(JJ)5,5,9 .
9 © HL(I) = HEAL(II)—HEAD(JJ)
5 FONTINUE o o
C | WRITE (6,56) S S o e e
56 FORMAT(1X, ' INPUT INDICATOR, 1 PRINT NODES AND PIPES CONDITIONS,
1 0=NOT?) - ' . ,
C "READ (5,2) IPRIN2 . . . . . _\,m”;-w;wﬁ_www,y”w<vhguwr,*”mm
C IF(IPRIN2) 100,100,53 o

WRITE (IWRITE,6002) ' ' : ,

6002 FORMAT(///12X,U4HNODE, 17X, 8UE XISTING ,5%,"HEAD LOSS',/1X,U4HEPIPE,
14X,5HBEGIN,2X,3HEND,4X,6 HLENGTH, 4X, 8HDIAMLTER) R
o 19 1=1, N UNL
RIT“(IWRITE 6003) ITUNL(I) ]P(I) IDOWN(I),FLGTH(I),EXIST(I) HL (I

19
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L) ‘

6003 FORKAT (I4,6X,13,3X,13,3X,F7.0,6X,F4. 0, 6x, F7.1)
C. WRITE (IWRITE, 6008) o :
6008 FORMAT(//1X,'NCDE', 10X,'DEHAND(MPD) )

C DO 25 I=1,NODES

c WRITE (I®RITE,6004) INODES(I) BEHND(I)
6004 FORMAT (I4,10X,F10.0) ,
100 DO 30 I=1,NTUNL

-~

30 FK(I)— 00062*HHC*TLGTH(I)**( -0. Su)
~ M=NODES+NEP+1 PR ,
N=NHAX/M a

CALL ORGLP(M,N,A,FK,EXIST,DEMND, INODES, IUP, IDOWN NTUNL,NQDES,B,
1HL NEP, JMAX,VSUPY 1ss, FACTOR) _ MR :
ALPHA=1.1 A
ITEND=10

' ITET=1

131  IF(ITET.GT.ITEND) GO TO 132
DO 21 I=1,NTUNL
KKK=KESDIA (I)

, GO TO (121,122,123,124, 125 126), KKK
121  ALPHP(I)=3.72E-03

GO TO 21
122 ALPHP (I)=9.75E-04
" GO TO 21
123 ALPHP (I) =4.84E-04
GC TO 21 R .
124 ALPHP (I)=2.41E-04 B
' Go TO 21
125 | ALPHP(I)=2. 163-0u
GO TO 21
126 | ALPHP(I)=1.58E-0l
21 CONTINUE

DO 129 I=1,NTUNL

JJ=M* (I- 1)+1

A(JJ)—ALPHP(X)*FLGTH(I)
C WRITE (IWRITE,601) JJ,A(JdJ)
601 FORMAT (1X,"A{( ’,IS,‘)=',F11.2)W*.
129  CONTINUE ‘ :

IF (NSUPY) 503,503,504
504  DC 505 I=1,NSUPY
‘ JJ= JJ+H -

T A(JJ) =
C WRITE(IWRITB 601)JJ A(JJ)
505 = CONTINUE = .
503 F (NEP) 250,250,251, B
251 JJ=H* (NTUNL+NEP+NSUPY- )+1 2

DO 253 K=1,NEP

JI=JJ+H

: A (JJ) =0.

o WRITE (IW RITn,601) 34g, A(JJ)

JJJ JJJg+n ,
s A (JJdJ)=0. . e
C WRITE (IWRITE, 601)JJJ A(JJJ) gg:\t.: '
253  CONTINUE :
250 CPNTI\ZUE

i
i
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DO 254 I=1, JHAX ‘
DIA(I)=0. : ' S
CALL LPROG(M,M,JMAX,A,B, SP DIA OBJ) B
DO 133 I=1,NTOUNL. S
IF(DIA(I)—(6O *%2.63)) 181,181,182
KCODIA(I) =
GO TO 133 o
IF{DIA (1) {4297*#2r63%)~183 183 184 i
"KCOLDIA({I)=2 , : -
GO TO 133
IF (DIA(I)-(180.%*2, 63)) 185,185,186
"~ KCODIA(I)=3 ) L
GO TO 133 : '
IF(DIA(I)-(240.%%2.63)) 187,187,188
KCODIA(I) =4
GO TO 133
IF (DIA(I)-(300.%%2.63)) 189,189,190 -
KCCDIA (I) =5 : ' ‘
GO TO 133
KCODIA(I)=6
CONTINUE
ICONT=0
DO 127 I=1,NTUNL
IF(KESDIA(I) NE.KCODIA{I)) ICONT= ICONT+1
CONTINUE
FCRMAT (10F11.2)
IF(ICONT.EQ.0) GO TO 132
DO 128 I=1,NTUNL— —— - —
KESDIA(I) KCODIA(I)
CONTINUE )
ITET=ITET+1
GO TO 131 -
WRITE (IWRITE,134) ITET
FORMAT (1X, 'ITERATIONS DONE ON LPRCG=',I10)
WRITE (LWRITE,212) (DIA(I),I=1,JMAX)
KK=0
DO 50 I=1,NTUNL
DIANEW {(I)= (DIA(I)*rACTOR)**(1 /2.63)
IF(EXIST(I)-.01) 255,255,256 .
KK=KK+1
DIAUSE(I)—(DIA(NTUNL+NSUPY+KK)*FACTOR)**(1 /2.63)
GO TO 50 , . ;
DIAUSE (I)=0.
IF(HL(I)) 101, 102,101 '
FLOW(I)—(PK(I)*(DIANEW(I)**2 63+DIAUSE (I)**2, 63)*
1ABS (HL (I)) **. 5u*HL(I)/(ABS(HL(I))*1oo ))*100. .
GC TO 50 , : , ‘
FLOW(I)=0." o R :
CONTINUE T e

TCOST=0.

DO 35 I=1,NTUNL .

IFP{DIANEY (I).LE.Q.) GO TOC 3s. . o

TCOST= TCOST+FLGTH(I)* 1ﬁ2§g§25(1)**1,24
CONTINUE . ]

TCOST= TCOST/1000 » cL v

"RETURN . , ,.A;;;”w;muﬁ,v,;AQT;;J.mﬂwrm”;_.;-;."
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SUBROUTINE ORGLP (M,N A, FK, EXD, Q, I, Jn, KX, NP, NN, B, HL NEP JMAX,
1NSUPY,ISS,FACTOR)

DIMENSION A(M,N), FK (50) , EXD(50) , FL(SO) Q(SO) IN(SO) JN(SO),‘
1KN (50) , B (50), HL(SO) 2(50) 155(10) ~ ,

B (1) =0.
IWRITE=8
, - DO 10 K=1,NN Sl . -
10 B(K+1T“HBSTQTHJ) T
J=1 - L Ee
DO 30 K—1 NN
Jd=d+1 .
Z (J) =0. .
IF(Q(K)) 1,1,2
1 " 5IG=1.
GO TO 3
2 SIG=-1. S
3 . DO -25 I=1,NP L -
IF(HL(I)) 101,22,101 : : ‘
101 IF (IN({I)- IN(K)) 20,21,20 . ..
21 A(3,I) = SIG*FACTOB*FK(I)*ABS(HL(I))** S4*HL (I) /ABS (HL (I))
GO TO 25
20 IF (KN(I)-IN(K)) 22,23,22
23 A(J, I)—~SIG*FACT0R*fK(I)*ABs(HL(I))** Su*HL(I)/ABS(HL(I))
GO TO 25
22 A{J,I)=0.
25 7 (J) =Z (J) +A (J, I)**Z

Z (J) =SQRT (Z (J)) .
IF (ABS (2 (J))-.00001) 26, 26 30 '

26 WRITE (IWRITE,27) K ~ ,
27 FORMAT (1X, ' NODE' , 15, ' SHOULD BE IGNORED')
30 CONTINUE - S

IT (NSUPY) 200,200, 201,
201 DO 202 I=1,NSUPY
KK=NP+I S
DO 203 KKK=2,J
IF (ISS (KKK)) 204,204, 205
205 A (KKK,KK)=1. - :
ISS (KKK) =0.
KKKK=KKK+1 :
DO 206 JJ KKKK,J
206 A (JJ,KK) = .
GO TO 202 , o S )
204 A (KKK, KK)=0. - - e
203 .. CONTINUE S e
202  CONTINUE ' ;
C  CONSIDERATION OF EXISTING PIPFS”‘“‘”””’"“”“”“*“”“
200  LL=0 , S

DO 50 I=1,NP o
A IF(EXD(I)-.01) 50 50,51
51 J=J+1

B (J) =EXD (I) **2. 63/FACTOR

LL=LL+1 o : o

NNP=NP+LL+NSUPY.

- DO 52 K=1,NNP .

52 A (J,K)=0.




53 .
50

- 81

DO 53 Jd=2,J

A (JJ,NNP) =A(JJ,I)

A(J,NNP)=1.
CONTINUE
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JHUAX= NP+2*NEP+NSUPY

| ADD SLACK VARIABLES

I7 (NEP) 65,65,81
DO 60 K=1,NEP °

TO CORRESPONDING RXISTING PIPES

I=NP+NEP+K+NSUPY

IT=NN+1+K

DO 70 KK=2,J
A (KK, I) =0.
A(II,I)=1.
CONTINUE

WRITE (6,63)

FORMAT (1X, 'INPUT INDICATOP 1= PRINT OUT A MATBIX 0= NOT')

READ(5,64) INDICA
FORMAT (I 1)

IF(INDICA) 65,65,66

WRITE (IWRITE,6001) .

FORMAT (' COEFFICIENT MATRIX')

DO 71 I=2,M
WRITE(IWRILE,6002)
FORMAT (/1X, 4HROW
WRITE (IWRITE, 6003)

I, (A(I,K),K=1 , JHAX)
,12,1X,10F12. 10/(8X 10F12.10))

FORMAT (' CONSTRAINT MATRIX?)

WRITE (INRITE,6004)

(B(I) ,I=1,1)

FORMAT (8X, 10F11. 2)

EETURN
END
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INFIX(3)
~ INFIX(4)

92

91

11
6500 .
6502

INFIX(8)

04—
SUBROUTTNE LPROG(ME ,N,2,B,%,DIA, OBJ)
DIMENSICN A(1),B(1), Z(1),DIA(1) INFIX(8) TOL(Q),L(3OOO),

IWRITE=8
INFIX (1)
INFIX (2) .

INFIX(5)
INFIX(6)
INFIX (7)

T TR T TR TR

o;a-amrzzzzr;

oo;'

TOL (1) =10. **( a)
TOL (2) =10.%% (-4)
TOL(3) = -10.**(—3)
TOL(4) = 10.%%(-10)
WRITE (IWRITE,92)
FORMAT (' OUTPUT FROM LPROG')
WRITE(IWRITE,91) N,ME,HM B
FORMAT (! N=',110,' ME=',I10,' m=',110)
PRH = 0. T -
B(1) =0.
CALL SIMPLX (IVFIX A,B,TOL,PRYM,KOUT,ERR,JH,X,P,Y,KB,E)
po 1 I=1,N
Z(I) = 0.~
po 2 I=1,N
J = KB(I)
IF (J) 2,2,3
Z(I) = X(J)
CONTINUE
DO 5 I=1,N
DIA(I)=2Z(TI)
OBJ = Y(1)
WRITE (IWRITE, 6500)(KOUT(I) I= 1 7)
FORMAT (7110)

‘FORMAT(uh12 5)

RETURN '
END

KOUT(?),ERR(8) JH (100) ,X(100) ,P{(100), Y(100),KB(100):,;_
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SUBROUTINE SELECT .

CAPACITY EXPANSION FOR NEW YORK CITY BY DYNANIC PROGRAM&ING
WILLIAM MADDAUS ~ ROOM 1-371 HMIT SPRING, 1969

THIS SUBROUTINE CHOGSES THE MINIHUM COST DECISION GIVEN THE STATE
COMKON/DYNANMC/I,J,K,N,DELT,DR,G,HL,ALF85,NODES, NTUNL, S (10, 10y,
1p (10,10, 10) ,R(10,10,10),0(10,10,10) ,F (10,10) ,ISTATE (10, 10) ,
2DESIGN(30 10,10),EXCOV(30 10), 91A5(30 10, 10),QF(50) IWRITE -

IREAD=5
QMIN=1.E 10
JJ=J
Do 10 k=1, J : :
0(1,J,K) R(I d, K)+F(I 1 JJ)
SEARCH FOR MININUM COST
IF(Q0(1I,d,%) .GT. QMIN) GO TO 9
QMIN=Q(I,J,K)
KOPT=K
JJOPT=Jd4d
JJ=JJ-1
CONTINUE
F(I,J)=QMIN
DO 15 L=1,NTUNL
DESIGHN (L, u,I)—DIA%(L J, KOPT)
WRITE(THRITE,TOO)(DESIGN(L J,I) ,L=1,NTUNL)
FORMAT (10F10. 1)
XINT= (KOPT-1) *DELT
XPREV=(J~-1) *DELT-XINT
ISTATE(J,I)=JJOPT ’ o
WRITE(IWRITE, 105) KOPT, XINT,JJOPT,XPREV, F(I d), DESIGN(L J,T)
FORMAT (1X,'SELECT'18,¥F8.1,18,3E8.1)
RETURN
END

‘¢




-96~—

SUBROUTINE NEW . o :
WILLIAM MADDAUS ROOM 1-371 MIT spRIqG 1969

c _
C CAPACITY EXPANSICN FOR NEW YORK CITY BY DYNAMIC PROGRAMHINGA’,
C THIS SUBROUTINE UPDATES THE EXISTING SYSTEM BY USING o
C HYDRAULICALLY EQUIVALENT PIPES FOR TWO PARALLEL PIPES
: coMmMoN/DYNAMC/T,J,K,¥,DELT,DB,G,HL,ALF85,N0DES,NTUNL,S (10, 10),

1D{(10,10,10) ,R (10, 10 10) Q(1O 10,10) ,F (10, 10),15;ALE(10,10), .

ZDESIPN(BO 10,10), EXCON(BO 10y, DIAS(30 10,10),@@450} nglg%

- IREAD=5

P=2.63

‘N1=N-1 SR, e N
- " WRITE (IWRITE, 90) - LN
90 FORMAT (10X, 'NEW EQUIVALENT PIPES')

DO 10 L=1,NTUNL
DO 10 JK= 1 N1
J=N-JK+1
JJ=ISTATE(J,I) : - o . .
DEXIST=EXCON (L, JJ) , ' '
DNEW=DESIGN(L,J,I) - .
C ~ DIAMETER OF THE PYDRAULICALLY vQUIVALENT PIPE

DEQUIV= (DEXIST**FP+DNEW**P) ** (1.0/P)

‘ EXCON(L,J) =DEQUIV

: 100 FORMAT (10F10.1)

| 10 CONTINUE

L WRITE{IWRTITE, 100)(EXCON(L,J),L‘1 NTUNL)

‘ RETURN .
END , S e e e




APPENDIX C

AN ALGORITHM FOR THE OPTIMAL ALLOCATION

OF PRESSURE LOSS ALONG A PROPOSED PIPELINE
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An Algorithm for the Optimal Allocation

Of Pressure Loss Along a Proposed Pipeline

A pipeline is to be constructed from A to B. The hydraulic

grade line is fixed at A and at B as well.

HA ~ T
\\\\\ 'YA R
\\
HC F ‘‘‘‘‘‘‘
iy
(1-8)Q
D D BQ
1 2
f‘ , L f (1-o)L ‘B
r R
Figure C-1

The purpose of the pipeline is to deliver the total quantity of water,
Q. Part of the total flow is required at B and part at C, an
intermediate location between A and B. The amount delivered to B is
BQ, where 0 < B < 1. The remainder is delivered to C. Location C is

a distance oL from A, where 0 < o < 1.

The total head loss between A and B is

and this is fixed at some given value. Ultimately, we wish to determine
the diameters D1 and D2 which are optimal in the sense that the total
cost of the pipeline from A to B is a minimum. This simple problem is

referred to below as the "basic problem'".
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Of greater practical interest is the more general problem where
there are many intermediate points between the extremities of the pipeline.
This is referred to below as the 'serial problem'. In the general serial
problem, there are many more decision variables than there are in the

basic problem.

It appears that the serial problem is equivalent to a cascade
of basic problems. Both problems involve the allocation of the total

head loss across the system to the branches within the system.

If we knew how to do this for the basic problem, where there
are only two branches, we could solve the serial problem as a

simultaneous set of solutions to the basic problem.

To find the optimal allocation of head loss in the basic
problem, we proceed as follows. For any one branch, the pipe diameter
needed to transport a flow rate q at a total pressure loss h over a

distance % is:
D =K q" hP 2® (c-1)

where, for D and £ in feet and q in mgd,

_ -.381
K = 1.264CHw
s = .205
r = .381
p = —-.205

(CHw is the Hazen Willismas pipe coefficient).

The total cost of a pipe is

m

Cy = <D 2 (c-2)
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where

1.89 for pipes and 5.8 for tunnels

0
144

R

1.24

so that the pipe cost, as a function of head loss is

cy = k™ qrm hPm £1+Sm = (¢)(1.825) CHW—.473 q.473 h—.255 21.255
(c-3)
The total cost of the system from A to B is
CT - (c)(1‘825)(cHw_.473) [(uL)l.ZSS Q.473(HA_HC)—.255
+ ((1-a)L)1'255 (BQ).473 (HC_HB)—.ZSS] (C=4)

Let y be the proportion of A to be allocated between locations A and C

HA - Hc = YA
so that
HC - HB = (1-y)A
Then
_ -.255 255 _
Cp = e[&l Y +5,01 Y) ] (c-5)
in which
e = (c)(l.825)(CHw—.473) L1.255 Q.473 A_'255 (C-6)
51 = al'255 (c-7)
gz _ (l—a)1'255 B.473 | (C-8)

The minimum cost obtains from

dc
Cr_,
ay
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where
dc
T _ -1.255 ) _y—1.255
& - e[-.2558, v + .255¢,(1 Y) ]
thus
_ €
AYyl.255 _ 2 (c-9)
Y £
so that
y = r 1.0 57 (C-10)
2,0
l+(£—)
1

Note that El and €2 are functions only of o and B. Since Yy is a
surrogate for the allocation of the total pressure loss from A to B,

it follows that the optimal allocation of this head loss is a function
only of the relative location of the intermediate point and the relative
amount of the initial flow transported all the way from A to B. 1In

terms of o and B:

1

y = (c-11)
1+(l;oc)[30.377

Example:

Let o = .5, B =.5

/Q/z /Q/Z
A L/2 cC L/2 B
Figure C-2

Then

Sl = a1.255 = .418

£, = (1 - 0l g 473 o 501
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¢, = el.418y "2 + 30101 2]
2255 (1-w) (1-p"% )Py (3o a-y) c
Y ¥ ) _ T/
.2 1.507 .8  1.059 629 .319 948
4 1.263 .6 1.139 .528 .343 .871
6 1.139 .4 1.263 477 .380 .857
.8 1.059 .2 1.507 443 453 .896
¥ L = 0.565

A Second Example

optimal 14(0.5)0-377

The next step is to apply these results to a more general

case where there are two intermediate withdrawal locations.

H

~ - h1
~ H
~_C
~__hy
“J}D-___t_‘:i___a
B
Q Q
oo f v fr ]
| 1
Figure C-3

As before, the total head loss between A and B is A.

Assume, for example,

that C and D are equally spaced between A and B and that the withdrawals

are as shown in Figure C-3.
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Let the unknown head losses between these locatiomns be h_, h

1> 72

and h3 as shown in the figure above. Applying the basic algorithm to

~*he interval from A to D gives

With the requirement that

h1 + h2 + h3 = A

we have three simultaneous equations.

The solution is:

hl = 0.422A
h2 = 0.326A
h3 = 0.252A

The Serial Problem

To apply the basic algorithm, to the serial problem, proceed
as follows. Let the total number of demands be N so that there are N
concatenated branches, and N decision variables; and we need N
simultaneous equations. The first equation, as above, derives from the
fact that the sum of the decision variables (i.e. the hi) must equal
the total pressure loss. The other N-1 equations result from applying
the basic algorithm to every contiguous pair of branches. For each
pair, a value of Y must be computed from Equation (C-11). The

simultaneous equations are particularly easy to solve by substitution
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because most of them involve only two unknowns. The first equation

links the other equations together.

Sensitivity Analysis of Total Cost

Equations C-5 to C-8 are useful, not only for computing the
total cost of the solution to the basic problem, but also for estimating
the effect on total cost of small changes in the various quantities

that have an impact on total cost.

It was initially assumed that L, Q, C.. and A are given as

HW
fixed quantities. As a matter of post-optimal interest, we may want
to know how changes in these quantities affect the total cost. In

particular, what change in each of these will produce a one per cent

change in the total cost. This is a classic problem because the total

cost equation is of the simple form
y = axb (C-12)
where x is the particular variable of interest to the sensitivity

analysis, and y is the total cost. We need to differentiate

Equation C-12

dy _ pPL -
e abx (c-13)

so the change in y for a small change in x is approximately

Ay = ab LAt (C-14)

The relative change in y is given by Ay/y, which, from Equations

C-14 and C-12, give

-éyz- = —————abx Ax = b A_X (C-lS)
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It follows that the percent change in x to produce a one percent change

in y is approximately equal to 1/b. (C-16)

Economists have defined a specific measure of sensitivity
that they apply to analysis of price changes caused by factors which
affect prices. That measure is called "elasticity' and is defined, in
our notation, as the ratio
54
_A—.EL. = F (c-17)

X

The value of E is a measure of the relative change in the factor, x
needed to produce a unit relative change in price, y. In this case,

y denotes total cost. To follow the economist's lead, adopt the
convention that the total cost is inelastic, or relatively insensitive,

to change if IEI is less than unity; conversely, if greater.

In our case, we have the simple relation

Ay
= —J = -
E T b (c-18)
X

so the exponent of a term in the total cost equation gives us a direct

measure of the elasticity of the total cost to changes in that term.

We can summarize the total cost sensitivity analysis in the

following table.
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Elasticity Per Cent Change to Produce One

Factor (E) Sensitivity Percent Change in Total Cost
A=HA-HB -.255 Inelastic 73.9
0] .473 Inelastic 2.1
L 1.255 Elastic 0.8
CHw -.473 Inelastic -2.1
D* 1.24 Elastic ' 0.8

Table C-1

(*Note, the diameter, D, is not a factor which directly is controllable.
The first 4 factors jointly constrain the feasible diameter so the value
of D results from the decision making process. The fact that the cost is

sensitive to D is why we examine the decision making process closely.)

Sensitivity Analysis of Head Loss Allocation

The parameter Y denotes the proportion of the total head loss
from A to B which is allocated to the branch from A to C. Therefore,
this parameter is a good surrogate for the term "head loss allocation".
We are interested in how this term is affected by other factors in the
problem, and we are also interested in how small changes in y affect total

cost.

Consider, first, the factors which may influence Y. Inspection
of Equation C-11 shows that only o and B are used to compute Y. Hence,
we can conclude that the four terms A, Q, L and CHw have no affect at all

on y! Next, consider the two factors o and B.
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First, as before, compute the elasticity

Ay Ay

= —d =
Ea ég_ and EB éﬁ
o R

The algebra is more involved than before so the details are not

presented here. After some manipulation we get

él B0.377

K do 1-a, ,0.377 (=19
o I+(—)B""

o
and él -0.377(lé9930'377
= Y ] —

"8 A8 1-0,,0.377 (6-20)

B l+¢7;06

In this case, the elasticities depend on the values o and B. Suppose
we have o = 0.5 and B = 0.5 as in the first example. Then the
elasticities we obtain are summarized below in Table C-2.

Factor Elasticity Sensitivity Percent change in factor needed
to produce one percent change in ¥y

o 0.87 Inelastic 1.15
B -0.164 Inelastic -6.1
Table C-2

These results show that the head loss allocated to the first branch is
relatively much more sensitive to the location of the intermediate node

than to the relative distribution of withdrawal between the two nodes.
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Increasing o, which corresponds to moving point C closer to point B,
results in a small increase in Yy, which would increase the head loss
from A to C with a corresponding decrease from C to B. Increasing B,
which corresponds to moving some of the water use from C to B, results
in a small decrease in Yy, which would decrease the head loss from A to

C with a corresponding increase from C to B.

Also of interest is the sensitivity of the total cost to
dcC
changes in Y. Because the value of Yy is derived from setting _E§- equal
to zero, it follows that the total cost is insensitive to small variations

in v in the vicinity of the optimum. The marginal elasticity of CT with

respect to Yy is zero!

Implications for Distribution Networks

The method described here for the serial problem'can be adapted
to non-looping networks with a single source of supply. A non-looping
network is shaped like a tree. 1In this kind of network, the number of
branches is one less than the number of nodes. The supply occurs at
one of the nodes so there are as many branches as demand nodes. As
before, it is possible to set up a set of simultaneous equations to
compute the allocation of pressure losses by recursive application of an
expanded form of the basic algorithm. The basic algorithm is not
sufficient to determine the pressure allocations where more than two
branches meet at the same node. The new system of simultaneous equations
contains non-linear as well as linear equations so a special solution

technique is also needed.
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Consider the case where there are three branches.

Figure C-4

The supply is at A. There are demands at B, C and D. (The notation
used here is slightly different from the previous notation.) The head

loss from A to C and from A to D is fixed. Let

so that the total cost is a minimum. The total cost, according to

Equation C-3 is
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CT _ 1'8250CHW_.473 Q.473 L1.255-{(1+81+82).473 AO—.255
(Cc-21)
473 0 1,255 -.255 473 1,255 -.255
By (8,-B) tBy T (8,0 }
The optimum solution follows from
dcC
dAO

This leads, after some algebraic manipulation, to the implicit equation

for AO

473 o 1.255 -1.255

1 1 (8,-84)
(C-23)

-1.255 _

473 o 1.255 0

- 82. 2 (Az'Ao)

The algorithm for allocating the pressure losses throughout a

" non-looping network must account for the non-linear equations. There is

one non-linear equation for each junction node. There is one linear
equation for each node that is not a junction. These linear equations
involve only the pressure losses in two adjacent conduits. The set of
linear equations for the nodes between two junction nodes can be used to
solve for the head loss in the conduits adjacent to each junction as a
function of the total head loss in the link between the junction nodes.
In this way, most of the linear equations can be solved separately from

the non-linear equations.
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Upon substituting the previous results from the linear equationms,
the non-linear equations are transformed into a set of relations between
total head losses in adjacent links. Originally, the non-linear equations
related only the head losses in conduits adjacent to the junction node

so the new equations are much more useful than the original equatioms.

Remaining to be solved are a system of linear and non-linear
equations. We have one non-linear equation for each junction node. We
have one linear equation for each extremity which specifies the total
head loss through the system from the supply to the extremity of the
system. The unknowns in these remaining equations are the link head
losses. When these are determined, the problem reduces to a set of

original serial problems.

An approach to solving this system of non-linear equations is
as follows. Let X denote the unknown head losses. Let B denote the
vector of right-hand-sides of the equations. Then the equations are

equivalent to
AX = B

in which A is a matrix of coefficients, and some of these coefficients
are functions of X. Assume an initial estimate of X exists. Call this

XO' Use the values of XO to compute the coefficients of A. Call this

A Since we must have

0"
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and we continue until X is close enough to Xi' The link head losses

i+l

141 These are the total losses between junction

nodes and between junction nodes and boundary nodes. The problem of

are then contained in X

allocating the head loss between these nodes is the same as the original

serial problem.



