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ABSTRACT

The water distribution network design problem is to find the

optimal set of investments in pipelines thdt are needed to satisfy water

requirements. The strategy of this study has been first to define an

optimality criterion for ranking alternative investment opportunities

and then to formulate a mathematical programming model for solving the

optimal investment problem. The least cost optimality criterion leads

to a non-linear mathematical programming problem for which no computa-

tional methods exist that guarantee an optimal solution. Other existing

techniques that yield "good" solutions are computationally inefficient.

The strategy taken in this study has been to modify the least

cost problem so that linear programming could be applied to achieve a

solution to the modified form of the problem. Variables were transformed

to linearize the non-linear terms in the pipe flow formula. In this

way, the non-linear flow phenomenon is represented exactly. The resulting

linear programming model may be used to determine the pipe diameters of

pipes that must be added to the system to satisfy given sets of water

requirements that are expected to occur at a given future time.

Water requirements increase with increases in population and

economic productivity. To meet these growing requirements, excess capacity

must be provided. The problem of deciding how far into the future the

system should be planned is known as a capacity expansion problem. The

capacity expansion problem has been formulated as a dynamic programming

problem and applied to the water distribution network expansion problem.

534491

-4



ACKNOWLEDGEMENT

The material presented here was developed in a program of

applied research in engineering systems analysis into the primary

water distribution system of the City of New York. The project was

sponsored by the Bureau of the Budget of New York City in Connection

with a proposed five stage, billion dollar addition to the existing

network of deep rock large diameter tunnels. The purpose was to use

the principles of engineering systems analysis to determine the

characteristics of the most economically effective design for large-

scale water distribution systems. Additional support was provided for

developing new systems analysis techniques by an M.I.T. Sloan Basic

Research Grant.

The project was executed in the M.I.T. Urban Systems

Laboratory under the leadership of Dr. Richard de Neufville, Dr. Peter

S. Eagleson, Dr. John C. Schaake, Jr., Dr. Joseph Stafford, and

Dr. Frank Perkins, and supported by B. Bayer, J. Dubinsky, J. Hester,

M, Hester, D., Lai, W. Maddaus, and D. Picard, as well as the assistance

of R. Arnott, P. Messeri, N. Scanlan, K. Swartz and S. Vick.

The members of the project wish to express their appreciation

for the, support provided by Mr. David Grossman, Deputy Director, New York

Bureau of the Budget; Professor C. L. Miller, Director, Urban Systems

Laboratory; Commissioner Maurice Feldman, of the Department of Water,

Sewers, Gas and Electricity; and Mr. Vincent Terenzio, of the New York

City Board of Water Supply.

July 1969



TABLE OF CONTENTS

ABSTRACT

TABLE OF CONTENTS

Chapter 1

Chapter 2

Chapter 3

INTRODUCTION

Summary

Literature Review

Contributions to Water Distribution
System Analysis

Contributions to Water Distribution
System Design

LINEAR PROGRAMMING PIPE NETWORK OPTIMIZATION

Introduction

Linear Programming Model for One Demand Pattern

Constraints for Each Node

Objective Function

Non-linear Programming Model

Linear Programming Model Via Variable
Transformation

Consideration of Existing Pipe Network

Consideration of Multiple Demand Patterns

Some Features of the LP Formulation

Computer Programs

Examples

APPLICATION OF DYNAMIC PROGRAMMING

TO CAPACITY EXPANSION

Introduction

Dynamic Programming Formulation

Application to a Simple Water System

1

1

2

3

6

10

10

12

12

14

16

17

22

23

26

26

31

37

37

37

43



TABLE OF CONTENTS (continued)

page

Chapter 4 A JOINT LINEAR PROGRAMMING-DYNAMIC PROGRAMMING

MODEL FOR DISTRIBUTION SYSTEM DESIGN 56

Introduction 56

Validity of Dynamic Program to Total Network Problem 58

Computer Programs 58

An Example 59

REFERENCES 66

APPENDIX

A. Computer Program Listings for Linear Programming 67
Network Model

B. Joint Linear Programming-Dynamic Programming Model
Computer Listings 83

C. An Algorithm for the Optimal Allocation of Pressure
Loss along a Proposed Pipeline 97



Chapter 1

Introduction

The estimated annual investment for water distribution systems

in the United States is $1.5 billion or $7.50 per person (ASCE, 1969).(1)

The most costly parts of most water supply systems are the distribution

facilities, which include pipe networks as well as the pumping and

storage components. These complex systems must be designed to satisfy

a multitude of criteria imposed by many different water users, ranging

from lawn sprinkling and fire fighting to the various industrial and

domestic needs.

To design facilities to serve these diverse needs at minimum

cost is a challenging goal. It is evident that the economically

efficient allocation of resources to water distribution facilities is

unlikely without systematic, objective, and computationally efficient

design methodologies.

A complete consideration of a water distribution system design

should consist of the following items: (i) diameters and head losses

for all pipe elements (ii) multiple sources of supply (iii) pumping

stations (iv) elevated and ground storage reservoirs. An adequate

design, while giving least cost, should meet possible different demand

patterns which represent different times of day, various fire flow re-

quirements and special industrial uses.

Summary

A principal objective is to present a Linear Programming

Formulation of the optimal network design problem. Since this problem
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may be shown to involve a concave nonlinear minimum cost objective function

subject to linear constraints, many local optima exist making the global

optimum difficult to find. For practical purposes, approximate formu-

lations which eliminate the concave non-linearities should be useful.

One major benefit is the insight into the design problem which may be

gained. Another benefit is that "good" solutions may be found although

they are not likely to be optimum according to the original objective

function. Important information may also be supplied by the dual solu-

tion indicating the binding constraints on the system and giving the

marginal costs associated with increasing the constraint levels.

In the next chapter, the linear programming model is presented.

Since water systems are usually constructed to supply growing water

demands, the time sequence of possible capacity expansions to meet growing

demands is considered in Chapter 3 in the context of a Dynamic Programming

application. This Dynamic Programming-Capacity Expansion model treats

the system as a "lumped" system. In Chapter 4 the Linear Programming

model is used as a suboptimization model to produce designs under various

conditions specified by the Dynamic Programming Model. This represents

an initial attempt to state the network design problem as a capacity

expansion problem. Much more work is needed to test the limitations of

the joint DP-LP model. Additional work also is needed to study more

completely the properties of the Linear Programming model.

Literature Review

A brief review of the work of most of the previous investigations

on water distribution system analysis and design has been given by Pitchai(2)

in 1966, so the objective here is to extend that review to include inves-
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tigations being reported since then. The following review of recent

literature has attempted to identify contributions both to analysis and

design aspects. Analysis and design are essentially different approaches.

In the former the focus is on understanding or evaluating; whereas, in

the latter, the focus is on making decisions.

In a relative narrow sense, we may call a distribution system

a design problem if the pipe diameters are unknown and are to be deter-

mined. In such cases, there usually exist a number of solutions which

satisfy the specified design criteria. The engineering practice is that

the solution which gives the least cost (or maximal benefit) is chosen.

If the set of pipe diameters is given, then the distribution

problem becomes an analysis problem. The analysis objective is to de-

termine for each node, the pressure, and to determine for each pipe, the

flow magnitude and direction. These flow conditions must satisfy the

following physical laws of the network:

(i) the algebraic sum of head loss around each loop must be zero;
(ii) flow into each node must equal flow out of the node; and
(iii) the proper relation between head loss and discharge must

be maintained for each pipe.

It has been demonstrated by Pitchai that there existsan unique solution

to the analysis problem.

Contributions to Water Distribution System Analysis

The preponderance of past work on distribution system has

concentrated upon solving the non-linear equations that describe their

hydraulic behavior. The pipe diameters are given, and the problem is

to solve for unknowns which in general may be pressure or consumption
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at the nodes or the resistance of the pipe. It can be shown that, for

a specific network with known consumptions, the problem is exactly

determined, i.e., there are as many equations as the unknowns. Because

of the nonlinearity of the equations, the solution is achieved by

successive iterations using a suitable scheme which achieves convergence.

If the consumptions at the nodes or the resistances of the pipes are

not all known, other information should be adequately supplied so that

the problem is reduced to an exactly determined problem. In general,

the methods of system analysis employed would depend upon the types of

unknowns existing in the distribution system.

The most recent and significant work on water distribution

(3)system analysis was presented by Shamir and Howard in 1968. They

applied the Newton-Raphson method to balance networks under very general

steady-state flow conditions. The Newton-Raphson technique is a root-

finding process which finds new improvements or corrections to the values

of the unknowns in each iteration. The improvements or corrections are

computed from the linearlized Taylor Series expansion, evaluated at the

present state of the solution. The network problem considered by Shamir

and Howard may contain pipes, pumps, valves, etc., and unknowns may be

combinations of pressures, consumptions or element resistances. Govern-

ing equations used are the continuity equation at each node, so there

are N equations assuming there are N nodes. One can then solve for

N unknowns.

The Newton-Raphson method deals with the whole network at the

same time so that corrections are made simultaneously in order to account

for the joint interaction of all corrections. This method takes into
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account the effect of changing any one variable (pressure, consumption

or resistance) on the entire network. This latent sensitivity information

mades the Newton-Raphson method particularly useful for design purposes

also.

Like any iteration procedure to solve nonlinear equations,

the Newton-Raphson method may encounter convergence problems. In this

case, the mathematical criteria for convergence for all possible combina-

tions of unknowns have not been established. Therefore, it is not now

possible to test, a priori, for convergence of hydraulic network analysis

by the Newton-Raphson method. It has been observed by de Neufville

(4)et al. (1969), that "divergence may occur if a particular pipe in a

network is especially smaller than the others." As this particular small

pipe was artificially made larger, the divergence problem was eliminated.

(5) (2)
It has been the experience of some investigators (Warga, 1954; Pitchai,

1966) that a good starting guess will usually lead to a solution.

Probably the method most commonly used for balancing a hydraulic

network is the Hardy Cross method. The method is well suited for solution

by hand and is easily adapted for machine computation. The method can

be approached either by balancing flows or by balancing pressures. Both

the Hardy Cross and Newton-Raphson methods solve the nonlinear equations

by iterations. The Hardy Cross performs iterations on separate equations

one at a time, which requires small amounts of computer storage but may

need excessive computation time for a large network. Also, the Hardy

Cross method may not converge when a network contains some large pipe of

short length and relatively small flow (Dillingham, 6 1967). Some pro-

cedures, such as using linear formula between discharge and head loss
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when the head loss is less than 1 foot, have been developed to handle

this difficulty. But still, there is no guarantee of convergence. In

addition, the Hardy Cross method does not readily provide a sensitivity

analysis.

Contributions to Water Distribution System Design

There never has been a comprehensive study to develop methods

for optimal design of pipe network, pumping and storage facilities.

Efforts have been devoted either to the optimal design techniques of

(1) (7
pipe network and pumping facilities (Pitchai, 1966; Jacoby, 1968) or

to economical trade-offs between the booster pumping with ground storage

(8)reservoir and elevated storage (McPherson, 1966). Since in the proposed

method of approach, storage costs are not considered, review of the

literature will be concentrated on work related to pipe network design,

including pumping facilities.

A few of the many alternate methods of formulating a minimum

cost design objective have been explored. A notable study was completed

by Pitchai( ). He formulated the design problem as a non-linear

integer programming problem which he solved with a random search technique.

Cost of pipes and annual cost of energy used are included in the objective

function to be minimized.* Constraints may be imposed, such as: minimum

permissible pipe sizes; maximum permissible head loss along a specified

*Not all energy costs appear to have been accounted for since the energy
costs are taken as the sum of all of the energy losses in the network.
This omits accounting for the energy released to the consumer as potential
energy associated with the pressures at the demand nodes.
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path; and operating pressures to coincide with characteristic curves

of pumps. The constraint on maximum permissible head loss along a speci-

fied path was used to augment the objective function as a penalty function.

A Newton-Raphson method was used for balancing the network.

The optimum was sought by a sequential, random sampling scheme. The

processes began with an initial guess of design diameters which served

as a so-called central design. That design was subsequently analyzed

with the Newton-Raphson method. By the defined cost function, the system

cost for that particular design was computed. The next step was to

generate randomly a set of designs about the central design. Then, the

corresponding design costs were determined, and the best design among

them was selected to serve as the central design of next random cast.

The results given show that the system cost decreases with the number of

casts, but there is no proof that the global optimum is found. Large

amounts of computer time are required. For example, the computer time

required for a design with one demand pattern for a 25-loop network with

only a single source of supply and no other pumps or reservoir was 8

minutes on an IBM 7094 computer. To study marginal sensitivity of design

to the constraints, the constraints must be changed and new designs run.

A design with multiple demand patterns was also considered.

The design procedures follow nearly the same way as when there is only

one demand pattern; except that for any set of design pipes, there will

be a system cost corresponding to each demand pattern. The largest one

among the different demand patterns is chosen as the representative

system cost. Moreover, the minimum cost among the alternate designs

is taken to be the total system cost. The design from this minimax
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approach appears to be very sensitive to the penalty assigned to the

violation of maximum allowable head loss along specified paths. If

the penalty imposed is very large, i.e., no violation of maximum allowable

head loss is allowed, one can anticipated that many trial and error pro-

cesses are required to get a set of feasible design diameters. No

discussion on this matter was given.

The second recent study (Jacoby,(7) 1968) is very similar to the

previous study by Pitchai. One difference is that constraints were

stated as inequalities by Jacoby, in contrast to Pitchai's equality

constraints. The cost function and the constraints were combined to

form a "merit function" from which Jacoby sought the optimum by a gradient-

random search iteration method. After the continuous solutions were

obtained, they were rounded to the nearest integer solutions. If these

round-off results were not feasible, the Hardy Cross method was applied

to eliminate this infeasibility. Because the objective function has many

local optima, the technique does not assure that the global optimum will

be found. The author of the method advises that "caution should be used

to avoid local minima." To study sensitivity of the design to variation

in either parameters or constraints requires changing these and again

running the program. In the paper, information on the computational

efficiency is not presented and an important question of handling multiple

loadings is not considered.

One common characteristic of these two existing optimal design

methodologies is that they use iterative search techniques to seek the

optimum designs. A major disadvantage of these is the relatively high

cost of the required computations compared to possible costs of other
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more direct methods and the method to be proposed here. Moreover, in

the two methods proposed above, there is no assurance that better designs

do not exist than the designs which are considered as optimum.

(9)In another recent study, Karmeli et al. (1968) studied a

simple branched network, i.e., a network without loops, with only one source

of supply, and fomulated the design problem as a linear programming prob-

lem. Because the network is branched, the discharge that each pipe will

carry can be computed. The diameters taken into account for each pipe are

determined in advance. As a result, the friction loss per unit length

for each diameter to be considered can be computed. The decision variables

are the piezometric head at the sources and the length of each predeter-

mined diameter to be allocated to each branch of the tree-shaped network.

The constraints are the total length of each pipe and the minimum allow-

able piezometric head at each node. The method does not allow for multiple

demand patterns.

(10)One other study was made by Smith (1966), who used a random

search-steepest descent method to begin to explore the response surface,

followed by a linear programming procedure to guide the solution toward

an optimum. The constraints were specified as linear equalities. The

objective function was similar to that used by Pitchai and appears to

have the same discrepancy with respect to energy costs. Multiple demand

patterns were also accounted for.
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Chapter 2

LINEAR PROGRAMMING PIPE NETWORK OPTIMIZATION

Introduction

It appears possible to formulate the minimum cost network

design problem as a linear programming problem. This is an attractive

approach due to its computational efficiency and because its solution

promises to give valuable insights to the sensitivity analysis of demands

to the total system cost. In this chapter, the linear programming

problem will first be formulated for design of a new distribution system

for a single demand pattern with possible multiple sources of supply.

To this model, the capability will be added for designing new additions

to .an existing pipe network system. Finally, additional generalization

to take care of the multiple demand pattern will be considered. Problems

involving multiple demand patterns have been formulated, but no compu-

tational experience exists for multiple demand patterns at this time.

The functions of the LP computer programs will subsequently

be described, and the results of an example using the LP program will be

given. Assumptions will be stated when they are made. Listings of all

computer programs are given in the appendix; it should be understood

these are experimental programs which have evolved out of this research

effort.

As this model is presented, it will clearly be shown that the

network cost minimization problem is essentially a non-linear problem.

By means of variable transformations, all constraints may be linearized,
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but the objective function remains non-linear. This could be dealt with

conveniently if the non-linear cost functions were convex. Unfortunately,

this function is concave so it becomes extremely difficult to find the

global optimum since many local optima may be shown to exist in this

case. No technique ever applied to the water distribution system opti-

mization problem can be claimed to have "solved" this problem in the

sense that the global optimum is given with certainty. For example,

Pitchai C and Jacoby both used random search techniques which

do not necessarily lead to the global optimum.

Since there is no assurance the original non-linear problem

is solved by any existing technique, it seems that other formulations

of the problem may also have practical value. In many systems problems

other than water distribution systems, it has often been worthwhile to

create a linear version of the problem, even when the problem is not

basically linear, in order to gain the insights that linear formulations

are known to give. Thus, one of the important merits of a linear-pro-

gramming-water-distribution-model is an improved understanding of water

distribution design which may result from these insights. The value

of these kinds of insights was appreciated by the noted mathematician,

Hamming() who prefaced his famous book on numerical

analysis with the statement, "The purpose of computing is insight, not

numbers." This might also be restated in terms of systems analysis or

mathematical programming. Hopefully, the numerical results from linear

programming models of water distribution systems may also be useful for

many applications.
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Linear Programming Model for One Demand Pattern

Constraints for Each Node. The formulation follows from the

observation that, at each node in the network the relation

K..d.. < - Qj1,...,m (2-1)
Ii ii - J

must be satisfied. The index j indentifies a specific node and i identifies

a neighboring node; d., is the pipe diameter between nodes i and j; m is

the total number of nodes; p is a constant whose value is approximately

2.5, and Q is the demand or supply rate at node j. The sign convention

is that flows into the nodes are considered negative and flows out, as

positive. The left hand side of Eq. 2-1 represents the algebraic sum

of flows in pipes connecting to node j. K.. is a measure of the potential
1J

for conveying water between the nodes i and j and can be expressed

functionally as

K.. = g(f, H., L..) (2-2)
1J 1J I

where the sign of K.. is the same as that of H.., the head loss between

the nodes i and j. The terms f and L.. represent the friction coefficient

and pipe length, respectively. The Hazen-Williams formula, which is

commonly used for water distribution studies, was adopted to relate the

pipe discharge and head loss. Accordingly,

p = 2.63

and

H
-4 H.. 0.54

K._ 6.2 x 10 C ( 11) '(2-3)13 HW L_.
1J

This gives discharge in cubic feet per second if d. .is in inches and
1a

H.., L.. are in feet.
UJ 1
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For a given pattern of demands imposed on the system, there

usually is a minimum pressure at each node that must be maintained.

This depends on the topographic elevations of the distribution system

service area and the residual energy that is required by codes imposed

by fire insurance underwriters or by requirements for normal operation

purposes. Determining these pressures requires sound engineering judg-

ment and must be done as a step in the design process. The actual

operating pressures will generally exceed these minimum pressures.

Designing the system to give adequate operating pressures should consider

the economics of allocating pressure losses throughout the system.

In this LP model, the operating pressure at each node must be

specified in advance of computing the optimum pipe diameters. This must

be done so that the quantity H.. is defined and may be used to compute

the magnitudes of the elements in the LP coefficient matrix. It follows,

therefore, that the LP model does not explicitly yield the optimum operating

pressures throughout the system and that the optimum diameters which

are given are related to the specific pressure pattern associated with

the set of values of H...
1J

Analysis of the sensitivity of the cost of water distribution

systems to various parameters shows that cost is relatively insensitive

to pressure loss so that some variation from the true optimal operating

pressure should be acceptable. Moreover, near the optimal setting of

any unconstrained decision variable, small changes may be made in the

decision variables without affecting total costs. Operating pressures

are often constrained by required pressures at the extremities and are

essentially unconstrained in the interior of the system since the total
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head loss along a given path is fixed. To see if a given head loss

distribution along different paths is near optimal, the LP model can be

used successively for different distributions. If small changes in the

pressure pattern have little effect on cost, the pattern is near optimal.

The economics of allocating pressure losses is discussed in

an appendix. It provides an algorithm for allocating the pressure loss

along a pipeline, given the total pressure losses between the source

and the extremities. The total cost of pipelines alone is minimized,

and the algorithm is applicable only for a network which does not have

a loop path. The pressure head at each node may be determined by the

algorithm and the whole network system may then be designed using the

heads obtained. Proposed tree-shaped networks so designed will be

optimal in the least cost sense.

The node equations, Eq. 2-1, represent a set of m constraints,

assuming there are m nodes. Assume there are n pipes where n is

usually greater than m. For n > m, the implicit function theorem states

that the diameters of m of the pipes can be expressed in terms of sizes

arbitrarily assigned to the remaining n - m pipes. A unique solution,

therefore, does not exist, so it is meaningful to seek a minimum cost

solution.

Objective Function. Considering first the capital cost of

the installed pipe, the cost per linear foot of pipe is approximately

(Linaweaver et al., 1964)(12)

C.. = ad..1.3 (2-4)
'J a

where a = .36.
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For tunnels, the cost per linear foot is approximately

1.24
C =1.1 d.. (2-5>ij 1J

The unit of d is inches. The cost expressed by Eqs. 2-4 and 2-5 has

considered the cost of the land, pipelines, and the costs of operation

and maintenance. Eqs. 2-4 and 2-5 are the result of cost analysis

over 50 oil, gas and water pipelines and about 20 tunnels. The costs

given here are based on an ENR cost index = 877. In engineering opti-

mization problems, estimating precise cost coefficientsfor each variable

is usually difficult. Since it is felt that there is no other repre-

sentative formula, Eqs. 2-4 and 2-5 are used throughout this report

for pipe and tunnel costs. For clarity and convenience, from now on,

the index i shall denote pipes and index j shall denote nodes. More-

over, there shall always be n pipes and m nodes. The total cost

of all pipes in the network is then

n13
C = a L.d. (2-6)

Pi=l

Consider next the power cost. It seems clear that the cost of

energy required for pumping, which may be accounted for partly as loss

of head due to friction and partly as residual energy discharged as

pressure energy to the user, may constitute an important component of

the total system cost. This cost can be expressed as
demand

piles nodes
C = a q h + Q.H. (2-7)

e.i J JJ3

where a is a constant to account for the price of a unit quantity of

energy, the duration of pumping, ufits conversions, and pumping efficiency.
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Also, q = flow in pipe i

h. = head loss in pipe i
1

Q. = demand at node j

H. = residual energy head at node j
J

Expressing q in terms of d. by the Hazen-Williams formula, Eq. 2-7

becomes
demand

n , nodes
C = a. d. + aQ.H. (2-8)

where a .depends, in part, on a and, in part, on the other terms besides

d. in the Hazen-Williams Formula. Adding this pumping cost to the total
1

capital cost for pipes, the objective function becomes

demand

n , nodes
C = a aL.d. + a. d. + aQ.H. (2-9)

,. 1 1 1 1 . J J

Because the required pressure H. at node j is specified and is not a deci-

sion variable, the third term in Eq. 2-9 is a constant. It has no effect

in obtaining an optimal solution. Thus, we can drop it during the optimi-

zation process but we should consider it to get the actual total system

cost. If H. were a decision variable, this term should remain in the ob-
J

jective function.

Non-linear Programming Model. The network design problem has now

been formulated as the following non-linear programming model:

n
Min C = al. d 1.3 + a. Id. (2-10)

1 d 1 1
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subject to

. K.d.P < -Q. , j=1,...,m (2-11)
jES.,

where s. is the set of pipes connecting to node j, and

d. > 0 i=l,...,n

Both the objective function, Eq. 2-10, and the constraints, Eq. 2-11,

are nonlinear. It is to be noted that the pipe diameters, the decision

variables, are continuous variables in this model. Future investigation

should take the discrete set of available commercial diameters into

cosideration.

Linear Programming Model via Variable Transformation. It

appears possible to approximate the nonlinear optimization model by a

linear programming model. Substituting the relation

x. = d. (2-12)
1 1

into Eq. 2-11, we obtain the linearized constraint equations

K.X. < -Q.
iES.

(2-13)

X. > 0 i=1,... ,n
1 -

The objective function, Eq. 2-10, can be rewritten as

n
Min C = oL.d.L 3/P + a. X. (2-14)

. 1 1 1 1

which is nonlinear because of the first terms. Since the first terms

in Eq. 2-14 contain the only nonlinear terms remaining in the model,

examine these in more detail.
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By the Hazen-Williams formula, p takes the value of 2.63.

Eq. 2-4 can be written as

C = tX.1.3/p -ax 1/2 (2-15)
1 1 1

where C. is the cost per unit length of pipe with sizes d. in inches.
1 1

A linear approximation of Eq. 2-15 is

C= aX. ~ . + 6.X. (2-16)

where, as shown in Fig. 2-1, 3. and 3. are respectively the intercept
1 1

and the slope of the straight line which approximates the curve of

Eq. 2-15 within the range of variables between X. and X . Both .
S 1 i

and r3 are functions of X.. Based on this linearization, the objective

function is redefined as

n , n
Min C = L. + L..X.) + a. X. (2-17)

1 1

Since the range of possible pipe sizes in a network may be

too large to justify a single linear function in place of the non-linear

cost function, a piece-wise linear function must be used. Any one pipe,

however, is expected to fall into a certain class of pipe sizes before

the design is run. On this basis, a single linear function for each

individual pipe is used.

When the LP run is made, the classes for pipes are changed

if a pipe does not fall in the proper range. The LP model then is rerun

until the optimal solution shows that the classes of pipe sizes are

correctly related to the pipe sizes. This procedure does not assure that

the global optimum of the non-linear programming model is reached. In

terms of the non-linear programming model, a local optimum may be reached

by this procedure.
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Thus, the following linear programming problem has been

developed-

n n
Min C = L.3.X. + : a. M. (2-18)

.=1 i 1 . t 1

S.

1 -j=1

It does not necessarily seek the minimum cost design of the non-linear

model. The resultant design, nevertheless, would appear to be a "good"

design and conceivably could be more desirable from a practical point

of view than the original non-linear minimum cost design. This is be-

cause there exists no algorithm which guarantees to obtain the global

optimum of the original non-linear optimization problem. Very' often.,

the so-called optimal design is only one of the local optima which may

not give a design as good as the one by linear programming problem

formulated. In addition, there always exists a wide range of uncertainty

in designating cost coefficients. Since the non-linear cost function

is concave, the linear programming model will actually tend to treat

small pipes preferentially to larger pipes since economics of scale

are neglected.

Another oint worth mentioning is that a demand constraint at

each node may be treated as an equality, rather than an inequality, con-

straint. Because the cost function is monotonically increasing with

respect to the diameters. to supply more water than is needed will tend to

- 2C ,
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increase pipe sizes of the system. It is then conceivable that the con-

straints corresponding to demand nodes will always be binding, i.e., will

have equality constraints instead of inequalities. The constraints

corresponding to supply nodes may or may not be binding depending on

whether the total amount of supply capacity is equal to or greater than

the total demands on the system.

It is well known for any non-degenerate basic feasible solution

of a linear programming problem with m constraints and n decision vari-

ables, that only m of the n variables have non-zero values. Therefore,

n-m pipe sizes must be zero so there are only m distinct pipes in the

optimal network. Moreover, the problem is non-degenerate if the m

constraints are linearly independent. Because the actual total amount

of supply should equal the total amount of demands of the water systems and

there are only m-1 independent node equations in a network of m nodes,

it follows that only m-1 rather than m distinct pipes exist in the op-

timal network. Such a network can be proved to look like a tree, so

there are no loops as actually occur in virtually all water systems.

As the result of having been able to specify the pressure

head required at each node, the following equation must be satisfied:

supply demand
node pile node

Qk h + Q H (2-20)
k-1 ij

The right-hand sides of Eq. 2-20 and Eq. 2-7 have the same meaning, so

we may write Eq. 2-7 in the form
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supply
node

C = a QkHk (2-21)
k=1

Qk is the amount to be supplied from the supply node K and Hk is the

head that this supply would be pumped against. For multiple sources

of supply, we may consider Q as a decision variable. Additional

constraints would limit the allocation of the resources Qk so that the

amount supplied is less than or equal to the actual amount of available

supply. For a network system which has a single source of supply like

New York City primary distribution water supply system, the pumping

cost expressed by Eq. 2-21 is constant and can be omitted from the ob-

jective function. Consequently, for this particular case, Eq. 2-18

can be written instead as

n
Min C = Z L. .X. (2-22)

i=l

The computer program attached in the appendix has used

Eq. 2-22 instead of Eq. 2-18.

Consideration of Existing Pipe Network. It seems clear that

existing as well as proposed pipes can be included in the network. As

shown in Fig. 2-2, two decision variables, X and X , are assigned to
1

each branch where there is an existing pipe; X. denotes the amount

of the existing pipe capacity, measured in terms of pipe diameter, that

is needed in the optimal network. Thus, the constraint

X < d (2-23)

where d. is the existing diameter for pipe i, is added to limit the
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maximum size of the decision variable X corresponding to this existing

pipe. The unit cost of X. could be taken as zero or a fraction of unit

costs of proposed pipes. Since the existing pipe may not be large enough,

additional capacity may be needed. The size of any additional pipe is

given by X..

Considerations of Multiple Demand Patterns

As this linear programming model was formulated, only a single

demand pattern was considered, but other demand patterns, which represent

various times of the day and various fire flow requirements, are equally

as important. As before, each pattern specifies the demands and the

operating pressures when that pattern occurs. Assuming that there are y

demand patterns, the constraints of the linear programming model would

become

K. X. < -Q. k=,...,Y

i= (-l)n+l, (-1) n+2, ... , n
(2-24)

= (k-l)m+l, (k-l)m+2,..., km

and

X. < X (2-25)
19t - d

where X denotes the design pipe capacity for pipe i, and X. denotes

the pipe capacity required in branch i during demand pattern k. Eq. 2-25

states that the pipe capacity used for each demand pattern may not

exceed the design pipe capacity. This assures that the designed net-

work will work satisfactorily under different demand situations. The

objective function for multiple demand patterns is
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n ,
Min C = (L S + a i)Xdi + k (2-26)

where X, represents a set of feasible diameters to satisfy the kth

demand pattern and S and ai are as defined previously. For illus-

tration, consider a network design problem with two demand patterns

and with existing pipes. The constraints are

2- 2 + (42Iex ex2
AX X + (A) X <-:-1 2-1 -1 ex--ex -2

AX xX < 02

:4 4:d (2-27)

-2 d<

Wex (ex

In vector form, the objective function is

Min C - 0 X + 0 X + C Xd + 0 (2-28)

where

A1  A2  - constraint matrix for demand patterns 1 and 2 with dimension

(m x n). n - no. of nodes, n = no. of pipes.

X1 , X2 - pipe capacities used for patterns 1 and 2. [Note that they

have zero cost coefficients, and that both have dimensions

(n x 1).]

X - set of actual design pipe capacities, which have non-zero

cost coefficients. Dimension (n x 1)

(A ) - subset of constraint matrix A , A2 containing columns cor--1 ex =

(A2)ex responding to the existing pipes (m x NEP), NEP = no. of

existing pipes.



- 25 -

X = set of decision variables corresponding to the existing
--ex

pipes. (NEP x 1)

Q2% = demand vector for pattern 1 and 2. (m x 1)

o = zero vector. (n x 1)

d = vector representing the known diameters of existing pipes.

(NEP x 1)

It is useful to know the dimensions of the constraint coefficients

matrix identified commonly by the symbol A. For a network of m nodes,

n pipes, NEP existing pipes and P demand patterns, the number of rows is

Pm + pn + NEP = P(m+n) + NEP ; (2-29)

and the number of columns is

Pn + n + NEP + [P(m+n) + NEP] (2-30)

The quantity in brackets is associated with the slack variables. A

contains mostly zero elements, but its dimensions could become too large,

even for large-scale computers, for moderate system designs with just

a few demand patterns. Therefore, to reduce the size of A matrix by

partitioning is desirable and may be possible. Future research is

required to find the best way to decompose large LP multiple demand

pattern distribution system models.

Computational experience is, thus far, limited to single

demand patterns. The formulation proposed for multiple demand patterns

requires further programming and investigations. For a single demand

pattern, the optimal design is a tree-shaped network without a loop.

However, for multiple demand patterns, loops may optimally occur as

actually found in practice.
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Some Features of the LP Formulation

This LP problem appears to have advantages over the original

non-linear problem in that the theory of linear programming has been

well developed and is computationally very efficient. It eliminates

the need to analyze numerous solutions in search of the optimum. In

addition, the economic interpretation of the dual solution has latent

value for improving existing design methodology. For example, some of

the binding constraints will represent fire flow requirements, and the

dual solution will indicate reduction in system cost that would attach

to a unit reduction in the fire flow requirement. Non-linear programming

models usually do not provide such convenient and straightforward

sensitivity analysis.

Computer Programs

A computer program has been developed and tested for the case

of single demand pattern with existing pipe network. The listings of

the program can be found in the appendix. The descriptions of the pro-

grams, their use and data formats for input and output information

are given below. The flow chart is shown in Fig. 2-3.

There are five subprograms in the LP pipe network optimizer,

namely MAIN program and subroutines NCOST, ORGLP, LPROG and SINPLX.

Their functions can be briefly described as follows:

(i) MAIN

It reads in all necessary input data for the computation.

The order of input is:
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CALL Subroutine NCOST either from
MAIN or from user's individual

program (passing pipes and nodes
conditions)

CALL Subroutine ORGLP to set up

coefficient matrix A and constraint
matrix B

Iteration thro:1:ugh' ...... . YES

Linear Programming routinA_
> 10

NO

Compute cost coefficient from the
current iteration

CALL subroutine LPROG which
subsequently calls Subroutine
SIMPLX to obtain optimal solution

the cost
YES coefficients need to

be recomputed

NO

Return with total design cost
-and design diameters

FIGURE 2-3: Flow Chart of LP Optimizer
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(a) XNP, XNN, HWC, FACTOR (4F 10.1)

XNP = number of pipes (or tunnels)

XNN = no. of nodes

HWC = Hazen-Williams Coefficient

FACTOR = a scaling factor to scale the constraint coef-

ficients A and requirement matrix B so that they

have approximately the same orders of magnitude.

(b) XIP (I), XJN (I), XKN (I), FL (I), EXD (I), ESDIA (I),

(6F 10.1)

I = pipe index

XIP (I) = identification number for pipe I

XJN (I) = upstream node for pipe I

XKN (I) = downstream node for pipe I

FL (I) = length of pipe I in feet

th
EXD (I) = existing I pipe diameter in inches

ESDIA (I) = identifier for estimated design diameter of

pipe I (piecewise linearization of cost function)

Let D = estimated pipe diameter in inches

then

ESDIA (I) = 1 if 0 < D < 60
= 2 if 60 < D < 120
= 3 if 120 < D < 180
= 4 if 180 < D < 240
= 5 if 240 < D < 300
= 6 if 300 < D

Note that the identifier ESDIA (I) given above is especially designed

for tunnel design for the New York City water supply tunnel system.

As a result of that, the tunnel cost function, Eq. 2-5, is used for
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obtaining the total tunnel system cost.

(c) XIN(I), Q(I), H(I) (3F 10.1)

I = node index

XIN(I) = identification number of node I

Q(I) = demand or supply at node I if a demand node, use

positive sign, otherwise, negative

H(I) = energy head at node I

Note: All variables in input data are real numbers for con-
venience insetting up data cards. If subroutine NCOST
is called directly without going through the main pro-
gram, all variables except HWC, FL(I), EXD(I), H(I),
should be integers.

MAIN program also writes out total system cost, the design

diameters, and the portion of existing pipe diameters used for that par-

ticular design.

(ii) Subroutine NCOST

This subroutine serves as a monitor program for the linear

programming optimizer. It calls subroutine ORGLP to set up proper A and

B matrices and then calls subroutine LPROG which subsequently calls

subroutine SIMPLX to solve the LP problem. Eventually, it returns the

desired design information to the MAIN program. The calling sequence is:

CALL NCOST (NN, NP, IN, IP, JN, KN, FL, EXD, Q, H, HWC,

TCOST, DIANEW, DIAUSE, KESDIA, OBJ, FLOW, FACTOR)

in which NN, NP, IN, IP, JN, KN, FL, EXD, Q, H, HWC, KESDIA are input from

the MAIN program. NN is the integer equivalent of XNN in MAIN program,

and
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DIANEW = New design diameters

DIAUSE = the portion of existing pipe diameter used.

OBJ = value of the optimal objective function from linear

programming routine. It is not equal to the total

system cost because the cost coefficients in LP

routine are not the actual cost coefficients. Actual

unit cost formula (2-4) or (2-5) should be used to

compute the total system cost after the design

diameter is determined.

(iii) Subroutine ORGLP

The function of this subroutine is essentially to set up an

augmented constraint matrix A and an augmented requirement vector B. Here

the term "augmented" is used because the first row of the A matrix con-

tains the coefficients in the objective function.

(iv) Subroutines LPROG and SIMPLX

Subroutine LPROG together with subroutine SIMPLX will solve a

linear programming problem of the form:

Minimize the objective function C X

Subject to the constraints A X = B

X > 0

where C and B are given 1 x n and m x 1

matrices respectively, A is a given m x n matrix

and X is a variable of n x 1 matrix

The calling sequence of subroutine LPROG is

CALL LPROG (ME, M, N, A, B, Z, DIA, OBJ)
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in which

ME = is the row dimension in the calling program of the

augmented matrix of coefficient,. A.

M = the number of constraint equations plus 1 i.e.

P (m+n) + NEP + 1 (eq. 2-29)

N = number of variables (eq. 2-30)

A = augmented matrix of constraints coefficients

B = augmented matrix of requirements

Z = variable matrix containing the solution to the linear

programming problem after execution of the subroutine

DIA = variable matrix containing the solution to the primal

problem

OBJ = value of the objective function

Examples

The network used in the example is the New York City primary

water distribution tunnel system which is shown in Figure 2-4. Input data

are shown in Figure 2-5. Output results are respectively shown and par-

tially tabulated in Figures 2-6 and 2-7.

The computation was done on the M.I.T. Urban Systems Laboratory

IBM System 360/37 time sharing system. The table at Figure 2-7 indicates

how much of the existing capacity has been used. If the capacity of

existing tunnels is not adequate, the size of a new additional tunnel is in-

dicated. For example the existing 180 inch capacity of pipe l was needed,

as well as a new addition of 52 inch diameter. For pipe 9, no new pipe

is needed since only the capacity of 106 inches out of the existing capa-

city of 180 inches is actually required.
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The computation seems to be very efficient. It takes about 5

sec of C.P.U. time to solve a problem with a constraint matrix dimensioned

(40 x 60). The size of matrix which can be handled with the existing

program is estimated to be about (100 x 100). In other words, it can

handle approximately two demand patterns for the example given.
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HILLVIEW DOWNTAKE

Tunnel L - 11,600

No. 1 D - 180

1 L-15,500 NOTE:
D-204

2 1,2,... - Node Number

L-19,800 15 , - Pipe Number
D-180 L - Tunnel Length (ft.)

3 D - Existing Tunnel Diameter~,L-21,100 (in.)
( -7,300 D-204

D-180
4 14

4 L-8,300 L=24,100
D-180 D-204

5 13 Tunnel

L-8,600 No. 2
D-180 L-12,200

D-204
6

L-31,200

L-9,0012 D-72 L-24,000

D-180 D-6o

-14, 500 1
D-204

7
L-9,600
D-132 11

L-14,400 NODES 4,5,6,7,8 -
8 D -60 Manhattan

" 12,13,18,19
L-12,500 -11,200 20 Queens
D-132 9 D-204 2,3,14,15 -

Bronx
L-6,900" 9,11,20,21 -
D-180 Brooklyn

9 )L-38,400 " 17 - Richmond
0 D-60 " 10 - zero

consumption

L-26,400
D-72

L -269,400

17 D-72

RICHMOND DOWNTAKE 21

Figure 2 -4: Existing System
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1 3 (Energy head in ft.)

92.4

92.4

92.4 5

88.2 1289.11
0

88.2

2874192.4 
(Demand in cfs)

13
88.2 

1

5

88.2 6112

0 12 -.1 11

179

8818 
18

7 70

88.2 

8

19

88.2 8 @20 10
9 10

170.

1.0

57.5 Figure 2-5: Input Data

17

21
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Tunnel
No. 1 D-204

D-180 1 - - - - - New Pipes

0\ New pipe diameter

15 D -Existing pipe

/ D-180 diameter required

3 3

/ D-180 \D-204

4 14
4 D-204

56 ID-180

5 13
5 Tunnel

D-180 ID-204 No. 2

6

D-180

F r 2 D-6O
11 D-204 D-72 18 189

7

D-1321

7 8 7

D- 32D-60

9 20

D-106 9\

10 21

\ D-60

D-72 D-72 Figure 2-6: Output Result

17

21

-4
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TOTAL COST = 78084928.00DOLtARS

NEW
DIAMETER
52.02
49.90
63.41
55.59
57.25.
59.19
59.06
54 95
0.01
0.0

116.21
125.25
126.87
133.07
126.52
19.52
91.83
-72.76
72.61
0.0

.54.82

EXISTING-
DIAMETER
180.00
180.00
180.00
180.00
180.00
180.00
132.00
132.00
180.00.
204.00
204.00
204.00
204.00
204.00
204.00
72.00
72.00
60.00
60.00
60.00
72.00

USED
DIAMET ER

180.00
180.00
180.00
180.00
180.00
180.00
132.00
132. 00
106.33
204.00
204.00
204.00
204.00
204.00
204.00
72.00
72.00
60.00
60.001
60.00
72.00

Figure 2-7: Output Example

P IP E
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
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Chapter 3

APPLICATION OF DYNAMIC PROGRAMMING TO CAPACITY EXPANSION

Introduction

In the preceding chapter, a method is presented for water dis-

tribution system design. This method considers the flow and pressure con-

ditions that may be typical for some particular period of time, but this

directly addresses the fact that system demands tend to increase with time

in response to population and economic growth. In other words, the pre-

vious method takes a representative snapshot of the system over a certain

period of time. For those conditions a system may be designed which

would behave according to the design criteria. Since the demand may be

growing with time, there arises the problem of how to make investments

over a period of time. This is called a "capacity expansion problem."

The solution should indicate when to build extra capacity, how much to

build and where to build. The investment problem is as complicated and

as complex as the water distribution system analysis problem. The

optimal time phasing of resource allocation is a central problem of de-

sign. It is the purpose of this chapter to define the capacity expansion

problem and to show that the method of dynamic programming may be applied

to its solution.

Dynamic Programming Formulation

Dynamic programming is an important technique in non-linear

constrainted optimization problems. It can be applied to capacity ex-

pansion problems in more than one way so there are possible other for-

mulations than the one presented here.
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A basic assumption of economic analysis of engineering projects

is there exists an economic time horizon, T, beyond which there is no

value to future economic activity. This should not be confused with the

useful life of a particular component, such as a pipe or a pump, which

may be shorter than the length of the economic time horizon. The actual

value used for T is immaterial to the problem formulation. On the other

hand, T is assumed to exist and it takes on a finite value, however large.

The total period, T, may be partitioned into a number of sub-

periods, say N of them, possibly of unequal length. These sub-periods,

of length ti, may be called design periods; and it is the period of time

for which the capacity expansion, made at the beginning of the period,

will be adequate. The first design period may not actually begin until

existing capacity is exhausted. Then, additional capacity is required;

and it, together with the existing capacity, should be adequate for the

next t. years. At that time, additional capacity again will be required.
:1

The cost of an additional unit of capacity is assumed to re-

main unchanged over the economic time horizon so the economic analysis

is done on a "constant dollar" basis. However, a dollar of cost incurred

at.different points in time are not economically equivalent so that some

adjustment must be made to compare alternative expansion plans where costs

are incurred at various times over the economic time horizon. The proper

adjustment isto correct future costs to present costs. So-called pre-

sent costs are measured in dollars, and the sum of the present costs of

each expansion capacity gives the total present cost of the entire pro-

ject. The present cost of a future expenditure is the amount of money

that could be invested now at interest rate i to yield an amount equal
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to the expenditure at that future time. This may be interpreted as a

function of the interest rate, so the value used for i is of special

concern.

The appropriate value for i for public investment projects

should represent the social time preference for money. It is a measure

of how much a dollar must yield, in addition to its own value, over the

period of one year for any typical year. It is not likely to be equal

to the market interest rate at which money can be borrowed because that

interest rate includes a "hedge" against inflation which is needed to

assure that the initial dollar invested will return its own value. In

other words, the market interest rate may be assumed to represent the

sum of the social cost of capital plus an allowance for anticipated

monetary depreciation (Hirshleifer, et al., 1963). 13) Presumably the

value of i, interpreted as the social cost of capital only, should not

vary as price levels change. It may be argued that this, the real

marginal productivity of capital, is essentially independent of price

levels.

Returning to the capacity expansion problem, the best se-

quence of expansion is that one which gives the minimum total present

cost. The Dynamic Programming objective, then, is to find the minimum

cost sequence.

Let the optimum number of design periods in the economic time

th
horizon be n. Also, let t, be the length of the j design period.

One constraint is that

t + t + ... + t =T (31 2 n (3-1)
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Let the present cost of the expansion made during design period j be

r. (t ). This is a function of the length of the period, t., because
J JJ

larger expansions are usually needed to satisfy longer periods. This

also is a function of j because the cost must be discounted to present

value, and discounting depends on the time of investment which depends,

indirectly, on the period. In other words, if c(t ) is the actual cost

of an expansion which is adequate, together with the existing capacity, for

the next t. years; the present cost, r.(t.) is
J J J

r.(t) = c (t ) (3-2)

(1+ i)tl 2 j-1

The total present cost is

F = r (t ) + r (t ) + ... + r (t ) (3-3)
n 1 1 2 2 n n

so the objective is to minimize F (T).

In terms of Dynamic Programming, the times at which decisions

must be made are known as stages and the decision moves the process

from one so-called state to another. Schematically, this is illustrated

in Figure 3-1.

In terms of the capacity expansion problem, the stage is asso-

ciated with the design period (i.e. j denotes the stage). More specifical-

ly, j denotes the number of design periods remaining until the end of

the economic time horizon.

The decision to be made at stage j is the value of t.. This
J

moves the decision process from state s _ to state s . The state of the

system is the time between the present time (i.e. t = 0) and the future time
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t.

S. j S.

J j -1

Ir (t-r

FIGURE 3-1: Typical Dynamic Programming Stage

-I *1-.

Source
Reservoir

Total Head

Head Loss, hL

Demand,,Q

Terminal
Reservoir

Head at
Downstream

,,

L

DATUM (MSL)

FIGURE 3-2: Simple System Arrangement

I -
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at which the expansion associated with t. must be made. This decision
J

process moves backward in time from the economic time horizon. It follows

that

S = T , (3-4)

that

S = T -t (3-5)

and that, in general,

Si = Sj- - t (3-6)

If the state of the system at the beginning of stage j is S., the
J

maximum possible value of t. is S _l.

The optional set of decisions [ti, t2, ... ,tn] is determined

through an ordered search of the alternatives. This search procedure

is based on Bellman's Optimality Principle which states that no matter

what decisions have been made, in time, up to the present, the optional

decision depends only on the immediate return from the present decision

and on the present value of subsequent returns if subsequent decisions

are made optionally thereafter.

To apply this principle, let the optimal value function be

denoted by f_l(S _1 ). This gives the present value of returns sub-

sequent to stage j if the process leaves stage j in state j-1 and if all

decisions are made optimally in stages 1 to j-1.

The total return to be expected from decision t. at stage j, with
J

optimal activity thereafter is r (t ) + f. _(S _ ). This depends on the

state upon entering stage j, since S is equal to S. + t . The optional
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value function for stage j, according to the Optimality Principle is

f .(S.) = min [r.(t ) + f . (S + t.)](3-7)

At each stage, a value of t. is determined. After n stages,

if n is the optimal number of design periods, the sum of all t. will be

equal to T. Accordingly, the value of f (S ) will be the minimum total

present cost. Also, S nmust be zero since this denotes the present

time if n is the optimal number of stages.

It is not until the optimization is complete that the optimum

number of stages is known. Therefore, some procedure is needed to test if

the current stage is the last stage. This is accomplished by comparing,

at stage j + 1, the quantities f. (0) and f.(0). If f.(0) is not larger
j+1

than f j+(0), then it follows that n = j. If f (0) is larger than

f (0), adding another stage decreases the total present cost so at
j+l

least that additional stage is required. The quantity f0 (0) may initially

be set equal to some large number because S must be equal to T, not
0

zero.

Application to a Simple Water System

It appears possible to apply this approach to the problem of

capacity expansion for the water distribution system. In developing

such a dynamic programming model it appears rational, as a first step,

to consider the simple system arrangement of a reservoir connected to

a pipe discharging in response to the demand as shown in Fig. 3-2.

The discussion of this simple system will be given in the next section.

Considering this simple system arrangement will allow the following
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verification of the method before undertaking the entire network system:

(1) Dynamic programming does provide the optimum.

(2) The optimum occurs in a finite number of stages.

(3) The method is economical in terms of computer time.

These are not obviously satisfied as they would be in a linear programming

problem since there is no packaged program available and a dynamic

programming problem is solved by a tailor-made program. Development of

such a program for the simple system case should easily be adapted to the

total network case. Only the method for computing present costs at

each stage should be different.

Common to both applications is the model representation of

Fig. 3-3. The Tableau of Fig. 3-4 indicates how the method proceeds.

The simplified network considered is shown in Fig. 3-2. The

simplified system consists of a source reservoir of infinity capacity, a

pipe of length L and an outlet responding to an increasing demand. Assume

that the maximum allowable pressure loss along the pipe is given. As

the demand increases, the operating head loss along the pipe will in-

crease. An additional pipe is required when the head loss reaches the

allowable maximum value. Installation of larger pipe will have larger

replacement intervals but will require larger investments.

The data and formula used for computation are summarized as

follows:

The length of the pipe = 100,000 ft.

The economic time horizon = 35 years. (begins in year 1975

and ends in year 2010)
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1 2 3 4 State, S N

DI=t, time D2 t2 D = t

1 th interval Decision

State (Years) Variable

N = 2 S =t 5 = 0

total # of th 2 [1 ---
I Interval

intervals

R R R21

FIGURE 3-3: Dynamic Programming Model



Stage State Decision State Return
Variable Variable Variable Function Q f 1 +R f (S)= D, = D

S D S =RI(S,D ) Min Q (Min Q)

0 0 0 _r r10 10 0

0 r r1 0

2 2 0 r1  r12 r12 2

N N 0 rN r N rlN N

0 1 r 2 0  r2 0 +r

1 0 r21  r + r
0 2 20 r2 0  r12

2 1 1 r2 1  r21 + r11
2 2 0 r2 2  r.? + r1 0

N

2
N

N

FIGURE 3-4: Form of the Dynamic Programming Model Tableau
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The demand grows geometrically according to

Q(t) = Qo(l+g)t where Q= Initial demand

g = growth rate

The required diameter, D, expressed in terms of demand and

head loss, is

D 1.38 Q
0 .3 8

D- 0.38 .
CHW (HL/L)0 .2

in which the units are D[ft.] and Qlcfs.].

The capital cost of pipe per linear feet has the form

C = aD 1 25

in which the units are C[$/ft.] and where

a = 43.5 from year 1975-1982

a = 30.5 after year 1982 (This indicates there might

be a breakthrough in construction technology

in year 1982 to reduce the cost.)

After discounting, the present value of the unit capital cost

would read

C D1.25C = a

(1+r)t

The results of the tests for various key variables are tabulated in Table

3-1. The design periods are restricted to be multiples of 5 years.

One of the most interesting results shows the effects of future

cost changes on the optimal cycle time. The relationship illustrated in
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Discount Growth Cost Optimal Design Periods Total

Rate Rate Change First Second Third Presnt

% in Years Years Years $/lin.Ft.
1985-%

10% .5% -30% 10. 15. 10. 720.

5. 1.0 -30. 10. 25. 0. 1247.

10 1.0 -30. 10. 15. 10. 1031.

2.5 1.0 0. 35. 0. 0 1423.

5. 1.0 0. 20. 15. 0. 1392.

10. 1.0 0. 15. 20. 0. 1157.

5. 1.0 +20. 35. 0. 0. 1423.

10. 1.0 +20. 15. 10. 10. 1198.

5. 3.0 -30. 10. 25. 0. 2420.

Table 3-1: Optimal Time Staging of Construction, for Simplified

System Shown in Figure 3-2, (Dynamic Programming

Solution)
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(14)

Fig. 3-5 was derived according to a method given by Manne which assumes

that cost remains constant in time. It indicates that as the interest

rate increases, it is optimal to defer construction and build a sequence

of smaller projects. It is seen to be very sensitive to the discount

rate and to be relatively insensitive to the growth rate. However,

due to possible breakthroughs in construction technology, the assump-

tion that cost remains constant with time is questionable.

Of primary importance is the length of the first period,

t since that is what must be presently designed for. The value of

t is plotted with respect to the discount rate in Fig. 3-6 (from data

in Table 3-1). The relationship is similar to that in Fig. 3-5 which

was derived for constant cost over time. These results are very sensi-

tive to the time in which the cost change is expected to occur. For

this analysis, the cost was expected to change in 15 years from the

base year of 1970. Fig. 3-6 reflects the effects of such a change if it

could be forecast. Nevertheless, the optimal design staging now appears

equally dependent on any cost changes as well as the discount rate.

These considerations indicate that over an economic time hori-

zon of 30 to 40 years, the optimal expansion will consist of 2 to 3

separate projects. Since the number of states per stage and hence

the computational effort in the dynamic program is T/DT, where DT is

the time interval considered, it seems adequate to look at a time in-

terval of 10 years.

A typical dynamic programming tableau is presented in Table 3-2.

The optimality condition of negligible improvement from one stage to the
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35

30

25

Ca

20

1% Growth

3% Growth
' 15 -

10

5

0

0 2.5 5 7.5 10. 12.5 15.

Discount Rate (Per cent)

FIGURE 3-5: Manne Capacity Expansion Model
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35-

30-
Cost Increase

25-

W 4 No Cost
P w Change

*H>,20 -

4-)-0 4J

4~J -0

O0 15

P-4 Cost Decrease

10
~4U

5

0

0 5 10

Discount Rate %

FIGURE 3-6: Optimal Length of First Design Period

VS. Discount Rate (Dynamic Programming

Solution)
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TABLE 3-2

STAGE 1

STATE DECISION STATE IN RETURN

S D ..AST STAGE NPC Q f I(S )
years SI-1 RI =f 1+R = minQ

0 0 0 0 0 0

5 5 0 525 525 525

10 10 0 738 738 738

15 15 0 906 906 906

20 20 0 1051 1051 1051

25 25 0 1183 1183 1183

30 30 0 1306 1306 1306

35 35 0 1423 1423 1423

Table 3-2: Dynamic Programming Tableau

- Simplified System -

Example: T = 35 years (1975-2010)

T = 5 years

R = 5% Discount Rate

G = 1% Growth Rate

H. = 25' Allowable Head Loss

C = -30% Cost Reduction in 1985
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Table 3-2 (continued)
STAGE 2

SI D S_ RI QI f I (SI)

5 5 0 525 525 525

10 5 5 411 437

10 0 738 738 738

15 5 10 226 964

10 5 578 989

15 0 906 906 906

20 5 15 177 1083

10 10 318 1056

15 5 710 1235

20 0 1051 1051 1051

25 5 20 137 1188

10 15 249 1155

15 10 390 1128

20 5 823 1348

25 0 1183 1183 1128

30 5 25 109 1237

10 20 195 1246

15 15 305 1211

20 10 452 1190

25 5 927 1452

30 0 1306 1306 1190

5 30 85 1275

10 25 153 1281

15 20 239 2190

20 15 354 1260

25 10 509 1247

30 5 1023 1548

35 0 1423 1423 1247

Cost After Stage 2 = 1247 .

Improvement = 176 P Continue

OPT'L

35
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Table 3-2 (continued)

STAGE 3

SI D S_ RI QI f I (SI)

5 5 0 525 525 525

10 5 5 411 937

10 0 738 738 738

5 10 226 964

15 10 5 578 989

15 0 906 906 906

5 15 177 1083

10 10 318 1056
20

15 5 710 1235

20 0 1051 1051 1051

5 20 139 1188

10 15 249 1155

25 15 10 390 1128

20 5 823 1348

25 0 1183 1183 1128

5 25 109 1237

10 20 195 1246

30 15 15 305 1211

20 10 452 1190

25 5 927 1452

30 0 1306 1306 1190

5 30 85 1275

10 25 153 1281

35 15 20 239 1290

20 15 354 1260

25 10 509 1247 = OPT'L

30 5 1023 1548

35 0 1423 1423 1247

Cost After Stage 3 = 1247

Improvement = 0.0 (Terminate)

Optimal Solution: T = 10 years
T2 = 25 years

Net Present Cost: $1247.
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next occurs after 3 stages. The optimal expansion scheme is obtained

by reading the output back as shown. Note that for any state in stages

beyond stage 1, the decision corresponding either to no construction in

the current stage or to all construction in a previous stage (not shown

in Table 3-2) is redundant since these situations have been evaluated in

a previous stage. This would reduce substantially the number of enumera-

tions that must be considered. The computation time (on an IBM System

1360 Model 67 time sharing computer) to do any row in Table 3-1 is in the

order of 1 second. Thus, the dynamic program is computationally efficient.

In this chapter, the applicability of dynamic programming to the

simplified system shown in Fig. 3-2 has been established. The effects

of discount rate, demand growth rate and possible cost change to the

optimal staging of water systems have also been studied. Application of

dynamic programming to a network system will be discussed in the next

chapter.
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Chapter 4

A JOINT LINEAR PROGRAMMING-DYNAMIC PROGRAMMING

MODEL FOR DISTRIBUTION SYSTEM DESIGN

Introduction

In the dynamic programming model, a cost function must be

defined. For the water network design problem, this cost function is

defined as the present value of the capital cost of satisfying demand

for an allocated time interval t. years in the future. For a given
J

economic time horizon of T years, the dynamic program would indicate the

optimal choice of design periods which gives the overall minimum present

cost. If a distribution system is to be expanded to satisfy demands for

the next t. years, this should be done optimally so that, in fact, all

costs are minimum.

At each stage of the Dynamic Programming model the cost func-

tion involves a Linear Programming network design to determine the

minimum network cost for the additional capacity required until the end

of the design period. Thus, there are two levels of optimization. The

inner level gives the minimum cost design to satisfy the demand for the

allocated t. years in the future and the outer level gives the optimal

staging over the economic time horizon.

Implicit in this procedure is an assumption that the existing

configuration of the network does not depend on the expansion path up

to that time. The validity of this assumption has not been tested. The

flow chart given in Fig. 4-1 indicates the relationship between the LP

model and the DP model. The example to be given should help make clear

the application of Dynamic Programming to the total network system. The

justification of this application is given in the next section.
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Read in INPUTS

For each stage

For each state

CALL Subroutine DEMCAP

CALL LP
CALL Subroutine COST OPTIMIZER

CALL Subroutine SELECT

CALL Subroutine NEW

YES IDes the

Improvement,>tolerance

0

PRINT OUTPUTS

END

Figure 4-1 :Flow Chart of Dynamic Programming Program

I

~ - 1-
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Validity of Dynamic Programming to Total Network Problem

This particular Dynamic Programming model is applicable to

network design only if decisions made in different states lead to conse-

quences that are mutually independent. This is a critical factor in

transportation networks where the links in any system are dependent.

However, water supply networks may behave differently.

What is required is a definition of the appropriate existing

network for consideration of additional capacity in any stage. More-

over, this updated existing network must reflect an optimal expansion

policy up to that time. Since the linear programming formulation may

specify branching (parallel) pipes to be built, equivalent pipe networks

for the optimal expansion to each state must be defined after each stage.

Consider the example Table 3-2 of Chapter 3. Suppose one is in the second

stage, and S 30 years and the range of decisions, Di, are being con-

sidered. Each entry in the SIl1 column represents a different existing

system for input into the linear program, and the decision is to add

capacity D after S I- has been built. Clearly S I- must itself cor-

respond to an optimal expansion involving one or more projects in

previous stages. To consider the third stage, the optimal (minimum

cost) expansions S in the second stage become, after the hydraulically

equivalent network has been computed, the SIl1 variable for the third

stage. This updating process prevents dependency and thus allows ap-

plication of the one-dimensional approach.

Computer Programs

A special computer program which links the Linear Program

and the Dynamic Program was prepared. The program consists of a main
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program and eight subprograms. The main program reads in input data,

writes out output results and serves as a monitor program which con-

trols the subsequent order of operations. The subroutine DEMCAP com-

putes the demands at each node. The sum of demands is taken to be the

total amount of supply. The subroutine COST calls the Linear Program-

ming routine and converts the total system cost to net present value.

The subroutines NCOST, ORGLP, LPROG, SIMPLX together comprise the

Linear Programming model which has been explained in Chapter 2. The

subroutine SELECT chooses the minimum cost decision given the state of

the system. Subroutine NEW updates the existing system by using hy-

draulically equivalent pipes for two parallel pipes (existing and new

pipes). Figure 4-1 is a flow chart of the over-all program. The

listings in the program are given in Appendix B.

An example

The format of the input data is illustrated in detail in

Fig. 4-2. The example chosen is concerned with the reliability of the

existing New York City primary water supply tunnel system whose configura-

tion is shown schematically in Fig. 4-3. Studies of the system have

indicated that the failure of either pipe 1 or pipe 15 has the most

severe impact upon the system. Assuming that pipe 15 fails to function

it may be possible to meet the demands by constructing a pumping station

at node 9 and by constructing a long tunnel directly from node 1 to node

9 so that the demands at nodes 11, 12, 13, and 14 are supplied through

node 9. Since the minimum allowable head is 250 feet, the heads at

nodes 8 and 15 are taken to be 250 feet. The head at node 9 before

pumping is assumed to be 200 feet and after pumping 300 feet. The heads
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Figure 4-2

INPUT FIELD FORMAT

Group 1 (4 F 10.1)

(i) Economic Time Horizon in Years

(ii) Interval in Years of Each State

(iii) Discount Rate

(iv) Cost Reduction or Increase in the Future

Group 2 (4 F 10.1)

(i) Number of Pipes

(ii) Number of Nodes

(iii) Hazen-Williams Coefficient

(iv) Scaling Factor for Coefficient Matrix A

Group 3 (6 F 10.1)

(i) Pipe Identification Number

(ii) Upstream Node Number

(iii) Downstream Node Number

(iv) Length of the Pipe

(v) Existing Pipe Diameter in Inches

(vi) Number Identifies the Estimate of Pipe Size

Group 4 (3 F 10.1)

(i) Node Identification Number

(ii) Demand or Supply Rate in cfs

(iii) Energy Head in ft.
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Figure 4-2 (continued)

Group 5 (3 F 10.1)

(i) Initial Total Population in Millions

(ii) Total Population in Millions at the End of Economic

Time Horizon

(iii) Number of Boroughs

Group 6 (2 F 10.3)

(i) Number of Nodes Allocated to a Borough

(ii) Initial Total Population in Millions in a Borough

Group 7 (10 F 5.1)

Location of Each Node Given in Borough Number
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and demands at each node for year 2010 are shown in Fig. 4-4. The

economic time horizon is here assumed to be 40 years. Also assumed is

a linear demand growth rate 0.074 and discount rate of 3 per cent.

The summary of the results of the dynamic program for this

particular example is tabulated in Fig. 4-5. The table indicates that

it is optimal to construct the additional facilities at the present

time to satisfy the demands of 40 years from now. The additional tun-

nels required are shown in dash lines in Fig. 4-4. The present invest-

ment for the tunnel alone is estimated to be 69 million dollars. This

does not include pumping costs.

In this example, the dynamic program called the Linear Pro-

gramming model 16 times. The CPU time taken for the whole computation

was about 40 seconds so only 2 seconds were used for computations by the

LP model. The computation is thus considered very efficient.
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No
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L - 11,600
D - 180 1L -15,500

2 D- 204

nnel
.ne L - 19,800

D - 180

3
L - 21,100

L 7,300 D - 204
D - 180

4 14

L - 8,300 L - 24,100
D - 180 D - 204

5 
13

L - 8,600
D - 180 L - 12,200

6 D - 204

L - 19,100
D - 180 2

11 L - 14,500
7 D - 204

L - 9,600 11
- 132

9 L - 11,200

L - 12,500 D - 204

D - 132

9

L - 6,900

10 D - 180

L - 26,400
D - 72

17

RICHMOND DOWNTAKE

" 17
" 10

Richmond
zero con-
sumption

Figure 4-3: Existing System

NOTE:

1,2,... - Node Number
, .- Pipe Number

L - Tunnel Length(ft.)
D - Existing Tunnel

Diameter (in.)

Tunnel

No. 2

NODES:4,5,6,7,8,Manhattan
" 12,13, Queens
" 2,3,14,15,Bronx
" 9,11, Brooklyn
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CAPACITY EXPANSION BY DYNAMIC PROGRAMMING

NEW YORK CITY DATA

DESIGN PERIOD = 40.0 YEARS
TIME INTERVAL = 10.0 YEARS
DISCOUNT RATE = 0.030

STATE DECISION STATE IN
LAST STAGE

INCREMENTAL
RETURN

TOTAL MINIMUM RETURN
RETURN FOR THIS STATE

STAGE NO. 1
0.0 0.0

10.0 10.0

20.0 20.0

30.0 30.0

40.0 40.0

0.0

0.0

0.0

0.0

0.0

0.0

61147.4

63785.8

66136.4

69007.2

0.0

0.0

0.0

0.0

0.0

0.0

61147.4

63785.8

66136.4

69007.2

STAGE NO. 2
0.0

0.0 0.0 0.0 0.0
0.0

10.0

20.0

30.0

40.0

0.0
10.0

0.0
10.0
20.0

0.0
10.0
20.0
30.0

0.0
10.0
20.0
30.0
40.0

10.0
0.0

20.0
10.0
0.0

30.0
20.0
10.0
0.0

40.0
30.0
20.0
10.0
0.0

0.0
61147.4

0.0
11389.2
63785.8

0.0
8474.7

15791.3
66136.4

0.0
6529.9

12051.2
19522.3
69007.2

61147.4
61147.4

63785.8
72536.6
63785.8

66136.4
72260.4
76938.6
66136.4

69007.2
72666.4
75836.9
80669.8
69007.2

61147.4

63785.8

66136.4

69007.2

SUMMARY OF THE OUTPUT RESULTSFigure 4-5
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APPENDIX A

COMPUTER PROGRAM LISTING

FOR LINEAR PROGRAMMING NETWORK MODEL

t



DIMENSICN IP(50) ,JN (50) , KN (50) ,FL(50),
1 EX D (50) , HL (50) , IN (50),Q (50)gH (50) ,.DIA USE (50) ,FLOW (50),
2XTP (50) , XJN (50) ,XKN (50)fXIN (50)fKESDIA (50) , ESDI A(50) ,DIA NEW (50)
IWRITE,=6
JWRITE=6
WRITE (IWRITE, 1)

1 FORMAT (1Xv INPUT FILE NUMBER )
READ (5, 2) IREAD

2 FORMAT (I1)~-~ ~~

R EA D (IR EA D,5001) XNPXNNHWC,FACTOR
5001 FORM AT-(4F 10.1)

NP=XNP
NN=XNN
DO 10 I=1,NP
READ(IREAD,5002) XIP () ,XJN (I) ,XKN (I),FL(1) ,EXD (I) ,ESDIA (I)
IP (I) =XIP (I)
JN (I) =XJN (I)
KN (I) =XKN (I)
KESDIA (I) =ESDIA(I)

10 CONTINUE
5002 FORMAT (6F 10. 1)

DO 20 I=1,NN
READ (IR EAD, 5002) XIN. (I) ,Q (I) ,H (I)
I N (1) =XI N (1)

20 CONTINUE
CALL NCOST (NNNPINIP,JN,KN,FL,EXDQ,H,HWC,TCOST,DIANEWDIAUSE,

1KESDIA,OBJ,FLOW,FACTOR)
WRIT E (JWRITE,6009) TCOST

6009 FORMAT(//20X,'TOTAL COST =',F15.2,1X,'DOLLARS')
OBJ=-OBJ
WRITE (JWRITE,6005) (IP (I) ,DIANEW (I) ,EXD (I) ,DIAUSE(I) ,I=1! NP)

6005 FORM AT (///29XNEW 5X, EXISTING',8X, USED f,/20X,'IPE1,4X,
l'DIAMETER', 4X,'DIAMETER'7X,'DIAMETER',/(20X4I3,2X, F8.2,
25X,F8.2,8XF8. 2))

C WRITE (JWRITE,6010) OBJ
6010 FORMAT (1X, 'OBJECTIVE FUNCTION=',E12.5)
C WRITE (JWRITE,105)
105 FORMAT(1X,'FLOW IN EACH PIPE ARE)
C DO 106 I=1,NP
C WRITE (JWRITE, 104) IFLOW(I)
104 FORMAT (5X,3HQQ (,I2,3H )=,FIO.3)
106 CONTINUE

END



SUBROUTINE NCOST (NODESNTUNLINODES, IITUNL,IUPIDOWNFLGTH,
1EXISTDEMNDHEADHWC,TCOSTDIANEW,DIAUSEKESDIAOBJFLOW,FACTOR)
DIMENSION INODES (50) ,ITUNL (50) ,IUP(50) ,IDGWN (50) ,FLGTH(50)

1EX IST (50) , DEMND (50) ,IHEAID(50) ,DIA (100) ,A (5000) ,KESDIA (50) s
2DIANE W (50) ,SP (100) ,FLCW (50) , DIA USE (50) ,ISS (10)

DIMENSION HL(50) ,FK(50) ,ALPHP (50) ,KCODIA(50) ,B(50)
NMAX=5000
IWRITE=6
JWRITE=8

C COUNT THE NUMBER OF EXISTING PIPES
NEP=0
DO 15 T=1,NTUNL
TF(EXIST(I)-.01) 15,15,16

16 NEP=NEP+1
15 CONTINUE

NSUPY=0
DO. 500 I=1,NODES
IF(DENND(I)) 501,502,502

501 NSUPY=NSUPY+1
ISS (I+1) =1
GO TO 500

502 ISS(I+1)=0
500 CONTINUE

WRITE(IWRITE,55)
55 FORMAT(1X,' INPUT INDICATOR, 1=PRINT OUT NODES ,NTUNL,NEP, 0=NOT')

READ(5,2) IPRIN1
2 FOR M AT (1)

IF (IPRIN1) 23,23,52
52 WRITE(JWRITE, 6001) NTUNLNEPNODES

6001 FORMAT (///13X,24HTOTAL NUMBER OF PIPES ,13/

1 20X,27HNUMBER OF EXISTING PIPES ,13/

2 30X,18HNUMBER OF NODES = ,13)

23 DO 11 I=1,NTUNL
11 HL(I)=0.

DO 5 I=1,NTUNL
IT=0
JJ=0
DO 6 J=1,NODES
IF (IUP (I) .EQ.. INODES (J)) II=J
IF (IDOWN (I) . EQ. INODES (J) JJJ

6 CONTINUE
IF (I) 5,5,17

7 1F (JJ) 5, 5, 9
9 - HL (I) =HEAD (II) -hEAD (JJ)
5 CONTINUE

W RITE (IWRITE,56)
56 FORMAT(IX,'INPUT INDICATOR, 1=PRINT NODES AND PIPES CONDITIONS,

1 0=NOT')
READ (5,2) IPRIN2
I F(IPRIN2) 100,100,53

53 WRITE(JWRITE,6002)
6002 FORMAT (///12X,4hODE ,17X,8 HEXISTING,5X ,'H EAD LOSS',/1X,L4HPIPE,

14X, 5 H BEGIN, 2X , 3 H END, 4X,6LENG'H, 4 X,8HDIAMETER)
DO 19 I=1,NTUNL

19 WRITE (JWRTTE,6003) ITUNL(I) ,I P(I) ,IDOWN (I) ,FLGTH (I) ,EXIST(I) ,HL(I

-68-



-69-

1)
6003 FORMAT (14 ,6X, I3, 3X, 13,3XF7. 0,6XF4.O,6X, F7.1)

WRITE (JWRITE,6008)
6008 FORMAT (//1X, 'NODE' , 1OX, DEMAND (MPD)')

DO 25 I=1,NODES
25 WRITE (JWRITE, 6004) INODES (I) , DEMND (I)
6004 FORMAT (4,1OX,FIO.0)
100- DO 30 I=1,NTU-NL
30 FK(I)=.00062*HWC*FLGTH(I)**(-0.54)

M=NODES+NEP+1
N=NMAX/M
CALL CRGLP (M, N, A, FK, EXIST, DEMIID,INODESIUPIDOWNNTUNL, NODESB
1HLNEP, JMAX,NSUPY ,ISSFACTOR)
ALPHA=1. 1
ITEND=10
ITET=1

131 IF(ITET.GT.ITEND) GO TO 132
DO 21 I=1,NTUNL
KKK=KESDIA (I)
GO TO (121,122,123,124,125,126), KKK

121 ALPHP (I) =3. 72E-03
GO TO 21

122 ALPHP (I) =9. 75E-04
GO TO 21

123 ALPHP (I) =4. 84E-04
GO TO 21

124 ALPHP (I) =2. 41E-04
GO TO 21 - -- - -_-

125 ALPHP (I) =2. 16E-04
GO TO 21

126 ALPHP (I) =1. 58E-04
21 CONTINUE

DO 129 I=1,NTUNL
JJ=M*(I-1)+1
A (JJ) =ALPH P (I) *FLGTH (1)

C WRITE(JW RITE,601) JJ, A(JJ)
601 FORMAT(1X, 'A( ',15,')=,F11.2)

129 CONTINUE
IF(NSUPY) 503,503,504

504 DO 505 I=1,NSUPY
JJ=JJ+M,

A(JJ)=0.
C WRITE(JWRITE,601)JJ,A(JJ)
505 !CONTINUE
503 IF(NEP) 250,250,251
251 JJJ=M* (NTUNL+NEP+NSUPY-1) +1

DO 253 K=1,NEP
JJ=JJ+M

:A (JJ) =0.
C W RIT E (JW RIT E, 60 1) JJ, A (JJ)

SJJJ=J JJ+ M
A (JJJ)=0.

C WRITE (JWRITE,601)JJ A(JJ
253 CONTINUE
250 ONTINUE
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DO 254 I=1,JIAX
254 DIA(I)=0.

CA LL LPROG (M, M, JM AX, A, B
DO 133 I=1,NTUNL
IF (DIA (I) - (60. **2. 63))

181 KCODIA(I)=1
GO TO 133

182 IF (DIA (I) - (120. **2. 6 3))
183 KCODIA(I)=2

GO TO 133
184 IF (DIA (I) - (180 . **2. 63) )
185 KCODIA(I)=3

GO TO 133
186 IF (DIA (I) - (240.**2. 63) )
187 KCODIA(I)=4

GO TO 133
188 IF (DIA (I) - (300.**2. 63))
189 KCCDIA (I)=5

GO TO 133
190 KCODIA(I)=6

, SP, DIA,OBJ)

181, 181, 182

183, 183, 184

185, 185, 186

187,187, 188

189, 189, 190

133 CONTINUE
ICONT=O
DO 127 I=1,NTUNL
IF (KESDIA (I) . NE.KCODIA (I)) ICONT=ICONT+1

127 CONTINUE
212 FORM AT (10F11.2)

IF(ICONT.EQ.0) GO TO 132
DO 128 I=1,NTUNL
KESDIA(I) =KCODIA(I)

128 CONTINUE
ITET=ITET+1
GO TO 131

132 WRITE(JWRITE,134)ITET
134 FOR]M AT(1X,'ITERATIONS DONE ON LPROG=',I10)

WRITE (JWRITE,212) (DIA(I) ,I=1,JMAX)
KK=O
DO 50 I=1,NTUNL

103 DIANEW (I) = (DIA (I) *FACTOR) ** (1./2. 63)
IF (EXIST (I) -. 01) 255,255,256

256 KK=KK+1
DIAUSE (I) = (DIA (NTUNL+NSUPY+KK) *FACTOR) ** (1./2.63)
GO TO 50

255 DIAUSE(I)=0.
C IF (H L (I)) 101, 102, 101-
C FLOW (I) = (FK (I) * (DIAN EW (I)**2.63+DIA USE(I)**2.63)*
C 1ABS (HL (I) **.54*11L (I)/ (ABS (HL (I)) *100.).) *100.
C GO TO 50
C FLOW(I)=O.
50 CONTINUE

TCOST=0.
DO 35 I=1,NTUNL
IF (DIANEW (I) .LE.0.) GO TO 35

36 TCOST=TCOST+FLGT H (I) *1. 1*DIA NEW (I) **1. 24
35 CONTINUE

RETURN
END
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SUBROUTINE ORGLP (M j,N,A,FK,EXD,Q,INJN,KN,NP,NN,B,HLfNEP,JMAX,
1NSUPYISSFACTOR)

D IME NSIO N A (l, N) , FK (50) , EX D (50) ,FL (50) ,Q (50) ,IN (50) ,JN(50) ,
1KN(50) ,B(50) ,HL(50) ,Z (50) ,ISS (10)
B(1)=O.
IWRITE=6
DO 10 K=1,NN

10 B (K+1) =ABS (Q (K))
J=1
DO 30 K=1,NN
J=J+1
Z (J) =0.
IF (Q(K)) 1,1,2

1 SIG=1.
GO TO 3

2 SIG=-1.
3 DO 25 I=1,NP

IF (HL (I)) 101,22, 101
101 IF (JN (I) -IN (K)) 20, 21,20
21 A (J, I) =SIG*FACTOE*F-K (I) *ABS (HL (I)) **. 54*HL (I)/ABS (HL (I))

GO TO 25
20 IF(KN(I)-IN(K)) 22,-23,22
23 A(JI)=-SIG*FACTOR*FK(I)*ABS(IIL())**.54*HL(I)/ABS(BL(I))

GO TO 25
22 A(J,I)=0.
25 Z (J) =Z (J) +A (JI) **2

Z (J) =SQRT (Z (J))
IF (ABS (Z (J)) - .00001) 26,26,30

26 WRTTE(8, 27) K
27 FORM AT (1 X, 'NODE ', TS, SHOULD BE IGNORED')
30 CONTINUE

IF (NSUPY) 200,200,201
201 DO 202 1=1,NSUPY

KK=NP+I
DQ 203 KKK=2,J
IF (ISS (KKK)) 204,204, 205

205 A (KKK, KK) =11
ISS(KKK)=0.
KKKK=KKK+1
DO 206 JJ=KKKKIJ

206 A (JJ, KK)=0.
GO TO 202

204 A (KKK, KK) =0.
203 CONTINUE
202 CONTINUE
C CONSIDEPATION OF EXISTING PIPES
200 LL=0

DO 50 I=1,NP
fIF(EXD(I)-.01) 50,50,51

51 J=J+1
13 (J) =EXD (I) **2. 63/FACTOR
LL=LL+I
NNP=NP+ LL+NSUPvA
DO 52 K=1,NNP-

52 A(JK)=0.



DO 53 JJ=2,J
53 A (JJ, NNP) =A (JJ, I)

A (J, NNP)=1.
50 CONTINUE

JMAY=NP+2*NEP+NSUPY
C ADD SLACK VARIABLES TO CORRESPON

IF(NEP) 80,80,81
81 DO 60 K=1,NEP

I=NP+NEP+K+NSUPY
II=NN+1+K
DO 70 KK=2,J

70 A (KKI)=0.
A(II, I)=1.

60 CONTINUE
80 WRITE (IWRITE, 63)
63 FORMAT(1X,'INPUT INDICATOP,1=E

READ(5,64) INDICA
64 FORMAT(Il)

IF(INDICA) 65,65,66
66 WRITE(8,6001)
6001 FORMAT (' COEFFICIENT MATRIX')

DO 71 I=2,M
71 WRITE(8,6002) I, (A(IK) ,K=1, J

6002 FORMAT (/1X,4HROW ,12,lX,10F12.
WRITE (8,6003)

6003 FORMAT(' CONSTRAINT MATRIX')
WRITE(8,6004) (B(I) ,I=1, M)

600.4 FORMAT(8X,1OF11.2)
65 RETURN

END

DING RXISTING

RINT OUT

PIPES

A MATRIX,0=NOT')

AX)
10/(8X, 10F12.10))
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SUBROUTINE LPROG
DIMENSION A(1),B

1 KOUT (7)

(E,
(1) ,
,ERP

INFIX(1) = 4
INFIX (2) N
INFIX (3) = ME
INFIX(4) = M
INFIX (5) = 2
INFIX (6) = 1
INFIX(7) = 100
INFIX (8) =0
TOL (1) =10.**-)
TOL (2) =10.** (-4)

.TOL(3) = -10.**(-3)
TOL(4) = 10.**(-10)
WRITE (6,92)

92 FORMAT(' OUTPUT FROM
WRIT'E(6,91) NMEiM

91 FORMAT(' N=',I10,'
PRM 0.
B(1) =0.
CALL SIMPLX (INFIXA
DO 1 I=1,N

1 Z(T) = 0.
DO 2 I=1,N
J = KB(I)
IF (J) 2,2,3

3 Z(I) = X(J)
2 CONTINUE

DO 5 I=1,N
5 DIA (I)=Z (I)

OBJ = Y(1)
11 WRITE (6,6500) (KOUT(
6500 FORMAT(7110)
6502 FORMAT(4E12.5)

RETURN
END

M,N,A, B,Z,DIA,OBJ)
Z (1) , DIA (1) ,TITLE (1) ,INFIX (8) ,TOL (4) ,E (3000) ,
(8) ,JH (10C) ,X (100) ,P (100) ,Y (100) , KB (100)

LPROG')

!4E= I,'~f M= ,I10)

,B,TOL, PRM, KOUT, ERR ,JifiX ,P,Y, KB, E)

I1) ,I=1,7)
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SUBRPUTINE SIMnLX (INFTXABTOLPRMKOUTEPRRJHXPYKB!,EL.-

C
D M N ION. INFrIX(3),All),B(1),T9L(-4),?KOUT(7),rERR( 9),FJH( ),XM1

1 P(1),Y(1),Kq(1),E(1),ZZ(3), IOFIX(16) , TEPR(8)

cQUIVALENCE (INPLAG,IOFIX(1) ), (N , IF TX(2) I
E, OFI ), M9FIX 41L.-FME, 8) )vF

' (4r, ToFlX(6S) ),v NCUT, 9 I ( ) NVER, IF X 8
3 I K, IOFIX(9) 1, (ITERt, TOFIX(1.0) ), (INVC ,vFIX(U)

4 (MM'UI~m-t--1fr-I ~'
5 (T'NFS, IOF TX(14) ) , JT, ICFIXIS) ) ( LA t IOFIX(16). Iv

6 (7Z(1),TPIV), (Z7(?),TZER0),(ZZ(3),TCOST)

c OVE INPUTS ... ZERO OUTPUTS
DO 134.1 I= I, 8-
TFRQ(T) = 0.0

1 FT Y( T+9)
1340 InFIX( I) = INFIX(C)

LA
D1l 13 = 1 , 3

13(8ZZTL) L TOtL)__
TCfST - ABS (TCOST)
PMIX =PR

C CHECK FOR ILLEGAL INPUT
TrF N) 13049, 1314, 1371

171 l1 (M - MF ) 1304, 1304, 1372
137? IF ('IF - MC) 1304, 1304, 1373--

1 3 73 r---T7-1 -- ',- T- 13-F-- - --- --

1374 IF (!-IF -
1375 JF( MODf

C
C NEW I

C~**SJBROUT I NE

C

1400 0r 1401
1401 JH(I) = 0

KT
) 1402

K( J) 0

.iM KT.
LL KT

KG 3'

M ) 1304, 1375, 1375.........--..

UNF LAGf,, 4) -1 )14- r 13 20, 10--

STARTS PHASE ONE
NFW (MN, JH KB, A, B MF, 'E )

INITI ATE

INSTALL SINGLETOnS

J. 1 N

+ EE N C .R.

TAtLY ENTRIES IN CONSTRAINT$..
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DO 14034. MM , LL
IF AiL)) 1404, 1403, 1404

1404 Ko Q+
LQ L

1403.CNIU
c CHECK WHETHER J IS CANDIDATE

IF (KQ - 1402, 1405 1402. .

IF ( JHR IA) ) 1402, 1406t 4
1406 IF (A(L.Q)*B(IA)) 1402, 1407, 1407

IS CANDIDATE. T
1407 -JH( IA)

KB tJ A-1
140? KT KT + ME

c
C**END OF NEW

C

c 1320 CONT INUE....... ~ ,~..,

C
C VER U FORIMS INVERSE FRO KB
C ****sURRrUTINE VER ( A, B, JH, X, E, KB, Y, IOFIX, TPIV, M2

C INITIATE
.100 ASIGN 1102 TO K

ASSIGN 1114 TO KJMY
I F ( L A) 1121, 1121, 1-22---.....

1122 NJMVR NUMVR
00 1101

1101 f(fl.)...

00 1113
E(MM) =1.0
X(I) B(I

1113M4M MM +
Dn 1110

IF .(Jlli(I))
1111 JH( I) = 12
1110 CONTINUE
- - - INFS

nfl 1102
IF ( Kr(J T

600 CALL JMY

1114 TY = 0.

M + 1
MF

1.111 0
3 45 -

FORM INVERSE
JT= I N

)) 600 , 1102 600
(JTI APIT M, Y

CHOOSE-PIVOT

DO 1104 1 MF

C

C
C



-76-

IF (JH( 11 12345 ) 1104, 105, 1104
1105 IF (ABS (Y() - TY ) 11041 1104, 1106
1106 IR- 1

TY ABS MYI)
1104 CONTINUE

C TEST PIVOT
IF (TY TPIV.) 1107, 11C84 10

C Ar) P IVOT ROW IRv COLUMN JT
1107 K!3(JT) 0

GO TO 1102

110S JH(IR) JT
KB JT) .IR
GO TO 900

C 900 CALL PIV (IR Y, M, E
1102 CONTINUE

C RESET ARTIFICIALS
Dn 1109 1 1, M

IF C JH( I) - 12345 ) 1109, 1112t 109
1112 JH(T) = 0
1109 CONTINUE.

C**END OF VER

C
100 ASSIG.N 705 T NDEL

ASSIGN 1000 TO KJMY
ASSIGN 221 Tn KPV

C
C-- PERFORM ONE ITERATION
C
C XCK I X CHECKER
C*****SAIR0UTINF XCK M, MF, JH, Xv TZERO, JIN

C RESET X AND CHECK FOR INFEASIBILITIES
1200 JIN ,

NEG = 0
Dn 1201 1, F
IF ( ABS (X() ) TZER) 12021 1203, 1203

12 02 X(l) 0.
G9 TO 1201

203 IF A X(I) ) 121, 1201, 1205.
1205 IF ( JH( 1201, 1206t 1201

2 NEG, I
1206 JIN = I
1201. cn NT INUE

C**ENO OF XCK

C



C.

C
200
201

C.
C GE
C *~*

50()

503

C
501

MM =1
IF ( X( I)

506 On 503 J
P(J) P ()

50 MM = MMj +
GO TO 505

507 IF (JH(I))
5o9 nn 519 J =

A (J) = P(J)
5 0 M +
5 5 CONTINUE

5 9 CONTINUE
* fND OF GET

S 

MIN M
***SiRR ujTINF M

700 JT 0
= TCOST

-701 DO_ 70? JM

70 IF { K3(JM)
-0 CALL EL i J
70- IF OT - B
708 B B =OT

5369 507 50
1, M

+ E(MM 1
m

505, 509 505

- E('I
M

IN D-J. SEL ECTS COLUMN TO ENTER BASIS
IN ( JT N, M, A, P, KB, ME, TCOST

SKIP COLUMNS IN BASIS
72?, 300, 702

9 fT, M, Ai )
709, 702 702 .

-77-
CHECK CHANGE 9F PHASE., GO BACK TO INVERT IF GONE INFEAS.

F I INFPS -IN ) 132n, 500, 200
BEC04F FEASIBLE.

INFS 0
PMIX .

T I GET q I CE S
:SUJP.R0UTINE GET ( M 'C, MF, JHr X, P, El INFS, P IX )

'mM MC
PRIMAL PRICES

D0 503 J 1M

)(,J) E=_(UM .
MM M
IF C INFS ) 501 599, 50

COMPOSITE PRICES
0 504 J j 1, .
P(J) = P(J)* PMIX
90 5.05 1 F,.

C

c
C
C
C
C

C

C

i



JT = JM
702 CONT INUE

C
C**END fF M I N

IF (JT) 203, ?039 600
ALL COSTS

203 K = 3 + INFS
Gc0 TW 0 T - -

C

C JMY 1
_C****SURROUTINE

C
600 00 610 I=
610 Y(1) =O.

LP = JT*
LL = 0
on- 605 I:
LP = LP + 1
IF (A(LP)

601 00 606 J
LL = LI + 1

606 Y(J) = Y(J)
GO TO 605

602 LL = LL +
6095 CON TINUE

C

6C99 O n ,M--

C
C ROW 1- R s
C *3 * ' !J ~~,T I NF~

C AMONG FOS. WIT-
C GFT MAX PnSITI

1000 I= 0
AA =-0.O
IA 0
00 1050 1
IF ( X(IT)

1041 YI= AS (Y(
IF ( YI

1042 IF ( JH( I)
1043 I F (I A)
1048 I F ( YI(T
1J44 IF (TA)

J MUL
JMY (

1 ,M

-1,M

601,

+ A (LP

00

ELECTIO
ROW

X=C, F
VE Y(I)

I

1

NON-NEGATIVE...

TIPLY.

JT, A,

E--

602,

F

1

K-= 3 OR A

NORMAL CYCLE

BASIS INVERSE * CnLUMN JT
E, M, Y ME

601

f LL)

114 -1392 .

N--COMPOSITE-1--
IP, M MF, JH, X, Y, TPI

IND MAX ABS(Y) AMONG ARTI
AMONG REALS.

MF, - .....
1050, 1041, 1050

TPIV ) 1050,
) 1043, 1044, 1043
050, 1048, 1050

1050, 1050, 1045
1045, 1046, 1045

1050,

V)

FICIALS, 1OR, IF NONE,

1042



1045
1046
1047

1050

1001
C

1012 IF ( Y(I) - B9 ) 10?2 1030, 1030
IF C Y(
Bq =Y
IR = -
CON T INUE
CON T INUE
) OF ROW

IF( IR

K 5--
-IF (PMIX)

IF ( TER

C
C PIV I
C ****SUYRRiiUTIN

I) * AA XCI) ) 1024, 1024 1030
I)

TEST PIVOT
207, 2079 210.. . . .

NO RIVOT

201, 400, 201
ITERATION LIMIT FOR CUT OFF.

-NCUT ) 900, 160, 160
PIVOT FOUND

PIVOT.. PfVOTS ON GIVEN ROW
E PIV (- R, Y, M, E, X, NUJMPV, TECOL

1EAVF TRANSFOnRN!E 0 COLUMN IN Y

INU =V NUMPV .
YI = -Y(IR)
YCIRR 1.S

TRANSF RIM INVERSE

-79~

IF YI AA 1050, 1050, 1047
IA 1

AA. YI .. .

IRI
CONTINUE-
1r(IR,)10q9,1001,1099
AO=1.0E+20

E INL--SP.. LVQT AMONG POSITIVE FOUATIONS
00 1010 IT MF M
IF C Y(IT) - TaIV ) 1010, 1010, 1002
IF C X('IT) ) 1010, 1010, 103
XY = X(IT) / Y(IT)
IF f XY - AA ) 1004, 1005, 1010
IF C JH( IT)) 1110, 1004, 1010
AA =XY
TI = IT
CONTINUE
IF (NEG) 1'16, 1099, 1016

NO PIVOT AMONG NEGATIVE EQUATIONS, IN WHICH X/Y IS LESS THAN TRtE
TMUM X/Y IN THE PrISITIVE EQUATIONS, THAT HAS THE LARGEST ABSF(Y)
RB - TPIV-
On 1030 1 = MF , M
IF (XI)) 1012, 1030, 1030

I
1

I
1

I

1

00?
003

005
004

010

FC

016

102?
1 ?4

I 93a
1 999
C""FNI
ci

C
207
257

C
210

-C

C 4 0 '

C



TFR ITER__
I NVC INVC

C
IF ( INVC NVER

160 K 6
-c .---. . -. -

CER ERR R
C* ***SUJBRUTINE ERR

400 ASSIGN 410 TO N
on 401 1 M

401 Y(I) =-B(
00 402 1 1 M
JA = JH(I)
IF (JA) 403, 40?

403 IA =ME* (JA-1)_

+I-
+1

INVERSION FREQUENCY-- --- -
) 1200, 1320, 1200

-- CUT_ OFF_ .. __TM MANY. ITERATIONS-----

CHFICIK COMPARESAX .- TH , PA WITH-. ZER
M A B TERR, JH, X P Y, ME, LA I

STORE AX-B AT Y
DEL

~,403..........

4O 405 IT= 1 M

-80-

LL.0
Q03 D 0904 L IRpM, M

IF E( L) ) 905, 914, 905
914 LI = LL + M

_G _ TO .9 04
905 XY = F(L) / YI

F(L) = .
DO 906 T =I M-
LL= LL +I

0 6 E(LL) ELL) +XY* YI)
904 CONT INUE -

C TRANSFORM X

XY X(IR) I
X(IR) 0.
0o 909 I _' m- - -

901 XCI) = X(I) +XY* Y(f)
C -RESTORE. Y(IR)-

Y(IR) = -YI

999 Gn TO KPIV 221, 1102

C*END OF PIV_~
C

221 IA JH(IR).-
IF ( TA ) 213, ?13, 214

214 KB( TA )
213 KB(JT) IR

JH(IR) JT
LA 0
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L L (JM 1) *ME
301 DO 303 M M =1,M

LL + 1
ITF I A( -LL ))3049 303,31 04

304 DT = T +P ) P M A LL
?03 CONTTNUE

399 GO TO NO)EL ,(41.0- ,05

C**EN9 '.F DEL
-. ~E --

*- END

.. ... .--- ,r .. r- a~---. -- . . ~.,.. -. e . . . . .. ,. . . .-- -.-



APPENDIX B

JOINT LINEAR PROGRAMMING-DYNAMIC PROGRAMMING

MODEL COMPUTER LISTINGS



C CAPACITY EXPANSION FOR NEW YORK CITY BY DYNAMIC PROGRAMMING
C WILLIAM MADDAUS OOM 1"371 MIT SPRING,1969
C DYNAMIC PROGRAMMING MONITOR

DIMENSION IUP(50) ,IDOWN (50) ,ITUNL (50) ,FLGTTH (50) ,H (50) ,
1EXIST (50) ,KESDIA (50) ,INODES (50) ,XIP (50) ,XJN (50) ,XKN (50) ,
1XIN (50) , LOC (50) ,P(10) ,NUM(10) ,FESDIA (50) ,XNUNi(10) ,XLOC (50)
COMMON/DYNAMC/I,J,K,N,DELT,DR,G,HLALF85,NODES,NTUNL,S (10, 10)
1D (10, 10, 10) ,-R(10, 10, 10) ,Q(10, 10, 10) ,F (10,10) ,ISTATE (10,10)
2DESIGN(30,10,10), EXCON(30, 10),DIAS(30,10, 10),QF(50),TWRITE

C READ PARAMETERS
IWRITE=8
WRITE (6, 101)

101 FORMAT (1X, INPUT FILE NUMBER')
READ(5,102) IREAD

102 FORMAT(I1)
READ(IRFAD, 100) TDELTDRG,ALF85

100 FORMAT(5F10.1)
WRITE (IWRITE, 106) TDELT,DRG,ALF85

106 FORMAT(1X,'INPUT DATA 1 5F8.3)
READ(IFEAD,5001) XNPXNNHWCFACTOR

5001 FORMAT(4FlO.1)
NTUNL=XNP
NODES=XNN
DO 2 IF=1,NTUNL
R EAD (IR EAD,500 2) XIP (IF) , XJN (IF) ,XKN (IF) ,FLGTH(IF) ,EXIST(IF)

1ESDIA (IF)
ITUNL (IF)=XIP (IF)
IUP (IF) =XJN (IF)
IDOWN (IF) =XKN (IF)
KESDIA (IF) =ESDIA (IF)

2 CONTINUE
5002 FOPMAT(6F10.1)

DO 3 IJ=1, NODES
READ (TREAD,5002) XIN (IJ), QF(IJ) ,H(IJ)
INODES (IJ) =XIN (IJ)

3 CONTINUE
READ (IREAD,5001) POI,POF,XND
ND=XND
WRITE (IWRITE, 103) ND

103 FORMAT (515)
WRITE(IWRITE,5CQ2) POIPOF

DO 7 I=1,ND
READ(TREAD,5003) XNPOP
NUM (I) =XN
P (I) =POP

C WRITE (IWRITE,5005) NUM (1) ,P(I)
7 CONTINUE

READ(IR EAD,5004) (XLOC(I) l1,,NODES)
DO 8 I=1,NODES
LOC (I) =XLOC (I)

C WRITE (IWRITE,5006) LOC(I)
8 CONTINUE
5003 FORMAT(2F10.3)
50041 FOPMAT(1OF5.1)
5005 FORMAT(T10,F10.3)
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5006 FORIMAT(1015)

N=T/DELT+l1
I=1
K=1

C THE COST FOR
WRITE (IWRITE,
DO 5 I=1,N
S (I, 1) =0.

110 FORMAT(5X,'S
D (1, 1, 1) =0.
R (I, 1, 1) =0.
F (NIN,1) =0.

5. CONTINUE
I=1

STATE ZERO IS ZERO

110) I

TAGE NUMBER' 12)

C FOR STAGE 1
DO 6 L=1,NTUNL

6 EXCON (L, 1) =EXIST (L)
TP=O.
DO 10. J=2,N
TP=TP+DELT
S (I,J) =TP
D(I,J, K) =TP
YFAR=1970.+(J-1)*DELT
CALL DEMCAP(NODESLOCQFPOI,POFPNUMYEART)
CALL COST (INODESITUNLIUP,IDOWNFLGTH,H,HWCEXISTKESDIAFACTOR)
F (I,J) =R (I,J,K)

10 CONTINUE
CALL NEW

C FOR ALL SUCCEEDING STAGES
DO 50 I=2,N
WRITE (6, 110) I
W RITE (IWRITE, 110)1

C FOR EACH STATE
DO 45 L=1,NTUNL
DO 45 J=1,N

45 DIAS(L,J,J)=0.0
TP=O.
DO 40 J=2,N
WRITE(IWRITE,115) J
WPITE(6,115) J

115 FORMAT(2X,ISTATE NO. I2)
TP=TP+DELT.
S (I, J) =T P

C FOR EACH DECISON
TD=0.
D (I, J, 1) =0.
R(, J,1) =0.
YEAR=1970.+(J-1) *DELT
CALL DEMCAP(NODES,LOC,QF,POIPOFP,NUM
DO 30 K=2,J
TD=TD+DELT
D(I,J,K)=TD
CALL COST(INODES,ITUJNL, IUP,IDOWN,FLGTH

30 CONTINUE
CALL SELECT

,YEAR ,T)

H WC, EXIST, KES DIA ,FACTO R)

I
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40 CONTINUE
NSTAGE=I

CALL NEW
XPROV=F (I-1, N) -F(IN)
WRITE (IWRITE,125) I,F(I,N) ,XPROV

125 FORA-AT(///,5X,'COST AFTER STAGE'12,2XiIS $1
1F12. 1,5X, IMPROVEIENT $1 F10. 1//)
IF(XPROV .LT. 100.0) GO TO 60

50 CONTINUE
60 WpITE(IWRITE,120) F(IN)
120 FOrMAT(15X,'MININ,UM STAGED CONSTRUCTION COST $'F12.1)

WRITE (IWRITE, 200)
200 FORMAT(////20XCAPACITY EXPANSICN BY DYNAMIC PROGRAMMING'//)

WRITE (TWRITE,205)
205 FORIAT(/25X'NEW YORK CITY DATA'/)

WRITE(IWRITE,210) TDELT,.DR
210 FORMAT(30X,'DESIGN PERIOD ='F5.1,2X'YEARS',/30X'TIME INTERVA

15.1,2X'YEARS'/.30X'DISCOUNT PATE =tF5.3)
WRITE (IWRITE,215)

215 FOR11AT (//25XISTATE13X'DECISIONI2X'STATE IN'4X INCREMENTAL'2 Y
1L'3X'JMINIMU1N RETURN'/43X'LAST STAGE'5X'RETURN'5X'RETURN'2X'FC
?S STATE'//)

DO 95 I=1,NSTAGE
WRITE(IWITE,220) I

220 FORMAT(/,5X,'STAGE NO.'I3)
DO 95 1=1,N
IF(T .GT. 1) GO TO 85
DEC=D (T,J,1)
PR EV D=0 .0
WRITE(IWRITE,225) S (I,J) , DEC, PREVDR (I, J,1) ,Q (Td, 1)

225 FORMAT (20X,3F10. 1I,3X,2F10.1)
F (IJ)=R (I,J, 1)
GO TO 92

85 WRITiE (IWRITE, 230) S (IJ)
230 FORrMAT(20XF10.1)

DO 90 K=1,J
DEPC=D (I, J, K)
PREVD=S(IJ)-DEC
WRITE (IWRITE,235) DECPREVD ,R (I,J,K) ,Q (IJ, K)

235 FORMA (30X,2F10.1,3X,2F10. 1)
90 CONTINUE
92 WRITE (IWRITE,240) F (IJ)
240 FOR MAT (74X,F10.1)
95 CONTINUE

END

L ='F

I TOTA
R THI
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SUBROUTINE DE MCAP(ODESLOCQFROI,POF,P,NUM,YEAR,T)
DIMENSION P (10), NU M (10) ,NY(10),CA (10) ,CM (10),LOC(50) , QF (50)
MY=2
IWRITE=8
ND=6
NY (1) =1970.
NY (MY) =YEAR

D=1./T
R= (POF-POI) /.(POI*T)
DT=NY (MY)-NY(l)
DO 18 I=1,ND

CA (T) =P (1) * (1. +R*DT)
DN=NUM (I)
CA (I) =150. 0*CA (I) /DN
CM (I) =1. 5*CA (I)

18 CONTINUE
QSuMO=. 0
DO 25 I=2,NODES
LOCNCD=LOC(I)
QF (I) =CM (LOCNOD)
QSIJM=QSIJM+QF (I) -

25 CONTINUE
QF (1) =- (QSIJM+100.)
WRITE(IWRITE,100) YEARR

100 FORMAT(/10X'YEAR ='F10.1,5XGROWTH RATE ='F10.4/)
RETURN
END
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SUBROUTINE COST (INODES, ITUNLIUPIDOWN,FLGTH,H,HWCEXIST,&KSDIAO
1FACTOR)

C CAPACITY EXPANSION FOP NEW YORK CITY BY DYNAMIC PROGRAMMING
C WILLIAM MADDAUS ROOM 1-371 MIT- SPRING,1969
C THIS SUBROUTINE CALLS THE OPTIMIZATION ROUTINE AND CONVERTS
C THE TUNNEL DIAMETER COST TO A NET PRESENT COST

DIMENSION TUP (50) ,IDOWN (50) , ITUNL (50) ,FLGTH (50) ,H (50),
1 TCOST (30) , DIANEW (50) , EXIST (50) , INODES (50) , DIAUSE (50) ,KESDIA(50)
COMMON/DYNAMC/I,J,K,N,rELTDR,G,HLALF85,NODESNTUNL,S (10, 10)

1D (10, 10, 10) , R (10, 10, 10) ,Q (10, 10,10) ,F (10, 10) ,ISTATE (10, 10)
2DESIGN(30,10,10),EXCON(30,10), DIAS(30,10,10),QF(50),IWRITE
IREAD=5
IF(I .EQ. 1) GO TO 3
DO 2 L=1,NTUNL

2. EXIST (L) =EXCON (LJ-K+1)
WRITE(IWRITE,301)I,J,K

301 FORMAT(3110)
WRITE (IWRITE,200) (EXIST (L) ,L= 1, NTUNL)

200 FORMAT( 1OF11.2)
3 CALL NCOST(NODESN-TUNLINODESITUNLIUPIDOWN, FLGTHEXIST,

1QF,H ,HWCTC,DIANEW,DI AUSE,KESDIA,FACTOR)
WRITE (IWRIT E, 302) TC

302 FORMAT(' TCOST=',F11.1)
WRITE (1WRITE, 201)

201 FORMAT (' *****EXISTING DIAMETERS*****I)
WRITE (IWIRITE,200) (EXIST (L) ,L=1,,NTUNL)
WRITE (IWRITE, 204)

204 FORMAT(' *****USED DIAMETER*****I)
WRITE (IWRITE,200) .(DIAUSE(L) ,L=1,NTUNL)
WRITE (IWRITE,202)'

202 FORMAT(' ****NEW DIAMETER*****')
WRITE(IWRITE,200) (DiANEW(L) ,L=1, NTUNL)
WRITE (IWRITE,203)

203 FORMAT ('*****DEMAND*****')
WRITE (IWRITE,200) (QF (L) ,L=1, NODES)
TCOST(K) =TC
DO 5 L=1, NTUNL

5 DIAS(L,J,K)=DIANFW(L)
ALF75=43.5
IF(I .GT. 1) GO TO 6
XINT= (J- 1) *DELT
XPREV=0.-0
COSC UG=1.0
R (I, J, K) =TCOST (K)
DO 8 L=1,NTUNL

8 DESIGN (L, J, I) =DTANEW (L)
DO 9 L=1,NTUNL

9 EXCON (L,d) =EXIST (L)
ISTATE (J, 1) =J
GO TO 19

6 XINT=(K-1)*DELT
7 XPREV= (J-1) *DELT-XINT
C COST INCREASE OR DECREASE IN 1982

IF(XPREV .GT. 7.0) GO TO 10
COSCHG=1.0
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GO TO 15
10 COSCHG=ALF85/ALF75
15 TCOST(K)=TCOST(K)*COSCHG
C NET PRESENT COST

18 R (I, J,K)=TCOST (K) /((1 +DR) **XPREV)
19 WRITE (IWRITE, 100) K, XINT, XPR EV, TCOST (K) ,R (I,J,K)
100 F01 M A T (1 X, 'COST ,110,4 (5X, F10. 1))

RETURN
END
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SUBROUTINE NCOST(NODESNTUNLINODES,ITUNLIUPIDOWN,FLGTHR
1EXISTDEMNDHEADHWCTCOSTDIANEWDIAUSEKESDIAFACTOR)
DIMENSION INODES (50) ,ITUNL (50) ,IUP (50) ,IDOWN (50) , FLGTH (50)
1EX IST (50) , DEMND (50) ,HEAD (50) , DIA (100) , A (15000) ,KE SDIA (50)
2DIANEW(50) ,SP(100) ,FLOW(50) ,DIAUSE(50) ,ISS(10)

DIMENSION HL(50) ,FK(50) ,ALPHP (50) ,KCODIA (50) ,B(50)
NMAX=15000
IWRITE=8

C COUNT THE NUMBER OF EXISTING PIPES
NEP=O
DO 15 I=1,NTUNL
IF (EXIST (I) -. 0 1) 15,15,16

16 NEP=NEP+1
15 CONTINUE

NSUPY=O
DO 500 I=1,NODES
IF (DEMND (I) ) 50 1, 502, 502

501 NSUPY=NSUPY+1
ISS (I+1) =1
GO TO 500

502 ISS (I+1) =0
500 CONTINUE
C WRITE(6,55)
55 FORMAT(1X,' INPUT INDICATOR, 1=PRINT OUT NODES ,NTUNL,NEP, O=NOTV)
C READ (5,2) IPRIN1
2 FORMAT (I1)
C IF(IPRIN1) 23,23,52

WRITE(IWRITE,6001) IITUNLNEP,NODESFACTOR
600 FORMAT (///10X,24HTOTAL NUMBER OF PIPES = ,13/

1 20X,27HNUMBER OF EXISTING PIPES =,13/

2 30X,18HNUMBER OF NODES = ,13,
3 40X,'FACTOR=' ,F 0.5)

23 DC 11 I=1,NTUNL
11 HL(I)=0.

DO 5 I=1,NTUNL
II=0
J.J=0
DO 6 J=1,FNODES
IF (IUP (I) . EQ. INODES (J)) IIJ
-IF (IDOWN (I) .EQ.INODES(J) JJJ

6 CONTINUE
IF(II) 5,5,7-

7- lIF(JJ) 5,5,9

C WRITE (6,56)
56 FORMAT(1X,'INPUT INDICATOR, 1=PRINT NODES AND PIPES CONDITIONS,

1 0=NOT')
C READ(5,2) IPRIN2
C F (IPRIN2) 100,100,53

WRITE (IWRITE,6002)
6002 FOR MAT (///12Xt 4HNODE,17,8HEXISTING,5X,'UEAD LOSS' ,/1X,l4HPIPE,

14X,5HBEGiN,2X,3HEND,4X,6HLENGT1, 4X,8HDIAMETER)
0 19 I=1, NTUNL

19 RITE (IWRITE, 6003) ITUNL (I) , IUP (I) ,IDOWN (I) ,FLGTH (I) ,EXIST (I) ,HL (I
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1)
6003 FORMAT (14,6X,I3,3X,13,3XF7.O,6X,F4.0,6X, F7.1)

C WRITE (IWRITE,6008)
6008 FORMAT(//1X,'NODE',10X,'DEMAND(MPD)')
C DO 25 I=1, NODES
C WRITE(IWRITE,6004) INODES(I) ,TEMND (I)
6004 FORMAT(I4,IOX,F1O.0)
100 DO 30 I=1,NTUNL
30 F K (I) .00062*H WC*FLGTH (I) **(-0. 54)

M=NODES+NEP+1
N=NMA X/M
CALL ORGLP(M,N,A,FK,EXIST,DEMNDINODESIUP,IDOWN, NTUNLNODES,B,
1Hl, NEP, JMAXNSUPY, ISS, FACTOR)
ALPHA=1.1
ITEND=10
ITET=1

131 IF(ITET.GT.ITEND) GO TO 132
DO 21 I=1, NTUNL
KKK=KESDIA (I)
GO TO (121, 122,123, 124, 125, 126), KKK

121 ALPHP (I) =3. 72E-03
GO TO 21

122 ALPHP (I) =9. 75E-04
GO TO 21

123 ALPHP(I)=4.84E-04
GO TO 21

124 ALPHP(I)=2. 41E-04
GO TO 21

125 ALPHP (I) =2. 16E-04
GO TO 21

126 ALPHP(I) =1.58E-04
21 CONTINUE

DO 129 I=1,NTUNL
JJ=N* (IL-1) +1
A (JJ)=ALPHP (I) *FLGTH(I)

C WRITE(IWRITE,601) JJ,A(JJ)
601 FORMAT(1X,'A( ',15,)=,F11.2)
129 CONTINUE

IF(NSUPY) 503,503,504
504 DC 505 I=1,NSUPY

JJ=JJ+M
A (JJ) =0.

C WRITE (IWRITE,601) JA (JJ)
505 qONTINUE
503 F (NEP) 250,250,251.
251 JJ=M*(NTUNL+NEP+NSUPY-1) +1

DO 253 K=1,NEP
JJ=JJ+M
A(JJ)=0.

C WRITE(IWRITE,601) JJ,A(JJ)
JJ=JJJ+ M

A(JJJ)=0.
C WRITE(I WPITE,601)JJJ,A(JJJ)
253 C NTINUE
250 CPNTINUE



DO 254 I=1,JMAX
254 DIA (I)'=O.

CALL LPROG(M, M, JAXAB,SPDIA,OBJ)
DO 133 I=1,NTUNL
IF(DIA(I)-(60.**2.63)) 181,181,182

181 KCODIA(I)=1
GO TO 133

182- IF (DI-A(I--1-4 21 18-313, 18 4
183 KCODIA(I)=2

GO TO 133
184 IF (DIA (I) - (180.**2.63)) 185,185,186
185 KCODIA(I)=3

GO TO 133
186 IF (DIA (I) - (240.**2. 63)) 187,187,188
187 KCODIA(I)==4

GO TO 133
188 IF (DIA (I) - (300. **2. 63)) 189,189,190
189 KCODIA(I)=5

GO TO 133
190 KCODIA(I)=6
133 CONTINUE

ICONT=0
DO 127 I=1,NTUNL
IF(KESDIA(I) .NE.KCODIA(I)) ICONT=ICONT+1.

127 CONTINUE
212 FORMAT (10F11. 2)

IF(ICONT.EQ.0) GO TO 132
DO 128 I=1, NTUNL----
KESDIA(I)=KCODIA(I)

128 CONTINUE
ITET=ITET+1
GO TO 131

C WRITE (IWRITE, 134) ITET
134 FORMAT(IX,'ITERATIONS DONE ON LPROG=I 10)
C WRITE (IWRITE,212) (DIA(I) ,I=1,JMAX)
132 K1K=0

DO 50 I=1,NTUNL
103 DIANEW (I)= (DIA (I) *FACTOR) **(1./2. 63)

IF (EXIST (I) -. 01) 255,255,256
256 KK=KK+1

DIAUSE (I) (DIA (NTU-NL+NSUPY+KK) *FACTOR) ** (12. 63)
GO TO 50

255 DIAUSE(I)=0.
C IF (HL (I)) 101, 102, 101
C FLOW (I) =(FK (I) *(BIANEW(I) **2.63+DIAUSE (I)**2.63)*
C- 1ABS (HL(I))* 54*HL (I)/(ABS(lL(I))*1O.))*100.0
C GO TO 50
C FLOW(I)=0.
50 CONTINUE-

TCOST=0..
DO 35 I=1,NTUNL
IF (DIANEW (I) .LE.Q.) GO TO 35

36 TCOST=TCOST+FLGTFH(T) *1.1*DIANEW (I)**1.24-
35 CONTINUE

TCOST=TCOST/1000.
RETU1MN *-*-4 - ------ -------

END
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SUBROUTINE ORGLP (,N,A,FK,EXD,Q,TN,ON,KN, NP,NN,B,HL,NEP,JMAX,
1NSUPYISS, FACTOR)

DIMENSION A(MN) ,FK(50) ,EXD(50) ,FL(50) ,Q(50) ,IN(50) ,JN(50),
1KN (50) , B (50) , HL (50) ,Z (50) ,ISS (10)
B(1)=0.
IWRITE=8
DO 10 K=1, NN

1 0 B (K+WM3C(
3=1
DO 30 K= 1,NN
3=3+1
Z (J)=0.
IF(Q(K)) 1,1,2

1 SIG=1.
GO TO 3

2 SIG=-1.
3 DO-25 I=1,NP

TF(HL(I)) 101,22,101
101 IF(JN(I)-IN(K)) 20,21,20
21 A(J,I)=SIG*FACTOP*FK(I)*ABS(H.L(I))**.54*HL(I)/ABS(HL(I))

GO TO 25
20 IF (KN (I) -IN (K)) 22, 23,22
23 A (J, I) =- SIG*F ACTOR*FK (I) *AIBS (HL (I) ) **. 54*HL (I) /ABS (11L (I))

GO TO 25
22 A(JI)=0.
25 Z (J) =Z (J) +A (J, I) **2.

Z (J) =SQRT (Z (J))
IF (ABS (7 (J) ) -. 0000.1) 26,26,30

26 WRITE(IWRITE,27) K
27 FOR MAT(1X,'NODE',I5, SHOULD BE IGNORED)
30 CONTINUE

IF (NSUPY) 200,200,201
201 DO 202 L=1,NSUPY

KK=NP+I
DO 203 KKK=2,J
fF (ISS (KKK)) 20 4 204, 205

205 A (KKK, KK)=1.
ISS (KKK) =0.
KKKK=KKK+1
DO 206 JJ=KKKKJ

206 A(JJKK)=0.
GO TO 20.2

204 -A(KKKKK)=0.
203 . CONTINUE
.202 CONTINUE
C CONSIDERATION OF EXISTING PIPES~
200 LL=0

DO 50 1=1,NP
IF(EXD(I)-.01) 50,50, 51

51 J=J+1
B (J) =EXD (I) **2. 63/FACTOR
LL=LL+i
NNP=N P+LL+NSUPY
DO 52 K=1,NNP

52 A (J, K) =:.
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DO 53 JJ=2,J.
53 A (JJ, NNP) =A (JJ,I)

A(J,NNP)=1.
50 CONTINUE

JMAX=N.P+2*NEPe+NSUPY
C ADD SLACK VARIABLES TO CORRESPONDING

IF (NEP) 65,65,81
81 DO 60 K=1,~NEP- -.

I=NP+NEP+K+NSUPY
1I=NN+1+K
DO 70 KK=2,J

70 A (KKI) =O.
A (II, I) =1.

60 CONTINUE
C. WRITE(6,63)
63 FORMAT(1X,'INPUT TNDICATOP,1=PRINT
C READ(5,64) INDICA
64 FORMAT(I1)
C IF(INDICA) 65,65,66
C WRITE (IWRITE,6001)
6001 FORMAT (' COEFFICIENT MATRIX')
C DO 71 I=2,M
C WRITE(IWRITE,6002) 1, (A(I,K),K=1,JM
6002 FOPRMAT(/1X,4HROW ,12,lX,10F12.10/(8

WRITE (I WRITE,6003)
6003 FORM AT (' CONSTRAINT MATRIX')

WRITE(IWRITE,6004) (B(I) ,=1, M)
6004 FORMAT (8X, 10F11. 2)
65 RETURN

END

RXISTING

OUT

PIPES

A MATRIX,0=NOT'-)

AX)
X, lOF 12.10))

d,
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SUBROUTINE LPROG(ME,M,N,A,B,Z,DIAOBJ)
DIMENSION A (1) ,1E (1) ,Z (1) ,DIA (1) ,INFIX(8) ,TOL (4) ,E (3000),

KOUT (7) ,ERR (8) ,JH (100) ,X (100) ,P (100) ,Y (100) , KB (100)
IWRITE=8
INFIX (1) 4
INFIX (2) N
INFIX(3) ME
INFIX (4) M
INFIX (5), 2
INFIX (6) 1
INFIX (7) = 100
INFIX (8) 0 -
TOL (1) =10.** (-4)
TOL (2) =10.** (-4)
TOL(3) = -10.** (-3)
TOL(4) = 10.**(-10)
WRITE (IWRTTE,92)
FORMAT(' OUTPUT FROM LPROG')
WRITE (IWRITE, 91) N, ME,,M
FORMAT (' N=', IIO,0' MF=' ,Il0,
PRM = 0.
B(1) =0.
CALL SIMPLX (INFIX,A,B,TOL,PR
DO 1 I=1,N

1 Z(T) = 0.
DO 2 I=1,N
J = KB(I)
IF (J) 2,2,3

3 Z(I) = X(J)
2 CONTINUE

DO 5 I=1,N
5 DIA (I) =Z (I)

OBJ = Y(1)
WRITE (IWRITE,6500) (KOUT (I) ,I

FORMAT (7110)
FORMAT (4E12.5)
RETURN
END

M=' , I10)

MKOUTERRJHX, P,Y,KB, E)

= 1,7)

1

C
92
C
91

11
6500
6502

'I
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SUBROUTINE SELECT

C CAPACITY EXPANSION FOR NEW YORK CITY BY DYNAMIC P ROGRAMMING
C WILLIAM MADDAUS ROOM 1-371 MIT SPRING,1969
C THIS SUBROUTINE CHOOSES THE MINIMUM COST DECISION GIVEN THE STATE

COMMON/DYNAMC/I,0,K,N, DELT, DR,G,HL,ALF85,NODES,NTIUNL,S (10, 10)
1D(10,10, 10),R(10,10, 1O), Q(10,10,1 O) ,F(10,10) ,ISTA TE(10,1O0),
2DESIGN(30, 10,10),EXCON(30,10) ,DIAS (30, 10,10) ,QF(50),IWRITE__
IREAD=5
QMIN=1.E 10
JJ=J
DO 10 K=1,J
Q (I, J, K) =R (I, J, K) +F (I-1, JJ)

C SEARCH FOR MINIMUM COST
IF(Q(I,J,K) .GT. QMIN) GO TO 9
QMIN=Q(I,J,K)
KOPT=K
JJOPT=JJ

9 JJ=JJ-1
10 CONTINUE

F (I, J) =QMIN
DO 15 L=1,NTUNL

15 DESIGN (L,J, I) =DIAS(L,J,KOPT)
WRITE(TWIRITE,100) (DESIGN(L,J,I) ,L=1,NTUNL)

100 FORMAT (10F10.1)
XINT= (KOPT-1) *DELT
XPR EV= (J-1) *DELT-XINT

TST ATE (J, I) =JJOPT
WBITE(IWRITE,105)KOPTXINT,JJOPTXPREVF(IJ),DESIGN(L,J,I)

105 FORMAT(1X,'SELECT'18, F8. 1 ,18,3E8.1)
RETURN
END
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SUBROUTINE NEW
WILLIAM MADDAUS
CAPACITY EXPANSION

ROOM 1-371 MIT'
FOR NEW YORK CITY

SPRINGO,19
BY DYNAMIC* PROGRAMMING

C THIS SUBROUTINE UPDATES THE EXISTING SYSTEM BY USING
C HYDRAULICALLY EQUIVALENT PIPES FOR TWO PARALLEL PIPES

COMMON/DYNAMC/T,J, K,IDELT, DR, G,HLALF85,NODESNTUNL,S (10 ,10),
1D (10, 10, 10) ,Q(10,10,10) ,Q(1O,1OlO) ,F(10,10) ,ISTATE(10,10),
2DES IGN(30,10,10) ,EX CON (30 , 1C) , DIA S -(30,y-10)- QF-{OGj- 1 WRT-T---- .
IREAD=5
P=2. 63
N1=N-1
WRITE (IWRITE,90)

90 FORMAT (10X,'NEW EQUIVALENT PIPES')
DO 10 L=1,NTUNL
DO 10 JK=1, N1
J=N-JK+1
JJ=ISTATE (J,I)
DEXIST=EXCON (L,JJ)
DNEW=DESIGN (LJ, I)

C DIAMETER OF THE EYDRAULICALLY EQUIVALENT PIPE
DEQUIV= (DEXIST**P+DNEW**P) 4* (1.0/P)
EXCON (LJ) =DEQUIV

100 FORMAT(IOF10.1)
10 CONTINUE

WRITE(IWRTTE,100) (EXCONLJ) ,L=1,NTUNL)
RETURN
END

C
C



APPENDIX C

AN ALGORITHM FOR THE OPTIMAL ALLOCATION

OF PRESSURE LOSS ALONG A PROPOSED PIPELINE
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An Algorithm for the Optimal Allocation

Of Pressure Loss Along a Proposed Pipeline

A pipeline is to be constructed from A to B. The hydraulic

grade line is fixed at A and at B as well.

H
AY

HC

B

(l-S)Q

D D2

A
A L (l-c*)L

Figure C-1

The purpose of the pipeline is to deliver the total quantity of water,

Q. Part of the total flow is required at B and part at C, an

intermediate location between A and B. The amount delivered to B is

SQ, where 0 < a < 1. The remainder is delivered to C. Location C is

a distance aL from A, where 0 <_ a < 1.

The total head loss between A and B is

A= H A-HB

and this is fixed at some given value. Ultimately, we wish to determine

the diameters D and D2 which are optimal in the sense that the total

cost of the pipeline from A to B is a minimum. This simple problem is

referred to below as the "basic problem".
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Of greater practical interest is the more general problem where

there are many intermediate points between the extremities of the pipeline.

This is referred to below as the "serial problem". In the general serial

problem, there are many more decision variables than there are in the

basic problem.

It appears that the serial problem is equivalent to a cascade

of basic problems. Both problems involve the allocation of the total

head loss across the system to the branches within the system.

If we knew how to do this for the basic problem, where there

are only two branches, we could solve the serial problem as a

simultaneous set of solutions to the basic problem.

To find the optimal allocation of head loss in the basic

problem, we proceed as follows. For any one branch, the pipe diameter

needed to transport a flow rate q at a total pressure loss h over a

distance k is:

D = K qr hp s (C-l)

where, for D and k in feet and q in mgd,

-.381
K = 1.264CHW

s = .205

r = .381

p = -.205

(CHW is the Hazen Willismas pipe coefficient).

The total cost of a pipe is

CD = cD k (C-2)
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where

c 1.89 for pipes and 5.8 for tunnels

m 1.24

so that the pipe cost, as a function of head loss is

CD = km qrm hpm 1+sm = (c)(1.825) CHW-.473 .473 h- 255 1.255

(C-3)

The total cost of the system from A to B is

CT = (c)(1.825)(CHW-.
4 7 3) [(aL)1.255 . 473 (HA-HC) -.255

+ ((l-a)L)1.255 .0473 (HCH B) -. 255 (C-4)

Let y be the proportion of A to be allocated between locations A and C

HA - HC = yA

so that

HC - HB = (-y)A

Then

C T = 1 -. 255 + 22(1 -.255

in which

e = (c)(1.825)(C HW-473) L1.255 . 473 A-255

1 =1. 255
E1=

2 = (1-a)1.255 6.473

The minimum cost obtains from

dCT
=0

dy

(C-5)

(C-6)

(C-7)

(C-8)
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where

dT -1.255 -1.255
-y = e[-.255L + .255E2

dy 1 Y

thus

(1 1.255 2 (C-9)

so that

1(C-10)

1+(-)

Note that E and E2 are functions only of a and 6. Since y is a

surrogate for the allocation of the total pressure loss from A to B,

it follows that the optimal allocation of this head loss is a function

only of the relative location of the intermediate point and the relative

amount of the initial flow transported all the way from A to B. In

terms of a. and 6:

1 (C-11)

1-a 0.377

Example:

Let a = .5, S = .5

Q/2 Q/2

A L/2 C L/2 B

Figure C-2

Then

1.255
= .418

1.255 473
2= (1 - a) = .301
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-.255 -.255
CT = e[.418y~ + .301(l-y) ]

(. 418) (y 255) (.301)(1-y) 
0 2 5 5

-. 255

1.507

1.263

1.139

1.059

.8

.6

.4

.2

1.059

1.139

1.263

1.507

.629

.528

.477

.443

.319

.343

.380

.453

CT!e

.948

.871

.857

.896

Y 1 -= 0.565
optimal 1+(0.5) 0.377

A Second Example

The next step is to apply these results to a more general

case where there are two intermediate withdrawal locations.

h
h

Q

LTL L B

Figure C-3

As before, the total head loss between A and B is A. Assume, for example,

that C and D are equally spaced between A and B and that the withdrawals

are as shown in Figure C-3.

.2

.4

.6

.8

- 255(1-a) (1-Y) * 0

h

["'W'Q
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Let the unknown head losses between these locations be hl, h2

and h as shown in the figure above. Applying the basic algorithm to
3

The interval from A to D gives

h1

Y = h + h = 0.565
1 2

Similarly, for the interval from C to B,

h2

2 2h +h =0.565
2 3

With the requirement that

h + h + h A
1 2 3

we have three simultaneous equations.

The solution is:

h = 0.422A

h =0.326A
2

h = 0.252A

The Serial Problem

To apply the basic algorithm, to the serial problem, proceed

as follows. Let the total number of demands be N so that there are N

concatenated branches, and N decision variables; and we need N

simultaneous equations. The first equation, as above, derives from the

fact that the sum of the decision variables (i.e. the hi) must equal

the total pressure loss. The other N-1 equations result from applying

the basic algorithm to every contiguous pair of branches. For each

pair, a value of y must be computed from Equation (C-11). The

simultaneous equations are particularly easy to solve by substitution
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because most of them involve only two unknowns. The first equation

links the other equations together.

Sensitivity Analysis of Total Cost

Equations C-5 to C-8 are useful, not only for computing the

total cost of the solution to the basic problem, but also for estimating

the effect on total cost of small changes in the various quantities

that have an impact on total cost.

It was initially assumed that L, Q, C and A are given as

fixed quantities. As a matter of post-optimal interest, we may want

to know how changes in these quantities affect the total cost. In

particular, what change in each of these will produce a one per cent

change in the total cost. This is a classic problem because the total

cost equation is of the simple form

y = axb (C-12)

where x is the particular variable of interest to the sensitivity

analysis, and y is the total cost. We need to differentiate

Equation C-12

d= abxbl (C-13)
dx

so the change in y for a small change in x is approximately

Ay =abxb-1 Ax (C-14)

The relative change in y is given by Ay/y, which, from Equations

C-14 and C-12, give

b-l A
abx Ax = b A- (C-15)

y b xax
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It follows that the percent change in x to produce a one percent change

in y is approximately equal to 1/b. (C-16)

Economists have defined a specific measure of sensitivity

that they apply to analysis of price changes caused by factors which

affect prices. That measure is called "elasticity" and is defined, in

our notation, as the ratio

= E (C-17)
Ax
x

The value of E is a measure of the relative change in the factor, x

needed to produce a unit relative change in price, y. In this case,

y denotes total cost. To follow the economist's lead, adopt the

convention that the total cost is inelastic, or relatively insensitive,

to change if IEI is less than unity; conversely, if greater.

In our case, we have the simple relation

E = - = b (C-18)
Ax
x

so the exponent of a term in the total cost equation gives us a direct

measure of the elasticity of the total cost to changes in that term.

We can summarize the total cost sensitivity analysis in the

following table.
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Elasticity Per Cent Change to Produce One

Factor (E) Sensitivity Percent Change in Total Cost

A=H -H -.255 Inelastic -3.9

Q .473 Inelastic 2.1

L 1.255 Elastic 0.8

C -.473 Inelastic -2.1

D* 1.24 Elastic 0.8

Table C-1

(*Note, the diameter, D, is not a factor which directly is controllable.

The first 4 factors jointly constrain the feasible diameter so the value

of D results from the decision making process. The fact that the cost is

sensitive to D is why we examine the decision making process closely.)

Sensitivity Analysis of Head Loss Allocation

The parameter y denotes the proportion of the total head loss

from A to B which is allocated to the branch from A to C. Therefore,

this parameter is a good surrogate for the term "head loss allocation".

We are interested in how this term is affected by other factors in the

problem, and we are also interested in how small changes in y affect total

cost.

Consider, first, the factors which may influence y. Inspection

of Equation C-11 shows that only a and are used to compute y. Hence,

we can conclude that the four terms A, Q, L and CHW have no affect at all

on y! Next, consider the two factors a and S.
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First, as before, compute the elasticity

E =
a Aa

a

AY.
and E =

SU

The algebra is more involved than before so the details are not

presented here. After some manipulation we get

Ay 0.377

E =- = (C-19)
a Aa1-a 0 377a a

3 1+ -)6.3a

Ay

E == -

~I ~

1-a 0.377
a037

(C-20)
1+(1-a 0.377

(-)+

In this case, the elasticities depend

we have a = 0.5 and = 0.5 as in the

elasticities we obtain are summarized

on the values a and . Suppose

first example. Then the

below in Table C-2.

Factor Elasticity

a 0.87

-0.164

Sensitivity

Inelastic

Inelastic

Percent change in factor needed
to produce one percent change in y

1.15

-6.1

Table C-2

These results show that the head loss allocated to the first branch is

relatively much more sensitive to the location of the intermediate node

than to the relative distribution of withdrawal between the two nodes.

and
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Increasing ot, which corresponds to moving point C closer to point B,

results in a small increase in y, which would increase the head loss

from A to C with a corresponding decrease from C to B. Increasing ,

which corresponds to moving some of the water use from C to B, results

in a small decrease in y, which would decrease the head loss from A to

C with a corresponding increase from C to B.

Also of interest is the sensitivity of the total cost to
dC

changes in y. Because the value of y is derived from setting dC equal

to zero, it follows that the total cost is insensitive to small variations

in y in the vicinity of the optimum. The marginal elasticity of CT with

respect to y is zero!

Implications for Distribution Networks

The method described here for the serial problem can be adapted

to non-looping networks with a single source of supply. A non-looping

network is shaped like a tree. In this kind of network, the number of

branches is one less than the number of nodes. The supply occurs at

one of the nodes so there are as many branches as demand nodes. As

before, it is possible to set up a set of simultaneous equations to

compute the allocation of pressure losses by recursive application of an

expanded form of the basic algorithm. The basic algorithm is not

sufficient to determine the pressure allocations where more than two

branches meet at the same node. The new system of simultaneous equations

contains non-linear as well as linear equations so a special solution

technique is also needed.
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Consider the case where there are three branches.

Q 19

L

A D 0 B D2a2L

D22

Figure C-4

The supply is at A. There are demands at B, C and D. (The notation

used here is slightly different from the previous notation.) The head

loss from A to C and from A to D is fixed. Let

A, =H -H
1 A C

A2 = HA HD

We want to find the rule for computing

A =H -H
0 A B

so that the total cost is a minimum. The total cost, according to

Equation C-3 is
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C = 1 8 2 c C H - .4 7 3 . 4 7 3 L1 .2 5 5 . .~+ Y 4 7 3 - ._ 2 5 5 ( - 1CT = 1.825cCH Q L { (1+6l+2) A0  (-

.473 1.255 -.255 .473 1.255 -.255
+ Sj c1  (A1-A 0) + 62 a2 ( 2-) }

The optimum solution follows from

dC

T 0 (C-22)
dA0

This leads, after some algebraic manipulation, to the implicit equation

for A0

473 -1.255 473 1.255 -1.255
1 2 0 1 1 1 0

(C-23)

.473 1.255 -1.255
- 62 (2A2 - 0 ) = 0

The algorithm for allocating the pressure losses throughout a

non-looping network must account for the non-linear equations. There is

one non-linear equation for each junction node. There is one linear

equation for each node that is not a junction. These linear equations

involve only the pressure losses in two adjacent conduits. The set of

linear equations for the nodes between two junction nodes can be used to

solve for the head loss in the conduits adjacent to each junction as a

function of the total head loss in the link between the junction nodes.

In this way, most of the linear equations can be solved separately from

the non-linear equations.
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Upon substituting the previous results from the linear equations,

the non-linear equations are transformed into a set of relations between

total head losses in adjacent links. Originally, the non-linear equations

related only the head losses in conduits adjacent to the junction node

so the new equations are much more useful than the original equations.

Remaining to be solved are a system of linear and non-linear

equations. We have one non-linear equation for each junction node. We

have one linear equation for each extremity which specifies the total

head loss through the system from the supply to the extremity of the

system. The unknowns in these remaining equations are the link head

losses. When these are determined, the problem reduces to a set of

original serial problems.

An approach to solving this system of non-linear equations is

as follows. Let X denote the unknown head losses. Let B denote the

vector of right-hand-sides of the equations. Then the equations are

equivalent to

AX = B

in which A is a matrix of coefficients, and some of these coefficients

are functions of X. Assume an initial estimate of X exists. Call this

X 0 Use the values of X0 to compute the coefficients of A. Call this

A . Since we must have

X = A-1 B

The algorithm is then

-1X =A. B
i+l i
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and we continue until X is close enough to X.. The link head losses
i+11

are then contained in X. . These are the total losses between junction

nodes and between junction nodes and boundary nodes. The problem of

allocating the head loss between these nodes is the same as the original

serial problem.


