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ABSTRACT

This study is concerned with standing waves gen-
erated by a two-dimensional wave maker in a rectangular
tank. The theoretical investigation was first based on
the well-known linear theory of surface waves. The
linearized version of the problem is basically two-di-
mensional and the solution of forced two-dimensional stand-
ing waves of small amplitude was obtained. Then, a system
of equations, based on the exact free surface conditions,
was derived for solutions of forced two-dimensional stand-
ing waves of finite amplitude. A non-linear solution
corresponding to any mode of oscillation can in general be
obtained by the method of iteration from the system of
equations. However, only the fundamental mode was solved
here for the velocity potential, free surface elevation
and frequency-amplitude relation with the computation
carried to the third order of approximation. The frequency-
amplitude curves for two constant amplitudes of wave
maker were found to consist of two non-intersecting
branches of oscillation; the range of significant non-
linear effects was also determined for the particular mode.
Two profiles of standing waves were computed for the fre-
quencles on each branch of the oscillation.

The stability of non-linear forced two-dimensional
standing waves was studied by investigating the possibility
of excitation of the fundamental mode of cross waves. A
system of equations was again derived for solutions of



cross waves by extending the method used in the two-dimen-
sional case. The solution corresponding to the first mode
of the longitudinal component and the first mode of cross
waves was solved by the method of iteration to the second
order of approximation, and ylelds the following results:

(1) The half-frequency relation between the cross waves
and wave maker,

(2) The frequency for excitation of the cross waves,

(3) The length/width ratios of the tank at which the
cross waves can be excited by an infinitesimal
amplitude of wave maker, and

(4) The phase relation between the cross waves and the
wave maker.

The experimental investigation comprises essentially
two parts: forced two-dimensional standing waves and cross
waves. The experiment of two-dimensional standing waves
serves as a verification of the theoretical solutions for
both the frequency-amplitude relation and the profile of
the standing waves. A satisfactory agreement was indil-
cated in the comparison of the theoretical prediction and
of the experlimental results. For cross waves, the fre-
quency-amplitude curve was obtained from the experiment in
addition to conflrming the results of the theoretlcal
analysis above mentloned.
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I. INTRODUCTION

In the past decades the mathematical theory of water
waves has been extensively developed. Experimental work be-
comes increasingly important to examine the theoretical
analysis and to explore more facts for the development of
more sophisticated problems in the field. In experimental
investigations wave makers are generally used to generate
different types of waves on the free surface of 1liquid for
the study of wave motions under certain boundary conditions
or of the interaction of waves with bodies in the liquid.
Most frequently, there arise two-dimensional problems and
two-dimensional progressive or standing waves are required
for experimental investigations. It was observed that the
two-dimensionality of the motion produced by a two-di-
mensional wave maker could not be preserved under certain
circumstances due to lateral instability. This instability
occurs in the form of standing waves with their crest lines
normal to the wave maker [1, 2, 15](1). For a long chan-
nel with dissipation at the far end the standing waves ap-
pear only near the wave maker and their amplitudes decay
rapidly along the channel; while for a finite-length chan-
nel with a vertical wall at the far end finite-amplitude
standing waves of this type can be generated [3, 4]. The
frequency of the standing waves was found to be only half
that of wave maker as a subharmonic mode of forced oscil-
lation. Hereafter, this type of standing waves 1s called
Cross waves.

As a general approach to the study of three-dimensional
surface waves generated by two-dimensional wave maker, a
rectangular channel of finite width and length 1is desirable
for the energy in the system is finite and thus the assumption
of a radiation condition at infinity can be avoided. Further-
more, in a slightly dissipative system, the effect of vis-
cosity on three-dimensional waves in a long channel becomes
significant. Ursell [3] showed that the amplitude of waves
is exponentlally damped along a semi-infinite channel of
constant width and depth. A slightly dissipative system
will be considered here; hence, a rectangular tank with a
pair of wave makers parallel to each other and nocrmal to the
side walls is taken to be a methematical model in this in-
vestigation. Here, we mean by a slightly dissipative system
that the effect of viscosity can be neglected but there does
exist slight dissipation to decay all modes of free oscil-
lation and thus to ensure a periodic motion due to forced
oscillation. For forced oscillation the motion in general
consists of free modes of oscillation and a forced periodic
motion due to forcing agency. The term, forced oscillation,

(1) Numbers in | ] refer to References.



used in this study refers only to the forced periodic motion
in a restricted sense as a result of slight dissipation in

the system.

The objective of the present investigation is to study,
both theoretically and experimentally, the stability of forced
two-dimensional standing waves and the mechanics of excitation
of cross waves by two-dimensional wave makers in a rectangular
tank. A complete investigation of the problem of forced three-
dimensional standing waves in a rectangular tank is not pos-
sible due to the fact that it 1s non-linear with infinitely-
many degrees of freedom for oscillation. However, some par-
ticular solutions of practical significance can be investi-
gated in a restricted manner. The problem of forced two-
dimensional standing waves of finite amplitude will be solved
as a family of particular solutions to the problem as a whole,
and then the cross waves will be investigated. Therefore, the
stability referred to here is 1in the sense that two-dimensional
standing waves can be preserved without exciting the funda-
mental mode of cross waves.

1. Linear System

It is natural to begin the study by investigating the
linearized version of the problem. The classical process of
linearization will lead the problem to a linear two-dimen-
sional one, the general solution of which 1s to be found as
a system of forced two-dimensional standing waves of small
amplitude. A spectrum of resonance frequencies of the two-
dimensional system can then be obtained. As is known in the
linear theory of oscillation, the linear solution is not valid
when the system is in resonance, which is defined by the
phenomenon that the amplitude predicted by the linear solution
approaches infinity as the forcing frequency approaches a
resonance frequency of the spectrum. However, the non-linear-
-1ty and viscosity prevent the amplitude of standing waves from
- becoming infinite. Since the linear system is basically two-
dimensional, the two-dimensional standing waves of small
amplitude are always stable except in the neighborhood of each
resonance frequency of the system. In order to investigate
the range of stability in the system as a whole, non-linear
solutions have to be investigated in each neighborhood of a
resonance frequency. A non-linear solution of two-dimensional
standing waves will first be obtained and then the non-linear
solution of cross waves of the fundamental mode for the purpose
of investigating stability.

2. Non-linear Two-dimensional System

Finitew-amplitude progressive waves have been subject..”
to . numerous investigations since Russell's experiments (5]
The problem was first solved by Stokes in 1847 [6] and sub-
sequently extended and refined by other authors [7-13] by
the method of successive approximation based on the exact free



surface conditions. The existence theory was finally estab-
lished by a proof of Levi-Civita [10] for the infinite-depth
case and later extended to finite-depth case by Struik [11].
No analysis of similar kind was available for finite-ampli-
tude standing waves until in 1952 Penney and Price [14]
treated the problem of free two-dimensional standling waves
of finite amplitude. The difficulty involved here is that
for progressive waves of permanent form a uniform veloclty
can be superposed on the system and then the problem 1is re-
duced to a steady two-dimensional motion. This mathematical
simplicity does not exist in standing waves. However, they
solved it by expressing the velocity potential and free sur-
face elevation as two Fourier series in x with coefficlents
which are functions of t and then approximating to these
coefficients as Fourler series in t by the method of per-
turbation. The resulting solution is in the form of a
double Fourier series in x and t with coefficients which

are power series in a constant A (A/r 1s approximately

equal to the wave-height/wave-length ratio). In order to
investigate the highest standing waves, their solution for
the deep water case was carried to the fifth order. The
same problem was later investigated experimentally by
Taylor [1], who made a series of experiments to produce the
highest two-dimensional standing waves. The free standing
waves were produced approximately by a pair of wave makers
executing small-amplitude osclllatory motion in a rectangu-
lar tank near the resonance frequency of the fundamental
mode. The experimental results were in good agreement with
the profile predicted by Penney and Price; in particular,
the 9OO angle at the crest of the highest standing waves

was verified. The frequency-amplitude curve of forced stand-
ing waves was found to consist of two non-intersecting
branches which are similar to those occurring in the theory
of non-1linear mechanical oscillators. In his experiment,
lateral instability was observed to set in at the moment
when the standing waves reached a sufficiently high amplitude.

The approach adopted here to solve the problem of forced
two-dimensional standing waves of finite amplitude is similar
to Penney and Price's approach. Of course, the existence and
stability of two-dimensional waves has to be assumed for the
moment. A theoretical investigation of the two-dimensional
system will be carried out here. The non-linear solutions
in the forms of the velocity potential, free surface elevation
and frequency-amplitude relation will be obtained for small
amplitudes of the wave maker. The solution will also provide
quantitatively the range in which significant non-linear
effects occur. The experimental investigation in thils case
will serve essentially as a verification of the theoretical
results. Due to the possibility of exciting cross waves 1n
the three-dimensional system, forced two-dimensional standing



waves may become unstable under certain circumstances; hence,
the experiment would be difficult to carry out without a
further understanding of possible non-linear solutions in the
three-dimensional system. '

3. Non-linear Three-dimensional System

A free surface of liquid under forced oscillation has
long been the subject of investigation. Three-dimensional
standing waves may be excited as a result of forced oscil-
lation on the boundary of vessel which contains the liquid or
by wave maker oscillating in the liquid. The half-frequency
standing waves as a subharmonic mode of forced oscillation
were most frequently observed. Faraday in 1831 [15] made a
series of experiments concerning a layer of liquid on the sur-
face of a vibrating plate. It was first found that the fre-
quency of the minute standing waves was only half that. of the
?late. The problem was next investigated by Mathlessen [16],

17], but a synchronous vibration was found. In order to
check the discrepancy Rayleigh in 1883 [18, 19] made another
series of experiments similar to Faraday's and confirmed
Faraday's results. Benjamin and Ursell [20] recently worked
out a stability theory for a free surface under vertical
vibration based on the solution of Mathieu's equation. Their
theory, partly verified by experiments, can explain the above
phenomena and shows that both half-frequency and full-fre-
quency standing waves can be excited. All of the above in-
vestigations are limited to standing waves of small amplitude
and the direction of oscillation more or less normal to the
free surface. Nevertheless, these results should suggest
that the half-frequency cross waves can be excited under cer-
tain circumstances.

Indeed, cross waves generated by a wave maker were first
observed by Faraday in his experiment [15] and later by Schuler
in 1933 [2], which again confirmed the half-frequency mode of
oscillation. In the experiment for the study of the highest
two-dimensional standing waves, Taylor [1] observed a type of
instabllity which was formed by half-frequency standing waves
in the transverse direction superposed on the two-dimensional
standing waves. The crest of the three-dimensional waves be-
came conical and so high that the free surface splashed violent-
ly. VFinite-amplitude cross waves were generated on purpose
in a towing tank by McKernan [4] and used to similate short
crested seas for ship model experiments. Recently, Howard [21]
worked out a theory, based on the second-order free surface
conditions, that the excitation of half-frequency cross waves
in a rectangular tank depends upon certain length/width ratio
of the tank and a critical amplitude of the wave maker.



It is believed that three-dimensional standing waves
can be excited in the system under consideration only due
to the non-linearity in the free surface conditions since
the linearized version of the system is basically two-
dimensional. A non-1linear solution for the fundamental mode
of cross waves will be investigated based on the exact free
surface conditions. The method used to solve the non-linear
two-dimensional standing waves will be generalized for this
purpose. The experimental part of the investigation for
excitation of cross waves 1s expected to verify as well as
to supplement the theoretical analysis since only the second-
order solution will be carried out here.

As mentioned at the beginning the complexity involved
in the theoretical and experimental investigations is due
to the fact that it is a non-linear system with infinitely-
many degrees of freedom for oscillation. The present in-
vestigation, however, will provide the linear solution of
the system (forced two-dimensional standing waves of small
amplitude); the non-linear solutions of the two-dimensional
system (forced two-dimensional standing waves of finite
amplitude); the range of significant non-linear effects in
the two-dimensional system; and the general characteristics
of cross waves.



II. FORMULATION OF THE PROBLEM

2.1. Dimensional Eguations and Boundary Conditions

Finite-amplitude standing waves are generated in a
rectangular tank by a pair of two-dimensional wave makers.
The tank 1s taken to be of infinite depth. The X-y plane
of the rectangular coordinates coincides with the un-
disturbed free surface and the z-axis is vertically up-
wards. The wawve makers have a width W and are a distance
2L apart. (See Fig. 2.1)
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,ﬂ//
| —
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0 | x*
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Figure 2.1



The fluid is assumed to be homogeneous, incompressible,

inviscid and moving ir?otationally, hence there exists a

Fel?city potentia1,1$* 1Lwhich describes a velocity field
22] as

¥
¥=-v9o , (2.1)
and satisfies the Laplace equation
v*2©*=o (2.2)
for 05 x*< 2L ,osy*sW and Z*>-o00 |

The free surface conditions,

Ol - 34**-97" =0 (2) (2.3)

and
* % * * *
Lo~ Qe L Ol t 03 =0, (2.4)
have to be satisfied on the free surface,
*
X =TH(x, y% 1) (2.5)

where a zero atmospheric pressure is assumed and
#2 _ xx? *2 *2

_% _@')(*+ @y* +@2¥'

The boundary conditions are

for infinite depth case,

®* —» function of t* as ZE*—> -0 ; (2.6)
on the walls,

’a@ .

ay*= 0 at 7*= 0 and W ; (2.7)

and on the wave makers,

X
20 - F(*) Sino*t*

(2.8)

(1) The asterisk on the upper right indicates a dimensional
quantity. :

(2) The subscript of an independent variable on the lower
right indicates partial differentiation.



In his study of forced progressive waves of small
amplitude, Havelock in 1929 [24] obtained, by means of an
integral theorem, a general expression of the velocity po-
tential for the function F (). The motion in general
congists of a system of progressive waves far away from
the wave maker and a local disturbance in the vicinity of
the wave maker. However, he could simplify the expression
of the velocity potential by an approximation that the
motlon of the wave maker is an exponential function with
respect to the depth, i.e. ¥ ¥

F(&) = Ae (2.9)

The motion of a plunger-type wave maker corresponds to
T*: 0, but Havelock found that as ¥%= 0, the local dis-
turbance becomes infinite in the deep water case while
the system of wave motion away from wave maker remains un-
changed. The oscillatory motion of a flap-type wave
maker can be approximated by the exponential function

Eq. (2.9) by a proper choice of ¥#* without the difficulty
involved in the plunger type. A flap-type wave maker is
adopted with its motion approximately described by an
exponential function and then the boundary conditions on
the wave makers become

»

¥*
.__gg*=o(*g*e’*z*smo*t* at X*=0 (2.10)
and
» ¥*
(ER* .
g?{;:—o(*c'*e Sing*t* at X*=2L _  (2.11)

In Egs. (2.10) and (2.11), the amplitude of a wave maker
at the undisturbed free surface, Ot %, is assumed to be
small and then the motion is limited at %0 and 2L.
Therefore, the motion of the wave maker is, in a sense,
linearized and the non-1linear waves are excited essen-
tially due to resonance.

2.2 Dimensionless Equations and Boundary Conditions

L 1/2 -

. . L . .
By a choice of length unit “/AT and time unit (—g=) the
followi%g dimensionless %uantities/are defined: X ’

_oxt _my* _ 12! _ (TG Y2 _ L
=T, YT £=-T ,t—(L_)t )fe'w
3% -4, Y ¥ *
= (Y2 7258 =(LYesr T LY
A set of dimensionless equations and boundary conditions
can be derived from Egs(2.1) to (2.11) as follows:

5 (2.12)
Ved=0 for osxsm)osys%and Z> -00 ,

_8-



with 4 =-v0d

>

= P, - Lg? (2.13)
Z =0 s on Z=§(X,y,t)’-
@t:‘QLEQx*'QyEY-@EZ (2.14)
® — rfunction of t as Z—>-00 (2.15)
%—=O at y=0 and T/g4 (2.16)
and %%—: XS SInot 82/2 at X =0
— _xoSinote¥? at x= 2T . (2.17)

The coefficient of Z in the argument of the exponential
function is chosen to be 1/2.

2.3 Transformation of Homogeneous Boundary Conditions

In order to have homogeneous boundary conditions for
later Fourier series expressions of the velocity potential
and free surface elevation, it is desirable to introduce
a transformation

$ = 2005in 5 Sin cte®2 4 ¢ (2.18)

in which @ is the new velocity potential; hence ¢ sati-
fies the Laplace equation

vig=o0 for Osx<am,0sysfand Z>-00  (2.19)
and the homogeneous boundary conditions,

@ — function of ¢ as Z—>—oc , (2.20)

g“m“x =0 at x=0 and 2m , (2.21)
and g—§= at y=o0 and T/ . (2.22)

Substituting Eq. (2.18) for ¢ in Egs. (2.13) and (2.14),
we have two transformed free surface conditions,
= _Lta2_ . B/2 X 4
\é (Pt 2‘3[ O(O'-SIHO"te (@xco55‘¢251n§)(2.23)

: + 205 5in % Cosote™2- Loz Sintat €%
and

Gt = GuTy+ Prly=z +o0Sinote?2(ZyLosX-Sint) (2. 1)
on the free surface, Z=§(X/y/t) ’

where 5
G = i @f - P2
-O-



Now, the problem is to look for the possibility of a
veloclty potential,@, and free surface elevation,Z, as
solutions of Egs. (2.19), (2.23) and (2.24) and satisfying

%he hﬁmogeneous boundary conditions, Egs. (2.20), (2.21) and
2.22).

-10-



III. LINEAR THEORY OF FORCED STANDING WAVES
IN A RECTANGULAR TANK

3.1 Brief Review of Linear Theory

Since there is no general solution possible for the
non-linear partial differential equation formulated in the
previous section, approximate physical picture can be
obtained, with the least mathematical effort, by solving
the linearized equations. The additional assumption in-
volved is that the amplitude of standing waves should be
small in comparison with the wave length. The problem 1is
then reduced to finding a velocity potential, Q , as
solution of the Laplace equation [22],

vip=0 for O$X<2M,02%2-00 (3.1)

and satisfying the following linearized boundary
conditions,

@tt+©zzo on Z2=0 ) (3.2)
d —> functions of t as 7 —-o0 , (3.3)
and B:-raosincte¥? at x=0 and 2r. (3.4)

After the solution of @ is found, the free surface
elevation can be obtained from

=0y . (3.5)

The normal modes of free standing waves of small
amplitude satisfying the above system are given by the
velocity potentials [23]

(Omnt

Qenn (%5 y5 )€ -
= Cen Cos mly Cosny @M+t Z+10mnT (3.6)

where m, n are integers, Cmn 1is a complex constant,

Cran = Jonifis ni (3.7)

and the real part on the right-hand-side of Eq. (3.6) is
taken. The frequencies 6mn o given by Eq. (3.7) form
the spectrum of natural frequencies of the three dimen-
sional system, and it can be proved that

0S Ch,net =F2%m,n < 1 (3.8)
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independent of: the width “ZQ , which would reduce to the
. . 2.5~ 2 = 1 i -0

two dimensional system, Gf+1 -~ Cn , 1f m_ .

Then, the free motion is of the form

@(%>y>z;t)=Eéi)mn(x,y;bewm”t | - (3.9)

and a frequency analysis leads to the spectral frequenciles

Eq. (3.7) [3].

For forced oscillation, in general the motion consists
of free modes of oscillation, Eq. (3.9), and a forced period-
lc motion having a frequency oA 1t equal to the forcing
frequency. The amplitude of forced motion approaches 1n-
finity as @@1t approaches a resonance frequency, while the
other properties of the forcing agency are kept constant
as generally recognized in the linear theory of oscillation,
A measurement of resonance frequency provides the spectrum
of the resonance frequencies. However, in the sense of
forced motion defined in Sec. I for the dynamical system
under investigation, the free modes are only transient and
do not exist in the steady periodic motion due to slight
dissipation. Hereafter, the solution of free modes of
standing waves will be neglected and only the steady period-
ic solutions are to be investigated.

3.2 The Linear Solution of Forced Motion

The linearized version of the problem of forced oscil-
lation 1s basically a two-dimensional one, since the linear-
ized free surface condition, Eq. (3.2) and the motion of
the wave maker, Eq. (3.4), are independent of y. Let the
solution of two-dimensional standing waves of small ampli-
tude be

o
o= 2ac§in§e%5inot+ S ane™Cosnx Sincot+e) (3.10)
Nn=0

satisfying all conditions except those on the free surface.

The phase angle ¢ has to be O or T in order to have a

solution. Substituting Eq. (3.10) for ® in Eq. (3.2), leads
to

- w N
040(|'202)5fm22(‘—5m0t + > 0nn-02) CosNx Sin(ot+€) =0

n=0
or o
X o = |
SinZ = F Toamzen KO %n Cos nx S
in which the negative sign is for & =:0and the positive
foreg=1 . In order to determine the coefficients A,,

Sin X /2 1is expanded into a Fourier cosine series for
=X=<2T, then

SM?&._._@___ZI-_OOCOS—Y\X (3.12)
2 T T &L 4ni-|
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By comparing the coefficients of cosnx on the right-hand
sides of Egs.(3.11) and (3.12), it is found that:

Qo=+ 20 (1-20%)

and on

- 4+ 440 (1-20%)

Oin T (4n2-1)(N-02) ’
in which the positive sign is for €¢=0and the negative for
£=10; but as we substitute both A, and € into Eq. (3.6),
the sign becomes positive in front of the summation sign
for either case.

f'OP n=1)2;3>".5 (3'13)

It follows from Eq. (3.5) that the free surface
elevation 1is

oo
_ 20 CosNX
= T[I—ZGZ% (2n+\)<n—o7-)]c°50t - (3.14)

3.3 Numerical Computation

A numerical computation was carried out for the total
amplitude of the linear standing waves at the point of sym-
metry in the tank, x =T1t. Since this is a simple harmonic
motion, the total amplitude is

N+

_ 4d & -1)
2 |§l - ’ITI [+ 20° nZu (2n+1)(n-g2)

The frequency-amplitude relation based on Eq. (3.14) is
shown in Fig. 3.1 for the wave maker amplitudes,

X = 0.0194 and 0.0388 and for the first mode of oscil-
lation only, i.e. nearc= 1.

at xX=TC . (3.15)

The spectrum of resonance frequencles can now be
determined from the solution, Egq. (3.14) or Eq. (3.15)
as the amplitude |YX| approaches infinity at ¢= /71 , where
n is an integer, hence, oﬁ = .

3.4 Behavior of the Linear Solution

~ The spectrum of discrete resonance frequencies
Onh = N for the two-dimensional system 1is obtained when
the amplitude of standing waves becomes infinite at ¢=—np.
The spacing of these resonance frequencies decreases as
the mode of oscillation becomes higher and tends to zero
at the highest mode. The spectra of resonance frequencles
for both free and forced motions are identical. If the
forcing frequency of the wave maker 1s away from the re-
sonance frequency, the periodic solution obtained in

-13-



Sec. 3.2 1s always stable since this is the only possible
solution based on the linear theory. In this case the fre-
quency of standing waves is equal to that of the wave maker
and the amplitude of standing waves is a function of frequency
at any location and linearly proportional to the amplitude
of the wave maker (see Eq. (3.14?). If the forcing frequency
is in the neighborhood of a resonance frequency, the linear
solution would contradict physical sense and thus is no
longer valid. Then, the non-linear solution for standing
waves of finite amplitude should be investigated in each
neighborhood of a resonance frequency of the spectrum of
the three-dimensional system. Although the two-dimensional
standing waves of finite amplitude are only a family of
particular solutions among the non-linear solutions of the
three dimensional system, an investigation of the transi-
tion from the two-dimensional linear to non-linear solu-
tion will lead to determine approximately the range of sig-
nificant non-linear effects in the neighborhood of a reson-
ance frequency. In this range the two-dimensional stand-
ing waves may be unstable for there is a possibility of ex-
citation of cross waves under certain circumstances.

~In the case of free oscillation, the solution of
higher modes can be generalized from the fundamental one
by considering the higher mode as composed by a number of
fundamental ones, i.e. by using a wave-amplitude/wave-
length ratio based on the solution of the fundamental mode.
Physically, this is possible by putting a partition or false
wall vertically along the crest-trough line. This kind of
simple procedure does not exist in the forced motion and
each mode has to be solved individually. A simple demon-
stration for this is to compute approximately the wave-amp-
litude/wave-length ratio near the resonance frequency based
on Eq. (3.14), e.g. ‘

1z _5 120/n _ 5
1221 3 1 Zl/ N, G

and |§|:_7_ or |§||:7\|=l at X=1qr
1541 3 1Z5l/na 9

in which XN, 2As 3X3. For free waves the ratios
should be 1 instead of 5/6 and 7/9. In addition, it
indicates that |Sn|/ A\ 1increases as n does.
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IV, NON-LINEAR FORCED TWO-DIMENSIONAL
STANDING WAVES IN A RECTANGULAR TANK

4.1 General Remarks

Forced standing waves of finite amplitude will be
obtained as a non-linear solution of the two-dimensional
problem as well as by investigation of the range of signi-
ficant non-linear effects. In this range infinitely many
solutions may possibly exist. Among them, two families of
solutions are of significance, 1.e. the non-linear two-
dimensional standing waves and the fundamental mode of
cross waves, The former will be treated in this section
and together with the linear solution in-Sec: III a complete
solution is presented to the two-dimensional problem in
the system as a whole provided that the stability criteria
for two-dimensionality in the non-linear range can be es-
tablished. At this moment, this problem is treated Jjust as
a two-dimensional one for the purpose mentioned above.

An approach similar to Penney and Price's [14] is used
here to find an approximate solution which is, in its
final form, a double Fourier series in x and t. The vel-
ocity potential @ and free surface elevation T are ex-
pressed as two Fourier series in x with coefficients
which are functilions of t. Two sets of non-linear ordi-
nary differential equations are derived from the free sur-
face conditions for these coefficients. Then, a periodic
solution is found by the method of iteration, which 1s
generally applied to find the response curve (the fre-
qgenc -amplitude relation) in non-linear mechanics [25,
20,271.

There are indeed two branches on the frequency-
amplitude curve for forced standing waves of finite am-
plitude as found by Taylor [1]. They are on each side of
the resonance curve (the frequency-amplitude curve of free
oscillation) and disconnected due to neglecting of vis-
cosity. It is found that the non-linear and linear fre-
quency-amplitude curve are in good agreement in a wide
overlapping range. The frequency-amplitude curves are
computed to the third order for two different amplitudes
of the wave maker. The coefficients are computed only to
the second order. Finally, two profiles of standing waves
with the frequencies on each branch of the frequency-ampli-
tude curve are computed.

4,2 PFourier Series Expressions for @ and z

Assume the velocity potential to be expressible in
a Fourier series in x with coefficients which are functions
of t

(o=}

@ = Z bat)e"F Cosnx . (4.1)

n=0

This series satisfies Egs. (2.19) to 2.22; except the free
surface conditions, Egs. (2.23) and (2.24). If Z is
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eliminated in Eqs. (2.23) and @.24), a partial differential
equation is obtained with only one dependent variable, @ .
But this would increase the order. twice, and the multiplica-
tion of the series becomes very difficult to handle. Sup-
pose that Egs. (2.23) and (2.24) could be solved for Z in
terms of ¢ , then 4 would also be a Fourier series. Hence,
assume

= .@°2‘_f> + S Qncd)Cosnx (4.2)

M8

n

it

These two series are considered as solutions of the free
surface conditions, Egs. (2.23) and (2.24). Substituting
Egs. (4.1) and (4.2) into Egs. (2.23) and (2.24) and com-
paring the coefficients of Cosnx, two sets of non-linear
ordinary differential equations are obtained with the de-
pendent variables, a, and b,, and the independent variable,
t. As seen in Egs. ?2.20) and (2.21), this process in-
volves the multiplication of two Fourler series and an
exponential function with its argument as a Fourier

series. After two Fourier series have been multiplied,

e?% Cosux has to be expanded into another Fourler series.
A specilal function was developed to handle thls expan-
sion (see Appendix A for details) [14] as follows:

e%CCOS/U«%= E(>\//U-)+ OEOCOSSX[EO\/SyA)+E()\,$+/%)] (4'3)
5=

in which

ﬁ\N Snis) (4.4)

oo
>\/5 = - = -
ENvs) = E(N,-9) Néoz 3]

The function S,(s) is a series of an, and both E (X\,s)
and Sn(s) were computed up to third order in Appendix A,
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4,3 Two Sets of Non-Linear Ordinary Differential Equations
for the Coefficlents a and b of the PFourier Seriles

Substituting Egqs. (4.1) and (4.2) in Eqs. (2.23) and
(2.24) and by the use of the expansions, Eq. (4.3), one
obtalins: :

Qo T
-t §ascossx
> oo | (l)
ot > n{E(”mH > Cos$X [E(n,s-n)+Eln, Slm)]}

ns| o=\

{E(mm, m-n)+ 2 CosSX [E(m+n,$ mm)+E(m+n,s+m-n)J}
s=|

{E(n+§m )+¢,§|C06 SX (E(r+4,5-n)+ E(ntg, 54n )]}

) : o0
Z..? i{EGg o) 2 Cos (Bt ) Bt svomen]

n=
gzn bn {E(mz ;M—n)+ZCos SX [E(mé yS7mn)+ E(ned , 3*m_n)]il

_ 40 cosct[zm { (’zl,n)+SZ|Cos$X[E(‘2L,S—n)+E(é,ﬂn)J}-zzE({,s)CoSSX—E(%,O;J
n= = $2|

. o0
—%.;SIHZG‘t [E(l,o)+2 D E01,8) Cos SX] (4.5)

and s=1

00 @
=32 2 MNGmb { Ednym-n)-Eln,men)+ ZCossx[Em S E(n Semon)
5=l -E(n, s-m-n)-E <n,5+mm)]}

) kol
- z nb,,{Emm)zZ_‘Cos Sx[_Em,s—n)*E(w,&m)]}

+

4G .. o0 | ' 0
= SmGtLZ_le_, {Ec%,n)a»n%cossx[E(%,s-n)+g<é,«,+n>]}

’2‘;‘\ :ny:i.? {E(l”""‘") E(z>"“+")+ZC°55X[E( 5-menE(S Srmen)
-E (2,5 mn)- E( s*m«rw)ﬂJ
(2]
’7‘%6 5fn<rt[Ec{.0)+2§lEc£.5>Cossx} ) ‘ (4.6)
52

(1) The dot on top indicates a differentiation with respect
to time, t.
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Comparing the coefficients of Cossx, then

Qg = 504»2‘ BHE(n,n) - E E mn b, b, E(mm,m—n)): Cosct[ 3.0)- 22-——3-—'—

. m—l nzl el 4n

- 229 Sinot {g‘n bnE(ne4 )+§m2”4—mf|[2<m—l)E(n+§,wn)v2<mn)E(m{,m-n)]}
- 30*6*5in?at E(1,0) (4.7)

for S21 ,

=1

_—5mcst{2nhq[E(ml sn)+E(ned sm)J»,zE {Eloek s Elrd, Semen]
} 2 ;vE:‘, [E(”*’z; S-m4n) + E(nies, $-rwvn)]}

wms| ns|

8°‘°cosct{5< 5)- Z Fm(EEsnrEG )] - St E09) (4 g)

As = Z b (Etn,s-n)+En, stn)]-3 EE mnb,,,b,‘[E(mm 5—mm)+E(mH)5+m-n)]

. 00 00 A
% %sznamh [E(H m-n)- E(w,wn—n)] nb.E¢n)
\

wzi izl e
4 4G E(3,n) wnQ, J
TSMG":{W—‘ 4:.',___ MZ\;;‘:}M%—?[E‘%'m'")'E“hm"’")J
-4
2E50) ] ; (4.9)
for 52,

%0 o0
= él' ZZ mn Qwm [E(n,s—vmn)+E(n.ékmm)—E(Y\,S—M'V\)' Eni stmin )]

2\ v\

2 b, [E{n 5n)* Eln, s+n)] (4.10)

Tc s;not{g—,;;:;[acé s ECS,om)] - E(4,6) )
n={ r.
33 f,‘;f‘_j (E(3 s-rmenpEG Shmen)E(S s-men)- E<z,.«,.‘u».l)]} .

wmsi nsl

4.4 Solution by the Method of Iteration

The equation obtained in the previous section will
be solved by the method of iteration. A consideration of
the order of magnitude of the coefficients, a, and bg,is
essential for the solution. Penney and Price, in their
treatment of non-linear free standing waves Llﬂ], had
successfully shown that as is of the order A® and bg of
the same order or higher, where A is the amplitude of
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linear free standing waves. For this problem, there does
exist a small parameter, i.e. the amplitude of the wave
maker «. It is necessary to use caution in taking a simi-
lar approach, because in free standing waves one may solve
for a fundamental mode of oscillation and the solution of
higher modes can be obtained by considering the motion with-
in each wave length as a fundamental mode. By contrast,

in forced standing waves the wave maker can be operated at

a frequency of any mode, and higher modes cannot be obtalned
in this way as discussed in Sec. 3.4 and have to be solved
individually. Therefore, the order of magnitude of ag and
by depends on the mode of the desired solution. From

Sec. 3.4, it was shown that the non-linear effect is con-
fined to the neighborhood of a resonance frequency of

the spectrum,(&?z n forn=1,2,3,... in the dimension-

less form, which corresponds to a natural frequency of

free standing waves. Examining the sets of Egs. (4.7) to
(4.10) for linear free oscillation by neglecting those non-
linear and forcing terms, it is found that

ag = bg and ag = -sbg ,

or 53 + sbg = o (4.11)

with the solutions

bs:@ssfhﬁgt’fés) for s=1,2,3,---. (4.12)

For a periodic solution, not all of these components can
be present since their frequencies in general, are not
exact multiples. The frequency, ¢ =,/5, is also the reson-
ance frequency of the system as s is an integer. There-
fore, one has to confine himself in finding a solution
which belongs to one of these modes. When the wave maker
is operated in the neighborhood of one of these modes, a
sclution exists with the frequency of the wave maker as a
fundamental frequency.
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However, for forced oscillation there are some forcing
terms on the right of Eq. (4.11) with the linear term
of the order of ®; then, there do exist the particular
integrals for those values of bg in which /€& 1is not

a multiple of the forcing frequency o . The set of
equations for linear forced oscillation is obtailned
from Eqs. (4.7) to (4.10) as follows:

Qo = ZEDO-P 3‘1’_‘rdzcosct
d,o = “i%'—c:SI\Y\O"t
e - (4.13)
a_n - bn —%nzﬁcosct
Y = o : f n:
On = bn* ﬁ%_“\)SmO‘t or I

by assuming that & is of the same order as all co-
efficients.  The solution of Eq. (4.13) yields
exactly the same results obtained in Sec. III based
on the linear theory.

For the moment, a solution is to be found for the
fundamental mode of forced two-dimensional standing
waves, i.e. a solution with the fundamental frequency
in the neighborhood of o = 1. Then, the iteration
process may be started from an approximate solution

by =BSincot+e)

where B 1s more or less the ratio of wave amplltude
 wave-length of the standing waves corresponding to
Penney and Price's A, which 1is proportional to &R

~as the frequency is far away from ¢ = 1 and becomes
much larger than & near & = 1; hence, & 1s of the
order of B or higher. In the light of the linear
solution obtained in Sec. III, 8o and by are always
of O(x); a3 and by of O ( XAfs=-1)); an and bn

th = 2) of 0( & {6°-n)). Now considering the order

of magnitude of the coefficients separately with re-
spect to © and ,@

aO) bo Ql)b| al)bz a})b3 P
owy  olzmlp)  OUZH,ED OUEHp) ---

where <52 ~ 1 because of the first mode of oscil-
lation. The order of magnitude of the coefficlients

with respect to o cannot be expressed in integral
owers similar to but the magnitude of | &

P B s g |——2—G _n|

decreases rapidly as n = 2 in comparison with Icg-l l
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for & % 1. Therefore, for the sake of simplifying the
computation, it is assumed that

ao,bo al,bl a2,b2 33;b3
(F)  o(p) o(f@ o (g

and ® 1s of O( B ) or higher; during the process of itera-
tion the contribution of [__g;_—' to ap and b, will be re-

covered in the n®h order of approx1magﬁon while those in-
volved in the terms higher than the n are neglected.

If solutions correspondlng to any higher mode, say,
the nth mode, are desired, it can be assumed that ag, by,

an are of O ( B ); an-1, bn-1, an+l, bn+l are of
(5151 and so forth.

Now, the problem will be solved for the first mode
of oscillation, i.e. in the neighborhood of o = 1. S,(s)

and E (X, ) required in the computation are listed in
Appendix A. As a result of expanding Eqs. (4.7) to (4.10)
by keeping terms to the third order, eight equations are
obtained for ag and by (s = 0,1,2 and 3) as follows:

Oo=2bo+ (1+400) by - (1#a0) b+ 22-Sinat 1+ 2ao-3apby+ 2b,]  (4.14)
2 [ .
+ B3P Cosot (e 33 A2)-g(1+20) Q- F50, + L @7 ]- Lot sivtotinda,)

a': B,[(Hé'au- glaoz)‘f' é'az + -3-0.,2] + a, b‘z‘Zb; bz 40‘0‘5'"0{[(“’;09) lzola bl— ’aé]

M&sﬁf[ﬂuao +3543)- \l+iac)a+—9—az+agoa,2] F20*Sin%ota, (4.15)

0= 5”a05q+J-o+iao>a,5. 259 5,0t [+ 22 by b, + L ab,]

lsrr ¥ Cosot (¢1+ 300+ 5303)+ {1+ g4a0)4, - /5542 ,f;a, ] (4.16)
Qs = 53+a,52+ Q2 b, + a‘b, ‘*°‘° s;ncf[(:+-a,,)b,+ 20,b,+ °ba]
: ' 2
Go = =4 Sinot (11400 + 55050+ F1eFaa, + 30+ 54/ ] (4.18)
dl=—bl ['*%ao*g'a:’éﬁz*gld,zj-aibz (4.19)

T 157
+4°‘ Sinct [(+a.ta as)--= (/+$a.)a,-—75gaz zgoaJ

Y1



Qa, =.—2bz’ Zaobz "C"*'Lao)a bl

. f—SmO’t [(H""Qp 31&,)‘* (“’4&6)4/ 1 7('2:’&‘2] (}4 . 20)

a3= - 3b3- 3&, bz - 'zéalb' - ga"lb‘
408 .
+ SErSimet [(eda,e ol +Z_(,+4g )a+ 45/5 " 213;2741,]
(4.21)

L 4,1 PFirst-order Solution

takin% only the first-order terms in Eqs. (4.14),

(4. 15 (4.18) and (4.19), and eliminating ap and aj, one
has

L 200 (l-20%Y) -

be = — Sinat

° T " (4.22)
and

E;+ b,= :LJ:(’ZdUS“ gt

37T (4.23)

Then, the integration of Eq..(4.22) leads to a perilodic
solution,

_ 20 (1-20Y)

and
ao————coscﬁ (4.25)

from Eq. (4.14). It can easily be computed that the
coefficient, a o, is the variation of the undisturbed
free surface due to the volume of fluid displaced by the
wave maker in motion.

Eq. (4.23) can be rewritten as the following [26]:

- 400 ((-20*
b, +ab, (02—:)b+———3—-’1_-[—i)8m0f (4.26)

Since the interest is centered on a periodic solution with
the frequency ¢ of the forcing function, one starts with
an approximation solution

b= BSincot+ € | (4.27)
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where the amplitude P will serve as a parameter in higher
order of approximation and the phase angle € indicates that
the standing waves do not necessarily have the same phase
as the wave maker. Substituting Eq. (4.27) inhto the right-
hand-side of Eq. (4.26), one has

b +C52b (Of/)(BS/n(Of‘f-éﬁ' MSMOf (u'28)

where ¢ has to be O or Tt in order to have a solution. Then,

b+0‘2b [‘/‘(GZ ,)ﬂ.}. M]S,nof (4.29)

For a periodic solution, the secular term [25], which is
the particular integral due to the term on the right-hand-
side of Eq. (4.29), must vanish. Hence, the first-order
solution is

b=pBSncot+¢€) (4.30)
with or-p Bt 48TU=2Y _ (4.31)
and a, = (Iﬁ—i%c—)GCosct (4.32)

where the positive sign is for £ =0 and the negative for
£ =T

The phase relationship between the wave maker and
two-dimensional forced standing waves was found experi-
mentally by Taylor [1] as shown in Fig. 4.1. A theoreti-
cal interpretation is that the motion of a fluid particle
in the neighborhood of the wave maker has to be the same
as that of the wave maker in the direction normal to it,
and thus the wave maker must always be in phase with the
motion of a fluld particle. Comparing the direction of
streamlines with the motion of the wave maker sketched in
Fig. 4.1, the phase relationship is evident. This can also
be applied to any higher mode of oscillation.
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Fig. 4.1 Phase Relation

The first-order amplitude of standing waves at x = T¢
is

2
Cyor = (R 10+ 82 ) cosot (4.33)

Hence, the negative sign should be used for & =:0land

G > 1, while the positive sign for € = 1t .and o< 1.

For convenience in the later computation, the sign is
absorbed in such that R is positive for @ =1 and
negative for <l and & is always equal to zero. Then,
only the upper sign is used in Egs. (4.29) to (4.33) from
here on.

4. 4.2 Second-order Solution

By taking the terms up to second order and elim-
inating the linear term of ag in Egs. (4.14) and (4.18),
one has

. ch( o 1 , . . . \ .
bo= ~Z#%EE02Sinot-4a, b+ b ( b~ 36,) -2 Sinot [ byt f-205¢f 32004 ]

, . .
- B Cos ot (by+ 480~ $6,)+ 3003 Sin 2ot (4.34)
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The solution of Eq. (M;3M) is obtained by substituting the
first-order solution from the previous section on the right-
hand-side and integrating twice:

b°=M5mot (4.35‘)
- [Foto - S50 a0t - B (4807 440%)1 320 [Sin20t

with the integration constants equal to zero for the periodic
solution. Also,

= 4 [atan 4o<60<f—c¥‘) 8’ 9+40Y) 4o
2 [I@ (c=1)+ Qe ZO‘ZGIJ + —'1:[.‘—0050"6

4 BT | 20%(3-40%)
*2[ T +TJCOSZG£ (4 36)

by using Eq. (4.35) for the linear term of by, and the first
order solutions on the right-hand-side of Eq (4 18).

With a similar procedure to that used in obtaining

. (B.34),
b, +b, = _crmzs,-not - da,b,- 44,6, + 229 S im0t [ br0-209a,- 75(1-140%a, ]
+ 42(1.? Coscf[b/*édo"‘;ai:{"é‘aobs (4.37)

or
b,+0*b, = [(ot 4)5+ 22942299 ]5)not

+[,5TT(280“+3€’G ~15) - ig‘;‘r{(//zo +160%15)[Sn20t  (4.38)

Again, the secular term must vanish for a periodic solution.
Then one obtains

bi = BSinot - zo ,5,r(2804+3~70‘-15)—;2%77291(”204““ H5)smast () )

with (4.40)
g% 454G ¢I-20Y _ Lo
(o-1)B+ £ o)

and

a, = [—,?T<5+/40'2)

: (15+280%)] + (B -B2L ) Casat

+ [——@—45m(3o—3<51-:40‘f) ,55112(/5+2c70 -289%)] Cos 20t

(4.41)

Finally, it follows from Egs. (4.16) and (4.20) that



b+ 2b, = —‘*—"‘—"fé%—’—)smot—a,b, ~da,b - 2ab, (4.42)

4% ,%Smo{b,»r F(1-20900+ 27138690, ] + ‘fg’g CosOt (b @L;zd, )
= 4eod- Zat)/ﬁﬂ' Sinot
+ E/ /] ﬁzo-(cﬁl)at—!g—‘;‘p 5%3(4 78- 4320‘)*74%%("’ zzé_lggz , 370,-3_ c* )] Sinaet

with the solutions,

445(I-207) 4 |
be = “Zrca-on SOt (4.43)
/ 25 (a% ;)4——&(25? -2160%)+ 405 (21-3486% 304-6")J haa't
* oz 1P lo5T 35rr‘ !
and -
- Lrp2m2 SABOCTH540Y) _ Lo 2i- 760
a1'4[15 0 105 T 3152 J 511'(2 —ov) Qsot

[ﬁzgz_ 4080 (14+1030%) , 8x%0*(21+ 1326%)

(4.54)

T 4(-209

Only the particular integral due to the forcing terms is
taken since the solution with =42 will disappear for the
steady perilodic motion. Note that Eq. (4.40) is identical
with Eq. (4.31) of the first-order solution, i.e. the
frequency-amplitude relation near ¢ =1 remains the same

as for the linear theory in Sec. 3.2. Therefore, in order
to get the non-linear characterisitc of the frequency-
amplitude curve, the third-order solution has to be in-
vestigated.

4.4,3 Third-order Solution for the frequency-amplitude
relation

As mentioned in Sec. 4.1, the third-order solution
only deals with the non-linear characteristic of the
frequency-amplitude relation, which is then used for the
computation of the second-order solution in the previous
section. To do this, only the secular term of the follow-
ing equation has to be computed from Eqs. (4.15) and
(4.19) by elimination of a;.

b +b| ,(ao+—ao +Q,+ a,z)" E’b.,(a'-o'*étaodo*'dz* ‘zéa(al)‘:;b, (ao+4ta:'az*4lail)
—d/ bz ‘ﬁ,bz_"a,lbz-f C'l,bfW- Za,b; b‘; ‘*2blb2 * Zb,b.z

+ A%GSIhof [(l—zo‘)(/+iao*§'a§) —,7'5(//—’/401)(/1«4’,—4,,)4, - 7—'5(/574'380‘) Q,
~(elezaats 1+ 2a,- 2lab + (Fdo- Ha b - Bb, ]
-20-



ol ® ! :
L Cosat [201+ 200~ Bab-2b, + (1+ 440 - )G
-7 (rao- S2a,)a, + 24, ]

+ —ZLD(ZOZIOQ,SI;')ZO't* ﬁ.,SI‘mZO'tJ (4.45)

The second-order solutions of a, and bn are put into the
right-hand-side of Eq. (4.45), and the coefficient of 8inct
provides the third-order frequency-amplitude relation as
follows:

(O% ,)ﬁ.,._QQ_ZL‘__,_K/S.;K(_n_)ﬁ +/((ﬁ-)p+/((ﬁ)3 (4.46)

where
2 2
K, = I C%I-02)(34T%27) (4.47)

-4 32(20%))

= _O651-13270%24130%) g4+ 8420 8250°
Ki 840 v (4.48)

Ko = (3082,8300°41,376,2800*- 132,300T%04- 743,404 0% 64, 15015 % 3820/524
-(560%+5067-A0%+15 ) 4sat ~(51310%+14, 1470% 38,/6064%% 250(1-26Y)

- (45-1770%120*-3680°% 28008)/é75(2 a?) (4.49)

Kz =—a(z4e, 000G%: 2 553,08804148,450T%5%2,47,53¢5% azozszré’;zoz,ggo/ Lo
396400

+(30-920%16004-4480°¢ )/,35Cy +(86,t400%- 44,6925 +11,836) d';az, 0750/-20Y
+0(3,1360% 4,784/, 62401560 )/ 025¢2-0% (4.50)
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4.5 DNumerical Computation

4.5.1 The Frequency-amplitude Curves

Eq. (4.46) is rewritten as the following:

0= - BEFEL- KK @B K&K & (h.s1)

Here the frequency of non-linear two-dimensional standing
waves is considered as a function of B with « as a para-
meter on the -3 plane. Since 1t i1s non-linear in both O
and 3, Eq. (4.51) is again solved numerically by the
method of iteration. Only two wave maker amplitudes,

X = 0.0194 and 0.0388, were computed. For the range of
magnhitude of «, the last term is small in comparison with
the second term on the right-hand-side of Eq. (4.51). For
x = 0.0388 andC =1,

N
K3 = -5.1631 and ( X/ ) = 0.00003813

while g (1-26°) = -1.3333
3

- L
400 (1-20%) >>'K5G%)3

.
s

hence,

3T
and the last term was neglected in the computation.
With a small variation of & 1in the neighborhood of o = 1,
Eq. (4.51) consists essentially.of two parts: one is a
hyperbola with the asymptotes,0o = 1 andg;wa and the
other is a parabola with its vertex at &2 = - K o(2)2 in
the o-Rplane. In Sec. 4.4.1, it was assumed tha .
takes a positive value for 0 =1 and a negative for ¢ <1
to take account of the phase relation between the wave
maker and standing waves. For non-linear standing waves,
o < 1 shculd imply that the oscillation:’ ison the branch
on the left of the resonance curve and ¢ >1 on the right
branch for the first mode. The resonance curve (the
frequency-amplitude curve for free oscillation) of the
third order can be obtained by letting & =0 in Eq. (4.51);
then,

o2 = |- K p® (4.52)

where K. is given by Eq. (4.47). The procedure of
computa®ion is to break Eq. (4.51) into two parts:

= 400 (1-20"
Xy = 'i——gn'—@‘g‘z (4.53)

Ko = “Kop® 2K, (2)8-K, (B) (4.54)
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in which the upper positive sign is for ¢ < 1 and the lower
negative for >1 and @ 1s an absolute value again for both
cagses. The iteration was started withoc= 1 for different

@ 's and & = 0.0194 and 0.0388 until the final %A; and %o
were in agreement with their previous trials within the
fourth place after the decimal, i.e. less than 0.1% in error.

Then, o =/ ) . was plotted against as shown in
Fig. 4.2. X1+Xo e

Based on the solution of bg, bl and bpo in Sec. 4.4.4,
the free surface is at rest at 8in not =0, orct = 1T/s
The free surface elevation to the second order can be ob-
tained from Eq. (4.2) by using ap, al and ao of Egs. (4.36),
(4.41) and (4.44). Then, the total amplitude, JA), at X-=T
as a function of ¢ is-

|A| = ‘;{;sv/c - :tzol

- (;2@0_ %g(__ 80(0’-(!7-!00")]

15T (2-T%) (4.55)
in which the negative sign in front of { is for <1 and
the positive for o > 1. The computed G —1A] curves are !

shown in Fig. 4.3 for ®=0.0194 and (=0.0388.

4.,5.2 The Profiles of Forced Standing Waves

The profiles of the free surface at rest were computed
for = 0.965 and 1.000 with % = 0.0194., The free surface
elevation, Eq. (4.2), to the second order leads to

_ Qo
G = 2+ Cos X+ Oz Cos2X (4.56)

in which ap, a1 and ap are given by Egs. (4.36), (4.41)
and (4.44). The parameter,ﬁ , in the coefficients may be
obtained from Fig. 4.2

0.965
1.000

i

as 2 5 = 0.217 for o)

and 2 P = 0.694 for o)

The computed profiles are shown in Fig. 4.4
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4.6 Higher Modes of Forced Two-Dimensional Standing Waves

The procedure to find a solution for any higher mode
1s exactly the same as for the fundamental mode presented
in previous sections. The assumption of the order of magni-
tude of the coefficient made in Sec. 4.3 provides a start-
ing point to compute Sp(s) and E(X ,4) and then a set of
equations can be obtained from Egs. (4.7) to (4.10) to any
desired order of magnitude. The non-linear frequency-
amplitude relation will appear in the secular term of the
solution belonging to the equation with the frequency
near the wave maker frequency at the third order of ap-
proximation. The final forms of the coefficients will
be a Fourier series in t with its fundamental frequency the
same as the one of the wave maker and the coefficient as
a function of %, B and o, The@ is determined explicitly from
the6-@B curve for a particular 8. It will also be noted
that the resonance curve of free oscillation (& = 0) should
remain the same for all modes of oscillation.

4.7 Comparison of the Linear and Non-linear Solutions

A comparison of the non-linear frequency-amplitude
curves obtained in Sec. 4.5.1 with those of the linear
theory in Sec. 3.3 is made in Fig. 4.5. The agreement is
surprisingly good for the region with the frequency far
away fromo= 1. These results indicate that the non-1linear
effect is essentially confined to the neighborhood of the
resonance frequency, the range depends on the amplitude of
the wave maker and also provides the range of significant
non-linear effects as far as these two values of K are con-
cerned. These ranges determined from Fig. 4.5 are

0.93 < 9o, < 1.05 for ¢ = 0.0194
0.92 < g/oy < 1.08 for ®x = 0.0388

A comparison of the resonance curve with Penney and
Price's indicates good agreement for |A1< 0.75. The dis-
crepancy at high amplitude may be on account of the follow-
ing two reasons: (1 The present solution is based on the
third-order 6-3 curves and second-order Eq. (4.55), while
their result is of the fifth order; (2) In Penney and Price's
computation the second term of Eq. (4.47) for K5 is missing
as a result of approximating allg values on the right of
the equation for the frequency-amplitude curve which is
?ﬁuiv?lent to letting 0 = 1 in Egs. (4.47) to (4.50) and
.55).
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V. NON-LINEAR FORCED THREE-DIMENSIONAL
STANDING WAVES IN A RECTANGULAR TANK

5.1 General Remarks

The preliminary investigation based on the linear
theory in Section III shows that the linearized version of
the problem under consideration is basically two-dimension-
al. The forced two-dimensional standing waves of small
amplitude are from the linear solution of the system and
are always stable except in the neighborhood of a reson-
ance frequency. This result leads to the general con-
viction that three-dimensional standing waves in the
system can be generated only due to the non-linearity in
the exact free surface conditions (See Egs. (2.23) and
(2.24))in the range of non-linear effects and hence the
forced standing waves must be of finite amplitude. The
non-linear solution of forced two-dimensional standing
waves obtalned in the previous sectlon provides the range
of stabllity for the linear solution and also represents
a family of particular solutions to the problem as a whole.
The present section is to investigate the underlying
mechanics of exciting the fundamental mode of cross waves
based on the exact free surface conditions. In addition
to generalizing the expansion of the product of an ex-
ponential of a Fouriler series and another Fourier series
into the three-dimensional case, the approach 1s essential-
ly similar to Sec. IV, but the degrees of freedom for the
solutions are doubled. A system of non-linear ordinary
differential equations will be derived for the coefficients
of the double Fourier series in x and y of ¢ and . These
equations can be solved by the method of iteration to any
desired order of approximation. Only the second-order
solution is found here and thus the result will be qualita-
tive. However, a quantitative result can be obtained if
the elaborate computation is to be carried on to a higher
order of approximation. With the second order solution,
it is found that the half-frequency mode of subharmonic
oscillations 1is indeed the fundamental mode of cross waves
and the favorable condition to excite cross waves depends
on the length/width ratio of the tank and the amplitude of
motion of the wave maker. It is expected that some quanti-
tative description of cross waves is to be obtained from
the experimental investigation in the later part of the
investigation.



5.2 Fourier Series Expressions for ¢ and T

Assume
mz0 vi= .

which satisfies the Laplace equation, Eq. (2.19), and the

homogeneous boundary conditions, Egs. (2.20) to (2.22);
and also assume

. 0 OQ
- A ) Cosmiy Cosvix .

5 ,éé " / ©  for R=Tyt) (5.
which together with (5.1), satisfies the free
surface conditions, Eqs ?2 23) and (2.24). Then,
neglecting all harmonics higher than Cos Ly,
approximately

@ = Y‘%B%Coswxe + E BmCOS”%GJ——z Coshy
= Z b, Cosnxe™ Zod Cosmceﬂz1 Cos!ly (5.
where b, =Bgp,d, = Blnar;d Vo= 12 + n2_; and ‘-
T = iAonCosmcn« iAm Cosnx Cosﬁﬂ
- +“Zancosmc+ (—-+ch Cosn ) Cos Iy .

where ag = 2Aco, €o = 2410 and &, = Apon, ¢ = Aj, for

Therefore, the solution of three-dimensional waves 1s
desired with only the fundamental mode of cross waves.

Let
5Tt | (5.
with . . -
g = 92-*’+ > On Cosn = 3 Zane”‘ . Oz lp (5.
and n= ieeo0
[
2;2 ZCnCosmx>ceﬁﬁj Ecne” xCoslj (5.

Cn‘ c'vu

-37-

1)

2)

)

ny

1.



5.3 The System of Non-Linear Ordinary Equations for the
Coefficients, an, bn , ¢n and dn.

The general procedure of solution is to substitute
@ and g above into the free surface conditions, Egs. (2.23)
and (2.24); first to obtain four equations ini:terms of
cos nx by comparing the coefficients of Cos mly for m = O
and 1l; and then to obtain four sets of ordinary differential
equations in an, bn, ¢n and dn for n =0,1,2,-++. by compar-
ing the coefficients of cos nx forn = 0,1,2,:-++. These
equations can be solved by the method of iteration to any
desired order of approximation, as in the previous section.
The present problem differs from the two-dimensional one
by containing two parameters, one of which is for cross
waves and the other for the longitudinal component. There
exist two frequency-amplitude relations in the fundamental
modes of the two components to determine these two para-
meters. Prior to the above-mentioned procedure, e> 100%uly
1s to be expanded in addition to e*?lCOS/LX which ap-
pears in the free surface conditions, Egs. (2.23) and
(2.24). The expansion e*% Cosmx developed in Appendix A
is again used in this section. The expansion

exg’-(‘.os/uiy = F N A+ of_ Cos Sy [FOn, 5001 F()\,s-r/u.)]
$=i

where FON M) = FON =aa) = goo-fso\,/u,) CosSX (5.8)
§e=

and the related functions are developed in Appendices B
and C and computed to the third order.

The system of equations in terms of the functions
E()\.-/u) and fs(>\,/u) are given in Appendix D,

5.4 Solution by the Method of Iteration

The system. of Egs. (D.1) to (D.8) in Appendix D is
based on the dimensionless equations formulated in Sec. II.
An examination of the mode of oscillation in the three-
dimensional system is necessary before any assumption of
the order of magnitude of the coefficients an, bn, ¢cn and
dn can be made. Since the interest is only in the funda-
mental mode of cross waves, the component mode in the
transverse direction is fixed.....The resonance frequency
corresponding to this mode, ®W¥2 Ir, depends only on the
width of the tank for the infinite-depth case, and

ot - 38 -2

(5.9)
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where the cross wave length is ﬂ;=éw for the fundamentalomode
of cross waves. In dimensionless form,

wr= L= L, " (5.10)

Hence, we are looking for a solution of cross waves with
a frequency w in the neighborhood of W = /L but the
corresponding longitudinal mode of oscIllation still re-
mains to be determined, for there are'infifitely many
discrete resonance frequencies. The unit “4r used in the
derivation of the dimensionless gsystem in Sec. II implies
in this case that x= 2L for the assumed @ and'§ in

Egs. (5.1) and (5.2) because the cos nx in the” summation
should in general be Cosiﬂggé, where X 1s the wave length
of the longitudinal componént. This means that the funda-
mental mode in the longitudinal component has been chosen
and the frequency relation between these components and
the length/width ratio remains to be determined. The
resonance frequency of the longitudinal mode C31 =cl can
easily be verified. The generalization to higher longi-
tudinal modes will be treated later. It is natural to
consider that B and § are of the same order, which leads
to the assumption that a,, by, ¢o, do, a3 and bl are of
0 (Bor§) while c1, d1 , ap , bp of 0 ( g2 or§?*) and so
forth. In general the order of magnitude of cg and dg

is fixed relative to as and bg which depend on the longi-
tudinal mode of oscillation to be solved for in a manner
similar to the two-dimensional case.

The next step is to compute the function fs(%,/L)
to the third order as given in Appendix B and also to
use E(%VJA) in Appendix A for the expansion of the system
of Egs. (D.1) to (D.8) in Appendix D to the third order.
The system of second-order equations is glven as follows.

CLo= ZBO +Q, B| ’b?* ’Z.L,Qcoé!o‘ﬂzdé + 43(-(0 ID\SMGJC

2 * .11

+ B (14 £ 0,-£a)Cosat - L5 Sin2ot .

al: b|+%aob‘ - %‘?‘.b,&\not‘%—( |+a’|‘ao— %a|)0050t (5.12)
R . \ 2

0,= b+ 30.b - B sinot - E2- (1130, + 140, ) Cos Tt (5.13)

Co= 2d'o + Kaoao - 4—?-((-0 Xdc Sl;’l Gt (5-14)

€= dy+3b,Cov 20,0~ Abde + BT Ad,Sinot - 57 CoCosot (5-15)
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Qo= - 49 Sinct (1+ Fa,+ a2, ) (5.16)

x
L= =b, - 3Q0b, T B2 Snot(1r a0+ ) (5.17)
Q,=—2b,-a,b,+ ‘f;‘ftsmof(w f00+ Ha)) (5.18)
Co = -2£do-i‘aodo-9‘fccosmct (5.19)
C, = -Vidi-3bico- L2, do+ 32 CoSinat (5.20)

First,the palr of Egs. (5.14) and (5.19) is solved
again by Duffing's method of iteration. By eliminatingcg,
then

do+ Ado= za,cdo%do)-?_ﬂaodu [4£atO Co(l-20%) ] Sinat

olo? -
+22%(24ds-Co) Cosat (5.21)

The equation of the linear free oscillation as the first-
order approximation is

do+ fdo = 0 (5.22)
which yields the solution,

do=8Sintwt+e) (5.23)
and 0= 28w Cos(wt+ €) (5.24)

where § is a parameter, € is the phase difference with the
wave maker and w? "‘ﬁ. Then, substituting Egs. ( .23) and
(5.24) and also a 4o¥ ¢ Sinot, which is the first-
order ap from Eq. ?5 16 , into the right-hand-side of Eq.
(5.21), there results:

O‘io*‘ o= (W=L)S Sin(wt+e)+ == o(SO [(.0(4,Q +20%)- ZO‘UL«-w")]Sm(G{: -wt- -€)

+%§T?—[w(4ﬁ-|+20‘)+2662+05)] Suhcc’c\»w{;*e) (5.25)

Note that the lowest frequency of the forcing function on
the right-hand-side of Eq. (5.25) is equal to o-w, which
has to be the fundamental frequency of cross waves for the

-ho -



existence of a steady periodic solution. Therefore, 1t has
been proved that

w=Y2 (5.26)

and the phase difference € has to be zero or W2 .

As far as the analysis up to this stage is concerned, the
phase angle either zero or W/2 will satisfy the conditions
required to yield a periodic solution. However, the re-
sult of experimenhtil measurements in Sec. VIII .indicated.that
the phase angle should be T/2 ; and the following computa-
tion will be based on g=T/p .

Eq. (5.25) becomes
Aot o= §[wi-A -2 (4w 1)Cos wit

A +5’;§—G(82—l+12w")605 3wt (5.27)
which gives
do-"- SCOSUJt—%??-(sﬁ-|+|2w2)cosawt (528)
with the secular term )
wr- g - 2 (4w?-1)=0 (5.29)

For wtx~ L , u)zvl/z and o =1 which 1s the frequency
of the wave maker or the corresponding longitudinal mode
in agreement with what has been chosen. Furthermore,
the ratio of length/width of the tank for exciting this
three-dimensional mode witho—> 0 as a limit 1is

L= (5.30)
From Eq. (5.14), one has
Co = - 28w [1- 24w )] Sinwt+2L 4wt 3)Sin3wt (5.31)

by use of Egs. (5.28), (5.23) and (5.24) together with
the solution of a5 = %% Cos &t -

For the fundamental mode of the longitudinal compon-
ent, the pair of Egs. (5.12) and (5.17) lead to

e | e | e . = . .
b, + by =-300(b,+ b))-3 A0k, + 438 Cosat (bt 24, - Bo)

400 ; 75t La.)-U 142 .
+ 489510t (1109014 fae) - L (- g o ) (5.32)

independent of ¢, and d,, and identical with Eq. (4.37) in
the two-dimensional case. Hence, the solutionS— are
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\9,=(_)>51'n0 302[——6-(280’4+3q0 l5)— (ll264ﬂéc 'I5)]ém26t

(5.33)
with the secular term
(C%))B + 4¥0U-20Y) _ 4 (5.34)
g B 3
a, = [%(5+I46‘)--‘“—%;—?‘:—:_('5+280‘) + (B-EE)oCosst
+ ({85 (30-30"-1404) - 4L, (154240%.2304) ] Cos 2ot (5.35)

from Egs. (4.39), (4.40) and (4.41). Note that there are
two parameters § and B in this problem for the determination
of the frequency-amplitude relations of cross waves and of
the longitudinal component of standing waves. For the
second-order solutions obtained here, B appears 1n Eq.
(5.34) which is still linear in characteristic and independ-
ent of § ; while the absence of § in Eg. (5.29) means that
there are no cross waves in the linear relation of fre-
quency and amplitude. Therefore, the quantitative results
of the non-linear solution cannot be obtailned unless a
higher order of approximation is carried out for the fre-
quency-amplitude relation similar to the two-dimensional
case presented in Sec., IV.

The rest of the coefficilents are also solved to the
second order and given in the following: -

= E' [ﬁcc N+ 2 é(l 0'7')0' 80(10' (g + 4Q%) ld261+’621(01—4ﬂ)]

+ Beosat + 5'[—“—15}& &%gﬁ‘l] Cos 2ot (5.36)

b = 220-20% ¢ ot— cwo‘)/o _ﬁ@(5+ 469 _qml(q 480 440%)

o
(5.37)
+Ewc-é8ﬂ(0+4106]&n20t

_ Lrpia B8XBO(T+54C8%) _ i’ (zi-bot) 1 _4dS*
- 4[@0 - 105 T 55T ] 51(2-0Y Coscf
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5.5 Higher Modes in the Longitudinal Component of Standing
Waves

For higher modes in the longitudinal component, the
half-frequency relation between the wave maker and cross
waves remains the same, while the length/width ratio of the
tank & found in Sec. 5.4 is different for having cross
waves with «=» 0. The ratio for any longitudinal mode can
be obtained by the following consideration. Write the
velocity potential in dimensional form as

Qﬂ 22 BMn(t)Cos anry Co 52;\119(* /(2"") Znﬂ)l z*

o n=0 (5.42)
) ¥*
in which: ¢n1jy corresponds to mly’in the dim?n31onless
form used in the last section. Now, instead of Y/ 1 let
the unit be chosen as X/ox , and
@ = EE Bmin Cosm/QyCosﬂxe“‘mlﬂmlz (5.43)

m=gp N=0

*
where 1! ='§?. By using the new unit, Egs. (5.21) to
(5.31) remain unchanged, then Eq. (5 30) gives

£ = 1/4
£ )f 2L/n - L = L

X 2w T nw 4
L=L/w=2 (5.44)

where n is integer corresponding to the n' mode of the
longitudinal component.

therefore,

or
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With only the second-order solution, the results are sum-
marized in the following:

(1) The fundamental mode of cross waves has a frequency
which is half that of the wave maker (Eq. 5.26)

(2) The frequency which can excite the cross waves is é%{
in the neighborhood of W2 = g onl Note that <
(Eq. (5.29) differs from Eq. (5.34) which is identi-
cal to the two-dimensional case of the same order,of
approximation. In Eq. (5.34), the term Loos (1- )G‘)/ e
gives essentially the two-dimensional standing waveg
of small amplitude as the frequency is away from the
resonance frequency (See Sec. 4.5). The absence of
the corresponding term in Eq. (5.29) indicates that
there are no linear cross waves and _the cross waves
exist only in the neighborhood of @2 = L.

(3) The most favorable condition to excite cross wavesn
exists for the length/width ratio of the tank £ = T,
when the amplitude of the wave maker is very small.
However, as L n, the excitation depends on a critical
value of & (See Eq. (5.29)), where n is the mode of the
longitudinal component of standing waves.

(4) The phase angle between the cross waves is O or'ﬂ/e
By using the experimental result obtained in Se¢ IIT

e =T/2.

Since the non-linear characteristic does not appear
in Egs. (5.29) and (5.34) at the second order, similar to
the two-dimensional case in Sec.IV, the quantitative re-
sult cannot be obtained. The relationtetween the frequency
and the two parameters (ﬁzﬂui&) remains yet to be determined.
A higher order of approximation has to be carried out for
this purpose. As mentioned in the Introduction, the
interest is centered only on the mechanics of the excitation
of cross waves, an elaborate process would be involved in
the computation of a higher-order solution. It is expected
that the experiment will provide some information of the
frequency-amplitude relation of the cross waves.

iy




VI, EXPERIMENTAL EQUIPMENT

6.1 General Description

The experimental investigation was carried out in
the Hydrodynamics Laboratory of Massachusetts Institute
of Technology. A rectangular tank, 3 feet 6 1/4 inches
long, 2 feet 3/16 inches wide and 3 feet deep with glass
sides and ends was built for this purpose. Due to the
symmetry of the problem, only one wave maker was used.
The flap-type wave maker is located inside the tank on
the rails, which are parallel to the side walls, and
hence the distance between the wave maker and the end 1s
adjustable. An adjustable connecting rod is used to
transmit the circular motion of the eccentric cam to
ogcillatory motion of the wave maker. An AMES dial gage
and a displacement gage (Linearsyn Model S2) are located
at the top of wave maker to measure the amplitude of the
wave maker and to record the motion of the wave maker for
the determination of the phase relation. The amplitude
of standing waves 1s measured by a resistance-type wave
gage, which is fixed into a point-gage staff mounted on
a cross beam. The whole unit can be slid along the cross
beam. The output of the wave gage and of the displace-
ment gage 1s recorded on a four-channel Sanborn Model 150
Oscillograph. The frequency of the wave maker 1s measured
by an electronic counter system. An aluminum circular
plate is mounted on the fly wheel with 400 holes on its
periphery with a light source on one side and a photo-
electric tube on the other. The tube 1s connected with
an electronic counter. When one side of the wave maker
is in use, aluminum wool is put in the other side to absorb
the waves generated. The overall arrangement is shown
in a schematic diagram and a photograph (Figs. 6.1 and 6.2).

6.2 The Driving Unit and Wave Maker

The driving unit consists of the following parts:

(1) A 3-h.p. U.S. Motor Varidrive with a continuous speed
range of U44.5 to 310 rpm, i.e. 0.742 to 5.167 c.p.s.
The speed was roughly calibrated with the counter on
the motor, which was used as a guide to the range of
frequency needed for an experiment. After the motor
is warmed up, the variation of speed is usually less
than 0.05% near 2 c.p.s. and even less for lower
speed. (Fig. 6.3)

(2) A fly wheel, 2 feet in diameter and 1 inch thick,
on which an eccentric sliding block and its guiding
frame are bolted. The eccentric sliding block is
driven by a motor and thus its position can be
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varied during a run. The eccentricity is recorded

on a counter on the wheel. Owing to an error in
construction, there exists a minimum eccentricity

or minimum wave maker amplitude of about 0.14 degree.
A circular aluminum plate with holes on its periphery
is bolted on the fly wheel and used as a light-beam
cutting device for the electronic counter system

(Fig. 6.4).

(3) An adjustable connecting rod, made of a brass rod
of 3/b4-inch diameter and steel tubing of 3/4-inch
I.D. The rod runs inside the tubing and is fixed by
four setscrews to suit the neutral position of wave
maker. A ball joint connects the rod at the center
to the top of wave maker. Two adjustable steel
wires run from the middle of the rod to each end on
the top of wave maker to adjust the wave maker and
to keep it parallel to the end of the tank.

The Wave Maker

The wave maker is made of a plexiglass plate of 3/4-
inch thickness and of 3-foot height. At 1ts lower edge,
a brass hinge of the same width is screwed on and rests
on a movable cross beam. The center of the hinge is
1 37/64 inches above the floor. The top and two sides of
the wave maker are reinforced by three aluminum angles.
There is a clearance between the wave maker and the side
wall of about 3/32 inch. A spring-loaded hard rubber
seal is used for the wave maker (Fig. 6.5). The upper
part of the seal was usually lubricated with water
brought up by high-amplitude waves; but when the amplitude
of waves was small, water was injected periodically into
the seal.

6.3 Wave Gage

A resistance wave gage is made of two platinum wires,
0.008 inch in diameter, spaced 1/4 inch apart. The wires,
insulated from each other, are stretched on a bow-shaped
frame, which is fixed into the polint gage staff (Fig. 6.6a).
During measurements, about one half of the length of wires
was submerged vertically in water. The wires were con-
nected to one branch of the bridge circuit (Fig. 6.6b).
The output of the gage depends on the amount of submer-
gence (nearly a linear function) and was recorded by a
Sanborn Recorder. Before each run, the wires were wiped
with a damp cloth and foreign matter was removed from
the water surface. Static calibrations were made before
and after each run by moving the gage up and down.
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FIG. 6.3 Photograph of Motor

FIG. 6.4 Photograph of Fly Wheel
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During a run, the gage gave continuous recording of total
wave amplitude with respect to time at a point. The over-
all error for the gage recording system was found to be
less than 3-5% [28%.

6.4 Dial Gage and Displacement Gage

An AMES dial gage with 0.001" graduation was used to
measure the amplitude of the wave maker at the top of the
wave maker, 3 feet from the hinge. The measurement was
made for each run when the wave maker was oscillating at
a low speed (Fig. 6.7a).

The motion of the wave maker was also measured with
a displacement gage, a linear variable differential trans-
former (Linearsyn Model S2), the output of which is
directly proportional to the displacement. In order to
investigate the phase relation between the wave maker and
the standing waves, the motion was recorded simultaneously
with the wave amplitude on two-channel Permapaper in a
Sanborn Recorder. This device has two parts: a coil
assembly, 11-1/8 inches long, 0.312 inch I.D. and 3/4-inch
0.D., and a magnetic assembly. The transformer has a full
range of U4-inch stroke and an excitation voltage of 6 volts.
(Fig. 6.7 a,b). The gage was located at the top of the
wave maker,

6.5 Electronic Counter System

The electronic counter system consists of four parts:
1. an electronic counter, 2. a photo-electric tube, ?. light
source and 4. a light-beam cutting device. (Fig. 6.8

A Hewlett-Packard Model 521C electronic counter and
a RCA 1P41 photo-electric tube were used. The light source
was supplied by a 200-watt projector lamp of two-parallel-
filament type which was focussed on the photo-electric tube
through a light-beam cutting device. A circular aluminum
disk of 26-inch diameter was provided with 400 holes of
3/32-inch diameter equally spaced at 19/64 inch near its
periphery and was mounted concentrically on the fly wheel
with the light source on one side and the photo-electric
tube on the other. The light beam, the holes and the
photo-electric tube were properly lined up. The focus of
the light source was adjusted in such a way that the tube
could recelve maximum intensity and area of the light
through the holes,
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VII. METHODS OF MEASUREMENT

7.1 Depth of Water

The depth of water was measured directly by a scale
submerged in the tank. All runs were made at a depth of
two feet except two runs which were used to study the
depth effect on the finite-amplitude standing waves. The
depth was used as a check of the deep-water assumption;
hence a correction of resonance frequency was made for
runs with insufficient depth of water. The error involved
in measurement is negligible since the value of the hyper-
bolic tangent, nearly equal to one, 1s not sensitive to
this error.

7.2 Freguency of Wave Maker

There are 400 holes on the rim of the circular disk
mounted on the fly wheel. The light beam was cut 400 times
in a revolution and a counting period of 10 seconds was
usually used. The total number of electric pulses sensed
by the tube due to the cutting of the light beam was
automatically recorded by the counter in a period of 10
seconds and can be read off directly. The error of the
counter 1s I1 count. Hence, for a frequency of, say,

2 ¢c.p.s8., the system may have an error f0.0125%, whilch 1s
smaller than the variation of speed due to the motor.

The total error involved in frequency measurement was esti-
mated at less than 0.05% (including the speed variation of
the motor).

7.3 Wave Height

Wave height was measured in centimeters by a resistance
wave gage. Before and after each run the gage was calibrated
to check the error in the recording system. The calibration
was made by moving the gage up or down. The direction and
amount of displacement were recorded on the permapaper in
the Sanborn recorder and the corresponding value was taken
from the scale on the point gage staff. Usually more than
one attenuation was used to measure high amplitude stand-
ing waves. For the measurement of the frequency-ampli-
tude relation of two-dimensional standing waves, the wires
were located at the middle of the tank about 3/8 inch from
the end wall, which is the point of symmetry for all modes
of oscillation (Fig. 7.1). For cross waves, the wires
were set about 3/8 inch from the side wall at the point
where the crest of ngitudinal waves was located and the
composite waves were later analyzed (Fig. 7.2). The 3/8
inch distance between the wires and the wall are necessary
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to avoid the capillary effect as well as to keep the part
of the wires above the free surface well insulated from
each other. The error due to the wire not being exactly
located at the crest can be estimated, for example, from
the computed profiles of the two-dimensional standing
waves given in Fig. 4.4, 1If L = 18 inches (the smallest
length used), it is about 2% off the exact location of
crest. The error of the amplitude is negligible as shown
in Fig. 4.4, since the slopes are small both at the crest
and trough in this case. When the standing waves are at
the greatest height, the error can be approximately computed
as follows. Let the angle made bg the free surface with
the vertical near the crest be 45° and the free surface
near the trough be horizontal, then the amplitude 1Al is
0.063 too small for 1Al pay = 1.367, hence the error is
always less than 5%.

The wave gage and point gage staff were fixed on a
sliding block on a traversing beam for the measurement of
the profile of two-dimensional standing waves. The beam
was carefully leveled and the position of the gage could
be read on the scale of the beam the relative position of
which was determined before and after each run.

7.4 Amplitude of Wave Maker

An AMES dial gage was clamped on the angle at the
top of the side wall and its sliding shaft touched the
wave maker at a distance of 3 feet from the hinge. All
measurements were made visually as the wave maker oscil-
lated at a low frequency. The graduation on the gage
is 0.001 inch.

The linear variable differential transformer was
sometimes used to measure the amplitude of the wave
maker in addition to its phase relative to that of the
standing waves. A calibration is required by means of
the dial gage.

7.5 Phase Relation

The phase relation between the wave maker and the
standing waves at the location of the wave gage could
be obtained from the two-channel Permapaper in the San-
born recorder by recording the outputs from the wave
gage and linear variable differential transformer
simultaneously. The directions of oscillation for the
standing waves and wave maker had to be calibrated. For
two-dimensional standing waves, the relation could be
directly determined from the graph, but an analysis is
necessary to get the cross wave components from the
composite waves recorded by the system. (See Pigs. 7.3
and 7.4)



7.6 Analysis of Composite Standing Waves for the Components

Since the wave gage measuresthe oscillation of the
free surface at a point on the horizontal plane with respect
to time, the record shows the composite standing waves with
components of different frequencies. It 1s assumed here
that the composite standing waves are composed of only two
modes, the full-frequency mode and the half-frequency mode
with all of their higher harmonics neglected. The former
is essentlally that of the longitudinal standing waves
and the latter that of the cross waves. A graphical method
was adopted for decomposition. With £ and T as the fre-
quency and period of the cross waves, the composite stand-
ing waves are given by

Z = ASinwt + BSin2wt+ )

where A and B are amplitudes of cross and longitudinal
standing waves respectively, and € 1is the phase difference.
Shifting the profile in either direction by a quarter of

a period of cross waves,

Z, = ASinw(t+ L) + BSin[2wct+ *)+ &)
= ACoswt - BSin(2wt+€)

Hence
I .
3(2+2,) =5 A (S wt+ Coswt)

=]L5As.24 (wt+ o)

|
or Al =712, + 2|

If we shift the profile by a half period of cross waves,
then

Z,= AShwit+ )+ BSm(2wt+wT+€)
= -ASmwt +BSin(zwt + €)

Hence

3(Z,+2,)= BSin(2wi+€)

or “3l = ?ﬁ | 2, + 25|

Note that the component of the cross waves can be obtained
by Eq. (8.4) with a shift of its phase, T/4, and the total
amplitude can then be computed by Eq. (8.5). A similar
procedure can be applied to obtain the longitudinal
component by a phase shift of T/2.
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VIII. EXPERIMENTAL RESULTS AND DISCUSSION

The experimental program of the investigation
consists mainly of two parts:

(1)

(2)

Two-dimensional standing waves for the study

of the finite-depth effect and the verification
of the theoretical solution obtained in Segc¢. IV.
(See Table 8.1 for the summary of experiments);
and

Cross waves for study of their excitation at
different length/width ratios of the tank as
well as frequency-amplitude curves. (See
Table 8.2)

8.1 Limitations of Experimental Equipment

Due to the symmetry of the problem, only one wave
maker was used in the experiment and this has no limita-
tion in general except for the highest two-dimensional
standing waves due to the significant wall effect as
the angle between the free surface and end wall tends to
45° near the crest. The depth of water was kept at 2 feet,
which 1s very close to the infinite-depth case; however,
the high accuracy of frequency required for the study of
non-linear waves still demands a frequency correction
which will be discussed in detail in the next section.
There are no limitations on the frequency of the wave
maker for the range under investigation but the lower
limit of the eccentricity on the fly wheel as mentioned
in Sec. 6.2 gives the smallest amplitude of the wave
maker at about 0.14°, For the study of exditation of
cross waves a smaller amplitude of the wave maker is
desired for the small value of length/width ratio. The
range of length/width ratio available is 0< < 1.5
which 1s satisfactory both for two-dimensiocnal waves
and cross waves. For cross waves, the effect of vis-
cosity becomes significant for large values of L.

The viscosity was neglected in the analysis, hence
the investigation is limited to small values of L.
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8.2 The Effect of Finite Depth

The analysis is based on the assumption of infinite
depth. For free waves of finite amplitude, Penney and
Price [14] concluded that the difference between infinite-
depth and finite-depth cases could be neglected if the
depth aé greater than one quarter of the wave length, i.e.
h/s > T4 corresponding to Wh/1, > Ws for the first two-
dimensional mode. The smallest value of w b/, in the ex-
periment is 2.443, which is 63% greater than Penney and
Price's value. The discrepency is still shown in the
correlation of the frequency-amplitude curve for most
cases; perhaps the high accuracy of frequency required in
non-linear waves was overlooked by them. A finite-depth
analysis has not been attempted here, however, it was found
that a frequency correction based on the linear theory
vields good correlation of the data. As is well known in
the classical theory of small amplitude water waves, the
frequency ¢* o can be predicted by the formula:

o*?= 9 k*+anh k*h where k*= ZrV)\* (8.1)

for the finite-depth case. Hence, a frequency correction
factor is defined as

- 2mh  _ nrh
T = tanh 3 -+umkn——c- (8.2)
where 2L = nX* and n,=,1,2;3,. ... .for Ist, 2nd,-3rd,... hormal

mode of oscillation. Due to the height of the tank being
insufficient to provide a depth which gives ©—=1 within

the accuracy required, a series of experiments (Runs 1 to 3)
was made to test the correction factor used in the non-
linear case. The results (Fig. 8.1) indicate that the cor-
rection yields good correlation for the three depth/length
ratios and the data are also in good agreement with the
computed curve based on the theoretical solution of the
infinite-depth case. The remaining runs have a depth of

2 feet and the frequency correction factors are listed in
Tables 8.1 and 8.2. Therefore, the correction factor

tanh (1Th/L) based on the linear theory was used throughout
the analysis and Penney and Price's %A\ > 1/U is not suf-
ficlent as far as the frequency of standing waves of

finite amplitude is concerned.
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8.3 Forced Two-Dimensional Standing Waves

1. Freguency-Amplitude Curves of the First Mode

A series of experiments was carried out for the
frequency-amplitude relation of forced two-dimensional
standing waves. Two different amplitudes of the wave maker
were used to investigate the non-linear effect and several
depth/length ratios were tested (Runs 1 to 9 in Table 8.1).
The frequency of the wave maker, equal to that of the stand-
ing waves, was measured against the amplitude of standing
waves near the point of symmetry (about 3/8" from the end
wall). The experimental results in dimensionless quanti-
ties, shown in Fig. 8.2, indicate satisfactory agreement
with the thearetical prediction. A careful choice of the
length/width ratio 1s required to ensure the stability of
the standing waves. As a result of the analysis in Sec. V,
no cross waves can be excited if the half-frequency of
the wave maker is smaller than the resonance frequency of
cross waves of the fundamental mode. If the half-fre-
quency of the wave maker is nearly equal to the resonance
frequency, the fundamental mode of cross waves can always
be excited with £ = /4, but for £ # 1/4 it can only be
excited with a critical amplitude of wave maker depending
on £. In this light, the length/width ratio was deliberate-
ly kept away from n/& and the half-frequency of wave
maker was smaller than the resonance frequency for all
runs in the experiment.

The test was started at a frequency much smaller
than the resonance frequency of the first mode and then
the frequency of the wave maker was slowly increased to-
ward the resonance frequency. The phase relation between
the wave maker and standing waves 1s shown in Fig. 7.3(a),
which confirms the prediction in Fig. 4.1. The ampli-
tude of standing waves increases rapidly as the frequency
approaches close to the resonance frequency; then the jump
of amplitude from the left to the right branch of the fre-
quency-amplitude curve occurred at a critical frequency
near the vertical tangent accompanied by a change of phase.
The critical frequency for the jump depends on the ampli-
tude of the wave maker. This phenomenon is very well
demonstrated by Fig. 8.2. Again, the phase relation
agrees with Fig. 4.1 as shown in Fig. 7.3(b). A further
increase of frequency led to a decrease of amplitude
until it reached the point of transition to the second
mode.,

The test was continued by decreasing the fre-

quency back to the path just passed and building up the
amplitude of standing waves as high as possible. During
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the test, each adjustment of the frequency of the wave
maker caused some disturbance on the free surface due to
the difference in frequency and a period of time was re-
quired to reach a steady state. The experimental points
shown in Fig. 8.2 are steady two-dimensional standing
waves and so are the rest in Figs. 8.1, 8.4. A measure-
ment was not attempted for the highest standing waves
possible due to the fact that the disburbance caused by
the wave maker would not decay even for a longer period
of time and the wall effect became significant at such
a high amplitude. It is believed that this disturbance
causes the instability of the free surface in the form
of small breaking wavelets. The whole system remained
essentially two-dimensional in that no cross waves of
appreciable amplitude would develop even for a long
period of time, however, this instability makes the
measurement of amplitude at a particular point meaning-
less. Taylor [1] had the same kind of difficulties in
his experiment and the profile of the highest standing
waves was taken within a very short period of time be-
fore the instability developed. The three-dimensional
or conical type standing waves observed in Taylor's
experiment did not appear in the experiment because of
the particular length/width ratio chosen. A run with
the length/width ratio equal to 0.97 (L=23.5 inches)

was tried. It was found that the two-dimensional
standing waves of small amplitude was stable, but the
system became unstable as the frequency reached the
region of non-linear effects and three-dimensional

waves of finite amplitude with full frequency were
observed. The oscillation was along one of the di-
agonals with half wave length and full frequency of the
wave maker. Its nature is similar to that of the cross
wave case which will be described in detail in the next
section.
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2. Profiles of Two-dimensional Standing Waves of
the First Mode

Two profiles of two-dimensional standing waves
on each branch of the frequency-amplitude curves for «=0.0194
were made to test the error involved in the second order
computation presented in Sec. 4.5. (Runs 10 and 11). The
comparison shown in Fig. 8.3 indicates a better agreement
for ¢=0.965 than c=1.000 and the error which appeared in
the amplitudes near x=0 andTt is about 5% for the latter
and less than 1% for the former. The disagreement near
G+ O for & =1.000 is due to the fact that the measurement
is actually the envelope of standing waves rather than the
instantaneous profile as computed, while the good agreement
for o =0.965 indicates that its profile is not far from the
simple harmonic oscillation. The experimental difficulty
involved in obtaining a profile of higher amplitude is
that the amplitude becomes very sensitive to the wvariation
of the frequency which could not be kept within the limit
required for the duration of a run due to the characteristics
of the motor. The crest-height/trough-depth ratio for
o=1.000 is equal to 1.43 as compared with the maximum value
1.84 found by Penney and Price. The photograph of the two-
dimensional standing wave is shown in Fig. 8.5 for the
first and second modes.

3. Frequency-amplitude Curve for the Second Mode

Since the solution for the second mode has not
been carried out, it would be instructive to see how the
amplitude of the wave maker affects the second mode of oscil-
lation as well as the frequency-amplitude curve in a
dimensionless plot to compare with the first mode. Runs 8
and 9 with two different lengths of the tank but the same
dimensionless amplitude of wave maker & were made for the
purpose. The result indicates (See Fig. 8.4) that the
second mode differs glightly from the first mode at large
amplitude in the neighborhood of the resonance frequency;
while for small amplitude it agrees with the rough esti-
mation baged on the linear theory in Sec. 3.6, i.e. the
amplitude of the second mode is about 20% higher. The
important impiication of the result is that the amplitude
increases with increase of the mode of oscillation at the
same value of 0 /On and the range of frequency of higher
modeg becomes narrower. The non-linear frequency range
for the second mode 1s approximately 0.88 < 5/g,< 1.10 as
compared with the non-linear range for the first mode
0.93<¢5/5,< 1.05 for the particular ¢¢. Therefore, the
high mode of oscillation in the system is essentially non-
linear in characteristic for a sufficiently large .
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Table 8.1

Summary of Experiments on Two-Dimensional Standing Waves

Run L h Trh/L [tanh-%fhllé 26 2ol f% = (ﬂ$%3)1/2
inf. depth
1 18 24 4,189 0.9998 0.566° 0.0387 1.3070
.2 18 18 3.142  0.9982 0.775° 0.0388 1.3070
3 18 14 2.443  0.9932 1.024° 0.0387 1.3070
4 19.5 24 3,867 0.9996 1.233° 0.0778 1.2558
5 19.5 24 3.867 0.999% 1.022° 0.0388 1.2558
6 29.5 24 2.556  0.9940 0.935° 0.0389 1.0209
7 29.5 24 2.556  0.9940 1.962° 0.0778 1.0209
*¥8 29.5 24 5,112  1.0000 0.935° 0.0390 1.0209
*9 35.5 24 4,248  0.9998 1.127° 0.0389 0.9307
10 27.5 24 2.742  0.9955 0.868° 0.0388 1.0574
11 27.5 24 2.742  0.9955 0.868° 0.0388 1.0574

¥ The second mode.
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(a) The First Mode

(b) The Second Mode

FIG. 8.5 Photographs of Two-dimensional Standing Waves
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8.4 Cross Waves

The experimental program on cross waves 1s almed at
investigating the possibility of exciting the fundamental
mode of cross waves under the conditions predicted by the
theoretical analysis in Sec. V as well as obtaining the
frequency-amplitude curve of cross waves. Two series of
experiments were made: first, at the length/width ratio
ya ={&-with the smallest amplitude of the wave maker avail-
able and second, at ¢ # Yl with a-critical amplitude of
wave maker for excitation. The experimental conditions
are summarized in Table 8.2. Two photographs of cross
waves are shown in Fig. 8.8,

(1) The experiment for £ = /4

With the smallest amplitude of wave maker available
it was possible to excite the cross waves at the fre-
quency w/2m as w?*x f. The frequency-amplitude curves
plottedin Fig. 8.6 are in agreement with the resonance
curve of free oscillation. The absence of the data
near W/, = 1 1ls due to the fact that near this fre-
quency the amplitude of cross waves became smaller than
that of the longitudinal mode, both of which are very
sensitive to the variation of the driving frequency of
the wave maker; therefore, the dystem of waves 1s very
unstable. The cross waves were always started at the
frequency nearly equal to but smaller than W/w; = 1
and were not visible until the amplitude of cross waves
is comparable with that of the longitudinal component
of standing waves. The amplitude increased rapidly with
a small decrease in the frequency of wave maker. The
amplitude of the longitudinal component of the standing
waves decreased as the amplitude of cross waves increased,
the surface approaching a two-dimensional form at high
amplitude. The violent type of instability due to splashy
wavelets similar to the two-dimensional case mentioned in
the previous section was also observed. This disturbance
which appeared at f£IAl > 1.0 depended on the amplitude
of the wave maker and made it difficult to obtain ac-
curate measurements.

For £= 1 several trials were made to generate cross
waves, but without success; instead of the type observed
above, three-dimensional standing waves with half wave
length and half frequency of the wave maker oscillating
along one of the diagonals of the tank were observed.
The oscillation appeared to be stable; but, bytaslight:
-adjustment of the adjusting string at the top of the
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wave maker (which changes the effective length of the tank
on two sides near the top of the wave maker) the amplitude
of the standing waves may change or the oscillation may
shift to the other one of the diagonals. As the tank was
not square, the oscillation was along the longer diagonal,
since the oscillation for the first mode of cross waves is
associated with the fourth mode of the longitudinal compon-
ent of the standing waves at £ = 1. The possibility of the
half-frequency mode of the longitudinal component in oscil-
lation has to be considered. A run with £ # 1 was made
with the frequency of the wave maker operated near o= 2
which is not in the range of the resonance frequency for
cross waves; but no half-frequency mode was observed.
Together with the similar standing waves of full-frequency
mentioned in the previous section, 1t suggests that this
pecullar type of oscillation might be caused by the fact
that the wave maker is not perfectly parallel to the end
wall.

(2) The experiment for £ # "/4

Three different length/width ratios with several
amplitudes of wave maker were tested. For f= 0.289
and 0.362, the cross waves could be excited with the
smallest wave maker amplitude; however, for £= 0.562 a
critical amplitude was found to be X = 0.0121. The fre-
quency-amplitude curves are shown in Fig. 8.7. These
curves are in the form of a parabola similar to the reson-
ance curve and thelr vertices lie on the right of the
resonance curve. In this case, it was possible to have
the cross waves of small amplitude and to determine the
onset frequency, which depends on the amplitude of wave
maker. The result of Howard's analysis [21], based on
the quadratic theory and £ ~ 1/4, indicates that the
critical ampliitude of the wave maker has the following
relation with the frequency:
2
x5 ~ (02-1)% (|- &
|

By approximating this relation to correlate the data, then
for 2 = N4 and o? # 1. o 18 essentially proportional
to | |o602uﬁ| as plotted in Fig. 8.9.

(3) The Phase Relation

The phase angle between the cross waves and the wave
maker is measured by a wave gage at y = O and the displace-
ment gage at the top of the wave maker. A sample of measure-
ment is shown in Fig. 7.4, which gives the phase angle €

in Eq. (5.31) equal toTs.
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Table 8.2 Summary of Experimehts on Cross Waves

Run L 26 2 h [tanh I%E 11/ L
101 6 0.279° 0.0571 24 0.9981 1/4
102 12 0.990° 0.0832 20 0.9945 1/2
103 12 0.443° o.o4s54 24 0.9981 1/2
104 18 0.835° 0.0571 24 0.9981 3/4
105 1BI40.279° 0.0203 24 0.9981 3/4
111 7 0.287° 0.0504 24 0.9981 0.289
112 7 0.366° 0.0642 24 0.9981 0.289
113 7 0.447° 0.0785 24 0.9981 0.289
114 8.75 0.279° 0.0392 24 0.9981 0.362
115 8.75 0.448° 0.0630 24 0.9981 0.362
116 8.75 0.604° 0.0848 24 0.9981 0.362
117 14.5°  0.286° o0.0242 24 0.9981 0.560
118 14.5  0.364° 0.0308 24 0.9981 0.560
119 14.5 0.443° 0.0376 24 0.9981 0.560
120 14.5 0.609° 0.0515 =24 0.9981 0.560
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(a) End View

(b) View from Corner

FIG. 8.8 Photograph of Cross Waves
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8.5 The Stability of Two-Dimensional Standing Waves and
Excitation of the Fundamental Mode of Cross Waves

The linearized version of the problem is basically
two-dimensional and thus the two-dimensional standing waves
of small amplitude are always stable. Since the linear
solution does not apply in the neighborhood of a resonance
frequency, a non-linear solution has to be solved in each
neighborhood. By means of comparing the linear and non-
linear solutions in Fig. 4.5 for the first mode of two-
dimengional standing waves, the range of significant non-
linear effects can be approximately determined; it depends
on the amplitude of the wave maker., For the particular
values of o 1in the experiment, they were found as:

0.0194

0.93 ¢ 9/ <« 1.05 for &«
0.0388

0.92 <« o/oy < 1.08 for o

o

The exact range of non-linear effects cannot be determined
by the ccmparison; however, the limiting case for X— 0

is of interest. For —>0 (Free oscillation), the non-
linear range can be determined as 0.93< o/0n <1.00
where the frequency 0.93 is determined by the highest
possible free standing waves based on the results of

Penney and Price [14]. The spacing of the discrete reson-
ance frequencles becomes closer as the mode of oscillation
increases; therefore, higher modes of standing waves are
essentially non-linear in their characteristics. Both
non-linear two-dimensional and three-dimensional standing
waves may exist in this range and the stability of two-
dimensional standing waves in general is extremely dif-
ficult to investigate for there are infinitely-many modes
of three-dimensional oscillation. However, the interest
centers only on the stability of two-dimensional standing
waves in relation to the excitation of the fundamental mode
of cross waves. The result of Sec. V indicates that the
cross waves can be excited at the half-frequency of the
wave maker nearly equal to the resonance frequency of the
first mode in the transverse direction by an infinitéesimal
amplitude of wave maker with £="/4(n is an intepger).

The experimental result indicates that for L 4 /4,
there exists a critical amplitude of wave maker for ex-
citation depending on £. 1In the light of these results,

a stability diagram is constructed in Fig. 8.10 for the
half-frequency of wave maker near or smaller than the
fundamental mode of cross waves as ~ 0. In the dark
area, the cross waves exist with o= 0 and in the shaded
area the cross waves can be excited with a critical value
of ®x. The extent of the shaded area depends on the magni-
fude of . The region above Q&h%z&u}s gﬁexplored. The ray
through the origin has a slope, ST = 2(0/wW) = 3(W Yoo L ;
hence,it represents a particular‘%éfhe of{k{ ) ZCL-) NaL
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IX. CONCLUSIONS

From these theoretical and experimental investigations,
the followlng conclusions can be drawn:

(1) The linearized version of the problem of forced stand-
ing waves generated in a rectangular tank by a two-dimension-
al wave maker is basically two-dimensional and the solution
for forced two-dimensional standing waves of small ampli-
tude 1s always stable. The linear solution is not valid

in a neighborhood of a resonance frequency of the system;
therefore, a non-linear solution has to be obtained, 1in
each of these neighborhoods. By means of comparing the
linear and non-linear solutions, the range of significant
non-linear effects can be approximately determined for a
particular «x. In this range, infinitely many non-linear
solutions may exist. Since the non-linear range depends

on x and since the spacing of the resonance frequency be-
comes closer at higher modes, standing waves of higher-
modes with sufficiently large amplitudes of the wave maker
are essentially non-linear in character.

(2) TForced two-dimensional standing waves of finite
amplitude were obtained as a family of particular solutions
in the non-linear range in the three-dimensional system.
Two non-intersecting branches of oscillation were found
theoretically and experimentally for the frequency-ampli-
tude curve relation. The third-order solution obtained by
the method of iteration used in Sec. IV is in good agree-
ment with the experimental result. In the experiment,
stable two-dimensional standing waves could be generated
if the half-frequency of the wave maker is smaller than
the resonance frequency in the transverse direction and
the length/width ratio of the tank is not equal to a
multiple of 1/4,

(3) The stability of two-dimensional standing waves of
finite amplitude in the sense of avoiding the excitation
of the fundamental mode of cross waves was investigated
by means of finding the possible sclution of the cross
waves. The analysis shows that the cross waves have a
frequency equal to half that of the wave maker and can be
excited near the resonance frequency in the transverse
direction with infiniteésimsl amplitude (x=~o0) at £ = B/4
and with a critical amplitude as £ # /4.
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(4) The frequency-amplitude curve of cross waves for in-
finitesindl amplitude of wave maker at { ="/4 was found
experimentally in agreement with the non-linear resonance
curve of free oscillation for the two-dimensional case.
For a finite amplitude of the wave maker at L # /4 , it
is essentially parabolic in shape with its vertex on the
right of the former and similar to the resonance curve.
Hence, the frequency-amplitude curve for cross waves can
in general can be described approximately by the resonance
curve for the two-dimensional case.
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