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MATHEMATICAL MODELS OF THE MASSACHUSETTS BAY

ABSTRACT - PART I

FINITE ELEMENT MODELING OF TWO-DIMENSIONAL

HYDRODYNAMIC CIRCULATION IN SHALLOW WATER MASSES

BY

JEROME J. CONNOR

and

JOHN D. WANG

The vertically integrated conservation of mass and momentum

equations for shallow water bodies are reviewed. The equations used
in this study are based on only two assumptions: hydrostatic pressure
and squares of surface elevation gradients'negligible with respect to
unity. The finite element method is applied to reduce the governing
equations to a system of ordinary non-linear differential equations in
time for which two different numerical integration schemes are described.

Model results are compared with analytical solutions. Also, numerical
predictions of the tidal response for Massachusetts Bay are presented.



-1-

PART I

ACKNOWLEDGEMENTS

This study constitutes a part of a series of investigations in a

major environmental research program on the "Sea Environment in Massachu-

setts Bay and Adjacent Waters". This program consists of theoretical and

field investigations and is under the administrative and technical direc-

tion of Dr. Arthur T. Ippen, Institute Professor, Department of Civil

Engineering and of Dr. Erik L. Mollo-Christensen, Professor, Department of

Meteorology as co-principal investigators. Support of the program is

provided in part by the Sea Grant Office of NOAA, Department of Commerce,

Washington, D.C. through Grant No. NG-43-72, in part by the Henry L. and

Grace Doherty Charitable Foundation, Inc., and in part by the Department

of Natural Resources, Commonwealth of Massachusetts through Project No.

DMR-73-1. The project which is the subject of this report was conducted

by staff members of the Ralph M. Parsons Laboratory for Water Resources

and Hydrodynamics and was administered under Project No. DSR 80344 and

DSR 81100 at M.I.T.

This report was prepared by Mr. John D. Wang, Research Assistant,

and Dr. Jerome J. Connor, Professor of Civil Engineering. The advice and

guidance of Dr. Arthur T. Ippen is hereby gratefully acknowledged.

Appreciation is expressed here to Ms. Stephanie M. Demeris for her

excellent typing of this manuscript.



-2-

TABLE OF CONTENTS

ABSTRACT

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF SYMBOLS

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

REFERENCES

INTRODUCTION

BASIC HYDRODYNAMIC EQUATIONS

VARIATIONAL STATEMENT

FINITE ELEMENT MODEL

NUMERICAL INTEGRATION SCHEMES

MODEL COMPARISONS AND RESULTS

1

2

3

5

9

11

20

22

27

31

56



-3-

LIST OF FIGURES

Figure Page

1 Geometrical and Surface Force Notation 12

2 Boundary Notation 17

3 Finite Element Geometric Discretization 23

4 Sketch of Rectangular Channel 32

5 Comparison of Numerical and Analytical Solutions 34

6 Rectangular Model of Massachusetts Bay 36

Analytical Solutions

7 Rectangular Model of Massachusetts Bay 37
Dimensions and Element Layout

8 Rectangular Model of Massachusetts Bay 38
Finite Element Solution. Surface Elevations

9 Rectangular Model of Massachusetts Bay 39
Finite Element Solution. Currents

10 Massachusetts Bay. Geographical Boundaries 41
and Finite Element Grid

11 Massachusetts Bay Surface Contour Lines at 42
High Tide

12 Massachusetts Bay Surface Contour Lines at Low 43
Tide

13 Massachusetts Bay Currents at Ebbing Tide 44

14 Massachusetts Bay Currents at Flooding Tide 45

15 Time History of Computed Elevations at Boston 46
and in Cape Cod Bay

16 Time History of Computed Currents 47
a. Center of Cape Cod Bay
b. 15 km East of Boston



-4-

Figure Page

17 Computed Current Field due to Wind Forcing from
the North. No Tidal Motion. Steady-state Reached 50

18 Computed Current Field due to Wind Forcing from the
South-West. No Tidal Motion. Steady-state Reached 51

19 Superposition of Computed Flood Tide Currents and
Wind Driven Currents 52

20 Superposition of Computed Ebb Tide Currents and
Wind Driven Currents 53

21 Flood Tide and Wind Driven Current Field 54

22 Ebb Tide and Wind Driven Current Field 55



-5-

LIST OF SYMBOLS

A area

a tidal amplitude

*
B sum of surface and bottom stress terms in x-directionx

*
B sum of surface and bottom stress terms in y-direction
y

B sum of surface, bottom, coriolis and nonlinear force
measures in x-direction

B sum of surface, bottom, coriolis and nonlinear force
measures in y-direction

b superscript signifying bottom

C bottom friction factor

c wave velocity = g

E truncation error

e mass source per unit volume

e superscript signifying eddy viscosity term
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CHAPTER 1

INTRODUCTION

Mathematical modelling of circulation and dispersion in water

bodies has developed rapidly during the past decade. The major impetus

has been the concern for the environment which has necessitated more

detailed studies of water quality and especially the development of

transient predictive models.

This study is restricted to the development and evaluation of

finite element models for predicting the transient response of water

bodies due to tidal and wind excitation. Three dimensional solutions

are most desirable but the uncertainly of boundary conditions and in

the magnitudes of the eddy viscosities and turbulent diffusion

coefficients does not justify the effort at this time. Therefore, this

study is further restricted to vertically well-mixed two dimensional

flow. Irregularity of the boundary geometry and depth are allowed for

but the velocities are assumed to be approximately uniform over the

depth.

There are a number of recent reports [1-7] describing finite

difference models for circulation and dispersion in well-mixed estuaries

and coastal waters. The proposed models by Leendertse et aL [3] and

Abbot et al [7] appear to be well documented and have extensive

supporting software for data generation and plotting. -

Finite difference models employ rectangular grids and one has

to resort to approximating an irregular boundary with orthogonal

segments. This requires a small mesh spacing throughout the domain.

Approximate techniques for expanding the mesh in the interior have
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been employed but they can introduce additional numerical difficulties.

The finite element method was first applied to fluid flow by

Martin [8] who treated two-dimensional steady potential flow. It

has since been extended to Navier-Stokes flow [9], lake circulation

[10,11], and.long wave propagation (12). The method has proven to be

particularly convenient for problems involving irregular boundaries

since the mesh can be chosen to "fit" the boundary. However,

relatively little experience with finite element transient solutions

of hyperbolic equations has been accumulated in contrast to finite

difference models where stability has been studied extensively [15,16].

In what follows, a consistent derivation of the vertically

averaged equations for long wave propagation is presented. The

formulation is sufficiently different from existing formulations

(Pritchard, Ref. 2) to warrent its inclusion here. Next, the method

of weighted residuals [14] is applied to generate a "quasi" variational

statement which is the basis for the finite element discretization.

Three numerical integration schemes are evaluated for one and two-

dimensional test problems discretized with first order triangular

elements. The scheme is also applied to Massachusetts Bay, a fairly

complex coastal area, and a solution strategy for "adjusting" the

bottom friction is discussed.
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CHAPTER 2

BASIC HYDRODYNAMIC EQUATIONS

The 3-dimensional forms of the ensemble averaged continuity and

momentum equations constitute the basis for the present formulation.

They are

+ (pu) + (pv) + (pw) = e
at ,x ,y ,

(pu),t + (pu2 9 + (puv) + (puw)

-pfv - p + T + ' + T
,X xx~Ix yx,y ZX,Z (1)

2
(pv) + (puv) + (pv ) + (pvw)

= - Pfu - p Py+ T xy + T yyy+ T z,y y~x yy,y zy,z

where u, v, w are the averaged velocities, e is a source of mass inflow

per unit volume, T are the sums of viscous and Reynolds stresses, p

is mass density and f is the Coriolis parameter. By definition, the

stress components are symmetrical with respect to the subscripts, i.e.,

T = T , etc.
xy yx

A set of 2-dimensional equations is obtained by integrating (1)

over the total depth and applying Leibnitz's rule. The notation and the

applied surface forces are shown in Figure 1. We assume the surface

2 2
slope is small and neglect (n ) , (n ) with respect to unity. With

this approximation, the surface force-interior stress relations for the

upper surface reduce to
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y (north)

z (vertical)

- - -- -
- - -

- -7a
1I

p~dA

1 Ty s -dA
y

Ts-dA

jy

,x
Sx

dx

2

y <<l
dA =dxdy

Figure 1. Geometrical and surface force notation.

V (, st)

w
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T +f) ps =- f(- p + T) - T T + T'x ,xOxxx ,y yX zxIz=l

Ts +n ps - 9 T -n (-p+T )+T (2)
y y,x xy ,y yy zytz=n

-ps + n Ts +f Ts = -p + T - ) T - y T
,x x ,y y zz ,xSxz ,y yz z=l

where Ts are the applied tangential wind stresses and ps is the external

pressure. A similar set applies for the bottom surface.

Leibnitz's rule defines partial differentiation of an integral

having variable limits. Its form for x differentiation is

-- 92 fdz2= --- dz + f --- f ----1(3)
x x 1g2 ax 1  x

Using the general form of (3) and applying the kinematic relation

w j= = + u 3 + v (4)Z= Dt at 3x ay

at = n and 4 = -h, assuming the density is constant over depth results

in the following "integrated" equations:

a_ a a
(pH) + - q + q

-- q + -- (p {udz) + a-(P uvdz)
,t Xx x y

-h .-h

=fq +Ts +Tb + pa pbh
y x x 3X + x

Tri TJ

+ - (-p + T )dz+-- JTdz (5)
ax xx ay yx

-h 4-h
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q + (P uvdz) + (p v2dz)9t y 9x f -h 9y f-h

= - fq + Ts + Tb + ps 9_n+ pb 9h
x y y Dy -y

+--1 T dz + (-p + T )dz- x f-h x -h y

where

H =h +

q= P-h udz

q = -h vdz

and q, is the distributed mass inflow per unit area.

To integrate the nonlinear advective terms we express the velocity

components as

u = u(x,y,t) + u'(x,y,z,t)
(6)

V = v(x,y,t) + v'(x,y,z,t)

where u, v denote the vertically averaged velocities and u', v' represent

the vertical deviations. By definition,

q E pHv
y (7)

u'dz = v'dz = 0
-h -h

Introducing (6) in (5) and grouping terms in a form similar to the 3-

dimensional momentum equations, we write the "integrated" momentum

equations as
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--(pH) +--5 q + - q ,

a a _-f +a' -a
-- q +-5--(uqx) + -- (T ) + B* + -- (F - F ) + -- F
at x x x 3y uy f y x 3x xx p ay yx

(8)

q + - )+ (v = - + B* +2- F + -- (F - F )t yq x Tyay q + y ;x xy yay p

where B*, B* contain the surface and bottom stress terms, F is the pres-
x y p

sure force resultant and F , F , F are "equivalent" internal stress

resultants due to turbulent and dispersive momentum flux.

F p= fhpdz

n -2
F = f (T - p(u') )dz (9)

xx-h

F = -h(T -p(v') )dz

F = F fI (TX - pu'v')dz

We approximate the flux terms with

F =C -
xx xx ax"x

F =(10--
yy y y y(0

F F =Fxy =e (--q + --q)
yx xy xy 3 xqy)

One can interpret the c's as either equivalent Fickian d-iffusion

coefficients or generalized eddy viscosities. In (10) we have

allowed for orthotropic behavior. For isotropic flow, (10) applies

for arbitrary orientation of x, y, and therefore one has
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E = E =2e
xx yy

(11)

xy

Next, we assume the pressure variation with z is hydrostatic,

p = pg(n-z) + ps (12)

and the bottom shear is predicted by a quadratic relation,

Tb C f 2 2 1/2
PH x y 

(13)

b Cf 2 2 /
T = -- f2 q (q + q )

y PH 2 y x

where C is a friction factor.

The corresponding forces are

F = 1 pdz = psH+ -9 H2

P f-h 2

B* =T +T + -9H H - (14)

B* Ts + Tb + ps DH + Pg H
y y y ay +y

Lastly, we express the mass density as

po + 6p (15)

where p0 is constant. The incremental density 6p is small in comparison

to p for circulation in coastal waters and estuaries. Therefore,

we set p = p0 except for the pressure force terms. This is the

Boussinesq approximation.

To complete the formulation, we need to establish the boundary

conditions. The total boundary, S, consists of flux segments, Sf, and

ocean segments, S , as shown in Figure 2. We refer the flux and
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S
0

X

S

(F x-F p)-dy

F -dy
xy

F s' s F n (exterior
ny normal)

F ,
nx

interior
domain

n

F -ds F -ds
ny F -ds

dF d s
dy ds nx

dx

4-F -dx
Syx

(F -F )-dx
yy p

Figure 2. Boundary notation.

s land

Ss

sf~stream

s f ,land
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boundary force measures to the local reference frame defined by

the exterior normal, n, and the tangential direction, s, where n -+ s

has the same sense as x + y.

Mass flux is a vector quantity and its components transform

according to -

71
q n= fhPUn dz = a nqx + O'n q

TI
Su-h s ny q x +anx qy (16)

a nx = cos(n,x) ay = cos(n,y)

Consistent with interpreting the momentum flux due to nonuniform

velocity distribution through the depth as equivalent internal force

resultants, we write

F =cz (F - F) +cz F
nx nx xx p ny yx

(17)

F = a F +ct (F -F )
ny nx xy ny yy p

and then transform according to (16), obtaining

F =-F + Fe
nn p nn

F =Fe
ns ns (18)

e 2 2
F =nx F + a F + 2a a Fnn nx xx ny yy nx ny xy

Fe 2 2
F =(a - )F + a a (F - F)
ns nx ny xy nx ny yy xx
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On a land boundary (assuming no tidal flats), the flux components

are prescribed.

qn =s = 0 on Sf ,land (19)

On an ocean boundary, the normal and tangential boundary forces

are prescribed.

F = F
nn nn

on S (20)
F =0
ns ns

On flux boundaries other than land such as at river entrances the

normal flux is specified equal to the river mass flow.

n river
on S (21)

When the eddy viscosities are neglected, F = 0, and we cannot

prescribe the tangential flux or tangential boundary force. The

boundary conditions reduce to

qn n on S (22)

and

F =F on S (23)
nn 0

In the present model application,equation (23) with P = - F is
nn p

used although eddy viscosities are assumed non zero in the interior.
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CHAPTER 3

VARIATIONAL STATEMENT

The governing equations are (8) and the appropriate boundary

conditions. In what follows, we apply Galerkin's method [14]to establish

the variational statements which are the basis for the finite element

method.

Let AH, Aq , Aq represent weighting functions. We weight the

continuity equation with respect to AH, the momentum equations with

respect to Aq, integrate over the domain, and require the residuals to

vanish. We also weight the force boundary conditions on S . The resulting
0

expressions are

ff {(poH),t xx + qyy - q, }AHdA = 0 (24)

A

and

ff q - (F -F) - F - B I Aq dA = 0
A x~t ax xx p ay yx x x

If t' ylt - F - (F -F) - B Aq dA = 0
yA ax xy ay yy p y y (5A (25)

f {-F + a (F -F ) + a F } Aq dS= 0nx x x p nyyx x
S

0

f {-P + a F + a (F -F )} Aq dS= 0
ny nx xy ny yy p y

Here we have included the Coriolis and nonlinear terms in B.
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B = B* + fq - (@Xgq) (uq)
x x y 3x x Dy y

(26)

B = B* - fq - (vq ) - (vq)
y y x Dx x y y

Applying Gaus-s's theorem to eliminate the derivatives of the force

terms in the momentum equations and combining with the boundary equations

leads to the desired form:

ff {(q - B ) Aq + (F -F )(Aq ) + F (Aq ) } dA
A

-f Fx Aq dS = 0
Snx x

ff {(q - B ) Aq + F (Aq ) + (F -F )(Aq ) } dA
A y,t y y xy y ,x yy p y ,y

-f F Aq dS = 0 (27)
ny y

We have required the flux weighting functions to vanish on Sf,

Aq = Aq = 0 on Sf (28)

and consequently the boundary integrals on S drop out of (27).
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CHAPTER 4

FINITE ELEMENT MODEL

The continuity equation (24) and modified momentum equations

(27,28) are the starting point for the finite element method. We

visualize the domain to consist of subdomains (elements) and take as

variables the values of qx, q , H at the points (nodes) defining the

discretization. This is illustrated in Figure 3. The distribution

of a dependent variable over an elemental domain is expressed in terms

of the values of the variable at nodes contained in the element domain

and interpolation functions. In this way, the equations are transformed

to a set of algebraic equations relating the discrete variables. In

the present formulation the simplest elements3 viz.triangular with

linear interpolation functions,were chosen. However, more complex

elements and expansion functions will be implemented in future modeling.

We define the following notation:

qX, q .,H. = values at node i

q(e) qe) H (e) are matrices containing the nodal variables
X ~Y ~

for an element
(29)

N = number of nodes

Q = {q , q 1 , qx2$'''' yN= system flux matrix (2N nodal values)

H = {H, H2 ,... ,HN} = system elevation matrix (N nodal values)

For example, H (e) = {Hnl, Hn2  Hn3 for the triangular element shown

in Figure 3. The expansions are written as
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nodes

Interior domain discretized with finite elements

n 3

element relative

element n numbering scheme

n

n 2

Figure 3. Finite element geometric discretization.

n1 , n 2, n3 are the actual node numbers

for the nodes in the domain of element n.
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q - ~ (e)
qX = q

q = g q(e) (30)
y y

H = @ H(e)

where 0 is a row matrix. We are considering 3 variables per node.

One can generalize the approach and allow for a variable number of un-

knowns per node, i.e., different expansions for flux and elevation,

but we prefer to work with the simplest scheme.

In the Galerkin method, one takes the weighting functions

identical to the coordinate functions. Since the finite element method

employs local functions, the weighting function for a particular

nodal variable is finite (non-zero) only for those elements incident

on the node. Rather than treat individual nodes, it is more convenient

to evaluate element residuals and then superimpose the element con-

tributions at the nodes.

Taking the complete set of weighting functions for an element as

,Aq =0 Aq(e)
x x

Aq 4 Aq (e) (31)
y y

All = AH (e)

and substituting in (24), (27) results in the following element

residuals:
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I(e)

:t + e= ((e ) T e
-X

Dq(e)

Hte

@H(e)

at

+ P (e)
~y

+ P (e)
~h

(e) T (e)"+(Aq () (M (
~y

+ (e) T (e)

where

M(e) = f f dA

A(e) -

Af
A (e)

[ TB + OT F -F
~ x ~, x xx p

- f IT P dS

S(e)~ n
0

=I j[- TB + DT F
A(e) - y ,x Xy

+ T F ] dA
~,y xy

+ T F -F )] dA
~,y yy p

- j GT E
(f) ny

S(e) 

f

0

P (e)= 1h PO A(e)
DT(q + q

The forces and flux derivatives in (33) are evaluated using (30) and

the force expressions (10), (14), (26).

The total residual must vanish for arbitrary Aq , Aq., AH.

(i = 1,2,...N). Then,

RI

el

(32)

P (e)
~x

P e)
~y

dS

(33)

- q ) dA
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RI ttl= R|je = 0
Rtia =elements j

for arbitrary AQ, AH.

We write the expanded form of (34) as

(34)

R = (AQ) (M -s-- Q + P) + (AH) (M - H + (35)
total ~ ~9t ~ ~~ ~ 9t ~ -~h)

and it follows that

MQ + P = 0
(36)

h+P h 0

Finally, we introduce the boundary conditions by modifying the rows

and columns of M corresponding to the prescribed variables and in-

corporating the prescribed terms in P. To minimize notation prolifera-

tion, we assume (36) represent the final constrained equations.
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CHAPTER 5

NUMERICAL INTEGRATION SCHEMES

Efficient stable numerical integration schemes are essential since

a typical problem will involve several hundred node points and inte-

grations over at least one tidal cycle. Complex multi-step methods,

although more accurate, require considerably more computation time and

storage. Therefore, we have concentrated in this study on investigating

the stability and accuracy of relatively simple implicit schemes.

Explicit stability criteria for finite element formulations such

as (36) have not yet been developed. The difficulty is due to the

arbitrariness of the coefficient matrices (i.e., the elements are

confined to a zone adjacent to the diagonal but their magnitudes may

be irregular) and also the skew symmetry of the Coriolis and surface

elevation terms. One generally has to resort to approximate stability

measures based on norms. We make no attempt here to resolve this

problem since our primary objective is to evaluate the performance of

various schemes.

The simplest scheme is the trapezoidal rule. Its one dimensional

form is

f(y,t)
dt

-y t (f + f ) + EAt
Yn+l n 2 n+1 n

(37)

E 1 2 d2fE = -- (At) --- 2 t < E < t
12 dt 2 n n+l
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Iteration is required since the forcing terms in (36) are non-

linear. We include a relaxation factor to accelerate convergence and

evaluate the terms in the following order:

MAt (P )-
h (H* -H ) 2 i P~ + P )~3~ ~ ~n 2 h,n+1 hl

+1 E) H* + (1 - 0h )Hj1.n+l h -h Zn+l

and

+i-1 P(H+ Ql t) (38)
.nl - .n+19 -n+12 tn+l

M(Q* - ) = n l + n

%n+l Q  +(e-Q ) n+l

The mass matrices are factored initially and the iteration and

time stepping consists of successive forward and backward substitutions.

Convergence is defined by the percentage change in the Euclidian norms

for the surface elevation and mass flux vectors.

N
(H - H+ 1/2i=ln+l n+

N l E

i ( n+1 i

(39)
2N

(Q J+l - QJ ) 2 1/f n+l n+l i

(Qj+l 
2  ~ Q

i=1 n+l i
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where N is the total number of nodes, and ch' Q are the specified

tolerances.

The second method examined is the third order predictor-corrector

iterative scheme,

= f(y,t)
dt

Predictor:

f1 = 3f - 3f + f
n+1 n n-( n-2

Corrector: (40)

y - yn = (5 f + 8f - + E At~ n 12 n+1 n f 1 )EI

n+1 Oy* + (1 -) yn+1

E = (At)3 df t < < t1 t3 n n+l

This scheme is not self-starting and requires more storage than

the trapezoidal rule. However, it is more accurate and usually

converges faster. Equations (39) are again taken as the convergence

criteria.

The predictor-corrector scheme (40) is coupled with the following

version of the fourth order Runge-Kutta method,

= f(y,t)dt

ki = At-f(y ,t n)

k2 = At-f(y + 0.4k , tn + 0.4At)

k = At-f(y + 0.296978k + 0.158760k , t + 0.455737At)
3 n 12 n (41)
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k = At-'f(yn + 0.218100k1 - 3.050965k2 + 3.832864k3, tn + At)

yn+l = yn + 0.174760k - 0.551481k2 + 1.205535k3 + 0.171185k

E = O(At )

This scheme has the lowest bound on the error for this family of

Runge-Kutta methods [15].

The solution of a given problem begins with an optional number

of integration steps using the Runge-Kutta method, (minimum three

time steps) and then shifts to the predictor-corrector method. At

any time step it is possible to change back to the Runge-Kutta method

to take advantage of its better accuracy. This flexible formulation

also makes it very easy to increase or decrease the time increment,

At, if so desired.
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CHAPTER 6

MODEL COMPARISONS AND RESULTS

The objective of this study is to develop a general numerical

model for the prediction of 2-dimensional hydrodynamic circulation

in waterbodies which are well-mixed through the water column.

Several example problems for which analytical solutions are

readily obtainable were solved with the finite element numerical model.

These examples demonstrate how the model performs in situations of

varying geometry and also show the effect of eddy diffusivity on

damping short "noise" waves generated by the numerical scheme due to

truncation and round-off errors. A circulation analysis for Massachu-

setts Bay was carried out.

The initial numerical solutions with the trapezoidal rule

required an average of 7 iterations per time step to obtain comparable

results. Since the higher accuracy Runge-Kutta method only requires

4 evaluations of the integrand per time step, this was found un-

satisfactory. Convergence with the trapezoidal rule can be accelerated

by extrapolating the integrand at the start of each new time step.

However, this necessitates more storage and the computational effort

is now of the same order as the predictor-corrector method. Therefore,

subsequent efforts were concentrated on the fourth order Runge-Kutta

and third order predictor-corrector methods.

In the first example, the forced standing wave in a rectangular

channel without friction or coriolis effect was modeled as shown in

Figure 4. The analytical solution is
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a sin(wt)

200

T
4

a. Channel section

-- - - -

I-- . a~ -~.~:j - I - :..~ ---

149 A 40, 40 1 40

b. Plane view showing arrangement of elements.

(lengths in meters).

Figure 4. Sketch of rectangular channel.

TABLE 1

Comparison of analytical and numerical solution.

Rectangular channel. Initiai velocities given by analytical

solution. Runge-Kutta method. At=2.5 sec.

SURFACE HEIGHTS VELOCITIES

numerical

-1.000u
-1.0217
-1.0378
-1.0491
-1.0565
-1.5900

0.0000
0.0000
0.0001
0.0001
0.0001
0.0001

analytical

-1.0000
-1.0210
-1.0374
-1.0492
-1.0563
-1.0586

0
0
0
0
0
0

difference

0.0017
0.0004
0.0001
0.0002
0.0004

0.0000
0.0001
0.0001
0.0001
0.0001

time

3T/4

numerical

0.0003
0.0002
0.0003
0.0003
0.0004
0.0001

0.5443
0.4382
0.3305-
0.2213
0.1108
0.0000

analytical

0
0
0
0
0
0

0.5440
0.4382
0.3303
0.2211
0.1108

0

difference

0.0003
0.0002
0.0003
0.0003
0.0004
0.0001

0.0003
0.0000
0.0002
0.0002
0.0000
0.0000

4d0
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S= a Cos - )} sin t
cos U: L v7gF L

(42)

Ua y_ L x_U L
h cos (Ar--g

where the forcing function at the open end, x = 0, is

jx=0 = a sin wt

and L, h are the channel length and depth. The numerical model was

started with the velocity distribution defined by (42) for t = 0.

For t > 0, Ti = a sin wt was prescribed at the 3 open end nodes and

the y velocities were set to zero along the boundaries. A comparison

of the numerical and analytical results is listed in Table 1. The

agreement is very good as expected.

In a "real" situation, one usually does not know the initial

velocity field. One possible approach is to start the model with

all surface elevations and velocities set to zero (or some other

estimated values). The second example demonstrates this type of start

up for the rectangular channel. The exact solution was obtained with

the method of characteristics. The results with the Runge-Kutta

scheme for this problem follow the exact solution closely. However,

the predictor-corrector results exhibit an instability characterized

by the growth of short waves as demonstrated in Figure 5. This

phenomenon was attributed to less accuracy of the scheme. The problem

2
was resolved by introducing some eddy viscosity (E = C = 26 = 10 m /sec)

x y xy

and again good agreement between analytical and numerical solutions
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was obtained. For the same time increments, the predictor-corrector

method requires approximately 25% less time than the Runge Kutta

scheme.

The 2-dimensional Courant-Friedricks-Lewy stability criterion

for explicit differencing of the wave equation is

At < -6 (43)

2 c

where 6 is the grid size and c is the wave velocity. For the rectangular

channel we have

c = Vgh = /9.81-4 = 626 m/sec.

so that 10 m < 6 < 40 m-+ 1.13 sec < At < 4.5 sec.

The results plotted in Figure 5 were obtained with At = 2.5 sec.

When At was increased to 5 sec., gradual instability was observed.

An analytical solution in infinite series for the harmonic forcing

of a rectangular basin with a slot has recently been derived by Briggs and

Madsen [17]. Figure 6 shows their results for a constant depth (36.6 m)

model representative of Massachusetts Bay. The model geometry and

corresponding finite element layout is shown in Figure 7. The

numerically computed surface elevations and current velocities,

Figures 8 and 9, compare favorably with the analytical. One explanation

for the small discrepancies may be found in the treatment of the ocean

boundary condition. In the numerical model the height is prescribed

exactly equal to 1.31 m-(l - cos ot) across the slot, whereas the

analytical solution only satisfies this at four discrete points. The

numerical results were obtained with the Runge-Kutta method without

bottom friction, eddy viscosity or Coriolis effect. The C-F-L criterion
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is

c = v9.81-36.6 = 18.9 m/sec

6 _ 5700
t = = 7 214 sec

c 2c 1.41-18.9

and a t = 200 sec was selected.

Lastly the tidal and winddriven circulation in Massachusetts Bay was

computed. The geographic boundaries and the finite element grid are

shown in figure 10. Since very little actual data is available, a model

yielding only the gross circulation is appropriate at this time. A

fairly coarse grid of 74 elements and 53 nodes was laid out reflecting

somewhat the varying bottom topography. The tidal ranges for the two

shore nodes at the extremeties of the ocean boundary were obtained from

tide tables [18] and the tide level was assumed to vary smoothly in

between. The Coriolis parameter was determined for a latitude of 42 0N
-4 -1

f = 0.973-10 sec . No attempts were made to model lateral inflows

at this stage.

An initial solution for pure tidal motion with a small constant

value of Cf was carefully examined in order to estimate new improved

C fs for each element, so that the tidal ranges and lag times at the shore

points more closely match available tide table data. In estimating Cf,

a strong correlation with local depth was assumed. The final solution

for which surface contour lines at high and low tide are shown on

Figures 11-12 had Cf varying between 0.0025 -+ 0.0011. However, to

really tune the model, current records at several points are desirable.

The calculated tidal water velocities are shown in Figures 13-14

and typical time histories of surface elevations and velocities are

plotted in Figures 15-16.
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Fig. 14. Computed currents after 78000 sec. (1.75 tidal cycle).
Ebbing tide.



Fig. 15. Time history of computed elevations at Boston and in Cape Cod Bay.
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The results were obtained using the Runge-Kutta integration

scheme neglecting convective terms and eddy diffusion in the momentum

equations. The CFL criterion is

At < 6 6000 - 223 sec.
c -'/2 c /r2 19

and a At = 200 sec was selected. The predictor-corrector scheme

was applied to the same problem but exhibited gradual instability

after one tidal cycle (44600 sec). When At was reduced to 150 sec,

comparable results were obtained for more than 2 tidal cycles. However,

5% more computing time was required.

Several cases of wind forcing were also investigated. Massachusetts

Bay is characterized by a low Rossby number (about 0.1), small surface

elevation change compared to the mean depth, and minor effect of bottom

friction. Therefore, it is reasonable to assume the response of the

system is linear. This is very important since it allows one to use

superposition which reduces the computational effort considerably.

To verify the "permissability" of superposition, two wind situations

without tidal motion were executed until steady state was essentially

achieved. The 10m wind velocity, U10 , was 10 m/sec which produces a

2
surface shear stress of approximately 1 dyn/cm according to the relation-

ship given by Wu [19]:

s 1 2
T S = 1 C-U

2 air 10

-3 1/2C = 0.5-10 U10 1 < U10 < 15 m/sec.

This is a frequently measured surface stress in the area.
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The steady-state current field for wind from North and South-West

are shown in Figures 17, 18. As a preliminary test of linear behavior, a

situation with wind from South was also computed yielding numerical

values of velocities and surface elevations within 1% of the North wind

case.

Figures 19, 20 show Calcomp plots of a superposition of velocities

produced by wind from SW alone and pure tidal motion, whereas Figures 21, 22

show the same velocity fields but computed simultaneously. The validity

of a linear system assumption as a first approximation is clearly demon-

strated.

The limited experience acquired so far has demonstrated that

the finite element discretization approach is a reliable and efficient

method for fluid flow problems with complex boundaries. Of the two

integration schemes tested, the Runge-Kutta method seems to be universally

applicable whereas the predictor-corrector scheme is prone to exhibit

instability. If the forcing terms are sufficiently complicated to

estimate, the savings in iterations may give the latter scheme a

computational advantage, even if a smaller time step must be used. This

might, for instance, be the case when the convective terms must be

retained. Also the improved stability through the smoothing effect of

adding diffusive terms needs further examination.
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Uniform field, U= 10 m/sec.
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Fig. 17. Computed current field
due to wind forcing from the North.
No tidal motion. Steady-state reached.
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Wind from South-West
Uniform field, U= 10 m/sec

Currents 96000 sec after
initial application of
wind.

0.5 m/sec -

4 1-

Fig 18. Computed current field
due to wind forcing from the South-
West. No tidal motion. Steady-state
reached.
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Wind from SW
Uniform field, U =10 m/s

0.5 rn/sec1
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Fig. 19. Superposition of computed
flood tide currents and wind driven
currents.
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Fig 20. Superposition of computed
ebb tide currents and wind driven
currents
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Wind from SW
Uniform field, U = 10 M/se

0.5 m/sec

Fig. 21. Flood tide and wind driven
current field.
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MATHEMATICAL MODELS OF THE MASSACHUSETTS BAY

ABSTRACT - PART II

ANALYTICAL MODELS FOR ONE- AND TWO-

LAYER SYSTEMS IN RECTANGULAR BASINS

BY

DOUGLAS A. BRIGGS

AND

OLE S. MADSEN

A need for qualitative information concerning the hydrodynamics of
Massachusetts Bay has been seen from recent oceanographic measurements and
current studies in the Bay area. In response to this, two analytical models
have been derived for a simple rectangular configuration which can be
applied to the geometry of Massachusetts Bay. A one layer model has been
developed to simulate the conditions found during the winter season when
the water column is well mixed. A two layer model represents the strati-
fied case generally observed, with the presence of a strong thermocline,
during the summer.

Both models are derived from the linearized long wave equations in
two dimensions and analytical solutions are obtained by neglecting Coriolis
force, bottom friction, and wind stress. The models are depth averaged and
the geometry of the Bay is represented by a rectangel. The boundary con-
ditions are specified as zero normal velocity along the walls and a constant
surface slope across the opening connecting Massachusetts Bay to the ocean.

The results of the two models indicate that the surface elevations
at high tide are fairly insensitive of the assumed conditions (one or two
layer model). However, for the two layer model, relatively large inter-
facial waves are predicted as well as velocities which at some locations in
the upper layer, are directed shoreward on the ebbing tide, rather than
seaward. Comparison of available field observations with these results
verify, qualitatively, that these conditions do exist and 'shows that if a
model capable of predicting velocities in the Bay is desired, it must
incorporate the conditions corresponding to a two layer flow.
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v1 Depth. averaged velocity in layer one, y-direction

v2 Depth averaged velocity in layer two, y-direction

V Total volume of fluid above mean sea level

V Volume of fluid in layer one above the mean interfacial level

V2  Volume of fluid in layer two above mean sea level

x Length of the Bay geometry, x-direction

X, Boundary of the channel opening

x 2 Boundary of the channel opening

yO Width of the Bay geometry, y-direction

'n Surface amplitude

T1 Interfacial amplitude (layer one)

1 2 Surface amplitude (layer two)

x Linearized bottom friction term

p Density, layer one

P2 Density, layer two

Tb Bottom shear stress

T. Interfacial shear stress

Surface or wind stress

Latitude

27r
W T

W Angular velocity of the earth
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CHAPTER I

INTRODUCTION

Massachusetts Bay, as seen in Figure 1-A, lies at the eastern

edge of Massachusetts and is surrounded by land on three sides. The

average depth of the Bay is approximately 120 feet with the ocean

boundary between the tip of Cape Ann and the tip of Cape Cod, a dis-

tance of the order 41.0 nautical miles. Located on the northwest

is Boston Harbor through which three rivers, the Charles, the Chelsea,

and the Mystic, flow into the Bay. In addition, the Cape Cod Canal

exerts an effect on the Bay circulation by allowing an exchange with

Buzzards Bay to the southwest.

The results of current observations and other oceanographic

measurements recently taken in Massachusetts Bay have shown the occur-

rence of some interesting and unusual conditions. Field data concerning

the vertical structure of temperature, salinity, and density suggests

that a rather pronounced stratification exists during the summer

months. Drogue studies during periods of pronounced stratification

exhibited some rather peculiar phenomena. Thus, it was found that

shallow drogues during ebbing tide proceeded towards the shore

rather than seaward, as expected. Although the well mixed situation,

encountered during the winter season, is of interest and will be

considered, it is the stratified case that is of primary concern since

it is this situation that exhibits the most unusual condition.
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Thus it was felt that a simple model predicting the hydrodynamics

of Massachusetts Bay, shown in Figure 1-A, could lead to source insight

into the Bay circulation and possibly explain some of the unusual

field observations. Consequently, the theoretical development of two

analytical models, a one layer model representing the well mixed

case and a two layer model representing the stratified case, was

undertaken in an attempt to explain some of these conditions. The

primary quality of the desired model was that it be simple, such that

an analytical solution could be obtained and readily evaluated. This

was attained by the simplifying assumption of a depth averaged

rectangular configuration for the Bay area. Further, by linearizing

the governing equations neglecting Coriolis force, bottom friction,

and wind stress, a simple analytical solution was obtained, which

qualitatively explains some of the observed phenomena.

The models predict currents and amplitudes for the entire area

of Massachusetts Bay. Results of the model show a difference in the

predicted current pattern, suggesting the necessity of including, in

a more sophisticated model, the effects of stratification if an accurate

prediction of the current field is desired. By comparing the results

of the two layer model with field observations, it is demonstrated

that such occurrences as relatively large interfacial waves and

currents flowing toward the boundaries in the upper layer during an

ebbing tide are qualitatively explained by the simple two layer

model presented here.
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CHAPTER II

THEORY AND DERIVATION OF THE ONE AND TWO LAYERED MODELS

2.1 Linear Long Waves

Two dimensional long wave propogation has, in the past decade,

received considerable attention from both analytical and numerical mod-

elers as the system of equations describes a physical situation of

considerable interest to the coastal engineer. Able to predict the

hydrodynamics associated with storm surge and tidal-wave propagation,

models utilizing long wave theory have provided engineers and related

practitioners with the ability to predict tidal currents and elevations

in estuaries and coastal areas.

The long wave equations describe flow in the nearly horizontal

direction, with the implication that the pressure distribution is

hydrostatic and that the vertical accelerations are negligable. Due

to the fact that even numerical solutions of the non-linear equations

are rather difficult to obtain, the present models will be restricted

to the linearized equations of motion in two dimensions. The equations,

which are vertically averaged, neglect convective accelerations and

allow a simplistic approach in their application to Massachusetts Bay.

Derivation of the one and two layered models are quite similar

in nature and both include, in the governing equations, Coriolis

force and frictional forces.

However, in order to preserve simplicity, we neglect the

influence of the Coriolis force as well as bottom and interfacial
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friction in the application of the two models.

2.2 One Layered Model

The dynamic equations for the one layered model can be derived

through the application of the Navier-Stokes equations for in-

compressible fluids. The equations of continuity can be derived by

summing the mass flux through a control volume. Representation of

the coordinate system and nomenclature for the one layered model is

found in Figure 2-A. In linearized form, assuming constant depth and

vertically averaged velocities, the governing momentum equations for

tidal wave propogation, including bottom friction and Coriolis force,

become in the x and y directions respectively:

g + -- - 1 C U - u - 2w (sin#)v = 0 (2.lA)
g x t 2 f h e

gr) + Cv - 1 C U - v + 2w (sin#)u = 0 (2.1B)
9y 3t 2 f h e

where u and v are respectively components of the water velocity in the

x and y directions, t is time, g is acceleration due to gravity, n

is the surface elevation relative to mean sea level, C is the local

2 2
shear-stress coefficient, U = u + v , h is the depth, W is thee

angular velocity of the earth, and # is the latitude. The linearized

form of the continuity equation is:

-- + 2(hu) + =(hv) 0 (2.2)
at ax Dy

27r
Assuming periodic motion, where w = and T equals the tidal period of

12.4 hours;
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(u,v) = Real {(u,v)eit } (2. 3A)

T = Real {ieiWt (2.3B)

it can be shown after linearization of the friction term by letting

1 1
= C U - and by setting f = 2 W (sin) that:2 f h e

g + iWu - Xu - fv = 0 (2.4A)9 x

g - + iov - Xv + fu = 0 (2.4B)

Equation (2.4B) can be solved for v which is then introduced

into Equation (2.4A) giving u in the form:

u = - A 2 2 2 2.5A)

i -X + f (iw-X) + f2  (5

By the same manner solving for u in Equation (2.4A) v can be

obtained as:

v = -L + fg 2 (2.5B)

i - X + 
2 

3y ( Li-A) + f2 Dx

Differentiating equation Equation (2.5A) with respect to x and

Equation (2.5B) with respect to y and multiplying both by h allows sub-

3(hu) 3(hv)
stitution of the and terms in Equation (2.2). The

ax Dy

continuity equation now becomes:

2 2
2 

gh ( + ) = 0 (2.6)

iw-X + f 2 x 2 y
iW-A

-17-



311
By letting -- = iwn the governing equation for n in the one layer

model becomes in final form:

2 2 2 2

-2 + 2 + -+ i - 0 (2.7)
x y + I

The special case of no bottom friction,X = 0, and no Coriolis force,

f = 0, leads to:

2 2 2
1+ a + - (2.8)
2 2 gh

ax By

It is clear from (2.5A), (2.5B) and (2.7) that a non-zero bottom

shear stress will introduce a phase difference between u, v and --

and --. The magnitude of the term - may be estimated, from an
Dy

assumption of C 0.005, h = 120 ft, and U 1 1 ft/sec, to be

which indicates that it is reasonable to neglect this term.

It is worth noting in the governing equation, the importance

of Coriolis effect on Massachusetts Bay where the mid-latitude is

approximately 42*N. The Coriolis term in Equation (2.7) is of the

order 0.45 since ( )2 ~ sin2 42*, and obviously neglecting f is a

relatively poor assumption. However, by retaining Coriolis, the

boundary conditions become complicated and difficult to solve and since

the purpose of the study is to develop a simple qualitative model, f

is set equal to zero.

Now that the simplified governing equation has been developed

for the one layered model, the various conditions must be imposed on

the boundaries to specify the particular problem. As shown in
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Figure 2-B, a simple geometry has been assumed with effectively im-

permeable walls on all sides except at y = y between x1 and x where

there is an opening representing the ocean boundary between

Massachusetts Bay and the Gulf of Maine.

4

7

1 L L L / /

S/ / / / / / / / / /f// / / / / / -

r x 0

Figure 2-B: Geometry of Massachusetts Bay For The
One and Two Layered Models.
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Consequently the velocities can be specified along the walls such

that u = 0 at x = 0 and x for all y and that v = 0 at y = 0 for all x

and at y = y for 0 < x < x x2 <. Neglecting Coriolis effects

it is seen that u = 0 corresponds to -- = 0 from Equation (2.5A)
ax

and that v = 0 corresponds to = 0 from Equation (2.5B). Con-

sequently the boundary conditions may be summarized as:

At x = 0 ax = 0 (2.9A)

At x = x an = 0 (2.9B)
0ax

At y =0 - = 0 (2.9C)
ay

3TJ 0 < x < x

At y =y -- = 0 (2.9D)

2 - - o

If the width of the opening between x2 and x1 is small it may be

assumed that or v is constant over the entire opening. A gross

conservation of mass consideration then gives, with V being the volume

of fluid in the bay above mean sea level:

V = f dx f n dy

= rate of change of volume within the bay must be equal to the inflow
at

through the opening. This can be written as:

v(x2~x )h at y = y (2.10)

From Equation (2.5B), assuming no friction and no Coriolis effect,

it can be shown that:
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--l W -- (2.11)
Dy g (X2x2~1l)h at

Assuming that the tidal motion within the bay is periodic where

V = Ve iWt or -a = iwV the last boundary condition can be determined:
at

- 2
At y = y 1- = V xi < x < x (2.12)

A 3y gh x2 -x1  1 2

The solution can be expected to be determined except for a

constant since only derivatives are prescribed as boundary conditions.

This constant is determined from considerations of the amplitude of

the tidal motion at some point in the bay.

The boundary conditions specified in (2.9A) and (2.9B) suggest

an x-dependence in the solution of n such that n - cos kn x. It is
ann

apparent that --- = 0 at x = 0 and also at x = x if k x = nr for

n = 0,1,2,..... Thus k will take the form:

k =n- (2.13)
n x

0

The boundary condition in (2.9C) suggests a dependency in y such

that n = cos m y. As a result -- = 0 at y = 0 and consequently a
n Dy

solution of the following form will be sought:

00

S= e t A cos k x cos mny (2.14)
n n n

0

The solution must satisfy the governing equation (2.8), and by

substituting the general solution (2.14) into (2.8) mn can be solved

in terms of k
n

2
M / k 2 n 0,,2... (2.15)
n gh n
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For the particular case of Massachusetts Bay h ~ 120 feet and x0 =

59. NM (nautical miles) and it can be shown that m is imaginary for
n

n > 0. Since we are seeking only that portion of the solution which is

real and by the fact that cos i ct = cosh a the general solution may be

written as:

00

T1 =e { A cos m y + I An cos kn x cosh m y} (2.16)
n=1

where m is evaluated for n = 0 in Equation (2.15). The constants An

must be determined from the remaining boundary conditions specified

at y = yo.

Evaluating the volume of water in the bay, V, it can be shown

that only the term corresponding to n = 0 contributes to the volume

since integration of the terms for n > 0 from x = 0 to x give zero by

virtue of the boundary conditions. Hence:

V=- A x sin m y (2.17)
m 00 00
0

which determines the boundary condition, stated in (2.12), to be

satisfied at y = yo.

The y derivative of the solution given by Equation (2.16) can now

be matched at y = y with the boundary conditions given in (2.9D) and

(2.12) with V from (2.17). -Through a Fourier expansion the coefficients

A can be determined leading to the final form of the general solution:
n
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O 2m sin my(sin k x - sin k x )iwt 0 00o n2 n1
n = Ae {cos my -A0O m k (x -x)n=1 n n 2

cash in y
snmy cos k x} (2.18)s inh m nyo n

where A can be evaluated once the elevation n at some point in the

Bay is known.

2.3 Two Layered Model

Derivation of the two layered analytical model is similar to the

one layered one although discrete differences appear with the intro-

duction of the second layer. The dynamic equations are again formu-

lated in two dimensions by the application of the Navier-Stokes equa-

tions and the continuity relationships through a mass balance. The

model is able to predict water surface and interface profiles and

velocities in both layers.

Representation of the coordinate system for the two layered

model is shown in Figure 2-C. The lower layer is specified as layer

one and the upper layer as layer two with the subscripts 1 and 2,

respectively. With this the dynamic equations, in linear form, for

the two layered model become:

Layer 1, x-direction

u 1 +P2 "' 2 91~92 aI1 1 Tix+ -g + g -C U-
Dt a3x 1 x 2 f 1 h1 ul+Ph1

2w (sin 4)v = 0 (2.19A)
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Layer 1, y-direction

v P2 a2 _+ l 2 an 1 U 1

+ Pt9 p y Pi y 2 ff 1h 11 pihI

2w(sin )u =0 (2.19B)

Layer 2, x-direction

au a a T. T
2 + g -2 ix + sx- 2w (sin ) = 0 (2.19C)

tx p2h2  2h2 e 2

Layer 2, y-direction

av+ 2 a2 +iy +Tsy + 2 0(
at x p2h2  p2h2  e n u2 (2.19D)

where p is the density, T. and T. are the interfacial friction terms,
ix ly

and T indicates a surface wind shear stress. The remaining terms were

defined in the one layer model and remain the same. The conservation

of mass equations are similar to those in the previous model and when

linearized take the form:

Layer 1

+ +=(h1u1 +a(h 1v1) = 0 (2.20A)
+ 

t a + y

Layer 2

an 2  a(h2u2 ) 3(h2v2) an 1+ + ay 0 (2.20B)
v co yn hat

The above continuity equations have assumed two immiscible fluids,
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i.e., no exchange of mass across the interface. If a mass exchange

between the two layers were considered the interfacial friction would

be influenced by the associated momentum transfer across the interface.

For a discussion of this reference is given in Pedersen (1972). The

governing equations are the linearized form of those given by Grubert

and Abbott (1972).

It is obvious that retaining the Coriolis and the frictional

terms tends to make the governing equations quite lengthy and difficult

to solve. Consequently, the bottom and interfacial friction terms,

the Coriolis force, and surface shear stress will be set equal to zero

in order to retain the simplicity that is desired in the model.

It is important to note the result of the steady state condition,

au 3V
as in the case of wind setup, where -t and -5 are zero. It can be

shown that if and do not equal zero then the momentum equations
ax ay

for layer one, given by (2.19A) and (2.19B), reduce to:

x-direction

1 P2 an2
- - (2.21A)

ax P1-P2 a

y-direction

301 2 ~2
=12-2(2.21B)

ay Pl-P2 D

Obviously, if the densities of the two fluids are within a few percent

of each other, the slope of the interface is far greater than that of

the surface. In addition the slope of one is tilted in an opposite

direction from the other.
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In Massachusetts Bay the density of one layer is generally within

0.4 percent of the other. Since the two densities are so close to-

gether, an approximate form of the momentum equations for layer one

could be obtained by replacing -in f2 by unity.

Again summing the tidal motion in the bay to be periodic we take:

(n1, 32 u12 u2, v1, v2 ) = Real (n 1 , T12 , u1 , u2, v , v2 ) eiWt

Du I u2 1 3 2
at t * a iW(i 1, u2 ) v1, v2 )

the governing equations can be derived for velocities and elevations.

Velocities in the upper layer, u2 and v 2, can be obtained directly

from the momentum Equations (2.19C) and (2.19D)

an2
u = - 2(2.22A)

By taking the derivative of u with respect to x and the derivative

of v2 with respect to y, the and terms can be

obtained and introduced into the continuity equation for layer two,

(2.20B). In terms of U2the governing equation for the interface

profile becomes:
gh 2 2

22 2 2
2 + 2 ( 2. 23)

of ax ay

The x and y derivatives of r1 can now be introduced into Equations

(2.19A) and (2.19B) respectively. By this the velocities in the lower

layer are determined as:
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an P -P gh a3 T1 3 Tj
U - 2_ 1 2  2  2 + 2  (2.24A)

W o 1x i P1 2 3 21 ax axay
3 3

am p -p gh 3 a a
v = 2 _ 1 2  2( 2 + 2 (2.24B)

iway P1  W T x ay 3

Now that the velocities in layer one have been derived, it only

remains to determine the equation governing n 2. It should be noted

that the development of the governing equations has specified all

velocities and 1 in terms of n2 . The surface profile, n2 , can be

determined in much the same manner in which n1 was found, i.e.,

a(hyu1 ) a(h v1 )
axhl and ay can be derived from Equations (2.24A) and (2.24B)
ax 3y

respectively and along the Equation (2.23) can be introduced into the

Conservation of Mass equation for layer one, (2.20A). Consequently,

the governing equation for T 2 takes the form:

2 2 4
g(h +h2 ) a 2  a m2  gh1 gh2  41 2  a

+ 2 2 + 2 ) + 2 2 +
a 2x ay 2 2i2 1 ax

4 4
2 2) = 0 (2.25)

ax 3y ay

For the case p 1 = p2 it should be noted that the above equation re-

duces to the linear long wave equation in two dimensions.

The same geometry used in the one layered model will be applied

to the two layered situation. As shown in Figure 2-B, the Bay is

assumed rectangular with impermeable boundaries except for the section

between Cape Cod and Cape Ann which is open to the Gulf of Maine.

The boundary conditions are formulated by specifying the velocities,
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in both layers, equal to zero along the walls and can be summarized

as:

u1 , u2 =0 at x = 0 and x (2.26A)

v1 , v2 = 0 at y = 0 (2.26B)

This suggests a solution of the following form:

CO

2 = Wt I A cos k x cos m y (2.27)2 n n n
0

where the constants An, kn, and mn must be determined for each n.

Applying now the boundary conditions in (2.26A) to the assumed

solution for u2 , given by Equations (2.22A) and (2.27), k can be

derived in the following form:

k = nn = 0,1,2,...
n x

0

which is the same as derived previously for the one layered case and

will satisfy u as given in Equation (2.24A).

The condition that v2 is equal to zero at y = 0 can be applied

to the solution for v2 as given by Equations (2.22B) and (2.27).

Combined with the expression for v1 it is seen that both have a y

dependence given by sin my which vanishes at y equal to zero. Thus

the assumed solution, as given by Equation (2.27), meets all the

specified boundary conditions and seems promising as the general

solution for 2'

Since k has been determined it now remains to find the
n
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expression for mn. Introducing the assumed solution for fl2 into

the governing equation for the surface profile, Equation (2.25),

4 2
yields an expression which can be reduced to the form am + bmn + c =

n n

0. As it is quadratic, the expression can be solved directly for mn

to the following point.

2 2 1 W2 h1+h2 /i P1~92 h1h2
m =-k + -(1 1-4)
n n 2 gh2  h1  p-p2 ( (h +h2 2

S-P2 1 h2 ___~_2

The quantity 4 2 < which will be far smaller
Pl (h1+h2) -

than unity. Thus, the approximation can be made that /l~ equals

1- S. With this the final form of mn is obtained as:

m = -k 2 (2.29A)
h /g(h+h 2) n

1~ h1 2k

g2  p , h1+h 2 
2

m h -~h+ k n(2.29B)
n2 gh2 P1~92 1y 1 gh+2)

where (2.29A) is seen to be identical to the result obtained for the

one layer model, (2.15). Thus when the Bay dimensions are small

compared to the tidal wave length it can be seen that mn is imaginary

except for k = 0. However, m will start out by being real if

1P2 is sufficiently small, but at some n = N, m will also become
p1  n2

imaginary. Hence, the solution may be written as:
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00

=et{A cos m y + A cos k x cosh m y
1 n=l 1 n

N-1
+ B cos m y + B cos k x cos m y +

0 02 = n n n22 n=l2

B cos k x cosh m y} (2.30)
n=N n2

The solution for can now also be written in terms of A and B
n n

by the substitution of Equation (2.30) into Equation (2.23). From

(2.30) and the similarity between (2.29A) and (2.15) it is obvious

that the terms involving the constants An are similar to our one layer

model, whereas the terms involving B express the influence of the two

layered system.

As previously discussed, a gross conservation of mass consideration

can be defined as:

V = f dy f ndx

Applying this to the total water column and integrating from-x = 0 to

x0 and y = 0 to y0 yields the equation for the volume of fluid in

the bay.

Vtotal = f dy f n2dx = x [A0 m1- sin(m 0y) + B 0-sin(m0 y)]
01102 2

(2.31A)

By the same method the volume, V ~of the lower layer, can be de-

termined since the solution to n1 has been determined:
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V =fdy f dx= x [A -- sin(m y ) + B- sin(m y )
1 1 1 02 2

gh2
x [A m sin(m y ) + B m sin(m y)] (2.31B)

o 2 0 0 0 1 0 0 02 02 0

3Vi M2
The change in volume within each layer, 3t and .t , is periodic

and must be equal to the inflow through the opening. Consequently,

as in the one layer model, the following can be written:

1 ( -x 2 )hV at y = y (2.32A)

1 

total 1 1

3t = 2 -v2(2-x1)h2  at y = y0 (2.32B)

Since v2 is given by Equation (2.22B) it can be shown that, by

3 2
substitution of v 2 into Equation (2.32B), - - will take the form:

302 o2
gh= - 2  (V V (2.33)

-5y gh 2 (x2- 1l total- 1

2
By the fact that V and Vtotal are given and since can be obtained

from Equation (2.30) the above equation can be expressed completely in

terms of A and B . Similarly, v can be obtained by substitution
n n 1

of the solution for n2 into Equation (2.24B) which when introduced

into Equation (2.32A) also, by knowing Vl, gives an expression

completely in A and B n. These equations become:
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Layer 1 (Bottom Layer)

A 0m sin m 0 y - A O cos k x sinh mn y + B m sin m y
1 1 n=l 1 1 02 2

N-1
+ B nm

n=1 2

pl-P2
p-
p1

gh
2

2

cos k x sin m y - B m cos k x sinh m y
n n2 n=N n n2 n n2 0

00
- A k 2 m cos k x sinh m yn n n n n1 0

3 N-1 2
+ Am 3 cos k x sinh mn y + B k nm

n=i 1 1 n1 2

0 2 N-1
- Bnk mn cos k x sinh m y + IBmn

n=N 2 2 n=1 2

00

+ Bn n 3

n=N 2

cos k x sin m y
n n 2 

cos k x sin
n mn o

"20

cos k x sinh mnn 2y]
2

2

gh (x2 - x1 ) 1

0

x 1< x < x212

elsewhere

(2.34A)
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Layer 2 (Top Layer)

O m
A m sin m y - n
A 0 0 n2 A nLsinh m y + B m sin m y

01 12 n1 0 0 02 020

m
N-1 n2

+ B sin m y
n=l n n2 0

m n
- B sinh m y =

n=N n n2 0

2

gh 2 (x2 -x1 )
(V total - 1)

0

xl < x < x2

elsewhere

(2.34B)

Since the functions cos k x with k = nw/x are orthogonal on the
n n 0

interval x = 0, x0; each equation can be multiplied through by

cos k x and integrated from 0 to x 0 . By this method two equations,
m

each with two unknowns, A and B , are obtained for each n.
n n

Representatively, these take the form:

a A + b B = c A + d B (2.35A)
nnn n n 0 n 0

a' A + b' B = c' A + d' B (2.35B)
n n n n n o n o

where the coefficients an, bn c n, and dn in both equations are known

functions of n. Thus, in principle (2.35A) and (2.35B) could be solved

to give the constants An and B as functions of n, A and B0.

From the discussion following the derivation of (2.30) it is
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clear that the constants A and B , although not independent, govern

primarily the surface and interface elevations respectively. It should

be noted that by letting B0 equal to zero the solution for 12 as

given by Equation (2.30) approximates the form of the general solution

for Tn in the one layer model.

The constants A and B must be specified by some type of field
0 0

information, either elevations or velocities, at a known location.

Specifying A and B allows the two equations to be solved for A and

Bn which can then be introduced into the governing equation for 712'

With this the remaining velocities or profiles can be determined

through the appropriate governing equations.
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CHAPTER III

RESULTS OF THE ONE LAYER MODEL

The one layer model represents the well mixed situation generally

found in Massachusetts Bay during the winter months. Oceanographic

data collected by the U. S. Department of the Interior (1959) shows

that for the duration of the winter season the water column is fairly

uniform in temperature and salinity because of the absence of a

thermocline. As a result the Bay can be assumed of constant density

with the one layer model being quite representative of the physical

situation. The one layer model is consequently able to yield a simple

prediction of the surface profile and currents due to the tidal action

in the Bay for the winter season.

3.1 Computational Aspects

3.1.1 Mathematical Simulation of the Ocean Boundary

In the development of the general solution for the one layer

model, as given by Equation (2.18), it was stated that to predict the

surface profile and velocities the constant A must be determined by

field data. This field information which is required for the evaluation

of A can either be a tidal amplitude or current information specify-

ing speed and direction for some known point in Massachusetts Bay.

Since it is generally quite difficult to extract tidal current in-

formation from current meter records, a specified surface elevation

will be used for the determination of A . Specifically, the tidal

range at Boston Light, located just outside Boston Harbor, has been
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determined by the National Ocean Survey (1973) to be 9.0 feet with

a corresponding tidal amplitude of 4.5 feet. This information was

obtained from tide gauge records taken at Boston Light located on

Little Brewster Island shown in Figure 3-A. With the geometry and

coordinate system specified for the one layer model, Boston Light

can be located at x = 10.0 NM, y = 0.0 NM.

Since the reference datum for the surface elevation in the one

layer model is mean sea level (MSL) it will be the tidal amplitude

with which we are concerned. Thus, using 4.5 feet for rn at the

x, y coordinates specified above, A can be determined for a particular

geometrical configuration from Equation (2.18). With the determina-

tion of this constant, the current field and surface profile for the

entire Bay can be computed. It should be cautioned that A is dis-

crete for only one geometrical configuration. Changing the depth of

the Bay or the width of the opening demands that A be recalculated
0

regardless of the fact that the same surface elevation is prescribed

at the same location.

The constant A actually determines the magnitude of the forcing

function to be applied at the open boundary, across which the tidal

amplitude is considered constant. In the one layer model

the boundary conditions are so chosen that no interaction between the

motion in the bay and that in the ocean is considered. This has

implications where the exciting frequency is close to a resonant

frequency. However, this plays a minor role in the case of tidal

excitation of Mass Bay as will be discussed later (Section 3.3).
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Consequently, by specifying the tidal amplitude at y = y0 , the two

dimensional bay appears to be driven by a wave with the magnitude a

function of A
0

The boundary condition, specified at y = y0 for x < x <X2S

is given by Equation (2.12) and derived by considering the mass flux

through the channel opening. An important assumption in determining

this boundary condition is the assumption of or v being constant

over the entire width of the opening. This assumption has previously

been made by Ippen and Goda (1963) and would appear reasonable for

narrow openings. It should be pointed out that the specified value

of -- over the opening, as given by (2.12), is a function of A
Dy 0

Since the value of A is determined by matching the tidal amplitude

at one point, it is not possible to satisfy the assumed condition of

a constant tidal amplitude across the opening. However, the opening

between x1 and x2 can be divided into increments and, since the

governing equations are linear, the solution for fl can be matched at

the center of each increment. This method of solution will be dis-

cussed in detail later in this chapter.

The one layer analytical model for Massachusetts Bay was

computed for a number of variations of the geometrical configuration

presented in Figure 2-B. For the purposes of the model the bay is

assumed rectangular with a length of 59.0 NM represented as x0 and

a width of 20.0 NM represented by yo. The width of the opening,

given by x2 - x1 and representing the ocean boundary, is assumed to

be 41.0 NM while the average depth in the Bay is equal to
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approximately 120 feet.

Although a number of variations were introduced into the geometry

in an attempt to simulate different conditions that could exist, only

three variations will be discussed in this report. The first and most

basic is the configuration presented in Figure 3-B which represents

the geometry specified in the theoretical development of the one layer

model. Initially, by setting n equal to 4.5 feet at Boston Light,

the constant A can be calculated. The surface profile and current

field in Massachusetts Bay can then be computed with the results

shown in Figure 3-B. Computed at time t = 0 from Equation (2.18),

q is plotted in feet above mean sea level and corresponding to the

amplitude at high tide. The surface elevation is seen to increase

toward the southern or lower portion of the Bay. The speed and

direction of the tidal current is given in knots during maximum

ebb flow and is the result of plotting U where, as before,

U = u + v2. As can be seen by their governing equations, these

velocities are functions of the surface slopes, -- and and they

are consequently perpendicular to the co-tidal lines. Since the

equations are periodic the surface profile attains a maximum slope

at t = T+ n - for n = 0, 1, 2,... with maximum velocities occuring4 2

simultaneously over the entire bay.

The model to this point has matched the surface elevation, q,

with the boundary condition given by Equation (2.12) at only one

point in the opening, i.e., 2 . It is obvious from the results

presented in Figure 3-B that the surface slope between x1 and x2
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does not equal zero and in fact the tidal amplitude varies of

the order 0.40 feet across the opening. Although seemingly insignifi-

cant, this contradicts the physical assumption that n remains constant

across the opening. As mentioned before, a method exists such that

71 can be matched at more than one point along y = y between x1 and

x2. This is possible since the solution for 1j is obtained from a

linear governing equation. Consequently, by dividing the opening

into a number of sections the effect that one section exerts on the

remaining sections can be computed. The surface elevation for the

center point of each section can then be determined as the effects

from the other sections are additive at that point. Computationally

this requires, for n sections, the solution of n equations with n

unknowns. This allows the surface elevation to be matched at n

points across the opening therefore forcing the surface profile, at

y = yO, to better approximate the condition of n constant across the

opening.

This method can be applied to the particular situation involving

a partial constriction across the channel between x1 and x2. In

particular, this is introduced in an attempt to model the effect

that Stellwagen Bank exerts on the tidal flow into Massachusetts Bay.

From Figure 1-A it can be seen that Stellwagen Bank is a shoal area

between Cape Ann and Cape Cod where the average depth of the Bank

is approximately 90 feet, although in some areas depths of less than

60 feet occur. Since the possibility exists that the shoal could

form a partial blockage to the tidal flux between the Gulf of Maine
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and Massachusetts Bay, a method to model such an effect was introduced.

This consisted of dividing the channel opening into two smaller chan-

nels separated by an impermeable constriction from x = 16.5 NM to

x = 29.0 NM as shown in Figure 3-C. Representatively, the method of

solution for this problem containing two channels, designated I and

II, becomes:

a1AI +b B =C (3.lA)

a A I + b II B = C (3.1B)

where A and BII are the values of the arbitrary constants for the

two solutions obtained where one of the two openings is considered

open and the other closed. a and bI can be calculated and reflect

the magnitude of the influence of A and B I respectively at the

center of one opening and a1I and b reflect the same influence

for the second channel. C is the magnitude of the tidal amplitude

that is to be matched at the center points of both channels. From

this, Equations (3.lA) and (3.lB) can be solved for the two un-

known constants AI and B .

The surface profile for this variation of the one layer model

is plotted in Figure 3-C. With an amplitude of 4.5 feet specified

at Boston Light, an increase in the surface elevation of almost 0.20

feet occurs behind the assumed impermeable wall separating the two

openings. This result casts some doubt on the validity of this

particular model, which will be discussed later (Section 3.3), and

velocities are therefore not shown.
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The third variation of the one layer model is similar to the

model previously discussed with a full opening between x1 = 0.0 NM

and x2 = 41.0 NM. Although the channel width is again 41.0 NM, the

difference occurs in the treatment of the opening and the corresponding

matched conditions. Here the channel is divided into four increments

which, for reasons previ-ously discussed, allows a better approximation

of the boundary condition that n be constant across the opening,

since a relatively flat surface profile, at y = y0, is produced for

each of the 10.25 NM increments. The method of solution discussed

in the Stellwagen Bank model was employed and resulted in four

equations and four unknowns with the matching point for n occuring

in the center of each increment.

Results of this model are plotted in Figure 3-D and show the

surface profile across the opening much more horizontal, and

consequently more representative of our assumed boundary condition, than

that given by the situation where n is matched at only one point.

Obviously, dividing the channel into increments is advantageous since

the boundary conditions are better satisfied. However, for a large

number of channel increments, the solution becomes tedious to evaluate

since the solution will consist of the summation of n infinite series

where n is the number of channel subdivisions.

It should be noted that although the value of -- (v) is specified
y

constant across each incremental opening, it was not imposed that

--- be the same for all increments. The solution, however, clearly
sy

shows that -a(v) is essentially the same for all increments, except
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for a region close to the tip of Cape Cod, where deviations can

be expected.

Alternate to an analytical solution, the hydrodynamic equations

for the transient response of water bodies to tidal excitation can

be solved by numerical methods. In particular, the finite element

model has been applied to many problems in coastal and ocean

engineering. Conner and Wang (1973) have recently applied such a

model to the configuration of Massachusetts Bay. The model is re-

stricted to vertically well mixed two dimensional flow and can in-

corporate both irregular geometry and variable depth. The numerical

model employs triangular elements of varying dimensions and was

first applied to a simple geometry identical to that for which

results of the analytical model have been presented.

The surface profile and velocities are computed for the finite

element model such that the results can be compared directly to the

one layer analytical model. The numerical model is shown in Figure

3-E and neglects bottom friction, eddy viscosity, and Coriolis

effects. Results for the numerical model compare favorably with those

given by the analytical solution shown in Figures 3-B and 3-D. It

can be seen that only small differences exist and these are partially

explainable since the boundary conditions along the ocean opening are

treated differently in the two models. The analytical model satisfies

the boundary elevation criteria at discrete points (one for the case

presented in Figure 3-B and four for the results given by Figure 3-D)

whereas the numerical model satisfies the condition of constant
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amplitude across the opening exactly. Comparison of the results

of the analytical solution with those from the numerical model serve

to demonstrate the close agreement between the two approaches and one

of the reasons for developing the analytical one layer model was in

fact to furnish Conner and Wang (1973) with a particular solution

which could be used to test their numerical schemes.

3.1.2 Number of Terms Required in .the Determination of Tj

The solution for q, given by Equation (2.18) and the solution

for u and v, given respectively by Equations (2.5A) and (2.5B), were

programmed on the Hewlett-Packard 2114B digital computer, allowing

rapid computation of the surface profile and currents for the one

layer model. It is important to note that the solution for n contains

a summation for n = 1 to oo. A test for convergence of the summation

and the number of terms required was of primary concern. Results

clearly indicated that convergence was achieved by n = 25 although

all computations for the one layer model were carried to n = 100.

3.2 Data Available for Comparison

Verification of the results of the one layer model, especially

the predicted surface profiles, requires field information on the

variation in tidal range over the Bay. Tide data taken by the National

Ocean Survey (1973) in Massachusetts Bay has provided this information

and has allowed the determination of the differences in tidal amplitude

and surface slope. With Boston Light as the reference point, Figure

3-A shows the differences in tidal amplitude for selected locations

around the Bay perimeter.
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The information can be directly compared with the results of the

one layer analytical model. The surface profile shown in Figures 3-B

and 3-D, where the channel between x1 and x2 is completely open,

produces some interesting facts when compared with field observations.

Both models appear somewhat conservative in predicting the longitudinal

slope from one end of the Bay to the other. Interestingly, the model

with a one increment channel, shown in Figure 3-B, best approximates

the surface slope computed from the tidal records in Cape Cod Bay.

When comparing the surface elevation at specific locations, it can be

seen that the four increment channel gives a close comparison at Race

Point and Provincetown while the one increment case compares favorably

at Gurnet Point and in the Gloucester Area.

Information on tidal currents around the Bay also allows a

qualitative comparison of the model results with field data. Current

observations taken by Butman (1971) confirm that velocities are of

the same order of magnitude as those predicted by the model. However,

these predicted results of velocities may be somewhat affected by the

neglect of Coriolis force and the comparison can only be considered

qualitative.

3.3 Discussion of the Model Results

The results of the one layer model for tidal amplitudes, when

compared with available field information, are certainly acceptable for

many situations, in spite of the many simplifying assumptions made in

the development of the model and its application. Some of these

assumptions will be discussed in the following.
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One of the terms neglected during the development of the governing

equations was the effect of friction on the tidal motion. As mentioned

previously, the bottom shear stress, Tb, creates a tidal phase lag

from one part of the Bay to another. However, it can be seen from the

National Ocean-Survey Tide Tables (1973) that phase differences between

the north and south end of Massachusetts Bay are small and, at high

tide, average only about 10 minutes. Consequently, the neglect of

friction seems appropriate for the physical situation considered.

Another important consideration is the possibility of resonant

oscillations occurring as a result of the tidal forces. For an analysis

of wave induced oscillations in harbors by Ippen and Goda (1963), the

resonant characteristics of simple geometrical configurations has

been determined. Applying their work on the frequency response of

asymetric harbors to the configuration assumed for Massachusetts Bay,

where the tidal wave length is of the order 456.0 NM, since L = Tvgh,

the following can be concluded: (1) No resonant oscillations occur

in Massachusetts Bay as a result of tidal excitation, since even the

first resonant mode cannot be excited and (2) A wave length of less

than 300 NM would be required to excite the first harmonic.

Figure 1-A shows that in the southern portion of Massachusetts

Bay, more properly called Cape Cod Bay, gradual shoaling exists from

approximately 13.0 NM offshore to the shoreline along the lower end

of the Bay. The possibility exists that an additional increase in

tidal range could occur in this area as the situation is quite analogous

to a progressive two dimensional reflecting wave from a gently sloping
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beach. That the tidal wave in the southern part of the Bay may be

regarded approximately as a two dimensional standing wave in the x-

direction is evident from the results given in, for example, Figure

3-D. This problem was treated by Doret and Madsen (1972) and using

their results an increase in tidal amplitude, due to the shoaling at

the lower end of the Bay, may be estimated to be of the order 0.06

ft., which is insignificant although giving a closer agreement between

predicted and observed tidal amplitudes in this part of the Bay.

The variation simulating the effect of Stellwagen Bank on the

tidal motion of Massachusetts Bay, although producing some interesting

results, exhibits an increase in tidal amplitude behind the assumed

barrier. Since the average depth of the shoal is only about 30 feet

less than the average depth of the Bay, the effect of this increase

in surface elevation will result in a considerable amount of volume

exchange taking place over the shoal. This is not consistent with our

assumption of an impermeable barrier, and consequently this model is

discarded.

Certain known phenomena occurring in Massachusetts Bay contribute

to some of the differences seen between the analytical results and

field data. One of these is the body of water contained within the

area surrounding Boston Harbor. This is a relatively shallow basin

that most surely influences the hydrodynamics of the Bay, especially

since it is the discharge point for three rivers in the Boston area.

Additionally, the Cape Cod Canal, which forms an artery between

Massachusetts Bay and Buzzards Bay 15 NM to the southwest, has a strong

-52-



effect on 1 as can be seen in Figure 3-A. A 0.5 foot discrepency

exists between the model results and the observed tidal height at the

entrance to the Canal. Obviously, the fact that a phase lag of

approximately 2.5 hours between the two Bays contributes to this

discrepency. - These features should of course be simulated in a

more sophisticated model.

In spite of the many assumptions involved, the one layer model

seems quite representative of the physical situation observed in

Massachusetts Bay as was seen from the results presented in Section

3.1.1. Comparison of the analytical results with tide data especially

demonstrates the predictability of the model with a fully open

channel between x1 and x2. Although the surface profile given by the

four increment channel in Figure 3-D better satisfies the imposed

boundary conditions than that given by the one increment situation in

Figure 3-B, the goodness of one variation over the other, when com-

pared to field information, is difficult to assess. The tidal velocities

given by the model are less reliable than the surface elevations but

may produce an overview of the current field that can be expected in

the Bay. Thus, keeping the desired simplicity of the model in mind,

we conclude that results of the one layer model, with just one opening

considered in its entirety, gives a resonable description of the tidal

motion in Massachusetts Bay.
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CHAPTER IV

RESULTS OF THE TWO LAYER MODEL

The two layer analytical model, as mentioned previously, was

developed in response to the physical characteristics encountered in

Massachusetts Bay during the spring, summer, and fall. Oceanographic

observations since 1925 at the Boston Lightship, as reported by the

U. S. Department of the Interior (1959), show that the thermocline

generally forms in May and overturns in September and October. Thus,

stratification due to the variation in both temperature and salinity

prevails for approximately six months out of the year.

Although the thermocline is quite variable in depth, historical

data taken at Boston Lightship locates the average depth of the

interface 30 feet below the surface. Water depth at the Lightship,

which is approximately six nautical miles east of the entrance to

Boston Harbor, is 100 feet at mean low water. (It should be noted

that the Lightship, not to be confused with Boston Light, was moved

to a new location on July 1, 1973. All references to Boston Lightship

in this report are for its previous position of 42*20.4' N, 70045.5' W).

4.1 Computational Considerations

4.1.1 Results of the Two Layer Model

The stratified case was developed as a simple model with the

capability of determining velocities and elevations in both layers.

Derivation of the governing equations for the stratified model

parallels the theoretical development of the one layer model such
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that the solutions for all velocities and the interface elevation'n

are specified in terms of the surface elevation n2*

The general solution for n 2 , given by Equation (2.30), is a

function of the constants A and B and it can be shown that An no

essentially governs the surface profile while the motion of the inter-

face is governed essentially by B .By setting B equal to zero, in

Equation (2.30),-n2 takes the form:

T2= A cosm0 y + I Ancos knx cosh mny
0 01 n=11

N-1
+ B cos k x cosh m y + IBcos k x cosh m y

n=1 n n n2  n=N n n n2

(4.1)

and it can be shown by calculation that the summation of the terms

containing B for n > 0 is small compared to the summation of then

terms containing A 's.
n

The solution for B equal to zero shows that n 2 closely

approximates the solution for n in the one layer model. Thus, we

identify the constant A0 as the one essentially governing the surface

elevations whereas the value of the constant B is reflected in the
0

interface elevations.

The procedure for solving for the constants A and B contained
0 0

in the general solution for q 2 , Equation (2.30), is discussed in

Chapter II and is similar to the method for determining A0 in the

one layer model. For the stratified case, both a surface amplitude

relative to mean sea level (MSL) and an interfacial amplitude
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relative to the mean interfacial level must be specified at some point

within the Bay. Alternatively, current velocities could be specified

in each of the two layers although, as explained in the preceeding

chapter, this data is often difficult to interpret from current

records. With information on the surface and interface the two

constants can be determined either through an iterative process or

directly by rearrangement of the equations given representatively

by (2.35A) and (2.35B).

Oceanographic data in the form of vertical profiles of

temperature and salinity in Massachusetts Bay have been taken by

various agencies and institutions. Unfortunately it is difficult

to determine, with any degree of accuracy, the amplitude of the

interface for a given location as the variation of temperature

representing the thermocline is not discrete but varies rapidly in

the vertical direction over a distance of as much as ten feet. As

a result, unlike the information on the surface profile which is

fairly well documented, the amplitude of the interface was specified

arbitrarily at a certain location to allow for the determination of

the two constants in Equation (2.30). Choosing the coordinates of

x = 10.0 NM, y = 5.0 NM, the surface elevation, from the results of

the one layer model, has been found to be of the order 4.5 feet.

It is reasonable to assume that, for an h2 of 20 feet, the amplitude

of the interface is approximately 5/6 the amplitude of the surface

wave. Consequently, q1 was chosen as 3.5 feet at this location.
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With this information, the constants A and B can be computed
0 0

for the two layer model. Through the solutions for the velocities

and elevations given in the theoretical development, the surface

and interfacial profiles and currents can be computed for Massachusetts

Bay. The geometry of the stratified model is the same as that

assumed for the one layer case where x = 0.0 NM and x2 = 41.0 NM.

Results of the one layer model indicate that the fully open channel

with no constrictions gave a fair representation of the physical

situation and consequently only this configuration will be considered

for the two layer model.

The solutions for the amplitude and velocities, as in the one

layer model, contain summations for n = 1 to Oo. Although convergence

in this model was obtained by n = 50, the large number of computations

required that the equations be solved on the IBM 370/155 computer

located at M.I.T. A listing of this computer program, written in

Fortran, can be found in Appendix A.

Results of the two layer analytical model can now be determined

for a particular situation similar to that frequently found in

Massachusetts Bay. Taken from actual field observations, the

following parameters were first specified as input into the model.

h = 100 feet, h2 = 20 feet, p1 = 1.02558 g/cm 3, p2 = 1.02250 g/cm3

By additionally setting n1 = 3.5 feet and n2 = 4.5 feet at x = 10.0 NM,

y = 5.0 NM, the interface and surface amplitudes can be computed by

respectively Equations (2.23) and (2.30) with the resulting profiles

shown in Figure 4-A. It can be seen that the surface profile is quite
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similar to that given by the one layer model (Figure 3-B) with the

same geometrical configuration. Although the surface amplitude of

4.5 feet is specified at a slightly different location than in the

one layer situation, the surface slope compares favorably with the

model results and observational data previously presented. The

surface profiles were smoothed slightly as small perturbations

occurring in the contour lines were neglected.

From Figure 4-A it can be seen that the interfacial profile

predicted for the two layer model exhibits some rather interesting

and unusual results. Measured relative to the mean interfacial

level, hi, this particular model shows the interface oscillating

vertically from - 2.0 feet to + 15.0 feet with a wave length of the

order 11.0 nautical miles. Since the solution for n is periodic,

the model resultingly predicts a standing wave which, at high tide,

rises to within 10 feet of the free surface.

Velocities for this particular case are shown in Figure 4-B.

The velocities are specified in terms of x and y derivatives of n2

and consequently the surface profile determines the magnitude and

direction of both U and U2. By the nature of the equations for u2

and v2, given respectively by Equations (2.22A) and (2.22B), the

currents predicted in the upper layer are always perpendicular to the

lines of constant surface amplitude with the velocity a function of

the existing surface slope. The currents in the lower layer are

specified as a function of both the first and third derivatives of

T2. *It will be noticed that the magnitude of U is greater than that
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of U2 at some positions in the model; at other locations the reverse

is true. Of greater importance is the prediction that the directions

of the currents in the two layers do not coincide.

The two layer analytical model was changed slightly and the

amplitudes and velocities were computed for a second set of cir-

cumstances. The geometrical configuration remained the same; however,

the difference in density between the two layers was increased

slightly from the 0.3 per cent, given in the first set of results, to

0.5 per cent. The new densities were specified as p1 = 1.0050 g/cm3

3
and p2 = 1.000 g/cm . In addition, the depth of the interface was

increased by 20 feet such that h = 80.0 feet and h2 = 40.0 feet. The

surface and the interfacial amplitudes were again specified at x =

10.0 NM, y = 5.0 NM under the same set of assumptions as discussed

earlier. Thus, again by setting n2 = 4.5 feet it is reasonable to

assume the amplitude of the interface as (h 1+h )2 or 3.0 feet. For
h1 +h2 2

these conditions the stratified model was again solved for the area

of Massachusetts Bay.

The surface and interfacial profiles for this model are shown

in Figure 4-C. Obviously, much more activity exists here than in

the previously discussed case. The surface profile, in this extreme

case, reflects the influence of the interfacial waves. Close examina-

tion of the results of Figure 4-C as compared with Figure 3-B reveal

the fact that the surface is lower, relatively, over an interfacial

crest and higher over an interfacial trough. This serves to demon-

strate the dependence of n 1 on T2 as discussed in the theoretical
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development of the two layer model. The interface exhibits some

exceedingly large waves with a height of the order 50 feet and a

wave length of approximately 24.0 NM.

The velocities in the upper and lower layer for this particular

situation are given in Figure 4-D. Of primary importance in the

results is the fact that, with large vertical displacements of the

interface, currents in the two layers are quite variable and, at

some positions, almost opposing each other. The currents in the

vicinity of the boundaries are also unusual by the fact that, at

some locations, on the ebbing (outgoing) tide, which is shown, they

flow towards the walls and away from the channel opening in the

upper layer. Resultingly, the interface and surface profiles and

speed and direction of the currents are extremely variable and

physically difficult to determine since the various parameters appear

to be quite sensitive to position. This is in qualitative agreement

with available field observations to be presented later in this

chapter, which indicate that, to a degree, this condition persists.

4.1.2 Model Sensitivity

The two layer analytical model was computed for a number of

geometrical configurations and physical conditions in an attempt to

check the sensitivity of the solution. As seen by the amplitudes and

velocities predicted for the two cases just discussed, the model is

very sensitive to changes in the interfacial depth and /or changes

in density. Consequently, an attempt to quantify the importance of

these and other variables has been completed through a sensitivity

analysis. The results are presented herein.
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The two constants A and B that were required in the general

solution for Ti2 shall be first discussed. As pointed out in Section

4.1.1, the constants are generally determined through the applica-

tion of field data prior to their introduction into Equation (2.30).

Also noted was the fact that the value of A primarily governs the

surface profile, n 2, while the value of B is the determining factor

in the shape of the interface, Tn In checking the sensitivity of

the two, it was found that by varying the constant A the surface

and interface reacted by the same order of magnitude while -a small

change in the constant B brought almost no change to the surface

profile although creating interfacial disturbances of significantly

different magnitudes. Thus, it can be concluded that, in determining

the value of B0 , the initial conditions specified for the interface

must be chosen carefully and as precisely as possible. The following

clearly demonstrates the situation and the sensitivity of the

interface to B
0

3Constant Conditions: h1 = 80.0 ft. p1 = 1.0050 g/cm
3h2 = 40.0 ft. p 2 = 1.0000 g/cm

Specified Elevations Resulting Maximum Interfacial
@ x = 10.0 NM, y = 5.0 NM Constants Wave Height

Ti1(ft.) 'n2 (ft.) A0 B0 H 1 (ft.)

3.0 4.5 4.684 -0.00790 50

3.5 4.5 4.685 -0.00491 28

4.32 4.5 4.670 0.0 7

Table 4-1: Sensitivity of B to the Choice of Interfacial Amplitude
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As a consequence of the large interfacial variations shown in

the results of the two layer model and in view of the above informa-

tion concerning the constants A and B , it is apparent that the

model is very sensitive to the location at which n is initially

specified. In the two cases presented for the two layer model,

both the surface and interfacial amplitude were specified at the

coordinates x = 10.0 NM, y = 5.0 NM. From Figure 4-A and Figure 4-C

it can be seen that this position is approximately mid-way between

the trough and the crest of the interfacial standing wave. Obviously

then small changes in the interfacial wave amplitude at this point

will force the solution for n to predict relatively large vertical

displacements in the areas of the troughs and crests. Clearly, the

solution to this problem is to first determine, for a particular set

of conditions, the locations of the 'highs' and the 'lows' of the

interfacial waves. This information can be used in the choice of

location where the value of nIl and 2 should be measured in order to

give the best possible resolution such that the model will give

reasonable results and an interfacial wave the least sensitive to

errors in the measurements.

Variation of the geometrical configuration, especially that

of the length scale, was an additional criteria which could produce

changes in the results. The average length, x , of the Bay was

assumed to be of the order 59.0 NM and all the results presented were

computed on this basis. To assure that the solution was not sen-

sitive or that no unusual conditions existed in the particular
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configuration, the two layer analytical model was run for a number

of different lengths. The most important aspect of this analysis

was that the results generally indicated that the amplitude and

length would be of the same order of magnitude and that, for all

practical purposes, a small change in the value of x would produce

no unusual results.

Results of density variations have already been indicated by

the two cases discussed in Section 4.1.1. The sensitivity of the

solution to changes in density are quite pronounced again affecting

primarily the profile of the interface. As previously mentioned,

the average difference in density found in Massachusetts Bay between

the upper and lower layer during stratification is of the order 0.3

per cent. That condition was presented by Figures 4-A and 4-B with

the second set of results, Figures 4-C and 4-D, showing Ap of the

extreme value of 0.5 per cent. Differences between the two sets

of results cannot be attributed only to the change in Ap since some

influence is possible due to the variation of h and h2%

The last set of parameters which merit discussion are the values

of h and h With h representing the thickness of the lower layer

and h2 the thickness of the upper layer, the sum of the two was

always equal to 120 feet, the average depth of Massachusetts Bay.

Sensitivity of the solution to variations in h and h2 was checked

in a number of cases with the result that by increasing the value of

h the interfacial amplitude decreased as did the interfacial wave

length.
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From (2.20B) it is clear that the influence of changing Ap

and the relative magnitude of h1 and h2 are related, in that they

combine to give the wave number m . To illustrate the variations with
n2

the various parameters, the velocities at selected points are

presented in Figure 4-E.

0.0 0.25 0.5 U2 (Upper Layer)

I I I

Velocity Scale (Ft./sec.)U (Lower Layer) - - - - - -

x and y(NM)

coordinates

x = 10.0
y = 5.0

x = 9.0

y = 2.0

W. x = 13.0
y = 2.0

u

h 2=20.0 Ft. h 2=30.0 Ft. h 2=40.0 Ft.

h =100.0 Ft. h =90.0 Ft. h =80.0 Ft.

Values of other parameters.
3

At x=10.0, y=5.0 p1=1.02558 g/cm3
T1=3.5 Ft., n2=4.5 Ft. p2=1.02250 g/cm

Figure 4-E: Velocity Variations as a Function of h and h2
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Most of the discussion concerning the sensitivity of the model

to various parameters has been discussed in terms of the changes

occurring in the interface. However, the surface profile and vel-

ocities in the two layers also exhibit variation as shown in Figure

4-E, although relatively minor, when changes occur in the geometry

or in the specified conditions. By far though the most significant

example of sensitivity in the model is exhibited by the interface

and its reaction to variation of the imput parameters.

4.2 Available Data for Comparison

Results of the two layer analytical model can be compared with

available field observations for the Massachusetts Bay area. The

field data consists mainly of information on the surface profile,

temporal and spatial measurements of the temperature and salinity

structure, and current drogue measurements. A large number of

oceanographic observations have been collected in the Bay by various

agencies and institutions during the summer months and the data

presented here gives a good overview of the condition present during

stratification.

Data compiled in the National Ocean Survey Tide Tables (1973)

is used for a comparison with the surface amplitude predicted by

the two layer model. This information is taken from observational

records at various locations around the Bay perimeter as shown in

Figure 3-A.

The vertical structure of temperature over the water column

has been one of the most widely studied oceanographic phenomena for
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many decades. Temperature observations at Boston Lightship have been

taken on a daily basis since 1925 and have afforded many insights

into the thermal conditions in Massachusetts Bay. Thus far, the level

of the interface has been generally considered a function of the

thermocline although this is not strictly true since the variation

of salinity also affects the density of sea water. Consequently,

with the advent of the newer oceanographic instrumentation, in par-

ticular the CTD (Conductivity, Temperature, and Depth), salinity

along with temperature can be determined allowing the calculation of

a true density profile for each station recorded. Although the

thermocline and density gradient normally coincide, neither is discrete

but occur as a gradual variation over relatively large vertical dis-

tances. Hence, it is difficult to determine, with any precision,

the exact depth of the interface and to detect small perturbations

that may occur at this level.

As an example of this problem, a sample C.T.D. cast, taken

in the vicinity of Boston Lightship, is shown in Figure 4-F. For-

tunately though the model predicts relatively large vertical variations

of 1 and consequently the data presented herein will attempt to

verify, qualitatively, some of the conditions that may exist.

Oceanographic observations from a buoy located in Stellwagen

Basin, approximately 5.5 NM west of Stellwagen Bank, were taken by

Halpern in July and August, 1966. Vertical observations of temperature

were collected at the position 42*16.5' N, 70024.5' W for a total of

5 days with the result that the temporal variation of the thermocline
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was well documented at this point of space for a period of time.

Halpern reported his observations in a paper on the short-period

internal waves in Massachusetts Bay (Halpern, 1971a) and again

in a discussion of semidurnal internal tides in Massachusetts Bay

(Halpern, 1971b). Concerned primarily with the vertical movement of

the thermocline, no information on salinity was obtained and con-

sequently temperature measurements will serve as the primary indicator

for the degree and depth of stratification.

Halpern's data locates the average depth of the thermocline

approximately 40 feet below the surface with a semidurnal variation

of temperature at this depth of approximately ll*F. The most

interesting information concerns the vertical displacement of the

thermocline, or for our purpose, the interface, with the result that

the amplitude of the interfacial wave is of the order 15 feet. Clearly,

this is of great interest since the model predicts a periodic motion

of a similar magnitude. Although the motion of the interface, from

Halpern's observations, is-not a purely sinusoidal function, the

possibility exists that this is the result of non-linear effects

associated with water spilling over Stellwagen Bank on the flooding

tide which are also responsible for generation of short period

internal waves. However, for our purposes, the information serves

to qualitatively confirm some of the predictions given by the two

layer model.

A second set of measurements, spatial in nature, are presented

to further verify the motion of the interface. In particular,
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oceanographic observations, using the C.T.D., have been taken by M.I.T.

under the Massachusetts Bay Sea Grant Program. This data has been

collected aboard the research vessels R.R. Shrock and Walter E. Phipps

allowing a quick on-board determination of the temperature and salinity

structure at e-ach station. Almost 20 of these C.T.D. profiles were

taken in the Bay on a chemistry cruise conducted on July 25 and 26,

1973. Resultingly, the depth of the interface was determined at a

number of locations approximately 5.0 NM apart. The observations used

for comparison, although not entirely synoptic, were taken as close to

the time predicted for low tide as possible in order to reduce the

effects of periodic motion. The 45*F isotherm was used for the depth

of the thermocline since it was the temperature at which the largest

density gradient occurred. Using this temperature as the indicator for

the interface, the results of three of these C.T.D. stations are

presented.

C.T.D. Stations - July 26, 1973
Low Tide (NOS Tide Tables) 1432 EDT

Station Time Position x & y (NM) Water Depth (Ft.) of
Number (EDT) Lat. & Long. Coordinates Depth (Ft.) 450F Isotherm

14 1300 42005.8' N x = 32.0 135 27
70031.3' W y = 6.0

15 1340 42009.8' N x = 28.0 146 43
70031.2' W y = 8.0

16 1430 42014.0' N x = 22.0 103 26
70*37.0' W y = 6.0

Table 4-2: Observed Spatial Variation in Depth
of Interface below the Surface
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These stations, located along the western side of Massachusetts

Bay close to the 120 foot contour, point to the fact that vertical

variations of the order 17.0 feet occur in the interface over a

horizontal distance of approximately 5.0 NM. Obviously this in-

formation supports the fact that relatively large interfacial waves

can be found in the Bay as predicted by the two layer model and

shown in Figure 4-A and 4-C.

Information on the currents in Massachusetts Bay, occurring

during stratification, has also been collected by M.I.T. These

studies were generally completed through the use of drogues or

drifters that employed a large subsurface vane set at a preselected

depth and suspended from a relatively small surface float. During

stratification, the depth of the vanes was normally determined as a

function of the level of the interface with one set of vanes placed

in the upper layer and a second set in the lower layer. By following

the path of the surface floats the speed and direction of the currents

could be computed for the two depths. With this information some

idea of the velocity profile could be determined as well as the

variability in speed and direction of the two layers.

One such current study was conducted on July 27, 1972 aboard

the M.I.T. research vessel R.R. Shrock. Through the C.T.D. casts

taken on this cruise, one of which is shown in Figure 4-F, the depth

of the thermocline was estimated at approximately 20.0 feet. Average

densities for the two layers were computed from the temperature and

salinity information with the result that p1 ~ 1.02558 g/cm3 and

p2 ~ 1.02250 g/cm . It should be noted that these were the conditions
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specified in the two layer model shown by Figures 4-A and 4-B.

Results of this current drogue study are given in Figure 4-G and

it can be seen that the drogue depths were selected so as to be

representative of the conditions existing in the two layers. Shown

are the directions and velocities of the currents for a seven hour

duration taken during an ebbing tide from high to low water. It

can be seen that for approximately half of the duration the drogues

in the upper layer proceeded southwesterly while those in layer one

moved more in a southerly direction and at a slower velocity.

During this time the Bay was considered to be in a steady state

condition since a 5 to 10 knot wind had been blowing from the north-

east for the past 18 hours. However, at approximately the mid-point

of the observations, the wind shifted to the southeast 5 to 10 knots

and continued in that direction for the remainder of the day. At

this time it can be seen that the drogues changed direction such that

the surface layer reacted directly to the wind stress. The lower

layer apparently also reacted by moving in a northeasterly direction

which is to be expected if the interface was forced down as a result

of the thickness of the surface layer increasing due to the wind

setup. It is the steady state condition for which model predictions

of the currents in the two layers can be made. Consequently it is the

first half of the drogue observations that is of interest for com-

parison with the model results as will be discussed in the next

section. However, the results point out the great importance of

wind driven currents. The last field data to be considered will be
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that taken during a second drogue study conducted for M.I.T. on

July 31, 1972. Although the C.T.D. was inoperable this particular

day, it can be assumed that approximately the same density conditions

and interfacial depth exist as were recorded from the study completed

on July 27. Again the Bay can be assumed in steady state since the

wind, for the past 18 hours, was generally from the south at 5 to

10 knots. Only a slight wind shift to the southwest was observed

during the drogue observations and this was considered to have a

negligible effect on the currents.

Results of this study are shown in Figure 4-H where the ob-

servations were taken from low to high tide during the flooding

situation. Although the currents in the lower layer maintained a

relatively constant speed and direction, the upper layer revealed a

slow change in direction swinging from almost east to around to

south-southwest. The important consideration in these observations

is that, for most of the time, there is an angular difference between

the currents in the two layers. In addition, both drogue studies

show that, it is indeed observed that, the currents in the upper

layer can proceed in a direction quite different from that normally

expected during either a flooding or ebbing tide if only a one layer

model is considered.

4.3 Discussion of the Model Results

The need to include the effect of a two layer model has been

seen by the conditions existing in Massachusetts Bay during the

summer months. The results of this model have been shown and can now
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be compared with field observations of both currents and elevations.

However, the comparisons will generally show agreement only in a

qualitative sense since the interface separating the two layers in

the Bay is rarely well defined and generally can only be determined

within certain limits. This uncertainty is reflected in our arbitrary

choice of specifying the interfacial amplitude at x = 10 NM, y =

5 NM. Consequently the comparisons will be qualitative in nature

but will serve to demonstrate the ability of the two layer model

to explain some of the conditionb that have been observed in

Massachusetts Bay.

The results of the surface and interfacial profiles will be

compared first with the available field data. Similar to the profile

for rj given in the one layer model for a fully open channel, Figure

3-B, the surface profile shown in Figure 4-A compares quite closely

with the observed tidal amplitudes around the Bay. The surface

profile given in Figure 4-C does not, in the details, compare as well

with the results of the one layer model presented in Figure 3-B.

Thus, the large interfacial waves result in a significant variation

in the surface contours. This large difference in surface contours

is, however, not of great significance when considering the fact that

the contours are drawn for intervals of 0.1 feet. Thus, in terms of

actual surface elevation, the predictions are not drastically different

between the one and two layer models.

The interfacial profile, given by the solution for 11I exhibits

the most dramatic and somewhat unexpected characterictics. The
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results shown in Figures 4-A and 4-B are the amplitude and velocities

predicted for the same densities and interfacial depth as observed

in Massachusetts Bay during the current drogue study of July 27, 1972.

Resultingly the predicted interfacial profile is considered to be

fairly representative of the physical situation that could exist.

However, due to instrument problems, only a limited number of C.T.D.

casts were taken during the drogue study. Consequently, the model

predictions will be compared with vertical observations taken by

Halpern in Stellwagen Basin and by the M.I.T. C.T.D. stations of

July, 1973.

The total vertical variation of the thermocline, as observed

by Halpern, was of the order of 30 feet giving an interfacial

amplitude of approximately 15 feet. Comparing this value with

the results in Figure 4-A shows that the order of magnitude is

certainly reasonable since the model also predicts an n 1 of 15 feet.

In fact, considering the sensitivity of the model to changes in h2

and without further knowledge of the conditions surrounding Halpern's

data, the prediction for Tj can actually be considered reasonably

good.

The information obtained from the C.T.D. casts, taken by

M.I.T. in July, 1973, verify the fact that interfacial waves exist

in Massachusetts Bay. This data was synoptic in the sense that it

was taken as close to low tide as possible when hopefully slack con-

ditions existed. Unfortunately, the actual wave length, Ll, of the

interface could not be computed from the limited field data taken

although the model predicts an L of the order 11.0 NM as seen in
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Figure 4-A. It should be mentioned that a similar condition has

been noted and discussed by other investigators under the subject of

internal waves. It is obvious that the interfacial waves, qualitative-

ly, predicted by the two layer model, are evidenced both by Halpern's

data and M.I.T.'s C.T.D. casts.

Currents predicted in the two layers can be compared directly

with current drogue observations shown in Figures 4-G and 4-H. As

previously mentioned, the first set of results presented for the

stratified model are determined for the same conditions as observed

in the field during the drogue studies. These results are presented

in expanded form in Figure 4-I and show the variability that can

be expected in the currents along the boundary in Massachusetts Bay.

It is important to note that the two drogue studies were also

completed close to the Boston Lightship and the western edge of the

Bay in a location, as shown by the predicted results in Figure 4-I,

where currents vary drastically with location and are predicted to

flow shoreward during an ebbing tide and seaward during the flood

in the upper layer. Although the model results do not predict the

exact direction given by the drogues, due probably to the effects of

Boston Harbor and the surrounding geometry in addition to the

neglect of Coriolis force, it is obvious that the model shows that

a large difference in current directions is possible during stratifi-

cation in this area. This is in qualitative agreement with observa-

tions as shown in Figures 4-G and 4-H.
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In addition to showing an angular difference in the current

direction in the two layers, it demonstrates the sensitivity of the

observations to location, especially when close to the boundary.

From the results of the two layer model shown in Figure 4-I, an angular

change of up to -180* in the current direction in the upper layer can

be observed over a distance of only a few miles in the Bay
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CHAPTER V

CONCLUDING REMARKS

Two analytical models have been derived for a geometrical

configuration similar to that of Massachusetts Bay. A simplistic

approach was taken in the theoretical development of the models by depth

averaging the linear long wave equations in two dimensions. By neglect-

ing Coriolis force, bottom friction, and wind stress the models were

able to represent the tidal circulation for both the uniformly well

mixed and stratified case and to explain qualitatively some of the

conditions encountered during field observations. Results of the two

models were presented for a number of geometrical variations and

physical conditions and compared with various types of field observations

for verification of the model predictions.

The one layer model, representing the situation generally found

during the winter, was discussed first and compared with tidal data and

current observations. Comparison of the results of the model with tide

gauge observations demonstrated the ability of the model to predict,

quite closely, the surface profile for Massachusetts Bay. Velocities

of the tidal currents also compared favorably with field data in a

qualitative sense, and generally were the same order of magnitude.

Current direction was the most difficult to verify as current meter

records were often quite variable in this respect showing the effects

of localized conditions.
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Results of the two layer analytical model were considered more

revealing in the sense that insight was gained into the conditions

present during stratification. These results were compared with various

types of field observations in an attempt to verify qualitatively the

significance of using a two layer model to predict interface and surface

profiles and currents. Reasonably good agreement was found when

comparing the predicted surface profile with the observed tidal

amplitudes. Differences between the predicted tidal amplitudes of the

one layer model are minor and the differences between the two models

and the observed tidal amplitudes can be attributed to the effects of

Boston Harbor, the Cape Cod Canal, and the sloping bottom of the lower

Bay.

Comparisons of the interfacial profile and current velocities

predicted by the model with available field data are generally more

qualitative since the physical conditions, especially the depth of the

interface as well as the amplitude of the interfacial wave, that govern

the solution cannot be determined very accurately. However, observa-

tions by both Halpern and M.I.T. verify the existance of interfacial

waves and show the amplitude of the same order of magnitude as that

predicted by the two layer model.

Currents predicted by the model were the most difficult to verify

by field measurements since the physical observations clearly exhibit

a high degree of variability over the tidal cycle. The drogue studies

were apparently subject to variations due to relatively small changes

in wind direction and, in the area surveyed, the observations are
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probably affected by the flux in and out of Boston Harbor. In view

of these existing conditions only a qualitative comparison can be made.

This comparison however shows that the velocities predicted by the

model are within the order of magnitude of those measured in Massa-

chusetts Bay, also the observed curiosity of having shoreward current

in the upper layer during an ebbing tide is made plausible by a similar

prediction by the two layer model.

The two layer analytical model has clearly demonstrated its ability

to explain qualitatively observed phenomena as well as giving an insight

into conditions that are not readily apparent. Although it represents

a highly simplified approach to a rather complex physical problem, it

produces useful information on Massachusetts Bay and can assist the

coastal engineer in solving problems related to the ocean environment.

Obviously, the development of more sophisticated one and two layer

models would be advantageous. It was shown in the theoretical

development that Coriolis force exerts some influence and from comparing

model results with field data it can be seen that including Boston

Harbor, the Cape Cod Canal, and introducing a wind stress would more

realistically describe the physical conditions. However, the objective

was to develop a simple analytical model of Massachusetts Bay and

thereby demonstrate that if current predictions are desired one should

indeed have a two layer model. This goal has been achieved in the

qualitative agreement of predicted and observed phenomena in

Massachusetts Bay.

-86-



BIBLIOGRAPHY

Butman, B. (1971) "Some Short Term Current Observations in Massachusetts
Bay", M.I.T., Department of Earth and Planetary Sciences,
Unpublished Report.

Christodoulou, G.C. and Leimkuhler, W.F. (1973) "Report of NOMES
Current Observations", M.I.T., Department of Civil Engineering,
Unpublished Report.

Conner, J.J. and Wang, J.D. (1973) "Finite Element Modeling of Two
Dimensional Hydrodynamic Circulation in Shallow Water
Masses", M.I.T., Department of Civil Engineering, Technical
Report No. 171.

Day, C.G. (1959) "Oceanographic Observations, 1957, East Coast of the
United States", U. S. Department of the Interior, Special
Scientific Report -- Fisheries, No. 282.

Doret, S. D. and Madsen, 0. S. (1972) "Special Studies Dealing with
Run-Up on Impermeable Breakwaters", M.I.T., Department of
Civil Engineering, Unpublished Report.

Frankel, S. L. and Pearce, B.R. (1973) "Chemistry Data Report on
the Massachusetts Bay Area", M.I.T., Department of Civil
Engineering, Unpublished Report.

Grubert, J.P. and Abbott, M.B. (1972) "Numerical Computation of
Stratified Nearly Horizontal Flows", Journal of the
Hydraulics Division, A.S.C.E., Vol. 98, No. HY 10.

Halpern, D. (1971,a) "Observations on Short-period Internal Waves
in Massachusetts Bay", Journal of Marine Research, Vol.
29, No. 2.

Halpern, D. (1971,b) "Semidiurnal Internal Tides in Massachusetts
Bay", Journal of Geophysical Research, Vol. 76, No. 27.

Ippen, A.T. and Goda, Y. (1963) "Wave Induced Oscillations in Harbors:
The Solution for a Rectangular Harbor Connected to the Open
Sea", M.I.T., Department of Civil Engineering, Technical
Report No. 59.

Pedersen, F.G. (1972) "Gradually Varying Two-Layer Stratified Flow",
Journal of the Hydraulics Division, A.S.C.E., Vol. 98,
No. HY 1.

U.S. Department of Commerce, NOAA (1972) "Tide Tables High and Low Water
Predictions, 1973", U.S. Government Printing Office,
Washington, D.C.

-87-



APPENDIX A

LISTING OF THE PROGRAM USED FOR THE

COMPUTATIONS PRESENTED IN CHAPTER IV

The program used for the computation of the solution for the

two layer model is presented along with a sample of the output. The

"comment cards" should make the program self-explainatory.
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C
C
C
C

C

SIDE FROM

TWO LAYER

XI TO X2

FLOW

TiO LAYER MOCEL CF MASSACHUSETTS BAY
SIMPLE RECTANGULAR GECMETRY, GPENING ALONG ONE
AVERAGE BAY DEPTH ASSUMED TO BE 120 FEET
FROGRAP CCMPUTES AMPLITUDES AND VELOCITIES FOR
PEAL K, I'1, M2, MC1, MC2, MN1, MN2
CIMENSI(N K(ICO), A(lCC), 6(10C)
SPECIFY BAY CCNDITIONS (RHOI, RI-02, Hi, H2) ON
RI-01=1.C2558
PI-C2=1.0225
H1=lCO.C
F 2= 20 .C
SPECIFY INPUT CONDITICNS AT A GIVEN LOCATION
I.E. (ETAll AND ETA22 AT X AND Y COCRDINATES)
ETA11=3.5
ETA22=4.5

= IC0.0
Y=5 .0
EID OF INPUT CONDITICNS
**** **************~*******************

SPECIFIEC CONSTANTS FOR MASSACHUSETTS BAY
=X*607t. 1

Y=Y*6076.1
RHO3=(RHCl-RFL2)/RHOI
G=32.1721
PI=3.1415%26l35
k=(2.*PI)/(12.4*3600.)
C=(RHO3*G*H2)/W**2
XC=59.L46C76.1
X1=0.0
X2=41.G*EC76.1
Y0=20.C*6C76 .1
Ml=((W**2*(H1+H2))/(C*F2*PHG3*Hl))-((W**2)/(G*(HL+H2)))
M2=(W*'*2)/(G*(H1+H2))
IvCI=Ml**.5
PC2=M2**.5

C CCMPUTES AC AND BO BY ITFRATION

NEXT FOUR CARDS

C
C

C
C
C

I0
co



;c=-C.01
EC=4.0
A INC=0.C I
EINC=0.I.

iC tC=AC+AINC
20 EC=B0+e INC

I5=0.0
t-6=c.0
-7=C.0
N=0

5C I=N+1
K(N)=(N*PI)/XO
PN1=Pl-K(N)**2.
MN2=M2-K(N)**2.
IF (MNl) 7C, 70,. 65

65 CCNTINUE
KN1=MNI**.5

AKL2=(-.5*MN1*SIN(MN1*YC))
0 ANL2=(.5*PN2*SINH(MN2*NC))

Cl=(-PN1*SIN(MN1*YC))
C2=C*(K(N)**2*MNI*SIN(MN1*YG)+MNI**3*SIN(MNL*YO))
ANL1=C14C2
C1=MN2*SINH(PN2*Y0)
C2=C*(-K(N)**2*MN2*SINH(MN2*YO)+MN2**3*SINH(MN2*Y))
ENLl=Dl+E2
F'=CCS( VN 1*Y)
Ft=COSH(NN2*Y)
CC TC 8C

70 CGNTINUE

th'2=(-PI'I2)** .5

ANL2=.5*MNl*SINH(MNI*VC)
PBNL2=.5*MN2*SINH(MN2*VO)
EI=MN1*SINH(MN1*YO)
E2=C*(-K(N)**2*MN1*SINH(MNL*YO)+MN1**3*SINH(MN1*VO))

9



0

ANLl=Ei+E2
Fl=MN2*SINH(MN2*Y0)
F2=C*(-K(N)'*2*MN2*SINH(MN2*YO)+MN2**3'*SINH(MN2*YO))
ENL1=Fl+F2
F 5=CCSH(N 1*N)
F6=COSh(PN2*Y)

8C CUNTINUE
Gl=(-2.*W**2*(SIN(K(N\)*X2)-SIN(K(N)*Xl))/(G*Hl*(X2-Xi)*K(N)))
C2=SIN(U;C*YC)BI(1/MCl)-(G*H2*MCI)/W**2)
G3=SIN(I'C2*YC)*((1/MC2)-(G*H2*M02)/W**2)
'CL1=Gl*C2
ECL=CIL*G3
G4=(SIN(K(NJ4X2)-SIN(K(N)*Xl))/((X2-Xl)*K(N))
ACL2=(-MCl*SIN(MCl*Y0))*G4
BCL2=(-PG2*SIN(MC2*YC))*G4
G5=AC*ACL1+BC*BOLI
G6=A0*ACL2+BC*B0L2
A(N)=(G5/PNL1-G6/BNL2)/(ANL1/BALI-ANL2/BNL2)

E(N)=(G5/ANL1-G6/ANL2)/(3NLI/ANLI-BNL2/ANL2)
I-5=COS(K(N)*X)*(A(N)*F54B(N)*F6)+H5
E=K(N)**2*CCS(K(N)*X)*(A(N)*F5+B(N)*F6)+h6
-7=CUS(K(N)*X)*(A(N)*MN1**2*F5+B(N)*MN2**2*F6)+H7
IF(50-N) 85, 50, 50

85 CCNTINUE
ETA2=H5+(AO*CCS(MO1*Y)+EC*COS(MC2*Y))
ETA1=ETA2-(G*H2/W**2)*((H6+H7+A0*Ml*COS(M01*Y)+B0*M2*COS(M02*Y)))
IF (BC-E.C) 6,33,33

6 CCNTINUE
IF (ETA2-ETA22) 20, 35, 29

29 IF (BINC-C.GCCL)35, 35, 3C
30 PC=BC-BINC

BINC=BINC/1C.C
IF(BINC-C.00C1)35,35,2C

33 IF (AO-1.C)7, 7, 45
7 CONTINUE
35 IF (ETAl-ETAII) 10, 45, 40



40 AC=AC-AINC
AINC=AINC/1C.C
IF (AINC-0.00001) 45,45,10

45 CCNTINUE
AC=AO+A INC
EC=BO+EINC

58 FCPMAT (IH1,' AC =',F7.4,20X,'BO =',F8.5,//
%RITE (t,58) BC, AC

59 FCRMAT (1F0, 'COMPUTES AN AND BN FOR N = 1 TO
iRITE ( , 59)

C CCMPLTES AN ANC BN FOR N = I TO 50
CC 15 N = 1, 50
K(N)=(N*PI)/XU

VI\2=P2-K(I\)**2.-
IF (MN1) 170, 17', 16C

160 CCTINUE
tlv\1=MN1**.5

I Al2=(-MN2)**.5
ANL2=(-.5*MNl*SIN(MNl*YC))
BNL2=(.5*MN2*SINH(MN2*C))
CI=(-MN1*SIN(MN1*Y0))
C 2=C*(K( )**2*MN1*SIN(MNI*YO)+MNI**3*SIN(MN1*YO))
tNL1=C1+C2
C1=MN2*SINH(PN2*YO)
02=C*(-K(N)**2*MN2*SINH(MN2*Y3)+MN2**3*SINH(MN2*YO))
ENL1=C1+C2
GC TO 18C

17C CCNTINUE
PN1=(-MN1)**.5
PA2= (-MN2 )**.5
ANL2=.5*MNI*SINH(MNL*YC
ENL2=.5*PN2*SINH(MN24*V
E1=MNl*SINH(PNl*Y0)
E2=C*(-K(N)*42*MN1*SINH
ANLI=E1+E2

)

50 ',//)

(MN1*YU)+MN1**3*SINH(MN1*YO))



Fl=MN2*SINH(MN2*Y0)
F2=C*(-K(N)**2*MN2*SINH(MN2*YU)+MN2*'3*SINH(MN2*YO))
iNL I=FI4F2

180 CCNTINUE
Gl=(-2.*W**2*(SIN(K(N)*X2)-SIN(K(N)*Xi))/(G*Hl*(X2-Xi)*K(N))
G2=SIN(PC1*YG)*((I/PCI)-(G*H2*PCI)/W**2)
G3=SIN(MC2*YC)*((/MC2)-(G*H2*MC2)/W**2)
ACL1=Gl*G2
BCLI=G;1*G3
G4=(SIN(K(N)*X2)-SIN(K(N)*Xi))/((X2-Xl)*K(N))
ACL2=(-Cl*SIN(M01*YC))*G4
FCL2=(-MC2*SIN(MC2*YC))*G4
C5=AO*ACL+B0*BOLI
G6=AC*ACL2+BO*BCL2
A(N)=(G5/BNL1-G6/f3NL2)/(ANLI/BL1-ANL2/BNL2)
E(N)=(G5/ANL1-G6/ANL2)/(BNL1/ANL1-BNL2/ANL2)
URITE (6, 60) N, A(N, E(N)

60 FCRMAT (lQX, I4, 1OX, E12.5, ICX, E12.5)
185 CCNTINLE
C COMPUTES ETA 1 AND ETA 2
C CCMPUTES VELCCITIES L1, VI, L2, V2
110 v=2.C*6C76.1

WRITE (6, 115)
115 FCRMAT (lUl, 5X, * CCMPUTES ETA AND VELOCITIES FOR TWO LAYER

lEC FLCj'')
WRITE (6, 12C)

120 FCRMAT (IHu,5X,'X (NMP)',5X,'Y (NM),10X,'ETA-1 (FT)',5X,'UI (FPS)'
1,5X,'VI (FPS)',tI X,'ETA-2 (FT)',5X,'L2 (FPS)',5X,'V2 (FPS)')
X=-6076.1

140 )=X+6076.1
PL=0.0
F2=G.0
F:=c.0
P4=0.0
F5=0.0
-6=0.0



I-- =c.0
CC 220 K = 1, 50

O~N 2=M 2-K ( N ) *

IF (Ml-KtK)**2) 200, 19C9 190
19C CCNTINLE

l#N 1=MNl*-i.5

Pl=(-K(N)*SIN(K(N)*X)4:NMN)*CCSCMN1*Y)+B(N)*CCSH(MN2*Y)))+PI
P2=(COS(K(N)*X)*(-A(N)*M#NI*SI[N(MN1*Y)413(N)*MN2*SINH(MN2*Y)))+P2
E2XXX=K(N)**3*SIN(K(N)*X)*(A(N)*C0S(MN1*Y)+8(N)*COSH(MN2*Y))
E2YYX=+A(N\)*MN1~e2*CCS(N*Y)-B(N)*MN2*2*CS-(MN2*Y)
F3=E2xxx+(+K(N)'*SIN(K(N )*X) )*E2YYX+P3.
E2XXY=+A(N)*MN1*SIN(MNI*Y)-B(N)*MN2*SINH('N2*vJ
E2Y'YY=A(N)*MNi**3*'SINUPN1*Y)+BfN\)*MN2**3*SINH(MN2*Y)
P4=+K(N)*v2*CCS (K(N)*QX)E2XXY*C0S(K(N)*X)*E2YYY+P4
F'--=COS( 14N l*Y)
F6=COSH(PN2*Y)
CC TC 210

200 CCNTINUE

Pl=(-K(N)*SIN(K(N)*X)*(s(N)*COSH(MN1*Y)+3(N)*C0SI(MN2*Y)))+Pl
P2=(CS(K(N)*X)*(+A(N*PN1*SINH1(MNI*Y)*B(N)*MN2*SINH(MN2*Y)))+P2
E2XXX=K(N)**3*SIN(K(t\)*X)*(A(N)*COSH(MNI*Y)+B(N)*COSH(MN2*Y))
E2YYX=-(N)*MN1**2*COSII(MN1*Y)-BIN)*MN2**2*CCSH(MN2*Y)
F 3=E2XXX+ I (N )*SIN (K (N )*X) )*E2YYX+P3
E2 XXY=-A( N) *MN 1*S INHI MN j*Y) -81N) *MN2*:SlNH( MN2*Y )
E2YYY=A~(N) *MN1**3*cS Nt-C tN1*Y )+B( N)*MN2**3*SINH( MN2*Y)
Pi=+K(N)**2*CGS(K(N)*X)*E2XXY*CCS(K(N)*X)*E2YYY*P4
FS-=CUjSI(MNI*Y)
F6=CGSH(PN2*Y)

210 CONTINUE
[5-=COS(K(N)*X)*(A(N)*F5+8(N)*F6)+H5
t6=K(N )**2*COS (K (N )*X)*( tIN) *F5+8 (N )*Fb)+H
H7=COS(K(N)*X)) l(A(N)*PMN1**2*F5+B(N)*MN2**2*F6)+-7



22C CONTINUE
C=G**2*RFC3*H2/W**3
ETA2=H5+(AC*CCS(t01*Y)+EC*COS(M02*Y))
ETA1=ETA2-(G*H2/W**2)*((H6+H7+AC*Mt*COS(M01*Y)+BC*M2*CCS(M02*Y)))
L2=(-G/h )*Pj
V2=(-G/h)*(P2+(-A0*MC1* IN(M1*Y)-BO*MC2*SIN(02*Y)f)
UL=U2-0*(F3)
V1=V2-D*((AC*MO1**3*SIN(MC1*Y)+2O*M02**3*SIN(tO2*Y)+P4))
X5=X/6076.1
Yl=Y/6076.1
%RITE (6, 23C) X5, Y5, ETAL, UI, V1, ETA2, U2, V2

230 FCRMAT (SX,F5.2,6X,FS.2,1lX,F8.4,7XF8.4,5XF8.4,1OX,F8.4,7XF8.4,
15>,FE.4)
IF (X-(5e.*6C76.1)) 14C, 140, 240

240 CCNTINUE
3CC STOP

E N D

Ln



SAMPLE OF COMPUTER PROGRAM OUTPUT

A = -0.058
0

B = 4.686
0

COMPUTES ETA AND VELOCITIES FOR TWO LAYERED FLOW

X (NM) Y (NM) ETA-1 (FT) Ul (FPS) VI (FPS) ETA-2 (FT) U2 (EPS) V2 (FPS)

10.00 10.00 4.1789 - 0.1582 0.1886 4.4359 - 0.1615 0.1886
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MATHEMATICAL MODELS OF THE MASSACHUSETTS BAY

ABSTRACT - PART III

A MATHEMATICAL MODEL FOR THE DISPERSION OF
SUSPENDED SEDIMENTS IN COASTAL WATERS

by

GEORGIOS C. CHRISTODOULOU

WILLIAM F. LEIMKUHLER

and

ARTHUR T. IPPEN

A three-dimensional analytical model is proposed for the descrip-

tion of the dispersion of fine suspended sediments in coastal waters.

The model basically predicts the quasi-steady state sediment concentra-
tion as a function of space and tidal time and the deposition pattern in

the region surrounding a continuous vertical line source. It requires
that the sediment settling velocities and the hydrodynamic features of

the area, the net drift and the tidal velocities as well as the disper-
sion coefficients be known. Effects of wave action and vertical
stratification are not explicitly considered. A separation of variables
technique permits a rather independent treatment of the vertical and

horizontal distributions; they are linked primarily through thi decay
factor, which represents the loss of material to the bottom.

The model is applied to a hypothetical dredging situation in
Massachusetts Bay. Values for the hydrodynamic parameters were obtained
from the analysis of field data collected during the past year. Labora-
tory experiments were carried out for the determination of settling
rates of clays in seawater, in view of unknown flocculation factors.
Stoke's law was considered adequate for silt and very fine sand.

The model results indicated very long and relatively narrow
dispersion patterns, under the assumption of constant drift direction.
The net drift and the sediment settling velocity seem to be the most
important factors controlling the dispersion of fines in coastal waters.

O72I834
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CHAPTER 1

INTRODUCTION

Suspended sediments of inorganic and organic origin exist in

most coastal waters in varying small concentrations. Their presence

arises either from natural sources or increasingly from man's activities

near and off the shores. Natural erosion processes take place inland

and produce suspended sediment which eventually reach the estuaries and

the sea. Man has contributed to this natural supply by construction,

waste disposal, agricultural and irrigation practices, and in more

recent years provides additional amounts of sediments by extension of

his activities to the shorelines and coastal waters.

The amount of sediment naturally present in the coastal environ-

ment must be considered a part of this environment, and all biological

activity has in time come to quasi-equilibrium with this as with all

other factors present. A drastic change in sediment concentration could

hinder some natural processes possibly causing severe damage to many

forms of life.

More specifically, suspended solid particles contribute to the

turbidity of the waters and hence affect biological processes through

the extinction of light. Thus, increased concentrations could impair

the growth of many organisms locally as well as some distance away from

the disturbance created by man. In addition, these particles, wherever

they are deposited, could directly affect plant and animal life on the

sea bed.
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A growing concern has therefore arisen with regard to this type

of pollution and the prediction of the movement and dispersion of the

fine sediments introduced into a coastal area by dredging or dumping

has become a most important problem. In order to make such a predic-

tion, it is first necessary that the hydrodynamic characteristics of

the area be known. Thus the problem requires information concerning

dynamic characteristics such as the magnitudes and directions of tidal

and non-tidal currents, the distribution of the velocities in the

vertical direction, the vertical and horizontal dispersion rates, the

effects of wind and waves, and other parameters. All of these depend

upon the geometry and the geographical position of the body of water

under consideration, in addition to the meteorological conditions.

However, the geometry is usually complex and the meteorological condi-

tions cannot be readily forecast. Theoretical approaches to the

determination of the velocity field must therefore be based on simpli-

fying assumptions.

The limited knowledge of sediment transport behavior, coupled

with the hydrodynamic complexities, makes the problem one of extreme

difficulty. The sediments of interest consist typically of very fine

material. For the most part they fall into the silt and clay range.

In the presence of sea water, electrochemical forces become important,

causing flocculation, that is, the individual grains form larger

aggregates which have lower density and mostly increased settling rates.

In spite of these complications, theoretical investigations can

still lead to some significant results. Even under gross assumptions,
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these results provide at least qualitative information, which can form

the basis for more sophisticated approaches toward a good understanding

of the process.

Previous investigations of the behavior of solid suspensions have

dealt for the most part with single aspects of the problem. These

studies are briefly reviewed in a following section.

The present study is an attempt to solve the general problem of

sediment dispersion in coastal waters by combining the results of pre-

vious analytical investigations, field measurements, and laboratory

experiments. Several simplifying assumptions were made to this end and

a specific three-dimensional analytical model is proposed for a descrip-

tion of the processes involved. Numerical models may be developed as

a further step. Nevertheless, it is believed that an analytical solu-

tion, relatively simple and generally applicable, can serve as a first

approximation for the prediction of sediment transport and dispersion

in coastal waters.

This analytical model starts with the general three-dimensional

dispersion equations to which a separation of variables technique is

applied so that the vertical concentration distribution can be treated

independently. A single layer shear flow is then assumed, and the

equilibrium concentration profile is found for the vertical direction,

as is done in open channel flow. Stokes' law for settling velocities

of sediments other than clays is applied. For clays such velocities

were determined in a laboratory settling tube, however, without specific

examination of the flocculation process.
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A velocity field is assumed consisting of the superposition of

a net drift and a sinusoidal tidal velocity at any angle to the net

drift. Taking into consideration the nonuniform sediment distribution

over the vertical, a technique for the analysis of current data was

developed to provide values of the advection and dispersion factors in

the two-dimensional dispersion equation which is then solved for the

quasi-steady state case. It is further shown that in addition to the

concentrations of suspended sediment as a function of time and space,

deposition patterns on the sea bottom can also be derived.

This work was initiated as a complementary study to the Sea Grant

Project, "The Sea Environment of Massachusetts Bay and Adjacent Waters",

and to the New England Offshore Mining Environmental Study (NOMES-NOAA)

which involved an experimental dredging operation planned in Massachu-

setts Bay for the summer of 1974. While the actual dredging operation

has been cancelled, base line measurements were made during the past

year and provided some input for the parameters needed for the applica-

tion of the analytical model to a natural coastal environment.

The relative importance of the various parameters for predictive

purposes is established. Thus field measurements can be planned with

better judgement as to whether certain quantities should be determined

accurately or can be estimated approximately without serious effects on

the ultimate dispersion patterns.
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CHAPTER 2

REVIEW OF PREVIOUS RESEARCH

There have been quite a number of studies related to the subject

of the present work. Most of these, however, have dealt with only one

aspect of the problem.

The relative vertical distribution of suspended sediment in a

turbulent stream can be stated in analytical form when a suitable

velocity distribution function is introduced into the differential

equation for the equilibrium between turbulent upward transport of

sediment and downward settling due to gravity. The latter relation was

first established by Schmidt (1925) to describe the distribution of

dust particles in the air. In the 1930's, Ippen (16) and Rouse (26)

introduced the velocity distribution functions by Krey and Von Karman,

respectively, with identical results. A linear shear distribution for

a steady, two-dimensional flow was also assumed. The well-known solu-

tion is:

Z
c h-z a (2-1)
c h[-a -Z
a

where

w
z 5

Z = s~

c = the reference concentration at elevation a

h = the total depth
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w
5

= the settling velocity of the particles

k = the Von Karman constant

A = z /M, the ratio of the sediment mass exchange coefficient

to the momentum transfer coefficient

T
u, = _o , the shear velocity

P

T = the bottom shear stress
0

p = fluid density

Dobbins (6) investigated the problem of vertical sediment dis-

tribution in the transient state, and by a separation of variables

technique he obtained a solution as a series expression. He also con-

ducted experiments to verify his results.

Since that time, the parameters appearing in the exponent, Z, of

Equation (2-1) have become the subject of research. The Von Karman

constant was found to depend upon the near-bed concentration, while

k = 0.4 applies strictly only to clear water. Furthermore, the velocity

distribution changes due to the presence of suspended sediments, as

Ippen pointed out (17). These changes, however, are significant only

in the case of high sediment concentrations, and therefore are not con-

sidered important to the present work.

Another subject of debate was the coefficient A, which has been

found to take on values both higher and lower than unity (18). Never-

theless, for fine sediments most investigators agree on a value of A

close to 1.
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The greatest difficulties arise in estimates of the proper

values for the settling velocities of the suspended particles. Stoke's

law is adequate for very fine sands, however it is not readily applied

to clay particles because the settling rates of clays are altered by

flocculation. In this process large groups of particles with high

settling rates are formed from collision of smaller ones. Flocculation

takes place to a high degree in the sea environment. Partheniades

(24,25) and Krone (7,20) have done extensive work in the field of

deposition of fine clays in estuaries and generally in salt water.

While the mechanism of collision is well understood, the rates of

sedimentation are, in general, far from being quantitatively determined.

Because of the need for some form of quantitative prediction of settling

rates in the present study, it was decided that some laboratory experi-

ments should be performed. Sections 4-4 and 4-5 deal with this problem

of flocculation in more detail.

Recently, Jobson and Sayre, in a series of papers have approached

the problem of dispersion in a uniform open channel flow with turbulent

shear, through a two-dimensional model, i.e. not considering lateral

variations of velocity

2
-- + u(z) - ( -- ) + w - + C (2-2)
Dt 3x Dz z z s Dz x 2

where e = the turbulent diffusion coefficient in the vertical
z

direction

x = the turbulent diffusion coefficient in the longitudinal

direction which is considered constant
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u(z) = the longitudinal velocity at depth z

ws = the fall velocity of the particles

Sayre (27) worked on the transient distribution of suspended

solids in the silt range. He used the method of moments to formulate

a finite difference scheme, which provides values for the moments of

the distribution of the suspension. He elaborated on the bottom bound-

ary condition, introducing a bed absorbency factor and an entrainment

factor. He also investigated their effect upon the dispersion process.

Jobson and Sayre (18,19) incorporated these two factors into one

coefficient, called A, which effectively represents the overall proba-

bility that a particle settling to the bed is deposited there. Its

importance was examined, but its value was not determined for any

particular sediment. The two-dimensional equation was simplified for

the steady state by omitting the term , and assuming Fx 2 as
x 2

negligible. The resulting numerical solution was compared to experi-

mental results. They stated in their conclusions that the fall velocity

is the primary factor for controlling the rate of descent of the sedi-

ment matter; the effect of turbulence on the fall velocity was

negligible compared to the effects of grouping due to the injection

method. The accuracy of the vertical diffusivity (ez) distribution was

found not to be particularly important for the determination of the

vertical concentration profiles.

Other researchers, working mainly on the dispersion of pollutants,

tried to estimate the longitudinal dispersion coefficient EL, appearing
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in the general one-dimensional dispersion equation as stated by

Harleman (12):

1 3(Ac) 1 3 - r*____~ i e
A A + 1 -+(AUc)= A + (2-3)A t A -5x AAc X 3x (AL ax P P

where A = the (variable) cross-sectional area of the channel

U,c = the cross-sectional averages of velocity and concen-

tration, respectively

r. r
I e_

, - source and sink terms

EL is the sum of the longitudinal diffusivity and a term accounting for

the velocity variations over the cross section:

1 f UfCd
E = x + AA(2-4)

3C
ax

where u",c" are the spatial deviations of the velocity and concentration

from theirmean values, U and c. The second term is normally much

greater than the first.

G.I. Taylor first developed in 1954 a theoretical formula for

determining EL in a circular pipe, assuming a logarithmic velocity dis-

tribution. His formula was

E = 10.1 rou* (2-5)

where r0 = the radius of the pipe.
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Elder in 1959 (8) carried out a similar computation for steady,

uniform, two-dimensional (i.e. infinitely wide) open channel flow with

a logarithmic velocity distribution and found

E = 5.9 hu (2-6)

where h = the depth of the channel.

Both Taylor and Elder verified their results by tracer experi-

ments. Elder, in addition, pointed out that his formula is valid only

for suspensions of uniform vertical distribution and that a similar

analysis could be done for particles having a non-uniform distribution,

by considering the deviations of the local velocity from the mean-

weighted velocity, rather than from the average velocity. The mean-

weighted velocity is:

U = fl P(C)udC (2-7)
0

where P(C) = the probability density function of the position of the

particles, analogous to their vertical distribution.

u = the local velocity

C = non-dimensional depth z/h

Later on, Fischer (9) suggested that in a natural river lateral

variations of velocity are more significant than vertical ones. His

formula for finding the longitudinal dispersion based on the lateral

depth-averaged velocity distribution gives values of at least an order

-22-



of magnitude higher than Taylor's values. Fischer also tried to

estimate the "initial time", TI, after which the dispersion resulting

from an instantaneous injection is adequately described by models of

the form of Equation (2-3). He defined a time scale for cross-sectional

mixing, T' = - , where k is the distance over which diffusion takes

place (e.g. the distance from the point of maximum velocity in the cross

section to the channel boundary) and e the diffusion coefficient in the

corresponding direction. He concluded that for a pollutant initially

uniformly distributed over the cross section, T I 0.4T'.

These studies increased the understanding of the dispersion

process in natural streams, but the extension of their conclusions to

estuaries, where the flow includes a periodic component, and, moreover,

to coastal waters is not straightforward.

For estuaries, Harleman (12) proposed that Taylor's basic equa-

tion could be used, modified so as to include the hydraulic radius

instead of the pipe radius and also have an increased coefficient (by a

factor of 2) to account for natural non-uniformities. He suggested

using the average value of the absolute magnitude of the velocity over

the tidal cycle. More detailed approaches to the problem of sinusoidal

tidal velocities were made by Holley and Harleman (15) and Holley,

Harleman, and Fischer (14). In the former it was found that the fluctua-

tions of the dispersion coefficient due to the tide become insignificant

after 1 to 2 tidal cycles following injection. In the latter it was

suggested thattwo dispersion coefficients could be computed, one from

the vertical and one from the lateral velocity variation and the larger
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should be used in the dispersion equation. It was found that the

"initial time" was approximately T, = 0.2T', that is, about half its

value for steady flow. Finally, it was indicated that an order of

magnitude accuracy in the value of the dispersion coefficient was

adequate for modelling continuous injections. This conclusion is very

important for the present study, in view of the difficulty involved in

the determination of this coefficient.

Another approach to the dispersion in periodic flow was made by

Okubo (23), who assumed a linear oscillating velocity profile and worked

2
with the method of moments to find the variance a of the longitudinal

x

distribution. From this the dispersion coefficient could be defined as

a
2

E = (2-8)
x -2t

In periodic flow the coefficient has only half its value for a steady

flow of the same velocity.

Okubo also presented an excellent review of previous work

relative to the horizontal diffusion coefficient in, the ocean. He

collected information from numerous experiments and correlated the

diffusion coefficient to a characteristic length scale (22). The

purely diffusive process, however, does not contribute significantly

to the overall dispersion of sediments and therefore is not of great

significance to the present study.

Lately, three-dimensional models for dispersion problems began

to appear. Wnek and Fochtman (33) combined some of the previous ideas
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to develop a mathematical model for dispersion of pollutants in near-

shore waters; assuming constant dispersion coefficients in all three

directions they found an analytical solution in terms of error functions

for the case of infinitely distant boundaries, which they adjusted for

a finite depth by the method of images. However, they considered only

neutrally buoyant particles. Also, they did not include tidal currents

in the model.

Tetra Tech published a report (31) on the dispersion of radio-

active debris due to an underwater explosion; this was a detailed study

in which a three-layer model was developed to account for the thermo-

cline.and the transfer between layers was considered. The vertical

profiles of the ocean currents were examined and a vertical density

gradient was taken into account. The solution of the model was per-

formed numerically by the method of moments and numerous computer plots

of the concentration and other parameters vs. time and space were pre-

sented in the report. In this study, the particles were also assumed to

be neutrally buoyant. Furthermore, the effect of the bottom was con-

sidered negligible, since the model dealt with deep oceans rather than

coastal areas.

In addition to mathematical models, major field studies were

also carried out in some areas, specifically for estimating the hydro-

dynamic characteristics of relevance to dispersion of suspended

particles. For example, current meter and dye studies were made in the

Gulf of Maine (1). The dispersion coefficient was found to be larger

in the direction of the stronger current, as. expected, but the natural

variations of the parameters were too large to establish a reliable
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correlation between dispersion and current magnitudes.

Finally, under the NONES project itself, a discharge of glass

beads simulating the sediment entrainment due to offshore mining was

performed in June 1973 (21,13). At that time Hess had developed a

preliminary model for predicting the dispersion of suspended matter (21).

The model was intended to give only rough estimates and thus some

factors such as the tide and the vertical diffusion were not considered.

He used the same dispersion coefficient for all directions as obtained

from a surface dye study combined with aerial photographs taken in the

summer of 1972.

-26-



CHAPTER 3

THE MATHEMATICAL MODEL

3.1 Basic Assumptions

The analytical solution required several assumptions concerning

the geometry of the water body, the velocity field, and the character-

istics of the sediments.

The sediments are assumed to be introduced continuously

into the water body along a uniform vertical line source, at a

constant rate. The sediment is assumed to consist of a number of

grain size groups, each having a certain settling velocity, ws'

These settling velocities are considered to be constant over the

depth. Flocculation of particles in the clay range is taken into

consideration as discussed in Sections 4.4 and 4.5.

The location of the line source is assumed to be far enough

from the shore so that problems due to the land-sea boundaries do

not arise. Amongst these, for example, is the action of breaking

waves. In deeper water the effect of waves is negligible and need

not be considered. Wave action may have some influence on sediment

suspension, but it affects it only indirectly by increasing vertical

diffusion.
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The depth of the body of water is assumed to be constant. If

the resulting movement of sediments does not extend to areas with

significantly different depth, this assumption is justified in view

of the great simplification involved.

In the ideal case of a straight shoreline, the velocity field

near the shore would normally consist of a longshore current and some

tidal component normal to the coast. However, since the area of

interest is a considerable distance offshore, this is not necessarily

true. Therefore, for purposes of generality, the tidal and net drift

directions are not assumed as normal to each other. These directions

are not easily determined in any particular coastal region. The

difficulties increase as the geometry of the area becomes more

complicated and field measurements are necessary for the determination

of the prevailing current directions and magnitudes.

The coordinate system is set up with the origin on the bottom

at the position of the vertical line source, the x-axis parallel to

the net drift, the y-axis normal to the drift, and the z-axis

vertical upwards. The flow field is modeled as a one layer system,

that is, no thermocline is considered.

The currents are assumed as functions of depth, z, only,

and invariable in the horizontal directions. The tidal velocities are,

of course, also functions of time. Thus, the flow field may be

represented as follows:
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x-axis: u(zt) = uT(z) sin wt + u (z) (3-1.a)

y-axis: v(zt) = v T(z) sin wt (3-l.b)

z-axis w = 0 (3-1. c)

where

u = net drift velocity

uT9 VT = the components of the maximum tidal velocity,

assumed sinusoidal

Since many of the assumptions would not apply near the shore, a

detailed shoreline configuration is not essential to the model. For

simplicity, it may be represented by a straight line or a set of

straight lines.

3.2 Structure of the Model

Under the above assumptions, the mass balance equation for

suspended matter is:

-ac + c ac ac a ac + D 3C) a ac)
at _5x + 'y S -5 z =x (:x 3x) 5y y ay az z az

(3-2)

where w is the particle settling velocity and c , e z are the

turbulent or eddy diffusivities in the three corresponding directions.

The two horizontal diffusivities are normally independent of x and y

and equal. Therefore, Equation (3-2) can be written as:
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2 2
--- + u + v w_ -- = + F_ + -- (E-) (3-3)
t Dx Dy - s az x 9y2 y 2 Dz z Dz

The depth, h, in coastal areas is, in general, much smaller than

the horizontal dimensions. Therefore, vertical equilibrium is

achieved after a relatively short time. In general, this time depends

on the depth and the vertical diffusivity, Ez, provided that the

particles are small. Using the definition of "time scale" for

diffusion T' (g,14), it is found to be h2/E . This is believed to be
z

an upper bound for the time to equilibrium, since the settling velocity

acts in addition to the vertical diffusivity. It should be noted that

the diffusion-type modeling of the process does not hold for short

times after the beginning of the injection, as already mentioned in

Chapter 2. Also, the model is not expected to be valid in the

immediate vicinity of the sediment source, because the time needed

for vertical equilibrium implies some excursion of the sediment away

from the source, before the model is reliable.

Once vertical equilibrium is established the shape of the

vertical profile does not depend upon the magnitude of concentration

over some range. This assumption is basic to the solution of the

model, for it permits independent treatment of the vertical and

horizontal distributions. In fact, the concentration, c, can be

represented as the product of a depth-averaged function, c, and

a normalized function of depth , :
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c(xyzt) c(x,y,t)$(C), C = z/h (3-4)

where

J ()d? = 1 (3-4a)

The parameters u, v, c can be written

u U + u

v = V + V" (3-5)

c = C+ C"

where U, V, c are the depth-averaged values of the velocities and

concentration, and u", v", c" are the spatial deviations about these

average values. Thus, Equation (3.3) becomes

ac+ (U + U (+c") + (V + v") a(c+c) - wac
at ax ay s az

2 2ac ac + ac
+ e+- ( _ -) (3-6)

x 2  y 2  3z z az

Averaging over the depth and taking into account

i) the Leibnitz Rule for differentiation of integrals

ii) the fact that uu" dz = 0, Jv" dz =0, fc" dz = 0
0 0 0

iii) simplifications such as - C"1 0ax ay

the equation takes the form
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+ U wsc+ V _L s
at ax Dy h

2- 2- -
= E c + c + c (3-7)

x a 2  y 2 2 C 3C C=- C C C=0

where 
ju"c"dz 

u"c"dz

E = 6 + , E = E + - (3-7a,b)

-h -- -h D-
ax ay

The coefficients E and E account for both the turbulent diffusion
x y

and the dispersion due to the non-uniform velocity distribution. They

are refered to simply as the dispersion coefficients. In the case of

heavy particles, which have more variable concentrations over the

depth, the mean transport rates should be used (Elder (8)) rather

than the mean velocities. That is,

hfucdz h1
U = h 1 h u -dz = u~dC (3-8a)

fo dz 0 c 0

and similarly V = f v~dC (3-8b)

These weighted velocities, U and V , describe the advective motion

of the centroid of the dispersing suspended matter. They are the

product of the corresponding mean water velocities over the depth

and the coefficient a, as defined by Ippen (17). It is evident that
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the physical meaning of the dispersion coefficients given by

Equations (3.7a,b) is modified accordingly. Their second term should

account for the velocity deviations about the weighted-mean values,

as defined in Equations (3.8a,b).

Equation (3.7) can be further written

--- 2- 2-ac ac +Vac a c_-+ U + V -=E + E a Coc (3-9)at s ax s ay x ax2  y 2

where

w -
s) 1- ) .ua

(0= [((1) + [(E = (3.10a)

or

+ 1(0 w $(l)
s + =o s + 1 ] (3.10b)

h COh h2 l

Equation (3.9) has the familiar form of a two-dimensional dispersion

equation, with a representing the decay constant. The meaning of a

can also be understood in view of Equation (3.10b). The first term

represents the rate of loss of material to the bottom, while the

second term expresses the gain of material through the surface.

The latter may be assumed zero. These considerations will be dis-

cussed in Section 4.2.

The vertical distribution, represented by the normalized

function $(C), plays a key role in the determination of the

horizontal distribution. It not only readily defines the decay rate

a (Equation 3.9, 3.10) but also affects the advective terms (3.8a and b)

and the dispersion coefficients.
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CHAPTER 4

THE VERTICAL CONCENTRATION DISTRIBUTION

4.1 The Normalized Equilibrium Distribution

Because of the assumption that the shape of the vertical pro-

file does not depend upon the horizontal variations, it is possible to

solve for the vertical distribution first. In fact, this order is

essential, since important parameters for the solution of the horizon-

tal distribution require knowledge of the normalized function # (C).

In addition, the main objective of this work is to obtain the quasi-

steady state solution of the entire problem. The distribution over the

vertical dimension will be the first to come to equilibrium because of

the relatively small value of h2 z . Thus, total equilibrium is

obtained when the horizontal (depth-averaged) concentration distribu-

tion reaches steady state, provided that the time needed for this is

2
sufficiently larger than h 2/ .

2

Because of the relatively short duration of the transition

period, only the equilibrium state of the vertical distribution will

be considered here. The vertical profile of suspended sediments over

the depth, under equilibrium conditions, is described by the Schmidt

equation:

DC
E -+wc 0 (4-1)

z 3z s
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where c = the concentration of suspended matter at depth z

ws = the settling velocity of the grain size considered

Sz = the vertical mass diffusivity for sediment

This equation expresses a balance between the tendency of the particles

to settle (w sc) and the upward flux of sediments due to diffusion

(ez Dc). In order to solve for c it is necessary to provide expres-

sions for w and e . The latter is a function of z, whereas w can be
zs

considered constant.

The sediment diffusivity z is related to the turbulent momen-

tum transfer coefficient cm by the relation

E = Fm (4-2)

where is close to unity for the very small particles with which the

present work is concerned. The value of m is obtained from the

velocity profile. In the case of a logarithmic velocity distribution

and of the related linear shear distribution in a uniform open channel

flows, the distribution of Em over the depth is parabolic. The solu-

tion to the Schmidt equation under the above assumptions is

Z

c c [h/z-1 (4-3)
a h/a-1
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w w
where Z _ s - 2.5 s- (for f = 1, k = 0.4) (4-4)

ku* U*

In Equation (4-3) a is a reference depth at which the concentration c

is supposedly known. The shear velocity, u*, is related to the mean

velocity and the Weisbach-Darcy friction factor, f, by the relation

U = U m(4-5)
* 8 in

The value of Um to be used here should represent a mean current magni-

tude regardless of direction. For flat bed conditions the friction

factor may be given an average value close to f t 0.02, thus u 2- U
20 m

The one-layer shear flow with a logarithmic velocity profile

assumed here may be a poor description of coastal currents, especially

during the summer season when a definite thermocline exists. Neverthe-

less, recalling that wave action and density differences have been

neglected in the level of sophistication of this model, the shear

effects become primary factors of transport and dispersion of suspended

matter. Furthermore, the logarithmic velocity profile was adopted in

view of the extensive work done in justifying its application to open-

channel flow and the lack of adequate field information to propose a

different profile. A different assumption about the vertical velocity

profile would lead to a different 'distribution of c . However the
z

vertical concentration distribution is not very sensitive to changes in
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z, as Jobson has stated (19). The general procedures shown in this

model can be easily made to comply with any profile that might be found

to prevail in a specific coastal area. Thus, the generality of this

study is not restricted by the velocity profile assumption.

It can be seen from Equation (4-3) that the shape of the

vertical profile for a particular grain size (i.e. ws) and certain flow

conditions (i.e. u*) is constant, provided that the concentrations are

sufficiently low so that k can be assumed constant (The actual magni-

tude of the profile depends, of course, on the reference value ca).

Therefore, the assumption made in Chapter 3 regarding the similarity

of the vertical profiles is justified.

Recalling that c = 4, Equation (4.3) can be written in terms

of #(C):

z
((a/h)[h/a-1 (4-6)

Before proceeding to more details, it should be mentioned that

the Schmidt equation is not valid very close to the bottom. It is

fairly well-established that in the lower 4-5% of the total depth, the

concentration is approximately constant, not obeying Equation (4-3)

although measurements in that zone are difficult both in the labora-

tory, because of the size of the instruments, and in the field, because

of the interference of the bed-load transport.

In light of this approximation, it is convenient to chose a

reference depth a = 0.05 h which yields the following normalized

-37-



profile:

Z1/ -1
= $(. 0 5 ) [20-1] for > > 0.05

(4-7)

= (0.05) for < f, 0.05

In most cases the reference concentration ca for Equation (4-3) has to

be determined experimentally. However, due to the fact that $(C) is a

normalized function, the determination of $(0.05) can be performed

1
analytically, by combining (4-7) with Equation (3-4a), i.e. f $(C)dC =

0

1. The resulting value of $(0.05) is

4(0.05) = 1 (4-8)

0.05 + f1 dC
0.05

The integral can be evaluated numerically for several values of Z,

corresponding to different settling velocities. This is done through a

computer program, which then finds 4(0.05) and the whole vertical

distribution according to Equation (4-7). This program is presented in

Appendix B, as part of the larger program developed for the model and

discussed in Chapter 7.

4.2 Boundary Conditions - Determination of the Decay Rate

In order to determine the decay factor ct of the depth-averaged

distribution, it can be seen from Equation (3.10) that the values of

the normalized vertical distribution and its derivative must be known
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at the bottom (C = 0) and the surface (C = 1).

From Equation (4-7) it is evident that 4(l) = 0

Also E = 0 at C = 1

w L(
Thus, = - sV(0) + h ( ) (4-9)

h h2(Cd C=O

In the general case, the bottom boundary condition may be expressed

(18,19) as

dc
C -q-c + (1-A)ws = 0 at z 0 (4-10)

This can be written

Sde + (1-A)w c = 0 or
h dC s

-E- -t + (1-A)w4 = 0 at =0 (4-11)
h dc s

The quantity "A" represents the overall probability that a particle

reaching the bottom will stay there and will not be resuspended. It

refers to a time average of the percentage of particles sticking to

the bottom relative to all particles that reach it. In fact, A does

not distinguish between those particles that simply "bounce" off the

bottom and those that remain at the bottom being replaced by other,

newly scoured, particles. It is believed that A is related to the

flow conditions, specifically the mean velocity and bottom shear and

also to the sediment characteristics, particularly the degree of
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cohesion. The lower the flow velocity or bottom shear, the higher A

is expected to be ,approaching unity.

For fine cohesive sediments, some quantitative relations have

been derived. Partheniades (24,25) tried to determine the minimum shear

stress under which all suspended matter is deposited, and the equilib-

rium concentrations of clays in suspension under certain flow conditions.

Einstein and Krone (7) conducted experiments with "San Francisco Bay

mud" and found a linear relation between the percentage deposited and

the bottom shear. These results, however, were derived with specific

sediments and experimental techniques and cannot be easily extended.

In general, A is a very uncertain factor to predict and accurate

values have to be determined experimentally for every particular problem.

For the low velocities prevailing in coastal areas, A is expected to be

close to unity. As Jobson and Sayre (19,27) have reported, changes in

A seem to affect the vertical profile only very close to the bottom.

Nevertheless, A is very important for the horizontal distribution.

It is directly related to the decay constant a. In fact, Equation (4-11)

may be written:

(E ) + w 1(O) = Awq(O) (4-11a)h dC =O s s

By comparison of Equations (4-9) and (4-11a) it is evident that

Aw 4(O)
s (4-12)
h
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It must be mentioned that the assumption of constant #() in

d#p
the interval 0 < _ 0.05 (Section 4.1) implies d = = 0, which is

inconsistent with any value of A other than 1, as it can be readily seen

from Equation (4-11). For A < 1 - d < 0 -s.(0) > P(0.05). It
dC C= 0

would be possible to modify this small lower portion of the vertical

profile so that various values of A can be incorporated. The correc-

tion, however, would be insigificant in view of the many uncertainties

involved in the near-bottom concentrations. Hence, Equations (4-7) are

considered herein as giving an adequate description of the vertical pro-

file, regardless of the value of A.

4.3 Sediment Settling Velocities

The settling velocity is the most important sediment character-

istic. It affects directly the vertical distribution (Equation 4-4) and

indirectly the horizontal distribution, mainly through the decay factor

(Equation 4-12).

In the present work only fine particles are of interest. Their

fineness is essentially associated with their ability to stay in

suspension -for a sufficiently long time so that they can travel a reason-

able distance away from the source before being deposited. The terms

"sufficiently" and "reasonable" are of course vague; it remains for the

engineer to estimate appropriate values for every particular problem,

based on such factors as depth, magnitude of currents, etc.

In the case of the area of interest in Massachusetts Bay, the

depth is approximately 30 meters. If the particles are required to
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travel for at least one hour before being deposited, the maximum

settling velocity of interest is of the order of 0.8 cm/sec. Particles

with such small settling velocities are considered to follow Stoke's

law:

2
w =Y - (4-13)ws 189 s w)(-3

where d = the diameter of the particle

g = the acceleration of gravity

V = the kinematic viscosity of the water

Ys the specific weight of the sediment considered

Y = the specific weight of seawater

Substituting, g = 981 cm/sec 2

Ys
2.65 for natural sand and silt,

Y ~ 1.025 for a mean temperature of 100 C and a salinity of

33 o/
00

-.11 2  2 oV 1.31x10 cm /sec (at 10 C)

the resulting settling velocity is

4 2
w = 0.68x10 d 2

s

Therefore, ws = 0.8 cm/sec corresponds to a particle size of d =

0.0108 cm = 108 p. In the present work particles smaller than 100 p

will be considered.
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Stoke's law refers to spherical particles of diameter d. Par-

ticles having the same volume and weight but different shapes have

significantly different settling velocities. However the settling

velocity, not the actual shape and size of a particle, is the sediment

characteristic most essential to this study; thus, the particles can be

classified in terms of "equivalent Stoke's diameters".

Following the MIT soil classification, the sediments are divided

into groups of particle sizes and characterized as "very fine sand",

"silt" and "clay" as shown in Table 1. The settling velocities are

computed using Equation (4.13a). The mean velocity of the group will

be used as the representative value for all sediments belonging to it.

The value for the clay group corresponds to d = 1 'p. The distribution

of each group can be examined independently if the interaction between

various groups is assumed negligible (29). This is true for low con-

centrations.

Table 1. Separation of Fines into Groups

Particle Size Settling Velocities ws (cm/sec)

Group Name range (p.) lowest highest mean

Very fine sand 60-100 0.245 0.680 0.462

Coarse silt 20-60 2.72x10-2 0.245 0.136

-2 -2
Medium silt 6-20 2.45x10 3  2.72x10 2 .43x10

Fine silt 2-6 2.72x10~0 2.45x10-3  1.36x10-3

Clay <2 2.72x10 4 0.68x10 4
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4.4 Flocculation Characteristics and Effects

While for the sand and silt range the above considerations are

adequate for the determination of the settling rates, the phenomenon

of flocculation does not allow such a simplified approach for the clay

range. Flocculation is the process of formation of large aggregates of

particles by the association of many smaller ones. It is due to the

collision of individual particles and to the cohesive and electro-

chemical nature of clay particles in saline water.

Several investigators have tried in the past to present a com-

prehensive description of the flocculation process. It is known that

collision of particles may be caused by three different mechanisms

(20):

i) Brownian motion, in which the rate of collision depends on

the temperature

ii) Local shear or velocity gradients, in which the rate of

collisions depends on the size of the particles and the magnitude of

the gradient

iii) Differences in settling velocities of particles: Larger

particles settling through a suspension of smaller particles collide

with them at a rate depending on their relative velocities. Commonly,

Browian motion contributes to the initial stages of flocculation, while

the internal shearing dominates the formation of larger aggregates.

It is also known that limiting floc sizes are obtained for certain

shearing rates. The collision rates in all mechanisms are directly

proportional to the concentration of suspended matter.
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Despite the good understanding of these mechanisms, there is

very little information concerning the settling rates of flocs. The

change of the floc size along with its density during settling and the

breaking of flocs in layers of higher shear makes the problem too

complicated. Furthermore, the non-uniform composition of natural clay

suspensions adds to the complexity. It seems that the problem is more

tractable from a "macroscopic" point of view, that is, without trying

to fully understand the process, but by simply studying the effective

settling velocity of the flocs. Some field and laboratory experiments

have been carried out for this purpose. Krone (20) from studies in the

Savannah Harbor concludes that the settling velocities of the aggregates

are of the order of 1 cm/sec, varying considerably between ebb and

flood. These aggregates were found to have a specific weight of about

1.1 gr/cm 3. Because of the high settling velocity, most of the sus-

pended matter was deposited during high or low water slack and resus-

pended when the tidal velocities, and therefore the shear stress,

increased during flood or ebb.

4.5 Settling Tube Experiments on Clay Suspensions

4.5.1 Experimental program and procedures

In order to get an overall quantitative idea of the settling

rates of clay suspensions a laboratory experiment was carried out.

Specifically, the experiment was intended to provide a set of equivalent

settling velocities, without dealing with the details of the floccula-

tion process.
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A plexiglass tube, 90 cm high and of 21 cm inner diameter as

shown in Figure 1, was initially filled with a uniform suspension of

clay in seawater and the decrease of concentration over time was

monitored through the extraction of samples by means of valves placed

at 15 cm intervals along the tube. The samples were analyzed with

respect to their "turbidity" values, by means of a HACH 2100A turbidi-

meter.

Turbidity measurements were made as an expedient for determining

suspended sediment concentrations as opposed to laborious filtering

procedures. Field samples from the Massachusetts Bay analyzed by both

turbidity and gravimetric techniques provided the opportunity to corre-

late turbidity with concentration of total suspended matter (both

organic and inorganic). This correlation appears to be linear, as can

be seen in Figure 2, at least in the range of concentrations encountered,

which are generally below 10 mg/. Since the turbidimeter operates by

measuring the scattering of light due to the particles in suspension

it is apparent that not only the concentration but also the composition

and size distribution of these particles affect the turbidity readings.

Also, the presence of plankton increases the turbidity of the water,

but does not contribute much to the weight of the matter collected on

the filter. Thus, the scattering of the field data is reasonable in

view of the variety of locations and conditions under which the samples

were taken.

In the settling tube experiment kaolinite suspensions were first

used. The material used was "Peerless No. 2 kaolinite" the same as
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that used by Partheniades in his experiments in a rotating channel

several years ago. The experiment was repeated with illite and Boston

Harbor mud. The illite was part of a sample of "Boston blue clay"

being used for soil testing in the MIT Soil Mechanics Laboratory. The

Boston Harbor mud was taken from the bottom of the harbor near Spectical

Island. Both samples were oven-dried at 1400F and powdered before being

used in the experiment.

In each run a known weight of sediment was added to a known

volume of seawater and the two vigorously mixed so as to achieve a

uniform initial concentration. The initial uniformity was checked by

taking samples at various depths immediately after the suspension was

made. As long as their turbidity readings were approximately the same,

the initial concentration was assumed uniform. These initial samples

were poured back into the settling tube in order to maintain the

original water elevation. A new sample was taken from the mid-depth

and its turbidity was checked to see if it agreed with the average of

the previous samples. It was then used for calibrating the turbidimeter

for the particular suspension under consideration. The background

turbidity was subtracted from all readings. The calibration, made with

dilutions of this initial sample, indicated a good linear relation

between turbidity and concentration in all cases. These calibration

curves are presented in Figure 3. The background turbidity of the

seawater used was recorded before adding the sediments; it was general-

ly very low, about 0.2 FTU.
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During each run samples were taken at certain times at various

depths and their turbidity measured. The number of samples was

limited to minimize the disturbance of the water column and to avoid

drastic changes in the surface elevation. At first, the measurements

indicated a rather rapid decrease in turbidity in all depths, with

higher values always at the lower sample depths. For each set of mea-

surements, after subtracting the background value, the average turbidity

over the depth was computed. Due to the linearity of the turbidity-

concentration relationship, the percent decrease in average turbidity

represents the percent of the initial sediments that had settled below

the bottom valve. The turbidity measurements are presented in Appendix

A. Plots of percentage settled vs. time are shown in Figures 5 and 6.

The percentage of the sediment having an average settling time

between t1 and t2 can be estimated graphically by drawing tangents to

the sedimentation curve .(drawn in linear scales) at t1 and t2 and find-

ing the difference of the percentages wI and w2 where these tangents

intersect the ordinate axis (30). This technique is demonstrated in

Figure 4. The corresponding settling velocity will be between H/t and

H/t where H is the depth of the water above the lowest valve. If the

times are chosen so that they correspond to the settling velocities

that separate the groups in Table 1, the respective percentages simply

indicate the clay fractions (by weight) that macroscopically behave as

if they belonged to one of these groups.
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4.5.2 Discussion of results

The data plotted inFigures 5 and 6 illustrate a rather consistent

settling behavior with respect to both the type of clay suspension used

and the initial concentration of the suspension. Comparing first the

three types of clay, it can be seen that the percentage of Boston

Harbor mud settled out with time is higher than that of the kaolinite

and of the illite in all cases. This is the result of a high initial

deposition rate of the harbor mud, possibly due to the presence of non-

clay particles with higher settling rates. The illite and kaolinite

agree essentially for the two initial concentrations tested, except

during the shorter settling times in the 10 mg/ initial concentration

runs.

The dependence of the settling on the initial concentration is

more apparent than the dependence on clay type. Plotted on semi-

logarithmic scales, the points for the runs with 10 mg/k initial con-

centration form reasonably straight lines suggesting a relationship of

the following form:

% settled = a log(time)+b

where a and b are constants; a is the slope, while b is the value of

percent settled at a time of one hour. Thus, for example, the follow-

ing relationship follows for Boston Harbor mud:

% settled = 27 log(time)+30

As can be seen in the plot of Figure 5 this relationship does not hold
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at values of time less than about 1 hour and obviously at times when

the percent settled comes close to 100.

The runs with 100 mg/ initial concentration clearly show higher

deposition rates. If there were no flocculation, it would be expected

that the curves formed by the data points of a particular type of clay

would coincide, because the settling rates and therefore the percent

deposition with time would be the same regardless of concentration.

However, since flocculation occurs, the percent deposition should be

faster for a higher initial concentration due to the higher number of

collisions.

The results of these experiments seem to be quite consistent in

light of the low degree of scatter in the calibration curves (Figure 3a

and Figure 3b). The fact that the lines for 10 mg/Z and 100 mg/k

initial concentration have almost identical slopes for each particular

clay implies that turbidity measurements are appropriate in principle

for determining sediment concentrations. However, the different slopes

for the different clays mean that some other factors, such as particle

size, affect turbidity also. This fact is important to consider in

making conclusions about settling rates from the experimental data, for

the grain size distribution of the material in suspension continuously

changes during the run. This is because the larger particles settle

first and also because flocculation forms new particles with different

characteristics. This problem may control the reliability in an experi-

ment such as the present one, for it is felt that the experimental

techniques and equipment introduce relatively small error ( 5%).
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From the technique described in the previous section and illus-

trated in Figure 4, the results in Table 2 were obtained. These results

depend, of course, upon the reliability of this technique and also upon

that of the experiment.

Table 2. Distribution of Clays Tested into Groups

In this tabular form it can again be seen that Kaolinite and

Illite behave rather similarly, while Boston Harbor Mud has higher

settling rates, that is, a higher percentage is settling at the rate

of group 3.
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Percentage of Sample with
Settling Velocity (cm/sec)

Initial -3 2.72x10 <w -4
Material in Concentration ws >2.45x <2.45x s <2.72x
Suspension (mg/y,) (group 3) (group 4) (group 5)

Kaolinite 100 29% 56% 15%

Illite 100 29% 57% 14%

Boston Harbor Mud 100 41% 51% 8%

Kaolinite 10 14% 48% 38%

Illite 10 29% 40% 31%

Boston Harbor Mud 10 43% 24% 33%



CHAPTER 5

THE HORIZONTAL DISTRIBUTION OF AVERAGE CONCENTRATION

5.1 Solution of the Diff-erential Equation

The distribution of the depth-averaged concentration c(x,y,t)

is described by Equation (3-9):

+ (U +U sin wt) - + V sin wt -C
Dt fs Ts x Ts y

2-
E C +

x 2

2-
E 3 c 

-

y 2
By

(5-1)

where U , U , V represent mean-weighted values over the depth,

taking into account the nonuniform sediment distribution. Following

Harleman's method (12 ), by the change of variables:

t
= x - f (U f+UT sin wt)dt

T

U T
= x-Uf(t-T) + 2Ts

t
= y - . VTs sin wtdt

T

= x-U f(t-T)

t T
(cos 2Tr -cos 27 -)

VT

27

UTs

+ - (cos Wt-cos WT)

(5-2a)

t t- -cos 2T -)
T T

(5-2b)

s = ce-(t-T)

Equation (5-1) is transformed to:
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2 2
= E - + E (5-3)

Dt x D 2 y 2

For an instantaneous injection of mass of dM at time -t, the

resulting distribution of ds is

exp [- 4E (t-T)

ds = dM X

V 47rE (t-T)
x

hence, dc =

2
exp[- 4E (t-T)

/ 4TrE (t-T)
y

ds e-a(tt-)

or, using the original variables:

dc = dM

UTs Tt T)12
[x-U f(t-r) + -- T(cos 2r - cos27 T) J

exp[- 4E (t-T)

47rx AT)
x y

TsT t T 2
[y + - S- (cos 2 T T S 2rr ) 2

exp[- 4E (t-T)
y

-~ (t-'O)
(5-5)

for a continuous injection dM = m dT, and integrating over all values of
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UT 2
[x-U (t-T) + s(cos 2. -- cos 2Tr )
Lxffs 27r T T

t 4E (t-T)
c = m.

f 1 ~4ff(t-T) YE_
0 x y

V T 2
Ts t 'U

Sy + 2 (cos 2 r- cos 27r-)]
exp[- T T -a (t-T)]dT (5-6)

4E (t-T)
y

where m = the mass rate of injection of suspended sediments of the

particular group of interest; m. can be written as

m. = Vc . = VX.c (5-6a)

where V = the volume rate of injection of the seawater-sediment

mixture (volume/time)

c. = the initial concentration (by mass) of sediments of the

group of interest in the mixture injected

c = the total initial sediment concentration (by mass) in

the mixture injected

. = c ./c , the fraction of the total sediment that belongs
i 01

to the group of interest.

Equation (5-6) may be brought to non-dimensional form for

purposes of generality. Choosing the tidal period T as the character-

istic time and the depth h as the characteristic length scale, the non-

dimensional (primed) variables are defined as follows:
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t I t
T

U s

h/T '
U' f

E

l2 h /T

, T
t - T '

UT
U! = Ts

Ts h[T

E
y h2

hI/T

The non-dimensional concentration c' represents the ratio of the depth-

averaged concentration c at (x,y,t) to the initial concentration of the

mixture for a particular group. The new form of Equation (5-6) is:

2
UT'

tI

, VT (

h 3

[x'-U' (t'-T') + T cos 2Trt'-cos 2rT')]
exp[- 4E' (t'-T')

xy

I

V' 2

[y' + Ts (cos 2Trt'-cos 2'rT')]

exp[- 27r 4E' (t'-T') -a' (t'-T')]dT'

(5-7)

The integration cannot be carried out except by numerical

techniques. A computer program to evaluate c' from Equation (5-7)

was written and is presented in Appendix C.

The time until convergence to a quasi-steady state, as defined

in Chapter 3, generally depends upon the values of the various param-

eters on the one hand, and the point (x,y) of interest on the other.
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The two most important parameters are the decay rate, a, and the net

drift. Higher values of a will cause the solution to converge more

rapidly at all positions. The effect of the net drift, however, is

highly related to the point (x,y) of interest. For points near the

source its magnitude is not very important, but a point far from the

source may not reach steady state for a long time if the net drift is

small. This problem is discussed in Section 7.6, in relation to the

runs made for the conditions found in Massachusetts Bay.

It must be noted that in the above solution the tacit assumption

was made that the shore is not reached by the sediment "cloud", since

no boundaries were considered. If the solution of Equation (5-7) shows

that, in fact, no significant concentrations are found near the shore,

then it is perfectly valid. Otherwise a correction can be made by means

of a graphical application of the "method of images". In essence, the

method assumes an imaginary source symmetric to the actual one with

respect to the shoreline. The shoreline in this case has to be approxi-

mated by a straight line, since the correction would otherwise becomes

too complicated. The concentrations due to the two sources are added

together. This is graphically equivalent to "folding back" that part

of the profile of c(x,y,t) which lies beyond the boundary. It may be

recalled, however, that the model does not satisfactorily represent the

conditions of the near-shore area for various other reasons (Chapter 3).

5.2 Net Drift and Tidal Velocities

With respect to circulation of coastal waters, of interest to

this study are the directions and magnitudes of the tidal velocities
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and any net drift. The latter is probably the most important hydro-

dynamic factor entering into the model, since it determines in the long

run the direction and rate at which most of the sediments will move.

Each area has its own characteristics in terms of geometrical configura-

tion and prevailing meteorological conditions, both of which affect the

general circulation; thus, estimates of the above parameters are

usually difficult. The tidal velocity direction in an area does not

vary much during the year, being approximately normal to the shoreline,

while its amplitude depends primarily on tidal amplitude. By contrast,

the short-term net drift is highly variable with the different seasons.

The prevailing direction is usually parallel to the shoreline if wind

is insignificant and the area of interest is not too far from the shore.

The magnitude of the net drift, however, cannot be predicted by any

simple means.

Physical as well as mathematical models are being used for study-

ing circulation in coastal areas. It is beyond the scope of the pre-

sent'work to determine the velocity field in detail by using such

methods.

Field measurements in the area of interest can provide valuable

information about currents. There are basically two measuring tech-

niques, current meters and drogues. Current meters give the magnitude

and direction of the currents at certain points. The method is

directly related to an Eulerian description of the flow field. This

technique is desirable if one is interested in obtaining the flow

history at specific points,for example, at the entrance to a harbor.
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A current meter can be placed at any depth and is generally used for

long-term measurements.

Drogues give the pathlines of water particles. This technique

yields basically a Lagrangian representation of the flow field. A

drogue is a fin or vane of high fluid resistance, suspended at a cer-

tain depth in the water from a flotation device. It has the measuring

flexibility of the current meter in that it operates at different

depths, but obviously the bottom must not be reached at any point along

the drogue path. For this reason, drogues cannot be used to measure

flows very close to the bottom. Because of the nature of the drogue

method, long-term records are not feasible; the drogue must be followed

by a vessel which monitors its position over time. Also, there is no

way of keeping the drogue in a particular area of interest.

In spite of these difficulties, drogue measurements give a very

valuable picture of net flows and circulations in large bodies of water.

In particular with respect to the present study, the drogue movement

simulates the path of a sediment particle in its lateral directions as

long as there are no significant vertical currents. The spreading of

a set of drogues can also provide estimates for the dispersion charac-

teristics of the area. In fact, the results of drogue studies carried

out over the last year in relation to the NOMES project were-used to

provide information on currents in the Massachusetts Bay, necessary for

the application of the model in this area (Chapter 7).

Specifically, since the number of drogues in each study is small,

(three or four), the movement of a vertical water column was examined
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under the following simplifying assumptions:

1) Between drogues at different depths, the velocity changes

approximately linearly.

2) Between the deepest drogue and the bottom the velocity

follows a portion of a logarithmic curve.

3) Above the shallowest drogue the velocity is constant.

It can be argued that these assumptions do not agree with the

logarithmic velocity profile used in Section 4.1 for the determination

of the vertical diffusion coefficient z and consequently with the

normalized vertical distribution #(V). In fact, if the velocity pro-

file were really logarithmic, its approximation by linear profiles over

the various portions above the deepest drogue would be quite acceptable.

However, the very limited field data on the vertical profile do not

lead to any conclusion about its true shape. Under these circumstances,

it is felt that the interpolation technique described above yields a

reasonable description of the velocity profile.

The objective of the assumptions stated above is to convert the

velocity profile to an equivalent step-function profile, with the values

of the steps corresponding to the drogue velocities; thus, it is pos-

sible to associate with each drogue a fraction of the water column that

moves on the average with the drogue velocity. Consequently, it is easy

to define the mean movement of the water column at any time interval as

the weighted average of the movements of the drogues at this interval,

where the weights are the fractions of the column associated with every

drogue (Figure 7).
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The mean net drift over the depth can then be computed by the

mean net movement of the water column over a complete tidal cycle. Any

deviations from this net movement during the tidal cycle are then

attributed to a sinusoidal tidal velocity. The assumption of a sinu-

soidal tide might be questionned. In many coastal areas the tide is

not even symmetrical. Due to river discharge the ebb velocities are

often higher than the flood velocities. However, most of the asymmetry

of the tide can be incorporated into the net drift term. Thus, an

"equivalent" sinusoidal velocity that, combined with the net drift,

would move the drogues in approximately the same way as the natural

currents can be evaluated. Since the interest of this study lies in

the net effects of the current system in a relatively long time scale

and not much in its detailed structure, the above approximation is

acceptable.

Ultimately, the major interest of the study does not lie in the

water velocities but, as indicated in Chapter 3, in the weighted

velocities, taking into account the distribution of suspended sediments

over the vertical. These velocities enter into the model as the advec-

tive terms of the dispersion Equation (5-1) for any particular group of

sediments. Their estimate is quite straightforward based on the

previous considerations. The drogue records can be used in the same

way, the only difference being in the relative weights that each drogue

is associated with. They will not depend only on the fractions of the

water column as before, but rather on the areas of the normalized

vertical concentration profile lying in these fractions (Figure 7).
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Clearly, the weight on a drogue will be different for different sediment

groups.

All these computations can be organized and performed through a

computer program, which will be discussed in more detail in Chapter 7.

This program is extended to provide estimates of the dispersion coeffi-

cient as will be seen in Section 5.3.

5.3 Dispersion Coefficients

Dispersion is the most difficult parameter to estimate. Values

reported in the literature, mainly from one-dimensional studies, differ

by as much as two orders of magnitude. Fortunately enough, the solution

of dispersion equations for continuous input is not too sensitive to

changes in the magnitude of this coefficient, as already indicated in

Chapter 2.

It may be recalled that the dispersion coefficient is in fact a

sum of two terms:

a) A horizontal turbulent diffusivity c, due to large scale

eddy motions.

b) A purely dispersive term Ed, due to velocity variations over

the depth.

The value of the first at the sea surface can be predicted quite relia-

bly by Okubo's empirical formula (22).

6 = 0.01 1.15 (in cm, sec units) (5-8)

where Z a characteristic length scale, initially defined as three times
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the standard deviation of the concentration distribution along the axis

of interest. The length scale is actually a characteristic of the

region. It is not known what its relation is (if any) to the geometri-

cal characteristics of the area considered, such as the depth h or the

distance from the shore. It is conceivable, however, that the length

scale should have a relation to the maximum size of eddies that can be

developed around the source. For Lake Erie, Fochtman and Wnek (33)

report a value of k = 800 ft. for a depth of h = 27 ft., indicating a

relation k = 30 h. With specific information about the area of interest

lacking a value of 30 to 50 h may be used for the determination of E.

Fochtman and Wnek further claim a slight linear decrease of e with

depth; the average value over the depth should be used in the model.

However, the accuracy of the estimate of C is not critical because its

magnitude is normally much smaller than the dispersive term Ed'

This term can be derived from one-dimensional considerations,

since the velocity field is assumed the same in all (x,y) positions.

Thus, lateral variations do not exist and a value of Ed due to velocity

variations over the vertical is appropriate. Its general form is:

Ed = Xhu* (5-9)

where h = the depth

U* = the ahear velocity

X = a constant of proportionality

Values for A that have been reported range from as low as 6 (Elder) to
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as high as 500 (Glover). Taylor's formula (2-5), modified for open

channels, yields X = 20. These lower values, derived from theoretical

assumptions and tested for ideal flow conditions, represent a lower

limit of the actual value of the dispersion coefficient, which is

usually higher by an order of magnitude. Harleman's suggestion for

doubling Taylor's coefficient to account for natural nonuniformities

gives X = 40. With respect to u*, an average value over the tidal cycle

seems appropriate. The shear velocity is related to the mean velocity

and the friction factor by the expression:

/ f
U* / 8 U (5-10)

It is therefore evident that Ed is not the same in all horizontal

directions but depends on the mean velocity along each axis. In fact,

Equation (5-9) and Equation (5-10) indicate that Ed is proportional to

the mean velocity (averaged over the tidal cycle) in a certain direc-

tion, provided that f can be considered constant throughout. For

flat bed conditions it may be assumed that f ~ 0.02; hence u - 2 U.

Okubo (23) found that for an oscillating linear velocity profile

the dispersion term is

V2h

E 1 max (5-11)
d,o 240-

z

where Vmax the velocity amplitude at the surface

= the vertical diffusivity, assumed constant
z
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He also found that for a steady current having a linear profile with a

value at the surface equal to Vmax

Ed,s

2 2
V h

= -max

120
z

(5-12)

Since the mean velocity over the depth is half the value at the surface

due to the linearity of the profile

(ut)*a
max

1 f m
2 8 max

= L V (for f = 0.02)
40 max

and for a sinusoidal oscillation

(u >max
2 1
T 40 max

1
63 max

Also, ez can be taken equal to the mean value of Sz over the depth:

ez = 0.067 hu*. Substituting in Equation (5-11)

E , o
1- max _1 (63)2 hu 250 hu

240 0.067 hu* 240 0.067 * *
(5-11a)

Similarly, for a steady current

Ed,s = 200 hu* (5-12a)

The estimates of the dispersion coefficients by these formulas

are an order of magnitude higher than Taylor's predictions. They are

probably overestimating the true values since a linear profile presents
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more severe velocity variations over the depth than a logarithmic pro-

file, which was previously considered (Section 5-2) close to reality.

It is proposed herein that, in case of lack of information concerning

the area of interest, a value for V a little higher than Harleman's,

in the range 40 to 80, may be used.

It is generally desirable to obtain some field information on

the dispersion characteristics of a specific coastal area in order to

model it more realistically. Measurements of the horizontal dispersion

coefficient can be made by monitoring the distribution over time of

some tracer injected at a point. The basic idea of the experimental

measurement lies in the fact that the variance of the distribution and

the dispersion coefficient along an axis are related by the following

equation, assuming that the distribution of the tracer is approximately

Gaussian:

2
E = CY /2t (5-13)

If the variance increases linearly with time, then E is constant. In

reality, however, this is rarely the case. One of the reasons is that

most experiments have dealt with instantaneous injections. Thus, the

dispersion is expected to increase with the size of the dye patch, at

least due to the diffusion term 6 (Equation 5-8). The dispersion term

Ed is supposedly constant (Equation 5-9). In fact, though, there is no

way to have both constant velocity and constant dispersion. If the

velocity is constant, the variance is increasing in proportion to t2

and not to t. Fluctuations of the dispersion due to tidal variations
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make the problem of estimating a reasonable "average" coefficient even

more complicated. In the case of a continuous injection, however, the

effective dispersion coefficient applicable to the whole area of interest

is expected to be much more stable in terms of both tidal and real time.

It is worth noting that almost all previous experiments in the

sea were carried out on the surface layer. Dye was the most common

tracer used (Rhodamine B or WT). Thus, the values of the dispersion

reported for various areas refer only to the diffusion term 6 and more

specifically to its value at the surface layer. Dispersion due to

velocity variations over the depth could not be measured by this tech-

nique. Such measurements would require a uniform injection of dye over

the depth and an exactly neutrally buoyant dye solution. The second

requirement makes the application of dye techniques extremely difficult,

if not impossible, in view of the slightly variable seawater density

over the depth. The difficulties increase even more when it is desired

to estimate dispersion of matter distributed nonuniformly over the depth.

In fact, most of the past work on dispersion coefficients was

initiated in relation to the dispersion of pollutants, which are more

or less neutrally buoyant and hence have a uniform concentration over

the depth if injected from a vertical line source. Not much information

exists on dispersion of particles having variable concentration over

the depth, such as suspended sediments. For very fine sediments some

approximation can be made by using the values given for uniform concen-

trations.
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The drogues, which give values of the velocities encountered in

the area, can also provide valuable, although not very accurate, infor-

mation concerning dispersion characteristics. The basic requirement is

that all drogues must be deployed at the same point and at the same

time (at least approximately), but at different depths. The variance

of their positions over time must subsequently be monitored. Since they

always stay at the same depths, the variance of their positions depends

on the velocity variations over the depth. The larger the number of

drogues, the more accurate the estimate of the variance and therefore

of the dispersion coefficient according to Equation (5-13).

In order to properly calculate the variance, the drogue positions

must be appropriately weighted. The weight placed on a drogue will

depend on the sediment group considered and can be found as indicated

in Figure 7. The same program that computes the advective velocities

can be extended to calculate the (weighted) variance of the drogues

around the (weighted) mean position at various times and consequently,

from Equation (5-13), the values of the dispersion coefficient at every

time interval. An average value of the dispersion coefficient over a

tidal cycle can therefore be calculated and used in Equation (5-1). It

is evident from the above discussion that the value obtained through

the drogues variance refers to the total dispersion coefficient E =

c+E d. Details of the computational procedures are presented in

Chapter 7, in relation to the application of the model to the Massachu-

setts Bay.
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CHAPTER 6

SYNTHESIS OF THE MODEL COMPONENTS

6.1 Concentration Distribution of a Group of Sediments

A group of sediments is characterized by its average settling

velocity, as indicated in Table 1 (Section 4.3). For such a group

the normalized vertical distribution is first computed according to

Equation (4.7). This distribution provides the necessary information

for calculating the parameters of the differential equation (5.1) of

the horizontal distribution, specifically the value of the decay

factor a, through Equation (4.12). Combined with drogue measurements

it also specifies appropriate values for the advective velocities

and dispersion coefficients as indicated in Sections 5.2 and 5.3.

The solution of the expression (5.7) for the horizontal distribution

of concentrations can then be evaluated numerically. The concentra-

tion of suspended sediments for this particular group as a function

of space and time is finally obtained by the relation:

c(x,y,z,t) = c(x,y,t) $ (C) (6-1)

according to the basic model assumption.

It should be obvious that, since c(x,y,t) refers to a quasi-

steady state solution, Equation (6.1) for the determination of c is

strictly applicable for times after the convergence of the solution

for c. The solution is also not applicable for spatial coordinates

very close to the shore, as indicated in Chapter 3.
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If the numerical integration of the expression for c is carried

out for times shorter than required for convergence to steady state,

an approximation of the transient behavior of c, and subsequently

of c(x,y,z,t), can be obtained. However, the results will be unreliable

for times shorter than that necessary for vertical equilibrium, which

2
has an upper bound of the order of T' = h /C ; for example, typical

values in the area of interest in Mass Bay are

h = 30 m

u* 0.5 cm/sec

2
E = 0.067 hu* = 0.067 x 30 x 0.005 = 0.01 m /sec

_302

hence, T' = = 90,000 sec.

0.01

This time is approximately two tidal cycles. Hence, this is

the maximum time span after which reasonable transient results can be

obtained.

With respect to the prediction of the concentration dis-

tribution after the end of the injection, the model can give

approximate answers as long as vertical equilibrium continues to hold.

Equation (6.1) is still applicable, but now the depth-averaged

concentration is calculated with the integral of Equation (5.7)

subject to the upper limit of the time of the end of the injection.
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6.2 Total Sediment Concentration

In general, the suspended sediments introduced into the sea-

water have various sizes and settling velocities. For the purpose of

this analysis, however, they can be classified into several discrete

groups, for example into those indicated in Table 1 (Sec. 4.3).

The percentage of each group forming the total sediment introduced is

supposedly known, or can be found by measurements of settling velocities.

These group percentages are determined in terms of settling velocities

rather than of individual grain sizes. Thus, the increased settling

rate of the clay fraction due to flocculation can be accounted for by

including percentages of the clay material in the higher settling

velocity groups. The settling tube experiments (Section 4.5) make

it possible to obtain values for the assignment of the clay function

to the other groups. These values will vary with such factors as

the type of clay and the initial concentration of sediment.

For each group, the concentration c(x,y,z,t) can be found

by the model, as summarized in Section 6.1. Under the assumption

that the distribution of particles of a group is independent of the

presence of particles of another group, the total concentration of

suspended sediments can be found as a weighted sum of the individual

group concentrations at any point (x,y,z,t). The weights for this

calculation are defined by the composition of the mixture introduced.
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It may be noted that, even if the ideal conditions assumed

in the model actually exist, an instantaneous measurement of suspended

sediment concentration at some point cannot be expected to agree with

the above calculated c(x,y,z,t). Due to random turbulent fluctuations

in velocity and concentration, the solution is considered to represent

an average value of c(x,y,zt) over some period of time At.

6.3 Rate of Deposition

The amount of sediments deposited at the bottom is quite

important from the point of view of ecological balance.

The concentration near the bottom is at any time equal to

c(xy,o,t) = 4(o) c (x,y,t)

and the rate at which the particles reach the bottom is ws 4(o) C (x'y't)

Recalling that A is the overall probability that a particle

settling to the bottom stays there, the rate at which particles of

a certain group are deposited at the bottom follows as:

D = A w $(o) c (x,y,t) (6-2)

in units of mass/time x area, provided the sediment concentration c

is expressed in mass per unit volume as a function of location and

time. The spatial integration of D for any group over all x, y

values should equal the rate of injection of sediment of this group,

i.e.,

f f D. dxdy = m. = .Vc (6-3)
all x,y
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It is conceptually simple to find the amount of sediment

deposited between times t1 and t2 at a particular point (xy), more

specifically in a unit area about a point. It can be computed as:

t 2 t2 t2
Ddt = Aw S (o) c (x,y,t) dt = Aw (o) 22 (xyt)

1 s1 t

provided that steady state has been reached before t .

The thickness of the layer of sediment deposited is
t2

ft D dt

where

to be

dt

(6-4)

(6-5)

p is the effective density of the material, considering it

loosely deposited, that is,

pw < P ps - Pw

where ps is the sediment density

pw is the density of seawater

It is evident that the amount deposited should be calculated

for each group separately and then added together to obtain the

total deposition.

The computation of the amount 'deposited requires a further

numerical integration. It can be approximated by multiplying the

average steady state deposition rate, D(xy), by the duration of

dredging. This 5 can be obtained to the desired accuracy by averaging
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the values of D for various tidal stages at a particular point.

This technique is only applicable in the case of dredging of long

duration, implying that the steady-state phase lasts much longer

than the transient phase.

-79-



CHAPTER 7

APPLICATION OF DREDGING IN MASSACHUSETTS BAY

7.1 General Comments on the Project NOMES

In 1972, the National Oceanographic and Atmospheric

Administration (NOAA) launched a three-year project to study the

environmental effects of offshore mining for sand and gravel in the

Massachusetts Bay as Project NOMES (New England Offshore Mining

Environmental Study). Various physical, chemical and biological

parameters were to be monitored before, during and after the dredging

operation which was scheduled for the summer of 1974. An extensive

data base was to be provided to develop mathematical models for the

prediction of the environmental impact of future dredging operations

and for the development of legal regulations of such activities.

The inability to find an economical use for the large amount

of dredged material led to the termination of the project in the

summer of 1973, after some baseline studies had been conducted.

This model was developed at M.I.T. under the belief that the

experimental dredging would provide an excellent opportunity to study

the dispersion of fine suspended sediments which are inevitable by-

products of such operations. The model efforts were continued

after the termination of the project in view of the data already

obtained and of the importance of such predictive capacilities

for the coastal zone.
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As one of the activities of the NOMES project, an extensive

dispertion experiment was carried out by NOAA's Environmental

Research Laboratory in collaboration with several other institutions

in June 1973, just prior to the termination of the project. A large

quantity of small glass beads and sphalerite particles was dumped at

the proposed dredging site and the concentrations of both were monitored

for 11 days at various locations in the Mass Bay (21, 13). The

injection of the particles was almost instantaneous and near the sea

surface. However, the results of the experiment should be useful

at least for a qualitative comparison with the model predictions.

Current observations by drogues were conducted by M.I.T.

during this experiment as well as earlier in the past year and

provided the hydrodynamic parameters for the application of the

dispersion model.

In this chapter the procedures for the collection and analysis

of these data are given and the validity of the model as applied to

the Massachusetts Bay is discussed.

7.2 The Sediment Source

The NOMES operation was scheduled to run for a period of six

weeks with a hopper dredge having a capacity of 10-15 thousand cubic

yards of sediment, to be collected in 1 1/2 to 3 hours (3). An

estimated 5% of the sediments would consist of fines less than 100P

in diameter. While the sediment is pumped into the dredge, the fines

are discharged back into the sea as overflow with the seawater.
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It was estimated that between successive dredging periods, 6.8 non-

working hours would be required by the dredge for the roundtrip to

the dumping site at a desired location. With 15,000 yd3 of sand

and gravel dredged in 1 1/2 hours, the amount of fines introduced is:

0.05 x 15,000 = 500 yd3/hr (7-la)
1.5

or

500 x (0.9l)~ 3 3
3600 m /sec = 0.1 m /sec (7.lb)

Despite the fact that the operation is intermittent, the long

duration of the dredging (6 weeks) relative to non-working intervals

permits to approximate the steady state actually reached as one of

an "equivalent" continuous injection. With the working times of 1 1/2

hours and the intervals in between of 6-8 hours, the equivalent

continuous injection of fines would result in a rate of discharge

of about 20% of that calculated in (7.1) or

V = 0.02 m3 fines/sec (7-2)

This is not necessarily valid if the working hours coincide always

with the same parts of the tidal cycle. However, it is reasonable to

assume here that the working hours occur more or less during different

parts of the tidal period.

The volume rate defined above refers to actual volume of

fines. If the material were in a compact state its density would

3
approach 2.65 gr/cm3. Since in this case the material is loose, it

is assumed herein that the concentration of the volume injected is
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approximately 1 gr/cm3 or 106 mg/k.

The dredge site was to be located at latitude 42*21' North

and longitude 70*49' West, as shown in the chart, Figure 8, and has

an area of about 0.8 by 0.5 nautical miles. For the application of

the model, the source is assumed to be located at the center of this

area. It is also assumed that there is enough mixing caused by the

nature of the injection to consider it as a uniform line source.

The bottom depth is assumed constant and equal to its value

at the dredging site, i.e., 30 meters. The complex shoreline can be

approximated by a set of straight lines, as also shown in Figure 8.

This configuration makes it possible to deal with cases in which the

sediment "cloud" reaches the shore, as discussed in Section 5.1.

7.3 Composition of the Initial Mixture

As indicated in Chapter 3, the application of the model calls

for a separation of the fine sediment discharged into several groups,

each characterized by its average settling velocity. The separation

displayed in Table 1 will be followed.

Grain size distribution data for the fines of the dredging

area are essential. In the case of Mass Bay, about 70 core samples

have been obtained from various locations and depths. Grain size

distributions of the fines have been obtained through hydrometer

analyses at the University of New Hampshire (32). The samples

indicated a very consistent composition in the range below 60p,

primarily containing inorganic clay of low plasticity and inorganic silt.
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The specific gravity of the samples ranged from 2.30 to 2.90, averaging

2.60 - 2.65. This value for specific gravity indicates that

Equation (4.13a), from which the settling velocities in Table 1 were

derived, is valid.

The results of the UNH studies were presented in the form of

classical grain size distribution curves. In terms of the 5 groups

presented in Table 1, these curves yielded the following average

sample composition:

fine sand 60p < d < 100p 10%

coarse silt 20p < d < 60V 13%

medium silt 6p < d < 20p 14%

fint silt 2p < d < 6p 13%

clay d < 2- 50%

However, the grain size of the particle is not the most important

quantity for the model. The critical factor is the settling

velocity, ws, which is indeed a function of grain size, but which

is also influenced by other factors, such as shape, surface; and

state of flocculation. Because the clay fraction of the fines is

most affected by flocculation, a number of settling tube experiments

on various clays were performed (Section 4.5). According to the

results, the clay fraction can be distributed into different settling

groups. A settling tube experiment with material from the bottom of

the dredging site had been planned, but the termination of the

project did not allow the necessary sampling. Based on the results
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of the runs with other fine materials with 10 mg/ initial concentra-

tion, as was shown in Table 2 (Section 4.5.2), it may be assumed that

the clay fraction contributes to the following groups, in terms of

settling rates:

w = 0.68 x 10~ 4  35%
s

w = 1.36 x 10-3 40%
s

w = 1.43 x 10-2 25%
s

The results of the 10 mg/k initial concentrations were used instead

of the 100 mg/k, because the former is more representative of

the concentrations possibly predominating about the source due to

the injection rate calculated in Section 7.2.

Incorporating these results with the data obtained by UNH,

the resulting distribution into groups was computed and is shown in

Table 3.

Table 3: Composition of Dredging Fines in Terms of Settling Velocity

Group No. Mean Settling Velocity Percentage of Fines

(cm/sec)

1 0.462 10%

2 0.136 13%

3 0.143 -10~1 27%

4 0.136 - 10-2 33%

5 0.68 ' 10~4 17%
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7.4 Background Concentrations of Suspended Sediment

Because of the nature of the mathematical model, a non-zero

value of concentration, c, will be obtained at all spatial positions.

Of course, very small values will be overshadowed by the "ambient"

sediment concentrations existing under natural conditions. Thus,

background data are needed to determine the extent of the dredging

impact. Any position with a concentration increase of at least the

same order of magnitude as the ambient can be considered "affected"

by the dredging.

Beginning in January 1973 suspended sediment measurements

were taken in Massachusetts Bay under the NOMES project. Samples

were analyzed through filtering techniques and through light

scattering by means of the turbidimeter described in Section 4.5.

The correlation of turbidity with sediment concentrations appears

rather encouraging, at least for the low concentrations encountered

in the Bay, as was seen in Figure 2. Details of the procedures of

monitoring turbidity and suspended sediments are given by Frankel

and Pearce (10).

The measurements indicate an average suspended load in the

Bay of about 1 mg/k. This includes both organic and inorganic

matter. Consequently, the areas of actual dredging impact are those

for which the concentration increase is of the order of this value.

The dredging effect can be considered minor in areas with a much

smaller amount of concentration increase. In addition, the effects
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of the shoreline, as discussed in Section 5.1, need not be

considered if the concentrations obtained by the model are very small

near the shore.

7.5 Determination of Parameters from Drogue Data

As was explained in Chapter 5, current measurements are

extremely important to the model. With respect to the application of

the model in the Massachusetts Bay the only suitable field data were

obtained through three drogue studies carried out in the first part

of 1973. The type of drogue used is shown in Figure 9. During each

of these studies three or four drogues were deployed at various

depths at approximately the same point. They were then tracked for

at least a full tidal cycle, their positions being recorded approximate-

ly every hour. These data made it possible to obtain values of the net

drift, of the tidal velocities, of the dispersion coefficients along

with some information on the velocity variations over the depth.

The pathlines of the drogues in these studies are given in Figures

10, 11 and 12. A full account of the methods and instrumentation

used can be found in a report by the authors (4).

A computer program has been developed to carry out the

evaluation of the model parameters from the drogue data and the actual

computations of the model. The procedure is divided essentially

into two parts. First, the drogue and sediment data are used to solve

the vertical concentration distribution, to obtain average net drift

and tidal velocities, and to compute the decay rate and dispersion
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1. Input drogue data and sediment settling velocities

2. Rearrange drogue positions in constant time increments

3. Compute weights for neutrally bouyant case

4. Translate initial drogue positions to (0,0)

Compute mean-weighted drogue
positions with time

6. TIDVEL: find tidal and current
magnitudes and directions

7. Rotate coordinate system

8. Compute variances of weighted
drogue positions with time

9. Calculate dispersion coefficients

10. CONVRT: find average dispersions[
and components of tidal velocity

IstI time
11. USTA: calculate shear velocity N

12. PROFIL: find vertical concentration

distribution for next group

other-
wise

13. Obtain new weights

Figure 13

Flow Chart of Model Procedures
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coefficients. In the second part, this information is used to solve

the horizontal dispersion equation (5.7). The first part procedure is

outlined in Figure 13 and described step by step below. The FORTRAN

source program is listed in Appendix B.

1. The first step is the input of the drogue and sediment data

along with other necessary information. For each drogue, a series

of positions and times is given denoting the drogue path. The drogue

depth and the mean depth of the bottom over the drogue path is also

required.

The only sediment data needed are the settling velocities for

each of the 5 different groups of particles shown in Table 3, with

the initial concentration of each group.

Other additional information includes values for the analysis

starting time and the time increment to be used in Step 2, a depth

increment for the integration of the vertical sediment distribution

(Step 12), and a value for Von Karman's universal constant, k.

2. The drogue data are adjusted next so that a specified time

interval exists between drogue positions. This requires interpolation

between the actual drogue positions, which should not introduce any

significant error since there are enough actual data points in the 3

drogue studies being analyzed. The results of this operation yield a

table of simultaneous drogue positions, North and East, with the

corresponding times evenly spaced.
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3. The weights attributed to the drogues are computed by the

technique described in Section 5.2.

4. The drogue paths are all translated in space so that each

drogue starts at position (0,0). This step simplifies the velocity

and the dispersion calculations. It does not introduce significant

error, since the initial positions of the drogues are close together

in all cases.

5. The mean drogue positions at different times are calculated.

(The need for the simultaneous drogue positions as computed in

step 2 is now clear). The drogue positions for each time are not

simply averaged, they are averaged with respect to the weighting

factors computed in Step 3 or Step 13. From these, the mean-weighted

velocities are calculated.

6. The Subroutine TIDVEL computes the tidal and net drift veloci-

ties. The procedure begins by selecting the drogue record covering

one full tidal cycle (see Figure 14). The distance the drogue travels

in this period divided by the tidal time, 12.4 hours, is denoted the

net drift velocity; the direction of travel is the net drift direction.

The remaining deviation about this net drift is considered to be due

to the tidal current. The maximum deviation to the left and to the

right of the net drift is calculated. Both distance and direction

for these maxima are recorded. The difference between these two

vectors is the total movement due to the tide, 2 Z T. (see Figure 14).
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An equivalent sinusoidal tide, that is, one which causes

the same total movement, should have a maximum velocity given by

the formula:

2k 21T,
2 2= =r T T (7-3)T T 2 T/2 T

The direction of the equivalent tide is also given by the direction

of the vector 2kT
T

7. The coordinate system is now rotated so the new x-axis is

in the direction of the net drift.

8. The variances of the weighted drogue positions at times found

in Step 2 are now calculated for both the x and y axes. (Due to the

previous rotation, these variances are in the direction of the

net drift and normal to the net drift).

9. From these two series of variances, the dispersions in the x and

y directions are found. The formula for the determination of

dispersion from the variance is

A(o2)
E = 2(At) (74)
20

where a2 is the variance

t is the time

From this it can be seen that the dispersion may be a function of

time. It has been generally found that the dispersion increases

slightly with time. This is probably due to the fact that as the

drogues spread, they may enter zones of different eddy motions,
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characterized by different length scales. Thus, their motion is

more subject to random influences as they spread further apart.

However, as mentioned, constant dispersion coefficients from

averages over a tidal cycle will be used in this study.

10. In subroutine CONVRT, the average dispersion coefficients over

the selected tidal cycle are calculated. Also, the components of

the tidal velocity along the net drift and normal to the net drift

are found.

11. In subroutine USTA the shear velocity, u*, is found from:

U= /SU (7-5)
*8 m

where f is the roughness coefficient

Um is the magnitude of the mean water velocity

A value of the roughness coefficient, f, equal to 0.02 was used.

This value is appropriate as a mean value for flat bed conditions.

It should be noted that the water velocity used includes both the

tidal and the net drift components of the current. In other words,

the total length of the path line of the mean drogue positions over

one tidal cycle divided by the tidal time constitutes the magnitude

of U
m

Up to this point, the procedure deals with purely hydrodynamic

characteristics, the main purpose being to define an appropriate value

of u* for the determination of the normalized vertical sediment

distribution.
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12. The integration of Equation (4.8) is performed in subroutine

PROFIL, to yield the solution of the normalized suspended sediment

distribution in the vertical direction, 4(c), for a particular

settling velocity ws'

13. In subroutine WEIGHT the normalized sediment distribution,

4(G), found in Step 12, is used to compute the weights for the drogues,

based on the vertical spacing of the drogues, in addition to the values

of 4(1) at the drogue depths. The complete computation technique was

discussed in Section 5.2. For this new set of weights the procedure

is repeated beginning with Step 5 but with the exception of Step 11.

Instead of the mean water drift and tidal velocities, the respective

mean transport rates for a certain group of sediments (identified by

its settling velocity) are now calculated. Similarly, instead of the

dispersion coefficients of the water body, the effective dispersions,

appropriate for the various sediment groups, are found.

It may be noted that the coordinate system for each sediment

group will be slightly different due to the different values of the

drift direction obtained for each case. This is reasonable in

view of the directional differences for the drogues at various

depths and of the "heavier" particles being dominated by the velocities

at lower depths. However, the "lighter" particles, being distributed

more evenly over the depth, will be affected by the velocities at

all depths. The values of the parameters obtained from the data of

the three field trips are presented in Tables 4, 5, and 6.
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Table 4

Parameters for Conditions of February 21-22, 1973

Mean depth h = 25m Shear Velocity u* = 0.533 cm/sec

Dimensional parameters Units Grp 1 Grp 2 Grp 3 Grp 4 Grp 5

Net drift magnitude, Ufs cm/sec 5.28 6.82 8.10 8.24 8.24

Max tidal velocity, lk2+V2 cm/sec 9.62 10.52 10.16 10.10 10.10
Ts Ts

Max tide along drift axis, UTs cm/sec 7.26 7.34 6.48 6.36 6.36

Max tide normal to drift axis, cm/sec 6.30 7.52 7.84 7.84 7.84
Ts 

5
Dispersion along drift axis, Ex cm /sec 1.85 1.18 0.83 0.78 0.78

Dispersion normal to drift axis, 210 0.008 0.20 0.25 0.24 0.24
E cm /sec
y

Average horizontal dispersion, 2 1 0.12 0.48 0.46 0.43 0.43
/K E cm /sec

x y

Drift direction * from -55 -60 -65 -66 -66
E

Tidal direction * from -14 -14 -15 -15 -15
E

Angle between drift and tide degrees 41 46 50 51 51

Dimensionless parameters

Net drift magnitude, U fsT/h 96 125 148 151 151

Max tidal velocity, (A'Ts+V s)T/h 166 192 184 184 184
Ts Ts

Max tide along drift axis, UTsT/h 132 134 118 116 116

Max tide normal to drift axis, VTsT/h 116 138 144 144 144

2
Dispersion along drift axis, E T/h 870 860 610 575 570

x
2

Dispersion normal to drift axis, E T/h 6 150 182 175 175x

Decay factor, aT 101 10.1 0.32 0.025 0.001

Values for the parameters of the water itself are identical to those
of group 5
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Table 5

Parameters for Conditions of March 28-29, 1973

Mean depth h = 30m Shear Velocity u* = 0.479 cm/sec

Dimensional parameters Units Grp 1 Grp 2 Grp 3 Grp 4 Grp 5

Net drift magnitude, Uf cm/sec 2.83 6.53 8.83 9.05 9.07

Max tidal velocity, s s cm/sec 2.74 5.66 6.36 6.38 6.38

Max tide along drift axis, UT cm/sec 1.44 2.76 2.56 2.46 2.44

Max tide normal to drift axis, cm/sec 2.32 4.94 5.84 5.88 5.88VTs

105Dispersion along drift axis, E 2 /s5 3.32 3.24 1.74 1.57 1.55x cm /sec.

Dispersion normal to drift axis 5
E 210 0.001 0.036 0.14 0.15 0.15
y cm /sec

Aver e horizontal dispersion 10 0.058 0.34 0.49 0.48 0.48X:1 2
x y cm /sec___

Drift direction * from -40 -39 -37 -37 -37
E

Tidal direction 0 from 18 21 29 30 30E

Angle between drift and tide degrees 58 60 66 67 67

Dimensionless parameters

Net drift magnitude, U fT/h 43 99 134 137 .138

Max tidal velocity, (V +V )T/h 42 86 96 96 96Ts Ts

Max tide along drift axis, U T/h 22 42 40 38 38

Max tide normal to drift axis, V TsT/h 36 54 88 90 90

2
Dispersion along drift axis, E T/h 1680 1640 880 790 785x

Dispersion normal to drift axis, E T/h 1 18 70 76 77
y

Decay factor, OT 87 9.3 0.27 0.021 0.001

Values for the parameters of the water itself are identical to those
of group 5
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Table 6

Parameters for Conditions of June 11-12, 1973

Mean depth h = 35m Shear Velocity u* = 0.433 cm/sec

Dimensional parameters Units Grp 1 Grp 2 Grp 3 Grp 4 Grp 5

Net drift magnitude, Ufs cm/sec 2.14 4.58 6.80 7.06 7.09

Max tidal velocity, )9 +V cm/sec 3.10 5.68 6.38 6.48 6.50
Ts Ts

Max tide along drift axis, UTs cm/sec 3.10 5.69 6.16 6.16 6.18

Max tide normal to drift axis) cm/sec 0.14 0.22 1.70 2.02 2.06
Ts

Dispersion along drift axis, J5 1.27 1.50 1.41 1.34 0.94
x cm /sec

5
Dispersion normal to drift axis, 10 0.002 0.22 0.84 0.93 0.94

E cm2 /sec
y5

Average horizontal dispersion, 105
E cm2 /sec 0.050 0.57 1.09 1.12 1.12
x y

Drift direction E from 40 42 41 40 40
E

Tidal direction E from 43 45 57 58 58

Angle between drift and tide degrees 3 3 16 18 18

Dimensionless parameters

Net drift magnitude, U T/h 28 60 89 92 92

Max tidal velocity, (v2 +V )T/h 40 74 83 84 84
Ts Ts

Max tide along drift axis, UTsT/h 40 74 80 80 80

Max tide normal to drift axis, V T/h 2 4 22 26 26

2
Dispersion along drift axis, E T/h 470 560 525 500 495

x
2

Dispersion normal to drift axis, E T/h 1 85 315 345 350
y

Decay factor, caT 80.5 8.85 0.237 0.018 0.001

Values for the parameters of the water itself are identical to those
of group 5
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Once the hydrodynamic parameters (mean transport rates and

dispersion coefficients) and the normalized vertical concentration

profiles of the sediment groups in each drogue study are determined,

they are used to solve the horizontal depth-averaged dispersion

equation. The decay factor, a, is computed as

a = Aw 4(O)/h

wherein A is assumed as unity. All parameters are expressed in non-

dimensional form, using the depth h as the reference length and the

tidal period T = 45600 sec as the reference time. Then the

integration (5.7) is performed numerically, using a non-dimensional

time increment of At 0.05.
T

The lines of equal concentration for each case are plotted in

Figures 15, 16, 17. This is done only for groups 3, 4, 5. Groups

1 and 2 do not yield any significant average concentrations at

distances more than a mile from the source. For purposes of comparison,

each figure was drawn as if the input consisted 100% from sediments

of the respective group. To get the actual concentrations, the

values presented must be multiplied by the percentages shown in

Table 3.
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7.6 Results and Discussion

Several things can be noted about the values of the parameters

listed in Tables 4, 5, and 6.

First, there is a consistent increase of the mean transport

rates both tidal and non-tidal, from group 1 to group 5. This

was expected, since the lower velocities near the bottom are more

heavily weighted in the first sediment groups. The differences are

very slight between groups 3, 4, and 5 because of their nearly

uniform vertical profiles. The tidal velocities are higher in

February, when the tidal amplitude was larger. The drift velocities

are generally of the same order of magnitude as those of the tides.

The ratio of tidal to drift magnitudes is larger for the first

groups, possibly indicating a more uniform tidal profile, with

relatively high velocities near the bottom. The drift velocities of

about 7-10 cm/sec for the water itself are in good agreement with

values reported from other studies and discussed in more detail in

another report by the authors (4).

The prevailing drift direction is SE. In June, the drogues.

after moving for several hours to NE, changed direction and continued

SE, which was the direction of the March and February drogues, also

(Figures 10, 11, 12). The direction of transport is very much the

same for all the groups, on each cruise, the difference among them

being much smaller than the differences between the three cruises.

This indicates that the water moves at approximately the same
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direction at all depths. It should be mentioned here that the

shallowest drogue is at a 7m depth, thus directional changes near the

surface, due to short-duration winds, could not he measured; also,

drogues were not placed close to the bottom to avoia interference

with the sea bed.

The shear velocity did not change much in the three cases,

having an approximate magnitude of 0.5 cm/sec.

With respect to the dispersion coefficients, it is seen that

the effective value of the longitudinal dispersion (i.e., along the

drift direction) decreases from group 1 to 5. This is because of the

presence of high concentrations of group 1 near the bottom, where

the velocity gradients are higher. By contrast, the lateral dis-

persion (i.e., normal to the drift direction) increases markedly from

group 1 to 5. Due to the absence of any constant shear flow normal

to the net drift, the nonuniform suspensions are not easily dispersed.

The average horizontal dispersion for the water body defined

as the geometrical mean of the two values is remarkably similar in

February and March, but twice as high in June. This increase is

mostly due to the lateral dispersion. It may be due to the stratified

conditions prevailing in June, in contrast to February and March.

In Table 7, theoretical predictions for the eddy diffusion terms by

Okubo's formula (Section 5.3) are presented for k = 30h. Also shown

are the dispersion terms, following the formula E= Ahu*, where d

U* in any direction is assumed to be 1/20 of the mean velocity
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Table 7

5 2Dispersion Coefficients (10 cm /sec)

February March June

Eddy Diffusivity g 0.040 0.050 0.060

Ed along drift axis

Elder ( = 6) 0.092 0.106 0.132

Taylor (A = 20) 0.305 0.350 0.430

Harleman (A = 40) 0.61 0.70 0.85

A = 80 1.22 1.40 1.70

Okubo (A = 200) 3.05 3.50 4.30

Measured values 0.78 1.56 1.33

Ed normal to drift axis

Elder (A = 6) 0.038 0.036 0.014

Taylor (A = 20) 0.126 0.120 0.050

Harleman (A = 40) 0.26 0.24 0.10

A = 80 0.52 0.48 0.20

Olubo (A = 200) 1.30 1.20 0.50

Measured values 0.24 0.15 0.94
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magnitude in that direction.

It is seen that estimates, with values of X 40 to 80, are in

most cases close to the true values; only the dispersion normal to the

drift axis in June is severely underestimated.

The dispersion patterns resulting from the model for the

three sets of conditions (Figures 15, 16, 17) clearly indicate that

the drift direction is the most important hydrodynamic feature

affecting the movement of suspended matter for the conditions

investigated. Unfortunately, it is highly variable. The assumption

of a constant drift is too restrictive and does not in general

represent natural conditions. The drift direction changes both in

time and space, as the result of wind shifts, inlets, general

circulation, etc. The prevailing direction, however, for Western

Massachusetts Bay, seems to be SE. Occasional changes of the drift

from this direction may conceivably spread the sediments more in the

lateral direction and less in the longitudinal. Thus, the model

results overestimate the length but underestimate the width of a

natural dispersion plume. If the drift were truely constant, the

narrow isoconcentration lines would be quite reasonable. The

material could not spread much due to the assumed lateral uniformity

in the velocity field. The value of the dispersion coefficient

normal to the drift axis becomes then the primary factor influencing

the width of the isoconcentration lines. This is evident by

comparison of the March and June plots (Figures 16, 17). The tide,
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as will be seen later, does not materially affect the width but just

moves the plume back and forth, about the drift direction. The

value of the dispersion coefficient along the drift axis is, by

contrast, quite insignificant in light of the very important role of

the drift velocity in determining the total length of dispersion.

This can be seen by comparing the lengths of the plots of February

and June (Figures 15, 17).

However, the decay factor, a, a function of the sediment

settling -velocity, is even more important in determining the extent

of the plume of the suspended matter. This is readily seen by

comparing the plots for groups 3, 4 and 5 for any set of conditions,

although the advective and dispersion terms are approximately the same

for the three groups. The importance of A becomes now clear. If it

were taken as 0.5 instead of unity, the result would be the same as

if the settling velocity were divided by 2.

The time needed for the solution to reach steady state at a

particular point was found to depend primarily upon the decay constant

and the magnitude of the net drift. This time, expressed in number

of tidal cycles, can be approximately given as

L
n = + 4 (7-6)

T*Uf

wherein L = distance from the source

U = net drift velocity.
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This holds, provided the decay factor is such that significant

concentrations are eventually found at the point under consideration.

Thus, the time to convergence for the model runs was less than 5

tidal periods for groups 1 and 2, about 12 for group 3, 20 to 25 for

group 4 and more than 30 for group 5. In fact, the plots presented

in Figures 15 and 16 for group 5 are for a time of 30 tidal cycles,

due to restrictions in computer time. The equilibrium profiles are

slightly longer. Of course, for points near the source steady state

was reached much sooner for all groups.

In order to provide more specific information on the effects

of a possible dredging operation, representative values for the

parameters of the model, estimated from those appearing in Tables

4, 5 and 6, were used for another run of the model. The values used

are listed in Table 8. The normalized vertical profiles for the

5 groups are shown in Figure 18. The decay factors were computed as
w (0)

= h considering A = 1.

The results of the depth averaged concentration c are

presented in Figure 19, in distorted scales, the x-axis being parallel

to the net drift direction. The coordinates are presented in non-

dimensional units, i.e., multiples of the depth. The distances to

which several concentrations extend are tabulated in Table 9.

The effect of the tide, as seen in Figure 19c, is basically

a shift of the isoconcentration lines along the tidal direction.
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Table 8

Average Conditions

Depth h = 30m Shear Velocity u* = 0.5 cm/sec

Non-dimensional Parameters Group 1 Group 2 Group 3 Group 4 Group 5

Net drift magnitude, U T/h 50 90 125 130 130

Max tidal velocity,

(V(2 +V2 )T/h 80 110 120 120 120
Ts Ts

Angle between drift and tide, 500 550 600 600 600
degrees

Dispersion along drift axis,

E T/h2  1000 1000 650 600 600
x

Dispersion normal to drift

axis, E T/h 2  3 80 150 160 160

y

Decay constant, cT 87.3 8.95 0.27 0.021 0.001

Table 9

Length, in Multiples of the Depth, of Area
with Concentration r Larger than Indicated

(for average conditions)

c (mg/) Group 1 Group 2 Group 3 Group 4 Group 5

0.5 20 60 750 - -

1.0 18 50 510 2000 3600

2.0 16 40 280 850 1080
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The dependence on tidal time is more pronounced in the vicinity of

the source, where the width of the plume is small. However, the

model is not reliable in such small distances, as discussed in

Section 3.2.

As was indicated in Section 6.3, the deposition of sediments

on the bottom over a period of time can also be evaluated by the

present model. Naturally, the limitations concerning the reliability

of results for the suspended matter also apply to the results for the

deposition. As an example, the average deposition rates (mass per

unit time per unit area) are shown in Figure 20 for the sediment

group 3, under the average conditions stated in Table 8. The

average of the values of c at high and low water at a point was

taken as a representative value over the tidal cycle. Hence, the

average deposition rate was computed by multiplying this value by

w $(O). The resulting iso-deposition curves are almost symmetrical

about the drift axis. They are valid after steady-state has been

reached. By multiplying the values given on the figure by the

duration of dredging, the amount of sediments deposited at various

locations can be found. This amount, as well as the rate of

deposition, are quite important from an ecological point of view.

Nevertheless, even more important for an overall assesment of the

dredging impact are the percentages of the total sediment discharge

settled within a certain distance from the source.
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An approximate calculation was carried out in the following

way. The areas of the iso-deposition lines of Figure 20 were measured

by a planimeter and, by assuming linear interpolation between the

curves, the total deposition in gr/tidal cycle within each curve was

computed. These quantities were related to the total amount

injected which is 0.02 x 106 x 45600 = 912 x 106 gr/tidal cycle.

The results are presented in Figure 21. It must be pointed out that

the linear interpolation used overestimates the true percentages

that are deposited within a certain area. For an accurate calculation

many more iso-deposition lines between those of Figure 20 are needed.

With respect to the verification of the model, adequate

information is lacking for the time being. The actual dredging

operation in the summer of 1974 would have been an excellent

opportunity for a quantitative evaluation of the model's weaknesses

and for its improvement. The previously mentioned "glass bead

study" (Section 7.1) can provide only qualitative information,

mainly because it involved an instantaneous injection. At this

time only preliminary data on the number of sphalerite particles found

in suspension in various places in the Bay during the experiment are

available (13). A total amount of 2.9 x 1015 sphalerite particles

was introduced into the sea. The predominant particle size was

between 1 and 8p but their density was larger than that of the natural

3
silt or clay, being about 4.0 gr/cm3. Therefore their settling

velocities are close to those of the sediment groups 3 and 4 considered
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in this study. The plume closely followed the mean drogue path

(Figure 12), thus confirming the primary importance of the drift

direction. The particles moved initially E-NE and ultimately SE.

Their spread about the mean direction was large, and apparently

due to the changes in the drift with time and space. The presence

of concentrations of 300 particles/liter in Cape Cod Bay 5 days

or 10 tidal cycles after the injection indicates a net SE drift of

25n. miles
about 5 diys = 5n. miles/day ~ 10 cm/sec, which confirms the5 days

average values obtained from the drogue studies. The drogue data

cover a relatively small area around the proposed dredging site and

the conclusions based on these should not be extended to the

entire Bay without reservation. The drift velocity is possibly

higher in the Southern part of the Bay, and a circulation pattern

is probably present around Cape Cod Bay. The fact that the beads

travelled all the way to Cape Cod, a distance of about 1500 times

the depth, further indicates that the model predictions with respect

to length of the dispersing plume are close to reality. It may be

mentioned that at the time of the glass bead study such a distance

of travel was quite unexpected.
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ERRATA - T. R. #179

4 th line should read

m = Mass rate of injection of the sediment mixture

10th line should read

V = Kinematic viscosity

Equation (3.10a) should read

w = )- ] + (E )
h h 2 C CC=0

- (e )
C C=1

]

4 th line

V should be X

2 nd line from the bottom should read

predictive capabilities

Reference 1 should read

Environmental Equip. Div., EG&G, Waltham, Massachusetts,
December 1972

Page 10:

Page 12:

Page 33:

Page 71:

Page 80:

Page 124:



CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

The model presented herein was necessarily based on simplifying

assumptions, so that an analytical solution could be found. It is

basically intended to give the equilibrium distribution of suspended

sediments, injected from a continuous vertical line source. The

transient behavior of the dispersing sediment plume can also be esti-

mated under certain conditions (as indicated in Section 6.1). In

addition, information is provided on the deposition patterns to be

expected from such a continuous source of sediments.

The relative importance of the various parameters entering into

the model, investigated in Section 7.6, is established and it is shown

that the net drift and the sediment settling velocity are the primary

factors determining the distribution of the suspended matter around the

source. Also of importance is the dispersion coefficient in a direction

normal to the net drift.

A technique was developed for the analysis of drogue data to

yield values for the advective and dispersion terms, taking into account

the nonuniformity of the sediment distribution over the vertical.

Actual data were used for determining these values for the Massachusetts

Bay. However, only 3 or 4 drogues were used in each case, and the

tracks covered in the field studies were relatively short. More exten-

sive data, for longer periods of time, are needed in order to estimate

the hydrodynamic parameters over the long distances that the fines are
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expected to travel according to the models results. In the analysis

of such long-term drogue data the change of net drift between tidal

cycles can be incorporated to yield an approximate net water movement

composed of a sequence of linear segments in the appropriate directions.

In that case, the model could be modified and the plume adjusted so as

to follow the changing net drift direction. In this way the model could

be extended to any form of water movement prevailing in a certain area.

The tidal component could also be similarly adjusted. The assumption

of constant net drift in the present model does not reflect natural con-

ditions in view of the resulting long dispersion patterns. If it is to

be maintained, a much larger value for the lateral dispersion coeffi-

cient should probably be used in order to increase the spread of the

suspended matter. With the present model the width of the sediment

cloud is underestimated, while the prediction of the length is, at

least, conservative.

Nevertheless, probably the most important restriction of the

model is the assumption of one-layer shear flow. This assumption

allowed use of the same vertical equilibrium distribution as in open

channels and, furthermore, a significant simplification in the

structure of the model, through independent treatment of the horizontal

and vertical distributions. Secondary currents due to density varia-

tions, however, are often very important to the transport and dispersion

of suspended sediments. If the suspended matter is assumed to be

carried by density currents near the sea bed, the model could possibly

be applied for the reduced height of that current. The non-dimensional
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plots given in Figures 19, 20 and 21 would be applicable approximately

although the advective and dispersion terms would have to be redefined.

The main difficulty for such an extension of the model lies in the

violation of the surface boundary condition.

Despite the limitations discussed so far, it is believed that

the present model is a relatively simple tool that can predict to some

approximation the impact of dredging or other similar activities in the

coastal zone. The preliminary results of the "glass bead study" of

NOMES seem, at this point, quite encouraging.

Further research is necessary to relax some of the restrictive

assumptions employed in this model. A better understanding of the

effects of flocculation on the settling rates of fines is very desirable.

Also, the hydrodynamic characteristics must be modeled in relation to

the meteorological conditions. Until such additional research produces

more realistic inputs, the model developed in this study can be useful

provided it is applied with full understanding of the inherent assump-

tions and limitations involved.
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APPENDIX A

SETTLING TUBE MEASUREMENTS
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Run No. 1
Kaolini te

Initial Concentration

Initial Turbidity Reading

Background Turbidity

Tim Turbidity Readings (FTU) Percent
(hrs.) 1 2 3 4 5 6 Settled

1.2 47 - 53 - 55 57 18.6

17.8 18 - - 17.5 - 18 71.8

24.8 13 - 13.0 - - 13 79.7

41.8 9.0 - 8.7 - - 8.4 86.5

48.5 7.2 - 7.1 - - 7.2 89.0

64.3 5.4 - 5.6 - - 5.5 91.5

96.8 3.6 - 3.7 - - 3.7 94.3

160.6 2.0 - 2.0 - - 2.1 97.0

233.0 1.3 1.3 1.3 1.6 1.3 1.3 98.2

Run No. 2 Initial Concentration 10 mg/k
Kaolinite Initial Turbidity Reading 7.0 FTU

Background Trubidity 0.40 FTU

Time Turbidity Readings (FTU) Percent
(hrs.) 1 2 3 4 5 6 Settled

0.8 6.1 - 6.6 - - 6.9 6.5

2.7 6.0 - 6.1 - - 6.4 12.7

22.9 3.3 - 3.9 - - 3.2 52

47.3 2.2 - 2.5 - - 2.8 68

70.5 2.0 - 1.95 - - 2.05 76

100.6 1.5 - 1.7 - - 1.75 80.5

149.3 - 1.3 - 1.25 - 1.6 87.1

265.8 - 0.68 - 0.67 - 0.67 95.9
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Run No. 3
Illite

Initial Concentration 10 mg/z

Initial Turbidity Reading 4.0 FTU

Background Turbidity 0.20 FTU

Run No. 4
Illite

Initial Concentration 100 mg/i

Initial Turbidity Reading 36 FTU

Background Turbidity 0.20 FTU
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Tim Turbidity Readings (FTU) Percent
(hrs.) 1 2 3 4 5 6 Settled

2.0 2.6 - 3.2 - - 3.1 25.1

3.8 2.2 - 2.8 - - 2.8 35.0

21.7 1.75 - 1.6 - - 1.5 63.2

29.3 1.35 - 1.5 - - 1.5 66.7

77.4 1.1 - 1.1 - - 1.15 76.0

119.2 0.96 - 0.87 - - 0.83 83.2

173.1 0.70 - 0.77 - - 0.83 84.8

Tim Turbidity Readings (FTU) Percent
(hrs.) 1 2 3 4 5 6 Settled

0.6 24 29.5 33.5 - 35 36 10.2

3.3 17 - 23 - - 32 29.5

27.7 7.6 - 8.0 - - 8.1 78.5

47.0 4.75 - 5.0 - - 5.0 86.7

142.0 1.6 - 1.5 - - 1.5 96.2



Run No. 5
Boston Harbor Mud

Run No. 6
Boston Harbor Mud

Initial Concentration

Initial Turbidity Reading

Background Turbidity

Initial Concentration

Initial Turbidity Reading

Background Turbidity

Time Turbidity Readings (FTU) Percent

(hrs.) 1 2 3 4 5 6 Settled

0.6 35.5 - 43.5 - - 47 17.2

2.9 23 - 33 - - 39 33.3

6.1 16 - 25 - - 28 53.8

22.7 5.8 - 7.2 - - 9.7 82.7

45.3 1.9 - 3.3 - - 5.5 93.2

99.0 1.95 - 2.15 - - 1.9 96.4

169.1 0.98 - 1.01 - - 1.02 98.5

244.3 0.50 - 0.54 - - 0.51 99.3
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Time Turbidity Readings (FTU) Percent

(hrs.) 1 2 3 4 5 6 Settled

1.7 2.4 - 3.4 - - 3.5 37.2

4.6 2.1 - 2.9 - - 3.1 46.3

17.4 2.0 - 2.0 - - 2.5 60.0

23.8 1.75 - 1.9 - - 2.15 64.5

65.8 1.1 - 1.3 - - 1.6 78.7

124.1 0.88 - 0.92 - - 0.88 86.3

189.9 0.62 - 0.62 - - 0.65 91.7

10mg/i.

5.0 FTU

0.25 FTU

100 mg/p.

52 FTU

0.15 FTU



APPENDIX B

CONFUTER PROGRAM FOR ANALYSIS OF DROGUE DATA.
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0001 DIMENSION T(5,50), X(5,50), Y(5,501,OEPTH(6),W(6),DST(50)
0002 DIMENSION XX(5,50), YY(5,50),XXMEAN(5OhYYMEAN(50),XXVAR(50)
0003 DIMENSION YYVAR(50),FX(50),EY(50OPHI(61),CUM(61),Z(61),VXX(50)
0004 DIMENSION VYY(50),SEP(6)
0005 DIMENSION WS(5)
0006 READ (5,3001 NO
0007 300 FORMAT(13)
0008 00 299 IJK=I,NO
0009 NUMWT=O
0010 READ(5,40)STTTINT,8OTDEP
0011 40 FORMAT(F8.OF7.3,F5.0)
0012 READ(5,301) CAPPANSTEP,NCYC
0013 301 FORMAT(F4.2,14,13)
0014 REAC(5,308) NWS
0015 3C8 FORMAT(12)
0016 READ(5,309)(WS(I)tz1,NWS)
0017 309 FORMAT(5F12.71
0018 I=1
0019 M=1
0020 3 READ(5,10) N,IDEP,Ih,!MISIY,!X
0021 10 FORMAT(T3,IlX,13,13,12,12,l8,18)
0022 IF(N+11 12,4,5

C
C SIGNAL ALL UNUSED ELEMENTS OF ARRAY WITH
C NEGATIVF NUMBER
C

0023 4 O 1 III=1,50
0024 T(MIU=-10000000.
0025 1 CONTINUE
0026 1=1
0027 M=M+1
0028 GO TO 3

C
C PUT INTEGER INFORMATION INTO REAL ARRAYS
C

0029 5 T(MI)FLOAT(3600*IH+60*IM+IS)
0030 X(M,1)=FLOAT(IXI
0031 Y(M,I)=FLOAT(IY)
0032 DEPTH(M)=FLOAT(IDEP)
0033 1=1.1
0034 GO TO 3

C
C SIGNAL UNUSED ELEMENTS OF LAST ARRAY AS WITH OTHERS
C

0035 12 00 13 111=1,50
0036 T(M,111)=-10000000.
0037 13 C)NTINUE

C
C MAKE TIME CORRECTIONS SO THAT TIME IS ALWAYS INCREASING
C

0038 00 30 K-1,M
0039 DO 25 KK=I,49
0040 0=T(KKK+1i-T(KKK)

-132-



0041 IF(Q) 17,25,25
0042 17 00 23 KKKaKK,49
0043 T(KKKK+1)=T(KKKK+1)+86420.
0044 23 CONTINUE
0045 25 CONTINUE
0046 30 CONTINUE

C
C SET UP DESIRED TIME ARRAY
C

0047 nST(1)=STT
0048 DO 32 J=1,49
0049 IST(J+1)=DST(J)+TINT
CO5C 32 CONTINUE
0051 JJ=50

C
C ASSOCIATE X AND Y VALUES WITH DESIRFD TIME ARRAY
C

0052 DO 60 L=1,M
0053 1=1
0054, J=1
0'l55 33 IF(OST(J)-T(Lil) 5C,35,35
0056 35 IF(DST(J)-T(L,!+1)) 42,42,55
0057 42 fT=IDST(J-T(LI))/(T(t-,I+I)-T(LI))
005R XX(LJ)=X(L,I)+(X(LI+I)-X(LI))*DT
0059 YY(L,J)=Y(LI)+(Y(L,I+1)-Y(LI )*DT
0060 5C J=J+l
0061 GO TO 33
0062 55 1=1+1
0063 IF (T(L,I)+1) 57,57,35

C
C LENGTH USED IS THAT OF THE SMALLEST ARRAY
C

0064 57 IF(JJ-Ji 60,58,58
0065 58 JJ=J-1
0066 6C CINTINUE
0067 MP=M+1
0068 MZ=M-1
0069 00 80 L-1,MZ
0070 IF(L-1) 65,65,68
0071 65 F2-3
0072 GO TO 73
0073 68 F2=lDEPTH(L-1)+DEPTH(L))*0.5
0074 73 Fl=(DEPTH(L)+DEPTH(L+I))*2.5
0075 W(L)m(FI-F2)/BITDEP
0076 80 C3NTINUE
0077 DFAC=I.-DEPTH(M)/8OTDEP
0078 W(M+1)=DFAC/(9.+ALOG(DFAC))
0079 W(M)=1.-W(M+1)-(DEPTH(M-1)+DEPTH(M) )/(2.*80TDEP)
0080 WRITE(6,310)
0081 310 FORMAT(1H1)
0082 WRITE(6,119)
0083 119 FORMAT(3X,'FOR NEUTRALLY BOYANT PARTICLES')
0084 WRITE(6,129) (W(L),L=1,MP)
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0085 120 FORMAT(2X,# WEIGHTS',lX,10F6.3)
0086 XX(M+1,I)=XX(M,1)
0087 YY(M+l,1)=YY(M,1)
0088 DO 82 J=1,JJ
0089 XX(M+1,J)=XX(M+1,1I
0090 YY(M+1,Jl=YY(M+1,1)
3091 82 C'INTINUE
0092 DO 86 L=1,MP
0093 00 88 J -2,JJ
0094 XX(LJI=(XX(LJI-XX(LI))*30.5
0095 YY(LJ)=(YY(LJ)-YY(LvI)*30.5
0096 88 CONTINUE
0097 XX(L,11=0.
0098 YY(L,11z0.
0099 86 CONTINUE
0100 on 96 J=1,JJ
0101 96 IST(J)=DST(JI-STT
0102 87 DO 84 J-1,JJ
0103 XXMEAN(JI-0.
0104 YYMEAN(JI-0.
0105 XXVAR(J)=0.
0106 YYVAR(J)=0.
0107 84 CONTINUE
0108 DO 90 JlgJJ
0109 DO 89 L=1,MP
0110 XXMEAN(J)=XXMEAN(J)+XX(LJI*W(L)
0111 YYMEAN(J)=YYMEAN(J)+YY(L,J)*W(L
0112 8 CONTINUE
0113 90 CINTINUE
0114 DO 92 J2,JJ
0115 VXX(J)=(XXMEAN(J)-XXMEAN(J-1))/TINT
0116 VYY(J)=(YYMFAN(J)-YYMEAN(J-1))/TINT
0117 92 C3NTINUE
0118 CALL TIDVEL (NCYC,JJ,DSTXXMEANYYMEAN,T INT,DRIFMG,DRI FOR ,UT,

ITIDEDR,LAST)
0119 WRITE (6,130)
0120 130 FORMAT( ' TIME*,5X,'MEAN X*,5X.'MFAN YI,8XIC VAR',RX,N VAR',

19X,'rISP C',8XtoISP N',7X,'VFL X1,5X,'VFL Y')
0121, WRITE(6,1311
0122 131 FORMAT(3X, '(SEC)1,6X,'(CM) ,6X,'(CM)',7X,'(CM2/SFC)',5X,'(CM?/SEC)

1S,5X,'(CM2/SEC)1,5X,H(CM2/SEC)',4X,'(CM/SEC)',2XO(CM/SEC)',/)
0123 ST=SIN(DRIFOR)
0124 CT=CCS(DRIFDR)
0125 00 95 J=1,JJ
0126 XM-XXMEAN(J)*CT+YYMEAN(J)*ST
0127 YM-XXMEAN(J)*ST+YYMEAN(J)*CT
0128 DO 94 L=1,MP
0129 XXX-XX(L,J)*CT+YYfLJ)*ST
0130 YYY=-XX(LJ)*ST+YY(LJ)*CT
0131 XXVAR(J)=XXVAR(JI+W(L)*(XXX-XM)**2
0132 YYVAR(J)=YYVAR(J)+W(L)*(YYY-YM)**2
0133 94 CINTINUE
0134 95 CONTINUE
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0135 DO 195 Jz2,JJ
0136 EX(JI=(XXVAR(Ji-XXVAR(J-1))/(2.*TINTI
0137 EY(J)=(YYVAR(J)-YYVAR(J-l )/(2.*TINT)
0138 195 CONTINUE
0139 DO 141 J=2,JJ
OL40 WRITE (6,1401 DST(J),XXMEAN(J),YYMEAN(JI,XXVAR(J),YYVAR(J)

1,EX(J),EY(J),VXX(JIVYY(J)
0141 140 FORMAT (3F10.0,4E14.5,2F10.3)
0142 141 CONTINUE
0143 CALL CONVRT(NCYC,LAST,DRIFMG,DRIFDR,UT,TIDEDR,EX,EY)
0144 293 IF(NUMWT)294,294,295
0145 294 CALL USTA (NCYCJJVXXVYYDSTUSTARTINT)
0146 295 NUMWTuNUMWT+1
0147 IF(NWS-NUMWT)299,83,83
0148 83 WS1=WS(NUMWT)
0149 WRITE (6,315)WS1
0150 315 FOPMAT(*P1',3X,'NORMALIZED VERTICAL PROFILE FOR SETTLING VELOCITY',

1F12.7,2X,'CM/SEC',/)
0151 CALL PROFIL(PHI ,CUM,Z,WS1,USTARCAPPANSTEPE0TOEP)
0152 CALL WEIGHT( WSFPDEPTHCUM,MBOTDEP,Z,NSTEP)
0153 GO TC 87
0154 -295 CJNTINUE
0155 CALL EXIT
0156 END
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0001 SUBROUTINE TIDVEL(NCYC,JJ,DST,XXMEAN,YYMEAN,TINT,DRIFMG,DRIFR,
lUTTIDEDRLAST)

C
C THIS ROUTINE COMPUTES THE MEAN WEIGHTED TIDAL AND NET DRIFT
C VELCCITIES GIVEN THE MEAN WEIGHTED DROGUE MOTION (XXMEAN,YYMFAN)
C

0002 DIMENSION DST(50),XXMEAN(5Ch)YYMFAN(50)
0003 WRITE(6,3111
0004 311 FORMAT(IHI)
0005 PI=3.14159
0006 NDST=45600./TINT
0007 REM=45600.-NDST*TINT
0008 LAST-NCYC+NDST
0001 IF(LAST-JJ)15,15,14
0010 14 WRITE(6,301)
0011 301 FORMAT(//,$ TIDAL CYCLE OVERRUNS RECORD IN TIDVEL

I_COMPUTATIONS MADE CN REDUCED AVAILABLE CYCLE')
0012 LAST=JJ

0013 REM"o.
0014 XXMEAN(LAST+l)=XXMEAN(LAST)
0015 YYMEAN(LAST+I)=YYMEAN(LAST)
0016 15 XLAST=XXMEAN(LAST)+(XXMEAN(LAST+1 )-XXMFAN(LAST))*REM/TINT
0017 YLAST=YYME&N(LAST)+(YYMEAN(LAST+1)-YYMEAN(LAST))*REM/TINT
0018 XDRIF=XLAST-XXMEAN(NCYC)
0019 YDRIF=YLAST-YYMEAN(NCYC)
0020 CYCDUR=DST(LAST)-DST(NCYC)+REM
3021 DVELX=XDRIF/CYCDUR
0022 DVELY=YDRIP/CYCDUR

C
C DIRECTION OF NET DRIFT
C

0023 DIRECT=ATAN(YDRIF/XCRIF)
0024 IF(XCRIF)20,25,25
0025 20 IF(YDPIF)21,22,22
0026 21 DIRFCT=DIRECT-PI
0027 GO TO 25
0028 22 fIRECT=DIRECT+PI
3029 25 DRIFOR-DIRECT
003C DEGDIR=DRIFDP*(180./PI)
0031 DRIFMG-SQRT((XDRIF)**2+(YORIF)**2)/45600.
0032 WRITE(6,3031 DRIFMG,DEGDIR
0033 303 FORMAT(/,3X,'NET DRIFT=*,FIO.3,2X9 CM/SEC',O1X,*DIRECTION FROM

1 EAST6,FI0.3)
0034 DEVPIlO.
0035 DEVM2-0.
0036 XDEVI=O.
0037 YDEVI=0.
0038 XDEV2=0.
0039 YDEV2=0.
004C NP-NCYC+l
0041 00 38 LL=NP*LAST
0042 XD=DVELX*TINT*(LL-NCYCI+XXMEAN(NCYC)
0043 YD-DVELY*TINT*(LL-NCYC)+YYMFAN(NCYC)
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0044 DEVM=SQRT((XXMEAN(LL)-XD)**2+IYYMEAN(LL)-YD)**2)
0345 CALL TEST(NTEST,XXMEAN(NCYC),YYMEAN(NCYCI,XXMFAN(LL),YYMFAN(LL),

1DIRECT)
0046 IF(NTFST)31,31,34
0047 31 IF(DEVMI-DEVM)32,38,38
0048 32 XDEVI=XXMEAN(LL)-XD
004q YDEVI=YYMEAN(LL)-YD
0050 DEVMI=DEVM
0051 GO TO 38
0052 34 IF(DEVM2-DEVM)35,38,38
0053 35 XnEV2=XXMFAN(LL)-XD
0054 YDEV2=YYMEAN(LL)-YD
0055 OEVM2=DEVM
0056 38 CJNTINUE
0057 XDEV=(XOEVl-XDEV2)
0058 YDEV=(YDEVI-YDEV2)
005( TIDDIR-ATAN(YDEV/XDEV)
0060 185 TIDEDRzTIDDIR
0061 TIDDFG=TIDEDR*(180./PI)

C
C MAX. TIDAL VEL. = DISP. OVER 1/2 CYCLE * P1/TIME OF CYCLE
C

0062 DEVT=SQRT(XDEV**2+YCEV**2)
0063 UT=DEVT*3.14159/CYCDUR
0064 WRITE (6,304) UTTIDDEG
0065 304 FORMAT(/,3XOMAX TIDAL VELOCITY=',FlO.3,2X,*CM/SEC',10X,

le'IRECTION FROM FAST',FI0.3,/)
0066 999 RETURN
0067 END

0001 SUPROUTINE TESTiNTESTXOYO,XIYl,DIRECT)

0002 PI=3.14159
0003 X=Xl-XO
0004 Y=YI-YO
0005 DIRECI=ATAN(Y/X)
0006 IF(X)20,25,25
0007 20 IF(Y)21,22,22
COOS 21 DIREClwDIRECl-PI
0009 GO TO 25
0010 22 DIREC=DIRECI+PI
0011 25 C)NTINUE
0012 IF(DIRECT-DIREC1138,38,30
0013 30 IF(DIRECT-DIRECI-PI) 36,36,38
0014 36 NTFSTal
0015 GO TO 99
0016 38 NTEST=-1
0017 99 RETURN
0018 END
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0001 SUBROUT INE CONVRT(NCYC,LAST,DR IFMG,DRIFOR,IUT,TIDEDR ,EXEY)
0002 DIMENSION EX(50),EY(50)
0003 FXS=O.
0004 EYS=0.
0005 NNCYC=NCYC+l
0006 DO 190 J=NNCYCLAST
0007 EXS=EXS+EX(J)
0008 EYS=EYS+EY(J)
0009 190 C)NTINUE
0010 AVEX=EXS/(LAST-NCYC)
0011 AVEY=EYS/(LAST-NCYC)
0012 THETA=ABS(DRIFnR-TICEDR)
0013 TIDEC=UT*COS(THETA)
0014 TIDEN=UT*SIN(THETA)
0015 WRITE(6,191) TIDECTIDEN
0016 191 FORMAT(/,3X,' TIDE ALONG DRIFT AXIS

6
,F10.3,2X,fCM/SEC',I0X,

1' TIDE NORMAL TO IT',FlO.3,2X,'CM/SEC')
0017 WRITE(6,192) AVEXAVFY
0018 192 FORMAT(/,3X,'AVERAGE DISPERSION COFF. ALONG DRIFT AXIS',E12.5,2X,

1'CM2/SEC,lIOX,'NORPAL TO IT',E12.5,2X,'CM2/SEC*I
0019 RETURN
0020 END

0001 SUBROUTINE USTA (NCYCJJVXXVYYDSTUSTARTINT)
C
C THIS ROUTINE COMPUTES THE SHEAR VELOCITY FROM A TWO
C DIMENSIONAL TRACK OF DROGUE POSITIONS, USING THE VELOCITY
C MAGNITUDES
C

0002 DIMENSION OST(50),VXX(50),VYY(50)
0003 CVFL=C.
0004 NDST=45600./TINT
0005 LAST-NCYC+NDST
0006 LLAST=LAST-1
0007 IF(JJ-LAST)41,42,42
0008 41 WRITE(6,341)
OOOQ 341 FORMAT(/,2X,'RECORD TOO SHORT FOR TIDAL CYCLE DESIRED IN USTA')
0010 LLAST-JJ-1
0011 42 DO 115 LLL=NCYCLLAST
0012 CVEL=CVEL+SQRT(VXX(LLL+1)**2+VYY(LLL+1)**2)
0013 115 CONTINUE
0014 117 VFLAV=CVEL/(LLL-NCYC+)

C
C ASSUMING THAT FRICTION COEFFICIENT, F, =.02
C

0015 USTAR=VELAV/20.
0016 WRITE(6,331) USTAR
0017 331 FORMAT(/,3X,*USTAR-S,FlO.3,2X,'CM/SEC',/)
0018 RETURN
0019 END
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SUBROUTINE PROFIL(PHICUM,Z,WSUSTAR,CAPPA,NSTEPROTDEP)
C
C THE PROGRAM COMPUTES THE NORMALIZED VERTICAL CONCENTRATION
C PROFILE FO A GIVEN DEPTH, SHEAR VELOCITY, AND SETTLING RATE.
C

0002 DIMENSION PHI(61),S2(61),CUM(61),Z(61)
0003 Q=WS/(USTAR*CAPPA)
0004 Z(1)=0.

0005 RSTEP=NSTEP
0006 DZ=1./RSTEP
0007 CUM(1)=0.
0008 N=NSTEP+1
0009 20 DO 50 Iz1,N
0010 IF(Z(I)-.05) 25,25,30
0011 25 ZZ=.05
0012 GO TO 40
0313 30 ZZ=Z(I)
0014 40 S2(I)=U(l./ZZ-l.)/14.)**Q
0015 IF (I-N) 42,43,43
0016 42 Z(I+1)=Z(I)+DZ
0017 43 IF(I-1)50,50,45
0018 45 S3=.5*(S2(I)+S2(I-1))*DZ
0019 CUM(I)=CUM(I-1)+S3
0320 50 CONTINUE
0021 55=1./CUM(N)
03;2 WRITE(6,448)
0023 448 FORMAT(5X,'Z',I0X,'PHI')
0024 DO 60 I=lN
0)25 PHI(I)=S5*S?(I)
0026 WRITE(6,450) Z(I),PII(I)
0027 450 F9RPAT(2XF8.3,5XE12.5)
0028 61 CONTINUE
0029 RETURN
0030 END
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0001 SUBROUTINE WEIGHT(WSEPDEPTHCUMMBOTDEP, ZNSTEP)
0002 DIMENSION SEP(6),W(6),CUM(61),OEPTH(6),Z(61),ZZ(61),WT(6),DCUM(61)
0003 MP=M+1
00O4 MZ=M-1
0005 DO 65 L=1,MZ
0006 SEP(L)=.5*(DEPTH(L+1.+DEPTH(L))/BOTDEP
0007 65 CONTINUE
0008 0FAC=1.-DEPTH(M)/BCTDEP
0009 SEP(P)=1.-OFAC/(9.+ALOG(DFAC))
0010 L=1
0011 NN=NSTEP+1
0312 00 66 I=1,NN
0013 ZZ(I)=1.-Z(I)
0014 OCUM(I)=CUM(NN)-CUM(IJ
0015 66 CONTINUE
3016 03 70 I=1,NN
0017 IF(ZZ(NN-1+1)-SEP(LI)70,68,68
0018 68 SFAC=(SEP(L)-ZZ(NN-1+2))/(ZZ(NN-I+1)-ZZ(NN-I+2))
0019 WT(L)= CUM(NN-I+2)+SFAC*(DCUM(NN-I+I)-DCUM(NN-I+2)))/CUm(NN)
0020 L=L+1
0121 IF(L-M)70,70,72
0022 70 CONTINUE
0023 72 00 80 L=1,M
0024 IF(L-1)75,75,77
0025 75 W(L)=WT(L)
0026 GO TO 80
0027 77 W(L)=WTtL)-WT(L-1)
0028 80 CONTINUE
0029 W(M+1)z1.-WT(M)
0030 WRITE(6,120) (W(L1,L1,MP)
0031 120 FORPAT(/,2X,'WEIGHTS' ,IX,10F6.3)
0032 RETURN
0033 FND
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APPENDIX C

COMPUTER PROGRAM FOR THE HORIZONTAL

DISTRIBUTION OF AVERAGE CONCENTRATION
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0001 3 READ15,8) IHITT,VCLR
0002 8 FORMAT(I2916,F6.3)
0003 H=IH
0004 TT-ITT
0005 IFIHI1,2,2
0006 2 DO TO K=1,5
0007 READ (5,10) IXSIYSTXLIYLIDT,T1,DT
0008 10 F'RAT(13,4,4,4,4,F6.2,F6.2,F6.3)
0009 XSS!XS
0010 YS=IYS
0011 XL=IXL
0012 YL-TYL
0013 flin
0014 READ(5,11) tED,IFN,!UV,IVTIVNAANG
0015 11 FrIRMAT(217,315,FT.3,F7.2)
0016 ED-IF)
0017 FN=IEN
0018 VT=!VT
0019 UD=IUD
0020 VN IVN
0021 P=3.14159
0022 WRITF(6,9) K
0023 9 FIRMAT(*1',2X,'FIR SEDIMENT GROUP NO.',13)
0024 WRITFE6,1ql ANG
0025 19 FORMAT(* DRIFT DIRECTION IS',F8.2,' CFGREFS FROM EAST')
0026 WRITEI6,12)
0027 12 FORMAT(//,' D!MFNSIONLFSS PARAMETERS:')
0028 WRITF(6,13) !UDIVT,IVN
0029 13 FORMAT(I NET DRIFT VFLOCCTY',,155X,MAX TIDAL VFLOCTTY ALrNG DRI

IFT AXIS',15,5X,'NCRMAI TO TT',15)
0030 WRITE16,14) IFD,IFN
0031 14 FORMAT(@ DISPERSICN CflFFFICIFNTS-',5X,' ALONG DRIFT AXIS',T7,5X,

l'NORMAL TD IT99151
0032 WRITE(6,16) TTlDT
0033 16 FORMAT(2X,'TIME* ',F6.2,5XEND OF INJECTION AT*, F6.2,5X,'STFP nc

I INTEGRATIVN',F6.3)
0034 WRITE16,17) A
0035 17 FRRMAT(* CFCAY FACTORW,lo.4t
0036 WRITE(6,18)
0037 18 FORMAT(/,O x Y C(PAR)/CO',/)
0038 M=XL/D
0039 NmYL/f
0040 Wlu(M1I/2
0041 N1=(N*1/2
0042 M2u2*"141
0043 N2u2*N1+1
0044 X=XS-M1*D
0045 Y-YS-N1*D
0046 ANG-P*ANG/180.
0047 DO 60 Im1,42
0048 00 65 JlPN2
0049 XPRIf4E-X*C0S(ANG)+Y*SIN(ANGl
0050 YPRIMEz-X*SINfANG)+Y*CnS(ANG)
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0051 T2=0.
0052 01=0.
0053 03=0.
0054 49 IF(T1-T2) 110,51,51
0055 51 Sl=(X RIME-UD*(T-T2)+(.5*VT/P)*(CIS(2*P*T)-CnS(2*D*T2)))**?
0056 RI=4*Fo*(T-T?)
0057 FI=C1/R1
0058 S2=(YPRIME+(.5*VN/P)*(COS(?*P*T)-COS(?*P*T2)))**2
0059 R?=4*EN*(T-T2)
0060 -2=S2/R2

0061 F3=A*(T-T2)
0062 F=F1+F2+F3
0063 R=4*P*(T-T2)*SORT(Ff*EN)
0064 0=01
0065 TF(F-10 .) 55,55,56
0066 55 01=(FXP(-F))/
0067 Go T9 57
0068 56 )1=A.
006q 57 T2=T2+DT
0070 IF(T2-nT) 49,4S,52
0071 52 02=.5*(C+01)*0T
0072 03=03+02
0073 Gn Tn 49
0074 100 CB=V1LR*TT*Q3/(H**3)
0079 WPITE(6,20) XY,CP
0076 ?0 F00QMAT(FR.1, 9.1,4X,E10.1)
0077 y=y+n
0078 65 CONTINUF
0079 x-x+fl
0080 Y=YS-K1*9
OO' 6% CONTINUP
0082 F0 CnNTINUF
0083 G0 TO 3
0084 1 CAUt EXIT
0085 FNn
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