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ABSTRACT

Submitted to the Department of Civil Engineering on September 21, 1964, in
partial fulfillment of the requirements for the degree of Doctor of Science

Much of the engineering literature has failed to show an under-
standing of the mechanism of longitudinal dispersion which arises in the one
dimensional representation of pollution transport in turbulent shear flows.
In the present work, it is shown that the one dimensional form of the mass
balance equation may be obtained by spatially averaging the three dimensional
mass balance equation. This averaging indicates that the convective transport
cannot be represented in a one dimensional equation solely by the average
velocity and average concentration at a section since there is a net transport
associated with the variations of velocity and concentration from their averages.
This net transport (called longitudinal dispersion) is shown to be diffusive in
nature for uniform flow, and it is assumed to be diffusive for non-uniform flow.
Thus, the mass transport due to dispersion is proportional to the longitudinal
gradient of average concentration. The relative importance of dispersion
depends on the relative steepness of the concentration gradient.

A review is given of the procedures which have been used for model-
ing dispersion in estuaries. Investigation of the model laws, the dispersive
mechanism, and model verification procedures indicates that model results on
concentration distributions have been incorrectly transferred to prototype
scale in the constant density regions of estuaries. It is shown that in dis-
torted models concentration ratios are not numerically the same at geometri-
cally similar points as has been assumed. This assumption has resulted in
predicted concentrations which are an order of magnitude too large in many
cases.

An analytical method is presented for calculating the dispersion
coefficient fior uniform oscillating flow of the type found in constant density
regions of estuaries. For turbulent estuary type flow in a uniform pipe of
radius a, the analytical value of the dispersion coefficient is 10.1 au,.,
where u.,. is the shear velocity (square root of boundary shear stress divided
by fluila density). Since u, is a periodic function of time, so is the dis-
persion coefficient. It is shown that after one or two periods of dispersal
of mass, a sufficiently accurate concentration distribution may be obtained
by use of a constant dispersion coefficient (Viz., the time average of the
dispersion coefficient during a period of tidal oscillation).

A mass balance equation representing conditions at "slack" times
in an estuary is commonly used as a mathematical model for the distribution
of a pollutant. The results of this investigation may be used to estimate
the time averaged dispersion coefficient in this equation for constant
density portions of tidal estuaries. Thus, preliminary estimates of concen-
tration distributions may be obtained for known input conditions.
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1) INTRODUCTION

1.1) General Problem of Pollution

Rivers and estuaries are highly important in the disposal of domestic

and industrial waste materials. Questions arise as to how a given waste

material will be transported by the river, what the distribution of the

material will be at a given time, and how rapidly the material will be removed

from the river or estuary after having been introduced. These questions fall

into the general category of fluid transport problems, and the answers depend

both on the hydraulic or flow characteristics of the river under consideration

and on the characteristics of the particular material being transported.

The most effective way to analyze such transport problems is in the

formation of a mass balance equation (or conservation of mass equation) for

the substance of interest. This mass balance equation is essentially a

method of bookkeeping which takes account of the various factors which

influence the quantity and distribution of the substance, In Section 2, a

general mass balance expression is presented as a differential equation. In

this general equation, the direct effects of the hydraulic transport

mechanisms (i.e., the convection and dispersion) have been represented

explicitly. It is possible to do this because the convection and dispersion

depend only on the fluid motion and not on the characteristics of the

substance which is being transported.

In order to write a conservation equation, it is necessary to also

include factors such as decay of the substance being transported, absorption

of the substance across the flow boundaries, etc. These factors depend on

the characteristics of the substance being transported and, in the general

mass balance equation, are represented by general terms. To apply the general

conservation equation to any particular substance, information must be

available concerning what factors or reactions are to be considered and

concerning the rates at which these reactions take place. A substance is

said to be conservative if there are none of these additional factors or

reactions which must be considered. That is, a substance is considered,

to be conservative if none of the substancie i's diffus'e'd
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across the flow boundaries or produced (or destroyed) within the flow. For

example, salinity is generally conservative. Dissolved oxygen is usually non-

conservative because it may be consumed by biochemical oxygen demand (BOD) and

because it may be absorbed from the atmosphere or produced by algae. Just as

oxygen is consumed by BOD, BOD and other industrial wastes may react with

dissolved oxygen or may undergo other digestive processes. Thus, these wastes

are non-conservative. Radioactive material is non-conservative by virtue of

its decay. Tracers, such as dye, may be absorbed by the flow boundaries and

thus be lost to the flow. In these cases, it is necessary to know the rates

at which these processes and reactions take place in order to apply the

general mass balance equation to a specific case.

There is the possibility that various types of reactions may be

associated with a particular substance. For the present work, an important

fact is that these reactions and the hydraulic transport processes are

independent. Hence, a conservative substance may be used to study dispersion,

and the information gained in this way may be applied to the dispersion of a

non-conservative substance.

One objective of studies of mixing processes in rivers and estuaries

is to gain information on dispersion so that concentration distributions may

be predicted. The first prerequisite in obtaining this objective is a clear

understanding of the mechanism of longitudinal dispersion. A certain amount

of confusion exists in the literature in regard to diffusion and dispersion

processes in pollution analysis.

Following a discussion of the mechanisms of dispersion, the next

step is an investigation of the relation between dispersion and other hydraulic

parameters about which information is more readily obtainable. This is

desirable so that a direct evaluation of dispersion does not have to be made

in every individual situation. There are at least four methods of seeking

the relation between dispersion and other parameters: (1) analytical

methods, (2) laboratory (experimental) studies in idealized flow situations,

(3) scale models of specific situations, and (4) field studies in rivers

and estuaries. All four of these enter the present work to varying degrees.

Unfortunately, each one of these approaches has its limitations. Analytical

and laboratory studies are useful because they may be used to investigate the



basic dispe-rsive process free from secondary and complicating influences. For

this very reason, the results of analytical and laboratory work represent only

an approximation to most practical cases. On the other hand, the results of

model and field studies are influenced by the secondary factors of the particular

case being studied, and the application of these results to other cases is often

difficult. Also, the use of models assumes that certain laws of similitude

between model and prototype have been developed. It will be shown that

in some cases incorrect conclusions have been drawn from the model studies

of mixing processes.

As shown in Fig. 1-1, the course of a stream from its origin to

the ocean may be divided into a region of unidirectional flow (the river)

and a region where tidal effects are present (the estuary). The estuary

may also be subdivided into a region which contains only fresh water and a

region where salinity has intruded from the ocean. Regardless of which region

is being considered, the fundamental factors which contribute to dispersion

are the same. These factors are the distribution of vel-ocity and the

distribution of turbulent diffusivity across the section. Yet, in each region,

the general type of distribution of velocity and diffusivity will be different.

Thus, it is to be expected that the dispersion coefficient may be related to

different hydraulic parameters in the different regions. All of the regions

are dealt with to some extent in the present work. However, the primary

interest is in the fresh water portion of estuaries.

1.2) Summary of the Present Work

The three dimensional mass balance equation is developed and time

averaged to obtain an expression which includes turbulent diffusion. Next,

the details are presented to show how the time averaged equation may be

spatially averaged to arrive at a one-dimensional mass balance equation for

unsteady, non-uniform flow. In this development it is seen that longitudinal

dispersion must be considered in order to correctly and completely represent

a transport problem in a one dimensional frame work. It is also pointed

out that in different situations, the importance of the dispersive transport
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relative to the convective transport may be expected to vary.

In light of the development to obtain the one-dimensional mass balance

equation, a discussion is presented of the previous work on dispersion in both

steady (river) flow and estuary type flow. It is seen that good analytical

predictions of the dispersion coefficient have been made for steady, uniform

flow, but not for unsteady, non-uniform flow. This raises the question of

modeling longitudinal dispersion. Thus, modeling laws for dispersion are

discussed, particularly as they apply to estuary models.

To demonstrate the general manifestations of dispersion, solutions

for various boundary conditions are presented and discussed for the one .

dimensional mass balance equation in steady, uniform flow. Then attention

is turned to unsteady estuary type flow. A detailed analysis of dispersion

in uniform estuary type flow is presented. This analysis includes the

determination of an analytical expression for the dispersion coefficient

in estuary type flow. In view of the analysis, an investigation is made

into the importance of the time variation of the dispersion coefficient

during a period of (tidal) oscillation. Next, some solutions to the one-

dimensional equation for uniform estuary type flow are presented.

After discussing some methods for the experimental determination

of dispersion coefficients, the experimental program is described. In

this program, dispersion coefficients were experimentally determined to check

the validity of the analysis for estuary type flow.
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2) MASS BALANCE EQUATIONS

2.1) Introduction

In this section, mass balance equations are presented for the

case of a substance P which is introduced into and transported by a fluid

R. It is assumed that the density of the mixture is independent of the

concentration of P in R. This condition is satisfied exactly if P is a

fluid with the same density as R. This condition may be satisfied

approximately if P is a fluid which differs only slightly in density from

R or if the concentration of P is small. First, a general three dimensional

conservation equation will be obtained in which the mass transfer by fluid

convection is completely and correctly represented in the convective terms.

In applying the conservation equation to turbulent flow, it is frequently

convenient to write the velocity as a time averaged velocity plus a

turbulent fluctuation. It will be shown that time averaging of the general

conservation equation leads to an expression where the convection may be

written in terms of the time averaged velocity. However, it is seen that

there is a net convection associated with the turbulent fluctuations and

this transport must be accounted for also. This requirement may be satisfied

by representing this net convection as turbulent diffusion. In still other

cases where there is a primary direction of flow, it is often convenient to

represent the convection as being one dimensional, i.e., convection at a

rate given by the spatially averaged velocity at each section. It will

also be shown that the conservation equation may be averaged across the flow

section to obtain a mass balance with a one dimensional convective term.

Just as turbulent fluctuations have a net convection compared to the time

averaged velocity, so spatial variations in the velocity and concentration

at a given section will be seen to give a net convection compared to the one

dimensional velocity. This convection due to the spatial variations may also

be represented as a diffusive transport and is called longitudinal dispersion.

2.2) Definitions

Let the concentration c and the density g be defined as follows:
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mass of P
mass of solution or mixture of P in R

mass of solution
V volume of solution

Thus,
mass of P

C volume of solution

The axes of a Cartesian coordinate system are taken as x, y, z, and the fluid

velocities in the three directions are taken respectively as u, v, w. For

turbulent flow, the velocity components and the concentration may be written

as

u = u + u'

v = v + v' 2-1
w = w + w'

c = c + c'

where the bar indicates a time-averaged quantity and the prime indicates

the turbulent fluctuation of a quantity. The time average of any quantity,

for example u, is defined by

ift+T
U = f+u dt

T t 2-2

where T is a time which is large relative to the time scale of the turbulence

that is present but small compared to any gross unsteadiness which may be

present.

To write the differential form of the mass balance equation, an

elemental volume will be considered. This volume has sides dx, dy, dz as

shown in Fig. 2-1. The mass balance requires that the time rate of increase

of mass within the volume be equal to the net rate of influx across the

boundaries plus the net rate of production of mass within the volume. For

present considerations, the primary mechanisms for flux of mass across the

boundaries are convection by the velocities u, v, w and molecular diffusion.

According to Fick's first law (Ref. 8), the rate of mass transport due to

molecular diffusion may be written as



-14-

j = - A D -x l-x m ox

y= - A D c2-3y y m y

S= - Az Dm)
z zmz

where j , j , j are the rates of mass transport in the x, y, and z

directions, the A's are the areas through which diffusion takes place

(A perpendicular to x, etc.), and D is the molecular diffusion coefficient.
x m

y

X

dz

fuc dy dz + (4uc)dxdydz

+ jx dy + j + - (j X) dx

dx

Fig. 2-1: Elemental Volume for Three Dimensional Mass Balance Equation

2.3) General Mass Balance Equation

Fig. 2-1 shows the rates of mass flux due to convection and molecular

diffusion through the faces perpendicular to the ) direction. Similar

expressions may be written for the flux through the other faces. If nP is

written for the rate of production of P per unit volume of solution, then

the mass balance for P is
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+ -(Puc) + (Pvc) +-(Pwc)

3 Be 3 oc 3 bc2-4
= (pDm ) +' ( Dm) ) +' g(Dm E) + np

This equation states that the rate of increase of the mass of P within the

elemental volume is equal to the net rate of influx of P plus the rate of

production of P within the volume.

Eqn. 2-4 was written as the mass balance of P. A similar equation

may be written for the mass balance of R, the fluid which is transporting P.

Let the concentration of R be r. Thus, r = 1-c, and by analogy to Eqn. 2-4,

the mass balance for R is

3(gr) o +
r + ( u r) + ( v r) + ) ( w r)

2-5

(D mE) + ( m L) + (,,m r

By adding Eqn. 2-5 to Eqn. 2-4, one finds

)+ ( + (w = 0 2-6

which is the general equation of continuity for the solution.

2.4) Mass Balance Equation for Turbulent Flow

Eqn. 2-4 is applicable to turbulent flows as it is written. However,

to use it in this form, it would be necessary to use the actual (turbulent)

velocities u, v, w. It is usually more convenient to work with time averaged

quantities. A mass balance in terms of these time averaged quantities may be
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obtained in the following way: Introduce the expressions of Eqn. 2-1 into

Eqn. 2-4, and expand the products of sums. Then take the time average of the

resulting equation in accordance with the definition contained in Eqn. 2-2.

Under this averaging process, all terms having only one primed quantity go to

zero. After performing these operations, the mass balance equation may be

written as

t + (u) + ( +

+ -(pu'c' ) + (pv'c') + (w' c2 

- y D - + - (.pD - ) + -,D - ) + n
)x m x y m 3y 6z M z P

where the bars indicate

seen that the turbulent

convection of mass. By

molecular diffusion, the

is often represented as

first law, the transport

proportional to the grad

the time average defined in Eqn. 2-2. Thus, it is

fluctuations (u', v', w', c') give rise to a net

analogy to molecular fluctuations which produce

convective transport due to turbulent fluctuations

a diffusive process. Also, by analogy to Fick's

due to turbulent fluctuations is assumed to be

ient of concentration, i.e.,

uIcI= - Pe V- x

- y y

v''= - fe

where ex, e , e are the turbulent diffusion coefficients or the turbulent

diffusivities.

2-8
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The representation of Eqn. 2-8 is also suggested by analogy between

mass transport and momentum transport since Navier-Stokes equations may be

considered as momentum equations. The turbulent velocities of Eqn. 2-1 may

be introduced into the Navier-Stokes equations, and these equations may then

be time averaged. When this is done, it is found that there is a net momentum

transfer or apparent stress arising from terms like u'v'. For flow in the x

d'irectiongu' v' is an apparent shearing stress and is often represented by

xy - uv' =gcy =E 2-9

where T is the shearing stress and e is called the eddy viscosity or

coefficient of turbulent momentum diffusion. (See Ref. 49 for a more thorough

explanation on applying the Navier-Stokes equatiorsto turbulent flow and on

representing the turbulent momentum transfer as diffusion of momentum.)

Although this analogy exists between turbulent diffusion of mass and momentum,

the turbulent (mass) diffusivity (e) is not necessarily equal in magnitude

to the eddy viscosity (E). However, both e and e depend strongly on the

kinematics of the turbulence which is present in a given situation. Thus, the

numerical values of e and E would be expected to be approximately the same

and, in many situations, they may be assumed to be equal without introducing

appreciable error.

Returning to Eqn. 2-7 and int-roducing the expressions of Eqn. 2-8,

one obtains

+ (pu) + (gvc) + (gw)

2-10

- [p(Dm+ex)-]+ - [.(+ey)-] +- (+e)-] + +Tx- m x x y m y y z m z 



This is the mass balance in terms of time averaged quantities. The turbulent

diffusion coefficients are many times larger than the molecular diffusion

coefficient. Thus, it is usually permissible to drop the molecular diffusion

terms from Eqn. 2-10. However, in regions where the turbulence is damped

out (e.g., near solid boundaries), it may be necessary to consider molecular

diffusion.

2.5) One Dimensional Mass Balance Equation Including Definition of

Longitudinal Dispersion

The complex geometries and boundary conditions which exist in most

practical cases make the solution of Eqn. 2-10 extremely difficult, if not

impossible. The mass balance may be simplified by converting it into an

equation containing only quantities which have been averaged across the flow

section (i.e., averaged in the lateral direction). Also, let consideration

be limited to cases where the flow has a primary direction of motion, and

let this be the X direction. The mass balance equation is then one dimentional

in that the spatially averaged quantities possess variation only in one

dimension, namely the X or flow direction. (In the present sense, the term

"spatial" applies only to the cross sectional area.)

Define the spatial average of u and c as

U = u dA
fA 

2-11

C = f dA
A

where A is the cross sectional area. Since only one dimensional flow is

being considered, the spatial averages of v and w (i.e. V and W) are zero.

Also define spatial variations of the velocities and concentration by
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u = U + u"

C = C + c"
2-12

w = w"

Just as u' was a temporal variation from u, so u" is a spatial variation from

U. Note that v" and w" are not necessarily zero even though V and W are zero

in one dimensional flows. Introduce the expressions of Eqn. 2-12 into the

left-hand side of Eqn. 2-10, expand the products of sums, and take the spatial

average of the resulting expression. The details of this operation are

presented in Appendix A. From Eqn. A-31, the one dimensional form of the

mass balance is seen to be

2C )C 1 _ I =)
X+ U + [ (u"c"A)] = (=xA )C) + Mp/g + N,/S 2-13

where u" c'' indicates the spatial average as defined in Eqn. 2-11. Also,

e is a diffusion coefficient defined so as to represent the average or one

dimensional turbulent diffusion in the x-direction. (See Eqn. A-24.) Mg

is the rate of influx of mass across the lateral boundaries due to diffusion.

(See Eqn. A-22 and the discussion which accompanies it.) As examples, a

positive M would be the absorption of oxygen in the reaeration of a river,

and a negative M would be the absorption of dye by a concrete channel.

Also, N is the spatial average of n, A positive N would result from

oxygen production by suspended algae while N would be negative for



-20-

radioactive decay or for the consumption of oxygen by suspended matter

possessing biochemical oxygen demand.

In Appendix A it is pointed out that Eqn. 2-13 involves some

degree of approximation if the cross sectional area changes with x. How-

ever, if the flow area is constant, then no approximations are involved in

averaging Eqn. 2-10 to obtain Eqn. 2-13.

It remains to discover the significance of the bracketed term on

the left-hand side of Eqn. 2-13. This term is similar to the term which was

called the x component of the turbulent diffusion in the time averaged

equation. Thus, one might consider writing the transport represented by the

bracketed term as a diffusive transport. The u' and c' which gave rise to

turbulent diffusion were random variations from the averages u and C. In

the present case, u' and c" will usually be well defined variations rather

than random variations from U and C. Thus one might also question the

validity of representing the bracketed term as a diffusive process.

In Eqn. 2-13, the term U(OC/x) may be called the one dimensional

convection. This term represents the convection due to the average velocity

and concentration distributions as shown in Fig. 2-2a. However, the total

convection is given by the spatial integral of u Bc/bx where u and c are

the actual (time averaged) velocity and concentration, not the spatial

averages. For uniform flow, the distr-ibution of u and c might be as shown

in Fig. 2-2b.
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U C

y

a: One dimensional velocity and concentration

U C

U"1 y C"1

:b: actual velocity and concentration distributions

Fig. 2-2: Velocity and Concentration Distributions

Boundary shear stress causes the velocity distribution to be as shown for

uniform flow. As will be seen, the lateral distribution of concentration

will be controlled by the lateral turbulent diffusion and the velocity

distribution. Thus, it is strictly hydraulic factors which produce the

u" and c" terms that are shown in Eqn. 2-12 and Eqn. 2-13. This, in turn,

means that the net convection represented by the bracketed term in Eqn.

2-13 is a function only of the hydraulics and not of the substance which is

being transported.

For steady, uniform flow, Taylor (Ref. 53) and Aris (Ref. 7) have

shown that the convection associated with u" and c" may be represented as a

one dimensional diffusive transport. To distinguish this process from

turbulent diffusion, the transport due to the spatial variations u" and c"

is called longitudinal dispersion. On the basis of the work of Taylor and

Aris and by analogy to turbulent diffusion, define E as a coefficient of

longitudinal dispersion so that

f ulIcldA u"c"A = -E A C 2-14

Thus, the bracketed term in Eqn. 2-13 may now be written as

1 0 C
A x(u"c"A) = - Ax (E1A ) 2-15

With this definition of dispersion, the mass balance equation (Eqn. 2-13)

becomes
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_C C _ L = C 2-16
- x + U (e A -C) +IL (E A -C) + M + N /21

t x A 3x x 6x A x 1 6x P19 PIP

Due to the similarity between the terms representing the average turbulent

diffusion and the longitudinal dispersion, it is convenient to include the

average turbulent diffusion with the longitudinal dispersion. Thus, define

E as the dispersion coefficient so that

E = e + E 2-17

It will be seen in Section 3 that E is much greater than e . With this new

definition of dispersion, the one-dimensional mass balance equation may

finally be written as

_C 3C l B M, N6- + U -C 1 (E A -C) + MI + -P1
6t x x xt x 2-18

(The subscripts on U and E are explained below.)

Under the assumptions which have been made, Eqn. 2-18 appl ies to

either steady or unsteady, uniform or non-uniform flows. In any of these cases,

the dispersive transport is defined as the difference between the true con-

vective transport and the one dimensional convection represented by U( C/6x).

In general, the velocity U, the velocity distribution, and the turbulent

diffusion may vary with both x and t. Thus, due to the relation between

these factors and the dispersion process, the dispersion coefficient may

also be expected to vary with x and t. From this point forward, the

subscripts x and t will be used on U and E to emphasize the variable or

variables on which U and E may depend in a given situation. (Note that the

very presence of A in an equation such as Eqn. 2-18 indicates that A varies
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with x. Otherwise, the A inside the derivative could be taken out and

cancelled.)

2.6) Importance of Dispersion in Various Situations

It has been shown that longitudinal dispersion must be considered

if it is desired to completely and correctly represent mass transport in a one

dimensional equation. However, in different situations, the importance of

dispersive transport relative to one dimensional convection will vary. The

relative importance of dispersion depends not only on the magnitude of the

dispersion coefficient but also on the longitudinal concentration gradients

for the substance which is being transported. This can be seen from the fact

that the rate of convective transport is proportional to UC while the rate of

dispersive transport is proportional to E(C/ k). For given values of U

and E, the flatter the concentration distribution is, the less important

the dispersion process will be. For example, consider the case of an oxygen

balance for a river into which polluted water is being added. In the simplest

case, the pollution consumes dissolved oxygen and more oxygen is absorbed

from the atmosphere. This leads to the well-known oxygen-sag curve where

the oxygen concentration may change by only a few parts per million in

several miles. As a result, the derivative of the oxygen concentration is

extremely small, and the dispersive transport is negligible in most problems

of oxygen balance in rivers. On the other hand, in the same river and under

the same flow conditions, dispersion may be very important in describing the

transport of another substance. For example, if a slug of some substance,

say radioactive wastes, is discharged into the river, the concentration

gradients will be steep and the consideration of dispersion will be imperative

in describing how the radioactivity is transported downstream.

In a river, the same velocity distribution leads to the one

dimensional convection (U) and plays a large role in determining the dispersion

coefficient (E). Thus, E should be expected to be a function of U for a

river, and this relationship is borne out. (See Section 3.) This means that

there is a limit on how large E can be relative to U in a river. This

relationship between E and U is one factor which helps to render dispersion

negligible in some cases. On the other hand, in an estuary, the net
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convection is due to the fresh water velocity (U f) while the primary velocity

distribution which influences dispersion is that associated with the tidal

velocities. Hence, there is no limit on how large E can be relative to U .

Thus, if a given concentration gradient exists in both a river and an estuary,

dispersion may be negligible in the river and not negligible in the estuary

compared to the net convection.

2.7) The One Dimensional Equation for Some Specific Cases

The one dimensional mass balance relation of Eqn. 2-18 may be

written in simpler form for certain specific cases. In all the following

cases, it is assumed that a conservative substance is being considered so that

M and N are zero.

If the flow is uniform, then U, A, and E are all independent of x.

In general, they may still be time dependent. For example, an unsteady but

uniform flow may exist in a uniform pipe lihe. In certain situations, it

might be reasonable to assume that an open channel flow was unsteady but unifo

For uniform, unsteady flow Eqn. 2-18 becomes

UC + C = )2
+ Ut )x t ~~~ 2t~x x

If the flow is steady as well as uniform, then U and E are constant:

C + C E 2C-+ U - E-

ox2

If, still further, a steady state concentration distribution is obtained,

then 2C/3t = 0:

U - E -
x

2-19

2-20

2-21

rm.
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This shows that there must be a balance between one dimensional convection

and longitudinal dispersion if a steady state. is to be obtained.

In dealing with non-uniform flows, it will generally not be possible

to give the longitudinal variation of U, A, and E as closed-form mathematical

expressions. Thus, to take account of the variation of these parameters,

Eqn. 2-18 may be written in finite difference form. This difference equation

can be written so as to ind:lude the )C/ot term. (See Section 5.2.) However,

if a steady state concentration distribution exists so that C/ t equals

zero, then the finite difference form is much simpler. For )C/)t = 0,

Eqn. 2-18 may be integrated once without specifying the variations of U ,

A, and E provided that UA (i.e., the discharge) is constant:

dC
UxC =Ex 2-22

The constant of integration has been set equal to zero. This will be the

case if C and dC/dx are both zero at a large distance upstream. If the

derivative is written as a central difference with constant Ax between x.

and x. +Wt, then

C -C
U C. = E 1+ i-
x. i x. 2-231 1

The subscript i indicates the value of x at which U , C, and E are to be
x x

eval uated.

Estuary type flows (i.e. the type of flow found in the constant

density regions of estuaries), are of particular interest in the present work.

In these flows the velocity may be represented one dimensionally as

Uxt = U + UT sin cr (t - 5) 2-24
x x

where 07 is the frequency of oscillation associated with the tidal velocity

(C = 27r/T where T is the period of oscillation), t is time measured from

an arbitrary origin, and & is a constant representing the time shift between

this arbitrary origin and the time of zero oscillatory velocity. In a

natural estuary, U is the velocity associated with the river flow into the

estuary and UT is the maximum velocity due to tidal motions. Hence, both Uf
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and UT would be expected to vary with longitudinal position due to the

changing geometry of the estuary. UT would also decrease in the upstream

direction due to frictional damping. In the present laboratory investigation,

a uniform velocity of the type given by Eqn. 2-24 was obtained for studying

dispersion in a pipe line. For uniform flows of this type, Uf and UT are

constant while E is time dependent but independent of x. Eqn. 2-19 then

becomes

f + [U + U sin o- (t-6) ] )C E -2-25
t f T )x t x2

In Section 6.5 it will be shown that, if the concentration distribution is

observed at one period intervals (i.e., at t - 5 = nT where n = 1, 2, 3,

.... ), then the equation

1 s + U s = E s 2-26
T n f x A 2

describes the observed concentration. In this expression E is the time
l BCs A

averaged value of E during a period and I 6 indicates the temporal

changes in concentration from one period to the next. Note that the form

of Eqn. 2-26 is identical to that of Eqn. 2-20, which was obtained for

steady, uniform flow.

For non-uniform flows, the equivalent of Eqn. 2-26 is

1C )C )c s
+(AE s) 2-27

T n f )x A x A .x
x x

If a quasi-steady state is obtained so that )C/5n = 0, then Eqn. 2-27 may be

integrated once provided U fA (the fresh water discharge) is constant:

U C =E 2-28
f s A )x
x x



-27-

(See Eqn. 2-22.) This may be written in finite difference form as was done

to obtain Eqn. 2-23:

(+ )(i - 1
(Uf )C= (EA i 2(Ax) 2-29

x x

It must be remembered that Equations 2-27, 2-28, and 2-29 only represent the

concentrations at times which differ by a full period.
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3) DISCUSSION OF PREVIOUS WORK ON LONGITUDINAL DISPERSION

3.1) Steady Flow

For steady, uniform flow in circular pipes and in two dimensional

channels, it is possible to write analytical expressions for the variation

of velocity (u) and eddy viscosity (E) across the flow section. It may also

be assumed that the turbulent diffusivity (e) is equal to the eddy viscosity

(E). Then, it should be possible to use these expressions in a three

dimensional mass balance equation (e.g. eqn 2-10) to solve for the concen-

tration E and thus for c" which is the variation of Z from its average value,

C. Then, by using eqn. 2-14, eqn. 2-17, and the expressions for u" (i.e.,

u - U) and for c", it should be possible to arrive at an analytical represen-

tation for the rate of longitudinal dispersion and for E, the dispersion

coefficient for steady uniform flow.

Taylor (ref. 53) was evidently the first to successfully carry out

such an analysis. He considered steady flow in a uniform pipe and used a

universal velocity distribution of the form (Table B-1)

max = f (r/a) 3-1

where ti is the longitudinal velocity, umax is the maximum (or centerline)

value of u, u, is the shear velocity (i.e., 1/ where t is the boundary

shear stress and g is the fluid density), r is the radial coordinate, and

a is the pipe radius. It was assumed that the lateral turbulent diffusivity

was equal to the eddy viscosity and is thus given by

IT

e r t 3-2

where t is the shear stress at radius r. Taylor also assumed that c could

be written as (c + r ) where c is a function of x only and c is a functionx r x r
of r only. He further assumed that a-c /ax was independent of x.

x
The three dimensional mass balance equation (E~qn. 2-10) may be

written in radial coordinates for the case treated by Taylor as

2
+u e + I (e1-)

dt )x x x 2 r 7r r )r 3-3
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Using this equation and the assumptions mentioned above he arrived at an

expression for the equivalent of c" (eqn. 2-12) in terms of the velocity

distribution and the lateral diffusivity. Then by finding u" from the

velocity distribution and carrying out the integration indicated by eqn.

2-14, E was found to be 10.06 au,. By assuming that e equals e , the
1 d x r

average value of e was found to be 0.05 au,. In accordance with eqn. 2-17,

it was concluded for the case under consideration that E is given by

E = 10.1 au 3-4

where u, = /g. Notice that the longitudinal turbulent diffusion con-

tributes about one half percent to the dispersion coefficient given by

eqn. 3-4.

Taylor also conducted experiments in both smooth and rough pipes

of 3/8" inside diameter. The experimentally measured dispersion coefficients

varied from 10.5 au, to 12.8 au,. For experiments in a 40" dia. pipe as

reported in ref. 1, Taylor found values of 10.6 and 11.7 for E/au,.

To investigate the effects of flow through bends, Taylor bent a

3/8" pipe into a circle of 3' dia. Values of 21.9 and 15.0 were found for

E/au, and thus it was concluded that curvature increases dispersion more

than it increases resistance to flow. Also, for 10" dia. cross-country

pipe lines (which follow the topography), values from 12.3 to 23.4 were

found, with most of the values being about 20. These calculations were

based on data reported in ref. 25.

From the definition of the dispersion coefficient as given in

eqn. 2-17 and eqn. 2-14, it can be seen why E for curved pipes differs

from that for straight pipes. Recall that a particular velocity distri-

bution was assumed in the calculation that led to 10.1 in eqn. 3-4.

However, the helical secondary flow which develops due to bends (see, for

example, ref. 47, p. 523) causes the velocity distribution to be different

from that assumed by Taylor's calculation. Thus, one might expect that

eqn. 3-4 would not apply to curved flow. In general, the same thing may

be said about other non-uniformities. Separation zones, pockets in the

sides of the flow boundaries, etc. change the velocity distribution and

lateral diffusivity and thus the dispersion coefficient.

Elder (ref. 12) carried out a computation similar to Taylor s,

but for uniform, two dimensional, open channel flow. Using the same
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assumptions and the same general approach as Taylor, he obtained

E = 5.93 hu, 3-5

where h is the depth of flow. Of the 5.93, EI accounts for 5.86 and e

for 0.07.

Elder pointed out that the longitudinal distribution of tracer

after a slug injection should be normal or Gaussian. (See section 5.)

However, in his experiments, it was observed that the concentrations in

the upstream part of the distributions were higher than the normal distri-

bution would predict. This effect was attributed to the influence of the

viscous sublayer which was neglected in developing eqn. 3-5 (and eqn. 3-4),

but which was present in his experiments. It was pointed out that tracer

which enters the sublayer will be returned to the central part of the flow

more slowly than the turbulent transfer rate which was assumed in the

analysis. This would mean that, in effect, the lateral diffusivity assumed

by Taylor and Elder does not completely represent the physical situation

when a laminar sublayer is present.

If the effects which Elder observed are due to influence of the

sublayer, then these effeots should be reduced as the Reynolds number in-

creases for flows which are not in the hydraulically rough region. Also,

the effects should not be present for flows in the rough region since no

laminar sublayer exists for these flows. Results presented in section 8 are

consistent with these trends. Notice also that the sublayer effectively

increases longitudinal dispersion since it causes mass to become more spread

out than is predicted by the coefficient of eqn. 3-5.

In some applications (e.g. the Darcy-Weisbach friction factors),

the same expressions apply to pipes and open channels if the hydraulic

radius (R H) is used as the characteristic lateral dimension in place of

the pipe radius (a) or the channel depth (h). Thus, one might expect that

eqn. 3-4 would apply to uniform open channels if the pipe radius were re-

placed by 2RH so that

E = 20.2 RHu* 3-6

or for two dimensional channels where RH equals h

E = 20.2 hu. 3-7
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This expression is obviously different from eqn. 3-5. The reason for this

difference may be seen from the following considerations: In terms of the

lateral coordinate (i.e., r/a and y/h), the velocity distributions used by

Taylor and Elder were slightly different. Also, Taylor took von Karman's

constant as 0.40 while Elder used 0.41. If Elder's computation is carried

out using the same velocity distribution as Taylor and using von Karman's

constant of 0.40, one obtains

E = 6.6 hu* 3-8

Thus it is seen that these differences do not account for the difference

between the coefficients 20.2 and 5.93 of equations 3-5 and 3-7.

There is another difference which exists between pipes and two-

dimensional channels, namely the difference between three dimensional and

two dimensional variations of velocity and diffusivity across the section

(i.e., side wall effects). This difference and its influence on the

spatial averaging which was performed to obtain an expression for E must

therefore be the primary cause of the difference between equations 3-5 and

3-7.

The importance of the side-wall effects and the three-dimensional

variations which they produce is borne out by experiments reported by Glover

(Ref. 13). These experiments were conducted in a rectangular flume 8 ft.

wide with flow depths of about 0.5 ft. When the bottom and the sides of the

flume were the same material (plywood, Manning's n = 0.010), E/R u, was 20
H *%

and 24 for two experiments. The flume was then roughened by laying reinforc-

ing bars just on the bottom. (Manning's n = 0.025.) This effectively

reduced the relative side-wall influence, and E/RHu, was found to be 13 and

19 for two runs. Also, in a 900 triangular flume, E/RHu* was found to be

19, 20, and 25 for three runs. Thus it is seen that varying degrees of side

wall effects may be expected to change the value of E/RHu*.

Harleman (Ref. 29, pp. L-10 and N-8) showed that Eqn. 3-6 could

also be written in the following forms:

E = 14.3 R H/ 2g R S 3-9H VH e

E = 77 n UR 3-10
RH1/

6 H
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20. 29 164/3 1/3E= L 1/3 R H G 3-11

where g is the acceleration of gravity, S is the slope of the energy

gradient, n is Manning's roughness parameter, U is the mean velocity of

flow, RH is the hydraulic radius, Cc is the Chezy coefficient, and G is

the rate of turbulent energy dissipation per unit mass of fluid. It is

interesting to note that Eqn. 3-11 shows that dispersion in uniform shear

flow follows a relationship similar to Kolmogoroff's similarity hypothesis

for diffusion (Ref. 23,45). This hypothesis states that

e ~ L 4/3 G1/3 3-12

where e is the turbulent diffusivity and L is a characteristic length scale

of the turbulence.

Krenkel and Orlob measured longitudinal dispersion coefficients

in a uniform, wide, open channel in the laboratory (Ref. 32). For their

data, E = 9.2 huL. They worked with flow depths from 1" to 2" in a 12"-

wide channel which had roughness elements (expanded metal) 0.24" high. In

view of this extreme roughness, it might be expected that the velocity

distribution would not be the same as that used by Elder to obtain eqn. 3-5.

Also, the side walls caused the flow not to be truly two-dimensional. Thus,

it is not surprising that their data gives a factor different from Elder's

5.93.

Aris (Ref. 7) presented a general mathematical analysis of

longitudinal dispersion in steady, uniform flow. Recall that Tayl-or (and

Elder) assumed that the concentration c could be written as c + c wherex r
c was a function of x only, c r was a function of r only, and ac /3x wasx r x
independent of x. Taylor also assumed axial symmetry for the case of flow

in a pipe. Without any of these assumptions and for a general lateral

boundary configuration with any distribution of velocity and turbulent

diffusivity, Aris showed that longitudinal dispersion is a diffusive trans-

port. For the case which he considered, the dispersion coefficient may be

written as

E = 2 + a 0 dA] 3-13
x e0 A A
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where e is the spatial average of the longitudinal turbulent diffusivity,

U is the one dimensional velocity, a is a characteristic length related

to the lateral boundary geometry, e is a characteristic value of the

lateral diffusion coefficient and is used so that the distribution of

lateral diffusivity may be written in dimensionless form as * (i.e.,

* = e/e0), A is the cross sectional area, and X is the dimensionless

velocity distribution (i.e., (u - U)/U). 0 is a function related to the

lateral distribution of concentration and is defined as the solution of

V ,(*, V o) = - X3-14

under the condition that

= 0 3-15

on the lateral boundary where V is the normal to the boundary. Notice

that the second term on the right-hand side of Eqn. 3-13: is in accordance

with the definition of EI (Eqn. 2-25) since X is related to u" and 0 is

related to c". Also, Eqn. 3-14 shows that 0 (and therefore c") is a

function only of hydraulic parameters, namely the velocity distribution

and the lateral diffusivity. Aris points out that the calculation which

Taylor made to obtain Eqn. 3-4 is equivalent to the calculation indicated

by E:qn. 3-13. In effect then, the assumptions which Taylor made concerning

the concentration distribution did not limit the generality of his resuitt

for dispersion in uniform pipes. Because of the generality maintained in

developing Eqn. 3-13, it may be used to calculate the dispersion for uni-

form flow in any boundary configuration provided that the velocity distri-

bution and the turbulent diffusivity are known.

3.2) Rivers

The question arises as to whether Eqn. 3-5, Eqn. 3-6, or perhaps

some other expression should be used for a river. The lateral geometry of

a river is somewhere between that of a truly two dimensional channel as

Eqn. 3-5 would imply and a semi-circle as E.qn. 3-6 would imply. Thus, for

a uniform river, the dispersion coefficient would probably be somewhere
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between that of eqn. 3-5 and eqn. 3-6. But no river is uniform and it can

be seen from the experimental work referred to in this section that the

non-uniformities increase dispersion. In general, it is not possible to

write analytical expressions for the effects of non-uniformities. Hence

any calculated dispersion coefficient for a river will only be an estimate.

As will be seen, eqn. 3-6 provides the best estimate from those analytical

expressions which are available but this estimate is probably a minimum

value.

The references mentioned above have b'een primarily concerned with

dispersion in uniform flow. References which contain data on dispersion

in pipe lines having bends and in natural streams and rivers indicate that

the bends and non-uniformities cause an increase in dispersion over that

predicted by the analyses summarized above. For cross-country pipe lines

(which follow the topography) and for laboratory pipe lines with bends,

the average of the experimental values found for E/au, is about 20, with

most of the values being between 12 and 25. (See ref. 1,25, 39, 52, 53.)

Most of these pipes were of a constant diameter. Thus, it appears that

the effects of bends is to cause dispersion to be about twice that pre-

dicted by Taylor.

Unfortunately, in most cases where dispersion data is presented

for rivers, not enough hydraulic data is given for a value of the shear

velocity (u_) to be calculated. For those cases where R u, may be cal-*1 H d%
culated, E/RHu* has a wider range of scatter than for pipes. This is

understandable since rivers have not only bends but also varying degrees

of "side wall" effects and non-uniformities.

Patterson and Gloyna (ref. 40) conducted some dispersion experi-

ments in the Colorado River near Austin, Texas. However, the dispersion

process which they measured is not the same as the one being considered

ih the present work. Thus, the dispersion coefficient is written as E a
in eqn. 3-16 below. The present work is concerned with one dimensional

dispersion or dispersion when the substance which is being transported

is distributed across the entire area of flow. In the Colorado tests,

the tracer was injected as a point source near the center of the river's

cross section. Most of the test reaches were less than 1/3-mile long, and

the data shows that the tracer did not mix across the full section within

this length. Because of the lateral mixing that was taking place, a one
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dimensional equation could not be used for the mass balance. As a result,

the equation

- + U - E -+ -
)x a 2 y 2  3-16

was used in the data analysis. Since y was the lateral horizontal coordi-

nate, eqn. 3-16 assumes that the tracer was completely mixed vertically,

but even this condition is not realized for a point source until some

distance downstream from the source.

It was observed in some cases that the measured longitudinal

dispersion coefficient increased with distance from the injection point.

This was probably due to the fact that, as the tracer spread out, an in-

creasing percentage of the velocity distribution was contributing to the

dispersion process. However, the test reach used for these experiments was

immediately downstream from a bend of about 1300 in the river. The

secondary flow due to this bend very well may have had a strong influence

on the experimental results.

In most practical cases, one would be interested in the dis-

persion in reaches which are much longer than those used by Patterson and

Gloyna. Then, even if the tracer or pollutant is injected as a point source,

the distance required for mixing to take place across the section is a small

part of the region of interest. In such cases, it may be sufficient to

assume that the tracer is mixed across the full section beginning at the

injection point.

Glover (ref. 13) conducted a dispersion test in a natural stream.

The test reach was about 5 miles long, and the tracer was injected as a

distributed source across the stream. Thus, the time required for the

tracer to become distributed across the section was probably insignificant.

The experiment gave a one dimensional dispersion coefficient of 174 ft 2/sec

or E/R u, of 500. The analysis assumed that E was not a function of longi-
H *%

tudinal distance. It seems that this value of E does not represent dis-

persion due to a normal velocity distribution or normal type of

non-uniformities found in most rivers. The river used for the experiment

followed as many as five channels within the test region. Thus, it seems

likely that a large part of the longitudinal spreading may have resulted

frpm different rates of mean convection in the various channels. Glover
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also reported a value of E/RH U, of 800 for the Mohawk River. (See also

ref. 38, 51, 54.) Again, this is an extreme value since the test reach

included dams, locks, small reservoirs, and density currents. It appears

that the experimental values discussed in the following paragraphs give a

better indication of the rates of dispersion to be expected in natural

streams.

These values come from the work of Godfrey and Frederick (ref.

15). Again, the tracer was injected as a distributed source across the

width of the rivers which were investigated. The test reaches were about

4 miles long. Some of the observed concentration distributions were

highly skewed compared to that to be expected after an instantaneous in-

jection of tracer. (See section 5'.) The method of analysis used by the

authors must have been highly sensitive to this skewness since values up

to 650 were reported for E/RHu.. Values of this magnitude seem unexplain-

abl large. On re-analyzing the less skewed data by the modified semi-log

plot as described in section 7 (eqn. 7-10), values of E/RHu1 from 36 to 80

were found. To make this analysis, the flow was assumed to be uniform.

In fact, the area and velocity changed by as much as 35% in the test

sections. At each section for which data was analyzed, the velocity was

assumed to be given by the distance from the injection point divided by

the through-flow time, which was taken as the time of occurrence of the

peak.concentration at the station in question. This means that the average

velocity through the test reach was used. Also, the dispersion coefficient

which was obtained was a measure of the average rate of dispersion in the

test reach.

A further break-down may be made in these values of E/R Hu since

Godfrey and Frederick classified the rivers as either straight or crooked.

No additional clarification was given for these terms. Since all of the

data being referred to was for natural streams, one may be sure that the

test reaches were not perfectly straight or uniform. They must have in-

cluded some degree of curvature and irregularity in the plan view of the

stream since all of the test sections were about 4 miles long. However,

for the rivers classified as straight, E/RHu* varied only from 36 to 50

(about twice the value of eqn. 3-6) while it was a "crooked" river that

gave E/RHu* of 80.

On the basis of this limited data and the data mentioned
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previously for cross-country pipe lines, it appears that gentle curvature

in either pipes or rivers causes the dispersion coefficients to be about

twice that given by Taylor's analysis (eqn. 3-6)

3.3) Estuaries

3.3.1) Fresh Water Region

In section 2 (eqn. 2-24) it was pointed out that the velocity

in the constant density region of an estuary may generally be represented by

U =U + UT sin O (t -5) 3-17
xt fx x

where U is the velocity associated with the river discharge into the

estuary and UT is the velocity due to tidal motions. Non-uniformities may

cause Uf and UT to be functions of x. Also, frictional damping will cause

UT to decrease in the upstream direction. As far as is known, no basic in-

vestigation has been made into the fundamental relation between dispersion

coefficients and the hydraulic parameters in flows of this type, even with

U and UT assumed to be constant.

Harleman (ref. 29, chap. N) treated this prob/lem in an approximate

way by writing a dispersion coefficient from eqn. 3-10 with the velocity U

replaced by the average of the oscillatory velocity during half a period.

This average is 2UT /t so that eqn. 3-10 becomes

E 77 n (RH U )R 3-18
A R 1/6 it T H

where n is Manning's roughness and RH is the hydraulic radius. This co-

efficient was then used in an expression similar to eqn. 2-26 which

represents concentration changes from one period to the next. Thus, as

has already been indicated by using the notation EA in eqn. 3-18, this

equation would correspond to the average value of E during a period of

oscillation. By analogy to eqn. 3-11, Harleman also wrote EA as
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1/6;
E = 20. R 4/3 G 1/3 3-19A 1/3 H A

_ Cc

where GA is the average rate of energy dissipation per unit mass of fluid

and is due primarily to tidal motions. The implication of these ex-

pressions is that the average rate of dispersion is due to the velocity

distribution and turbulent diffusivity associated with the oscillatory

tidal velocity rather than with the steady fresh water velocity Uf.
This is reasonable since UT is many times greater than U in most estuaries.

These expressions also tacitly assume that the velocity distribution and

lateral mixing result from boundary shear. Hence, equations 3-18 and 3-19

should not be expected to apply in the salinity intrusion region of an

estuary since internal density currents contribute significantly to trans-

port in this region.

As reported in ref. 29, chap. N, eqn. 3-18 was found to be in

good agreement with experiments made in a tidal flume at the Corps of Engi-

neers Waterways Experiment Station. The comparison was based on values of

EA at the downstream end of the tidal flume. This rectangular flume was

made of plastic and was 9" wide and 327 ft. long. The mean water depth

was 6". Roughness elements were placed on the flume sides (not on the

bottom). This roughness undoubtedly greatly increased the "side wall"

effects and added to the three dimensionality of the velocity distribution.

This probably accounts for the good numerical agreement between eqn. 3-18

and the experiments. (Recall that the coefficient 77 in eqn. 3-18 ulti-

mately came-from Taylor's calculation for a pipe and that in some cases

Taylor's coefficient did not agree with experiments in open channels.) The

functional agreement between eqn. 3-18 and experiments seem even more

significant than the numerical agreement per se. This functional agreement

shows that the average dispersion coefficient is related to the oscillatory

velocity (UT) and not the through-flow velocity (Uf).

Much of the work on mixing processes in both the fresh water

portion and the salinity portion of estuaries has been based on model

studies (ref. 2-6, 21, 28, 30, 31, 35, 42, 43). A detailed analysis of

the interpretation of these model results is presented in the next section.
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For the present, the model results may be viewed as experiments with estuary

type flow in non-uniform channels.

Some of the results for experiments conducted in the fresh water

portion of the Delaware estuary model were analyzed by O'Connor (ref. 35, 36).

These were experiments with instantaneous dye releases. It was observed that

dye was absorbed by the surface of the model. In previous reports on these

experiments (ref. 5, 31) an approximate adjustment was made in the observed

concentrations to account for this absorption. O'Connor was able to show

that this absorption could be accounted for by a loss term in the differential

mass balance equation. Thus, assuming uniform flow, O'Connor wrote

)C )C 32
s + U --s = E s - KC 3-20

ot +f ox~ A 2x sK

where K represents the rate of absorption. (C , Uf and EA have been used

to be consistent with the present notation.) In the experiments, dye was

released at high water and spatial concentration distributions were

measured at 5 period intervals up to 50 tidal periods after release.

O'Connor found good agreement between the solution to eqn. 3-20 and the

experimental concentration distributions. He concluded that the measured

dispersion coefficients showed no correlation with the through-flow velocity

Uf. It was also concluded that the dispersion coefficient decreased with

distance downstream. When more data from this same set of experiments (ref. 5)

was analyzed as part of the present work, scatter was noted but there was not

a consistent tendency for EA to decrease with distance. (See section 8.2.)

These values of EA are correlated with the tidal parameters in section 8.

O'Connor (ref. 36) also reported two values of EA from prototype

measurements in the James River (Virginia). These values were based on

1951 measurements of sulfate ion in industrial waste. It was concluded

that EA increased with river flow (Qf). For one experiment Q f was 35%

greater than for the other, and EA was found to be 28% greater in the

former case. However, in view of the limited data that led to this con-

clusion and in view of the discussion above, this change in EA is probably

due to some influence other than Q . The tidal conditions were not given.

Thus, it is not possible to compare the experimental EA with eqn. 3-18.
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3.3.2) Salinity Intrusion Region

In the salinity i

density currents cause a mean ci

Thus, the velocity distribution

salinity gradients. This means

the sectional

ntrusion region of an estuary, internal

rculation pattern as shown in fig. 1-1.

(fig. 3-1) and u" depend strongly on the

that the velocity variations (u") from

U

upstream to ocean

//XW// ////

Fig. 3-1: Mean velocity distribution in
salinity region of an estuary

the

mean will generally be greater than would result from boundary shear alone.

Also, the vertical density gradients tend to suppress vertical mixing.

This means that c" will be greater than in absence of density effects.

In accordance with the definition of the dispersion coefficient (eqn. 2-14

and eqn. 2-17), one would expect the dispersion coefficient in a given

estuary to be larger in the salinity intrusion region than in the constant

density regions. This trend has been observed, as discussed below.

In section 2 it was pointed out that both turbulent diffusion

and longitudinal dispersion are actually convective transport. Likewise,

in ref. 16, it was reasoned and shown empirically that the effects of

gravitational convection in the salinity region of an estuary may be

treated as a one dimensional diffusive transport. In the salinity

region, the dispersion coefficient was given the symbol E'xt to indicate

that gravitational effects were included in E. Thus, the mass balance

equation (eqn. 2-18) now becomes

6C 6C 1 i C
-- + U xt7=- (E A -- 3-21ht t x A x (xt x)
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Or by analogy to eqn. 2-26, the equation

I cC _ 1 ) C
S s+ U - = (E A s)-2

T )n f x A A )x 3-22
x x

represents the concentration changes from one period to the next if T is

the period and n = 1, 2, 3 . . Even for a uniform estuary, EA should

be expected to vary with x since the strength of the gravitational con-

vection due to salinity difference decreases in the upstream direction.

As part of the treatment of this problem by Ippen, Harleman,

and others (ref. 16-18, 27, 29), experiments were conducted in an

idealized estuary which was rectangular in cross section (16" wide, 7"

water depth). Vertically oscillating screens were substituted for mix-

ing due to tidal motion. Thus, the one dimensional diffusive type trans-

port was due to turbulent diffusion and gravitational convection. In

recognition of the fact that there was no shear-flow velocity distribution

involved in the process, the apparent diffusion coefficient is given the

symbol e '. For those tests made with no gravitational convection (i.e.,

no density difference), the diffusion coefficient was independent of x

and is called e*.

The experiments showed that ex '/e* correlated with a dimension-

less stratification parameter GA/(gCUf) where g is the acceleration of

gravity, C is the concentration of salt at any point in the estuary, Uf is

the fresh water velocity, and GA is the mean rate of turbulent energy

dissipation per unit mass of fluid. The ratio ex '/e* represents the in-

crease in longitudinal diffusion due to gravitational effects. The

stratification parameter represents the ratio of the rate of turbulent

energy dissipation to the rate of gain of potential energy of the fresh

water as it moved toward the ocean. As the stratification parameter in-

creases, the degree of stratification in the estuary decreases. Thus,

large values of e '/e' were found to correspond to small values of

GA/(gCU ).

Density differences between fresh and ocean water varied from

0 to 2% in the experiments. At high degrees of statification, it was

found that the gravitational effects caused e '/e' to be as great as 1000.



In general, this ratio of diffusion coefficients was found to be

e 'G -3/4
e = 1700 ( A - 3-23
e gCUf

For an estuary, interpreting this in terms of dispersion due to tidal motion

and gravitation convection (i .e., E' ) and using eqn. 3-19, it was concluded

that the general functional relationxhip for E' should be
x

E'
A G

x f A 3-24

R G 1/3 gCUf
H A

Kent (ref. 30, 31) analyzed results from the Delaware model for an

instantaneous release of tracer in the salinity region. He observed that the

rate of decrease of the maximum concentration (dC max/dt) of the tracer in-

creased the further downstream the injection point was. From eqn. 5-7, it

can be seen that this rate of decrease depends on the dispersion coefficient.

Thus, Kent's observation is in accordance with an increasing value of E inA
the downstream direction. The primary reason for this increase is probably

the increasing gravitational convection. A smaller contribution would be

the fact that the tidal velocity (UT) increases in the downstream direction.

This increase (or the decrease in the upstream direction) is due to friction-

al damping.

Kent also analyzed the results of three tests with different Qf's

in the Corps of Engineers tidal flume which was previously mentioned. (See

the paragraph following eqn. 3-19.) The results showed that E at a given

point decreases as Qf increases. For the fresh water portion, it was

reasoned above that EA should be independent of Qf. In the salinity region,

however, the intruded salt will be pushed downstream as Qf is increased. As

the pattern of gravitational convection is shifted downstream, the gravi-

tational effects at a given point will decrease. Thus, EA will decrease

also. This effect is accounted for in eqn. 3-24, which shows E to be a
A

function of Uf.
O'Connor (ref. 36) applied the one dimensional mass balance

equation to non-conservative substances (BOD and dissolved oxygen) in the
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salinity portion of estuaries. In all cases, the dispersion coefficient

was assumed to be independent of x. This paper contained work on the James

and the Delaware estuaries. For the James, he used the previously mentioned

dispersion coefficients. For the Delaware, dispersion coefficients as

determined from the model were used.
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4) ESTUARY MODELS

4.1) Introduction

In the region of salinity gradients in prototype estuaries,

the salt may be viewed as a natural conservative tracer and salt

concentrations may be used to determine dispersion coefficients. These

coefficients can then be used to predict concentration distributions of

other substances which may be introduced into the saline region. However,

in constant density regions (either all fresh water or all salt water),

there are usually no natural concentration gradients which may be used to

find dispersion coefficients. This means that direct prototype

determination of dispersion coefficients is more difficult and expensive

in constant density regions. Thus, distorted models are often used to

study pollution distribution problems in estuaries. In using such models,

one must determine the ratio or relation between model and prototype

concentrations.

Since the models must reproduce tidal motions, they are con-

structed and operated according to Froude scaling which considers

similitude of inertial and gravitational forces. However, because of the

large length and relatively small depth of estuaries, the models must be

distorted vertically. (The distortion of the Delaware model is 10 to 1.)

Because of this distortion, the models must be verified. This verification

is usually accomplished by adjusting local roughness in the model until

certain quantities scaled from the model are in agreement with prototype

observations. (In the Delaware model, the roughness was adjusted by

placing vertical strips in the flow.) The quantities usually used for

verification of models are tidal elevation and phase, magnitude and

direction of velocity, and longitudinal and vertical salinity distributions.

The velocities are usually measured at the surface, middepth, and near the

bottom. (In the Delaware model, the furthest point upstream that was

used in the original verification was just above Philadelphia. Thus, 125

ft. of the model or about 25 prototype miles were verified only for tidal

stage and phase.)
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Since the salinity distribution is largely a result of longitudinal

circulatory motions induced by longitudinal density gradients, the model

adjustments constitute a verification of the density induced circulatory

motions in the salinity region. In Section 3.3.2, it was pointed out that

these circulatory (gravitational) motions exerted the dominant influence

in the dispersion process. Thus, concentration gradients measured in

the region of the salinity distribution in the model may be used directly

in prototype scale to determine prototype dispersion coefficients. Even

more important and more directly to the point, the model verification

implies that there is a one to one correspondence of concentrations (of

salinity or other substances) in the model and prototype at geometrically

similar points in the region where salinity gradients exist.

In the constant density regions of an estuary, the dispersion

process depends on the velocity distribution resulting from boundary

shear stress (not gravitational effects) and on lateral concentration

distributions resulting from lateral turbulent diffusion. (See Sections

2.5 and 3.3.) The detailed velocity distribution and turbulent diffusion

are not verified in the model. Thus, the question is raised concerning

the relation between model and prototype dispersion coefficients and

concentration distributions for constant density regions of an estuary.

As far as is known, all modelling of the dispersion process in constant

density portions of estuaries has assumed a one to one correspondence

between concentration ratios(i.e. relative concentrations) at geometrically

similar points in model and prototype. In fact, this assumption is

invalid and has lead to incorrect values of predicted prototype concentrations.

Most of the remainder of Section 4 is devoted to an examination of the

scaling of dispersion coefficients and concentrations from model to

prototype for constant density portions of distorted Froude models.

For the numerical examples, the scale ratios of the Delaware

model will be used. A scale ratio is defined as a given model quantity

divided by the corresponding prototype quantity. Using the subscripts

m, p, and r to indicate model, prototype, and ratio, respectively, the

scale ratio of a general quantity B is B = B /B . For the Delaware
r m p

model, the following ratios exist:
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horizontal length

vertical length

flow area

horizontal velocity

discharge

Also, it is assumed that the ratio of

approximately equal to Yr

- Lr = 1/1000

- Yr = 1/100

- A = L Y = 1/100,000
r r r

- U = yr 2 = 1/10
r r

- Q = L rYr 3/2 = 1/1,000,000r r r

the hydraulic radii (RH ) is
r

4.2) Concentration Similitude

The mass balance equation represents the influences which govern

the concentration distribution for either model or prototype. For a

conservative tracer, the one dimensional form of the mass balance equation

is given by Eqn. 2-29 as

- + U 1 (EA -) 4-1
6t Ox A x 6x

where the subscripts are omitted from the dispersion coefficient E and the

velocity U for the time being. Eqn. 4-1 may be written in dimensionless

form by defining the following reference quantities (subscript "o") and

dimensionless quantities (subscript "1"):

Cl

xl

U1

= C/C

= x/L, (X = L )
= U/U 0

t = U t/L 0 (t0 = L 0/U 0 )

A = A/A

E = E/E
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After introducing these dimensionless quantities and rearranging, Eqn.

4-1 may be written as

U L 1C C 6C
E o + U = (AE -) 4-2

- 1 1 - 1 1

Past practice for the interpretation of model results has assumed

that (C1 ) = (CI)p or that (C1)r = 1 (i.e. a one to one correspondence of

concentrations). It has been pointed out in Section 4.1 that this

assumption is valid in the region of longitudinal salinity gradients by

virtue of model verification. The validity of this assumption (i.e.

(C )r = 1) for constant density regions may be investigated on the basis

of Eqn. 4-2. Modelling theory states that if the coefficient U L 0 /E in

Eqn. 4-2 is the same in model and prototype, then the concentration ratio

C1 is the same in model and prototype. This condition may be stated as,

U L
rr 1 4-3
E
r

For a given Froude model, U and L will be known. The question

arises as to the value of Er. The value of E must be found from an

expression which represents the fundamental process involved in producing

dispersion. An equation such as Eqn. 4-1 may not be used to find Er since

Eqn. 4-1 represents the effects of dispersion, not the cause of it. On the

other hand, the analytical work of Aris and Taylor shows that consideration

of the fundamental definition of dispersion (Section 2.5) leads to the

conclusion that E is proportional to RHu, for uniform flow. Assuming that

the same relation holds for constant density regions of estuaries, (see

sections 6, 8, 9), then

E = (R u ) 4-4r H * r

Or, using Harleman's equivalent expression (Eqn. 3-18),

n
E= r U R 4-5
r 1/6 r H

R rr
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1/2 /1/2
Using the relations RH Y Ur Y , and n r r2/ IL (from

H r r r r /jr
r

Manning's equation), then

E = Y2/L1/2 4-6r r r

and

U L L 3/2
r r

r r

This shows clearly that the condition of Eqn. 4-3 is not satisfied for

distorted models and that it is therefore invalid to assume a one to one

correspondence of concentration ratios in model and prototype. (On the

other hand, Eqn. 4-7 also shows that (C )r = 1 for undistorted models

since Y r equals L r in these models.)

The lack of one to one correspondence of concentration ratios

in constant density regions of distorted estuary models may also be

demonstrated by an example. In Section 6 (Eqn. 6-52) the solution is

presented for the case of a continuous injection of a tracer into

uniform estuary type flow. The concentration distributions shown in

Fig. 4-1 were calculated from Eqn. 6-52 for a quasi-steady state condition

with model and prototype flow parameters which might correspond to a

10:1 distorted Froude model. Prototype values were taken similar to

those which might exist in the Delaware estuary:

U = fresh water velocity = 0.0290 fps

(Qf = fresh water discharge ~ 5000 cfs)

UT = maximum tidal velocity = 2.82 fps

b = tidal excursion = 40,000 ft = 7.57 miles

E = average dispersion coefficient during

a period = 22.8 ft /sec

The corresponding model values of velocities, discharge, and excursion

can be found from the scale ratios given at the end of Section 4.1.
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However, it is necessary to use Eqn. 4-6 to obtain an estimate of the

corresponding dispersion coefficient for the model. This gives E of
2 m

0.0720 ft /sec. Thus, in dimensionless form, the parameters which were

used were

UT
(---) = 0.0323

UTT
(-) = 3.14
b m,p

(- ) = 0.0197

( -) m = 0.619

Uniform flow was assumed for both model and prototype. Since the curves

are plotted versus a dimensionless length scale, the two curves would

coincide if (C )r = 1. The concentration in the prototype is less

spread out than in the model. Thus, if it were assumed that (C )r = 1,

the dispersion calculated for the prototype would be too large, as

indicated in Section 4.4, below.

4.3) Example of Actual Concentration Ratio

The previous paragraphs have demonstrated that a one to one

correspondence of concentration ratios does not exist in distorted Froude

models. An example will now be presented to show what the actual

concentration ratio is for a particular case.

Eqn. 2-38 is the mass balance equation for a quasi-steady state

concentration distribution of a conservative substance. (The term quasi-
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steady refers to conditions when the concentration at a given point does

not change at times differing by one tidal period.) For the model, this

equation may be written as

dC Uf
m = m dx 4-8

C - E m
m A

m

If Com is the concentration at om , Eqn. 4-8 may be integrated to give

C x U
in C = dxm 4-9

om A
x mom

22 2 1/2
Using the relations that Ufr r , EAr = Y2 /L , and dx m L0 dx Eqn.

4-9 may be converted to

U
C L 3/2 x f

in -m _ ) dx 4-10
C om r x EA p

Pp p

Eqn. 4-8 may also be written independently for the prototype. After

integrating, one would obtain

Crx Uf
An C =J P -- dx 4-11

op x0o A p '
opp

Dividing Eqn. 4-11 by Eqn. 4-10,

C
An -P 3/2C Y

C 4-12
An rn r

Com
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or

3/2
(Y /L )

C C r r
= (-m ) 4-13CC

op om

For a model with a 10 to 1 vertical distortion, Y r/Lr is 10 and

C C 31.6

- -) 4-14a
op om

or, equivalently,

(C /C ) C -30.6

(C1 ) (C /C1 C ~ 4-14b
p op om

Thus, it is seen that the assumption of a one to one correspondence of

concentration ratios (i.e. (C1) r = 1) is incorrect. Furthermore, (C1)r
is not constant but rather depends on the relative concentration. From

Eqn. 4-14a, if Cm/Com of 0.90 is observed at some point in the model,

then at the equivalent point in the prototype C /C is 0.036.

Some observations about Eqn. 4-13 should be made. First of all,

this equation does not give a direct concentration scale ratio (i.e.,

C /C ). Rather, it gives the comparative ratios to some reference

concentration for model and prototype (i.e., C and C OP). Thus, it is

still necessary to have some means of determining this reference

concentration in both model and prototype. Also, the equation which was

used to write Eqn. 4-8 is
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UfC =EA x 4-15

In applying this equation to a given one dimensional element of fluid, it

is implied that, from one period to the next, mass enters or leaves this

element only by convection or by dispersion. Eqn. 4-15 and hence Eqn.

4-13 do not apply to any of the fluid elements into which tracer is

injected during a period of oscillation. For the example shown in Fig.

4-1, Eqn. 4-14 can not be appl ied in the region -1.0 < (x/b) < 0 (since

the distributions are shown at high water). That is, the fluid in this

region at high water is the fluid which oscillates past the injection

point. At low tide, Eqn. 4-13 does not apply in 0 < (x/b) < 1.0. The

fact that Eqn. 4-13 does not apply in -1.0 < (x/b) < 0 at high water is

easily observed from the figure. For the model, C/C is 0.90 at x/b =

- 0.32. At the same x/b for the prototype, C/C is 0.62 rather than the
0

0.036 cited immediately following Eqn. 4-14b. However, if C' and C'
om op

were taken as those values at x/b = - 1.0, then Eqn. 4-13 would apply

upstream from this point. For example, at x/b = - 1.0,

C C'
m o = 0.500
om om

C C1
-- - = 0.080
C C
op op

and at x/b = - 1.05,

C
m = 0.465
C
om

C C /C
m- m om = 0.930

' C' C' /Com om om
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C C 31.6

op (C)m
op om

C

C
op

C

C'
op

This agrees with the value foun

Fig. 4-1.

31.6
= (0.930) = 0.101

C1
C = 0.0081
op

d directly from Eqn. 6-52, as shown in

4.4) Error in Prototype Dispersion Coefficients

The procedures which have been used in the past assumed that

Eqn. 4-3 was valid. Thus, effectively, Er has been assumed to be

E = Y 1/2 4-16

(from Eqn. 4-3 with U r = Y 1/2). For the Delaware model, Eqn. 4-16 gives

rr r
E r = 1/10,000. Under the assumpt ions wh ich have been made above, Er i

actually given by Eqn. 4-6 which gives Er = 31.6/10,000. Thus, for a

given dispersion in the model, the procedures which have been used in the

past give a dispersion coefficient for the prototype which is 31.6 times

too large.

4.5) Discussion of Scale Ratio for Dispersion Coefficient

All of the development of this section has been based on a

particular expression for E r. (See Eqn. 4-4, 4-5, and 4-6.) While it is



certain that Er is not given by Eqn. 4-16 (as past practice has implied),

there are some questions about the complete accuracy of Eqn. 4-6 which was

used for E
r
The work discussed in Section 3 indicated that the dispersion

coefficient may be given by

E = mR u, 4-17H 0

where m is nearly constant for a given stream but varies from stream to

stream in general. In writing Eqn. 4-4 it was implied that m is the same

for model and prototype. In Section 3 it was seen that one of the things

which might cause m to change was a varying degree of "side wall" effects.

In distorting a model, the relative effects of the side walls are increased

over that for the prototype. In addition, the strips used to adjust the

roughness during model verification would influence the velocity

distribution and thus possibly change m.

It is true that the model may be verified for tidal velocities at

three different depths. However, these three measurements do not assure

the verification of the entire velocity distribution, and Eqn. 2-26 shows

that the entire distribution contributes to the dispersion process. Even

if the entire velocity distribution were verified, it must be remembered

that the lateral diffusivity influences dispersion also and would need

to be verified.

The existence of a laminar sublayer likewise influences dispersion.

Natural roughness in the prototype probably excludes the chance of a

sublayer. However, the model surface is usually smoother (as evidenced

by the need for roughness strips) and a sublayer may exist. Also, to

get from Eqn. 4-4 to Eqn. 4-6, Manning's equation was used to determine

the roughness ratio n r In view of the adjustment of roughness which takes

place during verification and the fact that the flow is unsteady, one could

question the validity of expressing n r as was done.

-56-
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4.6) Conclusions About Modelling

It appears that the interpretation of model concentrations for

pollution studies in the constant density portions of distorted estuary

models has been incorrect. The analysis presented in this section should

be much more nearly correct, but there is still room for question concern-

ing the expression used for the ratio of dispersion coefficients. It

would be helpful if the results of model dispersion studies could be

checked against prototype results for the constant density portions of

estuaries to investigate the validity of the assumptions made in the

present work. In Section 6 of the present work, an analysis is presented

which allows the dispersion coefficient to be calculated for uniform

flow of the type found in constant density regions of estuaries (i.e.

estuary type flow). In Section 8, experiments are described which were

used to check the analysis of Section 6 for a specific boundary con-

figuration, namely a circular pipe.

The verification of distorted models usually includes

verification of salinity gradients. This effectively constitutes a

verification of the dispersion process for the portion of the estuary

where salinity gradients exist. Thus, concentrations measured in this

portion of the model may be taken as applying directly to the geometrically

similar points in the prototype.
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5) SOLUTIONS FOR ONE DIMENSIONAL DISPERSION EQUATIONS IN STEADY FLOW

This section is concerned primarily with uniform flow since it is

seldom possible to obtain an analytical solution to a dispersion equation

for non-uniform flow. Nevertheless, much can be learned about the

characteristics of the dispersion process by looking at some of the

solutions which can be obtained for uniform flow. At the end of the

section, an indication is given of how solutions may be obtained for non-

uniform flows by use of finite difference equations.

It has previously been shown (eqn. 2-19) that the one dimension-

al equation for the conservation of a conservative substance in uniform

flow is

)C + C E 2C 5-1
)t t x t ) 2

where C is the concentration of the substance, Ut is the one dimensional

velocity, Et is the coefficient of longitudinal dispersion, t is time, and

x is the longitudinal space coordinate in the flow direction.

In the discussion which follows, the substance which is being

transported by the fluid will be assumed to be a tracer with the same

density as the flowing fluid. The mathematical solutions, however, will

closely approximate the dispersion of any conservative substance whose

concentration is low enough so that it does not appreciably affect the flow

pattern.

5-.) Steady, Uniform Flow

If the flow is steady as well as uniform, then the velocity and

the dispersion coefficient are constant so that Ut and Et may be written

respectively as U and E. Therefore,

)C )C 32C
+ U 7 = E 2 5-2

5.1.1) Instantaneous, Point Injection

Consider an instantaneous injection of tracer at x = 0 and
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t = 0. The injection is assumed to be uniform over the cross section at

x = 0. For simplicity, this will be called an instantaneous, point in-

jection. If M is the mass of tracer which is injected, A is the cross

sectional flow area, and b(x) is the Dirac delta function, then the

initial and boundary conditions for the solution of eqn. 5-2 are

C(x,O) = (x*)oA

C(_+ 00 t) = 0

The Dirac delta

its argument (x)

unity:

Thus, at x = 0,

unit area. The

introducing the

is a function which is defined as zero for all values of

except zero. Also, the integral of the function is

J0() dx = I

8(x) represents a "spike" of infinitestimal width and

spike initial condition is indicated on fig. 5-1. By

change of variables

x= x - Ut

5-4
t = t

eqn. 5-2 becomes

E )2
)t )R~x

5-5

which is the familiar "heat equation".

under the conditions of eqn. 5-3 is

C exp

Af4~ E

The solution to eqn. 5-5 (ref. 9)

-2

4Et

(This may be verified by substituting it into eqn. 5-5 and by observing

that the conditions of eqn. 5-3 are satisfied.) After returning to the

original variables x and t, the solution is

M K.(x - Ut)fl
C = exp L 4Et

A 4,Et

5-6
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The characteristics of this solution are discussed below and are shown in

fig. 5-1 and fig. 5-2.

Eqn. 5-6 indicates that the tracer has a normal or Gaussian dis-

tribution in the x direction for all time. The maximum concentration is

always at x = Ut and decreases with time according to

C = M
max 5-7

4 TEt

The centroid of the dispersing tracer is also at x = Ut, and the variance

(second moment, eqn. 7-2) of the tracer distribution is given by a2 = 2Et.

Thus, the tracer is continually being spread out longitudinally due to

dispersion. These characteristics of the spatial distribution are shown

in fig. 5-1.

Consider the concentration distribution which will be obtained by

observing the tracer as it passes a fixed x. The observed distribution

will be skewed (fig. 5-2) even though the x distribution is normal at each

instant. This skewness is due to the dispersion which takes place as the

tracer passes the observation point.

It is generally more practical to observe a tracer as it passes

a fixed point rather than to sample the spatial distribution at a fixed

time. Thus, the spatial distribution for a fixed x will be investigated

further.

By differentiating eqn. 5-6 with respect to t, the time of

occurrence (t p) of the peak concentration on a time record of concentration

at any x. may be found to be

X.
t = + ( -

p U Ux Ux 5-8

This shows that the peak concentration on a time record occurs after the

time of mean flow (x /U) from the injection point to the station where

measurements are being made. The difference between t and x./U decreases
p I

as x. increases. For steady flow in a pipe of radius a, using Taylor's

expression for E (eqn. 3-4) and taking a Darcy-Weisbach friction factor (f)

of 0.02,
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Fig. 5-1: Characteristics of spatial concentration distributions for an instantaneous,
point injection of tracer
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E 4
Ux x 5-9

Thus, if x.I/U is large, t will be essentially equal to x./U, the mean flow
I ~ pI

time from the injection point to x.. (The term "maximum concentration" will

be used for a spatial distribution, and "peak concentration" will be used

for the temporal distribution observed at a fixed x.)

In connection with the spatial distribution, it was pointed out

that the mean (first moment) of the spatial distribution was at x = Ut and

that the variance (second moment) was related to E. Similar relationships

can be derived for a temporal distribution.
th

Define the r- time moment of the concentration distribution as

p= f C tp dt 5-10
P 0-16'

In general, this integration can not be carried out directly using eqn. 5-6

to find the w 's. However, eqn. 5-2 may be converted into an equation for
p

the g 's, and the moments may be found from solving this differential

equation. (The general method for converting a differential equation into

an equation for moments is demonstrated in appendix B in connection with

obtaining eqn. B-4 from eqn. 6-13.) In this manner, it is found that

M
Po PAU 5-11

111 11 oU 5-12

2
x. Ex. 2

y =g '- + 6 - '- + 12 5- 13
42 0 2 U3 U 4
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These moments are taken about the origin of time, i.e., the time of inject-
p i

ion. Define 92- and "2 as the second moments about t (eqn. 5-8) and about
p

t.= ,/ respectively. Note that t. is the time of occurrence of the
I I oI

centroid of the temporal distribution at x . These two forms of the second

moment are

Ex.

u =P o 2 '+ 12 I 5-14

5-15
. IEx.

g2 = go 2 +3

For two stations x. and

centroid be t. and t.. From eqn.
I J

equal to the flow time between x.

the mean flow time from the point

the fact that upstream dispersion

injection to be different from t

can be seen more clearly from fig

istics of temporal concentration

Equations 5-14 and 5-15

taken about either t or t., then
p

from one x to another is linearly

That is,

p
2E d g2
3 dx g
U 0

x., let the times of occurrence of the

5-12, it may be seen that (t. - t.) is
I J

and x.,. However, t. is not equal to

of injection to x. . This results from

causes the time 4 i/oL at the point of

- 0, the time of injection. Perhaps this

. 5-2, which shows some of the character-

distributions.

indicate that, if the second moment is

the rate of change of the second moment

related to the dispersion coefficient.

d 42

dx J 0
5-16

5.1.2) Continuous, Point injection

Since eqn. 5-2 is linear, superposition of solutions may be

used. In many cases, the way in which a tracer is introduced into the flow

may be described as an integral of Dirac delta functions. If this is the

case, the solution to eqn. 5-2 can be given as an integral of the concen-

tration distribution as given by eqn. 5-6.

8E2
8 4
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For example, consider the case where a tracer is injected at a

constant rate at x = 0 during a time interval 0 < T < t.. Thus, the in-

jection condition could be written as an integral of delta functions for T

varying from zero to t . At any time t, the increment of concentration

(dC) due to the increment of tracer (dM) which was injected at time T is

given by

dM [x - U t-) ]
dC exp - 4E(t-.5) 5-17

if t is measured from the beginning of the injection. If the mass rate of

injection is Q m, then dM = Qmd and for t > t

S tQM exp - [x - U(t--) ]2
CJ 1x4E(t-T) di 5-18

0 4PE( t-,r)

(This solution is presented in ref. 9 and 29.)

By letting

Ux b =
4E 2 E

B = - B u t -
2xE 1 2A E

eqn. 5-18 may be written as

2Q B 2
C = Q ex exp - (b2 + ) db 5-19

epAU 2 B b

In practice, it is impossible to obtain a truly instantaneous in-

jection of tracer as was assumed in section 5.1.1. Hence, let us investi-

gate the error which is introduced by assuming an instantaneous injection

in a practical case.

Consider the case where tracer is actually injected during some

time t at the rate Qm. When t becomes large relative to t,, it would be

expected that the concentration distribution would be about the same as for

-65-
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an instantaneous injection of the same mass (i.e., M = Qmtl). Let C be

the concentration resulting from the injection during time t , and let C2
be the concentration resulting from the instantaneous injection. Eqn. 5-18

may be used to obtain an approximation of the time required for C and C2
to agree to within some desired degree. From eqn. 5-6, one may write

exp (-k )= exp - (B2 + )
2E ~ B2

From eqn. 5-19, one may also write

C, eA 7
4Et exp (-

where C = t It. Hence, the question

reduces to the question of agreement

5-20 and eqn. 5-21. From eqn. 5-20,

5-20

UxB 2 2 d
= B f p-(b2 db 5

BTV

concerning the agreement of C and C2
between the right-hand sides of eqn.

let

- 2 2
= exp - (B +

B
5-22

and from eqn. 5-21, let

Y 
2 I (a, B, t ) 5-23

B 22
I (a, B, ) exp - (b2 + ) db

Bd 1- b

The function I may be expanded in a Taylor series about ( 0. When

this is done, it is found that

2 a 7
Y =Y + (B2 - a- I ) +

1 2 -B 2 2 -

terms of

order 2

5-24

5-25

C 2  A 17 4E t
M

-21

where

Y 2
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Since the same mass was assumed to be injected in both cases and since this

mass will be more spread out when the injection time is longer, Y will be

less than Y2 in the region near the maximum concentration. If it is desired

22
to have YIand Y 2 (thence C1 and C2) agree to within A %, then it must be that

2(B2 - I ) < 5-26
B2 2 - 100B

Consider the point x = Ut. This point is the centroid of the dispersing
2 4

tracer, and at this point a equals B . Thus, as a first approximation, it

may be concluded from eqn. 5-26 that if

50 t
> > , A in%, 5-27

CI and C2 will agree within approximately A%.

This type of approach has been useful to obtain the approximation

contained in eqn. 5-27. However, to find the concentration due to an in-

jection for 0 < < t , eqn. 5-19 may be integrated in terms of error

functions, which are defined by

2 rz 2
erf z = exp (-q ) dq 5-28

0

Note that in general (ref. 24, 44),

2 2 2
exp - (s + N

k 5-29

1 e2n erf (I + ) - erf (k +

+ e-2 erf (A - - erf (k -

Then, from eqn. 5-19,
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~ x-U(t - t1 )
erf (

L 21E(t -t
- erf (X-Ut

2Et'

- exp ( )
E

f(x + U(t - t ) r ~ "+ Serf ( ) - erf x + Ut
2x+E(t - t 1) 2 ift )1

Up to this point, no restriction has been imposed that would re-

quire tI to be a constant. Thus, let t, = t. This corresponds to a con-

tinuous, constant rate of injection. Then, from eqn. 5-30, the concentration

is

C = A
2 RA U

x-Ut U+ I - erf (X ) - exp -
- 2 , E t

1 - erf (+U 5-31
- 2 _I' )

where the plus sign applies for positive x's and the minus sign for negative

x's.

If we further consider the steady state which is approached as t

approaches infinity, it is found that

for x > 0

5-32

exp for x < 0
E

if U is positive. This steady state solution is shown in the sketch below.

Notice that for positive x, the

Q

2gAU

5-30

C= -
R.AU

C =-
- AU
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C

C = m(.AU)

U
Qm U

C =x m
RAU E

x

(Injection point)

concentration is just given by the dilution ratio between the rate of

injection of tracer and the total rate of fluid flow.

5.1.3) Step Function Initial Condition

Consider another case where the tracer concentration is

given initially by the step function

C (x, 0) = 0 for 0 <X
5-33

C (.x, 0) = C for x< 0

This condition might be realized, for example, when the fluid being pumped

through a pipe line is instantaneously changed to another fluid with

similar flow properties. The initial condition of eqn. 5-33 represents an

initial concentration distribution (i.e., at t = 0) as shown in the sketch.

C

C = C
0

C = 0

x =O
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Eqn. 5-33 may also be written as

C (x, 0) = C

C (X, 0) = C

By comparison with equations 5-3

distribution is given by

I for 0 < x
0

o J 05(x -X' ) dx' for X < 0

and 5-6, the solution for the concentration

0

C = C .f exp -
-00 J4 E t

2
(- x' -Ut) dx'

4Et

By introducing the change of variables

Z =x - X' - Ut

2JEt

one finds that

that

eqn. 5-35 may be integrated in terms of an error function so

C erf Ut

CT h 2 Et

This solution is shown in the accompanying sketch.

1.0

0

C/C0

Eqn. 5-37

x
x =Ut

5-37

The concentration C /2 moves downstream with the velocity U. As time pro-

gresses, the concentration distribution becomes more and more spread out,

while remaining an error function, as indicated by eqn. 5-37.

5-34

5-35

5-36
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5.1.4) Constant Concentration at x = 0

If C exists for all time at x = 0 and if the initial and
0

boundary conditions are

C (0, t) C0

C ()<, 0) = 0, x > 0 5-38

C (wo, t) = 0

then, for positive x, the solution to eqn. 5-2 is

C 1 X - Ut
C0 2 2 t

5-39

exp .E 1 - erf ( + Ut

This condition might come about, for example, when a pipe or stream flows

into or out of a large reservoir which effectively has an infinite supply

of fluid at concentration C0 , as shown in the sketch below.

large
reservoir of
fluid at
C
0

-+ U

The details of

and Banks (ref. 37). If

form which is

obtaining this solution are presented by Ogata

U is negative, then eqn. 5-39 has a steady state

c _ Ux
= exp E

0
5-40
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for positive x's. This is identical to the steady state form of eqn. 5-31

for negative x with Qm/(eAU) replaced by C . Ref. 37 further shows that

errors of less than 3% are introduced by using

C:I1 - erf x - Ut 1 5-41
C 0 2 _2 v-Et'

in place of eqn. 5-39 when Ux/E is greater than 500. Referring again to

eqn. 5-9 (which gives an approximate value of E/Ux in a pipe), x must be

greater than 2000 times the pipe radius for eqn. 5-41 to apply for flow in

a pipe.

5.2) Steady, Non-uniform Flow - Finite Difference Equations

For cases of non-uniform flow when a closed-form mathematical

solution cannot be obtained, there are several approximate methods which

may be used to solve the mass balance equation. Among these methods are

(a) the finite difference equation, (b) the relaxation method, (c) the

method of iteration, and others. All of these methods fall into the

general category of numerical solutions of partial differential equations.

(See, for example, ref. 33, 48.) Solution of the mass balance equation

by the finite difference method will be outlined in this section.

The mass balance equation may be viewed as an equation in x-t

space, and this space may be divided into a grid as shown in fig. 5-3.

The differential form of the mass balance equation may be written as a

finite difference equation by writing approximate (finite difference) ex-

pressions for the derivatives. These finite difference expressions are
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t

LJ~

. (

tj~

A^x

\x~ i p 1i-l

Fig. 5-3: Finite difference grid in x-t space

written in terms of the values at the grid points. For present purposes,

it will be convenient to write the general one dimensional mass balance

equation (eqn. 2-29) as

)c + c U C 2C + I (E xA) 6C
)t x )x x 2 A )x x 5-42

Using a forward difference and using the subscripts i and j to indicate

the values of x and t at which the various parameters are to be evaluated,

one may write

(t-:) i, j
C j+l- C i

At

grid points

Ats

4 ~
j

r-,\ C-L;

I

I

E)
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C - .C
x i+l ox

=r) Ax

(E:A) .l
i+1,31

Ax

- (E A). .

Also, using a forward then a backward difference, one may write

C. 2c. . + c.
1+1 ,, i,, i-I(,,

.(x2

Inserting all of these, eqn. 5-42 may be written as

C ) C + At -U
i,j+l L~j

C. . - C. .

x. . s Ax I

+ EX. . i+ .J -2G. . + C. .
+ E j L'',,l '231

(E A) x - (E A) C .+ C.1.
+ A- x 2+1, Z x Lx11 ,

As is indicated in fig. 5-3 by the arrows, it is necessary to know the

conditions at three adjoining values of x for a given t in order to find

one additional value of concentration. Nevertheless, for given initial

and boundary conditions, eqn. 5-43 may be used to find the solution for

the concentration in x-t space.

o(E A)
)x

2

(__2) q
bx2,

5-43
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In section 2, it was mentioned that the finite difference approach

is greatly simplified when a steady state concentration distribution is ob-

tained so that )C/ t is zero. In this case, eqn. 2-33 applies. Again

using the forward difference for )/x, eqn. 2-33 may be written as

C = C E.x U + 1 5-44
i +I ~ i ixX

The accuracy of any finite difference solution will depend on the

grid size ( x and At:) which is used and on the accuracy of the calcu-

lations themselves since each step is built on the results of previous

calculations.
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6) MATHEMATICAL ANALYSIS OF LONGITUDINAL DISPERSION IN UNIFORM, UNSTEADY
FLOW

6.1) Objective

The objective of this analysis is to obtain an analytical ex-

pression for the coefficient of longitudinal dispersion (E t) in uniform,

unsteady, turbulent, shear flow in a circular pipe. The Et which is being

sought is the dispersion coefficient as used in eqn. 2-19. The general

assumptions and definitions are presented below. Most of the mathematical

manipulations are contained in appendix B. After obtaining an expression

for Et for general unsteady flow, it will be applied to estuary type flow

where the one dimensional velocity is given by

Ut Uf + UT sin (t- )]. 6-1

U is the velocity corresponding to the fresh water flow into an estuary,f
and UT is the maximum tidal velocity.

The analytical development essentially parallels part of the

work of Aris (ref. 7). As shown by eqn. 2-14, it is necessary to know

the variation of velocity (u") and of concentration (c") across the

section in order to obtain an analytical expression for E. The velocity

distribution gives u". The two dimensional mass balance equation in

radial coordinates (eqn. 3-31 may be used to find an expression equivalent

to c" so that an integration similar to eqn. 2-14 may be carried out to

find E .

This analysis will show that the dispersion coefficient is a

periodic function of time for estuary type flow. Next, the errors in-

volved in replacing Et by its time average EA will be investigated. Also,

it will be shown that a simplified mass balance equation may be used if

it is desired only to represent the concentrations at "slack times".

6.2) Definitions and Assumptions

Consider turbulent flow in an infinitely long, straight,

circular pipe with its axis parallel to the x-axis. Let the radius of the
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pipe be a, and let the radial coordinate r be measured from the centerline

of the pipe. Axial symmetry is assumed. Let u (r,t) be the time-averaged

velocity in the x-direction (section 2-4), and let U(t) be the one

dimensional velocity defined by

ra
U(t) = 2 J (r,t) 2 A r dr 6-2

xao

The dimensionless distribution of the velocity defect may be written as

x (r,t) =u (r ) - U t 6-3

where u,(t) is the shear velocity. Assume that the longitudinal and

lateral turbulent (mass) diffusivities are equal and are given by

e (r,t) = e *(r,t) 6-4

where e, is a constant reference value of e and * is the dimensionless
0

variation of e with respect to e .
Let a finite quantity of some conservative substance (tracer)

P be introduced into the flow, and let E(x,r,t) be the time averaged

concentration of P. It is assumed that P does not affect the established

flow and that the substance is conservative. Then, the two dimensional

mass-balance equation for P is

K - 32-

+ u (r,t) = e (r,t) )c + r (re(r,) 6-5

with the general boundary and initial conditions

c (x,r,O) = O (x,r)

e (a,t) 0 on r = a 6-6

F (t o , r,t) = 0

The first condition represents the initial distribution of tracer; the

second says that no tracer is diffused across the flow boundaries; the
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third states that the concentration is zero as x approaches plus and minus

infinity. This last condition results from the fact that only a finite

amount of tracer is being considered. Define the following dimensionless

quantities:

a j x t U(t) dt]

P r-/a

T = t/Tr 6-7

i = VT /a
r

F(T) =/V

= eoTr /a2

where Tr is an arbitrary reference time and V is an arbitrary reference

velocity. In any specific case, Tr and V may be taken as quantities which

are characteristic of the flow being considered. In changing from x to ,

the coordinate system is changed to one which moves with the velocity U(t).

Introduction of the above quantities into eqn. 6-5 gives

3= ti P ) P -0 T- rF (r)X(p.,t) 6-8

Notice that with the introduction of i and X, the mass convection due to

the mean velocity U(t) disappears in eqn. 6-8 since the coordinate system

is now moving with the velocity U(t). The convection term 1FX

is now the convection relative to U, and this convection exists because of

the velocity distribution. The other two terms on the right-hand side of

eqn. 6-8 are the longitudinal and lateral diffusion. Thus, in accordance

with the definition of longitudinal dispersion as given in section 2, the

net or one-dimensional mass transport represented in eqn. 6-8 makes up the

transport which is defined as dispersion. This fact is important in the

analysis which follows.

At each time t, the one dimensional velocity in the pipe is

given by U(t). For each instant, let it be assumed that the lateral dis-

tribution of velocity and of turbulent diffusivity are the same as they
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would be if the flo4were steady at the velocity U(t) . This assumption

should be a better approximation the slower the rate of change of U(t)

is. On the basis of this assumption and from experimentally determined

distributions of the velocity defect for steady, uniform flow (ref. 46,

p. 197), it is implied that X is a function of p only, i.e. 0 (
Also, for this to hold, U(t) must always be of one sign (i.e., either

positive or negative). Otherwise, X would change sign as U did (see

sketch below), and X would remain a function of r.

-w-u
-X -- ,

If it is assumed that Reynold's analogy is valid so that the

mass diffusivity (e) equals the eddy viscosity (), then e may be

written as

e (p,) = e0 F(r) L1P-P 6-9

if e: is defined as kaV, where K is von Karman's constant. This is the

same e0 as in eqn. 6-7. Eqn. 6-9 is based on

C_ 7 6-10

as the definition of E and on the linear distribution of the shear stress

(T) across the section. Also, p is the fluid density. Eqn. 6-9 further

makes use of Von Karman's hypothesis which states

-u 6-11or K (a-r
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The distribution of T and e are shown in fig. 6-1. Eqn. 6-9

i

- 0
-o0

= 0

Eqn. 6-9

4e0 F(T) K-

Fig. 6-1: Distribution of shear stress and turbulent diffusivity in a
pipe

impl ies that * (p,-r) may be written as

* (p, ) = F( ) - * (p) 6-12

where *0(p) = p(1-p). Now, from eqn. 6-8, the mass balance may be written

as

li=4 o +2 p L- 7P 7 6-13

after letting

de = F (T) dT

or

e(r) =
10

T0

6-14

F(r) d . 6-15
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Recall that F(-) = u,(t)/V. Hence, F (T) is always positive, so that the

new variable e is an increasing function of -r, i.e., as - get large, e

will also.

In summary to this point, eqn. 6-13 now represents the mass

balance equation in a dimensionless cylindrical coordinate system which

moves with the velocity U(t). Certain assumptions have been made about the

distributions of velocity and turbulent diffusivities to arrive at eqn. 6-13.

Notice that the right-hand side of eqn. 6-13 is a function only of and

p (except for the dependent variable c ( )p,'u), of course). Thus, on the

basis of the assumptions which have been made, the effects of the unsteadi-

ness of the flow are now embodied in the new variable e.

In section 7, it is pointed out that the coefficient of longi-

tudinal dispersion equals 1/2 the time rate of change of 2, where 92 is

the spatial variance of the one dimensional concentration distribution.

Appendix B is devoted to finding an expression for this variance, and thus

for the dispersion coefficient, in pipe flow by operating on eqn. 6-13.

For unsteady flow, it has been assumed that the distributions

of velocity and turbulent diffusivity are the same at each instant as for a

corresponding steady flow. Since these are the factors which control

longitudinal dispersion, one might expect to find that the longitudinal

dispersion in unsteady flow would be the same at each instant as for a

corresponding steady flow. Indeed, this is the conclusion which is reach-

ed in appendix B. However, a priori, it is by no means obvious though how

the unsteadiness in the flow and the resulting unsteadiness in the concen-

tration distribution will work together to influence the dispersion.

6.3) Dispersion-Coefficient for Uniform, Estuary Type Flow

From appendix B (eqn. B-27), Et may now be written as

u, (t)
E = 10.1 ( i ) a V 6-16

tV

for unsteady flow in a uniform pipe of a radius a. In this expression,

u,(t) is the shear velocity as a function of time, and V is an arbitrary

reference velocity. (Note that V could be cancelled from eqn. 6-16.
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However, it is convenient to leave the equation in its present form for now).

Eqn. 6-16 will now be applied to uniform estuary type flow where the one

dimensional velocity is given by eqn. 6-1.

If Uf is less than U then from eqn. 6-1, U varies with t as shown

in fig. 6-2a, where T is the tidal period or period of oscillation. In ob-

taining eqn. 6-16, recall that it was assumed that U is always of one sign.

It is reasonable also to assume that the flow which has a velocity as

described by eqn. 6-1 will exhibit the same dispersion characteristics as

the flow defined by

U(t) = Uf + UT sin j- (t - ) 6-17

where the vertical bars indicate absolute value. This velocity is always

positive, as is shown in fig. 6-2b. At each instant, the absolute magnitude

of the velocity is the same for both flows. Thus, the relative distribution

of velocity defect and the turbulent diffusivity are the same for both flows.

Since these are the factors involved in longitudinal dispersion, one would

expect that the dispersion coefficient (E t) should be the same for both

flows.

In order to apply eqn. 6-16 to estuary type flow, a reference

velocity V must be chosen, and u, corresponding to the velocity of eqn. 6-17

must be found. It is desirable to find an expression for u, in terms of

other flow parameters which are more directly obtainable. Recall that

u = U = U + U sin 0- (t - 3) 6-18

where f is the Darcy-Weisbach friction factor and is a function of time.

In line with the previous assumption, it is assumed that eqn. 6-18 applies

for the unsteady flow under consideration. Also, it is assumed that f at

each instant may be taken to be the same as for steady flow at the velocity

which exists at that instant.

A typical friction-factor diagram is shown in fig. 6-3. Note

that this graph is shown on log-log paper and that lines of constant

relative roughness are slightly curved except in the wholly rough region

where f is a constant for a given relative roughness. If another
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assumption is made, u, may be written in terms of the velocity variation

and a constant, reference value of f. This assumption is that the curves

of constant relative roughness on the friction-factor diagram may be

approximated by a straight line in the region of interest. One such

approximation is shown by the dashed line in fig. 6-3. For this line,

f R n U nf-= (--)' = () 6-19
fT R UT

PR is the Reynolds number and fT is the value of f on the straight

line for IR T' i.e., the Reynolds number corresponding to UT. The constant

n is determined by the slope of the dashed line. Note that n will be

negative or zero in all cases. In general, the straight line can be drawn

to give the best approximation to the curved line within just one log-

cycle on the Reynolds number scale. The instantaneous Reynolds number for

the flow will be within this log-cycle 90% of the time if the cycle is taken

from R to 10% of IR
max max

From equations 6-18 and 6-19, u, may now be written as

U ) 1

U= u L + sin 0 (t -5) 2 6-20
T U T

where

u' = 8 U 6-21
TfTT

i.e., the shear velocity corresponding to U It will be more convenient

to have u, referred to u *A (the average shear velocity during a period)

rather than u,. By definition,

t + T
u. - u dt 6-22

t

If u, varied sinusoidally (that is, if U and n were zero) then uA would

ffequal 2/n times u,,T. To take account of the effects of Uf and n, a

factor B may be introduced, and u*A may be written as

u*A = A BU 6-23*A A *T
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where + P

B = T I + + sin t). dt 6-24 LT Ut T' UT

This factor B, for values of n from zero to -0.25 is shown in fig. 6-4.

For values of U f/UT from zero to 0.10, there was practically no change in

B for a given n. Thus, only one curve is shown for this range of U f/UT.
The range of n which is shown essentially covers the possible values.

Thus, the effects embodied in B are, at most, 4% for the practical values

of U /UT which are encountered.

Eqn. 6-16 points out that Et varies with time as u,(t) does.

Thus, using the notation EA for the average value of Et during a period,

this average is

EA = 10.1 au*A = 10.la (- Bu*T) 6-25

Taking the reference velocity V as u*A and recalling (eqn. 6-7) that

F(t) = u,(t)/V, the time variation of Et may be referred to the average

value by

Et =F(t) EA 6-26

where
1+

u,( t) U (2
F(t) u = + sin 6-27

AB T

If B equals one, then Harleman's expression for EA (eqn. 3-18) is ob-

tained from eqn. 6-25 when u1T is replaced in terms of Manning's n, UT,

and the hydraulic radius. Thus, one may see the assumptions which are

implicit in the writing of eqn. 3-18.

For future reference, it is well to recall at this point that

e(t) = f F(t) dt 6-28

0

(See eqn. 6-15.) The-variable 0 is also used in the next sections.

Fig. 6-5 shows the general variation of e with t for b = 0. The
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dashed line would apply if 9 equalled t. The absolute deviation from

the dashed line (i.e., 9 - t) is the same in each period, but as t gets

large, (0 - t)/t approaches zero due to the largeness of t. Thus, a It

approaches unity as t get large. Also, 9 equals t at the end of each

period. If n = 0, then B equals one, and 9 equals t at the middle of

each period as well.

6.4) Assumption of Constant Dispersion Coefficient for Uniform

Estuary Type Flow

Eqn. 6-26 and eqn. 6-27 give the time dependent dispersion

coefficient for uniform, estuary type flow when the velocity is given by

eqn. 6-1:

Ut= Uf + UT sin 9 (t -5 )

Since uniform flow is being considered, U and UT are independent of x.

The mass balance equation may be written as

6C )C ) 2 C
+ U + UT sin 0- (t -) = EF(t)- 6-29Lt +[f +T 'j~x A x 2

It is now desired to investigate the errors involved in taking the dis-

persion coefficient as constant and equal to EA so that the mass balance

equation may be written as

6C BC 2C
+ U + UT sin 0 (t E 2  6-30LUf T E A

(Note that this is equivalent to setting F(t) of eqn. 6-27 equal to unity).

The investigation of the errors introducted by using EA will be

based on the solution to eqn. 6-29 for an instantaneous injection of

tracer which is made uniformly across a flow section. As was done in

section 5, this will be referred to as an instantaneous, point injection.

Most other solutions to eqn. 6-29 can be made up of various integrals of

the solution for an instantaneous, point injection. Thus, the conclusions

reached for this case should be generally applicable.

In the expressions for the velocity U, the term 3 is the time

shift between the origin of time and the time of zero velocity at the
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upstream limit of the flui

be convenient to take the

instantaneous injection

example shown in fig. 6-6,

oscillation.

- T 8
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Into eqn. 6-29, introduce the change of variables

x = x - t

t
U dt

X-UftU+ - Es COS= x- -C U o 5 t1 -cs

o = ft F(t) dt

0

Eqn. 6-29 then becomes

= EA -
e A x2

t/T

6-31

6-32

1 .0 am-

4
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which is again the "heat equation".

If the injection of tracer has mass M and if it is injected at

x = 0 and t = 0 (i.e., 0 = 0), then the boundary and initial conditions

of eqn. 5-3 apply. By analogy to the solution for steady flow, the

solution to eqn. 6-32 is

-2
M x2

C - exp - 4E e 6-33
A 4- EA.' 4 A

A

or replacing x from eqn. 6-31,

M [x -U t + UTfcos a- (t-b) - cos 5 ]2

C= A exp - 4 E e 6-34
A 4E A 7 A

At the end of section 6-3, it was pointed out that e

approaches t as t gets large. Thus, at large times after the injection

of tracer, essentially no error would be introduced by replacing e with

t. From eqn. 6-28,

e= t F(t) dt

0

Thus, setting 0 equal to t is equivalent to taking F(t) equal to unity

for large t's. Since Et = F(t) - EA, replacing 0 by t is also

equivalent to taking EA as the dispersion coefficient. This equivalence

may also be seen by comparing eqn. 6-34 with the solution of eqn. 6-30

where F(t) has been set equal to unity (or the dispersion coefficient

equal to EA). This latter solution is

c M e - - U t + {cos g (t-) - cos j ]2

C= , exp - 4Et6-
A f -4 EA t 4EA
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Hence, since 0 is approximately equal to t for large values of t, the

dispersion coefficient may safely be taken as EA for large times after

the injection.

It is still desirable to have an estimate of the effects of

the time dependent dispersion coefficient at small times. Thus, let C
t

be the concentration given by eqn. 6-34. This is the solution using

Et. Let CA be the concentration given by eqn. 6-35, which is the

solution using EA. Also, let 0 = Ot, where D is a function of time.

Eqn. 6-34 may be written as

U
C A i4iEADt' [x - U t + (cos 0 (t-) - C 2

2n = -I4E t 6-36
M D A3 As

and eqn. 6-35 as

C AA 4E t
In M A

UT ( C S C O ) 2
[x - Uft + a-(cos o (t-) - cos ) ]

4E At

Divide the second equation by the first and

A 44rEAt

M

6-37

let $ be defined by

The result is

Zn (CA )
= D 6-38

or

in (CA4) = An (Ct 0 ID 6-36-39
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Take the inverse logarithm and divide both sides of the resulting ex-

pression by C t5

C
A ( 'D-1 6-40

C '-
t

On replacing C t 0 %_'from eqn. 6-34 and using the identity

exp ' X = (exp X) D

one obtains

C[- +_T (cos (t-b) - Cos 5) ]2 1

ex I=\7D exp - 4EAt 6-41

This finally is the ratio of the concentrations obtained by taking the

dispersion coefficient as either EA or Et'
The maximum of both CA and Ct is always at

x = U t - (cos g (t-3) - cos) 6-42

From eqn. 6-41, the ratio of the maximum concentrations is given by the

square root of D. Thus, the largest error in the maximum CA (i.e. from

EA) compared to Ct results when D has its greatest deviation from unity.

From fig. 6-5 (and equations 6-27 and 6-28), it can be seen that the

general variation of

D

1.0-

I 1 1
00.5 1 .0 1 .5

U 0
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D is as shown in the accompanying sketch (for 5 = 0). (The exact values

of D may be calculated using eqn. 6-27 and eqn. 6-28.) From the sketch,

it is seen that D has its largest deviation from unity during the first

quarter-period after the injection. During the second quarter-period,

the maximum value of D is 1.15 if U /UT is small. This means that there

is only a 7% error in CA compared to C . As t increases, D approaches

unity and the error in CA decreases. At t/T = 9/8, D is 0.96 and

CA Ct = 0.98.

These values give an estimate of the errors to be expected by

using EA as the dispersion coefficient in place of Et = EAF(t).

Although the calculations above were based only on the maximum concen-

tration, they indicate that by the second period of oscillation the

difference between CA and Ct has practically disappeared.

Thus, for most practical cases, the dispersion coefficient for

estuary type flow may be taken as EA, the average value of the dis-

persion coefficient, and eqn. 6-30 may be used as the mass balance

equation. Because EA is the average of Et, it still depends most

strongly on the oscillatory velocity (UT sin o t) and not on the

through-flow velocity (U f), if Uf/UT is small.

6.5) Mass Balance for "Slack Times"

In practice, concentration distributions are often sampled at

"slack times". These are the times corresponding to high water slack

(HWS, limit of upstream excursion) or low water slack (LWS, limit of

downstream excursion). At the slack times, the oscillatory component

of the velocity is zero, i.e.

UT sin J (t -3) = 0 6-43

Notice that HWS corresponds to

t - = n T, n = 0, 1, 2, 6-44

and LWS corresponds to

6-45t - = (n + ) T
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where T is the period of oscillation.

Substitution of eqn. 6-43 into eqn. 6-30 yields a mass balance

equation which describes the concentration changes from one slack time

(either HWS or LWS) to the next. This new mass balance equation may now

be written as

-cB 32c
f-s + U =A 2s 6-46

for uniform flow. The concentration has been written as C to emphasize

that eqn. 6-46 only represents the concentra ions at slack times. Also,

the time derivative has been written as I to emphasize that thisT )n
is the derivative for times differing by a full period. Also, at times

differting by a full period, the net oscillatory convection will be zero.

Thus, the convective term in eqn. 6-46 includes only the convection due

to the fresh water velocity (U f).

For an instantaneous, point injection of tracer at x = 0 and

t = 0, the solution to eqn. 6-46 is

M ~ [x - U nT]2
C = M4UT 6-47

s A t4,EAnT 4EAnT

This is exactly the same expression as would be obtained by substituting

t - 5 = nT (i.e. eqn. 6-44) into eqn. 6-35. This comparison further

points up the validity of using eqn. 6-46 as the mass balance for slack

times.

6.6) Solutions to Mass Balance Equation

6.6.1) Instantaneous, Point Injection

in section 6.4 (eqn. 6-34) the solution is presented for an

instantaneous point injection into uniform estuary type flow. This

solution was found using Et (eqn. 6-26) as the dispersion coefficient, not

E A The solution using EA is eqn. 6-35.
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Just as for steady flow, the concentration distribution (from

either Et or EA) is normal with respect to x at each instant. The

centroid of the distribution is always at

UT

x = Uft - T [cos a (t-) - cos 6-48

and the variance (defined by eqn. 7-2) of the distribution is
2 = 2E A6 (using E ) or 0 2 = 2EAt,(using EA )

The concentration distribution undergoes an oscillatory convec-

tion as defined by the velocity of eqn. 6-1. Thus, the temporal concen-

tration distribution observed at a fixed x. is quite different from that

observed for steady flow. One such temporal distribution was calculated

from eqn. 6-34 (which is the solution based on E t) and plotted in fig. 6-7.

The time shift 5 was taken as zero. The values of the various parameters

were as shown on the figure. The same calculations were carried out using

the solution based on EA (eqn. 6-35). In the scale used to plot fig. 6-7,

there was no distinguishable difference between the two solutions after the

first period.

For the first seven periods, the majority of the concentration

distribution moves past the measurement station on both the forward and

the return excursion. Thus, there is part or all of two spikes within

each of the first seven periods. Beginning with the fourth period, the

downstream tail of the distribution does not move completely upsteeam of

the observation station at the limit of the upstream excursion. This

results from the distribution becoming more spread out due to dispersion

and from the mean position of the distribution moving downstream due to

Uf. By the eighth period, the convection due to U has moved the dis-
f* f

tribution so far downstream that only part of the upstream tail passes

the observation station, even at the upstream limit of the excursion.

Thus, from period eight on (for the example of fig. 6-7), the observed

peaks do not correspond to the actual maximum of the concentration dis-

tribution, since the actual maximum is no longer passing the observation

station. In general, the actual maximum and observed peaks will not be

the same for t greater than x /U . Also, if x. is greater than

(U t + U TT/i ), then the actual maximum will not reach x even at the
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downstream limit of the excursion. (U TT is equal to the length of the

fluid excursion.)

From eqn. 6-35, the actual maximum concentration decreases

according to

C = 6-49
max pA 44EA

Also, the time (t ) of occurrence of the peak concentration at x is given

approximately by the solution of

U
x. - U t + -I cos g (t - C) -cos 1 = 0 6-50
I f p a7 p

The degree of approximation in eqn. 6-50 is equivalent to saying that t
p

equals x./U for steady flow. (See eqn. 5-8, eqn. 5-9, and the accompany-

ing discussion.) For a pipe of radius a, if x./a is large, then eqn. 6-50

should be expected to give good results. In accordance with fig. 6-7,

eqn. 6-50 gives more than one value of t . Also, when U t becomes greater
pf

than x., no solution can be found for t from eqn. 6-50. This is in
p

accordance with the previous observation that the actual maximum no

longer passes x for U ft greater than x .

Fig. 6-7 is a continuous concentration distribution which was

calculated for a particular set of circumstances. If this distribution

were observed at one period intervals (say at HWS), then the circled

points would represent the observed concentrations. These are the points

which would be calculated from eqn. 6-47. If one were to draw a smooth

curve through these points, the dashed line would be obtained. It is

obvious from the figure that this line does not represent the concentration

at x. for all times. It is also interesting to note from fig. 6-7, that

if the concentration were sampled at LWS, then zero concentration would be

observed during the time interval represented on the figure.

6.6.2) Continuous, Point Injection

a) Exact solution: Again consider the case of a constant

rate of injection, QM , at x = 0. Let the injection begin at the time of

the upstream limit of the fluid excursion, and let time (t) be measured
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from the beginning of the injection. Also, let the injection continue

for 0< _< t1 . If it is assumed that the dispersion coefficient is con-

stant and equal to EA at all time, then C may be given as an integral

of eqn. 6-35. For each increment of the continuous injection, dM equals

QM dr; t of eqn. 6-35 now becomes t-T; and 6 is now -T. For t>t,

m m[x - UC(t-T) UT

C =m exp - f -fc) TJ d 6-51

o gA 4rEA(t-) 
A(t-)

By letting il = t-T, the integral can be written as

t Q m [x - UfT1 + UT cos 9t- cOs a(t-_TP) 2

1~t ~m [xf 9~
C o exp 4 E T1 dii 6-52

0 p A 4 E , q A

As far as is known, a closed form of this integral is not

known at the present time. For a given set of conditions, the integral

may be evaluated, numerically to find C as a function of x and t.

If the injection in the above case is continuous so that

t= t, it would be expected that a quasi-steady state could be reached.

That is, no change would take place in the concentration from one period

to the next. Ippen and Harleman (ref. 28) have shown that in such cases,

the problem of describing the concentration distribution may be separated

into two parts. One part is equivalent to the application of eqn. 6-46

to find the concentration at t = nT. At steady state, BC/)n = 0 and this

equation shows that from one period to the next there is a balance between

convection due to U and dispersion represented by EA. For the other

part, Ippen and Harleman have shown that after a quasi-steady state is

reached, the transport process during a period may be represented solely

by the oscillatory convection; that is,

--+ U sin S - 0 6-53

where S is the time variable during a period so that S varies just in

the interval 0<S<T. The solution of eqn. 6-53 gives the functional
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variation of C:

C = f [x + - (cos 7 S - 1) 6-54

Thus, if the concentration is known as a function of x at any time

during the period, the concentration can be found at any other time

by eqn. 6-54. (See ref. 22.)

b) Approximate solution for quasi-steady state: An

approximation to the quasi-steady state which eqn. 6-52 approaches

may be obtained in the following way: Let the length of the fluid

excursion during a half period be b. Since the injection of tracer

is continuous at a fixed point, the tracer is introduced into a

fluid volume of length b as the fluid moves past the injection point

during the period. To account for this, assume that the injection

is spatially distributed uniformly over a length b. Let the

strength of the distributed injection be such that the total injection

during a period is Q T, which is the actual mass injected during a

period. This assumed condition may be used to find a steady-state

solution of eqn. 6-46. If this solution is taken as representing

the concentration distribution at some time during the period, then

eqn. 6-54 can be used to find the concentration at other times.

The assumed injection condition is shown in the sketch

below:

Uf

x =-b x 0=O (actual'

, ,, ,, a ., . ,- injection point)

(j istributed injection with
uniform strength Qm/b

If x = 0 is the actual point of injection, the solution obtained from

the assumed injection should approximate the solution at the time of

the upstream limit of the fluid excursion since all of the region into

which tracer is being injected has effectively been assumed to be
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upstream from the actual injection point.

Recall that the steady-state solution for a continuous

injection into steady flow mas given by eqn. 5-32. By comparing

eqn. 6-46 with eqn. 5-2, it is seen that the desired solution of

eqn. 6-46 can be made up by integrating concentrations of the

type given by eqn. 5-32. In general notation,

C = f (x - x') dx'

-b

where f(x)

When this

is the concentration distribution given by eqn. 5-32.

integration is carried out, it is found that

=1 for 0 < XH

xH + b +
- b

E A

Uf

EA (1 - exp
U b

Uf(xH + b)
(exp EH

EA

f H) for -b< H <0

A H

f H
- exp E

for , H < -b

where Co = Qm/(AU f). Note that Co is again determined by the dilution

ratio between the total rate of injection of tracer and the rate of

fresh water flow. In eqn. 6-55, xH is used to signify that this

solution is being taken as the solution at HWS, the time of the up-

stream limit of the fluid excursion (i.e. S = 0 in eqn. 6-54). By

applying eqn. 6-54 at S = 0 and x = xH, then at any S and x, it is

seen that the substitution

U
XH = x+ -T (cos g S - 1)

can be used in eqn. 6-55 to find the quasi-steady state concentration

at any x and t (since S may now be replaced by t). Thus the final

approximate solution is

C
C
0

C
C
0

C
C
0

6-55

6-56
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C ~UT
= I for 0 < x + (coscr t - 1)] 6-57

0
UT

x + - (cos Ut-1) + b

C b
0

E A Uf [xfk + (coscxt - 6-58

f EA

UU
for - b< Ix + T (Cos a- t - 1 < 0

E U [x + -(cos cyt - 1) + b]
C A f . '

U b [exp E
o T A6-59

U [x + - (cos xt -)

f 
EA

UT
for [x + T (cos &t-l)]<- b

where C = /(pAUf). The regions where each of these three equations

is valid are shown in fig. 6-8 as a function of time.

For two sets of conditions, the approximate solution given

by equations 6-57, -58, and -59 was compared with the numerical inte-

gration of the exact solution as given in eqn. 6-52 for t= t. This

comparison is shown in fig. 6-9. The numerical integration of eqn. 6-52

was carried out with 't = 0.01T. The upper limits of the integrations

were taken as 600T and 600.5T. Thus, the distrib utions obtained

correspond to the times of the upstream and the downstream limit of the

excursion after 600 periods of oscillation. The integration to 600T

effectively gave a quasi-steady state since 1.00 was obtained for down-

stream values of C/C . The steady state distribution perhaps could have

been obtained with a smaller upper limit on the integration. This

possibility was not investigated.

Only the distributions for the even period (600T) are shown

in the figure. The numerical integration to 600.5T gave identical

distributions shifted downstream by one excursion. This confirms

Ippen and Harleman's statement that the concentration distribution
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simply undergoes a one-dimensional convection during a period after

a quaii-steady state is reached.

From fig. 6-9 it is seen that the approximate solution is

a better approximation for the case where dispersion is relatively

more important in the transport process. This is probably associ-

ated with the fact that a uniformly distributed injection was assumed

for the approximate solution. This uniform distribution would

correspond most closely to the actual case if the fluid moved past

the true injection point with a constant, but reversing, velocity.

However, the fluid moves past the true injection point with a

sinusoidal velocity. If a spatial distribution were assumed so as

to take account of this sinusoidal variation, then better agreement

might be obtained for the case where dispersion is less significant.

As the effects of dispersion increase, any non-uniformities in an

assumed spatial distribution would tend to be smoothed out. This

would seem to be a possible explanation for better agreement in one

case than in the other.

For the case where dispersion is relatively less important,

fig. 6-9 shows that dispersion still causes some upstream transport.

Spread of the tracer in a region equal to the excursion length (i.e.

-1.0 < x/b <0 at HWS) would be expected just due to the fluid's

moving back and forth past the injection point. However, tracer can

move into the region x/b < - 1.0 only by dispersion. In this same

region, the concentrations given by the exact and approximate

solutions do not agree. However, notice that the slopes of the

exact and approximate solutions are the same for both cases present-

ed in fig. 6-9. This indicates that the functional relationship of

the approximate solution could be used to find the concentrations

upstream of x/b = -1.0 if the concentration were known at that

section.

From the two cases which were presented, it seems reasonable

to say that the approximate solution gives an adequate representation

of the concentration distribution when the relative importance of

dispersion is such that an appreciable amount of the tracer becomes

spread over a distance equal to two or more excursion lengths.
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It should be pointed out that the dispersion equation and

many sets of boundary conditions which arise are similar in mathe-

matical form to heat flow problems and other types of diffusion

problems. Thus, many more solutions for dispersion problems can be

found in references such as ref. 9, 11, 26, 41.
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7) SOME METHODS FOR EXPERIMENTAL DETERMINATION OF DISPERSION

COEFFI CI ENTS

In the previous sections, several solutions were given for

the dispersion equation under various sets of initial and boundary

conditions. On the basis of these solutions, several methods are

available for the calculation of dispersion coefficients. Recall

that it was assumed that the introduction of a tracer into a 'given

flow did not affect the flow pattern. Thus, since dispersion is

related to the distribution of velocity and turbulent diffusivity,

the same dispersion coefficient should be found for a given flow

regardless of which set of boundary and initial conditions are

used for the tracer.

7.1) Steady, Uniform Flow

7.1.1) Instantaneous Point iniection

Let the tracer be injected instantaneously and uni-

formly across the flow cross section at x = 0 and t = 0. For

simplicity, this was called an instantaneous, point injection.

For this injection condition and for steady, uniform flow the

concentration distribution is given by eqn. 5-6. Three methods

will be described for finding the dispersion coefficient under these

conditions.

a) Spatial variance: If spatial distributions are

available for fixed times, then the dispersion coefficient E may be

found from the variance (0 2) of the distribution since

a- 2
E 7-1

E = 2t ~

(See section 5.1.1.) Basically, (2 is the second moment of the

spatial distribution and is defined by

., (x - U t)2C dx
&2 C 7-2

110C dx



However, the normal distribution is also given by

- 2
C exp - 7-3
max 272

2
where x = x-Ut, so a may be found directly from the spread of the

distribution rather than by carrying out the integrations of eqn. 7-2.

For example, at the level where C/C = 0.5 on the distribution,
2 max

x0.5 may be found and (T will be given by

- 2
2 x 0.5 7-4

2 In 0.5

See fig. 7-1. A similar calculatibn may be made for as many levels of

C/Cmax as desired. Then, using eqn. 7-1, E may be found.

C

max

11.0

0.607

0.5
x 0.5

x Ut

Fig. 7-1 Relation Between the Spread and the Variance of a Normal
D'istribution

X
i
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Direct application of eqn. 7-1 assumes that the injection

was made uniformly across the section. When this condition is not

met, E may be found by taking the time rate of change of a-2 after

the tracer becomes uniformly mixed across the section. By

differentiating eqn. 7-1 with respect to t, one finds that

E = T7-5
2 dt

This expression may also be used when the time and location of the

injection are not known.

b) Temporal moments: For a temporal distribution,

E is again related to the second moment (equations 5-14 and 5-15),

but the second moment is not related in a simple way to the spread

of the distribution. Thus, the distribution must be integrated to

obtain the moments. From equations 5-14 and 5-15,

Ux 2 U4 2 Ux

E /= 1 22 - 7-6

or

Ux. 2 4 Ux.
E = ) + 7-7

where 42 is the second moment about the peak of the distribution and

t2' is about the centroid of the distribution. Again, if the initial

condition is not known exactly, the change in the second moment may be

used to find E. From eqn. 5-16 for either 12.or 2

U3 dk2
E dx-7-8

0
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It should be observed that it is necessary to know the

entire concentration distribution rather accurately in order to

carry out the integration to find 42. This is especially true

of the tails of the distribution since these have the longest

''moment arm'' and this moment arm is squared to find jt 2 . A slight

error in the concentration can cause a large error in the moment

and hence in E. The next method overcomes this difficulty.

c) Modified semi-log plot: Let C, be a given con-

centration, say a value near the peak of the distribution, and let

t, be the time corresponding to C, at x. . From eqn. 5-6,

(x. - 2t..
M i -U

C = exp - 4Et 7-9
* pA 4,rE t _ 4Et

Dividing eqn. 5-6 by eqn. 7-9, rearranging, and taking the natural

log, one finds

C I7 ~ F(xi - Ut) 2 (x. - Ut,)2-
-n ( ) = - 4t ~ 4t, 7-10

Thus, if the two bracketed quantities are plotted versus each other

for the concentration distribution at x., the data should fall on the

straight line whose slope is -l/E. If t, is taken as x./U, then the

second term in the right-hand bracket will be zero.

This method has the advantage that the straight line may be

fitted to those points corresponding to concentrations in the upper

part of the distribution. If this is done, inaccuracies in the

measurement of the relatively low concentrations of the tracer do not

influence the determination of E.

7.1.2) Other Injections

If tracer material is injected so that eqn. 5-30, 5-31,
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or 5-39 gives the concentration distribution, there is no direct way

of calculating E from the data acquired before a steady state is

reached. However, if the distribution does come to steady state so

that eqn. 5-32 or 5-40 applies, then E may be found from the slope of

a semi-logarithmic plot of the relative concentration versus Ux. This

requires that the spatial distribution of concentration be known, but

for a steady state this does not present the problems that it does for

an unsteady one.

If conditions are such that either eqn. 5-37 or 5-41 applies,

then E can be obtained most directly by plotting C/C versus (x. -Ut)/
0 I

(2,1t) on arithmetic-probability paper since these solutions involve

error functions. E is then related to the slope of the straight line

through the data points. If probability paper is not available, the

same effect may be achieved in another way. For the cases being con-

sidered, the relative concentration may be written as

C I
C 2 [1 - erf 4
0

where

x - Ut

2 JfE t'

For each C. observed at the point x., a t. may be calculated just
J J

from C./C . Then, by taking x. and t. corresponding to C., the 0.
Jo i J j J

values may be plotted versus (x. -Ut.)/(2 1t'). The data should plot
I J J

as a straight line whose slope is related to T.

7.2) Uniform Estuary Type Flow

In estuary type flow, the time averaged dispersion co-

efficient (EA) was shown to be the most significant dispersion

parameter. (Section 6.) Thus, the methods discussed here deal only

with finding EA*

7.2.1) Instantaneous, Point Injection

For an instantaneous, point injection at x = 0 and



-112-

t = 0, eqn. 6-35 describes the concentration distribution when the

dispersion coefficient is taken as EA for all time. If the data is

sampled at x. at one period intervals after the time of injection,

then eqn. 6-47 represents this selected data. Eqn. 6-47 is identical

in form to eqn. 5-6. Thus, this selected data may be analyzed by

spatial moments, temporal moments, or the modified semi-log plot just

as described above. The dispersion coefficient which is obtained

will be E It must be remembered that the transport process repre-

sented by EA is still strongly dependent on oscillatory velocity even

though this velocity does not appear in eqn. 6-47.

If data is taken at one period intervals on the half period

rather than the full period, then the data is represented by

TUT 2

M [(x -)-U (n +}2)T]2
C A M exp - [ 7-10

s A4EA(n+}T' 4EA(n+j)T

This data may be analyzed by the same methods if the effective value

of x is taken as (x-TUT/ -). (The quantity TUT/I is the length of

the fluid excursion.) It has also been assumed that e = t at the half

period in order to obtain eqn. 7-10. B (eqn. 6-24) must be unity and

n must be zero for 6 to exactly equal t at the half period.

7.2.2). Continuous, Point Injection

For a continuous, point injection there is apparently

no direct method for calculating a dispersion coefficient on the basis

of the exact solution as given by eqn. 6-52, even if a quasi-steady

state is obtained. In section 6 it was pointed out that the approxi-

mate solution of equations 6-57, -58, and -59 is a better represen-

tation of the quasi-steady state in some cases than in others. If

conditions are such that this approximate solution seems to apply, then

it may be used to calculate an approximate value of the dispersion co-

efficient. Eqn. 6-58 may be differentiated and written as
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- r(C/C) = U [ UT (

Yen (l-b - ) x + - (cos t - ) 7-12

for the region

- b <fx + -(cos a-t - 1) < 0

If the data for this region is plotted in terms of the bracketed

quantities of eqn. 7-12, the points should fall on a straight line

whose slope is U /E Use of this method requires that enough data

be available so that the gradients 6 (C/C0)/ )x may be found.

For the region

-U

x + T (cos U t - 1)] < - b

eqn. 6-59 may be written as

(exp- 1) exp x + -!(cos ot - l) 7-13
C0 UfbEA EA 0"

If ln(C/C ) is plotted versus

U -
x + U (cos rt -u

the slope of the resulting straight line should be Uf/EA. In con-

nection with fig. 6-9 it was observed that the exact and approximate

solutions gave the same slope of ln(C/C 0 ) vs. x/b in the region now

under consideration. Thus, in this region, use of the method

described above should give a value of EA which would be as accurate

as if the exact solution (eqn. 6-52) could be fitted to the data.

(Note that the bracketed coefficient in eqn. 7-13 is a constant for

a given set of flow conditions.)
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7.3) Non-uniform Flow

In all of the cases which have been presented so far, it has

been assumed that the flowwas uniform so that the velocity, the flow

area, and the dispersion coefficient were not functions of x. For

cases where it is not reasonable to assume uniform flow, it has been

shown that the mass balance equation may be written in finite difference

form.

When a steady or a quasi-steady state is reached, the finite

difference equation may be written as eqn. 2-34 or eqn. 2.40, using a

central difference for the derivatives. (Eqn. 5-44 used a forward

difference.) From eqn. 2-34 for steady flow, E is given as

2 (Lx) U Ci

E . = 7-14
i+ - i

For estuary-type flow (from eqn. 2-40),

2 (Ax) Uf Cs
(E A) = 7-15

i+I - si-1

Eqn. 7-15 may not be applied in regions where mass is added

across the flow boundaries. (See discussion accompanying eqn. 4-15.)

This equation is based on an expression which represents only the con-

centration changes of a conservative tracer from one period to the

next. Thus, if a given fluid volume has mass added to it any time

during a period, eqn. 7-15 cannot be applied to that fluid volume or

across it. An example of this restriction is seen for the case of a

continuous injection into estuary type flow. In this case, eqn. 7-15

may not be applied to any of the fluid which passes the injection

station during an oscillation. Thus, eqn. 7-15 is applicable only in

the region

x+ - (cos at - I < - b

where b is the excursion length, UT is the maximum oscillatory velocity,

a is the frequency of oscillation, and the injection is made at x = 0.
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At the time of the upstream limit of the excursion (t = nT, n =0, 1,

2 ... ), the region of applicability is x <-b. At the downstream

limit (t = (n 4- 1/2)T), the region is x<0. In connection with

eqn. 2-39, it is further pointed out that the fresh water discharge

(U fA) must be constant if eqn. 7-15 is to be applicable.



8) EXPERI MENTAL PROGRAM

8.1) M.I.T. Experiments

8.1.1) Obiectives

The purpose of the experiments conducted at M.I.T. as

part of the present work was to study longitudinal turbulent dis-

persion in both steady and unsteady, estuary type, shear flows. In

the present sense, estuary type flow refers to flow where the velocity

is the sum of two components--an oscillating component and a "through

flow" component. (See eqn. 2-24.) It was convenient to make these

studies in a pipe line in the laboratory. Thus, it was possible to

have uniform flow for both the steady and the estuary type flows.

Naturally, it is recognized that uniform estuary type flow

in a circular pipe is not a model of tidal flow in an estuary. It was

not the purpose of this research to model tidal flows, but rather to

study the fundamentals of dispersion in flows which were kinematically

similar in most respects to estuary flow. Since the kinematics of

turbulent flow in pipes and in open channels are similar, it is to be

expected that the results obtained in the laboratory should apply in a

functional way to open channels.

In order to study dispersion, it is necessary to be able to

trace the movement of water particles. In these studies, salt (sodium

chloride) in low concentrations was used as a tracer. Salt concen-

trations were measured with electrical conductivity probes.

8.1.2) Equipment

The dispersion studies reported in this section were

conducted in a straight pipe line made up of standard 1-1/2" galva-

nized plain end pipe (1.610" I.D., 1.900" O.D.). The total length

of the pipe line was 140 feet and it was supported at 15 ft. intervals

by pipe-hangers attached to wall-brackets. In addition, supports from

the floor to the pipe were placed half way between each pair of wall-

-116-
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brackets, so that the pipe then had supports at 7-1/2 ft. intervals.

The pipe was placed on a uniform slope so that the downstream

end was 2 in. higher than the upstream end. This slope was used so

that no air pockets could remain in the pipe even at low flow rates.

Sleeve-type couplings were used to join the pipe sections. The coup-

lings were made of 6" long pieces of 1-7/8" t.D. radiator hose. Worm

hose clamps were then used on the radiator hose to seal the joint.

At about 8" from the upstream end of each length of pipe

and at about the center of each length of pipe, holes were drilled

through the pipe wall and fittings were installed to allow instru-

ments up to 5/16" dia. to be inserted into the flow (fig. 8-1). These

fittings were intended primarily for the conductivity probes described

below. Piezometer taps were installed 6" upstream from the end of each

length of pipe. At each piezometer station, four 1/16" dia. holes were

placed in the pipe wall at 90' intervals around the pipe. Fittings for

plastic tubing were then soldered over each piezometer tap and inter-

connected (fig. 8-2). By placing the piezometer taps 6" from the end

of the pipe sections, it was possible to clean the inside of the 1/16"

holes after they were drilled.

The piezometer taps and the fittings for the probes were

numbered from the upstream end of the pipe. The numbers for the

piezometer taps were preceded with a "P" and those for the probe

fittings, with an "M". The coordinates of the P and M stations along

the pipe are tabulated in Table 8-1. These distances were measured

from the upstream end of the pipe.

A schematic diagram of the test pipe and the associated

equipment is shown in fig. 8-3. Upstream, the pipe line terminated

in a closed, circular tank made from a piece of 12" I.D. pipe. This

tank was used to assure that the water entered the straight test

section without secondary motions due to pipe bends, etc. For steady

flow experiments, the downstream end of the pipe line could be attached

to a hose which led to a weighing tank (400 lb capacity) and to a drain.

For the estuary type flow experiments, the pipeline terminated down-

stream in another 12" I.D. tank. This tank had a float-switch which

was connected to a solenoid valve on the drain line from the tank. This

drain line also went to the weighing tank.
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Table 8-1:

S tat i on
Number

Coordinates of Piezometric
and Instrument Stations

Longitudinal Distance
from Upstream Tank (ft)

Ml

M2

M3

M4

M5

M6

M7

M8

M9

M10

Mi1l

M12

M13
M1 4

1.21

11.85

22.22

32.88

43.24

53.88
64.26

74.91
85.26

95.92

106.33
116.38

127.38

138.02

21 .39

42.40

63.42

84.44

105.50

126.54

P1

P2

P3

P4

P5

P6



The upstream tank was connected so that it could be fed

either by a centrifugal pump (for steady flow experiments) or by a

hydraulic cylinder and piston apparatus (for estuary type flow ex-

periments). The centrifugal pump was a Gould Close-Cupld I hp,

1750 rpm motor-pump rated at 100 gpm at 20 ft. The suction side was

connected to the laboratory's main reservoir. Since the reservoir

and the pump were in the basement of the laboratory, there was a

static lift of 10 to 12 ft. to the pipe line. This pump was used

for finding the relative roughness of the test pipe and for steady

flow dispersion tests. To determine the roughness, the piezometer

taps were connected to a manometer board. Then piezometer gradients

were measured simultaneously with a gravimetric determination of the

discharge. Typical piezometer gradients are shown in fig. 8-4. The

results of all the head-loss tests are tabulated in appendix C, and

the calculated friction factors are shown in fig. 8-5. A relative

roughness of k/D = 0.0013 was taken for the pipe.

Oscillating flow was achieved in the pipe by a motor driven

hydraulic cylinder and piston. The cylinder was a Hydroline (Rock-

ford, Illinois) R2AW cylinder which had a 12" I.D. and a 12" maximum

stroke. All parts of the cylinder and piston which were in contact

with the water were chrome plated (CF 500). The power for driving

the piston was supplied by a U. S. Electric Motors type VA-GWB motor

with variable speed drive. The motor had a maximum output of 0.5 hp

and the output speed ranged from 2.2 rpm to 20.6 rpm. The output

speed was reduced.by a 3/4" chain and sprocket drive. This additional

reduction was 72:15. The chain drive was connected in turn to an ad-

justable eccentric mechanism on which the eccentricity could be varied

continuously from zero to 6" (fig. 8-6). The eccentric was then con-

nected by a 36" long drive arm to the piston rod. Thus, both the

stroke and the frequency of oscillation of the piston could be varied

from one run to the next. The ratio of the cylinder area to the pipe

area shows that the fluid excursion in the pipe was 55.5 times the

stroke of the piston. The objective of this type of drive was to

obtain a sinusoidally varying velocity in the pipe. To obtain a true

sinusoidal variation from a drive mechanism with a constant rotational

speed, a scotch yoke mechanism is necessary. However, by using an
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eccentric drive and a drive arm which is arbitrarily long, a sinusoidal

motion can be approximated to any desired degree. For the drive which

was used the maximum deviation from the position given by a sinusoidal

motion was 3.6% of the stroke.

If the downstream tank were open to the atmosphere, negative

pressures would exist in the pipe and hydraulic cylinder during the

reverse flow part of the oscillation. To avoid the negative pressures

and the danger of air leaking into the system, the downstream tank was

closed and pressurized to 15 psi. This was the maximum pressure change

expected along the pipe during oscillatory flow. The motor and piston

would have to work against this additional 15 psi if the back side of

the piston were not pressurized also. Thus, a tank pressurized to 15

psi was connected to the back side of the piston. In addition the back

side of the piston and the bottom of this pressurized tank were kept

with water in them.

It was also desired to have a steady through-flow superimposed

on the oscillating flow in the pipe. This through-flow wasachieved by

a positive displacement pump. This pump was Eastern Industries' model

GW-2 gear pump which had a maximum discharge of 1.1 gpm at 1750 rpm

and zero head. A positive displacement pump was used since it was

discharging into a changing pressure caused by the oscillation of the

piston and since it was desirable not to have the discharge change as

the discharge head oscillated. The manufacturer's rating curve showed

that the discharge at 1750 rpm dropped only to 1.05 gpm at 200 psi

discharge pressure. Fig. 8-7, which is a calibration of the pump

discharge vs. speed and discharge pressure, shows that the discharge

actually dropped more than this for less pressure.

So that the through-flow rate could be changed from one run

to the next, the pump was driven by a 1/8 hp variable speed D.C. motor

with feed-back speed control. For the actual experiments, the through-

flow was measured directly for each test rather than using the

calibration curve.

As noted above, salt was used for a tracer in the dispersion

studies. Salt concentrations were measured in the pipe by four con-

ductivity probes which were constructed as shown in fig. 8-8. The

body of the probes was a 5/16" O.D. glass tube through which two
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tungsten wires were placed. One end of the tube was formed into a U-

shppe with a gap of about 1/16" inside the U. Two platinum plates

about 1/8" square were welded to the tungsten wires and placed on

opposite sides of the inside of the U-shaped tip. The glass tip was

then sealed against the back side of the platinum plates, and the

glass tube was sealed around the wires at both ends of the tube.

The tube was evacuated, and an electrical connector was placed on

the tungsten wires. The upper part of the glass tube and the

electrical connector were cast into molding plastic for added

strength. The platinum plates were given a coat of platinum-black

which was renewed about once a month.

Conductivity probes of this type have been used previously

in the Hydrodynamics Laboratory (ref. 18, 19), as have probes of

other types (ref. 16, 17, 19, 27). The sensing element, i.e., the

two platinum plates, were placed inside the U-shaped tip to provide

a more direct flow path for the electrical current. This direct path

helped to minimize interference between probes and helped to prevent

electrical losses to the galvanized pipe in which they were placed.

The glass probes were extremely fragile and had to be

handled with great care. A similar probe could have been constructed

with a plastic body. However, past experience in the Laboratory has

shown that plastic probes are not as stable electrically as the glass

ones due to absorption of water by the plastic. It is recommended

that some stronger, but non-absorptive, material be investigated for

future use. Perhaps a probe could be constructed with a ceramic body.

For salt (sodium chloride) solutions with concentrations less

than 2% by weight, the specific conductance of the solution is

essentially linearly related to the concentration, for normal tempera-

tures, The conductance [mho] measured by a conductivity probe equals

the specific conductance [mho/cm] of the solution divided by the cell

constant [1/cm] of the probe. Calibrations such as that shown in

fig. 8-9 verified that the probes were linear with concentration in

the region of interest. It was found that the cell constants for the

probes changed from week to week by as much as 20%. However, the

experiments were conducted in such a way that only the relative con-

centrations at each probe needed to be known. Thus, it was not

necessary to know the cell constants.
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As noted above, the probes gave a signal which was linearly

related to conductivity. During experiments the signals were read-

out on a four channel Sanborn recorder, model 154-100, which responded

in a linear fashion to changes in resistance in one leg of a Wheatstone

bridge. Thus, as shown in fig. 8-10, the Sanborn recorder did not give

a signal which was linear with changing concentrations. By taking into

account the electrical circuitry (fig. 8-11) by which the probes were

connected to the recorder, it was possible to obtain a modified cali-

bration curve which was linear (fig. 8-12, which is the same calibrations

as fig. 8-10).

The probes were found not to be velocity sensitive. For con-

stant salt concentrations between 0% and 5%, it was found that the

conductivity of the probes did not change even though the velocity past

the probe was varied from 0 to 6 fps.

The probes were placed in the pipe so that the sensing ele-

ment was on the centerline of the pipe. Also, they were aligned so

that the platinum electrodes were parallel to the pipe axis. This

means that the U-shaped tips were open to the primary direction of

flow and were continually being flushed by the flow.

The tracer (sal t) solution was injected into the pipe

through a set of the piezometer taps described above. Thus, the

salt was introduced at four points around the circumference of the

pipe. The salt injector is shown in fig. 8-13. It consisted of a

vertical piece of 1-1/2'" copper pipe about 6' long. At the bottom

of the pipe, there was a 3/4" solenoid valve to which was connected

a hose leading to the piezometer taps. At the upper end of the in-

jector, salt solution could be placed into the injector, and the air

space above the salt could be pressurized by a hose from the

laboratory's central compressed air system. After the injector was

pressurized, salt was introduced into the test pipe by a momentary

switch connected to the solenoid valve. By using an oscilloscope,

it was estimated that the switch was closed for about 20 millisec.

For this switching time and with 100 psi air pressure in the in-

jector, about 2.5 cu. in. (41 cc) of salt solution were introduced

into the pipe. For an injection time of 20 milliseconds, eqn. 5-27

shows that after one second the concentration distribution is within
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about 1% of that for a truly instantaneous injection. Thus, it was

assumed that this injection was equivalent to an instantaneous in-

jection. It was also assumed that the injection was made uniformly

across the section.

8.1.3) Stead Flow

a) Obiectives: The steady flow dispersion tests

were conducted primarily for checking experimental techniques and

methods of analysis of data. The attitude was taken that Taylor's

theoretical prediction (ref. 53) of dispersion in steady flow in a

pipe is correct. Thus, any technique or method of analysis which

did not give results in reasonable agreement with Taylor's theory

was considered to be incorrect.

b) Procedures and results: For these tests, salt

was injected at P1 and the conductivity probes were placed at Mll,

M12, M13, and M14. (See Table 8-1 for station coordinates.) Thus,

the first probe was 84.94 ft, downstream from the injection point.

Typical "raw data" for a steady flow test is shown in fig. 8-14.

This is a photograph of the Sanborn recording.

At first, the data was analyzed by taking the rate of

change of the second moment (temporal moment) of the concen-

tration distribution to find the dispersion coefficient. The re-

lation between the second moment and the dispersion coefficient

for steady uniform flow is given in eqn. 5-16 and 7-6. Typical

results are shown in fig. 8-15. Ten runs with velocities from 2.4

to 5.6 ft/sec were analyzed by this method. The results were

somewhat scattered, but the dispersion coefficients were consistent-

ly about 20% larger than Taylor's expression (eqn. 3-4).

It was mentioned in section 7 that it is necessary to

know the entire concentration distribution accurately to use the

moments-method of analysis. Elder (ref. 12) pointed out that a

laminar sublayer tends to stretch out the upstream part of a con-

centration distribution. Since the flows in these tests were not in

the wholly rough region, a laminar sublayer did exist. The fact
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that the dispersion coefficients were too large was attributed to the

effect on the second moment which resulted from the stretched out tail

on the concentration distributions.

These same ten runs were next analyzed by the modified semi-

log plot, as described in connection with eqn. 7-10. As shown in fig.

8-16, this method gave results which were generally in good agreement

with Taylor's analysis (eqn. 3-4). With decreasing Reynolds number,

there was an increasing trend for concentrations in the upstream part

of the distribution to be higher than those given by the theory. Even

for these cases, the dispersion coefficient given by Taylor's analysis

gave good agreement with the downstream part of the concentration distri-

butions. Thus, it was concluded that the modified semi-log analysis

rather than the method of temporal moments should be used in further

analysis. The agreement with Taylor's theory also substantiates the

assumption that the salt was injected instantaneously and uniformly

across the section.

For all of these ten tests which have just been discussed,

5% salt solution was injected with 100 psi air pressure in the in-

jector. Next, the effects of varying the salt concentration and the

air pressure in the injector were investigated. For salt concen-

trations from 1% to 20% and for air pressure from 20 psi to 100 psi,

no consistent variation in the results could be detected. Thus, it

was decided to use 5% salt and 100 psi in the remainder of the tests

since this gave a signal from the conductivity probes which could

easily be read on the Sanborn recorder.

c) Discussion of results: The results obtained for

steady flow dispersion in the laboratory pipe line were generally in

good agreement with Taylor's analysis (eqn. 3-4). The agreement was

better at higher Reynolds numbers. The tests also show that concen-

trations in the upstream half of the concentration distribution were

higher than predicted by the theory for an instantaneous injection

(eqn. 5-6). This difference between theory and experiment was

noticed by Elder (ref. 12). He attributed it to the influence of the

laminar sublayer which was not included in the analysis. If this is

the cause, then the difference between theory and experiment should
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reduce as the sublayer thickness decreases (i.e., as the Reynolds

number increase for a given relative roughness). For experiments

made in the wholly rough regi6n, there is no laminar sublayer so

there whould be excellent agreement between theoretical and experi-

mental concentration distributions.

Experimental results shown in fig. 8-17 are consistent

with these trends. The experiments which are a part of the present

work were conducted in the transition range between hydraulically

smooth and wholly rough. Fig. 8-17 shows the upstream half of the

concentration distribution for three of these experiments. The

experimental concentrations are consistently higher than the theory,

but the agreement between theory and experiment improves as the

Reynolds number increases. Also, data from an experiment made in a

rough pipe scatters about the theoretical line and shows no consistent

tendency to be higher than the theory. The data for the rough pipe

was taken from fig. 10 of Taylor's paper (ref. 53). This experiment

was conducted in a 3/8" dia. pipe at a velocity of 146 cm/sec. The

roughness was such that U/u, was 6.73.

For the present work, the limits of the experimental equip-

ment would not allow the Reynolds number to be increased enough to

obtain flow in the wholly rough region. It would be helpful if a

systematic set of experiments could be conducted in the hydraulically

rough region of Reynolds numbers to further investigate the agreement

between theoretical and experimental concentration distributions.

However, on the basis of the evidence at hand now, it seems that

Elder's explanation is correct and that the presence of a laminar

sublayer does influence the concentration distribution. In section 3,

it was noted that the sublayer effectively increases longitudinal

dispersion over that indicated by Taylor's analysis. For run S-27

(as shown in fig. 8-17), a.dispersion coefficient 31% higher than that

given by Taylor's analysi s is necessary to describe the experimental

points in the upstream part of the distribution.
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8.1.4) Estuary Type Flow Tests

a) Objectives: The objective of the experiments in

estuary type flow was to obtain a mean velocity in the pipe which

followed the form

U = Uf + UT sin CFt 8-

and to study longitudinal dispersion in this type of flow. In this

expression, the U's are one dimensional velocities, U and UT are

independent of space and time, o is the frequency of oscillation

(i.e., 2t/T where T is the period), and t is time.

b) Procedures: UT was determined from the eccentri-

city of the piston drive, the cylinder-to-pipe area ratio, and the

period of oscillation. In more detail, the eccentricity (e) of the

piston drive was measured. The stroke of the piston was equal to 2e.

The excursion of the water in the pipe was equal to 2e times the area

of the cylinder (A = 0.785 ft 2) divided by the area of the pipe

(A = 0.01414 ft 2). The oscillating velocity averaged over a half
p

cycle is the excursion divided by T/2. Since the amplitude of a sine

wave is it/2 times the average over a half period, UT is given by

2e A /A 2 x e A
U = - ( . c p) = 8-2

T 2 TT/2T A
p

T was determined by a limit switch on the piston rod and

the Sanborn recorder. A momentary micro-switch was attached to the

piston rod so that it switched at the upstream limit of the excursion.

The switch was then connected to the timing marker on the Sanborn re-

corder. The recorder also provided one-second marks on the timer.

Thus, it was possible to find the period T.

U was determined gravimetrically. The float switch in the

downstream tank activated the solenoid drain valve once each period

as the water level in the tank rose due to the displacement of water

by the piston. Since no water was being added to the system by the

oscillating flow, the amount of water drained off each period was
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equal to the through flow rate (Qf ) times the period. For each experi-

ment which was made, this water was collected over three sets of 20

periods each and weighed to find Q .f These values of Qf were then

averaged and divided by the pipe area to obtain U .

In all runs, 5% salt solution was injected at P1 at the

time of the upstream limit of the excursion in the pipe. The injection

was in the manner previously described for the steady flow tests and

was assumed to be an instantaneous point injection. Since the in-

jection was at the limit of the excursion, the oscillating component of

the velocity was zero at the time of injection. In section 8.1.3b, it

was pointed out that there were no noticeable density effects present

in the steady flow experiments even with injection concentrations

greater than 5%. Also in these tests in estuary type flow, density

effects were negligible even though the injection concentration was

5%. The concentration of the tracer in the pipe line was much lower

than 5%(of the order of hundredths of a percent) due to the dilution

associated with longitudinal dispersion. Also, the lateral turbulent

mixing in the pipe helps to suppress longitudinal spreading of the

tracer due to density effects.

A photograph of the Sanborn record for an estuary type

test is shown in fig. 8-18. Normally, the recorder paper was run at

least five times as fast as that shown in the figure. Also, the one-

second marks were omitted on this record. Notice that the attenuator

setting was changed from time to time during the run. The total

signal to the recorder was proportional to the measured deflection of

the recorder pen multiplied by the attenuation.

In the section on experimental determination of dispersion

coefficients, it was pointed out that concentration data could be

taken at one period intervals in estuary type flow. Then, the data

could be analyzed by the modified semi-log plot applied to eqn. 6-35

or 6-47. As was pointed out, it must be remembered that the dis-

persion still depends strongly on UT, not U assuming that U is much

less than U It was also shown that if the data is taken at the time

of zero oscillating velocity, then the dispersion coefficient which is

found is the average value of the dispersion coefficient during a

period.
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c) Results: The dispersion tests were analyzed by

reading the concentration data at time increments of one period after

the injection of the salt. Some data was also read for the half

periods as well as the whole period. In either case, this selected

data was analyzed by the modified semi-log plot. One such plot is

shown in fig. 8-19. All of the results are tabulated in appendix E

and are shown in fig. 8-20. In fig. 8-21, the experimentally ob-

served dispersion coefficients (EAobs) are, compdred with the values

(EA ) calculated by eqn. 6-25. This comparison is discussed below.

No correlation was found between EA and U This was ex-
Abs

pected, as has been mentioned in sections 3.3 and 6.

Eqn. 6-35 predicts that the maximum concentration will de-

crease as t-1/2 after an instantaneous injection into estuary type

flow. The rate of decrease of the maximum concentration was checked

for two runs (P-22 and P-23) and found to agree with the theory. The

data for one of the runs is shown in fig. 8-23. Eqn. 6-35 also pre-

dicts that the maximum concentration will pass a fixed x at times

given by

UT
x - U t -- (cos at - 1) = 0 8-3f p p

for 5= 0. For the same two runs, this equation was solved graphically

for t and compared with the observed concentration distribution.

Again, the agreement was good, as shown in fig. 8-22. The time t as

given by eqn. 8-3 is controlled solely by the one-dimensional convection.

The maximum concentration on a temporal distribution will actually occur

slightly before t of eqn. 8-3 due to dispersion as the tracer is pass-

ing the measurement station. This was pointed out for steady flow in

eqn. 5-8 and fig. 5-2.

Fig. 8-22 shows that the approximation made in using t from
p

eqn. 8-3 does not lead to significant errors.

d) Discussion: For an instantaneous injection of tracer

into estuary type flow, eqn. 6-35 adequately represents the one-

dimensional concentration distribution as a function of space and time.
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The validity of this equation was borne out by the modified semi-log

plots used in analyzing the data, by the rate of decrease of the

maximum concentration, and by the time of occurrence of the maximum

concentration at a given station.

Fig. 8-21 indicates that agreement between dispersion co-

efficients calculated by eqn. 6-25 and experimental dispersion

coefficients decreases as the average Reynolds number decreases. It

is believed that this lack of agreement is due to the influence of

the laminar sublayer which was not included in the analysis that led

to eqn. 6-25. The lack of agreement can not definitely be attributed

to the viscous sublayer until a more complete analysis is made so as

to include the effects of the sublayer or until experiments are con-

ducted in a hydraulically rough pipe. However, the following ob-

servations tends to indicate that the sublayer may be responsible for

the lack of agreement.

The average Reynolds number (and the relative roughness) for

all the tests with estuary type flow were such that the flow was in the

transition range between hydraulically smooth and rough. Thus, a

laminar sublayer was present. For the steady flow experiments, it was

observed that the concentrations in the upstream part of the concen-

tration distribution were higher than predicted. This was attributed

to the sublayer. For estuary type flow, as the concentration distri-

bution moves up and down the pipe, alternate ends of the distribution

are effectively "upstream" during the forward excursion and during the

return excursion. Thus, concentrations in both ends of the distri-

bution might be expected to be higher than predicted from using the

analytically obtained dispersion coefficient. Due to the reversing

flow, the sublayer thus has a double opportunity to increase the

longitudinal spread or dispersion. Also, in the steady flow tests,

the tracer moves a total of about 100 ft. during an experiment. In

the estuary type flow with an excursion of 40 ft., the tracer

travelled 800 ft. during 10 periods. (The 40-ft. excursion and 10-

period length of experiment represent an approximate average for the

tests which were made.) Thus, the estuary type flow would again

seem to have an increased opportunity for the effects of the sublayer

to be felt. Finally, notice that for steady flow experiment S-27 at a
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Reynolds number of 2.9 x 10 4, it was pointed out in connection with

fig. 8-17 that a dispersion coefficient 31% higher than the predicted

value was needed to describe the upstream portion of the concentration

distribution. For estuary type flow, the experimental dispersion co-

efficient was 35% higher than the predicted value at an average Reynolds

number of 3.0 x 10 . The agreement between the 31% and the 35% indicates

that for the steady flow and estuary type flow tests there is some

degree of consistency in the general order of magnitude of non-agreement

between experiment and analysis. Thus, it appears that the laminar

sublayer may be responsible for this difference in estuary type flow as

well as in steady flow. However, a firm answer as to the influence of

the viscous sublayer must come from a more complete analysis which in-

cludes this influence and/or from experiments where no sublayer is

present.

For estuary type flow there is a possibility that a revdrsal

might take place in the velocity profile. In the analysis a smooth

profile was assumed as shown in fig. 8-24a. If reversal were to occur,

it would be because the period of oscillation was too small compared to

the time required for turbulent diffusion of momentum to take place

across the flow section. Let the period, T, be a characteristic time
2 =

for the oscillation, and let a /EA be a characteristic time for

lateral momentum diffusion (a = pipe radius, ?A = lateral coefficient

of turbulent diffusion of momentum, i.e., eddy viscosity averaged

across the pipe and averaged during the period). If T/(a 2/ EA) is

large, i.e, if the period is long relative to the lateral diffusion

time, no reversal would be expected to occur. For the present experi-

ments taking EA = au, where u, is the average shear velocity
A 5u .A. 4 A

during a period, this ratio was between 3 and 5 for all tests.

Although not conclusive, this tends to indicate that no reversal took

place.

Schultz-Grunow (ref. 50) measured velocity profiles in

oscillatory flow in a 5.0 cm (1.97 in.) dia. pipe where the mean

velocity was given approximately by

U = U + UT sin 0t
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Fig. 8-24: Possible velocity profiles in estuary type flow in a pipe

but where U was greater than or equal to UT. Thus, the velocity U

never changed signs as it did in the present work. For T = 30 sec.

and UT = 58 cm/sec (1.9 ft/sec), no reversal was found in the velocity
T 2

profile. This corresponds to a Reynolds number based on - U of
4 

i
roughly 2 x 10 , which is in the general range of the present experi-

ments. Hence, this is another indication that probably no reversal

existed in the velocity profile.
2 =:Again, if T/(a /EA) is taken as being characteristic of the

degree of reversal in the velocity profile, then reversal can not

account for the difference between the predicted and the experimental

dispersion coefficients. Neglecting the small changes in the friction

factor with changing Reynolds number, u, is a constant fraction of UT.

Thus, T/(a2 A) is proportional to TUT which is proportional to the

fluid excursion during an oscillation. Thus, for a constant excursion,

T/(a2 A) was approximately constant; thus, the degree of reversal, if

any, should be constant. Yet, for a constant excursion, the ratio of

the observed to the predicted dispersion coefficients varied from 1.08
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to 1.80.

The analysis of appendix B and section 6 led to eqn. 6-25

and -26 for predicting the average dispersion coefficient in estuary

type flow in a pipe. In this analysis it was assumed that turbulent

flow existed throughout the period of oscillation. However, as the

velocity approaches zero during each period, the instantaneous

Reynolds number necessarily falls below the critical value (say 2000)

above which turbulent flow exists. During the part of the period for

which the instantaneous Reynolds number is less than 2000, it should

be expected that the velocity distribution and lateral diffusion would

be different from that assumed in the analysis. Also, the percentage

of the period during which this difference existed would increase as

the average Reynolds number decreases. Thus, this may help to account

for the divergence between the observed and the predicted dispersion

coefficients. The lowest average Reynolds number for the present

experiments was 1.88 x 104 and at this Reynolds number there was an

80% difference between predicted and observed dispersion coefficients.

During this experiment, the instantaneous Reynolds number was less

than 2000 for about 4% of the period. It is difficult to conceive

that variations during 4% ofthe period could fully account for an 80%

difference between prediction and observation.

Whatever the cause of the disparity between predicted and

observed values, this disparity decreases as the average Reynolds

number increases. Thus, at the larger average Reynolds numbers and

probably for hydraulically rough flow at the smaller average Reynolds

numbers, eqn. 6-25 adequately predicts the average dispersion co-

efficient for estuary type flow in a pipe.

8.2) Estuary Model Experiments

It was pointed out previously that most of the studies of

mass transport problems for estuaries have been conducted in dis-

torted Froude models and that the interpretation of these model

results has been incorrect for the fresh water portion of estuaries.

Thus, there is no known data available for investigating the effects

of non-uniformities in natural estuaries. However, the data for the
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models may be used in model scale to investigate these effects.

The Corps of Engineers model of the Delaware estuary is

constructed with a vertical length ratio (Y r) of 1:100 and a hori-

zontal length ratio (Lr)of 1:1000. Extensive studies have been made

in this model. (Ref. 2-6, 21, 28, 30, 31, 35, 42, 43.) In particular,

in ref. 5 some spatial concentration distributions were measured after

an instantaneous, point injection of dye. The dye was injected at high

water slack and the measurements were made at high and low water slack.

The data tabulated in Tables IX-19, -20, and -21 of ref. 5 was taken

for mean tide conditions and for fresh water flow rates of 3.4 x 10-3

7.0 x 10-3, and 12.35 x 10-3 cfs. This gives mean velocities of

0.0046, 0.0096, and 0.017 fps at the point where the dye was released.

For the mean tide, the maximum tidal velocity (UT) is 0.22 fps and the

average hydraulic radius (RH) is 0.21 ft. (ref. 2, 29). From these

values and by writing eqn. 6-25 in terms of the hydraulic radius, a

dispersion coefficient could be calculated for the model if some in-

formation were available on the roughness of the model. Unfortunately,

the roughness has apparently not been measured for the model. However,

some approximate values may be assumed for Manning's n in order to get

some idea of how the analysis compares with the data.

If f is the Darcy-Weisbach friction factor, then

f 2
8 ( A UT)

and
2

f = 116 n
R 1/3
H

For n = 0.015, EA = 0.044 ft 2/sec is foutd from eqn. 6-25 (with a = 2RH
2

and, for n = 0.025, EA = 0.073 ft /sec. These two values of

probably bracket the actual value for the model. Note also that

this calculation assumes that the amplitude of the tidal velocity

and hydraulic radius are not functions of the longitudinal

coordinate.

For the reported concentration data, values of E fromA
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0.073 ft 2/sec to 0.083 ft 2/sec were found. The scatter in the ob-

served EA did not correlate with the fresh water flow rate. These

values of EA were found by plotting the spatial concentration dis-

tributions and reading the spread (x.) of the distribution at

C/C = 0.5. Eqn. 7-4 states that the variance (72) of the con-max
centration distribution is given by

2 = 0.721 2
0.5

and eqn. 7-1 indicates that

2
e =2 EA t

Thus, a2 should be proportional to t with 2 EA as the constant of

proportionality. Again, this assumes that EA is not a function of

x. Data for one of the runs is shown in fig. 8-25. The points are

scattered but the general trend is for a 2 to increase as t to the

first power. Note that this data extends to the 30th period after

the release of the dye. During this time, the centroid of the dye

distribution had moved 60 ft downstream. In spite of the scatter of

the data and the non-uniformities in this 60-ft reach, for most

purposes it would be reasonable to take a constant value of EA over

reaches such as that represented by this data.

Ref. 4 reports concentration data for the same model and

same tidal conditions, but for continuous injection of dye. Nine

tests are reported for different combinations of dye discharge and

fresh water flow. Test 7 was allowed to run for 240 tidal cycles

and essentially came to a steady state. For this test, Qf was

2.4 x 10-3 cfs; this gave a mean velocity of 0.0024 fps at the in-

jection point. It would be expected that the concentration distri-

bution could be represented by the exact solution of eqn. 6-52 or

the approximate solutions of equations 6-57, 6-58 and 6-59.

However, a river flows into the estuary just 20 ft. downstream from

the dye-injection point. The dilution due to the increased Qf

causes the dye distribution to be distorted near the injection point.

By considering only the points at distances greater than one

excursion length upstream of the injection point, the diluting effects
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of the additional river flow are apparently no longer present. Thus,

eqn. 7-13 may be used to find EA, if it is again assumed that EA is

not a function of x. The data for test 7 was analyzed according to

eqn. 7-13 and is shown in fig. 8-26. Again, it appears that the

assumption of a constant EA for this region is justified. The slope

of the line gives EA = 0.083 ft /sec, which is in good agreement with

the values found in the tests with instantaneous dye release.

In the Delaware estuary model, by comparing calculated and

observed values of EA, it appears that the non-uniformities of the

channel may cause EA to be as much as twice that given by eqn. 6-25

(with a = 2RH) . However, use of eqn. 6-25 requires knowledge of the

channel roughness, and it was necessary to assume a roughness co-

efficient in the calculations above. Thus, the conclusion as to the

effects of non-uniformities is still open to question.
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9) CONCLUSIONS

9.1) Concept of Longitudinal Dispersion and Its Importance

in Mass Transport Problems

Practical considerations often lead to the necessity of taking

a one-dimensional approach to pollution analysis in rivers and estuaries.

In this approach, the convection with the one-dimensional or average

velocity and longitudinal turbulent diffusion do not correctly describe

the longitudinal mass transport. This inadequacy arises from the fact

that the one dimensional convection (UC) does not accouhit for variations

of velocity and concentration across the section and these variations

give rise to a net longitudinal mass transport. This transport is called

longitudinal dispersion. For uniform flow, it has been shown that dis-

persion follows Fickas Law of diffusion with the diffusion coefficient

replaced by a dispersion coefficient E. This dispersive transport must

be included in the one dimensional mass balance equation to completely

represent the longitudinal mass transfer. However, in any given situ-

ation, the importance of dispersion relative to convection depends not

only on the magnitude of the dispersion coefficient relative to the one

dimensional velocity but also on the concentration gradients for the

substance which is being transported.

9.2) Dispersion in Steady Flow

For steady, uniform flow, Aris developed a general analytical

expression by which the dispersion coefficient may be calculated for any

uniform boundary configuration if the lateral distribution of velocity

and turbulent diffusivity are known. Previous to Aris' work, Taylor pre-

sented an analysis which showed that E = 10.1 au, for flow in a pipe of

radius a where the shear velocity is u,. For two dimensional channels

of depth h, Elder showed that E = 5.93 hu,. Both Taylor's and Elder's

calculations neglected the existence of a laminar sublayer for turbulent

flows which are not in the hydraulically rough region. For the case of a

slug injection of tracer, Elder observed that the influence of the sub-

layer causes concentrations in the upstream part of the distribution to be
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greater than is predicted using the analytical dispersion coefficient.

Thus, the sublayer effectively increases upstream dispersion.

For channels which are not infinitely wide (i.e. not two

dimensional), the side walls affect the distribution of velocity and

of turbulent diffusivity, and thus the longitudinal dispersion is

affected. For example, in a trinagular flume where the hydraulic radius

was RH, E/RHu, was found to be 18. For a smooth rectangular flume,

E/RHu, was 24. For the same flume, the bottom was roughened, thus re-

ducing the relative effect of the side walls, and E/RHu, was 13.

Natural streams have varying degrees of "side-wall effects".

Also, they have bends and other non-uniformities, both of which increase

dispersion above that given by the analytical expressions. On the other

hand, natural streams are usually hydraulically rough so no influence

from a laminar sublayer would be expected. From the scant data available

for natural streams and cross-country pipe lines, E/RHu, equal to 40

appears to be a good approximation for pipes and rivers with gentle

curvature.

Further study is needed to clearly define the way in which bends

and other non-uniformities affect dispersion and to obtain quantitative

information on their effects.

9.3) Dispersion in Estuary Type Flow

Estuary type flow was defined as flow where the one dimensional

velocity is given by

U = Uf + UT sin c (t - 6) 9-1

In a natural estuary, Uf is the velocity associated with the river dis-

charge and UT is the maximum tidal velocity. (The term estuary type

flow is used to refer to flow in regions where there are no longitudinal

density gradients.)

An analysis similar to that of Aris has been presented. While

Aris' work was for steady, uniform flow, the present analysis gives the

dispersion coefficient for any unsteady, uniform flow in terms of the

lateral distribution of velocity and turbulent diffusivity. This general
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result was then used to obtain an expression for the dispersion co-

efficient as a function of time for estuary type flow. It was con-

cluded that, after the first period or two, the dispersion process

behaves essentially as if the dispersion coefficient were constant

during the period and equal to EA, the average during a period.

For times which differ by one period, the net effect of

the one dimensional oscillatory convection is zero. Thus, for these

times, the mass balance equation may be written with the convection

given just by Uf, the constant through-flow velocity:

s + U s EA -_s 9-2
T _ x x 2

where T is the period and n = 1,2,3... The time variable t has been

replaced by nT and C has been replaced by Cs to emphasize the fact that

eqn. 9-2 represents only the changes from one period to the next and not

the changes during the period. EA is still the average dispersion co-

efficient associated with the oscillatory flow. In particular, eqn. 9-2

may be applied to the "slack times" i.e. times when the oscillating

(tidal) component of the velocity is zero. For non-uniform flow, the

equivalent to eqn. 9-2 is

6C )c BCs + U s = EA A ) 9-3

where A is the cross section area. Care must be used in applying either

eqn. 9-2 or eqn. 9-3. These equations state that, from one period to the

next, the changes in concentration for a given fluid element are due only

to the net convection and to longitudinal dispersion. Thus, these equations

may not be applied in differential or finite difference form to or across

any fluid which has pollutants (or tracer) injected into it at any time

during a period. On the other hand, if injection of pollutants is correctly

represented in boundary conditions, then the solution to these equations

will be valid for all fluid elements.

Dispersion experiments were made for estuary type flow in a uni-

form laboratory pipe line. The agreement between the analytical and the
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observed dispersion coefficients was poor at low average Reynolds numbers,

but the agreement increased with increasing Reynolds numbers. The lack of

agreement is believed to be due to the effects of the laminar sublayer

which were not included in the analysis.

No dispersion data was found for the fresh water portion of

natural estuaries. Most of the studies for natural estuaries have been

conducted in distorted Froude models. (Conclusions regarding the interpre-

tation of model results are presented in section 4.6.) The model results

were used in model scale to estimate the effects of non-uniformities on

dispersion in estuary type flow. On the basis of estimated roughness co-

efficients for the Delaware estuary model, it was seen that the dispersion

coefficient could be as great as twice that given by the analytical value

(eqn. 6-25 with a replaced by 2RH). This is in good agreement with the

difference between analytical and observed values for rivers of gentle

curvature. (Estuaries should be expected to have only gentle curvature

since they are in the late stages of river morphology.)

For natural estuaries, the physical size and the natural rough-

ness almost always mean that the estuary is hydraulically rough. Thus,

the problems which the laminar sublayer caused with the laboratory results

would not be expected to arise in a natural estuary. However, just is for

the case of steady flow, more work is needed to clearly define the effects

of bends and non-uniformities on dispersion in estuary type flow.

For the region of longitudinal salinity gradients in an estuary,

a circulatory gravitational convection exists. The effects of this con-

vection may be included in the one dimensional dispersion process. When

this is done, the dispersion coefficient is much larger than for the

fresh water (constant density) portion of the estuary.

It has been demonstrated that it is difficult to correctly

interpret the results of model studies of pollution transport problems in

the constant density regions of estuaries. However, for these regions,

the present study has demonstrated a way of estimating longitudinal dis-

persion coefficients when the one dimensional velocity is given by eqn. 9-1.

Analysis of field and model data indicates that dispersion coefficients

in natural estuaries tend to be about twice that given by the analytical

value for uniform estuaries. Thus, a reasonable estimate of the average
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dispersion coefficient (E ) would seem to be

- 2
E =40R U =40 R( V TL U)9-
A H *,A H 8 T9-4

where RH is the hydraulic radius, u*A is the shear velocity (square root

of boundary shear stress divided by fluid density) averaged during a

tidal period, f is the Darcy-Weisbach friction factor, and UT is the

maximum tidal velocity. The dispersion coefficient estimated from

eqn. 9-4 may be used in conjunction with a mass balance equation (e.g.

eqn. 9-2 or 9-3) to calculate longitudinal distributions of pollutants

introduced into an estuary. This approach may be used in place of model

studies, and is much quicker and cheaper than model studies. The value

of EA from eqn. 9-4 would probably be accurate to within less than a

factor of two. Even with this degree of uncertainty concerning EA, the

calculated concentration profiles would possibly be as accurate as the

interpretation of model results for the constant density portion of

estuaries in view of the difficulties which are inherent in this inter-

pretation. (See discussion in section 4.)
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Appendix A: Spatial Averaging of Mass Balance Equation (Eqn. 2-10)

Introducing the expressions of Eqn. 2-12 into the left-hand side

of Eqn. 2-10, expanding the products of sums, and taking the spatial average

of the resulting expression,

A

[(C + c") " d
6 t dA

one obtains

+ AfJA Ox [UC ] dA + AlA x [2Uc" ]dA

[.2ulic" ]dA + [2v"1C ]dA

+ fA Ty

~-A L

+ AL

[2v"c"]dA 
+ A

z[.Qw"C ]dA + e) [wc" ]dAZ~" ] A A )z~ ~wc d

[L(D +e ) ]dA + A (D + e dA

[2(D +e) c]dA + N,

where N , is the spatial average of n,* (Throughout this appendix, U and A

may be functions of both x and t.) In performing the temporal averaging

to obtain Eqn. 2-7, it was possible to interchange the order of integration

and differentiation. However, since the area A may be a variable, it is

not possible to make a simple interchange in the order of integration and

differentiation in Eqn. A-]. Still, it is desirable to have the mass

balance written in terms of the spatial average of the velocity and con-

centration, rather than the spatial average of their derivatives, as

indicated in Eqn. A-1. Thus, consider the following:

Let @ be a function of x,.y, z, and t. Actually the integration

over the area is more accurately expressed as in Eqn. A-2:

A-2
A z (x,t) y(x,zt) dy dz

A

A- 1

+ I[.0u"C ]dA + -
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where y2 (x,z,t) and y,(x,z,t) are the equations of the upper and lower

boundaries of the area A, and z2 (x,t) and z (x,t) are the coordinates of

the lateral extremities of A. (See the sketch below).

17Y

dz

dA dy

z(x,t)'

z 2(x, t)

I -- _ _ _ _ .-

Fig. A-I: Definition Sketch

In general,

f(t,u)dt = b(u)
a (u)

f (tu)dt + f[b(u),u] d u)

- f[a(u),u] 
du

(This is known as Leibniz's formula.) Thus,

FY2 r'2 3e
0 dy = dy +

yIy

y2
-

)II

Y2

where 1 2 means $ evaluated at Y2'
with respect to z:

Iz2
z

fY 2 Ody]dz

y

'e. *2
"'2

=f Z2

z

f z2z

f Y2

= O(X~y2,z,t).

7dy
y

4,0/

dz + fz2
z

''1

--- dz

I b (u)
a (u)

A-3

A-4

Integrate

- dz
'2

A-5

A

Y2(x t

y (x, z)0

I

I I
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Let

* = 2 dy
7

and consider that from Eqn. A-3

fzZ x 7-

But

= ,Y 2 (z 2 )

z2 y (z2

since yl(z2) = Y2 (z2). Similarly,

* zI = 0

* dz - * z2 + * z
z2 7X 1T

dy = 0

From Eqn. A-6 and A-7,

Jz2
z

6fY 2 42 dy =fZ2

y z
I '2

y

4' dy

Combining Eqn. A-8 with Eqn. A-5 and re-arranging,

fz 2
fY 2

zI I

dz) f fZ 2 fY 2dy dz = - z
z y

f 2 2 
z 2

z Y2 dz z y1

-dA = L
6x 6x

- 2dz + 2

fA )x dA If2~y

A-6

A-7

A-8

4 dy dz

or

-dz

fA
1-- dz A-9

I

YIA 4) dA - fz2 4
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Note that if y2 and y, are independent of x, then Eqn. A-9 shows that the

order of integration and differentiation may be interchanged since

y2 yl
3x0 =

in that case.

Eqn. A-9 may be applied directly to the second through

terms of the left-hand side of Eqn. A-I:

[gUC ]dA

dA)
'P

= x (.,ucA)

f QUCdAA

-2UC f 2
z

-f Z2 QUC
zI

+ f2UC

z I

the fifth

'2dz

- dz

'y2  'y1
(x - )Td

- EUC Jz2
z

By virtue of Eqn. A-7 and the fact that y2 (z2)

= y (zI), then

fZ2

z

z2

zi

= y 1(z2 ) and y2(t1 )

(y 2 y 1 )dz(y2 ~ 1)dz = fZ
z

2- )dz = A

A

s i nce

A-10

x(2 y) dz



-174-

Therefore,

fA
[2UC IdA = (2UCA)

= [A ) (LUC) + UC ] - . 2uC

AdA x [QUC ]dA = (puc)

whether A is constant or not.

Next,

A [Uc'' ]dA 
=

+ fzz2

+1

@Uc"dA -

(pUc'')

(ufp 0 - PU J z 2

1

fA

y1

(c'

7 [0Uc' "]dA = - 2 J
S A fz I

' C ] d A =A

+ fz 2

z1

= )(2C404 Cp C

u'' CdA - rz2 QU'T)

( Y"C

)Y 2
- 2C z2 (u 2Ifz1

- U
y1

yd

A-lI

fz 

2

1i

(OUc'')
Y2

Y2

dz

)y 1
-C1" '1d

y1I)
)Y 2

(c2

Al so,

y2 y d
- c"

y1

fA
*;[ku'

A- 12

()Y2 dz

- -QUC

2I
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A fA T[Au"C]dA= - A

Taking the next term from Eqn. A-],

A [pu"c"]dA = A
Eu"c"dA - fz 2

1i

+ f 2 (u"c'')

1yl

= *~-. ( 2 u'Ic"dA) - 1z21[(u c ) 2
SfA -JIV2

y2

y

(uc") '

- [ u"c")' A (0u"c")dA = (u c A)

]yd

)y2

2

A- 14

- (u'c") ]dz
y1  x

where the double bar indicates the spatial averaging as defined by Eqn. 2-11.

If x is replaced by t in Eqn. A-9, then the first term on the left

hand side of Eqn. A-1 can be manipulated in the following way:

I [2(C+c") ] I
A -t dA)~--t

z2  2fz [p(C+c") ]2 dJA

[.(C+c") 1 1 dz

c"dA = 0

z

)y2 ) dz- U
yj

A-13

(Uu''C'')
y

Y2-dz
2

But

+ fz2

zI

= v'
; ' 1

1

= 1 I' ;
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Thus

1 f [p.(C+c'') ] dA = I L (2CA)
A) A )t

- Z 2 [(c''v'') 
2

zI

- L z2 (V I-

- (c''v'')

The sixth through the ninth terms on the left-hand side of Eqn.

A-1 involve the spatial averaging of derivatives in the lateral directions.

To treat these terms, consider the following:

-dA =

dA =

fz 
2f Y 2

z I y I

[2

fzlz
(02

d dz =
c-Y

'1)

fz 2
1l

Y2 dldz

y

dz A- 16

f z 2

Jy Y2(0z 2
y 2

Sdzdy = Y 2 I-2 di,]dz

1 I

- c)z )dy
zl

(Note that Eqn. A-16 implies that the definitions

interchanged with those of y, and y2.) Thus, the

terms may be written as

A
('v"C) dA = zC 2

of z and z2 hate

sixth through the

- v' )dz
"'1

v' )dz
yi

A- 15

]dz

fA

IA

and

7dA
p2IA

IA )dA
A-17

been

ninth

A- 18

I

I
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A (v''c'') dA = v2 v''c'') - (v''c'') ]dz A-19
Af 2)A z 1Y yl

1 r . (w"C) dA = f (2 - W'' )dy A-20
A yAz 2 

I(Pw''c'') dA - 2 [ w''c'') - (w''c'') ]dz A-21
A A z A y 2

Consider the sum of the second and third terms on the right-hand

side of Eqn. A-1. By virtue of Green's theorem in the plane:

A{ [(D +e ) ] + [p(D + ez)i] dA=

A-22

[p(D +e) dy ] + [2 (D +e) dzi]
m z )z m y )y

where the path y for the line integral is the perimeter of the area A.

The two terms making up this line integral represent the lateral diffusion

at the flow boundaries. If lateral diffusion is taking place at the flow

boundaries, then substance is either being added to or removed from the flow

by diffusion (usually molecular diffusion or absorption). The line integral

of Eqn. A-22 represents the net lateral flux of substance across the

boundaries, and the sign is such that it represents the flux into the flow.

For present purposes, it is convenient to write a general term (M ) for this

rate of addition of mass by molecular diffusion or absorption. M is then

analogous to N which represents the rate of production of the substance P.

Considering the first term on the right-hand side of Eqn. A-I and

again using Eqn. A-9,



2(Dm+ex) )J]dA =e ) dA
A-23

fZ

2

Zi1

[E(Dm+e ) ] dz + z2

y2 z

[p(Dm+e ) 7x T-dz

yl

The second and third terms on the right-hand side of Eqn. A-23 will usually

be negligible compared to the first term since e at y, and y2 will usually

be zero or very small. The quantity in braces in the first term is the

total rate of diffusive transport in the x direction. By analogy to Fick's

law (Eqn. 2-3), define an average diffusion coefficient e so that the

total or one dimensional diffusive transport may be represented by

p(D +e) -dA = Le A A-24

A

(The contribution of Dm to e will usually be negligible.) Thus,

jf [.2(Dm+ex) ]dA = A (2e A )C)

A

In view of all the manipulations above, Eqn. A-I may now be

written as
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1 6 (ECA)

+L (UC)-
)x A

+ 7[xu"c"A]

2f Z 2

zi

f z2
z I

(v" 2-v' ) dz
"2 "1

(c 2 C

Sz2 i (uHc")

z

-z 
cancel s

,(c . v dz

z I

) d 
T)dz

Y2 - (u"c")

zI

(u2
z

2.
-. Uu I )dz

]-1dz

A-25

(v 2- v'' )dz
Y2 "'1

Z 
cancel s

y2z I

(w" -w" )dy + fY 2 [(w"c")
z2 1' A 2

- (w"c") ]dy
zi

= (e A -) + M + NA x +Nx x

Eqn. 2-6 is the three dimensional form of the equation of con-

tinuity for the solution under consideration. Eqn. 2-6 is

).2 + -(2u) + T(.2 ) + (ew) = 0 A-26

Taking the time average of this equation, one obtains

+ (2u) + (.2v) +L (2-s) = 0 A-27

-LO z 2
AfZ

zi1

y.2

)2
-_
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(See Section 2-4.) Eqn. A-27 may be spatially averaged across the flow

section. By going through manipulations similar to those used to obtain

Eqn. A-25, the spatial average of Eqn. A-27

A Bt (2A) - 2 (V - ' ) dz +
A y2 zi

zI

r z2  Y2

z 2

is found to be

3(U)
x

.2 z2+ - (v" -V" )dz
A z 2 y1

A f Y2

A Jf
y

(WI -Ww" ) dy = 0
z2 z

If Eqn. A-28 is multiplied by C and the result is subtracted from Eqn.

A-25, one finds after dividing by p that

)C U z 2+ U - f
3x A J

zi

A x

+ - 2
y I

uc"A] - IA J
zl

[(w"c") - (w"c") z ]dy =
z2 z1 A

y2--- -) dz

[(uE c") 2
(u"c") dz A-29

( A T-)

+ Mp/2 + Np/_

(Recall that only cases of constant density are being considered.)

In most cases of interest to civil engineers, w" and w"
z2 z

A-28
-yl) dz
x

- u" I
1

I

y2
- c" I

)2
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will be zero. The term w"' represents the lateral horizontal velocity.

Thus, in both pipes and open channels (even if the free surface is rising

or falling), these values of w" will be zgro. The two remaining integral
byy

terms in Eqn. A-29 both involve 2 and -. , so that the integral terms
x bx

will be zero if the flow area is constant with distance.

In cases where the area is not constant, it may be that the two

remaining integral terms will be small enough to be neglected. Consider

that u" will be of the order of U (i.e. u" = 0(U)). The uniformity of con-

centration which results from lateral turbulent diffusion will generally

mean that c" will be of the order of C or less. It has previously been

shown that

z2 )y2  )y1  )A
(7x- - )dz =-

z

Thusi

I z2
zI

- 2

A f
z

(c" - -

[(u"c") Y

cy -- )dz +
y ucx

-- 2 - u1c") ]y dz
A-30

UC ( A

If the changes in the area (i.e. 6A) are small relative to

(i.e. A), it may be reasonable to neglect the terms of Eqn.

to the remaining terms of Eqn. A-29. If this is the case,

dimensional form of the mass balance equation becomes

t+ U + (u"c"A) =

A x (*xA -) + / + Np/

the area itself

A-30 relative

then the one

A-31

U
A
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Appendix B: Mathematical Manipulations for Obtaining Eqn 6-16 from 6-13

This appendix picks up from eqn. 6-13 and presents the mathematical

manipulations which produce an expression (eqn 6-16) for the time variant

dispersion coefficient for uniform., estuary type flow.

Define c by

B-1c p, ) =

Hence, c is the p th spatial moment of the concentration distribution in a
p

filament along the pipe at some radius p. This moment is taken about

t = 0, the origin of a coordinate system moving with the velocity U(t). The

term "filament" is used here to denote the volume obtained by projecting a

differential element (annulus) of cross section area from = - o to t = +cO,

as shown in fig. B-la. If the concentration distribution in this filament is
th

interpreted as a geometric area as shown in fig. B-lb, then c is the p
p

moment of this area about the origin of the moving coordinate system ( = 0).

Also define mp (T) as the average value of c across the flow

section, i.e.

m (t) = - fp , IT

Substituting eqn B-1

two integrations, m

c (p,--) 2 ,Tp dp
p

B-2

for c in eqn B-2 and interchanging the order of the

may be written as

m0

m (t) =
p1

Bt f0
c 2np dp d B-3

The quantity in brackets is the average concentration at a section. Hence,
th

m may be interpreted as the p moment of the average concentration. Thus,

p c ( ,p,'V) dg
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+ 0

pipe wall

(a) Filament through pipe

C

(b) Element in moment integral

Fig. B-1: Defini tion Sketch

dAN
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in the development which follows, the information which the m 's contain
p

about the concentration distribution will be directly applicable to a one-

dimensional analysis of transport problems. Specifically, since m2/m0 is

the dimensionless form of the variance, the dispersion coefficient will be

related to the time rate of change of m2 /m (See eqn 7-5.) Attention will

now be given to obtaining a general expression for m2 . (The zeroth moment,

m , is a constant since it is related to the total mass of dispersing sub-

stance.)

Multiply eqn 6-13 by Epand integrate the result with respect to i

from - o to +<>. This gives a differential equation for c :

p

Fc 3c7)c .p U .6..P ( B-4) ~ P IPo 4 (P-i) o cp-2 + pTr X c 1  B-4

The boundary and initial conditions (eqn 6-6) are now

c (p,O) = cow
p p

B-5

c

= 

T- on P =
In eqn B-4, c and c -2 arise from integration by parts of 3c/3 and
p2'>- 2 p-1  p-

C ,' . If'eqn B-4 is averaged over the cross section, it becomes

dm
= 4p (p-) i9 c 2 + pi c B-6

with the initial condition

m (0) = mi B-7p p

The first term on the right-hand side of eqn B-4 disappears under this



-185-

process since * 0c /5p= 0 on p = 1. In eqn A-6, the double bar
o p

averaging over the caross section, as defined in eqn A-2, (i.e.

Equations B-4 and B-5, with p = 0, are

)c oc
06 = Uo C) * 0

c (p,O) = cO(p)0 0

)c
*0 * 0 on

B-9

p = 1

Assume a separable solution for c , i.e.
0

c (p,6) = R(p) W (e)

Then, from eqn B-8,

B-8

I dW L_ d P*dR
W dG pR dp o dR

where the minus 0

eqn B-10,

is necessary for c to remain finite as 9 increases. From

dW + P 2W = 0

and

W = b exp (- 20)

where b is a constant.. For the conditions being considered, there will be

averaging

signifies

m = E )
p p

and

B-10
- -P2
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an increasing sequence of eigenvalues, n2 , and a set of ortho-normal eigen-

functions, R n, satisfying the remaining part of eqn B-10. Thus,

pdp LtdRn + 2 R 0
p dp o dp n n

and

dR

n = 0 on p=1

(ref. 7 and 10). The solution to eqn B-8 may now be written as

c0 (p,e) = k + bn Rn (p) exp (-P2 0) B-11

n=1

where the b ' s are defined by

n

co (p) = k + b R(p) B-12
0 1 n n(P

n=1

The b n's may be calculated from eqn B-12 by using the orthogonality of the

R n' s. Note that as 9 gets large, c approaches a constant value k1, and is

thus independent of p. Since c is tthe amount of the substance P in a fila-

ment within the pipe, this implies that P becomes uniformly mixed across the

pipe as e gets large. Thus, at large 0 , c0 becomes its own average across

the section. But m is also the average of c 0 . Hence, k equals m .

Introducing c from eqn B-11 into eqn B-6 with p = 1,

din= n + bn Rn exp (-n2 0) B-13

L n=l1-

or

dm1 2 B-14
-d-r1  b L R exp (-p 0)

de b n o n n
n=1

since X m = m0 X = 0, X being the velocity defect withrrespect to the one
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dimensional velocity U. Integrating this expression with respect to 6

from zero to infinity and interchanging the order of integration and

summation,
00

m bn on B-15

n=1

In this summation, bn and Pn are constants. Rn and X are functions of p,

bu-t (X R ) is averaged over the cross section. Thus, mI (0) is a constant.

This implies that the center of gravity (i.e, the first moment of the con-

centration distribution) of the substance P ultimately moves with the mean

fluid velocity U(t) since eqn B-15 is referred to a coordinate system moving

with this speed.

Let

c1 (p,O) = c + m0 o(p,O) = m + m o(p,0

Thus I is related to the variation of c with respect to its mean. Then,

equations B-4 and B-5 with p = 1 become

7_ 0e m Po 7P +

oo B-16

r- X m + b R exp (-)0 0 n n n
n=1

and

)on p3 B-17

Consider eqn B-16 as 9 approaches infinity. It has been shown that m1 (00)

equals a constant (eqn B-15). Hence, as e approaches infinity, m / 0

approaches zero. Also, the summation term will approach zero because of the

exponential function. Furthermore, since eqn B-16 is a diffusion-type

equation, it will only admit solutions for 0 that are either increasing or

decreasing in C.. Since only a finite amount of the substance P was intro-

duced into the flow, c. and thence (P are finite. Thus, only the decreas-

ing solution is allowed, and e must equal zero as 0 approaches infinity.



As a result, at large 0,

B-17 become

o is a function of p only. EquatiorsB-16 and

p dp o dp = 0 B-18

and

d = 0 on p = 10 dp B- 19

after dividing through by m .

From this point forward, let considerations be limited to con-

ditions as 0 approaches infinity. Then

can =mn + m s (P)

and eqn B-6 wi th p =2 becomes

din
= 2 4 * m

dO 0 0
+ 2T X (m 1 + m 0 (p))

Sm =X m =0

so

Eqn B-21 is the expression which was being sought for the second

moment (i2) of the one-dimensional concentration distribution. In the para-

graphs which follow, it will be shown that dm2/dO is indeed related to the

coefficient of longitudinal dispersion. In eqn B-21, the 0 -term accounts

for that part of dispersion due to longitudinal, turbulent diffusion and the

But

B- 20

I " dm2  =
2 m d*0f 0

0 B-21
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Ox -term is that part due to the combined effects of the differential con-

vection associated with the velocity distribution and to the lateral diffusion.

It will be noticed that eqn B-21 applies only as time approaches

infinity, and it was stated above that this equation will be used to find the

dispersion coefficient.. At first, it may appear that the generality of the

dispersion coefficient obtained in thismanner will be limited. However, this

conclusion is not valid for the following reason: In the preceding develop-

ment, the time which approaches infinity is time measured from some arbitrary

origin which is associated with the initial condition on the concentration c.

Also, it was assumed that the presence of the dispersing substance does not

affect the flow pattern; thus, the substance does not affect the rate of

dispersion either. This means that the dispersion process is independent of

the measurement of time associated with the dispersing substance. Hence,

eqn B-21 represents the rate of dispersive mass transport at the origin of

time as well as at times approaching infinity,

Aris (ref. 7) shows that the longitudinal distribution of a dis-

persing substance in steady, uniform flow approaches normality as time (t)

approaches infinity. This conclusion is also applicable to the unsteady

case since the mathematical proof is identical if the variable T in Aris'

work is replaced by G.. This normality implies that

2
[g- k2]C ~ - exp - B-22

V2irm2/m 2m2/m0

where k2 is a constant defined as the coordinate of the center of gravity

of the normal curve and C is the average concentration at a given section.

Eqn B-15 guarantees that k2 is a constant. The second moment, m 2 , is a

linear function of 0 defined by eqn B-21 and m is a constant since the

zeroth moment is related to the total mass of dispersing substance. The

fact that the concentration approaches normality implies that the dis-

persion process is behaving as a random diffusion process: This implication

is also substantiated by the argument which follows:

Consider an arbitrary station t along the pipe. From eqn B-22,

one can find the rate at which mass is being transported past this station

due to dispersion. Call this transport rate q . At any time, the amount of

mass in the region ( < g will be
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A 0Ca dp

0o

where A is the cross sectional area of the pipe,

was used to non-dimensionalize the x coordinate,

Continuity requires that the time rate of change

q , i.e.

A 
%1p ~ T r

a is the pipe radius which

and p is the fluid density.

of this quantt ty be equal to

T O gCa d

A F(T) 00
T
r0

B-23

g Ca d

where Tr is the reference time used to non-dimensionalize t. Interchanging

the order of differentiation and integration in eqn B-23, and then carrying

out these operations using eqn B-22, one finds

q2 F ( dm2 )C
T 

=r- A T mO x B-24

since )C/ x equals 3 C/ )

rate of transport q follows

a function of time (i.e. E d
Thus,

2
E = a F(t)
t T 2m

r o

(ag). Comparison with eqn 2-3 shows that the

a Fickian law if the dispersion coefficient as

is given by the bracketed quanti.ty in eqn B-24.

dm2
din2

dG B- 25

Eqn B-21 gives an expression for dm 2/d , and eqn 6-7 defines F(T). Also,

from eqn 6-7 and from the definition of e0 following eqn 6-9, it can be

seen that u = k KV. /a., Combining all these expressions, Et may be

written as
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usi('r) __=
Et = aV ( )[K + $0 B-26

(it will be convenient for further use to leave the quantity u, (1)/V, i.e.

F(T), and not cancel the V's). Comparison with Aris (ref. 7) and Taylor

(ref. 53) shows that the quantity in brackets was evaluated by Taylor and

found to be 10.1 for the velocity distribution (1 0) which he used. Because

of the assumed similarities between steady and unsteady flow, eqn B-26 may

now be written as

u,,(T)
Et = 10.1 ( ) aV B-27

Under the assumptions which have been made, this expression (with the V's

cancelled) now bears out the fact that the dispersion coefficient in un-

steady flow is the same at each instant as for a steady flow at the same

velocity as exists at that instant. (Compare eqn B-27 and eqn 3-4.)
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Table B-1: Velocity Distribution Used by Taylor (ref. 53)

r
a

0

0.10
0.20

0.30

0.35
0.40

0.45

0.50

0.55
0.60

0.65

0.70
0.75
0.80

0.85

0.90
0.92

0.94

0.96

0.97
0.98

0.99
1.00

u -u
max

0

0.059
0.236

0.530

0.750
1.01

1.29

1 .62

2.00

2.42

2.89

3.40
4.05

4.80

5.79

7.10

7.66
8.37

9.36
10.11

11.12

12.85

r = radial coordinate measured from centerline of pipe

a = pipe radius

0max = maximum (centerline) velocity

U* =

U =spatially averagedvelocity ma - 4.25 u
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Appendix C: Summary of Head Loss Results

Friction Reynolds

Run Piezometric Mean Factor Number

No. Date Gradient Velocity X 100 X10 4

1

2

3

4

5
6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Mar 7,'64

Mar 13,'64

May 5,'64

ft/100 ft

0.738
1 .176
2.190

3.455
4.51

5.79
7.775
2.41

2.41

0.990

0.990

0.530

0.530

3.335

3.335
4.15

4.15

5.27
5.27
6.37

7.58

7.58
8.74

8.74

3.41

0.748
1.368
2.56

3.43

fps

1.41

1.87
2.66

3.39

3.94
4.48

5.20
2.79
2.70

1 .65
1 .678

1.181

1.208

3.23

3.24

3.65

3.66
4.16

4.16

4.18

5.14

5.08

5.53

5.53

3.265
1.440

2.10

2.95

3.52

3.20

2.91

2.70

2.60

2.51

2.49

2.48

2.67

2.86

3.14

3.04

3.28

3.13

2.76

2.74

2.69

2.68

2.63

2.64

3.15

2.48

2.54

2.47

2.47

2.77

3.11

2.68

2.54

2.39

1 .67
2.21

3.15
4.02

4.67

5.32

6.16
2.79

2.70

1.65

1.68
1.18

1.21

3.24

3.26

3.65

3.69

4.21

4.21

4.26

5.25

5.19

5.65

5.65

3.35
1.48

2.63

3.69
4.40
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Friction Reynolds
Run Piezometric Mean Factor Number
No. Date Gradient Velocity X 100 X10 4

May ",164

May 6,'64

June 12,164

ft/l00 ft

4.61

5.81

6.74

7.95
1 .441

1 .441

2.64

2.64

3.72

3.72
4.77

4.77

5.99

5.99

7.40

7.40

1.825

3.85
5.57

7.90
1.499

3.71

5.93
8.12

fps

4.03

4.55

4.94

5.39
2.10

2.14

2.92

2.97

3.44

3.54
4.00

4.07

4.53

4.58

5.11
5.14

2.43

3.59
4.42

5.24
2.17

3.52
4.53

5.33

30

31

32

33

34

3 4a

35

35a

36

36a

37

37a

38

38a

39

39a

40

41

42

43

44

45

46

47

2.45

2.42

2.38

2.36

2.82

2.72

2.67

2.58
2.71

2.56

2.58
2.49

2.57

2.46

2.46

2.42

2.67

2.58
2.46

2.48

2.75

2.58

2.49

2.47

5.04

5.69
6.17

6.74

2.63
2.68

3.66

3.72

4.31

4.43

5.01

5.10

5.68

5.74
6.40

6.44

3.16
4.67

5.75
6.82

2.82
4.58

5.90
6.93

I ____j
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Appendix D: Summary of Dispersion Tests
for Estuary Type Flow

U U -4 2 /Acalc EAobs EAobs
Run T T x10 fTx10 ft 2/sec ft2/sec EA
No. fps fps sec I - -_IIIcalc

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

0.171

0.174

0.0467

0.0467

0.0467

0. 1022

0.1011

0.1011

0.01372

0.013741
0.01401

0.00980

0.01006

0.00996

0.1780

0.1769

0.1766

0.1399

0.1383
0.1390

0.1747

0.1747
0.1739

0.1739

0.1719

0.1719
0.1061

0.1061

6.25
4.77

6.18

4.91

3.945
6.15

4.89

3.92
6.15
4.87

3.92
6.15
4.87

3.92
6.83

5.42

4.375
6.83

5.44
4.375

5.29

5.29
6.51

6.51

8.05

8.05

5.27

4.33

18.7

24.5

18.9

23.8
29.6
19.0

23.9

29.8

19.0

24.0

29.8
19.0

24.0

29.8

19.2

24.2

30.0

19.2

24.1

30.0

30.3

30.3
24.6

24.6

19.9

19.9
30.4

37.0

4.75

3.63
4.70

3.73

3.00
4.94

3.92

3.15
4.81

3.81

3.06

4.94

3.91

3.15

5.48
4.36

3.52
5.48

4.37

3.52

3.94

3.94
4.86

4.86

6.01

6.01

4.24

3.48

2.40

2.46

2.40

2.47

2.53

2.38

2.45

2.52

2.38

2.46

2.53

2.38

2.45

2.52

2.36

2.41

2.49

2.36

2.41

2.49

2.45

2.45

2.38

2.38

2.33

2.33

2.43

2.48

0.152

0.117

0.152

0.121

0.0982

0. 149

0.120

0.0976
0.149

0.120

0.0976

0. 149

0.120

0.0976

0.164

0.132

0.108

0.164

0.133

0.108

0.130

0.130

0.157

0.157

0.192

0.192

0.129

0.107

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

140

140

178

151
135
172

136
134

174

157

134
180

159

137
183
146

141

182

157
142

158
158

172

169

191

207

157
0.149

0.921

1.20

1.19

1.25

1 .37

1.15

1.13

1.37

1.17

1.31

1.37
1.21

1.32

1 .40

1.12

1 .11

1.31
1 .11

1.18

1.31
1.22

1.22

1.10

1 .08

0.995
1.08
1.22

1.39
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U = "through flow" velocity

U =T maximum (amplitude) of oscillatory velocity

T period of oscillation

R average Reynolds number (based on 2U
A avrage Reynor nurrspand to T )
f friction factor corresponding to R(i.e. ' R)T RT 2 A

EAcalc

EA

= average dispersion coefficient calculated by eqn. 6-25

= average dispersion coefficient observed in experiment

(factdnrB ,11 ;03 f'r all runs)

E E E
A A A

Run Uf UT T -4 2 calc obs obs
R x10 f x10 2 2 E

No. fps fps sec A T ft /sec ft /sec A
____ ___ _ _ ____ _ _ ___ __ _ ___ ___cal c

36 0.1060 3.52 45.5 2.83 2.55 0.0825 0.142 1.72

37 0.1054 2.90 55.4 2.33 2.63 0.0730 0.122 1.69

38 0.1065 2.34 68.5 1.88 2.70 0.0600 0.108 1.80
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Appendix E: Definition of Symbols

A cross sectional area; [L 2 1
subscript denoting average of a quantity during a period
of oscillation

B dimensionless factor

C average concentration at a section

C value of C at times differing by a full period
s

D pipe diameter [L]

D molecular (mass) diffusivity [L 2/T]
m

E longitudinal dispersion coefficient [L 2/T]

E' longitudinal dispersion coefficient in saline portion of 2
an estuary (including effects of gravitational convection) [L /T]

G rate of turbulent energy dissipation per unit mass of fluid [M/L 2T]

M mass rate per unit volume of addition of substance P due to
diffusion at the lateral flow boundaries [14/L TI

N average mass rate per unit volume of creation of substance 3

P within one dimensional fluid element [M/L T]

RH hydraulic radius [L]

IR Reynolds number

Q volumetric fluid discharge rate (UA) [L 3 /T]

T period of oscillation in estuary type flow; [T]
subscript denoting a quantity associated with UT;
temperature

U velocity in x direction averaged over the cross section [L/T]

UT amplitude of tidal or oscillatory component of velocity [L/TI

V velocity in the y direction averaged over the cross section [L/T]

W velocity in the z direction averaged over the cross section [L/T]

a pipe radius [L]

b a constant;
fluid excursion during half a period of oscillation [L]

c concentration

c pth moment of spatial concentration distribution in a
filament in a pipe

e turbulent (mass) diffusivity [L 2/T]

f Darcy-Weisbach friction factor;
subscript denoting a quantity associated with the fresh
water flow in an estuary

g acceleration of gravity [L/T 2
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h depth of open channel flow [L]

i subscript in finite difference equation to indicate the
value of x at which a quantity is to be evaluated

j mass rate of flux due to diffusion; [M/T]
subscript in finite difference equation to indicate the
value of t at which a quantity is to be evaluated

k a constant;
equivalent sand grain roughness [L]

m subscript denoting a quantity associated with a model
th

m p moment of one dimensional spatial concentration
distribution

n 0,1,2,3,...; L1 /6
Manning's roughness parameter [L ]

n mass rate per unit volume of creation of substance P 3

within an elemental fluid volume [M/L T]

o subscript denoting a reference quantity

p subscript denoting quantity associated with the peak of a
temporal concentration distribution;
subscript denoting quantity associated with a prototype
which is being modelled

r radial coordinate; [L]
subscript denoting ratio of a model quantity to the
corresponding prototype quantity

t time [T]

u,v,w fluid velocities in the x,y,z directions [L/T]

u. shear velocity ( d ) [L/T]

x,y,z Cartesian coordinate directions [L]

b a constant representing the time shift between an
arbitrary time origin and the time of zero oscillatory
velocity [T]

5 laminar sublayer thickness [L ]
s2

E eddy viscosity (turbulent momentum diffusivity) [L 2/T]

K von Karman's constant (in logarithmic velocity
distribution)

% dimensionless distribution of velocity defect in shear
flow

dimensionless constant
th [p+IJ

p moment of temporal concentration distribution [T ]
p2

V kinematic viscosity L 2/T]

dimensionless longitudinal coordinate

p dimensionless radial coordinate

fluid density [M/L3I
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a frequency of oscillation [l/T ]

-2 spatial variance of concentration distribution [L 2

I time; [T]
dimensionless time

T shear stress [F/L2
2

10 boundary shear stress [F/L ]
-o
4 dimensionless function related to the distribution of

concentration across a flow section;
a variable

4r dimensionless turbulent diffusivity

time average

average over cross sectional area

approximately equal

proportional to

turbulent variation from time averaged quantity (except
on E')

spatial variation (within the cross section) from spatial
average of a quantity at a cross section
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Appendix F: List of Figures and Tables

Fig. Page

1-1 Regions of a natural stream including mean current
pattern for estuary 10

2-1 Elemental volume for three dimensional mass balance
equation 14
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3-1 Mean Velocity distribution in the salinity region
of an estuary 40

4-1 Theoretical concentration distributions in model
and prototype at high water slack
(a) Linear scales 50
(b) Semi-logarithmic plot 51

5-1 Characteristics of spatial concentration distri-
butions for an instantaneous, point injection of
tracer 61
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flow 83
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