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SECTION 1

INTRODUCTION

Mathematical modeling of solute transport has become a standard

tool for evaluating the movement and spreading of chemical contaminants in
the subsurface aquatic environment. Most frequently, numerical techniques
such as finite element or finite difference methods are used to solve the
governing partial differential equations of flow and solute transport over a
large aquifer region, in order to predict the concentration of a chemical
contaminant at some future time and at points distant in space from a
source. One problem that continues to plague users of these techniques is
estimation of mixing or dilution parameters, or more specifically the

dispersivity (if the dispersion coefficient is assumed to be the product of
dispersivity and mean pore velocity), in the governing equations. Summaries
of field observations (e.g., Lallemand-Barres and Peaudecerf, 1978; Anderson,

1979; and Gelhar, et al., 1985) and theoretical studies (e.g., Gelhar and
Axness, 1983) both have indicated that dispersivity is a function of the
heterogeneity of the geologic formation and that there is a dependence of the
value of dispersivity on the solute displacement distance in the aquifer.
Typically, then, there is a need to determine a value for dispersivity for

the aquifer material and scale of problem at hand. Tracer tests are often
attempted as a means of estimating the required dispersivity.

Figure 1-1 from Gelhar, et al. (1985), summarizes the information
available on longitudinal dispersivity values determined from tracer tests
conducted at various length scales and on many type of aquifer materials
around the world. Figure 1-2 illustrates the ranking of the relative
reliability for these same data, based on judgements about the type of
experiment and method of data interpretation. This graphical summary
reinforces the fact that modelers indeed face difficulties in determining the
proper value of dispersivity for a given problem. It is with this motivation
in mind that we explore improved methods for analysis of tracer tests to
yield accurate information on dispersivity values. This will contribute to

more realistic modeling of the solute transport process in evaluation of
groundwater contamination cases.

The two overall goals of this study are:

1) to develop and demonstrate improved methods of analyzing existing tracer
test data; and

2) to use this information and experience to better define the reliability
of existing data and to provide an improved basis for selecting, designing,
and analyzing tracer tests.
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SECTION 2

CONCLUSIONS AND RECOMMENDATIONS

Of interest in modeling solute transport to evaluate groundwater
contamination problems is the determination of the dispersion coefficient or,
more specifically, the dispersivity parameter that characterizes the mixing in
the aquifer under study. This report discusses the types of small-scale,
short-term tracer tests that can be used to determine dispersivity. A variety
of methods are available for analyzing tracer test data to determine
dispersivity; these are reviewed in this report.

Unfortunately, many of the methods which have been used to analyze tracer
tests make simplifying assumptions which may lead to errors in estimating the
value of dispersivity for the aquifer material of interest. We demonstrate
how the general solution of Gelhar and Collins (1971) for dispersion in
non-uniform flow can be used to evaluate the results of radial flow and
two-well tracer tests to include effects not accounted for in most other
analyses. Type curves are developed for radially divergent flow with step and
pulse inputs, radially convergent flow with a pulse input, and two-well tests
with a pulse or step input. The effects of borehole flushing and dispersivity
increasing linearly with distance are examined to determine their effects on
type curve shapes. Several case studies demonstrate the applicability of the
theoretical results to field data.

The findings in this report suggest that many previous interpretations of
longitudinal dispersivity from breakthrough curve data are faulty due to the
simplifying assumptions associated with the methods of analysis used. Our
re-analyses have shown that such misinterpretations tend to overestimate the
longitudinal dispersivity, in some cases by as much as an order of magnitude.
If improved theoretical solutions corresponding more closely to the physical
situation at hand are instead employed, in many cases the simplifying
assumptions do not have to be made (for example, assumption of geologic layers
when no evidence for such layers is available to explain the tailing in
breakthrough curves). Although there are inherent problems with running
small-scale, short-term tracer tests, if proper precautions are taken, these
tests coupled with appropriate analysis can provide a useful means for
determining dispersivity on a short-term basis.

This report provides an improved series of type curves which can be used
to design and analyze tracer tests. Our experience indicates that the
two-well (doublet) configuration with a pulse input and the radial divergent
tests produce the most reliable results. The radial convergent test with a
pulse input is attractive because of its simplicity of operation, but the
results are frequently difficult to interpret precisely. The two-well
(doublet) configuration with a step input is not recommended as a method for
finding the longitudinal dispersivity.
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SECTION 3

NON-UNIFORM FLOW TRACER TESTS FOR DISPERSIVITY

Design considerations for tracer tests to determine longitudinal
dispersivity include flow configuration (uniform, radial or two-well); mass
injection form (pulse or step input); and choice of chemical tracer species.
Tracer tests carried out in large-scale, uniform natural gradient flow
configurations (e.g., Sudicky, et al., 1983) can be accurately interpreted
using, for example, the method of moments (e.g., see example analysis in
Gelhar, et al., 1985). However, these tests are not simple to run in a field
setting, due to the large travel times and distances required for plume
development, and because of the very extensive multi-dimensional monitoring
(e.g., hundreds of multilevel sampling wells) required to delineate the
plume. In view of these complications which make the natural gradient test
essentially a research tool, the focus of this report is on short-term tracer

tests -- radial flow and two-well tests -- that can be carried out in a matter
of hours or several days, and where the flow regime is controlled by pumping
or injection through wells.

Figure 3-1 depicts the six configurations of radial flow and two-well

tracer tests that will be described in this report. It should be noted that
the data obtained from all of these tests -- i.e., the breakthrough curves --
may be analyzed in a similar manner, but that the practical operational
aspects vary considerably among tests. Also, the reliability of the
information obtained from analyses of data from different types of tests will
vary as a result of complications in the aquifer flow system and/or improper
application of solutions of the advection-dispersion equation. Several of
these problems will be discussed in this section; the details of the
mathematical analysis will be presented later. However, it should be
recognized that there are strong theoretical reasons (e.g., Gelhar, et al.,
1979; Gelhar and Axness, 1983) to expect significant deviations from the
classical Fickian advection-dispersion equation at the small scale typical of
these tracer tests. In all cases our discussion will pertain to conservative
tracers (e.g., Cl1, Br-) so that radioactive decay or chemical retardation
are not factors in the analyses. For a complete description of the various
types of tracer materials commonly used for tracer tests, see Davis, et al.,
1980; Davis, et al., 1985; and Betson, et al., 1985.

Divergent Radial Flow Test

In the divergent radial flow test (Figs. 3-1a and 3-1b), water is
injected at the recharge well from an outside source, generally at a constant
rate. After a steady flow field is established, the tracer is introduced as
either a pulse or step input at the recharge well, and the concentration of
the radially dispersed tracer is measured at a distant observation well. The
advantage this test offers over other radial flow tests is that the tracer is
quickly forced from the injection well, thus producing a well-defined initial
condition and a breakthrough curve which can be interpreted simply. It will

5
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be shown later that for the type-curve-matching method of analysis, the
divergent radial flow test utilizing a pulse input provides breakthrough
curves from which determination of the appropriate value of dispersivity is
somewhat simpler than from those generated by a step input. The divergent
radial flow test has the disadvantage that clogging of the recharge well may
be a concern with some water sources. Tracer source control is simpler for
the pulse than for the step input.

Convergent Radial Flow Test

Some of the disadvantages of the divergent radial flow test can be
avoided by using instead the convergent radial flow test (Fig. 3-1c), where
after a steady flow field is established, the tracer is introduced as a slug
into a borehole and the dispersed tracer concentration is measured at a
pumping well. In this case, the plumbing requirements are much simpler -- a
pump test facility (a pumping well and an observation well) can be used which
is already in place, and the pumped water is discharged to waste. The
disadvantage of this test is that in some geologic settings the tracer may not
flush out of the borehole quickly, so that the slug input may not leave the
borehole as a true "pulse", but rather as a gradually decreasing concentration
input. This input generates a breakthrough curve with a long tail, which is
more difficult to interpret (e.g., to fit to a type curve) than the
breakthrough curve generated by the divergent radial flow test. As will be
discussed later, this "borehole flushing effect" is most important in settings
with one or more of the following characteristics: (1) very low porosity; (2)
large borehole diameter; and (3) short distance between borehole and pumping

well.

Single-Well Test

In the single-well test (Fig. 3-1d), the tracer is pumped into, then out
of, one well, with observations taken at the same well. From the point of
view of equipment requirements, this test is advantageous over other radial
flow tests in that only one well is required; however, the disadvantages are
more numerous, in that: (1) the plumbing system for a recharge-discharge
system is more complex; (2) there may be problems with clogging of the well
during recharge; and (3) as with the divergent test, an outside water source
is needed for the recharge cycle. It should be noted that a more fundamental
problem with this test is that what is being measured here is not the
large-scale dispersivity of the porous medium, but rather the small-scale
dispersivity caused by local (pore-scale) heterogeneities. Large-scale
dispersion is produced by the velocity differences along and among streamlines
as they move around and through large-scale heterogeneities. However, this
test does not capture this large-scale dispersion effect, because the velocity
field is reversed when the flow regime is reversed, thereby causing the
large-scale dispersion process to be partially reversed. For this reason, we
do not recommend the use of this test for determining dispersivity for
modeling solute transport problems, except when the application involves
reversing flow at the same scale as that of the test.

8



Two-Well Test

An alternative to radial flow tests is the two-well test, or "doublet"
(Figs. 3-le and 3-1f), wherein a pulse or step input of tracer is introduced
into a recharge well and measured at a pumping well, with optional

recirculation of the pumped water (containing tracer). Although complex

plumbing requirements may be viewed as a disadvantage, this test is frequently
employed (with recirculation) because it circumvents the problem of obtaining

an independent source of water for the recharge well.

The principal problem with the use of this test lies in the

interpretation of the breakthrough curve results. The analysis of the

breakthrough curve is not as straightforward as that of radial flow, because

along each streamline the tracer arrives at the pumping well at a different

time. Consequently, only the early-time part of the doublet breakthrough

curve is sensitive to dispersion, whereas the shape of the tail results from

the advection pattern of the tracer. For this reason, the doublet test with a

pulse input generates a breakthrough curve from which the value of

dispersivity is easily determined, because the peak of the curve arrives at a

time that is sensitive to dispersion. It is more difficult to determine the

value of dispersivity from the doublet breakthrough curve generated by a step

input, because there are only mild differences in the slopes of the initial
parts of these breakthrough curves resulting from different dispersivities.

If too few measurements are taken at early times in the step-input doublet

test, it is difficult to ascertain the exact shape of the curve and hence the

correct value of dispersivity.

The above-described problems with analyzing doublet breakthrough curves

are further complicated by tests employing recirculation, where the input is

routed through the aquifer several times and eventually superimposed on the
original input.

9
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SECTION 4

REVIEW OF APPROACHES TO TRACER TEST ANALYSIS

The governing equation describing the concentration of a conservative
chemical tracer in a homogeneous isotropic medium is:

= (D. - u.c) + D ( ) (4-1)
bt bx i 3j Ux i i m x. ax.

where xi (i = 1,2,3) are Cartesian coordinates, Dij is the dispersion
coefficient tensor, ui (i = 1,2,3) are the components of the seepage

velocity vector u, t is time and Dm is the effective molecular diffusion
coefficient. Considering only longitudinal dispersion and neglecting

molecular diffusion, Eq. (4-1) is rewritten in terms of a curvilinear
coordinate system as:

2
- + u - = au 2 (4-2)
t Ts= s 2

where s is the arc length along the direction of flow and a is the
longitudinal dispersity, where the longitudinal dispersion coefficient D 1 1

is assumed to be the product of a constant dispersivity a,1 = a and velocity
u, = u. Equation (4-2) is difficult to solve analytically for non-uniform
flow cases because the velocity u is a function of s.

Analytical solutions to Eq. (4-2), usually assuming uniform flow (u

constant) are frequently used to evaluate data from tracer tests described in
the previous section; these include Ogata and Banks (1961); Lenda and Zuber

(1970) and Zuber (1974); Sauty (1977, 1978 and 1980); and Grove and Beetem

(1971). These solutions are most commonly used to construct dimensionless

type curves, where values of dimensionless time vs. concentration are plotted

as a function of Peclet number (x/a), and the tracer test breakthrough data is
matched to the type curves to obtain a best-fit value of x/a (and hence a,
since the distance x is known). In many cases these solutions either have

been incorrectly applied to the flow regime of interest or contain unnecessary
or incorrect simplifying assumptions which contribute to error in calculating
the longitudinal dispersivity value. One of the purposes here is to

demonstrate the applicability of the general solution of Gelhar and Collins
(1971) (which accounts for non-uniform flow effects) to the radial-flow and
two-well tracer tests. Before this analysis is described in detail, however,
a brief overview is given of some of the difficulties encountered in applying
the "standard" solutions to tracer test results.

Some Solutions to the Advection-Dispersion Equation

1. Ogata and Banks

Ogata and Banks (1961) have presented a set of type curves for a solution
to the one-dimensional advection-dispersion equation for a uniform flow field
with a step input of mass. Their solution can be expressed in dimensionless

form as:

10



A c 1 1 -t,_1_+t
C = - = I erfc[ + exp erfc F 11 (4-3)c 2 A 1/21a 1/2

0 (4 -t) - 4 - t)x x x

where t = dimensionless time = ut/x (x = displacement distance); c =
dimensionless concentration = c/co, where co = input concentration; and
x/a = Peclet number. For a/x << 1, i.e., small dispersivities and/or large
travel distances, the second term in (4-3) becomes insignificant, and the
solution is given as:

A c 1 1- tc - = erfc A (4-4)c 2 a A 1/2o (4-t)
x

Equation (4-4) is frequently used as an estimate of the non-uniform divergent
radial flow solution. The solution to (4-2) for a divergent divergent radial
flow field with a step input is given by Gelhar and Collins (1971) as:

A c 1 1 - t
C = - = erfc[ ( / (4-5)

c 2 Z ^3/2)1/2
3 R

where R = the distance between the injection and observation wells and

t = t/t , where t is the average arrival time of the front. By comparingm m
4 

.A 1/2)1/2)

(4-4) and (4-5), it can be seen that there is a factor of ((-t 1/2

difference between the two solutions in the denominator of the argument of the
erfc function. A comparison of the two solutions is presented graphically in
Figure 4-1 for several Peclet numbers. Although the difference between the
two solutions decreases with increasing Peclet number, there is still a
discrepancy between the two solutions even at high Peclet numbers (e.g.,
P = 200); therefore, if the uniform flow solution is used as an approximation
of the divergent radial flow breakthrough curve, some error will result in
making an estimate of longitudinal dispersivity. For large Peclet numbers the
use of the one-dimensional solution, (4-5), will lead to an overestimate of
the dispersivity by the factor 4/3.

2. Lenda and Zuber

The solutions to the one-dimensional advection-dispersion equation for
uniform flow with an instantaneous pulse input (e.g., Crank, 1956) is given in
dimensionless form as:

A A A_ / 1 21ep - %(46c -1/2 (1 t)exp[- -_ 1 (4-6)
co 4 - tx
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Figure 4-1. Step input in a uniform flow field (solid lines) and a
divergent radial flow field (dotted lines) for P =10, 20, 50, and
200.
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where
M

C =C pnAx4 .n a 1/2 *
x

M is the mass input of tracer, A is the cross-sectional area of the aquifer,
p = fluid density, n = effective porosity, and x is the distance between
injection and observation.

Lenda and Zuber presented an alternative solution for the
one-dimensional uniform flow configuration with pulse input which they derived
by taking the time derivative of the step input (Eq. 4-3). This is expressed
in dimensionless form as:

^2
^ c ^-3/2 -(1 -t)C = - t exp A ] (4-7)

o 4 t
x

where
M

C -
o a 1/2

pnAx (4w-)
x

as above. They claim that Eq. (4-7) also provides a good approximation of the
radial convergent flow case if the volume of water flowing through the
aquifer, Axn, is replaced by nx2bn where b is the aquifer thickness.

The problem with using Eq. (4-7) to estimate dispersivity is that it does
not conserve mass when integrated over the space coordinate. This point is
not widely recognized but was mentioned by Zuber (1974), who also remarked
that, despite this fact, Equation (4-7) provides a better fit to experimental
data than does Equation (4-6) when the tracer distribution in time is
measured.

Unfortunately, both Equations (4-6) and (4-7), which are solutions to the
advection-dispersion equation for one-dimensional uniform flow with pulse
input, are often taken as approximations of the radial flow cases, and as such
their use contributes to error in calculating longitudinal dispersivities.
Approximate solutions for radial flow cases with pulse input which correctly
account for non-uniform flow effects can be derived from Gelhar and Collins
(1971) (the derivation is presented later) and are given in dimensionless form
for (1) the divergent radial flow case as:

A c 4 ^3/2 -1/2 - (1 - 2(
c = - = (- t ) exp - t/ (4-8)

c 316 a ^3/2
0 3- t

M
where c = 2 ) , and (2) the convergent radial flow case as:

nLbR (4 )R

13



A = -.-- = ( (1-t)1 - A1/2 1/2 1 t) 2
C 3 !( 1t 1 -texr 16 a ^ ^ /2,(-9

- -ex - (1-t) 1 - t 13 R

where

M
C 0 2 a 1/2

M nxbR ( 4 7R)

4 A 1/2
It can be seen that there is a ( - t ) factor difference between

Eq. (4-6) and (4-8) in the denominators of both the exponential term and in

the term multiplying the exponential. The two solutions are compared in

Figure 4-2; it is evident that if the uniform flow solution of Eq. (4-6) is
used to model radial divergent flow, some error will result in determining a

value of longitudinal dispersivity. A similar comparison is made in Figure

4-3 between Equations (4-7) and (4-9) for the uniform and radial convergent
cases; again, the differences between the two solutions can be visually
observed.

Note that the solutions which include the non-uniform radial flow effect
(Eqs. 4-8 and 4-9) predict a greater amount of dispersion than the uniform
flow solutions (Eqs. 4-6 and 4-7) for a given Peclet number. Thus if fitted
to an observed breakthrough curve the uniform flow solutions will tend to
overestimate the dispersivity.

3. Sauty

Sauty (1977, 1980) was the first to publish extensive work on type-curve
analysis of radial-flow tracer tests. He developed a numerical solution
(finite difference code) to the advection-dispersion equation to account for
non-uniform flow effects, and presented his results in the form of
dimensionless type curves for uniform flow, and for radial divergent and
convergent flow, with both step and pulse inputs. This work is now widely
used in tracer test analysis.

Sauty was unable to compare his numerical code ("RAMSES") with an
analytical solution to the advection-dispersion equation for the radial flow
cases with pulse input. Instead, he compared his radial flow results with

analytical solutions to the one-dimensional uniform flow equation (comparable
to Eqs. (4-6) and (4-7)) and claimed that since there was good agreement
between the two, the uniform flow solutions could be taken as adequate
approximations of the radial flow case. His comparisons from Sauty (1980)
Figures 17 and 18 are presented here as Figures 4-4 and 4-5.

14
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Figure 4-2. Breakthrough curves for a pulse input in uniform flow
field (solid lines) after Crank, 1956 (Eq. 4-6), and a divergent
radial flow field (dotted lines) after Gelhar and Collins, 1971
(Eq. 4-9) for P = 10, 20, 50, and 200.
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Figure 4-3. Breakthrough curves for a pulse input in a uniform
flow field (solid lines) after Lenda and Zuber, 1970 (Eq. 4-7),
and a convergent radial flow field (dotted lines) after Gelhar
and Collins, 1971 (Eq. 4-9) for P = 10, 20, 50, and 200.
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Figure 4-4. Instantaneous tracer injection in a radial divergent
flow field; comparison with instaneous injection in a one-
dimensional uniform flow field (from Sauty, 1980, Figure 17).
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FIgure 4-5. Instantaneous tracer injection in a radial convergent
flow field; comparison with the derivative of an imposed step
function for one-dimensional uniform flow (from Sauty, 1980,
Figure 18).
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If Sauty's numerical results for pulse inputs in radial flow are compared
to the approximate analytical solutions for radial flow given by Equations 4-8
and 4-9 (Figures 4-6 and 4-7), it can be seen that there are significant
differences between the numerical solutions and the radial flow analytical
solutions, particularly in the tail regions for Peclet numbers between 10 and
100. This may be due in part to the differences in boundary conditions used

in the approximate analytical solution and those implied by Sauty's numerical
analysis.

Sauty was able to compare his numerical solution for a step input in
radially divergent flow with approximate analytical solutions. Figure 4-8
presents a comparison between RAMSES and the analytical solution of Gelhar and

Collins (Eq. 4-5) for this case. It can be seen that although there is
apparent agreement for large Peclet numbers (i.e., P > 100), this is because
the data were plotted in a form which does not show the high Peclet number

differences. Numerical results are not available for Sauty's solution so that
the difference at large P cannot be assessed. For 10 < P < 100, differences

between the two solutions are particularly surprising because earlier

comparison of the analytical solution for radial flow with numerical solutions

(Gelhar and Collins, 1971, Fig. 2) showed good agreement for Peclet numbers

above 15. Also, Hsieh (1986) has shown excellent agreement between the

approximate analytical solutions for radial flow and a numerical evalution of

an exact analytical solution. His exact solution for P = 10 is plotted in

Figure 4-8; it coincides very well with the approximate solution of Gelhar and

Collins (1971). Consequently, we suspect that there are some unrecognized

limitations of Sauty's numerical solution.

4. Grove and Beetem

Grove and Beetem (1971) have presented an analysis of the two-well tracer

test with a step input that also allows for recirculation of the tracer. The
analysis is carried out by viewing the flow field as a number of arcs or

stream tubes, calculating the breakthrough curve for each stream tube (each of

different length) and summing the curves to obtain a composite breakthrough
curve. In this analysis, the authors assumed the velocity to be uniform in

each stream tube. This is not the case: the velocity varies with travel

distance along the stream tube; however, the assumption of uniform flow does
not drastically affect the resulting composite breakthrough curve.

A more important concern about using this sort of tracer-test analysis to

determine dispersivity is the reliability of the test itself, since only the
initial part of the breakthrough curve is sensitive to dispersion. Because

initial breakthrough will be at very low concentrations and usually is not

resolved precisely in time, the reliability of the resulting dispersivity
estimate will be low. For this reason, we do not recommend the doublet test
with a step input for dispersivity determination. The two-well test with a
pulse input provides breakthrough curves which are much more sensitive to

19
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Figure 4-6. Breakthrough curves for a pulse input in a divergent
radial flow field. Solid lines represent the numerical solution
of Sauty (1977, 1980); dashed lines represent an analytical
solution after Gelhar and Collins (1971).
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Figure 4-7. Breakthrough curves for a pulse input in a convergent
radial flow field. Solid lines represent the numerical solution
of Sauty (1977, 1980); dashed lines represent an analytical
solution after Gelhar and Collins (1971).
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Figure 4-8. Breakthrough curves for a step input in a divergent
radial flow field. Solid lines represent the numerical solution
of Sauty (1977, 1980); dashed lines represent an analytical
solution after Gelhar and Collins (1971). Circles with crosses
indicate exact solution for P = 10 by Hsieh (1986).
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dispersion. An analysis for evaluating this type of tracer test, based on
Gelhar and Collins (1971), is presented in Section 5.

5. Gelhar and Collins

Gelhar and Collins (1971) developed a general analytical solution to

Equation (4-2) using a boundary-layer approximation which was shown to be
accurate for large P > 10. This solution fully accounts for the

variable-convective velocity conditions of a steady non-uniform flow field and
hence can be used to obtain an accurate estimate of longitudinal dispersivity
from radial flow and two-well tracer tests for many field situations. Their
general solution for a pulse input of mass (which conserves total mass of
tracer in a stream tube) is given as:

2
c(s,t) = m 1 exp _ 2 (4-10)

pu(s )(4 naw)

where

s = distance along streamline
t = time

a = longitudinal dispersivity

' = T(s) - t

s
T(s) = f ds/u(s), travel time to s

s
0

S

W(t) = f ds
s [u(s) ]

s(t) = mean location of the pulse at time t

u(s) = seepage velocity

m = mass of tracer per net cross-sectional area of aquifer injected at
S = SO at time t = 0.

The solution for a step input of mass can be derived from this result by
superposition, and both solutions can be-applied to convergent and divergent
radial flow fields to obtain specific solutions of c as a function of the
Peclet number and time for the flow field of interest. Moreover, if the
general results are used in conjunction with the streamline pattern generated
by a two-well flow system, specific solutions can be obtained for analysis of
dispersivity from two-well tracer tests for both pulse and step inputs.
Derivations of these specific solutions from the general result of Eq. (4-10),
which can be used to construct type curves, will be presented later.
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One problem with the use of this solution is that it is not valid very
close to the input source of mass. This is due, among other things, to the
limitations of the boundary-layer approximation. The analytical solution was
tested against a numerical solution for the step-input radial flow case for
divergent and convergent flow fields (Gelhar and Collins, 1971), and it was

found that there was very good agreement for Peclet numbers greater than 100

(when the dispersed zone had traveled a distance of 100 times the dispersivity
of the medium) and reasonable agreement for Peclet numbers as low as 10.
However, for Peclet numbers lower than ~10 the analytical approximations
will not produce very good results in most cases. However, it should be

recognized that there are other complications with interpretations of
breakthrough curves at low Peclet numbers which can also contribute to error
in determining longitudinal dispersivity. These problems are discussed in

further detail below.

Limitations of Solutions Used to Determine Dispersivity

Two points discussed above regarding problems with interpreting tracer
test data bear repetition due to their frequent occurence in the analyses of
tracer tests presented in the literature. First, uniform flow solutions are
commonly misapplied to radial flow situations. The error incurred in

determining longitudinal dispersivity from this type of analysis is

illustrated in Figures 4-1 to 4-5 and discussed in the accompanying text.
Secondly, uniform flow solutions such as that of Lenda amd Zuber (1974)
are not mass-conserving when applied in a radial flow configuration. This may

be an important consideration if such solutions are used in tracer design
because the peak concentration will not be correctly predicted.

There are several other effects which are not accounted for by the above
solutions. The first is the problem with interpretations of breakthrough
curves at low Peclet numbers (P < 10). In this range, there is a problem with
with non-Fickian flow effects (see Gelhar, et al., 1979) in which case the

governing equation (Eq. 4-2) is not strictly applicable, and hence the
solutions to it are not strictly valid. Also, in this flow region there is

the complicating factor of displacement-dependent dispersivity, i.e.,
dispersivity increasing with displacement distance before it reaches an
asymptotic constant value. All of the solutions discussed above assume that
dispersivity is constant, and hence are appropriate only after the tracer has
traveled a displacement distance of 10 to 100 times the dispersivity value of

the medium; i.e., when the dispersivity has reached a constant value. One

objective of this report is to modify the solutions of Gelhar and Collins
(1971) to Eq. (4-2) to allow for dispersivity that increases linearly with
distance, in order to attempt a more realistic evaluation of tracer test data
from cases where the dispersivity may not have reached its asymptotic value.
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A final problem concerns the interpretation of the extensive tailing
exhibited by some breakthrough curves from pulse input/radial flow tests. An
example of such a case is illustrated by Figure 4-9. Typically, the type
curves discussed in the previous section do not fit the tail area of these
breakthrough curves very well. There are several reasons for this

phenomenon. First, skewness of the data will occur if the scale of the tracer
test is such that non-Fickian effects and displacement-dependent dispersivity

come into play. The solutions described previously do not account for these
effects. Second, uniform flow solutions to the advection-dispersion equation
do not exhibit as much tailing as the radial flow solutions; therefore, use of
the wrong solution will contribute to a poor fit to the data. Third, in
convergent radial flow tests, the tracer typically does not quickly flush out

of the borehole in the form of a pulse; therefore, it would not be reasonable
to expect the breakthrough curve from this test to exhibit a symmetrical pulse
shape. This "borehole flushing effect" has been demonstrated for convergent

radial flow tracer tests conducted in France in fractured media, where the
concentration of the tracer leaving the borehole was actually measured as a
function of time (Goblet, 1982). It was shown that the shape of the tracer
input was approximately an exponentially decreasing function. If this
function is convolved with the convergent radial flow solution for a pulse

input, the shape of the long tail on the breakthrough curve for this case can
be simulated. We show in the next section how the solution of Gelhar and

Collins (1971) for the radial convergent case can be so modified to account
for this effect.

It should be pointed out that the tracer test literature is replete with
examples of tailing breakthrough curves and attendant attempts at

interpretation. A review of all data from radial flow tracer tests (Gelhar,
et al., 1985) reveals that in many cases the analysis of this shape of
breakthrough curve is effected by superposition of two or more type curves
with a resulting curve that more or less fits the data (e.g., see Figure
4-9). This superposition of type curves is often justified by attributing the
breakthrough shape to several geologic layers each having a different value of
dispersivity and hence a different type curve (Sauty, 1977; Ivanovitch and
Smith, 1978; and Kreft and Zuber, 1979). The problem with this interpretation
is that often it is not or cannot be verified by existing geologic data from
the site in question. We show several examples in Section 6 where such
assumptions are not needed to achieve a good fit of a type curve to the
breakthrough data, if the solution used to derive the type curve accounts for
the physical effects influencing the test situation.

It should be apparent from the discussion presented in this section that
there are a number of problems with interpreting tracer test data to determine
dispersivity. Of all the solutions presented above, Gelhar and Collins (1971)
is the only one that accounts for non-uniform flow for all cases of interest.
In Section 5 the general result of Gelhar and Collins as given by Eq. (4-2)
will be used to obtain specific solutions and type curves for: (1) radially
divergent flow with pulse and step inputs; (2) radially convergent flow with a
pulse input; and (3) the two-well test with pulse and step inputs. Further,
we demonstrate how the results for the radial flow cases can be adjusted to
account for linearly increasing dispersivity with distance. Finally, we
derive a solution for the radial convergent pulse input case that accounts for
the borehole flushing effect.
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Figure 4-9. Example of a breakthrough curve from pulse injection
in radially divergent flow (circles indicate observed values). Two
type curves are superimposed to account for tailing (from Hoehn and
Roberts, 1982).
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SECTION 5

TRACER TEST ANALYSIS BASED ON GELHAR AND COLLINS (1971)

The general analytical result of Gelhar and Collins (1971), which serves

as a basis for the analysis presented in this section, is given by Equation

4-10. To derive specific solutions for each case, expressions for m (for the

pulse cases), u(so), w and n must be determined and substituted into

Equation 4-10. Then either dimensionless type curves may be constructed from

the solution expressed in dimensionless form, or a breakthrough-curve,

dispersed-zone-width method of analysis can be carried out to determine

longitudinal dispersivity from the tracer test data.

Divergent Radial Flow, Step Input

As described in Section 3, in this test a step input of tracer is

injected into the recharge well and the breakthrough concentration is measured

at an observation well. A cross-sectional sketch for this configuration is

shown in Figure 5-1. For initial and boundary conditions given as

c = c for s < s
0 0

c = 0 for s > s at t = 0
0

c + c as s + -O
0

c + 0 as s + for t > 0

the solution of the governing equation (Eq. 4-2) is given by (see Gelhar and

Collins, 1971):

c
c = erfc 1 (5-1)

2(41/2

In radial flow the seepage velocity u(s) can be given by

u(s) =A (5-2)
r

where

A = (5-3)
27[nb

Q = Volumetric recharge rate

n = effective porosity
b = aquifer thickness

When (5-2) is substituted into the definition of w(t) (aw can be viewed

as a time dispersion factor) as given by Eq. 4-10, then

-3 3
s r 2 r - r

At) f ds r w 5-4)w~2 2 2
s =0 (u(s)) r=r A 3A2

w

where r = s = mean location of the front
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Figure 5-1. Definitional sketch for step input (c )
or pulse input (M) in diverging radial flow.
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3 -3
and for negligible well radius, i.e., r << r ,

w

-3
W(t) = ---- (5-5)

3A

Next, evaluating T(s), the travel time to any s, by substitution of
(5-2),

2 2
ds r r -r

u(s) A 2A (5-6)
s =0 r=r

w

and for negligible well radius (5-6) becomes
2

U(s) = (5-7)
2A

Then, from (5-7) the average travel time to s = r, the location of the
front, can be given by

-2
t = - (5-8)

Substituting (5-7) and (5-8) into the definition of n, the result is

2 -2

n = T(s) - t r (5-9)2A

When (5-4) and (5-9) are substituted into (5-1), the relative
concentration at any point r between the injection well and observation well
is given by:

2 -2
c_ 1 erfc [ r -r (5-10)

- 2-efc1/2~c 2 ( 16 -3 )

0 r

This result agrees with the general result of Gelhar and Collins (1971), Eq.
37, with r = 0 and D = 0.

w m

Breakthrough Curve-Dispersed Zone Width Method of Analysis for a
Constant. The following simple analysis allows an estimate of longitudinal
dispersivity to be made from a graph of the breakthrough data from a step
input, divergent radial flow tracer test on the basis of Eq. (5-10). As shown
in Figure 5-2 the parameters t50 and t must be determined graphically for the
analysis. t 50 is the time at which the c = c /2 concentration occurs; At is

defined by drawing a line tangent to the breakthrough curve at the t 50 point
and determining the times of intersection with the lines c = 0 and c = c . An

expression for At is determined from Eq. (5-10) as follows. Recall that
2 2

erfc ( = 1- erf 2= 1-- f& eu du (5-11)
/1 0
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Figure 5-2. Illustration of the breakthrough-curve,
dispersed-zone method of analysis for a step input
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An expression relating At to a then proceeds:

A t - 1 = c )(d r 
-1 2

At c -j dt - c -
0 r=r ar Co) r=r

dr A
Making use of (5-11) and recognizing that - , and taking -() at

dt - -C
r ro

at r = r , Eq. (5-12) becomes:

At-1 1 -2 A - 2r (5-13)
2 A-( 16 53-1/2

2 /X r (-3)r
3

which can be written as:

(6 l-1/2 -
3

At = (5-14)
2A

2
Substituting R = 2At 5 0 for r = R (in Eq. 5-8) and solving for a,

a = R At )2 (5-15)
16 i t 50

Using At and t 50 determined graphically, and r = R = the distance between
the recharge well and observation well, a can be estimated from (5-15). It

should be noted that this analysis presumes a to be constant. Note that the

result in (5-15) does not depend explicitly on the injection rate Q.

Analysis Using Dimensionless Type Curves for a Constant. In order to

construct type curves for this case, Equation (5-10) must be expressed in

dimensionless form and evaluated at the observation well. Taking r = R and

since from Eq. (5-8) r (2At)1/2, Eq. 5-10 becomes:

2
C- erfc (R16 R 2At) 1 (5-16)
c 01-6 a(A)3/2 )1/2o (--a (2At) )

3

2
R

Letting t - , the average travel time to r = R, Eq. (5-16) can be
m 2A

expressed as:

(1 -
t

c erfc m (5-17)
c e (16 (t )3/2 1/2

3 R t
m
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In dimensionless form, Eq. (5-17) becomes:

^ 1 (1 - t)
c = erfc 3/2 1/2(5-18)2 3/2 1/

16 a t(--- )
3 R

where ^A
t = = dimensionless time

t
m

c = = dimensionless concentration
c

0

- = P 1 (P = Peclet number)
R

Then a type curve for a chosen value of a/R is constructed by determini

c as a function of t using Equation 5-18. An example set of type curves for

radially divergent flow with step input is presented on log-log paper in

Figure 5-3. Longitudinal dispersivity can be determined for a set of tracer

test data by plotting the breakthrough curve on the same scale graph paper ar

matching it to the best-fitting a/R curve. Once a/R is determined from the

type curve match, a can be determined directly, since R is known. It should

be emphasized that, as in the previous method of analysis presented,

longitudinal dispersivity is presumed to be constant in this case.

Analysis Using Dimensionless Type Curve for a Linearly Increasing with

Distance. A key limiting assumption in the derivation of Eq. 5-18 is that

longitudinal dispersivity is constant. Therefore, for divergent radial

flow/step input tracer tests carried out in flow regimes where a is not

constant (i.e., low Peclet numbers), problems may be encountered in obtainir

a good fit of the breakthrough curve to the type curves given by Eq. 5-18.

try to account for this effect, the derivation of Eq. 5-18 can be modified I
allow for longitudinal dispersivity to increase as a function of distance.

linear increase in dispersivity with distance was chosen for the analysis.

From Figure 5-4, if the average dispersivity is taken to be a = 'a at

r = R/2, then for any distance r, a = 2ar/R. If the theory of Gelhar and

Collins (1971) is revised to reflect a as a function of distance (see notes

this development in Appendix A), then the product aw is replaced by

r 2 r 2

aw f ar = 2 a r rdr (5-19

r=r A r=r A
w w

Upon integration, this gives:

a -4 -4 52
aw =' _A 2rR -r r ) (5-20

2 w2A R
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Figure 5-3. Type curves for radially divergent flow with step input,
assuming constant dispersivity.
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r = 0 r= R/2 r= R r

Figure 5-4. Definitional sketch of a vs. r to allow for dispersivity
to increase linearly with distance for the radial diverging flow case.
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When (5-9) and (5-20) are substituted into (5-1), and if r << r
w

the new result is:

= erfc (r2 - r2 (5-21)
c 2 e-o 8 -4)1/2

R

-2
Substituting r = R and r = 2At, (5-21) becomes

2
c 1 R - 2At
- = - erfc F- (5-22)
o 8 4A 2t )1/2

R

and with

t = R /2A (5-23)
m

Eq. (5.22) becomes

^ 1 (1- t)
c = - erfc - (5-24)

(8 a ^2)1/2
R

where c = c/c and t = t/t
0 m

Type curves of c as a function of a/R and t can be constructed from Eq.
(5-24). An example set is presented in Figure 5-5. When Figure 5-5 is
compared to Figure 5-3, it can be seen that for this case there is some
discernable difference in the shape of the type curves due to linearly
increasing dispersivity, but this effect is not particularly pronounced. It
will be shown in the following section that the shape of the pulse input type

curves is much more sensitive to this effect. This result points to the fact

that it would be difficult to determine from a breakthrough curve produced by

this type of tracer test whether dispersivity is increasing with distance or
is in fact constant.

Divergent Radial Flow, Pulse Input

The physical configuration of this test is the same as the one previously

described, except that a pulse input of tracer is introduced into the recharge
well in place of a constant concentration input. For this reason, much of the
analysis is similar for derivation of the concentration solution. The
configuration for this case is therefore the same as for the step input (see
Fig. 5-1) except that the input is given as mass M instead of as concentration

co.

If the total mass input of tracer is given as M, then the mass input per

unit area of aquifer can be expressed as:
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Mm = 2=nbr (5-25)

where n = the effective porosity and r = rw for the divergent radial flow
case. Expressions for u(s), w(t) and n are identical to those of the step
input case for the divergent radial flow regime, and are given by Eqs. (5-2),
(5-5) and (5-9), respectively. When these expressions are substituted into
the general solution for a pulse input given by Eq. 4-10 (again assuming

A
r << r), with u(s ) = - the result is:
w 0 r

w

1/2 2 -2 2
M 3 (r -r ) (5-26)

c= p2 nnb -3 16 -3]
4iar a r

1/2
Taking r = R, and r = (2At) from Eq. 5-8, Eq. 5-26 becomes:

M 31/2 2~( 2
C= M 2 -3/2 exp -(R -2At) 1 (5-27)

4 a (2At) -- a (2At)3 /2
3

2Letting t = t/t with t = R /2A, i.e., the average travel time to r = R,
m m

Eq. 5-27 can be expressed as:

1/2 ^% 2__3_- (1 - t)
C = 3/2 exp 2 (5-28)

-nnb 4naR 3 (t 16 at 3/2

3 R

Breakthrough-Curve, Pulse-Width Method of Analysis for a Constant. The

longitudinal dispersivity for a set of tracer test data can be estimated using
Equation (5-28) by considering the time width of the breakthrough curve at

the e-1 concentration level relative to the peak concentration, c , at time

tm. When a/R << 1 the peak occurs at tm and the pulse is practically

symmetric, in which case, from Eq. 5-28,

(1 - 6a + ( ) 3/2 1/2 (5-29)t 3 R t
m m

at the e 1 level. Solving for t,

t = t + t r 16 () 3 / 2 1/2 (5-30)
m- m 3 R t

m

t 1/2
16 t 1 3/21/Letting t = t - t 1-- 13/2 (5-31a)

m
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t 1/2
and t =t + t 16 - (2)3/2 (5-31b)

2 m m 3R t
m

t t
thenAt =t - = 16r-a 11/2 2 3/4 1 3/4tn t=t-t=t --- [(-) + (--) ] (5-32)

2 1 m 3 R t tm m

For small a/R, t1  t2 2 tm on the right side of (5-32) and then

3R= (At)2 (5-33)
64 t

m

Equation (5-33) can be used to determine longitudinal dispersivity from a
set of tracer test data for pulse input in radially divergent flow once At and
tm are determined for the data set (see Figure 5-6). It is noted that Eq.
(5-33) is strictly valid only if a is constant and for relatively small a/R.

This expression can be used for initial estimates of dispersivity but a type
curve analysis which uses all of the data is needed for accurate analysis when

a/R is not small.

Analysis Using Dimensionless Type Curves for a Constant. Type curves may
be constructed for this case by expressing Eq. (5-28) in dimensionless form

and evaluating it at the observation well as follows:

A ^3/2 -1/2 -(1 2 )
c = (t ) exp -1 a t (5-34)

16c A 3/21
3 R

where

t = t/t = dimensionless time
m

2 4 Ca 1/2
AcQ2Jg1bR ( -t

c = M - dimensionless concentration

a/R = P- 1 (P = Peclet number)

Type curves for this case may be constructed by graphing c as a function

of t for a chosen a/R, using Eq. 5-34. An example set of type curves for
radially divergent flow with pulse input is shown on log-log paper in Figure

5-7. Longitudinal dispersivity may then be determined by matching the
observed breakthrough curve with a type curve. Again, it is emphasized that
a was assumed to be constant for the above derivation.

Analysis Using Dimensionless Type Curves for a Linearly Increasing with
Distance. Equation (5-26) may be modified to allow for dispersivity to

increase with distance in an analogous fashion to the step input case for
divergent radial flow. Using Figure 5-4 again as a definitional sketch, the
expression for aw is exactly the same for this case. If u(s), n and aw(t) are
expressed by Eqs. (5-2), (5-9), and (5-20), respectively (and assuming
negligible well radius), substitution into Eq. 4-10 gives as a new result:
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Figure 5-6. Illustration of the breakthrough-curve, pulse-width
method of analysis.
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Figure 5-7. Type curves for radially divergent flow with pulse input,
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-- 42 -2 2
M 1/2 (r - r) (535)c = - ( ) exp |(-5p2nnb R -

8 . r-4
R

-2
Substituting r = R and r = 2At, (5-35) becomes:

- 2 22 2
M 2'Ta4A t -1/2 2 A

C = (b )R exp F (R - 2At) 1 (5-36)

p 2 7 nb R(8 ) (4 A t 2 )
2R

With t = R /2A, Eq. 5-36 becomes
m

t 2
- (1 - -- )

M - 3t -1/2 t
c = (2paR -- ) exp r m (5-37)

p2vnb t2  - 2
m 8 (-)2

R t
m

And in dimensionless form the final solution is:

A A_ ^ 2
^ 3 -1/2 ^-1- (1 - t)C = (-)1 t exp ( .1  (5-38)

8 -9 ^
R

2 4 al1/2
cp2lnnbR 2( 4 7)

where c M

and t = t/t
m

A set of type curves constructed from Eq. (5-38) is presented in Figure
5-8. When Figure 5-7 is compared to Figure 5-8, it can be seen that the
tailing exhibited by the type curves in the latter case is much more
pronounced. This is a direct result of allowing the dispersivity to increase
linearly with distance in the derivation of the solution to the governing
equation. This sort of type curve may be used to achieve a better fit of some
data from radially divergent flow cases that exhibit long tails and do not fit
well to the type curves presented in the previous section for the case where

a is presumed to be constant.

Converging Radial Flow, Pulse Input

The breakthrough curve for this case is generated by injecting a mass
input of tracer into an observation well and measuring the concentration at a

pumping well; Figure 5-9 illustrates this configuration. The velocity u(s) is

given by Eq. (5-2) and the mass input per unit aquifer area, m, is given by
Eq. (5-25) with r=R. Expressions for w(t) and r must be derived for this flow
regime and together with (5-2) and (5-25) be substituted into (4-10) to derive
an expression for concentration at the recharge well.
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Figure 5-8. Type curves for radially divergent flow with pulse input,
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Figure 5-9. Definitional sketch for pulse input (M) in
a converging radial flow field.
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ds
By definition, w(t) = 1 2 . For the convergent radial flow case,

s =0 (u(s))

and using (5-2), w(t) can be written as

R 2 3 _-3
W(t)= f r dr R -r (5-39)

- A 3A
r=r

The travel time to any s, -u(s) in conjunction with Eq. (5-2) is given by:

sr2 2
t(s) = = - f A d - r (5-40)-Vs) fu f A 2A

S=O r=R

The average travel time t to s ,the location of the front, can be
deduced from (5-40) to be

R2 _-2
t = (5-41)

2A

Substituting (5-40) and (5-41) into the definition of n, the result is

2 -2

= (s) - t = r -r (5-42)
2A

When the values of m, w(t) and n are given by Eqs. (5-25), (5-39) and

(5-42), respectively, and these substitutions are made along with u(so)=A/R

into the general pulse solution given by Eq. 4-10, the result is:

2  -2 2
c= 3 1/2 exp (r- r 1 1 (5-43)

p2 nnb 4 na(R - r )) - a (R - r

Evaluating (5-43) at the pumping well, i.e., at r = 0, and from Eq.

(5-41) ;2 = R 2 - 2At and r = R - 2Atj 1/ 2 , Eq. (5-43) becomes: (5-44)

M
C = p2,nb f4na(R -(R 2-2At) R -2At 1/2 1/:2

2 2
exp [ - (R - 2At) 1

1x 6 a(R 3- (R2-2At) R -_2At 1/2)

44



Letting t = t/t with t = R 2/2A, the average travel time to r = 0, Eq.

5-44 can be expressed as:

MC 2 ( ) 1/2 A 1/2 1/2'
p2'nnbR 3R )jil-t

A 2

ep- (- t )2

exp[ -(1- t) 1 (5-45)

Breakthrough-Curve Pulse-Width Method of Analysis for a Constant.

Following the same method presented for the divergent radial flow case with
pulse input (see Figure 5-6), consideration of the pulse width of the

breakthrough concentration defined by Eq. 5-45 at the e- 1 level gives:

(1- ) (1 - ) 1 - 1/2 1/2 (5-46)
m m m

solving for t,

t =t + t F-16 (1 (1 t 1/2 1/2 (5-47)
m m 3Rt I'

m M

Letting

t = t - t r--a 1/2 )]1/2 (5-48a)M3 R t t
m m

and

t2  t + t 16 1/2 1/2 (5-48b)
2 mr Rtm tm

then

r1t = 1/2t =At = t2-t = tm 1/2 _ W )121/211/2 t111/2 11/2 1(5-49)
2Mtm tM m diM

If tm i tl t2, then the f I term in (5-49) is n 2 and solving (5-49) for
a gives:

a = (At)2 (5-50)
64 tm

This is the same approximate result as obtained for the divergent radial

flow case. Eq. (5-50) can then be used to determine longitudinal dispersivity
from a set of tracer test data for pulse input in a radially convergent flow
field, if it can be assumed that a is constant and a/R is relatively small.

Analysis Using Dimensionless Type Curves for a Constant. Type curves may
be constructed for the pulse input radial convergent flow case by expressing
Eq. (5-45) in dimensionless form and evaluating it at the recharge well as

follows:
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^ ^ ^ 1/21-1/2 r - (1 - t)
c = 1 -(1- t)1 - t exp 6aA1 1/2 (5-51)

3 ( -t) 1-t1/

where t = t/tm = dimensionless time

c = co2mnbR2(47/3 - a/R) /M= dimensionless concentration
a/R = inverse dimensionless distance (inverse Peclet number)

A set of type curves generated using Eq. 5-51 is presented in Figure

5-10. Assuming that longitudinal dispersivity is constant, a can be

determined for a set of tracer test data plotted on the same scale graph paper
by matching with these type curves.

Analysis Using Dimensionless Type Curves for a Linearly Increasing with

Distance. To modify Eq. (5-43) to allow for variable dispersivity, using the

definitional sketch presented in Figure 5-11 and a = 2as/R, the expression for
aw is revised as follows:

s R 2
aw= f a(s) f 2a dr (5-52)

S=0 u (s) - A
r=r

Using the relationship r + s = R, aw is found to be:

- 3 -3 4 -i4
2r(R -r3 ) (R 4 - r4 )

aw = 2 R3 -4R (5-53)
A

Then with r and a2(t) expressed by Eqs. (5-42) and (5-53), respectively, the
general pulse solution given by Eq. 4-10 becomes:

M -exp [ (r - r )/2A]1(5-54)
- 3 -3 4 -4- 3 -3 4_-4 )(-4

278bR 8 (R -r ) (R-r) /28a (R -r) -R r

R2 13 - 4R ]A2 3 4R

Sutstituting r = 0 and r = R - 2At , r = IR - 2At , Eq. (5-54)

becomes:

M
c= 3 2_2 1/2 4 2 2

8ra rR - (R - 2At)JR- 2At(R - (R - 2At) 1/2
p2nnbR 1 3 34R

R

2 2
exp F 2a ( 3  R - (R - 2At) 4R2 At2))

xp[ -1 3_ 2_2_ 1/2 1 4_ 2_ 2 ](-
32a I R -(R -2At) IR -2At ) - R ( - (R -2At)
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Figure 5-11. Definitional sketch of a vs. s to allow for
dispersivity to linearly increase with distance for the
radial converging flow case.
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with tm = R 2/2A, and

^ cp2 nbR2 ( 4; )
3 R

C=
M

(5-56)

t = t/t
m

in dimensionless form the final solution is:

^ ^ ^ 1/2 3 (^ (1 t)2 -1/2c = F2(1 - (1 - t) t ) - 1 - ( - t) ]e

^) 2
exp[ t (5-57)

A, Ar A22 (1 - (1 - t)I1 - t 1 )- _ (1 - (1 - t) 1

A set of type curves constructed using Eq. (5-57) is presented in Figure

5-12. When compared to Figure 5-10, the increased tailing in Figure 5-12 is
apparent. This is a direct result of the above analysis which allows for

dispersivity to increase as a linear function of distance. Use of this set of

type curves for some tracer test data from radially convergent flow cases may
provide a better fit to the breakthrough data in cases where increasing

dispersivity contributes to the effect of an elongated tail.

Analysis Accounting for Borehole Flushing Effect for a Constant. As

depicted by Figure 5-13, in some cases the long tails exhibited by the

breakthrough curves from "pulse" input convergent radial flow cases may be due

to slow departure of the slug input from the borehole. If the borehole is
treated as an ideal mixer and assumed to intercept flow from a width twice its

diameter, then with the radial specific discharge given by qr = Q/2nrb, the
volumetric flow rate intercepted by the borehole is:

Q 2dbq = (5-58)
b r n;R

where d is the diameter of the borehole and R is the distance between the

borehole and the pumping well. The rate of mass input (mass/time) leaving the

borehole can then be expressed as

d( PVbc) = - Qbc (5-59)

where Vb is the volume of the fluid in the borehole.
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Figure 5-12. Type curves for radially convergent flow with pulse
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IDEAL PULSE INPUT

ACTUAL INPUT; MODELLED AS C b = Co exp(-t/tC)

IDEAL BREAKTHROUGH

EXPECTED BREAKTHROUGH
WITH BOREHOLE FLUSHING

1 .0

Figure 5-13. Effect of exponentially decreasing concentration input
on the shape of the breakthrough curve in the converging radial flow
test.
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This can be rearranged to give

dc Qbd- - - dt (5-60)
c Vb

If t is defined as Vb /Q b, and (5-60) is integrated using the initial

condition that c = c at t = 0, then (5-60) becomes:

in c = - + in c (5-61a)
t 0
c

Or equivalently,

- t/t
= e c (5-61b)

c
0

V 2Vb n 2 dbR
where t = -- = (5-62)

c Qb 4Q

and

c =--- (5-63)
0 PVb

Eq. 5-61 gives the input concentration from the borehole as a function
oftime. Convolution of this input concentration with the pulse solution given
by Eq. (5-45) for the convergent radial flow case can be used to find the
breakthrough curve with the borehole flushing effect as follows. Since the
tracer mass input rate from the borehole is a function of time, i.e.,

PQbc = f(t), then the incremental mass input is 1 = f( -) -v at time t =
If this is convolved with the pulse input solution for M = 1, i.e., cI(r,t),
then the breakthrough concentration can be expressed as
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c = )' c1 (t - f A-

t
c = f cl(t - r)f(-r) dur

=O

as A-r + 0

which can be written equivalently as

t
c = f c1(-r)f(t - r) d-u

-r0

With M = 1, c 1 (rt) is given at the pumping well by:

1
c =

0 2itnbR
2 r14 7E a -( m1- ) 1 - 1/2 1/2

m m

t )2
- (1 -

r
exp 16 a t

3 R t
m

I t 1/2

M

(5-65)

which in dimensionless form is:

A2 4 a1/2
c i = c iP2jtnbR ( )

3i7 R (5-66)

f(-u) is given by substituting Eqs. (5-61b), (5-62) and (5-63):

f (T) = O2bC = QQbcoe- /tc

M -/t
= Qb - e c

b

= M e- T/t c
t

c
(5-67)
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which with - = -/t is
m

=M -T(tm/tc)
f(t) =(--)e m Ct

C

Substituting (5-66) and (5-68) into (5-64b), the dimensionless
concentration at the well can then be specified by:

^=

2 4 c 1/2
c02lcnbR ( - It )

3 R
M

^

t t A

- A c!(t- )( ) e- v(tm/tc)dr

r=0 c

(5-69)

t
m

Letting e = -- , the final result in general form is:
t

c

A t A

c (t;9, ) = f c (t - e) e
R=

(5-70)

or equivalently

A t A

c(t;,e) =A f c'(t) e d
-=O

(5-71)

With the full expression for c ( substituted into (5-71), c is given as:
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t
exp -fr 6 1 ^ ^ 1l/2 ]+[(t -Z1) ]}d- (5-72)

3 R

^ t
where t = -

t

m

t

tm 4Rn

t lcd
C

A cp2bR 2 (4 na1/2
^ cpmbR -TI-)c = 3 R (c is defined by Eq. 5-64)

M

The integral expression given by (5-72) can be evaluated numerically to
yield type curves as a function of the two parameters a/R and 0. A FORTRAN

code to do the numerical integration,and values of c and t so generated to
construct the type curves given in Figure 5-14, are listed in Appendix B.

To effect type curve matching, e should first be estimated based on the
known diameter of the borehole, the porosity of the medium, and the distance
between the borehole and pumping well. Then a family of curves of various
a/R's can be derived based on this value of 0. Figure 5-14 presents a set of
type curves for different values of 0 given one value of a/R (= 0.05), in
order to illustrate the effect of 0 on the shape of the type curve for one
value of dispersivity. As 0 + c, influence of the borehole flushing effect on
the shape of the type curve diminishes; the type curve for 0 = 100 falls
nearly on top of the standard convergent radial flow case for a/R = 0.05
presented in Figure 5-10. On the other hand, as 0 becomes small (<5), the
effect becomes pronounced. From the definition of 0 (0 = nR/Ed), the borehole
flushing phenomenon is therefore most important in low-porosity geologic
settings (e.g., fractured media), and/or for situations of small distance
between injection well and borehole, and/or large borehole diameter.
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Analysis Accounting for Borehole Flushing Effect for a Linearly
Increasing with Distance. Following the analyses presented previously for the

convergent radial flow case to allow for linearly increasing dispersivity, the
convolution solution for the borehole flushing effect given by Eq. (5-72) can
be similarly modified. Using the definitional sketch presented in Figure

5-11, the expression for c 1 in 5-71 is replaced by Eq. (5-57). Combining this
with the general dimensionless convolution solution given by Eq. (5-71), the

dimensionless expression for c is then:

A A tAA
c ( R; ,e) = f2(1 - (1-t)Ji - t-- ) )) 1.1

=0 ^ 2
( - ) 

^ ^

exp 2 (1 A^) ( 11 ^ 2) A + [9(t - -r)] di (5-73)
S- t ) -1(1 ) )

for the concentration at the pumping well in convergent radial flow for a
linearly increasing with distance and borehole flushing. The dimensionless

variables have the same definitions as those of Eq. (5-72). A set of type

curves generated from this solution (using a program for numerical

integration) for c/R = 0.05 and various values of e is presented in Figure
5-15. When Figure 5-15 is compared to Figure 5-14 (the a constant case), it
can be seen that there is increased tailing in the latter case produced by the
linearly increasing dispersivity. Thus in instances when the combined effect
of linearly increasing dispersivity and borehole flushing are responsible for
producing long tails on breakthrough curves, these type curves will be useful

for estimating a.

Two-Well Tests

Pulse Input, a Constant

The breakthrough curve of this tracer test is generated when a pulse of
mass is injected into a recharge well and measured at a pumping well of a
two-well flow system (see Figure 5-16). Mathematical analysis of this case is

carried out by applying the general theoretical result of Gelhar and Collins
given by Eq. 4-10 along each streamline indentified by the stream function p.

This case has previously been presented in detail by Gelhar (1982) and will
therefore only be summarized here.

At the pumping well, the velocity u(so) is given by:

u(s ) = Q r/(2 7cr nb) (5-74)o r w

57



10

1 -

<0

152

151
At

1 10

Figure 5-15. Type curves for radial convergent flow with pulse
input and borehole flushing effect for x linearly increasing with
distance and E/R = 0.05.
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Figure 5-16. Streamline pattern for two-well flow system with

Q/Qr = 2/3. (Note that L = distance between the two wells).
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where

Qr = recharge rate
rw = well radius
n = effective porosity
b = aquifer thickness
m = M/2nrwnb
M = Mass of tracer injected

and therefore

m M(5-75)
u(s) Qo r

The flow-weighted concentration at the pumping well can then be
determined from the following integral:

2H Q/2b 2
c I ( )(41a)1/2 -( f4 -t) d4 (5-76)

w Q 0 Q 4aw
(1=0

where 0 reflects the ratio of the flow rate of the recharge well to the flow
rate at the pumping well (i.e., 0 = Qr/Q)- Since the velocity u is
dependent on the value of the stream function d2, then T and w (defined by Eq.
4-10) in this integral also depend on the value of 4, i.e., t(s,4) and
w(t,4). Gelhar (1982) evaluated the integral in (5-76) numerically. The
resulting type curves for the equal-flow case are presented in Figure 5-17.

In this analysis, Gelhar assumed transverse dispersion to be negligible
for a/L < 0.1 because dispersion occurs primarily along the direct streamlines
between the two wells, where the solute pulse fronts will be nearly
perpendicular to the streamlines. Goblet (1984) tested the validity of this
assumption by comparing the analytical results for a/L = .05 and a/L = .02
with simulations calculated by a numerical finite element code ("METIS") where

aT = 0.1 aL was used. The numerical results were in very good agreement
with the analytical results, thereby confirming the weak role of transverse
dispersivity in the spreading of the solute in this tracer test. A comparison
of the analytical and numerical results is shown in Figure 5-18.

Step Input, a Constant. In this two-well test, the breakthrough curve is
generated by injecting a constant concentration of tracer continuously into a
recharge well and measuring the breakthrough concentration at the pumping
well. The solution for the concentration at the well is found by convolution
of the pulse-input result with a constant input function of tracer over time.

Type curves generated by numerical integration of the pulse type curves
(Fig. 5-17) are given in Figure 5-19. The resulting curves illustrate the
relatively weak effect of longitudial dispersivity on the shape of
breakthrough curves generated by this test. This causes difficulty in
accurately determining the value of a/R when matching breakthrough data to
these type curves. For this reason, we do not recommend this test for
determining dispersivity. The type curves generated by the pulse input (Fig.
5-17) are much more sensitive to the value of dispersivity and therefore type
curve matching for the pulse input case can be more easily carried out.
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P = 20, analytical results

P = 50, analytical results

- L = 1 a T P = 20, numerical results using METIS
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Figure 5-18. Comparison of analytical results and numerical
results (using METIS) for two-well tracer test with pulse input
(Goblet, 1984).
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SECTION 6

APPLICATION OF THE ANALYTICAL RESULTS

TO FIELD-SCALE TRACER TEST DATA

In this section, we illustrate the use of the analytical results
presented in Section 5 for determining longitudinal dispersivity from field
data. In most cases, the field data have been previously evaluated using
other techniques. What we present are alternative methods of analysis and

discussion of the merits of both. As will be seen, in some cases there are
difficulties in interpreting the tracer test data due to ambiguities in

reported results or due to errors in running the tracer tests. It is

emphasized that careful design of such tests and complete and accurate

reporting of results are essential for achieving the best interpretation of
the data possible.

Corbas, France -- Pulse Input in Radial Convergent Flow

This tracer test was performed in a sand and gravel aquifer approximately
12 m thick in France, using iodide as the tracer. An analysis of the data for
longitudinal dispersivity using a finite element code was previously presented

by Sauty (1977). The data from this test are particularly interesting because
observations of breakthrough concentration were taken at three distances from
the injection borehole (25, 50 and 150 m), thus providing an opportunity to
examine this influence of distance on the shape of the breakthrough curve and
hence on the value of dispersivity. The field data are presented in Figure
6-1.

Breakthrough-Curve, Pulse-Width Method of Analysis. Applying the method
discussed in Section 5 to Figure 6-1, results for longitudinal dispersivity
are calculated and presented in Table 6-1. Note that for this analysis At is
defined by cm/ 2 instead of cm/e, and therefore Eq. (5-50) becomes

( = 3R At 2 (6-1)
641n2 t

m

It can be seen from the results presented in Table 6-1 that the value

obtained for a increases with distance from the injection borehole, with an
approximately constant Peclet number.

Type-Curve Matching. To use the method of analysis presented in Section

5, the field data are plotted on log-log paper, then aligned with either
Figure 5-10 or Figure 5-12 until the best fit is achieved. When type curve

matching is attempted using the breakthrough data from the 25 m and 50 m tests
(Figs. 6-2 through 6-5) good fits cannot be achieved with either set of type
curves. This indicates that some other phenomenon is influencing the shape of

the breakthrough curves (i.e., non-Fickian flow effects and/or borehole

flushing), thus reinforcing the difficulties encountered in interpreting data

from this type of test when run at short distances. Unfortunately, the

borehole flushing effect cannot be evaluated for this set of data because the
effective porosity and diameters of the boreholes are unknown.
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67

80

70

60

50

40

30

20

10

0

0 0

0 0

0

0

0

0

0

0

0

0
I 1200

I



TABLE 6-1

Values of longitudinal dispersivity, determined from the breakthrough-

curve, pulse-width method of analysis for a radially convergent flow
tracer test (Corbas, France) at three distances from the injection
borehole.

At (hr)

410

20*

6

t (hr)
in R

400

17

5

.07

.092

.095

a (in)

10.5

4.6

2.4

t
m
t
0

.96

.93

.93

nb (hr/mn 2

Q

.0059

.0023

.0027

* twice rise time.
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Figure 6-2. Breakthrough curve for R = 25 m at Corbas, France
matched with type curves for a constant.
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When the data from the 150 m test are aligned with the type curve for a
constant (Fig. 6-6), a good fit is achieved yielding .10 < a/R < .05. The
dispersivity is therefore 15m < a < 7.5 m. This is in good agreement with the
the result determined using the pulse-width method where a value of a = 10.5 m
was found for this case.

From the ty e curve match at t = t/t = 1.0, t = 410 hr, so using
tm = 410 hr = nR nb/Q, nb/Q = 0.0058 hr/m . This compares well with the
value of 0.0059 hr/m. found using the pulse-width method. If Q were known,
with b = 12m, n could be calculated.

It is interesting to note that when the same data for R = 150 m are
aligned with the type curve for a linearly increasing with distance (Fig.
6-7), the fit is not nearly as good as with Fig. 6-6. This may indicate that,
at a distance of 150 m in this aquifer, the longitudinal dispersivity has
reached a constant value, and hence the better fit to the set of type curves
where a is presumed to be constant.

Comparison with Previously Reported Results. In order to determine

values for dispersivity for the breakthrough curves, Sauty (1977) used a
two-layer scheme to fit his type curves to the breakthrough curves at R = 25 m
and 50 m (Fig. 6-8). This assumption was not supported by geologic evidence
of two distinct layers for this site. Using this analysis, Sauty found that
a = 11.0 m and 1.25 m for R = 25 m, and a = 25 m and 6.25 m for R = 50 m, with
the two values implying two layers. He was able to fit the data at R = 150 m

well to a single type curve, with the result that a = 12.5 m.

Our results are in reasonable agreement with Sauty's results for

R = 150 m (a = 10.5 m from the pulse-width method and 15 m < a < 7.5 m from
type curve matching). We do not attempt to make any inferences about a for

R = 25 m and 50 m type curves, because the data simply do not fit. Using a
simple pulse-width method of analysis, we found a to increase with distance --
i.e., a = 2.4, 4.6, and 10.5 m at 25, 50, and 150 m, respectively. This
result agrees with other field observations regarding the behavior of
dispersivity over distance.

Palo Alto Baylands, California -- Pulse Input in Radial Divergent Flow

This tracer test was conducted in a sand and ravel aquifer 1-2 m thick
in Palo Alto Baylands, California, using 8 2Br and H as tracers. Breakthrough
curves were measured at 7.6 m and 16.8 m from the injection well. An analysis

of the data to determine longitudinal dispersivity was previously presented by
Hoehn and Roberts (1982). Only the results from the tritium test are

re-evaluated here. The field data are shown in Figure 6-9.

Breakthrough-Curve, Pulse-Width Method of Analysis. When the method
described in Section 5 is applied to Figure 6-9, dispersivities may be
calculated, and the results are presented in Table 6-2. Note that as in the
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TABLE 6-2

Values of longitudinal dispersivity, determined from the breakthrough-

curve, pulse-width method of analysis for a radially divergent flow tracer
test (Palo Alto Baylands, California) at two distances from the

injection borehole.

R (i) At (hr) t (hr) a a (M)M R

7.6 15.0 12.4 .099 0.75

16.8 17.5 37.8 .014 0.24
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previous section, At is defined here by cm/2 instead of cm/e, thus Eq.

(5-33) becomes

3R At 2
a 3R (--) (6-2)

641n2 t
m

This yields the result that the calculated dispersivity is lower at a further
distance from the injection point, which is contrary to what would be expected

physically.

Type-Curve Matching. To use the methods presented in Section 5, the

field data are plotted on log-log paper and aligned with Figures 5-7 and 5-8

until the best fits are achieved. Figures 6-10 and 6-11 illustrate type-curve

matching of the 7.6 m breakthrough curves with Figures 5-7 and 5-8; Figures

6-12 and 6-13 illustrate type-curve matching of the 16.8 m breakthrough curve

with these same type curves. The results of the type curve matching are

presented in Table 6-3.

For the 7.6 m well, it can be seen that neither set of type curves fits

the data very well, which is not surprising, given the complications due to

non-Fickian flow which typically occur at short distances from the injection

point. The range of values given in Table 6-3 for a is based on the best

match with the rising limb and peak of the breakthrough curve.

For the 16.8 m well, the shape of the type curve is in much better

agreement with the shape of the breakthrough curve; of the two sets, the shape
of the type curve for a linearly increasing with distance provides the better
fit.

Comparing the values of a determined for the two wells, the analysis

using the type curves for a linearly increasing with distance yields values of

a determined for the 16.8 m well that are greater than those determined for
the 7.6 m well, whereas the analysis using the type curves for a constant
yields approximately the same range of a for the two observation radii. From
this information it could be concluded that the type curves for a linearly
increasing with distance fit the data better. That the dispersivity of the
aquifer has reached an asymptotic constant value by R = 16.8 m cannot be
clearly demonstrated.

Comparison with Previously Reported Results. The analysis previously
presented for this data (Figure 6-14 and Table 6-4) used a two-domain model to
fit the breakthrough curves (Hoehn and Roberts, 1982). While the values of
dispersivity from that analysis and the one presented here do not differ
drastically, the previous analysis depends on the use of a model which has no
physical meaning for the geologic site in question, i.e., the assumption of
two distinct geologic zones. Moreover, even using this assumption the

composite breakthrough curve composed of the two sub-curves does not fully
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TABLE 6-3

Values of longitudinal dispersivity, determined from type curve matching
with radially divergent flow tracer-test breakthrough curves from Palo
Alto Baylands, California.

R (m) -for a const a for a const. - for a lin. inc. a for a lin.inc.
R R

(Fig. 4.7) (in) (in) R(Fig. 4-8) (in)

.02 - .05

.007 - .02

.15 - .38

.12 - .34

.01 - .02

.007 - .02

.076 - .15

.12 - .34
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TABLE 6-4

Results reported by Hoehn and Roberts ( 1982) for divergent radial flow

tracer test conducted at Palo Alto Baylands, California.

MORE PERMEABLE DOMAIN LESS PERMEABLE DOMAIN

Peclet Number m Peclet Number )

7.6 100 .08 53 .14

16.8 220 .08 220 .08
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account for the tailing, both for R = 7.8 m and R = 16.8 m. On the other
hand, the type curve analysis presented here does not depend on artificial
assumptions about the physical situation, and provides results which appear to
be physically plausible -- i.e., that the dispersivity is increasing with
distance for an approximately constant Peclet number.

Savannah River Plant, Georgia -- Pulse Input in Doublet with Recirculation

This tracer test was carried out in fractured media (crystalline schist
and gneiss), with a pulse input of tritium injected over a 76 m thickness.
The breakthrough concentration was measured at a pumping well 538 m distant
from the injection well, and recirculation was employed. The data (Figure
6-15) were previously analyzed by Webster, Procter and Marine (1970) using a
Grove and Beetem (1971) type of analysis.

We re-evaluated the portion of the breakthrough curve before recircula-
tion using the analytical results presented in Section 5. From type-curve
matching with Figure 5-17 (Figure 6-16) a value of a/R = 0.08 was determined,

yielding a = 47 m. Choosing a match point of t = 1.0 and t = 235 d, and since
t = Qt/nn2 with Q = 7.9 gpm = 43 m3/d, a value of porosity of n = 0.00046
was calculated. While these results are smaller than the originally reported
results of a = 134 m and n = 0.0008 by factors of approximately 3 and 2,
respectively, we have more confidence in the results based on the Gelhar and
Collins solution, because the methodology completely accounts for non-uniform
flow effects and is not complicated by recirculation. When the type curve for
a/R = 0.08 is replotted against the original data (Figure 6-17, dashed line),
it can be seen that there is a much better fit to the rising portion of the
breakthrough curve than the solution presented by Webster, Procter and
Marine. Therefore, we believe that the value of a = 47 m and n = 0.00046
better characterize the longitudinal dispersivity and porosity at this site.

Hanford, Washington -- Pulse Input in Doublet without Recirculation

This tracer test consisted of a pulse input of 131I in a doublet, where
the recharge and pumping wells were 17.1 m (56 ft) apart. The breakthrough
curve data and analysis using the solution based on Gelhar and Collins
(Section 5) are discussed in detail in Gelhar, 1982. The match of the data to
the type curves similar to Figure 5-17 but modified for unequal injection and
withdrawal flow rates is reproduced here as Figure 6-18. The results of the
type curve match yield a/L = 0.035 and therefore a = 0.60 m (1.96 ft). This

type curve match also yields t = 1.18 hr for t = Qt/nbL 2 = 1, and since
Q = 3.42 gal/min and L = 56 ft, an effective thickness of nb = .00037 m (0.105
ft) is calculated. These data and calculations illustrate the usefulness of
conducting the doublet test -- note that the peak concentration is well
defined and that dispersivity may easily be determined from the shape of the
breakthrough curve.
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line) and type curve from Gelhar, 1982 (dashed line).
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Tucson, Arizona -- Step Input in a Doublet without Recirculation

This tracer test was carried out in unconsolidated sand, silt and gravel

with continuous input of chloride into a doublet, with the recharge and

discharge wells separated by a distance of 79.2 m. Simultaneous injection and
withdrawal were carried out for 14 days, followed by a 9-day period of pumping

after injection was stopped. A total of 3.0 x 106 gallons of water were
injected, yielding an average injection rate of 811 m 3/d. The chloride

breakthrough data at the pumping well are reproduced as Figure 6-19, and have

previously been evaluated to determine longitudinal dispersivity by Robson
(1974), using a Grove and Beetem (1971) type of analysis.

When these data are plotted on log-log paper and aligned with the type
curves presented in Figure 5-18, an estimate of a/L = 0.015 is obtained,

yielding a = 1.2 m (see Figure 6-20). From matching the abscissas, the

effective thickness is found to be nb = .71 m. (Porosity cannot be determined

since the actual thickness is not known.)

Robson previously reported a value of longitudinal dispersivity of

a = 15.2 m., an order of magnitude greater than the value calculated here.
This was derived using a Grove and Beetem type of analysis to find the best

fit to the data with porosity and dispersivity as the parameters, assuming an
aquifer thickness of 4.3 m (14 ft). When the two solutions are plotted

against the original breakthrough curve (see Figure 6-19), it can be seen that

the solution based on Gelhar and Collins provides a better fit to the data;

therefore, we have more confidence in this result.

Discussion and Recommendations

Based on the analyses presented in this section, we can make several

observations on the usefulness of tracer tests in determining longitudinal

dispersivity. In comparing doublet tests to radial tests, it appears that we
obtain better fits of the experimental data to the type curves when the

doublet test (with pulse input) is employed. The doublet with a pulse input

is much more sensitive to dispersion and is therefore easier to interpret to
obtain longitudinal dispersivity than is the doublet test with a step input.

Although the fits obtained with the doublet/pulse test seem to be better

than those for radial flow tests, sometimes radial flow tests may be more
convenient to run due to existing well configurations. It should be noted

that the fits for the radial tests appear to be best for large distances
between injection and observation wells -- i.e., after the longitudinal
dispersivity has reached an asymptotic constant value and a Fickian type of

solute transport equation is valid. In comparing radial flow test configur-
ations, there are fewer complications in interpreting results from a divergent

radial test with a pulse input than with the convergent pulse test, because

the input mass of tracer is forced out of the injection well much more

quickly. In the convergent test, elongated tails on breakthrough curves due

to the "borehole flushing effect" make precise interpretation difficult.
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In all cases our re-analysis of data yielded either lower dispersivities
than were previously reported, or the same values with improved confidence in
the results (see Figure 6-21). In cases where the values were the same, we
were able to fit the data to breakthrough curves without having to make any
assumptions about the nature of the geology or the flow regime. Our results
point to improved analysis by using solutions to the advection-dispersion
equation that account for non-uniform flow effects, non-constant
dispersivities and borehole flushing. In no cases did we find any larger
dispersivities as a result of our evalution. Although we could not
re-evaluate any additional data on Figure 1-2 due to lack of detailed
information, in the many cases where wrong solutions or assumptions have been
used to evaluate data, this will tend to overestimate the dispersivities.
Based on this observation, the "low quality data" indicating large
dispersivities at large scales may be in error by as much as an order of
magnitude, thereby erroneously indicating very large amounts of dilution or
mixing when in fact this may not be the case for the scales in question.

In summary, we believe that tracer tests can be a useful tool in
determining longitudinal dispersivity. Our analyses indicate that the doublet
test with a pulse input and the radial divergent tests produce the most
reliable results. The two-well test with a step input is not recommended for
determining longitudinal dispersivity due to its insensitivity to dispersion.
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Appendix A

Extension of Gelhar and Collins (1971) To Treat Spatially Variable a

If the dispersivity a(s) is spatially dependent then eq. (5) of Gelhar and

Collins (1971) becomes

ac + u- = a-C + da dc + 2
as as aS2 ds ds S52 uas as

The italicized term is the additional effect of variable a. The method of

approximation is essentially the same but a is scaled as

a(s) = aO0 f(s) = ELOf(s) E = O/L0

where ao is some constant reference dispersivity (say the maximum value) . Then

following steps identical to Gelhar and Collins (1971), their eq. (15) becomes

ac f D a32C f 2D aU af aC-- = - + E - + -- - - (A2)

and for E1 /2<<1 the second term on the right hand side is negligible. As a

result eq. (22) is replaced by

(O f(s')u(s') + Dm/ao
J u' s)
so

(A3)

which for the radial flow case with Dm = 0 is equivalent to (5-19).
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C APPENDIX B
C------------------------------------------------------------------------
C CONRAD3.FOR
C
C bw
C
C Claire Welts
C
C This is a Program to generate type curves for converzcnt radial
C flow/pulse input tracer tests, accounting for the borehole
C flushing effect. The analytical solution is derived using an
C exponentially decreasing input rather than a pulse inrut,
C and is based on the general solution of Gclhar and Collins (1971),
C assuming that longitudinal dispersivitu is constant in space,
C Because the resulting solution is a convolution integral,
C numerical integration must be emploued to generate the
C type curves. Simpson's Rule is used to do the numerical integration
C in this program.
C---------------------------------------------------------------------------
C
C DEFINITIONS OF VARIABLES
C
C ALPHA = longitudinal dispersivity EL)
C
C R = distance between injection borehole and Pumping well ELI
C
C C-HAT = breakthrough concentration at the Pumping well
C normalized by the input concentration
C
C Input conc = M/[2*rho*pi*n*b*R*scrt(4*pi*alpha*R/3)3
C
C T-HAT = dimensionless time = Q*t/(Pi*(r**2)*n*b)
C
C TAUHAT = dummv time variable for numerical integration
C
C PECINV = ALPHA/R = inverse Peclet number (inverse dimensionless
C distance)
C
C THETA = R*n/(Pi*d)
C
C d = diameter of the borehole
C
C NCURVS number of twpe curves desired (one for everv value of
C ALPHA/R specified)
C
C DTAUHAT = size of subinterval for numerical integration
C
C M = number of subintervals for numerical integration
C
C-------------------------------------------------------------------------

DOUBLE PRECISION C-HAT(102P10), PECINV(10), Ry T-HAT(102),
1 DT-HAT(10), OUTPUT(10y102), AA, BB9 CC, DD, THETA(10)v
2 TAUHAT, DTAUHAT(10), C-HAT1, C-HAT2, C-HAT3, SUMEVN,
3 SUMODDr MINT(10), MAXT(10)
INTEGER I, J, K, KK, Ly Mv MM, NCURVS, NCOLS
OPEN (UNIT=10, NAME = 'CONRAD3.IN', STATUS = 'OLD')
OPEN (UNIT=11, NAME = 'CONRAD3.OUT', STATUS 'NEW',

1 CARRIAGECONTROL = 'LIST')
5 READ (10,*) NCURVS,(DT-HAT(I) PECINV(I),THETA(I),

1 MINT(I), MAXT(I)PDTAUHAT(I),I=19NCURVS)
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7 WRITE (6,*) NCURVSI(DT-HAT(I),PECINV(I) THETA(I),
1 MINT(I)y MAXT(I),DTAUHAT(I),I=1,NCURVS)
IF (DT-HAT(1) .EQ. 0.0) GO TO 65
CONST = 16./3.
NCOLS = NCURVS + 1

C -------------------------
C Initialize output arraw.
C -------------------------

DO 10 J = 1,101
DO 15 I = 1,10
OUTPUT(IJ) = 0.0

15 CONTINUE
10 CONTINUE

C -------------------------------------------------------
C Loop on J for each Pair of values of THETA and ALPHA/R.
C -------------------------------------------------------

DO 20 J = 1P NCURVS
T-HAT(1) = MINT(J)

C ----------------------------------
C Loop on K for each value of T-HAT.
C ----------------------------------

KK = INT(MAXT(J)/DT-HAT(J))
DO 30 K = 1, KK

C -------------------------------
C Calculate C-HAT at TAUHAT = 0.
C -------------------------------

TAUHAT = 0.00000001
CALL C.HATCALC (TAUHATT-HAT(K),THETA(J),CONST,

1 PECINV(J), C-HAT1)
C ------------------------------------
C Calculate C-HAT at TAUHAT = T-HAT(K)
C ------------------------------------

TAUHAT = T-HAT(K)
CALL C-HATCALC (TAUHATT-HAT(K),THETA(J),CONST,

1 PECIHV(J), C-HAT2)
C ------------------------------------------------
C Calculate CIHAT for increments of TAUHAT.
C ------------------------------------------------

SUMEVN = 0.
SUMODD = 0.
MM = INT(T.HAT(K)/DTAUHAT(J)) - 1
DO 25 I = 1,MM

TAUHAT = FLOAT(I)*DTAUHAT(J)
CALL C.HATCALC (TAUHATT-HAT(K),THETA(J),CONST,

1 PECINV(J),C-HAT3)
IF (MOD(FLOAT(I), 2.) .EQ. 0, ) THEN

SUMEVN = SUMEVN + C-HAT3
ELSE

SUMODD = SUMODD + C.HAT3
END IF

25 CONTINUE
C-HAT(KJ) = DTAUHAT(J)*

1 (C-HAT1+C-HAT2+(2.*SUMEVN)+(4.*SUMODD))/3
WRITE (6,28) T-HAT(K), C-HAT(KJ)

28 FORMAT(5Xr 'T-HAT = ', D9.3, 2XP 'C-HAT = ', D9.3)
IF (J .EQ. 1) THEN

OUTPUT(1,K) = T-HAT(K)
OUTPUT(2,K) = C-HAT(KPJ)

ELSE
OUTPUT(J+1K) = C-HAT(KJ)
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END IF
T-HAT(K+1) = T-HAT(K) + DT-HAT(J)

30 CONTINUE
20 CONTINUE

WRITE (11,40) NCOLS
40 FORMAT ('CONVERGENT RADIAL FLOW WITH PULSE INPUT AND BOREHOLE'

1 ' FLUSHINGP ALPHA/R = CONST'q/pI2y/,'T-HAT')
WRITE (11,50) (DT-HAT(J),PECINV(J),THETA(J), DTAUHAT(J),
1 J = 1vNCURVS)

50 FORMAT ('DT-HAT = ', F6.3, 2X, 'ALPHA/R = ', F6.3, 2X,
1 'THETA = 'YF7.4p2XY'DTAUHAT = 'YF7,4)
WRITE (11,60) ((OUTPUT(NM), N = 1,7), M = 1,KK)

60 FORMAT(7(D9.3,X))
GO TO 5

65 CLOSE (UNIT = 10)
CLOSE (UNIT = 11)
STOP
END

SUBROUTINE C-HATCALC(TAUHAT, T-HAT, THETA, CONST, PECINV, C-HAT)
DOUBLE PRECISION AAY BBY CCv DD, THETA, CONST, T-HAT,
1 TAUHAT, C-HAT, PECINV

AA = 1.- TAUHAT
BB = DSQRT(DABS(AA))
CC = 1./(1.-(AA*BB))
DD = THETA*(T-HAT-TAUHAT)
C-HAT = DSQRT(CC)*THETA*
1 DEXP( -((AA**2)*CC/(CONST*PECINV)) - DD)
RETURN
END
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CONVERGENT RADIAL FLOW WITH PULSE INPUT AND BOREHOLE FLUSHING
ALFHA/R =

TL H A T1
T-HAT

0. 100D+V-o

0. 2000+00
0.300D+00
0.400D+00
0.50011+00
0,.550r,+00
10. 0600fD+00
0.650D+00

.700 1'+00
04.7500+00
0. 80 C' rD + 0 0
0.350D+00
0 + 900+00
0., 950D+00

.1000+01
0. 110+01

* .12011+01
0 . 30D + 0 0
0.140D+01
0+.50D+01
0.1600+01
0.170D+01

0. 1900+01
02 01 00+01

0 . 250D+01
3 011+ 01

kJ.35j0L+01

0. 400 11+01
C .5000+01
0.6001+01
0. 700 f+ 01
0 . 800AT+01
0.900D+01

i.100t+02

0. 5 DTAUHAT = 0.0001

THETA THETA = THETA = THETA =
0+5 1.0 2.0 10E.0

0.469D-11 0.9370-11 0.18711-10 0.69111-09
0.293D-05 0.582D-05 0.115D-04 0.245D-03
0.291D-03 0.575D-03 0.112D-02 0.144D-01
0.303D-02 0.593D-02 0.1140-01 0.967D-01
0.12411-01 0.240D-01 0.451D-01 0.271D+00
0.207D--01 0.398D-01 0.739D-01 0.381D+00
0.315D-01 0.603D-01 0.11111+00 0.488E,+00
0.449-0l 0.853D-01 0.155D+00 0.5990+00
0.6061-01 0.1140+00 0.2051+00 0,7010+00
0.782D--0i 0.147D+00 0,259D+00 0.7910+00
0.974D-01 0.181D+00 0.31611+00 0.8641+00
0*118D+00 0.217D+00 0.373D+00 0.920D+00
0.138D1+00 0.25311+00 0.42911+00 0.95911+00
0.159D+00 0.289D+00 0.482D+00 0.980D+00
0.1801+00 0.3240+00 0.532D100 0.10011+01
0.219D+00 0.386D+00 0.613D+00 0.958D+00
0.252+00 0.43511+00 0.664D+00 0.848D+00
0.277D+00 0. 466 D+00 0.6821D+00 0.708D+00
0.2941'+00 0.48111+00 0.67111+00 0.56711+00
04. 3040+00 0.48211+00 0.638D+00 0.441D+00
0.30711+00 0.4720+00 0.590D+00 0.3381+00
0.3061+00 0.454D+00 0.535D+00 0.256D+00
0. 3021+00 0.43211+00 0+47711+00 0.194D+100
0.2950+00 0.4060+00 0.4200+00 0.147D+00
0.28r71+00 0.37911+00 0.36711+00 0.11111+00
0.236D+00 0.253D+00 0.169D+00 0.307D-01
0. 188+00 0.1600+00 0.728D-01 0. 10211-01
0. 1430+00 0.995D-01 0.306D-01 0.398D-02
0.1161:1+00 0.6140-01 0.128--Ol 0,174D-02
0.705D-01 0.231D-01 0.236D-02 0.424D-03
0.429D-01 0.8641-02 0.4951-03 0.130D-03
0.260D-01 0.322D-02 0.126D-03 0.463D-04
0.1580-01 0.120D-02 0.3951-04 0.184D-04
0.9590-02 0.450D-03 0.147D-04 0.794D-05
0 .- 582It-02 0.169D-03 0.6211-05 0.370D-05
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