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THE ANALYSIS OF RIVER BASINS AND CHANNEL NETWORKS
USING DIGITAL TERRAIN DATA

ABSTRACT

This work examines patterns of regularity and scale in landform and channel
networks. Digital elevation model data sets from throughout the United States are
used as a data source.

First we consider the two-dimensional planform properties of channel
networks. We find that networks as a whole may be regarded as space filling
fractals, ie.., with fractal dimension 2. The scaling may be described by Horton's
laws and provides a link between Horton length and bifurcation ratios.

Second we focus on elevation where the mean slope of rivers is characterized
by a power law scaling with area. Investigations have recently used this to suggest
that channel slopes are self-similar with magnitude or area as a scaling index. Our
data indicates otherwise; in particular the variance of channel slope is larger than
that predicted by simple self-similarity. The coefficient of variation of link slopes
increases with area contributing to the link. This suggests multi-scaling. The
scaling exponent for the standard deviation is approximately half the corresponding
exponent in the relationship of the slope mean to magnitude or area. A model for
channel slopes based on a point process of elevation drops along the channel is
suggested. This model reproduces the observed multi-scaling properties when the

density of elevation increments is related to area (or magnitude) as A-0.

This scaling cannot hold in the limit of small area and must break at some
point. We suggest that this break defines the lower bound scale for which channels
exist and can therefore be used to determine the drainage density, the basic
horizontal length scale associated with the dissection of the landscape by the
channel network. This break in scale can also be detected as a break in the constant
drop property, namely the empirical fact that the elevation drop along Strahler
streams is on average constant. That the break in scale gives drainage density is
justified using a stability analysis of landform development processes and empirical
comparison of drainage densities from many DEM data sets. This work provides a
rational way to extract channel networks with physically justifiable drainage density
from digital elevation models.
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Chapter 1

INTRODUCTION

1.1 Scope

Scientific and engineering work should always be based on the best available

data that can be utilized effectively. This is also the case in hydrology where an

important component of data is the channel network. The channel network defines

the paths on the land surface along which water flows, and is a common component

of flood routing or more general runoff routing models. Traditionally channel

networks have been obtained from topographic maps. This requires that high

resolution maps be available and for large basins is a tedious and time consuming

task. Also channel networks on maps are scale-dependent and somewhat dependent

on subjective judgment by the map maker. More recently the advent of computers

has led to the development of digital elevation models (DEM's) as an alternative

source of topographic information. These are gaining increasing use in the earth

sciences, including hydrology, but especially in Geographic Information Systems. It

is important that hydrologists keep abreast of the development of geographic

information systems to ensure the availability of hydrologically relevant data and

information. It is our opinion that DEM's are presently underutilized in hydrology.

One objective of this work is to further develop the use of DEM's for the analysis of

channel networks and more generally hydrologic aspects of the whole landscape

surface.

Another more scientific objective is research into the basic scales and scaling

properties in river networks and the landscape. The composition, regularity,

symmetries and scaling in natural river basins has interested scientists for a long

time. Attempts to quantify and understand these have been motivated by the idea

that landscapes are shaped and sculpted by rivers and the flow of water in them, so

the shape of the landscape may hold information about runoff and river flow. We
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attempt- to answer the following questions. Are there fundamental length scales

perhaps related to the processes or mechanisms involved in landform development?

Are there landform properties that are scaling, i.e., invariant under transformations

of scale, and if so over what range of scales does the scaling hold? The notions of

drainage density (Horton, 1945), texture (Smith, 1950), and representative

elementary area (Wood, et al., 1988) are measures of fundamental length scales. On

the other hand, Horton's laws are really geometric scaling laws, implying that

channel networks are self-similar over a range of channel orders or scales. Does this

scaling have a physical lower limit at the drainage density, or is the lower limit just

a matter of map resolution?

Through the use of digital elevation data we clarify and extend some of the

older notions of scaling and symmetry of river networks, introducing modern

concepts such as fractal dimension and multi-scaling. We also relate some of the

scaling found to sediment transport and landscape forming processes, showing how

the fundamental or basic scale associated with river networks, drainage density, can

be interpreted as a scale where the dominating sediment transport process changes.

Stable diffusive sediment transport processes dominate at the small scale leading to

smooth hillslopes, while at large scale the instability caused by the convergence of

surface flow and sediment transport results in channelization. This transition is

detected in the data as a break in scaling. Below a certain scale the traditional

scaling laws that characterize river networks no longer hold. The use of digital

elevation data to detect this break in scaling lets us extract channel networks with a

physically justifiable drainage density that is related to the basic scales present in

the landscape and independent of subjective judgment by the map maker.
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1.2 Outline

This work is divided into five main chapters, followed by a concluding

chapter that summarizes the important results and an appendix giving details of the

computer codes used.

Chapter 2 is a literature review and analysis of previous work. After

reviewing the ideas that have motivated this study, we describe the terminology and

ordering systems used. We then define drainage density, which is interpreted as the

basic length scale associated with the dissection of the landscape by the river

network. The random topology model is then described and scaling in river

networks reviewed. The notion of fractal dimension used to characterize scaling is

then presented, together with techniques to measure fractal dimension. We

conclude the review with discussion of channel network and landscape evolution

processes.

Chapter 3 goes into the technical details of the computer procedures used for

processing DEM's and extracting channel networks. It gives the data structures and

conventions used. It also gives the sources of digital elevation data reviewing the

procedures used in preparation of the data and discussing data accuracy. Tables at

the end of Chapter 3 list the data sets used in this study.

Chapter 4 focuses on the planar properties of river networks. We show that

in planform river networks can be regarded as space filling fractals and that this

provides a relationship between the scaling of stream lengths and numbers given by

Horton's Laws.

Chapter 5 discusses the scaling of channel slope with area as a scaling index.

Here DEM data shows that link slopes are not self-similar, but are characterized by

a scaling that has coefficient of variation increasing with area. This scaling is such

that the density of independent elevation increments has a negative power law

scaling with area.
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Chapter 6 focuses on the basic scale or drainage density. It first shows how

the slope scaling of Chapter 5 breaks at a certain basic scale and then provides an

interpretation of this in terms of sediment transport processes and a stability

criterion. The fact that slope scaling is practically equivalent to a constant stream

drop property then allows us to use the drop property as an alternative test for the

break in scaling and measure of drainage density. A third measure of drainage

density is obtained from localized DEM procedures and then the three measures of

drainage density are compared for 21 DEM data sets.
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Chapter 2

LITERATURE REVIEW

2.1 Motivation

There has been increasing interest during the last decade in the

geomorphology of river networks and its relation to hydrology. The effort has been

stimulated by the work of Rodriguez-Iturbe and Valdes (1979) relating the

instantaneous unit hydrograph to network morphology, and further work on this

theme, Gupta et al. (1980), Rodriguez-Iturbe, et al. (1982), Troutman and Karlinger

(1984; 1985). As a result investigators like Mesa (1986), Gupta and Mesa (1988),

Abrahams (1984) have re-examined the structure of river networks and models

describing that structure.

New sources of data, namely digital elevation models and powerful computers

allow us to quickly test more alternatives and examine larger data sets than has

ever been possible. O'Callaghan and Mark (1984) and Band (1986) have pioneered

the extraction of channel networks from digital elevation models. The importance

of scale issues and hydrologic similarity has received considerable interest recently

[Conference proceedings, Gupta et al., (eds.), (1986); Rodriguez-Iturbe and Gupta

(eds.) (1983)] , with a realization that a basin scale approach is needed to understand

the structure and similarity of river basins. It is hoped that this will ultimately lead

to hydrologic predictions from ungauged basins.

The flow of water over long time scales has shaped river basins. Also the

shape of river basins is a controlling factor in the generation of runoff and

hydrologic response. This reciprocity is the fundamental reason for efforts to link

hydrology and geomorphology and needs to be better understood. Through the

analysis of a lot of digital terrain data, this work takes steps towards this

understanding. The focus is on the scaling properties of river networks and

landscapes, as well as the fundamental scales at which certain processes dominate or
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where there may be changes from control by one process to another.

2.2 Terminologv and Ordering Systems

The terminology used is basically that of Horton (1945), Shreve (1966), and in

common use in hydrogeomorphology. A river network is idealized as a trivalent

planted tree, the root of which is the outlet or point furthest downstream. Sources

are points furthest upstream, and a point at which two upstream channels join to

form one downstream channel is called a junction or node. Exterior links are the

segments of channel between a source and the first junction downstream and

interior links are the segments of channel between two successive nodes or a node

and the outlet. Each link has certain properties: length along the stream;

geometric length, the distance between end points; height, the elevation difference

between upstream and downstream nodes; average slope, height divided by length;

contributing area, the total area draining through the link measured at the

downstream end and local area, the area draining directly into a link, i.e., not

through any other links.

Ordering systems are used to group or categorize links or segments of

channels. Ordering systems can work through the network from the root, or outlet,

upstream, or from each source, downstream or inwards. The upstream ordering

schemes have been unsuccessful so will not be discussed here.

A major contribution of Horton (1932, 1945) was the introduction of a

downstream ordering system. Strahler (1952,1957) revised Horton's scheme to avoid

some ambiguities. The revised Horton/Strahler ordering system is as follows. All

exterior links have order 1. When 2 upstream links of the same order join the

downstream link has order increased by 1. When 2 upstream links of different order

join the downstream link takes the higher order of the two incoming upstream links.

Strahler streams are segments of channel consisting of links of the same order.
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Another ordering system is the concept of link magnitude due to Shreve

(1966). Here source streams or links have magnitude 1. At a bifurcation the

downstream link takes magnitude the sum of the two incoming magnitudes. Thus

the magnitude of each link represents the number of sources in the network draining

into that link. Figure 2.1 shows the Horton/Strahler ordering system and concept of

link magnitude.

Horton/Strahler ordering is usually used in characterizing a river network

according to the Horton ratios.

Rb (2.1)
w

L
RI_= L w (2.2)

w-l

A
Ra A w (2.3)

w-l

S -
R S i7 (2.4)

w

where Nw is the number of streams of order w, Lw is the mean length of streams of

order w, A is the mean area contributing to streams of order w, and Sw is the

mean slope of streams of order w. Rb, R , Ra, and Rs are bifurcation, length, area,

and slope ratios, respectively. Horton discovered that these ratios were

approximately constant through semi-log plots of Nw, Lw, Aw, and Sw against

order. The ratio or "Horton number" is obtained from the lope of the straight line

fit to such plots, the procedure is called a "Horton analysis" (see Figure 2.2). Since

the ratios are approximately constant, the above geometric descriptors are called
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"Horton's laws." The area law above was not explicitly stated by Horton, and is

due to Schumm (1956). Smart (1978, p. 131) notes that the Horton analysis has

proved unsuccessful in the two major applications that Horton envisaged for it,

namely the characterization of basins in different environments and the estimation

of complete network properties by extrapolation of measurements from small-scale

maps. Smart (1981) found this latter procedure to be highly inaccurate and badly

biased. As far as characterizing basins in different environments the following are

some of the studies that have found no significant differences in Horton ratios for

different regions (Strahler 1952, 1957; Chorley, 1957; Woodruff, 1964; Eyles, 1968;

Shreve, 1969). Abrahams (1972) found a significant correlation of Rb with relief.

These deviations are more significant in terms of the link based analysis and random

model to be discussed later.

Leopold and Miller (1956) extended Horton's ideas by showing that the log of

many hydraulic variables are approximate linear functions of basin order. This

behavior is due to the fact that most quantities depend strongly on the size of the

drainage basin. A common measure of size or scale is basin area and the dependence

of a general variable on area is often expressed, by a power law

X x Ab (2.5)

with b a constant.

This implies

log X i log A (2.6)

and since order is proportional to log A (area law) the linear relationships with

order follow.
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Smart (1978) concludes that after 30 years of use the benefits from Horton

analysis have been few and limited. Order just provides a simple objective (though

not always consistent) measure of size or scale. It is not clear that order has any

advantage for such purposes over other size related properties such as area and

magnitude. Smart (1978) suggests, following Shreve (1966) that the link rather than

Strahler stream segment should be regarded as the basic unit of network

composition.

2.3 Drainage Density, Dissection and Hillslope Scale

The previous section presented the Horton/Strahler ordering system and

concept of link magnitude as measures of size or scale of the network. These are

topological, dimensionless, measures of size. They need to be related to the physical

size, area, of the basin. This relationship will be through the drainage density which

is a measure of the degree to which the basin is dissected by channels. It is also

closely related to stream and link frequency (to be defined later), mean link length,

and mean hillslope length. These are measures of a fundamental length scale

associated with the dissection of the landscape by the river network. Horton (1932,

1945) defines the drainage density

L
Dd = A(2.7)

where LT is the total length of streams and A is area. Horton suggested that the

average length of overland flow or hillslope length could be approximated by 1/2 Dd.

Smith (1950) measured the fundamental scale of topography in terms of a texture

ratio, the number of contour crenulations divided by contour length. He essentially

showed that texture was correlated with Dd so the notion of a well or poorly drained
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basin corresponds to the notion of fine or coarse texture.

Horton defines stream frequency as

F = N (2.8)

where N is the number of Strahler streams. Link frequency F is similarly defined

using the number of links. Melton (1958) showed that Fs was strongly correlated

with drainage density. Smart (1978) states that mean link length and link frequency

are also closely related to drainage density. If the mean area draining to a link is

rd2 (suggested by Shreve, 1967), where I is mean link length, the relationship is

Dd = F= 1 (2.9)

We see that drainage density, stream or link frequency, mean link or

hillslope length and texture are all essentially measures of the same thing, the

fundamental horizontal length scale associated with how the channel network

dissects the landscape. The determination of this scale is generally dependent on

the resolution of the map used. Historically workers have called for the highest

resolution maps and/or field work to measure these quantities.

Mark (1983) discusses the differences between drainage networks obtained

from maps and field surveys, and the merits of various procedures such as use of

contour crenulations to "extend" the network. He concludes that first order basins

defined from contour crenulations on 1:24,000 maps do exist as topographic features

in the field. However, the form has often been simplified by cartographic

generalization. Most first order basins defined on the map contain more than one

fluvial channel in the field. Accordingly the exterior links drawn by contour

crenulations do not represent unbranched channels. The question arises in the
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context of scaling and fractals (Mandelbrot, 1983) as to whether this notion of scale

is well founded or whether the river networks dissect the landscape infinitely,

requiring characterization as a scaling phenomena. This is one of the main

questions addressed by this work and was recognized early by Davis (1899, p. 495),

who wrote

"Although the river and hillside waste do not resemble each other at

first sight, they are only the extreme members of a continuous series and

when this generalization is appreciated one may fairly extend the 'river' all

over its basin and up to its very divide. Ordinarily treated the river is like

the veins of a leaf; broadly viewed it is the entire leaf."

2.4 The Random Topology Model

The notions of topologically distinct and topologically random channel

networks due to Shreve (1966) have been fundamental to the assessment of network

composition laws, such as Horton's laws. Topologically distinct networks as defined

by Shreve (1966) are networks whose schematic map projections cannot be

continuously deformed and rotated in the plane so as to become congruent. Shreve

(1966) quantified the notion of "randomly merging channels" by proposing that all

topologically distinct networks with a given number of links (i.e., fixed magnitude

or scale) are equally likely. This is referred to as the first hypothesis of the random

model. Using this idea Shreve (1966) showed that the most likely set of stream

numbers were those that obeyed Horton's bifurcation law and furthermore that

given a number of first order streams and basin order, the variability of number of

streams of each order was topologically constrained to a narrow window around the

straight line representing Horton's law. Shreve (1967) generalizes this result to

infinite networks and shows that if mean link lengths, and areas draining to each

link, are constant then Horton's length and area laws also follow. In infinite
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networks Shreve (1967) obtains Rb = 4, RI = 2, Ra = 4. Smart (1968) first

articulates the second hypothesis of the random model, namely that interior and

exterior link lengths and the associated areas are independent random variables.

The results of Shreve (1967) for Rb, R, and Ra given above become expected values

under this model. Shreve (1969) gives details of these results.

The fact that Horton ratios are approximately constant and that these

constant values are reproduced by the random model is the main basis for Smart's

(1978) conclusion above regarding the lack of utility of Horton analyses. The Horton

ratios Rb, R, and Ra may be seen as the effect of randomly merging channels and

do not characterize different environments or networks. The same cannot be said

about the slope ratio Rs since the random model says nothing about slope or

elevation effects.

Shreve (1967) noted the connection between random networks and random

walks. This connection is made concrete in terms of his representation of network

topology symbolically as a string of Es and Is. The EI string is constructed as

follows:

Start at the outlet and traverse the network always turning left at

bifurcations and reversing direction at sources, until the outlet is again

reached. During the traverse record an I, the first time a given interior link

is traversed and an E the first time a given exterior link is traversed. Each

link will be traversed twice but recorded only the first time.

A random network is equivalent to a random walk in which I's count +1 and E's

count -l and occur with equal probability. Gupta and Waymire (1983) point out

that the equal probability of bifurcation and termination does not follow from the

equal likelihood of topologically distinct random networks assumption and

emphasize that the equal probability of termination and bifurcation should be added

to the first random postulate. The IE string representation of network topology
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coded as a binary string of O's and l's is also useful for computer storage of network

topology information.

Random networks are also analogous to branching processes, which have

been widely studied. Troutman and Karlinger (1984), Gupta et al. (1986), Mesa

(1986), and Gupta and Mesa (1988) have used this fact to derive statistical

properties of hydrologically important geomorphological functions, in particular the

width function, for topologically random networks. The width function L(x) is

defined as the number of links, or points on the channel network at a distance x,

measured along the channels, from the outlet, and was defined by Kirkby (1976). It

is important because under the assumption of constant flow velocity in channels, it

represents a time area diagram or unit response function for the channel network.

The width function can be generalized by letting x be a more general measure of

distance from the outlet. One such generalization is the link concentration function

t(h) defined by Gupta, et al. (1986). Here the generalized distance is height or

elevation above the outlet, denoted h.

The random model was very successful at "explaining" Horton's laws.

However, using link based analyses Abrahams (1984) records many significant

deviations from topologic randomness. In particular the random model predicts

that cis and trans links occur with equal frequency. A cis link is where the

upstream lower magnitude link and downstream lower magnitude link both enter on

the same side of the link in consideration. A trans link is where they enter from

opposite sides. James and Krumbein (1969) reported significantly more trans links

than cis links and an abundance of short trans links in real basins.

These deviations may be a useful way of characterizing the difference

between networks in different environments. Alternatively, they may be due to the

geometric space filling constraints imposed when basins must be packed together on

a surface (Goodchild, 1988) in which case they will be present in all networks,
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irrelevant of the environment.

2.5 Scaling in River Networks

An important feature of the link based analysis and the topologically random

network model is that the link provides a fundamental scale. Link length is a

fundamental length scale related to drainage density by Equation (2.9). A basic

length scale may not be desirable if it is dependent on the scale of map used, and is

inconsistent with the notion of Davis (1899) of rivers extending over the whole land

surface.

On the other hand, Horton's laws are scaling laws that relate properties at

small scale (low stream order) to properties at large scale (high stream order).

They characterize scaling at scales larger than the basic scale and may apply down

to infinitesimally small scale if the notion of a lower bound basic scale is rejected.

When analyzing scaling, the notion of self-similarity (defined formally in Section

2.6) is important. The use of Horton's laws as exact descriptors of scaling is not

consistent with self-similarity. A network constructed to have Horton's bifurcation

law hold exactly cannot be self-similar and have low order streams flow directly

into streams more than one order higher. To see this consider the third order

network shown in Figure 2.3 with bifurcation ratio 4. There must be 4 second order

and 16 first order streams. To maintain self-similarity and the same bifurcation

ratio, 4 first-order streams must flow into each second order stream. There are no

first-order streams remaining to flow directly into the third-order stream. This

property is not borne out in practice.

Furthermore it seems reasonable to assume at least as a first approximation

that the area draining directly into each link is approximately constant. This

constant is the average area draining first-order streams A, (since they are single
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Figure 2.3. Structurally Hortonian network with bifurcation ratio 4.
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links). Now the number of links in any network is 2n-l so the total area draining a

basin order w is

AW = A,(2n -1) (2.10)

Now Horton's bifurcation law [Equation (2.1)] implies

n =RCI (2.11)b

so we get

A = A(2RWA - 1) (2.12)

from which

1

Ra = (2R7 - 1) (2.13)

Thus for Rb constant, Ra is dependent on order, i.e., not constant. The bifurcation

and area laws together with constant average area per link are mutually

inconsistent.

This inconsistency is also manifested if instead of assuming the area draining

directly into each link constant, we assume the area draining directly into each link

is proportional to link length (with mean link length constant, these amount to the

same thing). The average length of streams of order w is LI Rl so the average area

draining directly into a stream of order w is A1 R . Hack (1957) sums these areas

to get
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A =AR W [(RI/Rb)W -l]/[Rt/Rb -] (2.14)

which implies

Ra = Rb{[(Rj/Rb)W - 1]/[RI/Rb - 1}/ (2.15)

Again for Re and Rb constant, Ra is not constant. Perhaps these are the reasons

why Horton never stated an area law (leaving it to Schumm, 1956). Horton (1945)

believed in the constancy of the length of overland flow (1/2 Dd) which amounts to

area draining directly into a stream being proportional to length and leads to the

inconsistency of the area law with other laws.

This discrepancy is not resolved by assuming differences between external

and internal links. If we denote the average area draining internal links aj (with a/

< A), we get analogously to Equation (2.15)

Am= (A -aj)Rb +aj R l[(Re/Rb)w - l]/[Re/Rb - 1]

(2.16)

which cannot be expressed as an exponential function of w, as would be required for

an area law.

These inconsistencies are resolved in the cyclic scaling model suggested by

Tokunga (1978). Horton/Strahler ordering is still used, with the interpretation of

the lowest order streams being the smallest resolvable at the scale of resolution

being used. Order is used as a relative, rather than absolute measure, with Q the

highest order stream and Q-1, Q-2, ... , lower order streams, extending to infinitely

small order. The absolute order Q is never actually known, but the differences
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between-orders of different streams gives an idea of their relative sizes. Denote the

number of streams of order i flowing laterally into a higher order stream of order j
by je. Tokunaga (1978) suggests that j-j.k (k > 0) are on average independent of j,
denoted

k j j-k

and that furthermore

K =
k-1

is on average constant. The two parameters el and K are analogous to Rb in that

they completely describe the number of streams of each order. In practice K and C,
suffer from some of the same drawbacks as Rb. They show scatter within particular

networks, do not distinguish between qualitatively different networks from different

environments and cluster around approximately constant values. Tokunaga (1978)

gives

Q-w- Q-- ) f-w-l2+ lN(Sw) = fw- p w Q(2 + - P) + P-w-( 2 + E1)

(2.17)

for the number of streams of order w within a basin of order Q. Here P and Q are

parameters given by
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2 + e1 + K - (2 + el + K)2 -8K

P= 2

(2.18)

2 + ei+ K + (2 + el + K) 2 -8K

Q = 2

Equation (2.17) gives a law of stream numbers such that the log of stream numbers

plots against order as a slightly concave shape, agreeing qualitatively with this

tendency reported by Shreve (1966). This is a slight deviation from Horton's

bifurcation law, Equation (2.1) that makes the Horton ratio and Tokunaga

formulations mathematically different, but practically indistinguishable given the

scatter of real data.

Tokunaga (1978) shows that in infinite topologically random channel

networks the expected values of K and cl are E1 = 1 and K = 2. In practice stream

number data clusters around these values. With the assumption that the inter basin

areas, i.e., areas draining directly into internal links, are less than the lowest order

stream areas on average and K < 2 + el as is usually borne out in practice,

Tokunaga derives

A w Q w-A A A (2.19)

where A is the area draining a basin of order w. This is equivalent to Horton's

area law with Ra = Q. With cl = 1 and K = 2, Equation (2.18) gives Q = 4,

corresponding to the random model result. With the additional assumption

(analogous to Shreve, 1967),

AA = 2 (2.20)
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where LA is the length of stream of order A Tokunaga gets

Lw Q Q(w-A)/2 LA (2.21)

equivalent to Horton's length law with Rt =

The appeal of Tokunaga's formulation is its self-similarity. Subnetworks

within a network are statistically equivalent, except for a scaling factor.

Except for Horton's slope law the discussion so far has been devoid of any

consideration of elevation in channel networks. It is widely recognized that

elevation, related to potential energy is an important part of the network and we

need to understand the structure and scaling of river networks with the third

dimension elevation included. Qualitatively streams are steep near their sources

and flatter downstream. This is quantified by Horton's slope law which implies an

exponential decrease of slope with order.

Sw = (RS1)Rw =SRsw S e (2.22)

Broscoe (1959) noted that the average drop Hw along Strahler streams of order w

was approximately constant, i.e., independent of order. This "constant drop law" is

sometimes added to Horton's laws and Yang (1971b) claims that it is due to a

variational principle, equal distribution of stream power. Recognize that on average

H = Sw Lw, so Hw constant implies

w L

S w L Lw (2.23)

w-l w-l

i.e. , R =Rt.
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Typically R8 is close to RI but it is not evident whether this coincidence is

responsible for the constant drop law or is due to the constant drop law.

Flint (1974), building on the power law relationships of Wolman (1955),

Leopold and Maddock (1953), Leopold and Miller (1956) and Leopold, et al. (1964)

finds slope empirically related to area by

S = C A-0 (2.24)

with 0 ranging from 0.37 to 0.83 with a mean of 0.6. Substituting in Horton's area

and slope laws Flint (1974) gets

In Ra

again showing the connections between power law scaling with area (as a size or

scale measure) and exponential scaling with order.

Recognizing that link magnitude is often a good surrogate measure for area,

Equation (2.24) can be written

S = C n-0 (2.26)

Horton's slope law, the constant drop law and power law scaling of slope with area

are all equivalent empirical descriptions of the concavity of stream profiles.

Gupta, et al. (1986) and Mesa (1986) tried to extend the topologically random

network model to elevations by assuming that link heights were independent

random variables. They had little success due to the inhomogeneity of the link

height distributions, something that in retrospect should have been obvious from the
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slope scaling described above.

Gupta and Waymire (1989) point out the close connection between power law

scaling and notions of statistical self-similarity. This is as follows. A random

variable S is called self-similar with respect to scaling index A if

S(AA) i p(A) S(A) (2.27)

where O(A) is a scaling function and A a scale factor. denotes equality in

probability distribution. Gupta and Waymire (1989) show quite generally that p(A)

must be of the form

p(A) = A 0  (2.28)

Gupta and Waymire (1989) suggest that the hypotheses that link slopes (or link

drops) are self-similar with respect to area (or magnitude as a surrogate) as a

scaling index seems reasonable and would "explain" the observed slope scaling. In

Chapter 5 we focus on this issue and show that the slope scaling is not simple

self-similarity, but a more general multiscaling. Multiscaling is required to fit the

mean slope trends described above as well as the scaling of higher order moments

obtained from data.

The importance of notions of similarity in hydraulic geometry had been

recognized earlier by Smith (1974) who used a simple model of sediment movement

in stream channels and Manning's equation to derive a set of differential equations

governing channel bed forms. He notes that the equations are of the diffusion type

that permit similarity solutions and hypothesizes similarity solutions of the form
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S = k xA

(2.29)

d = xV f(y/xT)

Here d is depth, x the along stream coordinate, y the transverse coordinate, S slope,

k a constant and p, v and r scaling exponents. Solutions of the form (2.29) are then

used in the governing equations to solve for the scaling exponents. The power law

scaling of hydraulic parameters (width, depth, velocity, and slope) as functions of

discharge Q are then obtained in terms of these exponents. The exponents obtained

compare well with the empirical observed values of Leopold and Maddock (1953).

2.6 Fractals and Scaling

The study of scaling has been considerably advanced by the notions of

fractals and fractal dimension (Mandelbrot, 1977, 1983). Fractals provide a

mathematical framework for treatment of irregular seemingly complex shapes that

display similar patterns over a range of scales. Many objects in nature are

statistically self-similar.

Voss (1986) defines statistical self-similarity:

"The set S is statistically self-similar if it is composed of N distinct

subsets each of which is scaled down by the ratio r from the original and is

identical in all statistical respects to rS."

The fractal or similarity dimension of S is given by

D = log N (2.30)
log F7/r

Statistical self-similarity implies invariance of the full probability distribution

describing the random object under simple geometric transformations or changes of
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scale. In practice though claims of statistical self-similarity are usually based on

measurement of a few moments.

Direct methods of measuring fractal dimensions are the ruler method

(Mandelbrot, 1977) and Box counting (Hentschel and Procaccia, 1983; Voss, 1986;

Lovejoy et al., 1987). These methods are based on the fact that the measure or size,

M, of a fractal object or set is

M = N rD (2.31)

where N is the number of objects of linear size or scale r required to measure the

object. A decrease in r results in an increase in N. The fractal dimension D is the

value of the scaling exponent on r for which M is constant. This may occur over a

limited range of scales r for which self-similarity holds and where the opposing

tendencies of decreasing r and increasing N are exactly balanced in the product NrD

The ruler method counts the number, N, of rulers of length r needed to measure the

apparent "length" of a curve, for several different ruler lengths r. On a plot of log N

vs. log r, the slope is -D according to Equation (2.30). Andrle and Abrahams (1989)

show that this technique is not foolproof. They simulated a curve with a fixed scale

(i.e., not fractal) by perturbing a square wave (see Figure 2.4). Figure 2.5 gives the

log N vs. log r plot for this wave. The approximate straight line is suggestive of

scaling with D = 1.11, which is clearly wrong by construction of the curve. Andrle

and Abrahams (1989) then plot apparent length L = Nr versus r (reproduced in

Figure 2.6) which for a fractal should satisfy

L oc rl-D (2.32)

It is evident from Figure 2.6 that Equation (2.32) does not hold for the simulated
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Figure 2.4. Sections of (A) a regular square-wave form and (B) a randomized
square-wave form. (from Andrle and Abrahams, 1989)1&M
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curve of Andrle and Abrahams (1989). The principle of plotting apparent measure L

= NrD versus r with D obtained from the N vs. r plot appears to be a good one, as a

check for breaks in scaling. The apparent measure should be a constant function of

r.

Box counting uses the fact that the number of boxes of side r, needed to

cover a fractal set S is theoretically

Nbox(r) % r-D (2.33)

Therefore, the slope of log N vs. log r plots give estimates of D.

Indirect methods of measuring D include use of variograms and spectral

densities. Voss (1986) gives ways to relate variogram (difference) scaling exponents

and spectral scaling exponents to fractal dimension D.

Goodchild and Mark (1987) review the application of fractal models in

geography. Here we will just focus on two aspects, the land surface and the channel

network.

Mandelbrot (1977) found that many natural lines, such as coastlines,

contours, political boundaries (sometimes consisting of rivers or coastlines), etc.,

seemed to have fractal dimensions near 1.2 - 1.3. He also noted that simulations of

fractional brownian surfaces with D ~ 2.3 looked remarkably like the real landscape.

He took this as evidence that landscapes were fractal characterized by D ~ 2.3. The

relationship between the fractal dimensions of a surface and a line projected from

the surface (e.g., contour or profile) is

DI = Ds -1 (2.34)

so these results are consistent.
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Mark and Aronson (1984) used variogram techniques to estimate the fractal

dimension of the land surface of 17 USGS 7.5 min quadrangles from digital elevation

data. Sixteen of these showed some evidence of characteristic scales at which fractal

dimension changed, often sharply. Over short scales (below 0.6 km) they found that

many surfaces do indeed resemble fractional brownian surfaces with dimensions of

around 2.3. At larger scales however many areas were characterized by much higher

dimensions, around 2.75. Ahnert (1984) notes the relationship

R~LH (2.35)

with exponent H ~ 0.8. Here R is local relief (difference in elevation) in an area

with diameter L. Ahnert (1984) attributes the log slope of 0.8 to a morphological

expression of the dynamic equilibrium between the maximum geophysically possible

rate of long-term uplift and the denudational response. Culling (1986) notes that

this is analogous to a Hurst phenomenon (i.e. the persistence in long term

hydrologic time series, noted by Hurst (1951)) in the landscape, and as such

characterizes the landscape as scaling with fractal dimension

D = 3 - H (2.36)

For further information on the Hurst phenomenon, a feature of long-term

hydrologic time series, see Bras and Rodriguez-Iturbe (1985). Culling and Datko

(1987) also look at scaling in the landscape. They claim to predict theoretically,

although the basis for the predictions is not clear from their paper, that:

The Hausdorf dimension of soil slopes governed by a diffusion

degradation regime will take values between 2 and 2.3 tending

towards the lower value as diffusion proceeds.
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*- The landscape will show evidence of a second fractal structure

associated with the drainage network with fractal dimension between

2.4 and 2.6.

* The dimension of a level set (intersection with horizontal plane, i.e., a

contour) or vertical set (intersection with vertical plane, i.e., a profile)

is one less than that of the parent surface [i.e., consistent with

Equation 2.34) .

Culling and Datko present results from 17 1:25,000 ordinance survey maps in

southern England. The intersection of mapped contours with lines traversing the

sheets diagonally was used to produce profiles. The fractal dimension of the profiles

were estimated using the ruler method and variogram techniques. For many of

these data sets two different fractal dimensions are quoted, presumably from two

distinct slopes at different scales. Although Culling and Datko (1987) do not discuss

it, their Figure 6 [reproduced here, Figure 2.7] has similar sharp breaks in scaling

to those discussed by Mark and Aronson (1984) [Figure 2.8 , with different fractal

dimension above and below the characteristic scale determined by the break in

scaling.

The above studies suggest that the domains with different fractal dimensions

could be interpreted in terms of different geomorphological processes operating or

dominating at different scales. Goodchild and Mark (1987) point out that most real

geomorphological entities are not pure fractals in the sense of having a constant D,

but in a lesser sense of exhibiting the behavior associated with a fractional

dimension over some range of scales. D thus provides a characteristic parameter

whose variation can be usefully interpreted in terms of the important processes over

the range of scales for which D holds constant.
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Eagleson (1970, p. 379) presents data from several studies that support the

relationship first suggested by Hack (1957)

L = k Aa (2.37)

where L is mainstream length and A basin area. k and a are coefficients, typically k

= 1.4 and a = 0.57. Dimensional consistency and geometric similarity would

suggest that a should be 0.5. Mandelbrot (1977; 1983) uses this result to suggest

that rivers are fractals with dimension 2a ~ 1.1 or 1.2. Mandelbrot (1983) also

describes some fractal geometric patterns that resemble river networks where the

fractal dimensions of individual lines is 1.1 but the complete network is space filling

with D = 2. He suggests that these patterns are models of river networks.

Hjelmfelt (1988) uses the ruler method in eight individual streams in Missouri and

estimates fractal dimension near 1.1.

La Barbera and Rosso (1989) and Tarboton, et al. (1988) show that for river

networks that obey Horton's laws, the fractal dimension is given by

D = log R b Rb > R (2.38)
FO _9 7 RbtR

=1 Rb < Rt

In practice Rb > Rj always holds. They use measurements of Rb and Re to

estimate D and find D for the whole network ranging from 1.5 to 2.

This fractal dimension of river networks clearly can only apply at scales

where we have a network. This may be all scales if we use the generalization of

Davis (1899) given above or more likely it may be above a threshold scale related to

the drainage density. Church and Mark (1980) discuss the relationship between

43



total length of channels and area. They note that below a certain threshold, a finite

drainage area may have no channels. Above this threshold they use data from

Wood and Snell (1957) to show that total length (LT) is proportional to area (A),

supporting the idea that drainage density (defined in equation (2.7)) is independent

of area . Above the threshold, LT could be used as a surrogate measure for A,

suggesting that the total length behaves or scales the same as area, and therefore

should have the same fractal dimension, i.e., be space filling with D = 2.

A series of papers (Goodchild, et al., 1985; Goodchild and Mark, 1987;

Goodchild, 1988) investigates drainage networks on fractional brownian (fbm)

surfaces. They note that networks on fbm surfaces show similar deviations from

topologic randomness to those noted by Abrahams (1984). This supports the notion

that these deviations are due to the geometric constraints imposed when basins

must pack together on a surface, a space filling constraint. The abundance of pits

(areas that do not drain) on fbm surfaces casts doubt on the generality of these

results and the suitability of fbm as a model for terrain. However Goodchild (1988)

suggests that if pits are assumed to fill as lakes, fbm may be a useful model for

lake-rich landscapes.

2.7 Channel Network Evolution and Processes

It is important when considering channel network and landscape geometry to

have an appreciation of the processes that have and are continuing to sculpt the

landscape. Ultimately we want to understand the relationship between form and

processes and be able to make quantitative statements about the processes from

detailed analysis of the form. Hydrologists are particularly interested in the runoff

processes and movement of water and their excursion into geomorphology is from a

need to address the problem of prediction from ungauged basins and an attempt to

deduce processes from land form and channel network morphology. This section
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will review the literature in geomorphological processes restricting ourselves to work

that we feel is relevant. There is no attempt at completeness.

There is general agreement that elevation in channel networks and hillslopes

may be thought of as an "open dissipative system" (Leopold and Langbein, 1962;

Scheidegger, 1970; Thornes, 1983; Huggett, 1988). Carson and Kirkby (1972) provide

a good review of the early work on evolution of hillslopes, relating form to processes.

The formalism of differential equations describing the landscape surface is useful.

Kirkby (1971) and Smith and Bretherton (1972) give the equation describing

conservation of sediment as

F =-V -F (2.39)

where z is elevation and F is the sediment or debris flux vector. With the

reasonable assumption that this flux is in the direction of steepest gradient, Smith

and Bretherton (1972) write

= F n

where

Vz

is a unit downslope vector, and F is the magnitude of the sediment transport flux,

per unit contour width, a scalar field, With this

&=V - nF (2.40)
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Smith and Bretherton (1972) further assume F(S,q), i.e., F is a function of the slope

S = | Vz | and flow of water q. The water flow is assumed to be a function of the

area draining through unit contour width a with drainage in the steepest direction.

Thus we can write F(S,q(a)) = F(S,a), with a, a field which by continuity obeys

V n a = -l (2.41)

Note that in the context of hillslopes lower case a is used to denote area per unit

contour width, a two-dimensional scalar field, while in the context of channel

networks A denotes total contributing area. A is thought of -as concentrated, i.e.,

flowing through a point with width neglected. When using digital elevation data,

unit width is taken as the pixel size so the two notions of area are numerically

equivalent. Smith and Bretherton (1972) carry out a linear stability analysis of

Equation (2.40) and (2.41) and show that the pair of equations is unstable in the

sense that small perturbations grow when

F - a O < 0 (2.42)

Smith and Bretherton (1972) also show that a one-dimensional equilibrium or

constant form solution is concave when Equation (2.42) is satisfied and convex

otherwise. There is therefore an equivalence between concavity of a

one-dimensional profile and instability in the two-dimensional landscape.

Instability as characterized above would lead to rilling and channel growth.

Otherwise, smooth hillslopes would prevail.

Luke (1972, 1974) generalizes the Smith and Bretherton (1972) formulation.

Instead of assuming F(S,q), which assumes the sediment load is always in

equilibrium with slope, he suggests an additional equation
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,=f(SqF) (2.43)

The function f(-) will be such that when the sediment load F is small, f(-) is

positive, i.e., erosion, whereas when F is large, f(-) will be negative, i.e., deposition.

Luke (1974) shows how the basic equations (2.40), (2.41), and (2.43) can be solved

using the method of characteristics. He also shows how under conditions of

instability troughs develop into shock discontinuities, interpreted as channels.

The behavior of Equation (2.42) is clearly dependent on the form of the

sediment transport flux function F(S,a). A common form is (Kirkby, 1971)

F xam n (2.44)

Table 2.1 excerpted from Kirkby (1971) gives typical m and n for various processes.

Table 2.1
Typical Values of Exponents m and n in the empirical relationship

F a m 5 n (Equation (2.44)

Process m n Sources

Soil creep 0 1.0 C. Davison, 1889; Culling,
1963

Rainsplash 0 1-2 Schumm, 1964
Soil wash 1.3-1.7 1.3-2 Musgrave, 1947; U.S.

Agric. Res. Serv., 1961;
Zingg, 1940; Kirkby, 1969

Rivers 2-3 3 Derived from Leopold and
Maddock, 1953

(from Kirkby, 1971)

Kirkby (1971) studied the solution to Equations (2.40) and (2.41) in one

dimension and identified characteristic profiles under different assumptions for the

sediment transport F (Equation 2.44). These are reproduced in Figure 2.9 and show
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Figure 2.9. Characteristic form slope profiles. (from Carson and Kirkby, 1976)
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convex profiles for soil creep progressing to concave profiles for rivers.

Kirkby (1980) focuses on the instability criterion of Smith and Bretherton

(1972) and notions of dominant domains and transition thresholds. The instability

threshold is analyzed explicitly as a predictor of drainage density. Kirkby (1980)

shows that where a combination of creep and wash sediment transport processes are

present, there is a critical area ac where instability [according to Equation (2.42)]

occurs. He suggests that for a landscape with fully developed drainage, the area

drained per unit length of channel bank must be less than ac, which results in

Dd > (2.45)
c

He suggests that for efficient networks, this approaches equality and provides a way

to estimate Dd. The notion of a critical area or critical hillslope length is also

recognized by Dunne (1980). Dunne (1980) points out that sheet flow can still occur

in the stable domain and rilling and channelization occur some way beyond the

point (down a hillslope) where sheet flow occurs. This, Dunne (1980) suggests, may

be because of the diffusive, leveling influence of rainsplash. The instability occurs

where the unstable sheet flow transport dominates. Thornes (1983) also emphasizes

the importance of defining domains where different processes dominate, and

transitions between domains.

Kirkby (1986) makes slightly different assumptions for the form of the

sediment transport equation, F. He uses a conceptualization of runoff production, q,

suggested by Beven and Kirkby (1979) (TOPMODEL) and a transport mechanism

of the form,

F = KS + a qm 5 n (2.46)
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This is a'sum of creep and wash processes.

Andrews and Bucknam (1987), in the context of scarp degradation have

suggested

F = K S (2.47)
1 - (S/f)

where f is a friction or sliding slope. This form is derived from consideration of the

distance a particle travels before sliding to a stop after being given an initial

velocity (perhaps from a raindrop or animal hoof).

It should be pointed out that sediment transport functions of the form F(S,q)

or F(S,a) are most appropriate when the sediment transport is transport limited,

i.e., F is really the sediment transport capacity of the processes involved. Where

the removal is weathering limited hillslope development depends on variations in

weathering rate, which is controlled by other factors. Carson and Kirkby (1972)

discuss many of these factors. The more general formulation of Luke (1974),

Equation (2.43) may be more appropriate with the weathering rate f(-) also

dependent on these external factors.

Culling (1960, 1963, 1965) used the diffusion equation to model slope

development. In the context of the above discussion any process (raindrops or

creep) for which

F = bSn = - bVz (2.48)

when substituted in Equation (2.39) gives the widely studied linear diffusion

equation
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- b V2 z (2.49)

Here b is a constant, the diffusion coefficient. If F is dependent on S nonlinearly, we

get nonlinear diffusion. In fact if the main contribution to variation of F is S, then

the process will be predominantly diffusive, whereas if the main contribution to

variation of F is a, a measure of concentration of flow, the process is concentration

controlled and results in channelization.

Culling (1986) argued that diffusion-type (Davisian downwasting) models of

slope development, as widely suggested by many, must lead to landforms of

Hausdorf dimension slightly above 2. Furthermore the surface should be a

fractional Brownian function and Gaussian in the limit.

The notion of profiles in dynamic equilibrium has been important and was

recognized early (Davis, 1899). In the present context Hirano (1975) considers a

landscape subject to a constant rate of uplift U. Thus Equation (2.39) becomes

&= -V - F + U (2.50)

The dynamic equilibrium, graded form, or constant form solution, is defined by &

- 0, i.e., the steady state solution to Equation (2.50). This is usually fairly easily

obtained. More generally U may be thought of as the rate of erosional degradation,

or lowering, which for dynamic equilibrium is spatially constant, or at least varies

spatially at scales large relative to the scale of the phenomenon considered.

Band (1985) uses the continuity Equation (2.39) with diffusive and surface

wash sediment transport components [effectively Equation (2.46)] to model the

development of slope profiles in an abandoned gold mine. He notes that the relative

magnitudes of the diffusive and surface wash rates are crucial to the resulting slope

shapes. Ahnert (1987) describes a model (SLOP3D), developed over the past three
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decades, -that models slope denudation. This is based on the continuity equation

with the added feature that sediment removal is a function of regolith (i.e., soil

cover) thickness. This allows the modeling of weathering limited, as well as

transport limited situations. The effect of weathering limited denudation is only

explored in a limited way. Ahnert (1987) also notes that the surface wash form of

sediment transport results in concave slope profiles and diffusive sediment transport

results in convex profiles. He suggests that the concave (wash dominated) part of a

profile represents the longitudinal profile of streams and the convex part (shaped by

diffusive mass movements) represents the valley side slopes.

Recently Willgoose (1989) has developed a catchment and channel network

evolution model. The model is based on sediment transport continuity (Equation

2.50) but postulates an explicit difference between sediment transport on a hillslope

and in a channel. This is implemented numerically by using a sediment transport

function F dependent on an index of channelization Y. Y is an indicator variable

taking the value 1 in channels and 0 on hillslopes and Willgoose (1989) uses

(analogous to Equation 2.44)

FL(S, a, Y) = a Sn Y = (2.51)

The factor Ot gives the relative differences between sediment transport on hillslopes

and in channels. Willgoose (1989) suggests that channelization occurs (the switch

from Y = 0 to Y = 1) when an activator function exceeds a certain threshold. He

uses sediment transport arguments to suggest an activator function of the form

AF(S,a) = am Sn1 (2.52)
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The switch to channelization is implemented through the equation

d= dt [0.0026 AF(S,a)/Ta + [ 2 7 - 0.1 Y
-t a 11+ 9Y

(2.53)

This equation has the property that for AF(S,a) less than T Y remains practically

0, but when AF(S,a) exceeds Ta, Y switches to 1. The rate of switching is

controlled by dt. The form of Equation (2.53) is very similar to the cusp

catastrophe model used by Thornes (1980, 1983) to model the instability in sediment

transport.

Willgoose (1989) shows that simulations based on this model result in

realistic looking channel networks that have many properties of channel networks

found in nature. The notion of sediment transport rate being different on hillslopes

and channels is intuitively appealing although it has not been observed in the field

or experimentally justified. The data of Priest (1975) used by Willgoose (1989) to

suggest Ot = 0.4 do not indicate that this is significantly different from O= 1.

The channels in this model are different from the shock discontinuities that Luke

(1974) shows will develop under conditions of nonlinear instability and suggests

should be interpreted as channels. Clearly more work is needed to clarify and

understand the nature of channel forming mechanisms.
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Chapter 3

DATA ANALYSIS, PROCEDURES AND TECHNIQUES

3.1 Review

There has over the last decade been a growing interest in the use of digital

elevation data in geomorphology and hydrology, specifically the analysis of channel

networks. This has resulted in the development of procedures for processing digital

elevation data and extracting channel networks. O'Callaghan and Mark (1984)

provide a good review of the early development in this field, as well as suggesting

the algorithms on which much of this work is based.

O'Callaghan and Mark (1984) define a digital elevation model (DEM) as any

numeric or digital representation of the elevations 'of all or part of a planetary

surface. They restrict themselves to the most commonly used data structure for

DEM's: the regular square grid. In such a grid elevations are available as a matrix

of points equally spaced in two orthogonal directions. Here we will restrict

ourselves to grid based DEM's but generalize them so that the spacing in each

direction is not necessarily the same, i.e., rectangular grids.

Other data structures have been used for DEM's in hydrologic analysis.

O'Callaghan and Mark (1984) suggest that triangular irregular networks (TIN)

which include channels directly as triangle edges may have substantial advantages.

Palacois-Velez and Cuevas-Renaud (1986) develop procedures using TIN networks.

Problems arise however because flows along the steepest gradient are not

constrained to follow triangle edges. Contour based DEM's have been used with

some success by O'Loughlin (1986) and Moore, et al., (1988). These have the

advantage of dividing the catchment into natural units related to water flow, i.e.,

polygons formed by equipotential lines and their orthogonals, streamlines. By

comparison grid based models match flow trajectories crudely by transition from

one grid cell to another. Moore, et al. (1988) state disadvantages of the contour
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based approach: "...one needs at least an order of magnitude more points in contour

line form than in regular grid form to adequately describe an elevation surface. Also

it is computationally slower than the grid cell approach." It is not clear whether

with equal computational effort, i.e., correspondingly finer grid, the grid based or

contour based approach is better. Carrara (1988) discusses schemes for interpolation

of a grid based DEM from contour data. These schemes range from general (moving

average, splines, etc.) to morphology dependent algorithms that endeavor to

interpolate the way a skillful reader would interpolate contour maps.

This work uses grid based DEM data structures because the majority of

U.S.G.S. DEM data sets are grid based and grid based procedures are simple and

unambiguous. Many of the important concepts in grid based DEM work are defined

by O'Callaghan and Mark (1984) and Mark (1988). Elevations are stored in an

elevation matrix arranged in a grid with each entry giving the elevation of a point.

The location within the matrix implies the spatial location of the point, so only

elevation values need to be stored (as opposed to TIN networks that have to store x

and y location and elevation data for each point and contour-based structures that

store strings of x and y locations along a contour).

A p~it is defined as a point or set of adjacent points surrounded by neighbors

that have higher elevations. A drainage direction matrix contains a set of pointers

from each grid cell or pixel to one of its neighbors. Usually pointers are in the

direction of steepest slope. The drainage direction matrix defines a drainage

direction network as a forest of rooted sub trees.

A drainage accumulation function is defined as an operator which given the

drainage direction matrix and a weight matrix determines an accumulated area

matrix such that each element in the area matrix represents the sum of the weight

of all elements in the matrix which drain to that element. If the weights are all set

at one, then the area matrix gives the total contributing area in number of elements

55



or pixels.

O'Callaghan and Mark (1984) suggest defining channels on a DEM as all

points with accumulated area above some threshold. Mark (1988) notes that at

horizontal scales of 10m or greater, true pits or closed depressions are rare in natural

earth topography, being restricted to a few special geomorphic environments (e.g.,

glaciated or karst). Pits occur frequently in DEM's due to data errors and sampling

effects (e.g., a narrow channel may pass between grid points). Mark (1988) suggests

pit removal based on actual drainage patterns (in the form of digitized stream

channels) or by a local "flooding" procedure where pits are made to drain towards

the point at which water would overflow from the pit.

The procedure for identifying channels suggested by O'Callaghan and Mark

(1984) and Mark (1988) is basically:

1. Pit removal and calculation of drainage direction matrix.

2. Calculation of the accumulated area matrix.

3. Define channels as pixels exceeding an accumulated area threshold.

This is the procedure used here. Details of the algorithms are given in a later

section.

Band (1986) following Peuker and Douglas (1975) has suggested the use of

local operators to flag upward concave pixels as potential stream points. The

Peuker and Douglas (1975) algorithm flags the pixel of highest elevation from each

possible square of four adjacent pixels. After one sweep of the matrix the unmarked

pixels represent drainage courses. The set of points obtained is not necessarily

connected so Band (1986) describes several thinning and connection procedures. An

advantage of this approach is that no arbitrarily chosen support area has to be

specified and networks should have the "correct" drainage density corresponding to

the basic scale of dissection of the landscape. Chapter 5 will compare drainage

densities obtained from this approach with drainage density estimated using other
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techniques.

The drainage direction/area matrix procedures (O'Callaghan and Mark,

1984) of extracting channel networks seem to be becoming popular and more widely

used (manifest Carrara, 1988; Morris and Heerdegen, 1988).

3.2 Data Sources and Accuracy

The data used in this work was obtained largely from the National Digital

Cartographic data based collected and made available by the U.S. Geological

survey. Digital elevation model (DEM) data is supplied at two resolutions:

* 7.5 minute quadrangle coverage in a 30m grid

0 10 quadrangle coverage on a 3 arc sec grid.

U.S.G.S. (1987) describes the DEM data available, from where the following

information is excerpted. The 7.5 min DEM b are produced using one of the

following four processes:

a. The Gestalt photo Mapper II (GPMII):

Aerial photographs are scanned at a pixel size of 182,um at the scale of

the photographs (equivalent to a ground distance of approximately 47

ft). Electronic image correlation is used to match features and

calculate elevations from the parallax within a stereo model.

b. Manual profiling from photogrammetric stereo models:

High altitude aerial photographs are used as source material. Stereo

plotters interfaced with 3 axis electronic digital profile recording

modules are used to scan successive terrain profiles in these

photographs. The most common profile separation used is 90m with

elevations recorded every 30m along the profile. The profiled data are

reformatted and regridded to a regular 30m UTM grid.
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c. Stereo model digitizing of contours:

Digital contour data are acquired on stereo plotters equipped with

three-axis digital recording modules, as the contours are stereo

compiled for 1:24,000 scale quadrangle maps. The contour data are

processed into profile lines and the elevation matrix found using

bilinear interpolation.

d. Derivation from digital line graph hypsography and hydrography:

Hypsography (contours) and Hydrography (rivers and lakes) in digital

line graph form are required as input. Contour to grid software

(details not specified) is used to interpolate gridded elevations.

The 10 DEM's are produced by the defense mapping agency, but distributed by the

U.S.G.S. Cartographic (maps scale 1:24,000 through to 1:250,000) and photographic

sources are used. The accuracy together with data spacing are claimed to

adequately support computer applications which analyze features to a level of detail

similar to manual interpolations of printed maps at scales not larger than 1:250,000.

The vertical accuracy of DEM data is dependent on the spatial resolution,

quality of source material and processing procedures. The 7.5 min DEM accuracy is

quoted in terms of a root mean square error (RMSE). The error is the difference

between "true" elevations (of bench marks, etc.) and linearly interpolated elevations

in the DEM. Test points (at least 20) are well distributed in the area. Typical

RMSE is 7m, for 7.5 min DEM's. The 10 DEM data does not have accuracy quoted,

but is constructed to have an absolute vertical accuracy of 30m (relative to mean

sea level). When discussing accuracy of DEM data, it is necessary to distinguish

between absolute error, the difference between true and quoted elevation above a

fixed datum, and relative error, the error in the elevation difference between nearby

pixels. For our purposes absolute accuracy is less important than relative accuracy

since it is the difference in elevation between adjacent pixels that is used to
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determine slopes and drainage directions. U.S.G.S (1987) claims, for the 10 DEM's,

that the relative vertical accuracy of adjacent points, although not specified, will in

many cases conform to the actual hypsographic features, i.e., errors much less than

the absolute accuracy. This comment probably also applies to relative errors of the

7.5 min data given the distribution of the test points and the fact that topographic

features (such as valleys) can be recognized in the data.

3.3 Procedures and Storage Conventions

To consistently work with data sets from different sources, the data is first

converted to our binary matrix format, given in Table 3.1. A set of input/output

routines listed with the computer codes in the Appendix was used to read and write

data in this format. The procedure followed in processing DEM data is basically:

1. Convert elevation data from supplied format to binary matrix format.

2. Run pointer algorithm. This produces a drainage direction matrix

and adjusted elevation matrix that has pits removed. Drainage

directions are assigned in the direction of steepest descent. Where the

slope in two or more directions is the same, as is typically the case in

a flat area, the directions are assigned arbitrarily, but such that no

loops are formed. The pointer algorithm also resolves pits by filling

them, i.e., increasing the elevation until they overflow.

3. Run accumulation area algorithm. This produces an accumulation

area matrix, by counting the number of pixels draining through each

pixel.

4. Plot pixels with accumulation area above a convenient threshold and

identify the location of the outlet of the basin to be studied.

5. Zero the accumulation area of pixels that do not drain to the

identified outlet to isolate the basin of interest.
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6. Specify an accumulation area threshold and run network extraction

algorithm. Outputs are two files that list link properties and

co-ordinates of pixels along each link in the river network.

Table 3.2 gives the structure of the files defining the channel network. The

Appendix gives listings of codes required for this procedure as well as example input

files to control them. These procedures form the basic routine processing package

used to process each data set.

Table 3.1: Binary Matrix Format

Record 1: NX NY DX DY
Records 2 to NY+l: Matrix of values (elevation, direction, or accumulation area) as
follows

1,1) (1,2) ... (INX)

(NYl) ... ... (NY,NX)

NX is the number of columns
NY is the number of rows
DX is the column spacing in m
DY is the row spacing in m

Elevations and drainage direction matrices are stored as 16 bit integers (integer*2).
Accumulation area matrices are stored as 32 bit integers (integer*4). The
convention for drainage directions is the same as Band (1986) namely, a direction
towards one of the eight neighbors as follows.

4 3 2

5

6 7 8

A drainage direction of -l is used to mark pixels outside or on the edge of the range
of the data.
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Table 3.2: Network Storage Structure
a. Link File
An ASCII file in free format consisting of a record for each link. Each record
consists of, in the following order:

link number: Link number 0 (the first listed) is the outlet or root
link.

link start: Pointer to first pixel of link in co-ordinate file.

link end: Pointer to last pixel of link in co-ordinate file.

next link: Link number of downstream link (- indicates no links
downstream, i.e., root link).

previous link I: Link numbers of two upstream links.I These a r e ei ther both non-z e ro or both 0,
previous link 2 : i ndicat i ng no links upstream of the link.

order: Horton/Strahler order of the link

b. Co-ordinate File

An ASCII file in free format consisting of a record for each point (pixel) on the
channel network. The records are associated with links in the link file, numbered
from 0, and in order from the upstream to downstream end of each link. Each
record consists of, in the following order:

x co-ordinate: The origin of co-ordinates is the bottom left, i.e., SW
corner of the DEM matrix (m).

y co-ordinate:

Distance: Distance measured along channels from the point to the
basin outlet (m).

Elevation: Elevation of the point (m).

Area: Total area contributing to that point. i.e., number of

pixels from contributing area x pixel area (m2 ).
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Many other ad hoc procedures were developed to examine particular issues

and test particular hypotheses. These are not described here as they are mostly

trivial and their functioning can be deduced from the various results presented in

forthcoming chapters. Examples of procedures in this category are procedures to do

functional box counting, tabulate link or stream property values, compute mean link

or stream properties for classes of links or streams, etc.

Descriptions of the important algorithms in the basic package are given next.

Pointer Algorithm

1. Initialize all directions to zero.

2. Set directions of all pixels towards the neighbor for which the positive

downwards slope is maximum.

At this point pixels with 0 direction are unresolved flat areas or pits.

3. Repeatedly test unresolved pixels to see if they have a neighbor of equal

elevation that has drainage direction assigned. Assign drainage

direction towards this pixel.

This has the intent of making flat areas drain as directly as possible towards the

point where they 'bverflow" while ensuring that no loops are formed. Pixels

unresolved after this step are pits.

4. If there are still unresolved pixels

Increase the elevation of unresolved pixels by Max (1, elevation

difference to lowest neighbor). Go to Step 1 and repeat

procedure

else

end.

This algorithm is time consuming due to all the looping while elevations are

increased to resolve pits, so it is applied first to subsets of the data set and then to
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the whole data set. More efficient procedures may be possible, based on searching

the boundary of the area draining into a pit and then immediately raising the level

to the lowest boundary elevation. We have not tried procedures along these lines.

Accumulation Area Algorithm

The accumulation area algorithm used is a slight modification of a recursive

procedure suggested by Mark (1988). DAREA (toc) is a recursive procedure (i.e. it

can call itself) that returns the accumulation area for a pixel identified by loc, its

location in the matrix. AREA (toc) is the accumulation area matrix.

procedure DAREA (toc):

if AREA(ioc) is known

then

return [AREA (loc)]

else

AREA (toc) = unit cell area

for each neighbor

if (the neighbor drains into the current cell)

then

AREA (toc) = AREA (boc) + DAREA (neighbor)

return [AREA (loc)]

end.

This is called for each pixel in the data set. Notice that the procedure just

keeps calling itself until it reaches a pixel with no drainage inputs. The areas of

each pixel upstream of a called pixel are stored so that when that pixel is reached

the procedure does not have to repeat itself. The running time is a linear function

of the number of pixels in the data set or a square function of the size of a square

63



matrix data set (n 2 ). In earlier work we used a procedure that assigned a

catchment area of 1 to each pixel and then for each pixel in turn followed flow lines

to the edge of the data incrementing by 1 the catchment area of all points en route.

This procedure is used by Carrara (1988) and Morris and Heerdegen (1988) and has

running time proportional to n3 . We were able to process 1000 x 1000 data sets that

had previously taken 8 hours of CPU time on a Microvax II in a few minutes with

the recursive algorithm so it is strongly recommended it over other procedures.

Zero Area Algorithm

To isolate the basin of interest, the drainage area procedure is called for the

outlet pixel only. This recursively computes the area of each pixel in the drainage

basin, but leaves pixels outside the basin untouched, i.e., with accumulation area 0.

3.4 Data

Table 3.3 gives a list of all the digital elevation model data sets used in this

work and their exact location. Figure 3.1 shows their location in the United States.

Table 3.4 gives the location of river basins within these data sets, identified by their

outlet pixel. The adjustments to the elevation data required to fill in pits are

relatively minor. Table 3.5 gives statistics of these adjustments for some typical

data sets.

The subsequent chapters will go into detailed analysis of river networks

extracted from DEM'S with various support areas. Traditionally geomorphologists

have worked with river networks obtained from topographic maps. We given Figure

3.2 as a comparison of networks from DEM's with these from a map. The "blue

lines" were digitized by hand from 1:24,000 U.S.G.S. maps with additional detail

inferred using operator judgment and contour crenulations. The comparison with

the DEM network with support area 200 is reasonably good.
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Table 3.3 Digital Elevation Model Data Sets

Acronym Pixel Map Quad- N. W. Corner Coordinates
Size rangles Easting/ Northing/ Array Size

Used Longitude Latitude Rows Cols.

W7 30m Hay Mtn. 584040m 3511710m 201 201
(AZ)

Hay Mtn.,
Tombstone
(AZ)

Hay Mtn.,
Tombstone
(AZ)

Tolland,
West
Granville
(CN/MA)

Hunter,
Kaaterskill
(NY)

Hunter,
Kaaterskill
(NY)

Binghamp-
ton (NY)

Calder
NW,NE,SW
and SE (ID)

586740m

586755m

661530m

561870m

561885m

750W

556470m

3512220m 402

3512205m 202

4665630m 420

4677810m 471 694

4677795m

430 N

5261010m

235

1201

935

STJOEUP 30m Simmons
Peak SE and
SW, Pole Mtn.,
Bacon Peak
Chamberlain
Mtn, Illinois

613770m

Peak SE and SW
(IDMO)

65

W15 30m 402

202

431

W15A2S1

CONN

HAK

HAKA2S 1

BING

CALD

60m

30m

30m

60m

31"(68.3x
92.67m)

30m

347

1201

642

5220780m 956 1278



Table 3.3 Digital Elevation Model Data Sets Continued.

Acronym Pixel Map Quad- N. W. Corner Coordinates
Size rangles Easting/ Northing/ Array Size

Used Longitude Latitude Rows Cols.

STJOE 3"(62.6x
92.67m)

SPOKBC 3"(62.6x
92.67m)

SPOK

CANTON

RACOON

31"(62.6x
92.67m)

3"(70.47x
92.67)

30m

Spokane E,
Hamilton W,
Wallace W
(MT,ID)

Spokane E
(ID)

Spokane E
(ID)

Canton E
(OH,PA,MN)

Hookstown,
Midway,
Burgettstown,
Clinton,
Alquippa,
Avella
(PA)

116022'33"

116015'

1170

810

542280m

4737'33"

47030'

480

410

951

301

1201

1201

4497210m 1395

2490100 3 ft

Wallace NE, 590700m
Saltese NE, NW
and SE, Haugan
NE, NW, SE and
SW, Simmons
Peak NE, Illinois
peak NW (MO)

Gasquet SW 416520m
and SE, Ship
Mtn. NW, NE,
SW and SE,
Dillon Mtn. NW
and SW, Preston
Peak SW (CA)

66

1652

301

1201

1201

718

TVA 2

STREGIS

BUCK

100 ft

30m

30m

734000 3 ft

5262240m

4636170m

300

1169

1399

441

1719

1055



Table 3.3 Digital Elevation Model Data Sets Continued.

Acronym Pixel MapQuad- N. W. Corner Coordinates
Size rangles Easting/ Northing/ Array Size

Used Longitude Latitude Rows Cols.

BRUSHY 30m Upshaw, 465390m 3806100m 850 1011
Houston,
Grayson, Massey,
Moulton, Addison
(AL)

MOSHANNON 30m Ramey, 710640m 4542540m 1071 1422
Blandburg,
Wallaceton,
Houtzdale,
Tipton,
Philipsburg,
Sandy Ridge
(PA)

Notes:
A data set here is a rectangular matrix of elevation data chosen to as to completely cover one
or more river basins. The location of the matrix is identified by the coordinates of the NW
corner, array element (1,1), given in UTM Coordinates for USGS 7.5min series data and latitude

and longitude for 10 DMA series data. The matrix rows are numbered from North to South and
columns from East to West. The pixel size gives the grid spacing, as well as identifying the

type of DEM. Pixels size 30m are USGS 7.5 min series data and 3 arc sec (3") pixels are 10
DMA series data.
1. Formed by averaging together groups of 4 adjacent pixels to obtain a course resolution
dataset.
2. Obtained courtesy of the Tennessee Valley Authority, Maps and Surveys Department.
3. Tennessee State plane coordinates in ft.

67



----------- r----

-- --------- -------

ST04P CA D

I I I3I

AK I N

AI NI
_____ ____ ____ ____ ____ __RA .1

Figure 3.1(a). Location map for 7.5 min Datasets.



-- - --- -- -- -

a a
Oka e E-

Hamilion W-
Bi ton E

-Canton

----.-----

- - -

*N,

Figure 3.1(b). Location Map for 10 DMA Quadrangles.



Table 3.4 River Basins

Acronym Name Digital Outlet Location
Elevation Easting/ Northing/ Within DEM
Model Longitude Latitude Rows Columns
Data Set

W7 Subbasin W7 585360m 3511140m 20 45
no. 7 in
Walnut
Gulch exp-
erimental
watershed

W15

Wl5A2S

CALD

SPOKBC

NELK

STJOE

STJOEUP

STREGIS

STREGISDMA

Subbasin
no. 15 in
Walnut
Gulch exp-
imental
watershed

Subbasin
no 15 in
Walnut
Gulch exp-
imental
watershed

Big Creek

Big Creek

N. Fork
Cour d'Alene
River

St. Joe
River

St. Joe
River

St. Regis
River

St. Regis
River

W15 590940m

W15A2S

CALD

SPOKBC

SPOK

STJOE

STJOEUP

STREGIS

590895m

567330m

116006'39"

116014127"

116016'15"1

623040m

611670m

STREGISDMA 115008'06"

3509040m 107

3508965m 55

5235300m 858

47016'18"

47035'51"

47018'369

5217360m

5239860m

47017'51"1

275

484

380

115

747

395

70

141

70

363

168

912

127

310

700

1490



Table 3.4 River Basins Continued.

Acronym Name Digital Outlet Location
Elevation Easting/ Northing/ Within DEM
Model Longitude Latitude Rows Columns
Data Set

HAK Schoharie HAK 564390m 4673430m 147 85
Creek
headwaters

Schoharie
Creek
Headwaters

Schoharie
Creek

East
Deleware
River

HAKA2S

BING

BING

564465m

7401710611

74057'24"

4673415m 74

42055'48"

42004'30"

85

1111

RACOON

RACOONDMA

BEAVER

BUCK

BRUSHY

MOSHANNON

TVA

CONN

Racoon
Creek

Racoon
Creek

Beaver
Creek

Buck
Creek

Brushy
Creek

Moshannon
Creek

RACOON

CANTON

CANTON

BUCK

BRUSHY

558270m

80021'24"

80030'54"

418350m

433230m

MOSHANNON 735420m

Montgomery TVA
Fork

Hubbard
and Valley
Brook at
confluence

CONN

2492200ft

670980m

71

HAKA2S

SCHO

EDEL

44

859

53

4495650m

40039'27"

40038'42"

4620660m

4591290m

4532580m

707200ft

4655040m

53

412

427

518

980

333

269

354

534

773

583

62

497

827

22

316



Table 3.5 Statistics of Adjustments Required to Fill Pits

Data Number Mean % of Number and Percentage of Pixels
Set of adjust- pixels Adjusted by Amount

pixels ment adjusted 1-5 6-10 11-20 20+ Max.
(m) (m) (m) (m) (m) (M)

CALD 600270 4.8 1.6% 6656 1839 896 136 35
(1.1%) (0.31%) (0.15%) (0.02%)

STREGIS 2009511 4.9 0.9% 12382 3424 1768 315 44
(0.6%) (0.17%) (0.08%) (0.02%)

MOSHANNON 1522962 2.6 4.7% 64535 5554 786 109 89
(4.2%) (0.4%) (0.05%) (0.007%)

SPOK 1442401 11.2 3.7% 20769 6731 6732 19013 61
(1.4%) (0.47%) (0.47%) (1.3%)
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Figure 3.2. Channel Networks from DEM with varying support area compared
to Blue Lines for the W15 dataset: a) 50 pixels, b) 100 pixels, c) 200 pixels,
d) "Blue Lines".
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Chapter 4

PLANAR SPACE FILLING PROPERTIES OF RIVER NETWORKS

4.1 Introduction

The main tenet of this chapter is that at large scale, in plan, river networks

fill space, that is they drain the whole river basin. This places constraints on their

planar scaling properties, namely that their fractal dimension must be 2. This is

still consistent with the notion of their being fractals since networks are idealized as

line graphs with topologic dimension 1. This notion of plane filling is clearly only

valid at scales where we have a network, i.e., scales larger than the basic scale of

dissection of the landscape (i.e., hillslope scale or drainage density).

The fact that river networks fill space may be self-evident to some; however,

some workers have suggested that river networks have fractal dimension different

from 2 (La Barbera and Rosso, 1989) so we feel it is necessary to provide empirical

evidence that D = 2. This will be done in the next section. Networks estimated

from digital elevation models with a constant support area threshold are constrained

to drain any area larger than the support area, so at scales larger than the support

area must be space filling and have D = 2. The question is whether this is the case

for networks not necessarily extracted from DEM's with this technique. The

empirical analysis for networks from DEM's as well as for networks digitized from

the "blue lines" of topographic maps supports space filling.

4.2 Empirical Evidence

The "ruler" method (Chapter 2) was used to investigate the scaling

properties of river networks. When measuring apparent length of a network by

stepping along it with rulers, the question arises as to which branch to follow at a

bifurcation. We resolved it by measuring the apparent length of individual Strahler
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streams separately and adding the results.

At the end of streams there is, generally, a leftover piece of stream shorter

than the ruler length r. If the distance from the last stepping point to the end was

greater than r/2, it was counted in the number of steps N; otherwise it was not

included in the length. Figure 4.1 gives results for several different networks. The

Souhegan is a 440 km2 basin in southern New Hampshire that was digitized by hand

from 1:24,000 U.S.G.S. maps. A neighboring river basin, the Squannacook (area 163

km2) also hand digitized was included in the sum of which consisted of the two hand

digitized networks (Souhegan and Squannacook) and six networks obtained from

three DEM basins with support area's of 50 and 20 pixels. The DEM basins used

were CONN, W15 and W7 (see Tables 3.3 and 3.4). The pattern for all of these is

the same, a gently sloping line with slope about 0.05 for small ruler lengths, followed

by an abrupt change to slope of about 1 for large ruler lengths. This clearly

indicates two distinct regions of scaling. The fractal dimension characterizing these

regions of scaling is obtained from Equation (2.32). The first with D ~ 1.05 is due

to the sinuosity of individual rivers, and corresponds to the scaling implied by

Equation (2.37). The second, with D near 2, is due to the branching characteristic

of networks. More precisely it is due to streams shorter than r/2 not being counted

at all, reflecting the fact that at coarse resolution we see fewer streams. In Figure

4.1 the break point corresponds to the basic scale or drainage density of the

respective networks which in the case of networks from DEM's is a function of the

support area used to extract the network.

The fractal dimension of channel networks was also estimated using

functional box counting (Chapter 2 and Lovejoy, et al., 1987). Here it was applied

to pixels with accumulation area exceeding a specified support area threshold.

Figure 4.2 gives plots of the number of boxes required to cover all selected pixels,

versus box size. The negative slope gives fractal dimension. We see that there are
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Figure 4.1. Ruler method results for typical river networks.
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basically two asymptotic slopes, a slope close to -l for small box size, implying that

at scales small relative to the scale of dissection, channels have dimensions close to

that of a line. At the large box size end of the scale, the slope is -2 indicating that

practically all boxes are intersected by a channel. At this scale the network is space

filling with D = 2. Note that the more detailed the network (lower support area)

the smaller the scale above which the network is space filling.

As previously mentioned, the region with slopes near -l in Figure 4.1 is due

to short streams being excluded as ruler size r increases. The region with slope of -1

can be interpreted as giving the number of streams with length greater than r

proportional to rD. Mandelbrot (1983) notes that the probabilistic counterpart to

this is a hyperbolic distribution:

Prob[length > oj 4.D 4.1)

where D is again the fractal dimension and have t refers to stream length.

Hyperbolic distributions have the desired property that they are self-similar.

Figures 4.3 and 4.4 give the exceedance probability of stream length

aggregated from several river basins. Points were plotted using the plotting position

P = M (4.2)

where m is the ranking from longest to shortest stream length and n is the number

of streams in the sample. The figures indicate a hyperbolic tail with D ~ 2. Figure

4.3 uses geometric length, defined as the straight line distance between end points of

a stream. Figure 4.4 uses length measured along the stream, naturally limited by

the resolution of the map or DEM from which the network is obtained. In Figure

4.4 the slope is slightly less than 2. We believe this is due to length along the
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Figure 4.3. Geometric Stream length Exceedence probability. The DEM
data is based on 2178 streams from the W15, W7 and CONN networks with
support area of 20 pixels. The hand digitized data is based on the Souhegan
and Squannacook networks with 409 streams digitized by hand from
1:24,000 maps.
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Figure 4.4. Stream length along stream Exceedence probability. The DEM

data is based on 2178 streams from the W15, W7 and CONN networks with

support area of 20 pixels. The hand digitized data is based on the Souhegan
and Squannacook networks with 409 streams digitized by hand from
1:24,000 maps.
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stream itself being a fractal measure with dimension D slightly in excess of 1.

Suppose we have from Equation (4.1) fitted to Figure 4.4

Prob[length > (x F~A (4.3)

Now if I is itself a fractal with dimension D, we get

Imx rDe (44)

where r is a linear (D=l) measure or length scale. Combining we get

Prob[length > ix r -AD 1  (4.5)

Thus the fractal dimension of the whole network is D = ADt. The result D = 2 is

therefore consistent with slope A = 1.8 seen in Figure 4.4 and De = 1.1 as suggested

by Equation (2.37) and the flatter slopes of Figure 4.1. We interpret these figures as

strong evidence that the network is space filling with D = 2.

4.3 Fractal Dimension and Horton's Laws

In this section we show how fractal dimension is related to Horton's

empirical laws, and hence relate the fractal scaling of river networks to concepts

from classical fluvial geomorphology. Horton's laws are basically geometric scaling

relationships that hold for all orders or resolutions above the basic scale.

La Barbera and Rosso (1987; 1989) suggest that the fractal dimension of river

networks is
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D = Max log R , (4.6)

The derivation of this assumes that Horton's bifurcation and length ratios are

constant at all scales in the network.

Let a network of order 1 have main stream length Lg. Then, using the

Horton's length ratio the mean length of a stream of order w(w < Q) is

LI(Rj) w. By Horton's bifurcation law, there are R ~"W of these streams, so theb

total length of streams of order w is Lq .IT Adding over all w to get the total

length of the streams in the network, L T, we get the geometric series

Q Rb W
L T L 

= L

= L -[ 1(7[Rb Q

L (4.7)

R b

Strahler (1964) gives this result.

Rb
If < 1, the series converges to a finite L as Q approaches infinity and we

have D = 1. This is a limit process where L is held constant and Q increases by

the resolution being refined. However, if > 1, as is most often the case in river

channel networks, the series diverges and for large Q we get

LT b (4.8)
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Now the first order streams have average length

s = L [i-] (4.9)

This is interpreted as the resolution used to measure the length of the network.

From Equation (4.9) write

log ( s/L.)
-= log R (4.10)

which in Equation (4.8) gives

log Rb

LT 1- S

By comparison to Equation (2.32), we get fractal dimension

log Rb (4.12)

Implicit in this derivation is the assumption that individual streams are linear

measures and that the sum in Equation (4.7) is a counting of linear lengths. This

counting can be represented

L T = N s (4.13)

If the individual streams are themselves fractal with dimension D then Equation
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(4.11) is not analogous to Equation

equivalent count of number of fractal measures

log Rb

L T og Rf
N s (4.14)

Analogous to Equation (4.4)

De
s ar

where r is a linear (fractal dimension 1) resolution measure. With this we get

(4.15)

log Rb

N (x r F-Tj

and fractal dimension of the whole network is

log Rb

or

log R D

Now the constraint D = 2 implies
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logR b 2 
(4.19)

or

2

R = R Mt(4.20)Rb I R

The result [Equation (4.20)] provides a fundamental relationship between Horton's

length and bifurcation ratios, showing that they both describe the same scaling

property evident in channel networks.We believe that the fact that DI is greater

log Rb
than 1 is responsible for La Barbera and Rosso's (1989) findings that log Rb is

log Rb
usually less than 2. Table 4.1 gives log R for some of the networks analyzed. We

do not believe it is possible for D of the planform of river networks to be different

from 2 as La Barbera and Rosso (1989) suggest. Estimation of Horton ratios are in

any case very imprecise and strong evidence for D = 2 was given in the previous

section.

In a river network with Horton's bifurcation and length ratio laws holding

exactly, we have seen that there are Rb~" order w streams of length L/R W. So

the total number of streams exceeding a length I = L./Rk is

k Rk+l I

Rb - (4.21)
i=0

log(L,/,)
where k = og(Q/ This sum counts all the Strahler streams between orders w

and fl, with k = Q - w.
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Table 4.1 Network Geometry data for Several River Networks

Basin Magnitude Rb R, log Rb

Souhegan, NH 177 3.5 2.0 1.8

Squanacook, NH 133 3.5 1.7 2.5

W15 Supp. A 20 329 4.2 2.1 1.9

W15 Supp. A 50 107 3.3 1.6 2.4

CONN Supp. A 20 1217 4.1 2.1 1.9

CONN Supp. A 50 486 4.7 2.3 1.8

Youghiogheny, MD 1798 4.6 2.2 1.9

Daddys Creek, TN 1181 4.1 2.2 1.8

Allegheny River, PA 5966 4.5 2.4 1.7

Based on data from Morisawa (1962).
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If the total number of streams is NT, we can write

Rk+ _I
Prob[length > = Rb /NT (4.22)

b

For k large so that Rk+l dominates 1 this becomesb

log Rb

Prob[length > 1J (4.23)

This explains the hyperbolic tail of the stream length distributions, Figures 4.3 and

4.4, in terms of Horton's laws and gives the connection between Equation (4.5) and

log Rb
the result, Equation (4.17) as A = log R b

4.4 Fractal Dimension and Tokunaga Cyclicity

The Tokunaga (1978) parameterization of scaling in river networks is

appealing because of its intrinsic self-similarity. This section will show how the

fractal dimension of channel networks is related to the Tokunaga (1978) parameters

K and c, and functions of them, P and Q, defined in Chapter 2. The Tokunaga

system does not suffer from the same inconsistencies as described above for Horton's

laws, another reason why it may be more appealing.

Tokunaga (1978) assumed LA = to derive a length scaling law. This has

the implied assumption that the basin is space filling and has linear channel

elements. We do not necessarily want to restrict ourselves to these assumptions, so

we rather assume that at the smallest resolution resolvable link lengths are on

average constant.
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It is fairly easy to show that under the Tokunaga system with lowest

resolvable order A, the number of links in a stream of order w is

M(w,A) = 1 + C, K - I" (4.24)

so with the constant link length assumption

L,= M(w,A)L = {l + E K - I }LA (4.25)

This is a stream length scaling, which for w--A large and K > I (which it practically

always is) gives

L

W-1
(4.26)

which is Horton's length law with Rt = K.

The total length of channels can be computed

(4.27)
c wL

L T = I N (1,w) M ( ,2) W

which with Equation (2.17) gives
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LjQ(2 +
T Q -

+ (2 + cl)Lf,

--
S- P) G---l _ p-

w=A 1 + e -

w=A I + ElL-K-F-

This consists of series of the form

At

1=0

with B a constant and A either P or Q. We are interested in the limit of small

resolution, i.e., A -+ - o or f - 0. In the limit KI

dominated by () I [Q is larger than P, Equation (2

L T x ( )~A

dominates B and the series are

.18)1. We therefore get

(4.30)

Now with the approximation, Equation (4.26), the first order streams have length

measure

s = LfKA~0 (4.31)

analogous to Equation (4.9). Interpreting this as the resolution we get similarly to

Equation (4.11)

I -log Q
L T oc s log K
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Now allowing the individual streams to be fractal (dimension DI), we get, analogous

to Equation (4.17)

D = Dlg (4.33)

or

(4.34)

With the space filling constraint D = 2, this implies

(4.35)

and

2

Q =K (4.36)

This shows how the parameters K and el must be related for networks to be space

filling. Also in the special case with linear individual streams, DI = 1, we get Q =
K2 which relates Equation (4.26) with Equation (2.21) given by Tokunaga.

Tokunaga (1978) derived the area scaling law (Equation 2.19) as an

asymptotic result under the assumption that inter basin areas are less than source

areas. This result can also be obtained under the assumption of constant average

area per link, or equivalently link area proportional to link length with link lengths

on average constant. To see this recognize that
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A = AA N(9,w)M(w,A)

wA

Q-o-1 ----
=A Q(2 + cl - P) + P (2 + c1)}

wA

l+ K K - (4.37)

This is a sum of geometric series with factor Q, Q/K, P, P/K. Since Q > P and K

> 1 in the limit A - oo, the series with factor Q dominates and we get Equation

(2.19).

4.5 Planar Scaling Summary

This chapter has emphasized the fact that river networks in plan fill space,

and therefore have a fractal dimension D = 2. The first section showed that three

different techniques all indicate empirically that D is 2. The next section showed

that in terms of Horton's scaling the space filling implies a relationship between Rb

and R. The following section showed how fractal dimension is related to

Tokunaga's scaling, and that space filling implies a relationship between K and c,.

Thus it is clear that space filling networks are in principle possible under both the

Horton and Tokunaga parameterizations of scaling. Furthermore the topologically

random model, which presumably has linear stream elements, results in Rt = 2, Rb

= 4 (Shreve, 1967) satisfying Equation (4.20) with De = 1. Also c, = 1, K = 2

(Tokunaga, 1978) implies Q = 4 and satisfies Equation (4.36) with Df = 1. It is

therefore plausible that random networks can be space filling and satisfy the

observed scaling laws. It is not clear whether this is a property of the particular
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form of -the random model assumed by Shreve (1967), with networks of equal

magnitude being equally likely, or a property of more general random models.

Karlinger and Troutman (1989) have suggested a random model based on equal

likelihood of all geometric trees spanning a grid. This is constrained to be space

filling. Further work is required on this model to investigate its scaling properties.
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Chapter 5

SLOPE SCALING

5.1. Introduction

A necessary step in understanding the link between erosive energy balance

and network form is the description of the variation of slopes and elevation drops

within a river network. This chapter focuses on the slopes of individual links within

channel networks and their variability. Link slope is regarded as a random variable.

The issue is how the probability distribution of link slope scales with link

magnitude, or area.

The recent paper by Gupta and Waymire (1989) suggested a model of link

drops with self-similar probability distribution functions (pdf), with area or

magnitude taking the role of scaling parameter. In this chapter we present results

based on large digital elevation model (DEM) data sets that show that while correct

for the mean their model does not fit the data for higher moments. A more general

multi-scaling model is needed to characterize the scaling of the full probability

distribution of link slope.

The next section describes the self-similar link drop model suggested by

Gupta and Waymire. Section 5.3 then gives the data we have on the scaling of link

slopes and drops. In Section 5.4 we present a model for link slopes that focuses on

the interplay between size and density of individual elevation increments, idealized

as steps. This model fits the observation when the density of elevation increments

changes with area as A0. This idea provides a mathematical characterization of

the multi-scaling variability of link slopes. The physical causes and mechanisms

resulting in this variability are still an open question. Section 5.5 summarizes our

findings and conclusions.
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5.2. Self-Similar Drop Model

Gupta and Waymire (1989) suggest a model for link drops given by

H (an) d H(n) (5.1)
M(a)

where H(n) is the random link drop for a link of magnitude n, a is a scaling factor,

p(a) is a normalization function, and denotes equality of probability distribution.

Equation (5.1) is the definition of self-similarity, or scaling invariance of a random

variable H(n), dependent on and therefore indexed by scale parameter n. Gupta

and Waymire (1989) show that quite generally p(-) is of the form

p(n) = n-0 (5.2)

Note that here magnitude n is used as a surrogate for area, as discussed in Chapter

2. Gupta and Waymire (1989) also suggest that link slopes are independent of link

lengths. Our data, as will be shown below, indicates lack of correlation between link

slopes and lengths, which justifies the independence assumption. The implication is

that link drop is dependent on link length, which is also verified in the data.

Therefore, we prefer to start with a self-similar assumption, analogous to Equation

(5.1), for slopes:

S(n) i p(a) S(n) (5.3)

where S(n) is link slope dependent on magnitude, with p(-) given by Equation (5.2).
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The justification for this assumption is the notion of self-similarity, and the

empirical observations of Flint (1974), and others, described in Chapter 2, with

magnitude used as a surrogate for area. Denote the random link length, assumed

independent of magnitude, by L. In our data we have not been able to detect

significant trends of L with magnitude. Then link drop is

H(n) = S(n)L (5.4)

so

H(an) = S(an)L i p(a) S(n)L = pt(a) H(n) (5.5)

equivalent to Equation (5.1).

Gupta and Waymire (1989) started with (5.1) and used the inverse argument

to derive (5.3). Equation (5.3) can alternatively be stated as:

Z= ) = S(l) (5.6)

i.e., the variable S(n)/p(n) is an iid random variable [equal in distribution to S(l)]

which we call Z. The self-similar model is simply

S(n) = p(n) Z

= n-0 Z (5.7)

This clearly shows the nature of the self-similar model which is characterized by

power law scaling, the scale parameter n is raised to the power -.
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Moments of the self-similar model scale proportionally to (n0 ) ki.e.,

E[S(n)] = n~0 E(Z)

Var[(S(n)] = n-20 Var (Z) (5.8)

Mk[S(n)] = n-kO Mk(Z)

where Mk(-) denotes the kth moment.

The quantiles of the self-similar model all scale proportional to n- 6 , i.e.,

QS (n) = QZ n-0 (5.9)

where QS (n) is a quantile (non-random value) of the slope corresponding to a

probability of exceedance 7, i.e.,

Prob S(n) > QS 7(n)j = Y (5.10)

and similarly QZ7 is a quantile of Z

Prob (Z > QZ 7) = 7 (5.11)

Gupta and Waymire (1989) incorporated this scaling in terms of link drops,

Equation (5.5), into the random topology model. They computed the expected

value of link concentration function (lef), conditional on magnitude from this model,

and showed that it compared well with empirically observed lcf's. This had been a

problem in earlier efforts [Gupta and Mesa (1988); Gupta, et al. (1986); Mesa

(1986) .
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The good fit to mean lcf's were the only results used by Gupta and Waymire

(1989) to justify the model [Equation (5.1)1. We feel that comparisons to the mean

lcf such as those of Gupta and Waymire (1989) are limited because only the mean

trend of drop variation with magnitude is tested. Higher moment or quantile

properties are not tested. Also using the mean lcf introduces unnecessary

mathematical complications to test notions that can be tested directly. Gupta and

Waymire (1989) emphasize the importance of the scaling invariance or

self-similarity of the link drop probability distribution as providing a fundamental

theoretical basis for empirical power law relationships. Although they also suggest

that multi-scaling corrections may be necessary, based on the fact that the

empirical scaling exponents reported by Wolman (1955) vary with quantile value,

they did not explore nor attempt to explain the inconsistency of this observation

with their self-similar model. In the next section we show that direct analysis of

data does not support scaling invariance as a model for link slopes.

5. 3. Empirical Evidence of Scaling in Elevation

The data presented in this chapter is from Big Creek, a tributary of the St.

Joe River near Calder, Idaho, and the St. Joe River itself (CALD and STJOE in

Table 3.4). Big Creek is a 147 x 106 m 2 basin covered by a combination of four U. S.

Geological Survey 7.5 minute DEM's that give elevations on a 30m grid. The St.

Joe River is a 2834 x 106 m2 basin with DEM data from a combination of three 10

Defense mapping agency series DEM's that give elevations on a 3 arc second grid

(60m x 90m approximately). Figure 5.1 gives a map of the St. Joe River and Big

Creek.
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Figures 5.2 and 5.3 show link slopes plotted against magnitude, 2n-l and

area for these two data sets. To obtain these figures a support area of 300 pixels

was used for the Big Creek (CALD) basin and 200 pixels for the St. Joe River

(STJOE). These are the physically justifiable support areas for these basins

identified by the procedures of the next chapter. In these figures n, 2n-1, and area

are for practical purposes interchangeable scaling indices. We interpret area as

being the fundamental scaling index, with n and 2n-1 good surrogate measures. In

the remainder of this chapter we use A as our scaling index. We could have

obtained the same results using 2n-1 or n as surrogates for A.

In Figures 5.2 and 5.3 there is considerable scatter in the individual link

slopes; however, by ranking the links according to scale index (A, n or 2n-1), the

links are grouped into bins containing at least 20 links that cover a narrow range of

scale index. The group sample means are plotted as circles in Figures 5.2 and 5.3

and show power law scaling approximately proportional to A-0. 5 . This by itself is

in agreement with the self-similar model. The group sample variances are plotted

in Figures 5.4 and 5.5 and show power law scaling proportional to A-0. 5 . If the

exponent 0 is estimated from the mean (Figures 5.2 and 5.3) as 0.5, the self-similar

model [Equation (5.8)] would predict that slope variances should scale proportional

to A~. This is not the case in Figures 5.4 and 5.5 and is the first indication of

failure of the self-similar model.

Further evidence of the failure can be obtained by looking at the distribution

of the normalized variable Z = S(A)/p(A) [Equation (5.6)]. With 0 = 0.5 from

Figures 5.2 and 5.3, we can compute Z for each link. This gives N = 2n-1

realizations of Z, so for n large (which it is) we can get an idea of the probability

distribution of Z by ranking and plotting according to the plotting position P =

NTT, where i is the rank from largest (1) to smallest (N) of the N realizations of Z.

This is done in Figures 5.6 and 5.7 for the Big Creek and St. Joe Rivers.
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Also shown are the probability distributions estimated from subsets

consisting of all links with a given Strahler order. 95% confidence limit error bars in

the plotting position probability computed from the incomplete beta distribution

are shown. [The incomplete beta distribution is the theoretical distribution of

non-parametric estimates of probability. For further information on this, see for

example Zhang (1982) and references therein.] The Z are supposed to be iid, i.e.,

independent of Strahler order, so sets of links from different Strahler orders should

have the same probability distribution. This is not the case and is another

indication of the failure of the self-similar model of slopes.

Tables 5.1 and 5.2 give statistics of link properties for the Big Creek and St.

Joe Rivers. The tables show how the mean and variance of slope and drop both

decrease with order. The normalization accounts for the trends in the mean, but

makes the normalized variance and hence coefficient of variation increase with

order, counter to what the self-similar model for full distribution would predict.

Also note that correlation coefficients between slope and length are negligible,

whereas the correlation between drop and length is not. This gives some credence to

the assumption of independence between slopes and lengths, and is the basis for our

regarding slope as the more fundamental variable than link drop in Equation (5.3).

Significance tests on the difference between the mean (t test) and variance (F test)

of the normalized slopes given in Tables 5.1 and 5.2 are given in Table 5.3. These

indicate very little significant differences between the mean normalized slope of

links of different orders, indicating that the normalization works for the mean.

However, for the variances the hypothesis that the different order links are from the

same population is rejected at the 0.05 level for the great majority of cases. This is

a clear failure of the self-similar model to characterize the link slope distribution.
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Table 5.1. Big Creek Link Statistics.

Magnitude 139, Order 4 basin

Strahler Order

All 1 2 3 4

Number of Links 277 139 61 42 35

H (m) 82 121 79 21 9.4

Mean S 0.136 0.203 0.114 0.039 0.020

L (m) 614 591 735 612 497

H (10 3m2 ) 7.36 9.0 3.6 0.54 0.12

Variance S(10- 3 ) 11.1 9.2 2.9 1.9 0.55

L (10 3m 2) 240 221 228 384 141

Coefficient H 1.04 0.79 0.77 1.10 1.16
of Variation S 0.78 0.47 0.48 1.12 1.20

L 0.80 0.79 0.65 1.01 0.76

Normalised H/p(n) (m) 123 121 145 102 117

Mean S/ji(n) 0.204 0.203 0.208 0.173 0.238

Normalised H/4(n) (10 3m2 ) 11.9 9.0 12.6 16.2 16.7

Variance S/p(n) (10- 3 ) 22 9.2 9.0 34.7 78.1

Coeff. of Var. H/p(n) 0.89 0.79 0.77 1.24 1.10

for Norm. S/g(n) 0.72 0.47 0.46 1.07 1.17

Correlation H & L 0.61 0.84 0.66 0.77 0.55
Coefficient S & L -0.02 0.009 -0.20 -0.09 -0.02

Between Norm. H & L 0.77 0.84 0.67 0.85 0.59

Norm. S & L -0.04 0.009 -0.17 -0.03 -0.01

H = Link Drop

L = Link Length

S = Link Slope defined as H/L

The function .t(n) = n-0.6 is divided into H or S to get the normalised statistics.
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Table 5.2. St Joe River Link Statistics.

Magnitude 621, Order 5 Basin

Strahler Order

All 1 2 3 4 5

Number of Links 1241 621 295 173 89 63

H (m) 90.6 135 72.8 30.5 14.9 4.8

Mean S 0.066 0.100 0.047 0.026 0.013 0.0038
L (m) 1356 1383 1465 1233 1180 1176

H (10 3m2) 11.2 14.7 5.1 1.27 0.53 0.26

Variance S (10-3) 4.7 5.6 1.4 1.3 0.78 0.20

L (10 3 m2) 1209 1527 1054 785 616 675

Coefficient H 1.17 0.90 0.98 1.17 1.55 3.33

of Variation S 1.04 0.75 0.82 1.41 2.08 3.66

L 0.81 0.89 0.70 0.72 0.66 0.70

Normalised H/4(n) (m) 136 135 135 131 145 149

Mean S/I(n) 0.102 0.100 0.088 0.109 0.13 0.126

Normalised H/p(n) (10 3m2) 32.6 14.8 16.9 24.8 65.1 262

Variance S/g(n) (10- 3) 26.3 5.6 5.1 24.8 78.5 264

Coeff. of Var. H/(n) 1.33 0.90 0.96 1.20 1.75 3.43

for Norm. S/p(n) 1.59 0.74 0.81 1.44 2.16 4.08

Correlation H&L 0.67 0.79 0.73 0.61 0.32 0.16
Coefficient S & L 0.01 -0.03 0.09 -0.03 -0.04 0.02
Between Norm. H & L 0.51 0.78 0.74 0.57 0.28 0.14

Norm. S & L -0.01 -0.03 0.09 -0.03 -0.04 0.004

H = Link Drop

L = Link Length

S = Link Slope defined as H/L

The function (n) = n-0.6 is divided into H or S to get the normalised statistics.
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Table 5.3
Significance Tests for the Difference Between Normalized SloDes of

Different Order

Difference of means t test

x - y

(n_) S + (n _ ) S2

n + ny - 2 n nX y

ta/2,n +n Y-2

Difference of Variances F test

Fa/2, n _ l ,

Comparisons by order for Big Creek

All 1 2 3 4

All 0.07 0.2 1.22 1.13

1 2.39 0.34 1.39 1.23 t

2 2.44 1.02 1.25 0.77
* * *

3 1.58 3.77 3.86 1.22
* * * *

4 3.55 8.5 8.68 2.25

F

Comparisons by Order for St. Joe River

All 1 2 3 4 5

All 0.29 1.4 0.53 1.48 0.96
* * *

1 4.7 2.3 1.1 2.19 1.15 t
* * *

2 5.1 1.1 1.97 2.34 1.22
* *

3 1.1 4.4 4.9 0.78 0.39
* ***

4 3.0 14.0 15.4 3.2
* ****

5 10.0 47.0 51.8 10.7 3.4

F

= Significant at a = 0.05 level
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5.4. Link Slope Scaling Model

Let us view the fall in elevation along a stream as composed of distinct

discrete steps. This is consistent with the notion of pools and riffles due to Yang

(1971a) and has possible justification in terms of energy expenditure arguments. The

location of steps will be taken as random according to a general stationary point

process along the length of channel. Thus the number of steps in a fixed length of

channel will be a random variable. The size of individual steps will be taken as iid

random variables, which implies that the accumulation of elevation changes is a

marked point process. The scaling will be introduced through the intensity or rate

of the point process A, which will be taken proportional to p(A) = A 0 .

Let a link have a random length L. Then the number of steps in the link is a

random variable J with distribution, conditional on L, denoted PJ I LOj1) for j a

non-negative integer (0,1,2,...). From properties of general orderly point processes

(Cox and Isham, 1980), we get

E[JIL] = AL (5.12)

and we characterize the point process by its index of dispersion defined

I(L) = Va i (5.13)

Note that for a Poisson process I(L) = 1, and for a process with uniform step spacing

(i.e., no randomness or variance), I(L) = 0. The index of dispersion indicates over

dispersion or under dispersion of the points with respect to the Poisson process, and

in general may be scale dependent, i.e., dependent on L.
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The steps are iid random variables denoted by Yi, so the link drop is

J
H = Y' (5.14)

i=l

Define the random link slope

HS = H (5.15)

The objective is to derive the moments of S and H, since these describe the random

structure of the network in elevation. This is done in terms of the joint distribution

of H and L. H is a function of J which is conditional on L, so H and L are not

independent.

Let the Yi have probability density function (pdf) fY(y). Then for J given
1P

the pdf of H is the J fold convolution of fY(y), Feller (1971), denoted fy (h).

Summing this over the distribution of J we get, conditional on L

fHIL (hIf) = PJ I L jI') f (h) (5.16)
j=0

From the definition of conditional probability, the joint pdf of H and L is

fH,L(hi) = fHIL(hl1) fL

= fL() P(jLt) f(h) (5.17)
j=0

where f LMt is the pdf of link lengths L. With this
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E[S] = E [H] hf

h=0 1=0
,L (hf) dh dt

-0= '1
=0

= '1

=00

=A Y

00

=1I
f=0 h=0 1

E[ ]

00

~fL
j=0

00

fL=
j=0

JIL(j ) j
h=O

h f (h)dh df

If L

(5.18)

(h,l) dh dI

(5.19)

where ay is the standard deviation of the step height Y and the expectation is now

over the distribution of link length. Then

Var[S] = E[S 2 ] - [E[S]] 2

- A[L 2y E[ ]

Similarly, we obtain

E[H] = A I Y7

(5.20)

(5.21)
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Var[H] = 2 A2 Y2 + A2 2 E[LI(L)] (5.22)

Cov(S,L) = Corr(S,L) = 0 (5.23)

Corr(H,L) = (5.24)

E[L I ( L)] / L + ory/IV2

A )/L 2 -2)

where Cov denotes covariance and Corr denotes correlation. Note that the

correlation between S and L is 0 as observed in Tables 5.1 and 5.2, whereas the

correlation between H and L is not. Implicit in these results is the assumption that

expectations E[ t, E[LI(L)], and E[E] exist. This places minor restrictions on the

distribution that can be used for L and the point process that can be used. Now the

scaling can be introduced by letting

A = kp(A) = k A-0 (5.25)

From (5.18) we then get

E[S] = k Y A-0 (5.26)

and from (5.20)

Var[S] = k{oy E[ ] + Y2 E[ t-1}A 0  (5.27)

This is of the form observed in Figures 5.2, 5.3, 5.4, and 5.5 and is different from the
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scaling predicted by the self-similar slope model of Gupta and Waymire (1989).

From Equations (5.26) and (5.27), we get the coefficient of variation of slope

2

_ 2;z E[ ] + E[ ]1 /2
C =g V ar TS T_ [ 7 A 1/2 (5.28)s E ISJ k

which is an increasing function of A or order, as observed in Tables 5.1 and 5.2.

The elements of this model essential to explain the multi-scaling of link

slopes are the Yi being iid and the mean density of steps (or rate of the point

process) being proportional to A-. For a fixed length of channel, x, and letting A

be proportional to A~ 0 in Equations (5.18) and (5.20), we get

E[S] ~ A-0 7 (5.29)

Var[S] A 0 fa+Y2 I(x)} (5.30)

In constructing models of link drops or slopes, there are two possibilities.

The normalization A-0 can be applied to the step height Y or step density A. We

see that the choice results in fundamentally different scaling behavior. Applying the

normalization to step height Y leads to moments scaling proportional to (A-0)k and

the self-similar model. Applying the normalization to the density A leads to

moments scaling proportional to A~0 as observed. An important finding is

therefore that the scaling of slopes is consistent with self-similarity in the density of

steps or rate of elevation changes and not with simple self-similarity of the slopes or

drops of individual links. This clarifies the nature of the multi-scaling of channel

slopes. A physical explanation of why the density of steps or elevation increments
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scale the -way suggested here is an open question.

The discreteness of the steps in this model can be removed by considering a

limit process with k -+ o and Y -+ 0, that maintains the desired properties. In

particular we must have E[S] given by Equation (5.26) remain bounded, i.e., not

diverge to o or 0. This suggests a limit in which

I i m (kY)= constant (5.31)
k- 00
7-40

i.e., k ~ . Also, Var[S] as given by Equation (5.27) must remain bounded. The

variance can be written as

Var[S] = k y2 E[I] C2 + E[ L]j A-0 (5.32)

where C = Y. From Equation (5.31) 1 im(k Y2 ) = 0, so we must have
7 k--+ 0

Y'-o

1 im(k Y2 C2) = constant (5.33)
k-+oo

Y-40

With Equation (5.31) this implies

2

1 im(Y C ) = 1 im ( ) = constant (5.34)
k- 00  k --+ V
Y-.0 Y-+o
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The question is whether distributions exist that have Y -+ 0, oy -+ 0, but CY -+ o as

is needed by (5.34). One possibility is the Gamma distribution, which also has the

desirable property that Y > 0 as is sensible for link drops. The Gamma pdf is

(Feller, 1971)

v-i -3y

fy(y) = mv) e
N'Ov

(5.35)

where # is the scale parameter and v the shape parameter. This has moments

(5.36)

which give

CY - I ' (5.37)

Therefore,

(5.38)

and

k =k v (5.39)
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1so a Gamma distribution with 3 held constant and v ~ will satisfy our conditions

(5.34) and (5.31) in the limit as k - o.

This limit process is analogous, but not equivalent to the limit of a random

walk resulting in Brownian motion. In Brownian motion the central limit theorem

gives the Gaussian distribution as the limit distribution. The central limit theorem

(Feller, 1971, p. 259) applies to the limit sum of mutually independent random

variables with common distribution. Here the limit involves changing the shape of

the distribution as the limit is approached. Clearly the central limit theorem does

not apply. In fact when Y is Gamma distributed [Equation (5.35)] and we consider

a fixed length of channel L with uniform step distribution [I(L) = 0)] , the number

of steps is kn 9OL so H and S are Gamma distributed. For S

f = 0s ekCv-l - (5.40)fSIL I kCv) e(4

where C = Ao.

In the limit. v - 0, k - o, but v ~, i.e., take vk = C2 a constant. Therefore

the pdf of slope for a fixed length of channel is by construction, for all k including

the limit k -4 oo, the Gamma distribution

f5 MOSI= CC2. jSf (5.41)
fSIL(SMl = r $(CC 2 (.

In fact, a result from statistical mechanics, the saddle point approximation or

method of steepest descent, can be used to show that when a Gamma distribution is

assumed for increment heights, the limit slope distribution conditional on length is

also the gamma distribution given in Equation (5.41), for all point processes that are

asymptotically normal. This is a wide class of point processes including the Poisson
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process, renewal processes and Neyman Scott processes (Cox and Isham, 1980); we

do not believe that the asymptotic normal assumption is particularly restrictive.

Equation (5.35) in (5.16) gives for fixed L with v = C2 /k and the change of

variables H = SL

C200-1

fSjL(s)= I PJII LO I se
j=0 jC 2

(5.42)

Now substituting the normal density function for PJI Lj I ) we get

C2 j

fs 0 =1 1 -(j-kC) 2/2kC [f(gst) e se di
_W T 27rkC 2

f 00e k(j )dj (5.43)

where

AD) ( j-k C)2 . C2j-k) jndst - -in 2 rkc
2k C k

1 In (jC2 (5.44)
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Theorem:

uim f ek V(x) dx = ek p(xm) (5.45)
k- o ,w

where this limit exists. Here xm is the value of x that corresponds to the global

maximum of V(x). Clearly for the limit to exist, p(x) must have highest order k

terms proportional to k except for isolated x. An integral analogous to Equation

(5.45) occurs in statistical mechanics.

Proof:

This proof repeated here for convenience can also be deduced from Negele

and Orland (1987, p. 121) or Huang (1963, p. 210).

Expand V(x) about xm in a Taylor series

V~x) V~x(x-xm )2
m(x) = p(xm) + (x-xm) ' (xm) + 2  m

+ m 
((n)x(x (5.46)

+ -- lM
n=3

Since p(xm) is a maximum p' (xm) = 0 and V' '(xm) < 0, we can write

I =f e k V(x) dx (5.47)

k (xx)n (
00kV(xm) - I(x-xm)2I , ,(m) I + E k m (n)--V

=f e n=3 dx

With the change of variables r = k I ' (xm) I (x-xm) this becomes
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S00
k p(xm 00 - 2/2 + E

I= e f e n=3

kp''(xM)I

n

dr

(5.48)

For k -4 o the terms with n > 3 go to zero and the integral is Gaussian so we

get:

I= ek(x m) 2 r

I V''(xm)Ik
(5.49)

= (xm) + fn 2r

kI ''(xm)I

f i m = (xm)
k-+ o

lim I= ek p(xm)
k-+oo

o(j), Equation (5.44), has a maximum for k large at jmax = kC, so (using the above

theorem) we get for k -+ o,

120

So

e I

and

(5.50)

so

(5.51)

(5.52)

I (n)(x
kn/2-1 9 n



CC 2 -1 f-st

L( (CC)2 (5.53)

which is identical to Equation (5.41).

Empirical support for the link slope scaling model suggested in this section is

obtained by looking at the probability distribution of link slopes. The unconditional

or marginal distribution for link slope is

00
fs (s) = fL ( S IL (s 1 ) di (5.54)

t=0

A common although perhaps not the best distribution for link lengths is the Gamma

distribution, written here (analogous to Equation 5.35)

fL = ( ) (5.55)

See van der Tak and Bras (1989), Abrahams (1984), or Abrahams and Miller (1982)

for discussion of the merits of various link length distributions.

We were not able to evaluate the integral in Equation (5.54). This at first

glance appears simply the product of Gamma functions; however, the realization

that C = A-09 in (5.53) complicates the integration over f. Hence, we estimated

fS(s) by simulation. First we sample from the distribution of L [Equation (5.55)],

and then with L known from the distribution of S I L [Equation (5.53)].

Figures 5.8 and 5.9 give estimates for the exceedance probability distribution

of link slopes. The parameters used were a = 1.96, A = 313.7, 0 = 0.04225, C2 = vk

= 0.0086, 0 = 0.6, and A given by Equation (5.25). These parameters were chosen
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to match the following moments of the Big Creek data set: E[L], E[ ], E[S], Var[S].

One thousand variates were simulated and the exceedance probability obtained from

the plotting position P = The magnitudes of 1, 4, 16, and 64 were chosen as

surrogates for area because according to the random topology model in infinite

networks they are equivalent to Strahler orders 1, 2, 3, and 4. In Figure 5.8 note the

decrease in mean slope with order as well as change in shape emphasizing the

non-self-similarity of the slope distributions. Figure 5.9 gives the same data but

here the slopes have been normalized by p(n) = n . The mean is preserved but the

distributions differ in shape. The similarity between simulated (Figure 5.9) and

empirical (Figure 5.6) distributions is evident. In Figure 5.10 the link slope data for

Big Creek are plotted without normalization (contrary to Figure 5.7). The

comparison of the simulated link slope distributions (Figure 5.8) and the empirical

distributions for Big Creek (Figure 5.10) is very good.

Chapter 2 mentioned the empirical finding of Broscoe (1959) that the

average drop in elevation along Strahler streams was approximately constant,

basically due to the fact that Rs ~ R for many networks. Here we investigate the

effect of this in the context of the discrete step model. The change in elevation

along a length of channel L is composed of a random number J of discrete jumps

distributed conditionally on length, PJJ L0jI ). This probability distribution is

dependent on the rate A. Many point processes, including all those for which I(L) is

constant, are scale independent and will have a dimensionless form of the

probability distribution written PJ AL(j Ae), i.e., conditioned on the dimensionless

parameter AL. Now consider the length L to be a Strahler stream. Then assuming

Horton's length law, the mean length is

L = L 1R'l (5.56)
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Thus the dimensionless parameter for stream drop distributions is ALIRL . Now

step heights are taken to be iid, so for the constant drop property to hold the

number of jumps on average in each stream should be the same. This implies that

the distribution of stream drops should be the same for all streams. Some data

presented in chapter 6 (figure 6.6) supports this.

This implies, with A given by Equation (5.25)

AL1R ' = kA1L R ' = constant (5.57)

or since k and L are constants

A~~ Rr = constant (5.58)

Here the dependence of A on order w has been shown. Equation (5.58) gives

R =Awi = R (5.59)

with 0 ~ 0.5 to 0.6 as found for a lot of our data this is within the typical values

found for R, (1.5 - 2.5) and Ra (3 - 5), at least within the scatter of estimation of

Rt and Ra. This result, achieved by assuming Horton's laws, the constant drop

property and the slope scaling model has intriguing connotations. It links length

and area aspects of river basin geometry. Empirically lengths and areas have been

linked by a power law, Equation (2.37), [Eagleson (1970); Hack (1957)] , as

L x A-a (5.60)
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where L is mainstream length and A basin area. The exponent a ~ 0.56. If we

assume that mainstream length can be scaled to length of the highest order stream

by a constant coefficient, a self-similarity assumption, Equation (5.60) can give

R= Ra (5.61)i a

identical to Equation (5.59). This is an unexpected connection between the length

area scaling and slope scaling exponents.

5.5. Conclusions

The important conclusions from this chapter are:

* link slopes are not self-similar with respect to area as a scale index.

Rather they are multi-scaling, manifested by the fact that the

coefficient of variation of slope increases with scale (i.e., area or

magnitude).

* The nature of this multi-scaling has been identified. It is such that

the density of elevation increments within a channel scales

proportional to A-0 (or n 9 0) while the increments themselves show

no apparent trend.

* The data has confirmed that link slope and link length are

uncorrelated, although not necessarily independent. This implies that

link drop is correlated with link length and that therefore slope is a

more fundamental variable than drop.

Although the data presented is for only two river basins, the conclusions are

believed to be generally valid for the majority of rivers in a stlate of balance or

equilibrium. Further work is required to discover the physical mechanisms that

result in these observations.
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Chapter 6

BASIC SCALES IN THE LANDFORM

6.1 Introduction

Clearly the scaling discussed in the previous chapter, represented as

S x A~0 (6.1)

cannot hold over all ranges of scales in the landscape. In particular as A -+ 0

towards hilltops, Equation (6.1) would predict infinite slopes, a nonsensical result.

The main point of this chapter is that the scaling breaks at the scale of dissection

of the landscape, or drainage density scale. We will show how a break in slope

scaling manifests itself in digital elevation data and use an analysis of sediment

transport processes to justify that this break in scaling is the basic scale or

drainage density. The break in slope scaling is due to a switch in the dominating

sediment transport mechanism from fluvial at large scale to diffusive hillslope

mechanisms like soil creep and landsliding at small scale.

The break in scaling can also be detected by a failure of the constant stream

drop property. The third section focuses on this, providing the connection between

stream drops and link drops discussed in Chapter 5.

The last section presents a table of results comparing the drainage density for

all the DEM's analyzed, determined by both techniques for detecting the break in

scaling, as well as estimated directly from the DEM based on local procedures to

identify concave pixels.
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6.2 Slope-Area Scaling

Figure 6.1 gives a plot of slope versus area, where a small support area was

used to extract the network. Area is total contributing area measured at the

downstream end of each link and slope is mean link slope defined as elevation drop

divided by link length. It is a link average slope at the scale the network is

extracted. Here the scale or support area of extraction of the network serves to

define the length of averaging for computation of slopes. Figure 6.1 has significant

scatter indicating that link slope is highly variable. However, when many links

with similar area are grouped together and averaged (circles in Figure 6.1) the

mean slope is seen to follow a fairly smooth trend. The straight lines are fitted to

the circles using two phase regression. The line to the right of the switch point,

with negative slope, corresponds to the scaling described in Chapter 5. The switch

point gives the scale at which this scaling breaks and is the support area that

should be used to extract channel networks from DEM's. Then the drainage

density obtained will correspond to the basic scale in the landscape.

To understand the nature of the break, we need to look in more detail at the

sediment transport processes present on the hillslopes and in the channels. The

literature (see Chapter 2) has suggested that sediment transport can be written

F(S,a) where a is contributing area per unit contour width and S slope. Chapter 2

gave the conditions for dynamic equilibrium, or a constant form solution in terms

of continuity equations of water and sediment. Solution to these equations must

result in the sediment transport past every point being equal to the amount of

material added upstream of that point due to the uplift U. This is expressed

mathematically

F(S,a) = Ua (6.2a)
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which for U given and the functional form F(-) known, is an implicit relationship

between slope S and area a. In this expression U does not have to be restricted to

uplift but can be thought of as average degradation rate over a fairly large area. A

common form of F(-) given in Chapter 2 is

F(S,a) = I am Sn (6.3a)

with exponents from Table 2.1. Together with Equation (6.2a) this implies

m-1

S cx a n (6.4a)

The same argument can be used in the context of channels and concentrated flow

contributing area A to get analogous to Equations (6.2a), (6.3a), and (6.4a)

F [S,Q(A) = F(S,A) = UA (6.2b)

F(SA) = Am Sn (6.3b)

[perhaps with different coefficients f, m, n from Equation (6.34a)]

m-1

S x A n (6.4b)

which is analogous to Equation (6.1) with = m. Typical values for river

sediment transport m = 2.5, n = 3 (Table 2.1 or Leopold and Maddock, 1953), give

0 = 0.5, possibly an explanation of the mean scaling of slope with area (Willgoose,

1989).
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The numerical equivalence of a and A in digital elevation data allows us to

apply notions developed for a to the concentrated area A. This will be done here

for the Smith and Bretherton (1972) stability criteria [see Chapter 2, Equation

(2.42) .

Recognizing that Equation (6.2b) defines a function S(A) implicitly, we can

write

F [S(A), A] = U A (6.5)

which upon differentiation and multiplication by A gives

A ad+ A a= U A = F (6.6)

This can be rewritten

A -F dS F - A -8 F (6.7)

Here the right-hand side is equivalent to the stability criterion of Smith and

Bretherton (1972) which Kirkby (1980) suggests can be used to determine drainage

density. For F - A jX < 0, small perturbations grow into rills and ultimately

channels.

For F - A X > 0, small perturbations do not grow so the landform remains

smooth, i.e., hillslopes. Now on the left-hand side of Equation (6.7), A is always

positive and a we expect to be positive so stability depends on the sign of dS

dS < 0 results when there is instability and channelization, otherwise dS > 0.

This suggests that a break, or change in gradient of the S(A) function is a dividing

scale separating the distinctly different regimes of channels and hillslopes, and
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justifies our assumption that the break in Figure (6.1) gives the basic scale in the

landscape.

Equation (6.3) considered only one sediment transport function under

dynamic equilibrium. In principle many sediment transport processes may operate

at the same scale. Here we consider what happens when two mechanisms are

operating and we assume the total sediment flux is the sum of the two

mechanisms.

F(SA) = Fl(SA) + F2 (SA) (6.8)

Putting this equal to UA as in Equation (6.5) and solving for S(A), the slope-area

profile under dynamic equilibrium for combined sediment transport is obtained.

This is given in Figure 6.2 for three different plausible hillslope sediment transport

functions combined with a river sediment transport function. These figures show

that in all three cases a slope-area profile that changes from positive, or near zero

gradient, to negative gradient is obtained. This change over is accompanied by a

switch in the process that dominates the sediment transport. At small

contributing areas, or small scale, the sediment transport is dominated by the

hillslope process whereas for large contributing areas or scale river erosion

dominates.

Thus the break in slope-area scaling is accompanied by a switch in process

dominating sediment transport, consistent with the notion of change from a

channelized to a hillslope regime. This analysis points out the importance of

slope-area curves in analyzing landforms. They give information about the

fundamental scales and suggest how the scaling in between these scales can be

interpreted in terms of sediment transport processes.
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To objectively test for the break in scaling we use two-phase regression

(Solow, 1987; Hinkley, 1969). The technique is applied to a set of ordered pairs (xi,

yi), i=l,...,n, that are assumed to be related by

yi = a0 + b0 x + b(xi - c)I(xi - c) + ei (6.9)

where ao, bo, b and c are parameters in the regression. I(.) is the indicator

function defined

0 for x < 0

IIx =for x > 0

and ei are the errors, assumed iid. The parameter c gives the switch point. The

slope for x < c is b and for x > c is b0 + b. The parameters are estimated by

minimizing the sum of squares

n 
2

SS= [y - [ao + boxi + b(xi - c)I(x - c)] (6.11)
i=l

For c fixed SS is a quadratic function of ao, b0 , and b so by differentiating

Equation (6.11) with respect to a0, b0 , and b and setting the derivatives equal to 0,

the normal equations are
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nao + Elxibo + (E2xi - cn2 )b = Ey

lxiao + Elx 2b + (E2x? - cx2xi)b = Elxiyi (6.12)

22 i 2

= j2xiyi - Ey

where is the sum over all data, E2 is the sum over points with xi > c,

the number of points with x > c. These can be solved to give values a0 ,

that minimize SS. A grid search over possible values of c is then used

the set ao, b0 , b, c that minimizes SS. According to the model (6.9),

maximum likelihood estimates of the parameters (Solow, 1987).

This regression should be tested against the null model, norn

regression without a switch point.

and n 2 is

bo, and b

to obtain

these are

al linear

(6.13)yi = an + bn xi

with residual sum of squares SSo. Solow (1987) gives the likelihood ratio statistic

(SS,- SS)/3
R= SS/(n-4) (6.14)

The test is to reject the null hypothesis, that the two phase regression is not

different from linear regression, at the 1 - a level if

R > F3,n- (1- a)
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where F3,n-4(l - a) is the I - a quantile of the F distribution with 3 and n - 4

degrees of freedom.

Confidence intervals can be placed on the estimate of the switch point c.

Following Solow (1987), the two-sided test of null hypothesis H0 : c = c0 with

significance level 1 - a is to accept H0 if

(SS' - SS)/[SS/(n-4)] F 1, 4 (l - a) (6.15)

where SS' is the sum of squares from fitting model (6.9) conditional on c = co.

Then the (1 - a) confidence interval for c is the set of co satisfying (6.15). For the

data in Figure 6.1, the regression was done using the natural logs of the mean data

(circles). Parameters were ao = -4.18, bo = 0.266, b = - 0.75, c = 11.87, and the

regression was significant [Equation (6.14)] up to the level 1 - a with a = 5 x

10 6, i.e., with 99.9994% confidence. Figure 6.3 gives a plot of the sum of squares,

SS, versus c for this data. The minimum SS at ec = 143 x 103m2 is clearly seen.

95% confidence limits for the switch point obtained from this data using (6.15) are

107 x 103 <ec < 221 x 103.

It is possible to apply this technique to slopes and areas of individual pixels,

as well as slopes and areas of 'links" from a channel network with small support

area. In principle the individual pixel data is like using a support area of 1 pixel to

extract a network. The use of higher support areas just means slopes are averaged

over longer distances thus reducing the effect of DEM data error. Table 6.1 gives

an idea of the averaging length associated with different support areas for the W15

data set. It is similar for other data sets.
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Table 6.1: W15 Data set Link Lengths

Support Area Mean Link Length
(no. of pixels) (m)

1 30 (grid spacing)
5 84
10 116
20 177
50 365

We have applied both techniques to our data sets to obtain the series of plots,

Figure 6.4(a)-(u). In these the minimum number of points (pixels or links)

averaged together was chosen large enough to minimize the scatter. This number

is indicated in parentheses in the legend of each plot. Two phase regression was

applied to all the points plotted. The drainage densities determined from using

the break point in these figures as a support area to extract channel networks are

given in Table 6.2 where they are compared to drainage density estimated from

other techniques.
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6.3 The Constant Stream Drop Property

Broscoe (1959) reported that on average the drop in elevation along Strahler

streams was approximately constant. Chapter 2 showed how this is basically due

to the fact that Rs Rf for many networks. Here we use the constant drop

property as a test for the break in scaling. This is based on the assumption that

the constant drop property, Horton's slope law and the slope area scaling are really

manifestations of the same thing and should break at the same scale. The results

will show how well this is borne out.

Figure 6.5(a) shows the drops of all 142 streams in the magnitude 107, order 5

network extracted from the W15 data set with support area threshold of 50 pixels.

Stream drops are highly variable and we need to test whether the constant drop

property is valid in the sense that the mean drop is independent of stream order.

The t statistic for the comparison of means of different populations (Beyer, 1984) is

used to compare the mean drop for streams of different order.

t = _ y (6.9)

(xs -1) S 2+ (n - 1) S+
n + n 2nx+n x y

where x and y are the sample means, S2 and S the sample variance, and nx andx y

ny the sample sizes of the two populations x and y. The t for the difference

between successive orders is given in Figure 6.5(a). The fact that It I is not larger

than 2 indicates that the null hypothesis of no difference the means cannot be

rejected at the 95% confidence level. This is also seen graphically in terms of 95%

confidence limits on the sample mean assuming it is t distributed. A horizontal

line that passes through all the error bars could be drawn, indicating constant

mean drop that is not significantly different from the sample mean drops at any
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order. -This is not always the case. Figure 6.5(b) gives the case where a support

area of 20 pixels has been used to define channel networks in the W15 catchment.

Notice that the mean drop of first order streams is significantly less than the other

mean drops. According to the t statistics, the break in scaling occurs between

support areas of 20 and 50 pixels.

Dramatic evidence of the break in scaling is given by considering the stream

drop probability distribution. This is done in Figure 6.6 for the W15 basin.

Exceedance probabilities are calculated using the Weibull plotting position

P = N .(6.10)

where i is the ranking from smallest to largest and N is the number of streams in

the sample, are plotted. 95% confidence limits computed from the beta

distribution are shown. We see that the distribution of first order drops in the

support area 20 network stands out from the other distributions which are all

intermingled. This corroborates the difference between first order drops at support

area 20, and other stream drops. Straight line fits on this semi log plot suggest the

exponential distribution as a good model for stream drops, and that Strahler

streams of different order have practically the same probability distribution above

the point where scaling behavior breaks. This data justifies the assertion in

Chapter 5 that the distribution of stream drops is the same for all Strahler

streams.
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Tests for the break in scaling using the constant drop property can be done

graphically with several plots like Figure 6.5(a) and (b) compressed into one plot.

Figures 6.7(a)-(u) give these for all the basins analyzed. For each support area

the stream drops, mean drop and 95% confidence limits of the mean are plotted

against order. Within each grouping order increases from left to right. Statistics,

including the t statistic for the difference between mean first order stream drop

and higher order stream drops are printed below the figures. There is a common

pattern apparent in most of these figures. To the left (small support area) of a

limit or threshold support area, the constant drop property fails whereas to the

right (large support area), the constant drop property holds. This limit, the

smallest support area for which the constant drop property is not rejected, gives

another measure of the basic horizontal length scale in the landscape, measured in

terms of support area or drainage density. The basic scale obtained from these

figures is listed in Table 6.2 for comparison with data from other procedures.

Since the constant drop property is basically equivalent to R5 ~ Re ~ 2 , it

corresponds to slope-area scaling with 0 = 0.5. The test for the break in the

constant drop property is really a test for deviation from 0 = 0.5 and is therefore

slightly different from the two-phase regression which tests for any break in the

slope versus area functions. Nevertheless, as will be discussed in Section 6.5,

results from the two procedures agree fairly well.

The outcome of the constant drop analysis is basically two length scales.

The horizontal length scale (l/Dd) and vertical length scale, mean stream drop H.

The ratio of these HDd gives a form of ruggedness number (see Strahler, 1964),

which is a dimensionless number that characterizes the steepness of the channel

network. We could speculate that it is related to climate, tectonic uplift, etc.

Table 6.2 includes HDd data for the basins we analyzed.
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6.4 Localized DEM Procedures

The above procedures have used a support area threshold to extract channel

networks from DEM's. Intrinsic process-related scaling and breaks in that scaling

were used to identify what we believe is the correct support area threshold. This

section will investigate more direct procedures for identifying valleys within

DEM's.

Band (1986, reviewed in Chapter 3) discusses the Peuker and Douglas (1975)

algorithm for identifying concave pixels, to extract channel networks from DEM's.

Figure 6.8 gives an example of pixels identified by such a procedure for the CALD

data set. The main drainage paths are apparent, but the problem is that they are

not connected, i.e., there are gaps. Band (1986) suggests procedures to connect

these to form network. These are not discussed here.

We should point out that in obtaining Figure 6.8 a moving average

smoothing of the data was used. We used the simple smoothing kernel

Without smoothing the Peuker-Douglas algorithm performs poorly,

identifying pixels that hardly resembled a network at all, presumably due to many

adjacent pixels of the same elevation since elevations are given in integer meters.

The density of points in Figure 6.8 can be used to give an idea of the

drainage density. A length ( the length of a side + the length of a diagonal) is

associated with each pixel so drainage density is estimated from number of

identified pixels x length divided by area.
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Mark (1974) describes the line intersection method for estimating drainage

density. This consists of counting the number (N) of intersections with the

drainage net per length (L) of a traverse line. Drainage density is then

Dd = ir/2 x N/L (6.11)

A variant of this idea is to count local minima along a traverse line over a DEM,

with the assumption that local minima are usually on the drainage network. Local

minima can be identified along each grid line in both orthogonal directions and if

these are marked, we get a plot such as Figure 6.9. This again resembles the

channel network and is very similar to results from the Peuker-Douglas algorithm.

The same moving average smoothing was used to qualitatively improve the results.

The density of points in Figure (6.9) can also be used to estimate drainage density.

We find that the drainage density from this procedure and the Peuker-Douglas

algorithm are practically identical in most cases, so have used the Peuker-Douglas

drainage density as a representative drainage density from local procedures for

comparison with other results. For comparison with Figures 6.8 and 6.9, Figure

6.10 gives all pixels with accumulation area greater than 200 pixels for the CALD

data set.
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6.5 Detailed Results

Table 6.2 summarizes all the landform scale results, comparing drainage

density estimated from the three techniques described above. The drainage

densities from the different techniques are also compared in Figure 6.11. The

scatter about a straight line at 450 measures the degree of agreement between the

different estimates of drainage density. Within the scatter there appears to be

reasonable agreement between drainage densities obtained from slope scaling and

the constant drop analysis. The agreement with the Peuker-Douglas Dd is not as

good and there appears to be a bias with the Peuker-Douglas procedure

consistently over estimating drainage density relative to the other two procedures.

Perhaps this is due to the Peuker-Douglas procedure being more sensitive to local

differences and errors in the data.

Evaluation of these results raises the following concerns:

* Are the scales (drainage density) obtained dependent on data

resolution and data set size?

* What is the effect of data errors?

* The slope-area scaling two phase regression [Figures 6.4(a)-(u)

more often than not does not break into a negative slope at small area

as required by the analysis in Section 6.2 for the stability and smooth

hillslopes interpretation.

To address the first concern, five pairs of data sets are actually the same

river basin with DEM's of different pixel size. These are (W15, W15A2S), (HAK,

HAKA2S), (CALD, SPOKBC), (STREGIS, STREGISDMA) and (RACOON,

RACOONDMA). In the first two of these the low resolution DEM was formed

from the high resolution DEM by averaging together the elevations of four

adjacent pixels. In the other three the low resolution data set is a DMA data set

on three arc second grid while the high resolution data set is a USGS data set on
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Table 6.2 Summary of Landform Scale Results.

Basin Area Constant Drop Analysis Slope Scaling Analysis Peuker Douglas
A Dd H HDd Al Ab Al Dd 0 Dd

(km2) (ki2) (km-1) () k2) k2) m2) -1) -1

W7 12.8 0.09 2.5 18 0.045 0.00181 0.00181 0.0024 26.3 0.30 5.5
W15 22.7 0.045 3.4 15 0.051 0.00181 0.0024 0.0045 19.4 0.29 4.7
W15A2S 22.7 0.072 2.7 15 0.039 * * * * 0.25 3.3
CALD 146.9 0.27 1.2 130 0.16 0.16 0.19 0.24 1.3 0.51 3.19
SPOKBC 146.9 0.41 0.93 128 0.12 0.32 0.45 0.68 0.9 0.48 1.5
NELK 440.2 0.41 0.98 89 0.087 0.21 0.30 0.42 1.1 0.47 1.7
STJOE 2834 1.16 0.59 140 0.082 0.75 0.96 1.18 0.65 0.47 1.45
STJOEUP 384.6 0.27 1.1 114 0.13 0.30 0.34 0.40 1.0 0.56 3.03
STREGIS 786.6 0.63 0.81 148 0.12 0.45 0.53 0.61 0.88 0.55 3.01
STREGISDMA 796.2 0.89 0.71 139 0.098 0.98 1.52 2.65 0.56 0.55 1.45
HAK 98.2 0.18 1.6 48 0.077 0.044 0.076 0.12 2.76 0.48 5.19
HAKA2S 98.75 0.18 1.5 47 0.070 0.018 0.027 0.041 5.6 0.42 2.27
SCHO 2408 0.95 0.68 56 0.038 1.51 2.08 3.12 0.46 0.43 1.21
EDEL 933.0 1.9 0.47 73 0.034 0.98 1.43 2.07 0.51 0.55 1.24
RACOON 448.0 0.45 1.1 22 0.024 0.31 0.43 0.63 1.1 0.51 7.2
RACONDMA 480.1 0.65 0.86 16 0.014 * * * * 0.34 2.14
BEAVER 1223 0.18 0.6 19 0.011 0.077 0.29 0.89 1.37 0.34 2.14
BUCK 606.2 0.9 0.69 191 0.013 0.32 0.37 0.41 1.1 0.48 4.47
BRUSHY 321.8 0.09 2.3 14.5 0.033 0.12 0.18 0.26 1.7 0.53 5.73
MOSHANNON 325.4 0.63 0.95 35.5 0.034 1.6 2.1 2.7 0.57 0.58 7.2
TVA 36.5 0.14 1.3 97.5 0.13 0.57 0.68 0.99 0.79 0.85 4.5

Key:
A. Lowest Support Area for
Dd. Drainage density.

11. Mean stream drop.

which constant drop property cannot be rejected.
Notes:
1. At lower limit of range of possible switch points-.
*. Could not be obtained or was not significant.

A1 . Switch point lower 95% confidence bound.

Ab. Switch point with minimum residual sum of squares.

A u. Switch point upper 95% confidence bound.

0. Log(slope)-Log(arca) scaling exponent above switch point.
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30m grid. We see that the drainage densities obtained from the constant drop

analysis agree fairly well for all five of these data sets. The comparison of slope

scaling drainage densities for the (CALD, SPOKBC) and (STREGIS,

STREGISDMA) pairs is also good. For the (HAK, HAKA2S) pair the slope

scaling drainage density comparison is not good and also differs from the constant

drop drainage density. For the RACOONDMA and W15A2S data sets the slope

scaling does not give a detectable break so the comparison cannot be made.

Some of the data sets are also nested. CALD and STJOEUP are sub-basins

within STJOE and HAK is a sub-basin within SCHO. Analysis of these suggests

a higher drainage density for the sub-basin, possibly some indication of a data set

size or scale effect. In principle if the drainage density was uniform, Dd of the

sub-basins should be the same as the Dd of the larger enclosing basin. This is not

the case. STJOE has Dd ~ 0.5 km 1 while CALD and STJOEUP have Dd I 1

km 1 . SCHO has Dd ~ 0.7 km- while the sub-basin HAK has Dd ~ 1.7 km-1

The sub-basins are from higher resolution data, but the comparisons in the

previous paragraph suggest this should not have an effect. A possible explanation

is that larger basins imply more streams and a larger sample size for detection of

trends or breaks in scaling, so for larger basins our scale detection threshold may

be lower, an undesirable basin size effect in the results. There is also the

possibility of variations in drainage density within the large basins being

responsible for this. The large basins (SCHO and STJOE) have lengths of the

order of 50 - 100 km, in which it is entirely plausible that Dd could vary

considerably. It is not possible with the information at hand to resolve this issue

and further research on this point may be warranted.

The second and third concerns and the whole issue of interpretation of the

slope-area scaling plots [Figures 6.4(a)-(u)] appear to be related. The estimation

of local slopes from DEM data is erratic because data is reported in integer meters
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and random errors have large effects on measured slope. At the scale of a single

(30m) pixel the integer data does not allow us to resolve slopes between 1/30 =

0.033 and 0. We attempt to avoid this effect by averaging over larger lengths (see

Table 6.2) using higher support areas. This has the effect of smoothing slope

estimates at the expense of some resolution of areas. Areas smaller than the

support area threshold used cannot be resolved. This results in a scale effect

apparent in some of the Figures 6.4(a)-(u). This is most apparent in the STJOE

basin, Figure 6.4(g) where the break in slope is much more marked for the higher

support areas and also appears to occur at a higher area for higher support areas.

The two phase regression on all the data is a form of compromise between wanting

accurate slope estimates and good area resolution.

To understand the effect of data errors on slope-area scaling we constructed

some data sets of hillslopes with known theoretical slope-area functions and

applied random noise to them. The hillslope profiles used were one-dimensional

governed by

A. z = 250-x2/9000 (6.12)

and

B. z = 150-0.1x (6.13)

For one-dimensional profiles x = a, hence

A. S = =dz 4a (6.14)

B. S =dz =0.1 (6.15)
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Equations (6.12) and (6.13) were used to compute elevations on a 51 x 102 grid

with spacing 30m schematically shown in Figure 6.12. A random measurement

error simulated from a zero mean Gaussian distribution with variance a2 was

added to each elevation which was then rounded to the nearest meter for storage

as an integer value as with real DEM data. Slope-area profiles were then

computed using the same procedures as for digital elevation models. The results

are given in Figures 6.13 and 6.14 and show even for the relatively small errors

simulated a large effect on the slope-area profile. The theoretical lines are

obtained from Equations (6.14) and (6.15). The good data is with no added

measurement noise and has scatter due to the rounding of elevations to the nearest

meter. In the noisy data the errors introduce a negative correlation between slope

and area which tends to reduce the positive slope or increase the negative slope of

slope-area curves and may be responsible for the negative slopes in the slope-area

data [Figures 6.4(a)-(u)] to the left of the break in scaling at scales or areas we

interpret as hillslopes.

To understand this effect consider an error in the elevation of a single pixel.

If the error reduces the apparent elevation of a pixel, the apparent slope is

reduced. This is because the slope of a pixel is measured as the difference in

elevation between the pixel in consideration and its downslope neighbor, divided

by the distance between pixels. Also adjacent pixels are more likely to drain

towards the pixel in consideration due to its reduced elevation, thus increasing the

apparent area that it drains. Similarly an error that increases the apparent

elevation increases slope and reduces area so the net effect is that errors result in a

negative correlation between slope and area or negative slope in slope-area plots.
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It is clear from the above analysis that the slope-area analysis is error prone,

and that these errors may result in negative gradients in slope versus area plots,

where a positive gradient is expected. Also the dynamic equilibrium assumptions

upon which it is based may frequently not be valid. A combination of these

factors is probably responsible for some inconsistency in the drainage densities

from the slope-area scaling analysis. The constant drop analysis results were more

consistent, but do not have the same theoretical justification as the slope-area

scaling in terms of stability analysis. However, as practically applied the

slope-area scaling break was usually just a steepening of a negative slope and not a

change from positive to negative slope as required by the theoretical stability

analysis. Given this, the consistency of the constant drop analysis probably makes

it a more useful practical procedure.

Despite the effect of errors and concerns with the theoretical justification, the

fact that there are fundamental or basic scales where the constant drop and

slope-area scalings break, suggests different processes above and below the break.

Here the different processes have been given the interpretation of hillslope and

channel processes and the break is interpreted as drainage density. This

interpretation is justified by the comparisons and at least order of magnitude

agreement between the constant drop analyses, slope-area scaling, and Peuker-

Douglas drainage densities.
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Chapter 7

CONCLUSIONS

7.1 Introduction

Chapters 4 through 6 contain the main scientific results of this work. Here

we summarize and highlight the important conclusions.

7.2 Planar Scaling

Chapter 4 discussed the planform scaling of river networks. Two distinct

scaling regimes were found. At large scale, larger than the hillslope length or length

scale associated with drainage density, the river network reaches everywhere and is

thus space filling, characterized by a fractal dimension D = 2. This was observed in

the data using three different techniques to measure D, as well as argued for

physically. At smaller scales individual streams were found to be fractal with

dimension D, just greater than 1 (1 - 1.2). This had been suggested by Mandelbrot

(1983) from the relationship between slope and area (Equation 2.37). The

relationship between network fractal dimension D and parameters characterizing

scaling, i.e., Horton's length and bifurcation ratios and Tokunaga's parameters was

given [Equations (4.17) and (4.33)]. Here it was important to recognize that the

individual stream elements of which the network is composed may themselves be

fractal with dimension De, so D, enters into these relationships. With the space

filling constraint (D = 2) and DI fixed, these relationships give bifurcation ratio Rb
in terms of length ratio Rf or Tokunaga parameter K in terms Q thus showing the

relationship between scaling parameters. Hence only one parameter is needed to

describe planform scaling in the network.

203



7.3 Slope Scaling

Chapter 5 discussed the scaling of slope with area as a scaling index. This

was put in the context of networks using link magnitude as a surrogate measure for

area. We showed (as had been seen before by Flint, 1974) the power relationship

between Mean Slope and Area. This has been used by Gupta and Waymire (1989)

to hypothesize that link slopes are self-similar. We showed that for our data this

was not the case. The coefficient of variation of link slope increases with area or

magnitude, ruling out self-similarity. The scaling of the full probability

distribution of link slopes requires more general multi-scaling models to

characterize it. A model that regarded links as composed of distinct steps in

elevation fits the data well. The location and height of steps was taken as random

and the observed scaling of the variance was reproduced when the mean density of

steps (number of steps per unit length) scaled according to a power law. This model

describes the nature of the multi-scaling of link slopes. The step-like behavior may

be due to pools and riffles which Yang (1971a) suggests are due to a minimum energy

principle. Further work is required to justify this or discover alternative physical

mechanisms responsible for this scaling. We speculate that the step-like behavior

may be due to intermittency and erraticism resulting from instability in the large

scale sediment transport regime above the switch point discussed in Chapter 6.

7.4 Basic Scale

In Chapter 6 we point out that the scaling characterized in Chapter 5 cannot

hold down to infinitely small scales and must break at some point. This break point

represents a basic scale which we associate with hillslope length, or drainage

density, by showing that the negative gradient of a log (slope)-log (area) plot can

be associated with instability and hence channel formation while the positive slope

implies stability and smooth hillslopes. The break point where gradient changes
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therefore represents the transition scale or drainage density. Chapter 6 presents

slope-area plots for much of our data. Many of these exhibit a break in gradient

but the lower scale gradient is not positive. We show by simulation that data errors

in DEM data induce a negative correlation between slope and area and suggest that

this may be responsible for the lower scale gradient. We suggest that the break in

gradient nevertheless represents a physical transition or basic scale that should be

interpreted as drainage density.

Chapter 6 also uses the fact that the scaling of channel slopes with area is

practically equivalent to the constant stream drop property. Statistical tests of the

constant stream drop property for networks extracted with different support area

result in the constant drop property being rejected for small support area, but

accepted for large support area. The threshold support area at which this transition

occurs is shown to result in drainage densities roughly equivalent to the drainage

density estimated from slope scaling. The agreement of this data justifies both

techniques for detecting the drainage density as a fundamental scale in the

landscape. These drainage densities are also shown to correspond, although not

quite as well, with drainage densities estimated from altogether different local

procedures for detecting curvature in DEM's.

7.5 Concluding Remarks

This work has shown the feasibility of using DEM data for geomorphologic

and hydrologic studies. Techniques have been developed that could be used in

automated procedures for extracting channel networks from DEM's at a scale or

drainage density that has some physical justifications in terms of land forming

processes. These procedures are still fairly tentative though and need to be

validated on high resolution data. The question of what resolution data is

sufficiently detailed for hydrologic purposes is still not completely resolved. Where
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the basic length scales are large (low drainage density) the same scale can be

detected from 30m and 90m resolution data sets, suggesting that for these scales the

90m dataset is sufficient. However for smaller length scales (larger drainage

densities) this is not the case. The question of resolutions will only be truly resolved

by comparing to results obtained from very high resolution (+ 4m pixel) data sets.

DEM's have proven to be a useful test in investigating and extending our

understanding of the structures and scaling of river networks and landscapes.

7.6 Future Research

This work points to several areas where future research is required to:

confirm the more tentative results; implement some of the techniques developed;

and understand the scaling discovered.

Firstly it is important to test the procedures for identifying basic scales on

more and higher resolution data sets. We need to more convincingly show that the

results are not dependent on the resolution of the data available. Accurate, high

resolution data is needed to resolve whether the negative gradient in slope-area

plots at small area is due to data errors, as suggested here, or is really present in the

landscape, in which case other explanations need to be sought.

Secondly, an explanation of the slope scaling characterized in Chapter 5 is

needed. Yang (1971a) has suggested that pools and riffles are due to channels

naturally evolving towards states that result in least time rate of energy

expenditure. In the limit this results in long flat reaches of channel with practically

no energy dissipation and sharp steps or discontinuities where the elevation drop

occurs. We have reservations as to whether this thermodynamic principle is

applicable here. In any event this thermodynamic principle does not predict the size

or distribution of discrete steps. The slope scaling examined in Chapter 5 led to

specific inferences about the size and distribution of steps. These need explanation.
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We suggest looking to physical principles that result in scaling for an explanation.

The notion of self-organized criticality (Bak, et al., 1987; Hwa and Kardar, 1989)

has been used to describe the physics of fractals. The idea is that power law scaling

and fractal properties arise as the minimally stable states of dynamical systems with

extended spatial degrees of freedom. These minimally stable states are called

critical states by the analogy with thermodynamics and the scaling behavior of

substances near the thermodynamic critical point. There are indications that the

landscape at scales larger than the drainage density scale may be in such a critical

state. The governing equations (2.40 and 2.41) are unstable, but perturbations

cannot grow without bound, due to the presence of diffusive mechanisms. The

governing equations also follow conservation principles, a requirement for the

renormalization procedures of Hwa and Kardar (1989) to be applied. We feel that

the explanation of the slope scaling characterized in Chapter 5 may lie in

understanding the governing equations in the context of self-organized criticality.

To prompt this understanding a modeling approach along the lines of

Willgoose (1989) may be useful. A problematic issue is that of stability. Numerical

diffusion may eliminate much of the instability present in the governing equations

(2.40 and 2.41). If as we hypothesize, it is this instability that is responsible for the

slope scaling variability of Chapter 5, then it may be hard to reproduce this slope

scaling variability in the models. The Willgoose (1989) approach may be

particularly prone to this problem as nodes are not permitted to revert back from

channels to hillslopes. Once channelization has occurred, it is locked in, preventing

any movement of the channel. It may be possible to circumvent this problem by

using the idea due to Luke (1974) of channels as shock discontinuities. Numerical

procedures using the method of characteristics to solve the governing equations in

two dimensions need to be developed to explore this further. These procedures

would have to include techniques to track the movement of discontinuities in two

207



dimensions and investigate their structure. Do they form a network? What scaling

laws do "networks" of discontinuities obey?

One motivation for this work was the hope that it may lead to improved

prediction of runoff from ungauged basins. It is not immediately apparent whether

any progress has been made towards this goal. The measures of drainage density

(basic horizontal length scale) and mean stream drop (basic vertical length scale)

from DEM's are, we believe, more objective than their counterparts from

topographic maps, which are subject to operator subjectivity and interpretation

effects. A rainfall-runoff modeling exercise may benefit from being done at

physically justifiable scales. Further work needs to be done on the relationship of

these basic scales with variables describing streamflow, climate and geology.

Streamflow records at several points within basins that have DEM data available

should be obtained. Then the relationships between streamflow, at various time

scales or recurrence intervals (e.g., annual average, annual maximum, two-year

recurrence interval, etc.), and the basic scales as well as slope scaling parameters

should be explored. Climatic geologic and lithologic variables should be

incorporated where these are felt to be important.

Another approach to quantifying the relation between geomorphology and

runoff may be a coupling of channel/landscape evolution models along the lines of

Willgoose (1989) and Ahnert (1987) with more traditional rainfall-runoff models

such as the SHE model (Abbot et al., 1986; Beven, 1985) or Topmodel (Beven and

Kirkby, 1979; Beven and Wood, 1983). This would effectively involve the

incorporation of more realistic runoff generation mechanisms, such as saturation

from below and interflow, into the landscape evolution models. These mechanisms

need to take account of the topography so as to correctly model enhanced runoff due

to zones of convergence. The effect of spatial and temporal variability in rainfall

needs to be included since it affects streamflow and may affect the landforms that
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develop. Streamflow statistics at different points within river basins in these model

landscapes need to be compiled so that their scaling and variability can be related to

the basic scales, scaling and variability of the landscape. This modeling approach

obviously suffers from the fact that it is a simplification of reality, but has the

advantage that controlled experiments where single factors are varied can be

conducted to try to establish causality in the relationship between independent and

dependent variables.

An appealing notion is the idea that runoff production is somehow organized

spatially in a way that is related to spatial organization in the network. Work to

develop and check this may be worthwhile. We explored this approach in a limited

way by looking at the spatial organization of pixels with large area to slope ratio.

These are area's likely to generate runoff from the saturation from below mechanism

according to the model of Beven and Kirkby (1979). Organization was defined

using information entropy and information scaling notions from Hentchel and

Procaccia (1983). The results (not given here because they were inconclusive)

seemed to indicate that runoff generation area's had a basic scale associated with

them that was effectively the same as the basic length scale of the network. This

approach did not seem to be leading to new insights, perhaps because the physical

justification for using entropy idea's was lacking. For this approach to be

worthwhile physically justifiable measures of organization appropriate for runoff

generation area's need to be developed.

Finally for work with digital elevation models to be implemented in a useful

manner the procedures developed here need to be incorporated into computerized

geographic information systems. There they can be coupled with other

hydrologically relevant data, such as radar rainfall measurements and land use and

cover data, perhaps from satellites, to be used for flood forecasting and land

management.
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APPENDIX

DEMSETUP.FOR

C
C Program to set up digital elevation model.
C
C BY DAVID G TARBOTON
C
C This code reads a dem file in standard format as supplied by the
C U.S.G.S. described in U.S. Geological survey (1987), "Digital elevation
C models, data users guide 5," U.S. Department of the Interior, Reston,
C VA, 38 pp, and outputs the data in a binary matrix file.
C
C Input is read from file DEMSETUP.IN which consists of 2 up to 80
C character records. The first record is the name of the input file and
C the second record the name of the binary matrix file which must end with
C .BIN for the data to be written unformatted (i.e. binary) which is most
C efficient from a storage point of view. A file DEMINFO.DAT is also
C output. This gives information about the size and location of the data
C set read from the U.S.G.S. input file header record.
C
C This program uses subroutines from DEMUTIL.FOR, the set of subroutines
C for I/O of binary matrix files.
C

PARAMETER(IGX-1201, IGY-1201)
INTEGER*2 ELEV(IGY, IGX) ,INELEV(IGY)
D IMENS ION DCORNS (4, 2)
DOUBLE PRECISION CORNS (4,2) , XMIN, XMAX, YMIN, YMAX, X, Y, DATUM
CHARACTER*80 DEMIN,DEMOUT
CHARACTER*1024 RECORD
CHARACTER*144 HEADER
CHARACTER*6 VUNITS(2) ,HUNITS(0:3)
DATA ARCSEC,RAD/30.89,57.2957795131/
DATA VUNITS/'FEET ','METRES'/
DATA HUNITS/'RADIAN',' FEET ', 'METRES', 'ARCSEC'/
OPEN (UNIT-7, FILE-'DEMSETUP. IN' , STATUS-'OLD')
READ (7,50) DEMIN, DEMOUT

50 FORMAT (A80/A80)

OPEN (UNIT-8, F ILE-DEMIN, STATUS-' OLD', READONLY)
OPEN(UNIT-11,FILE-'DEMINFO.DAT', STATUS-'NEW')

C READ FIRST RECORD U.S.G.S. A FORMAT

READ (8, 100) HEADER, IUNITH, IUNITV, (CORNS (1, 1) ,CORNS (1, 2) , I-1, 4),
& DX,DY,DZ,NP

IUNITH GIVES PLANAR COORDS (0-RADIAN, 1-FEET, 2-METRES, 3-ARCSEC)
IUNITV GIVES VERT COORDS (1-FEET, 2-METRES)
CORNS IS ARRAY THAT CONTAINS CORNER CO-ORDS
DX,DY AND DZ ARE SPATIAL RESOLUTIONS IN THREE DIRECTIONS
NP - NUMBER OF PROFILES

100 FORMAT (A144, 384X, 16, 16, 6X, 4 (2D24.15),78X, 3E12.6, 6X, 16)
WRITE(11,60)HEADER(1:80)
WRITE (11, 62) NP, HUNITS (IUNITH) , VUNITS (IUNITV)

60 FORMAT(1X,A80)
62 FORMAT (1X, 15, ' PROFILES ' /1X, 'PLANAR UNITS', 1X, A6

& /1X, 'ELEVATION UNITS ',A6//X, 'CORNERS AT'/
& lX,' X Y')

DO 1 1-1,4
1 WRITE(11,65)CORNS(I,1),CORNS(I,2)
65 FORMAT(1X,2E24 .15)

IF (IUNITH.EQ.3) THEN ! TRANSLATE ARC SECONDS TO DEGREES
WRITE (11, *) 'CORNERS IN DEGREES'
DSUM-0.
DO 2 1-1,4

DCORNS (I,1) -CORNS (I,1)/3600.
DCORNS (I,2) -CORNS (I,2)/3600.
WRITE (11,71) DCORNS(I,1) ,DCORNS (I, 2)

71 FORMAT(1X,2F24.6)
DSUM-DSUM+DCORNS (I,2)

2 CONTINUE
DSUM-DSUM/4.
DXM-ARCSEC*DX*COS (DSUM/RAD)
DYM-ARCSEC*DY

ELSE
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DXM-DX
DYM-DY

ENDIF
WRITE (11, 72) DXM, DYM

72 FORMAT(1X,'DXM-',F1O.3,' DYM-',F10.3)
C--FIND MIN AND MAX COORDS

XMIN-CORNS (1, 1)
YMIN-CORNS (1, 2)
XMAX-CORNS (1, 1)
YMAX-CORNS (1, 2)
DO 3 1-2,4

XMIN-MIN (XMIN, CORNS (I,1))
YMIN-MIN (YMIN, CORNS (I,2))
XMAX-MAX (XMAX, CORNS (I,1))

3 YMAX-MAX(YMAX,CORNS (I,2))
C----BOUNDS OF GRID

MINX-INT (XMIN/DX)
MAXX-INT (XMAX/DX)
MINY-INT (YMIN/DY)
MAXY-INT (YMAX/DY)
IF (XMAX/DX.GT.FLOAT (MAXX) ) MAXX-MAXX+1
IF (YMAX/DY.GT.FLOAT (MAXY) ) MAXY-MAXY+1
NX-MAXX-MINX+1
NY-MAXY-MINY+1
XGMIN-DX*FLOAT (MINX)
XGMAX-DX*FLOAT (MAXX)
YGMIN-DY*FLOAT (MINY)
YGMAX-DY*FLOAT (MAXY)
WRITE(11, 61) NX, NY

61 FORMAT(1X,'DEM GRID ',I5,' BY',15)
WRITE (11,70) XGMIN,XGMAX,YGMIN,YGMAX

70 FORMAT(1X, 'GRID BOUNDARIES'/ 1X, 'XMIN-', F15.1/
& 1X, 'XMAX-',F15.1/1X, 'YMIN-',F15.1/1X, 'YMAX-',F15.1)

C---INITIALISE MATRIX
DO 4 I-1,NY
DO 4 J-1,NX

4 ELEV(I,J)-0
C---READ IN PROFILES

DO 5 IP-1,NP
READ (8, 200) RECORD

200 FORMAT (A1024)
READ (RECORD, 20 5) NN, X, Y, DATUM

C WRITE (11, *)'ROW', IP, NN, ' ELEVS WITH DATUM', DATUM
C WRITE (11, *)X, Y
205 FORMAT(12X,I6,6X,3D24.15)

READ (RECORD, 206) (INELEV(I) , I-1,MIN(NN, 146))
206 FORMAT(144X',146I6)

IF (NN.GT.146) THEN RECORD OVERFLOWS
NTOGO-NN-146
NRECS- (NTOGO-1) /170+1
DO 6 IREC-1,NRECS

IST-147+ (IREC-1) *170
IEND-MIN (NN, IST+169)

6 READ(8,207) (INELEV(I),I-IST, IEND)
207 FORMAT(170I6)

ENDIF
C----STORE ELEVS READ IN IN ARRAY

ICOL-NINT ( (X-XGMIN) /DX) +1
IROFF-NINT ( (YGMAX-Y) /DY) +2
DO 7 I-1,NN

7 ELEV (IROFF-I, ICOL) -INELEV (I) +NINT (DATUM)
5 CONTINUE

CALL IWR2 (ELEV, DEMOUT, NX, NY, IGY, DXM, DYM)
STOP 'WHAT A PLEASURE TO FINISH THAT ONE'
END

DEMSETUP.IN

demtomb.dat
tomb .BIN
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DEMCOMBM.FOR

C
C Program to combine digital elevation models.
C
C CREATED BY DAVID G TARBOTON
C
C This program reads and combines two or more adjacent binary matrix files
C into one binary matrix file. It is used for setting up data sets that
C span several DEM quadrangles.
C
C Input is read from file DEMCOMBM.IN which has the following structure.
C First Record: Name of final combined output matrix file.
C 2nd Record: Name of first input matrix file.
C 3rd Record: Row then column of element (1,1) of the input file in the
C combined output file.
C Subsequent pairs of records: Same as the second and third records for
C the remainder of input files.
C
C No data is recorded as zero elevation so the program checks that where
C files overlap the non zero elevations correspond and does not overwrite
C a non zero elevation with a zero elevation.
C

PROGRAM DEMCOMBM
PARAMETER (IGX-2401, IGY-1201)
INTEGER*2 ELEV(IGY,IGX),TROW(IGX)
CHARACTER*80 DEM,NEWFILE
CHARACTER*4 BIN
CHARACTER*11 FMAT
DATA BIN/'.BIN'/
OPEN (UNIT-11, FILE-' DEMCOMBM. IN', STATUS-'OLD' , READONLY)
READ (11,22) NEWFILE
NXM-0
NYM-0

C---INITIALIZE ELEV
DO 2 I-1,NY

DO 2 J-1,NX
ELEV(I,J) -o

2 CONTINUE
1 READ(11,22,END-99)DEM
22 FORMAT (A80)

READ (11, *) IROW, ICOL
C
C SEARCH DEM FILE NAME FOR .BIN - IF IT IS PRESENT IT IS A BINARY FILE
C

FMAT-'FORMATTED
DO 21 1-1;77

IF(DEM(I:I+3) .EQ.BIN)THEN
FMAT-' UNFORMATTED'
GO TO 3

ENDIF
21 CONTINUE
3 OPEN(UNIT-10,FILE-DEM,STATUS-'OLD',FORM-FMAT)

C
C READ OLD DEM
C

IF(FMAT.EQ. 'UNFORMATTED') THEN
READ (10) NX, NY, DX, DY
NXM-MAX (NXM, ICOL+NX-1)
NYM-MAX (NYM, IROW+NY-1)
WRITE (6, *) NXM, NYM, DEM
IF (NXM.GT. IGX.OR.NYM.GT. IGY) THEN

STOP 'DIMENSIONS TOO SMALL'
ENDIF
DO 18 I-1,NY

READ(10) (TROW(J) ,J-1,NX)
DO 18 J-1,NX

IF (TROW (J) .GT.0) THEN
IF (ELEV(I+IROW-1,J+ICOL-1) .EQ.0) THEN

ELEV(I+IROW-1, J+ICOL-1) -TROW(J)
ELSE IF (TROW(J) .NE.ELEV(I+IROW-1,J+ICOL-1) ) THEN

WRITE (6, 30) I, J, DEM
30 FORMAT(1X,'NON ZERO ELEV THAT DOES NO MATCH AT',2I5/

& 'FROM FILE ',A80)
ENDIF

ENDIF
18 CONTINUE

CLOSE (10)
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ELSE
READ (10, *) NX, NY, DX, DY
NXM-MAX (NXM, ICOL+NX-1)
NYM-MAX (NYM, IROW+NY-1)
WRITE (6, *) NXM, NYM, DEM
IF (NXM.GT. IGX.OR.NYM.GT. IGY) THEN
STOP 'DIMENSIONS TOO SMALL'

ENDIF
DO 8 I-1,NY

READ(10, *) (TROW(J) ,J-1,NX)
DO 8 J-1,NX

IF(TROW(J) .GT.0) THEN
IF (ELEV (I+IROW-1, J+ICOL-1) .EQ.0) THEN
ELEV (I+IROW-1, J+ICOL-1) -TROW (J)

ELSE IF(TROW(J) .NE.ELEV(I+IROW-1,J+ICOL-1) )THEN
WRITE (6, 30) I,J,DEM

ENDIF
ENDIF

8 CONTINUE
CLOSE (10)
ENDIF
GO TO 1

C
C WRITE NEWFILE
C
C SEARCH DEM FILE NAME FOR .BIN - IF IT IS PRESENT IT IS A BINARY FILE
C
99 FMAT-'FORMATTED

DO 23 1-1,77
IF (NEWFILE (1: 1+3) .EQ.BIN) THEN
FMAT-'UNFORMATTED'
GO TO 31

ENDIF
23 CONTINUE
31 OPEN(UNIT-12,FILE-NEWFILE,STATUS-'NEW',FORM-FMAT)

IF(FMAT.EQ.'UNFORMATTED')THEN
WRITE (12) NXM, NYM, DX, DY
DO 9 I-1,NYM

9 WRITE(12) (ELEV(I,J),J-1,NXM)
ELSE
WRITE (12, *) NXM,NYM,DX,DY
DO 10 I-1,NYM

10 WRITE (12, 100) (ELEV (I, J) , J-1, NXM)
100 FORMAT (1X, 2116)

ENDIF
END

DEMCOMBM.IN

stregis.BIN
wallacenet .BIN
33 1 ROW, COL
saltesenw.BIN
28 115
saltesene.BIN
22 429
haugannw.BIN
15 743
hauganne .BIN
9 1057
stregisnw.BIN
1 1371
saltesese.BIN
485 437
haugansw.BIN
479 752
hauganse .BIN
472 1066
stregissw.BIN
464 1381
simmonsnet .BIN
935 1076
illinoisnwt.BIN
927 1391
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DEMEX.FOR

C Program to extract portion of DEM matrix file.
C
C CREATED BY DAVID G TARBOTON
C
C Input is read form file DEMEX.In in the following format:
C Record 1: Number of bits in binary (unformatted files to be read/written)
C (2- 2 bit integer, 4- 4 bit integer, anything else- real)
C Record 2: File name of input file
C Record 3: File name for writing extracted file
C Record 4: First column, Last column, First row, Last row of portion to be
C extracted from input file and written to extracted file.
C
C This program uses subroutines from DEMUTIL.FOR, the set of subroutines
C for I/O of binary matrix files.
C

PROGRAM DEMEX
parameter(igx-1201,igy-1201)
INTEGER*2 ia2 (igy, igx)
integer ia(igy,igx)
DIMENSION A(IGY,IGX)
EQUIVALENCE(a(1,1) ,Ia(1,1) ,Ia2(1,1))
CHARACTER*80 DEM,NEWFILE
OPEN (UNIT-11,FILE- 'DEMEX. IN' ,STATUS- 'OLD')
read(ll,*)ibits
READ (11, 22) DEM, NEWF ILE

22 FORMAT(A80/A80)
READ (11, *) IXMIN, IXMAX, IYMIN, IYMAX

c---read old file
if(ibits.eq.2)then
call iread2(ia2,dem,nx,ny,igy,dx,dy)

C
C create NEWFILE
C

nnx-ixmax-ixmin+l
nny-iymax-iymin+l
DO 9 I-1,nny

do 9 j-l,nnx
ia2(i, j)-ia2(i+iymin-l, j+ixmin-1)

9 continue
call iwr2(ia2,newfile,nnx,nny,igy,DX,DY)

else if(ibits.eq.4)then
call iread(ia,dem,nx,ny,igy,dx,dy)

C
C create NEWFILE
C

nnx-ixmax-ixmin+l
nny-iymax-iymin+l
DO 19 I-1,nny

do 19 j-l,nnx
ia(i, j)-ia(i+iymin-1,j+ixmin-1)

19 continue
call iwr(ia,newfile,nnx,nny,igy,dx,dy)

else
call rread (a, dem, nx, ny, igy, dx, dy)

C
C create NEWFILE
C

nnx-ixmax-ixmin+l
nny-iymax-iymin+l
DO 29 I-1,nny
do 29 j-1,nnx

a (i, j) -a (i+iymin-l, j+ixmin-1)
29 continue

call rwr(a,newfile,nnx,nny,igy, dx,dy)
ENDIF
END

DEMEX.IN

2
tomb.BIN
w7elev.BIN
40 210 47 227
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DEMUTIL.FOR

C This is a set of subroutines to do Input/Output of DEM matrix files
C
C CREATED BY DAVID G TARBOTON
C
C The format of Matrix files is:
C
C First record: No. of columns(NX), No. of Rows(NY),
C Column Spacing(DX) (meters), Row Spacing(DY)
C Remaining records: Matrix of elements in order read/written using

C DO 9 I-1,NY
C 9 READ/WRITE( )(ARRAY(I,J),J-l,NX)
C
C The file is unformatted, i.e. Binary if extension is .BIN (must be Upper
C Case), Otherwise Free format.
C
C The following Routines are included.
C IWR: To write Integer*4 matrix.
C RWR: To write Real*4 matrix.
C IWR2: To write Integer*2 matrix.
C IREAD: To read Integer*4 matrix.
C RREAD: To read Real*4 matrix.
C IREAD2:To read Integer*2 matrix.
C
C ROUTINE TO WRITE INTEGER FILE
C

SUBROUTINE IWR (ARRAY, FILEN, NX, NY, IGRID, DX, DY)
INTEGER ARRAY(IGRID,1)
CHARACTER*80 FILEN

CHARACTER*4 BIN
CHARACTER*11 FMAT
PARAMETER (BIN-'.BIN')

C
C SEARCH FILE NAME FOR .BIN - IF IT IS PRESENT IT IS A BINARY FILE
C

FMAT-'FORMATTED
DO 2 1-1,77

IF(FILEN(I:I+3) .EQ.BIN)THEN
FMAT-'UNFORMATTED'
GO TO 3

ENDIF
2 CONTINUE
3 OPEN(UNIT-10,FILE-FILEN,STATUS-'new',FORM-FMAT)

C
C write FILE
C

IF (FMAT.EQ. 'UNFORMATTED')THEN
WRITE (10)NX, NY, DX, DY
DO 9 I=1,NY

9 WRITE (10) (ARRAY (I, J) , J-1,NX)
ELSE
WRITE (10, *) NX, NY, DX, DY
DO 8 I-1,NY

8 WRITE (10, *) (ARRAY (I, J) , J-1, NX)
END IF
CLOSE (10)
RETURN
END

C
C
C ROUTINE TO WRITE REAL FILE
C

SUBROUTINE RWR (ARRAY, FILEN, NX, NY, IGRID, DX, DY)
DIMENSION ARRAY(IGRID,1)
CHARACTER*80 FILEN

CHARACTER*4 BIN
CHARACTER*11 FMAT
PARAMETER (BIN-'.BIN')

C
C SEARCH FILE NAME FOR .BIN - IF IT IS PRESENT IT IS A BINARY FILE
C

FMAT-'FORMATTED
DO 2 1-1,77

IF (F ILEN (I: I+3) . EQ .BIN) THEN
FMAT-'UNFORMATTED'
GO TO 3
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ENDIF
2 CONTINUE
3 OPEN (UNIT-10,FILE-FILEN, STATUS-' new', FORM-FMAT)

C
C write FILE
C

IF (FMAT.EQ. 'UNFORMATTED') THEN
write (10) NX, NY, DX, DY
DO 9 I-1,NY

9 write (10) (ARRAY (I, J) , J-1, NX)
ELSE
write(10, *)NX,NY,DX,DY
DO 8 I-1,NY

8 write (10, *) (ARRAY (I, J) , J-1, NX)
END IF
CLOSE (10)
RETURN
END

C
C

SUBROUTINE IWR2 (ARRAY, FILEN, NX, NY, IGRID, DX, DY)
INTEGER*2 ARRAY (IGRID, 1)
CHARACTER*80 FILEN

CHARACTER*4 BIN
CHARACTER*11 FMAT
PARAMETER (BIN-'.BIN')

C
C SEARCH FILE NAME FOR .BIN - IF IT IS PRESENT IT IS A BINARY FILE
C

FMAT-'FORMATTED '
DO 2 1-1,77

IF (FILEN (I: I+3) .EQ.BIN) THEN
FMAT-'UNFORMATTED'
GO TO 3

ENDIF
2 CONTINUE
3 OPEN (UNIT-10, FILE-FILEN, STATUS- 'new',FORM-FMAT)

C
C write FILE
C

IF (FMAT.EQ. 'UNFORMATTED') THEN
WRITE(10)NX,NY,DX,DY
DO 9 I-1,NY

9 WRITE(10) (ARRAY(I,J),J-1,NX)
ELSE
WRITE (10, *) NX, NY, DX, DY
DO 8 I-1,NY

8 WRITE (10, *) (ARRAY (I, J) , J-1, NX)
END IF
CLOSE (10)
RETURN
END

C
C ROUTINE TO READ IN FILE
C

SUBROUTINE IREAD (ARRAY, FILEN, NX, NY, IGRID, DX, DY)
INTEGER ARRAY (IGRID, 1)
CHARACTER*80 FILEN

CHARACTER*4 BIN
CHARACTER*11 FMAT
PARAMETER (BIN-'.BIN')

C
C SEARCH FILE NAME FOR .BIN - IF IT IS PRESENT IT IS A BINARY FILE
C

FMAT-'FORMATTED
DO 2 1-1,77

IF (FILEN (I: I+3) .EQ.BIN) THEN
FMAT-'UNFORMATTED'
GO TO 3

ENDIF
2 CONTINUE
3 OPEN (UNIT-10,FILE-FILEN, STATUS-'OLD',FORM-FMAT, readonly)

C
C READ FILE
C

IF (FMAT .EQ. 'UNFORMATTED') THEN
READ (10, err-20) NX, NY, DX, DY
go to 21

c---use default spacing if not in file
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20 dx-30.
dy-30.

21 continue
DO 9 I-1,NY

9 READ (10) (ARRAY (I, J) , J-1, NX)
ELSE
READ (10, *) NX, NY, DX, DY
DO 8 I-1,NY

8 READ(10,*) (ARRAY(I,J),J-1,NX)
END IF
CLOSE (10)
RETURN
END

C
C
C ROUTINE TO READ IN FILE
C

SUBROUTINE RREAD (ARRAY, FILEN, NX, NY, IGRID, DX, DY)
DIMENSION ARRAY(IGRID,1)
CHARACTER*80 FILEN

CHARACTER*4 BIN
CHARACTER*11 FMAT
PARAMETER (BIN-'.BIN')

C
C SEARCH FILE NAME FOR .BIN - IF IT IS PRESENT IT IS A BINARY FILE
C

FMAT-'FORMATTED
DO 2 1-1,77

IF(FILEN(I:I+3) .EQ.BIN) THEN
FMAT-'UNFORMATTED'
GO TO 3

ENDIF
2 CONTINUE
3 OPEN (UNIT-1 0,FILE-FILEN, STATUS- 'OLD', FORM-FMAT, readonly)

C
C READ FILE
C

IF(FMAT.EQ. 'UNFORMATTED' )THEN
READ (10,err-20)NX, NY, DX, DY
go to 21

c---use default spacing if not in file
20 dx-30.

dy-30.
21 continue

DO 9 I-1,NY
9 READ(10) (ARRAY(I,J),J-1,NX)

ELSE
READ (10, *) NX, NY, DX, DY
DO 8 I-1,NY

8 READ(10,*) (ARRAY(I,J),J-1,NX)
END IF
CLOSE (10)
RETURN
END

C
C

SUBROUTINE IREAD2 (ARRAY, F ILEN, NX, NY, IGRID, DX, DY)
INTEGER*2 ARRAY (IGRID, 1)
CHARACTER*80 FILEN

CHARACTER*4 BIN
CHARACTER*11 FMAT
PARAMETER (BIN-'.BIN')

C
C SEARCH FILE NAME FOR .BIN - IF IT IS PRESENT IT IS A BINARY FILE
C

FMAT-'FORMATTED
DO 2 1-1,77

IF (FILEN(I:I+3) .EQ.BIN) THEN
FMAT-'UNFORMATTED'
GO TO 3

ENDIF
2 CONTINUE
3 OPEN(UNIT-10,FILE-FILEN,STATUS-'OLD',FORM-FMAT,readonly)

C
C READ FILE
C

IF (FMAT .EQ. 'UNFORMATTED' ) THEN
READ (10, err-20) NX, NY, DX, DY
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go to 21
c---use default spacing if not in file

20 dx-30.
dy-30.

21 continue
DO 9 I-1,NY

9 READ(10) (ARRAY(I,J),J-1,NX)
ELSE
READ (10, *) NX, NY, DX, DY
DO 8 I-1,NY

8 READ (10, *) (ARRAY (I, J) , J-1, NX)
ENDIF
CLOSE (10)
RETURN
END
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SETUP.FOR

C
C
C
C
C
C
C

This is Two suborutines to open and close GKS and interactively request
the Plot device/workstation being used for the programs that use
graphics.

CREATED BY DAVID G TARBOTON

SUBROUTINE SETUP (FNAME, IDEV, IUNIT, ITYPE)
CHARACTER*50 FNAME
INCLUDE 'SYS$LIBRARY:GKSDEFS.BND'
IF (IUNIT.EQ.5) THEN

WRITE(6,*) 'DEVICE TYPE'
WRITE (6, 100)

100 format(lx, 'l-SCREEN'/lx, '2-LASERWRITER'/lx, '3-tek4OlO'
& /lx,'4-default'/lx,
& '5-NARROW SCREEN FOR SCREEN DUMP'/lx,'6-decwindows')
ENDIF
READ (IUNIT, *) IDEV
CALL GOPKS(99) OPEN GKS ERRORS TO UNIT 99
IF(IDEV.EQ.1.OR.IDEV.EQ.5)THEN
ITYPE-GVSII
CALL GOPWK(1,GWCONID,ITYPE) OPEN WORKSTATION

ELSE IF(IDEV.EQ.3)THEN
ITYPE-GT4014
CALL GOPWK(1,GWCONID,ITYPE) ! OPEN WORKSTATION

ELSE IF(IDEV.EQ.4)THEN
ITYPE-GWSDEF
CALL GOPWK(1,GWCONID, ITYPE) ! OPEN WORKSTATION

ELSE IF(IDEV.EQ.6)THEN
ITYPE-GDECW
CALL GOPWK(1,GWCONID,ITYPE) ! OPEN WORKSTATION

ELSE
if(fname.eq.' ')then
write(6,*)'input laserwriter file name'
write(6,*) 'return for direct routing'
read(iunit, 50) fname

50 format(a80)
endif
ITYPE-GPTSC
if(fname.eq.' ')then

call gks$openws (1, 'txa2: ', itype)
else

ICONID-20
OPEN(UNIT-ICONID,FILE-FNAME,STATUS-'NEW')
CALL GOPWK(1,ICONID,itype) ! OPEN WORKSTATION

endif
ENDIF
CALL GACWK(1) ACTIVATE WORKSTATION
RETURN
END

C
SUBROUTINE TIDYUP (IDEV)
INCLUDE 'SYS$LIBRARY:GKSDEFS.BND'
IF(IDEV.ne.2)THEN

CALL GUWK(1,GPERFO)
write(6,*) 'Return when finished viewing plot'
READ(5,*)

ENDIF
CALL GDAWK(1) ! DEACTIVATE WORKSTATION
CALL GCLWK(1) ! CLEAR WORKSTATION
CALL GCLKS ! CLOSE GKS
RETURN
END
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CUTIL.C

/* This is a C implementation of some of the Input/Output
/* matrix files for use with AREAC.C and ZAREAC.C */

/* Created by David G Tarboton */

The following routines are included. */
IREAD2:To read Short integer (Integer*2)
IWR: To write Integer(*4) matrix.

matrix.

/* function to read binary file */
#include <stdio.h>
#define MAXREC 2044
/* routine to read 2 bit matrix file */
iread2(pfile,dir,nxr,nyr,dxr,dyr,igx)
char pfile[];
short int dir];
int *nxr,*nyr;
float *dxr,*dyr;
int igx;

/* test if binary file for read */

FILE *fp;
int ccl,cc2,cc3,cc4,i,jnx,ny,sz,nr,nin;
float dx,dy;
float row[2);
int *sl;
if(binary(pfile)--0)

fp-fopen (pfile, "r", "rfm-var");
ccl-getc (fp);
cc2-getc(fp);
nx-getw(fp);
ny-getw(fp);
sz - 2*sizeof(float);
nr-1;
fread(row, sz, nr, fp);
dx-row[0];
dy-row(1];
for(i-0; i< ny; i++)
cc3-getc(fp); /* carriage control characters */
cc4-getc (fp);
sl - &dir[i*igx];
if(cc3--3) /* only record */

fread(sl, sizeof(short int) , nx, fp);
else

nr-MAXREC-2;
nin-0;
sz-1;
while(cc3 !- 2) /* 2 indicates last block

fread(sl, sz , nr, fp);
nin-nin+nr;
cc3-getc(fp);
cc4-getc(fp);
sl- &dirti*igx+nin/2];

nr-nx*2-nin;
fread(sl, sz , nr, fp);

else

fp-fopen(pfile,"r");
fscanf (fp, "%d %d %f %f\n",&nx,&ny,&dx,&dy);
for(i-0; i< ny; i++)

for(j-0; j< nx; j++)
fscanf(fp,"%d",&dir[i*igx+j]);

fclose(fp);
/* return values */

*nxr-nx;
*nyr-ny;
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*dxr-dx;
*dyr-dy;

/* function to write binary file */
iwr(file,area,nx,ny,dx,dy,igx)
char file(];
int area[];
int nx,ny;
float dx,dy;
int igx;

FILE *fa;
int ccO,ccl,cc2,cc3,i,j,nr,sz,szl,nseg,ncount,iseg;
char *sl; /* make sl a character pointer so can add single bytes */
float row2[21;

/* test if binary file for write */
if(binary(file)--0)

fa-fopen(file, "w", "rfm-var", "mrs-2044");
/* this gives files the same as fortran unformatted */
/* MAXREC-2044 seems to be the same size that fortran max record

cc3-3; /* only record */
cc-1; /* first record */
cc2-2; /* last record */
cc0-0; /* another record to come */
putc(cc3,fa); /* replace fortran line start characters */
putc (cc0, fa);
putw (nx, fa);
putw (ny, fa);
nr-1; /* use fwrite to finish of first record so a
row2[0]-dx; /* data starts writing on a new record
row2[1]-dy;
sz-2*sizeof(float);
fwrite(row2, sz, nr, fa);
sz-nx*sizeof(int);
for(i-0; i<ny; i++)

s are */

rea */
*/

if(sz>MAXREC-2)

nseg-sz/(MAXREC-2); /* actually no of segments -1 */
/* first seg */

sl - &area[i*igx];
putc(ccl,fa); /* replace fortran line start characters */
putc (cc0, fa);
szl-MAXREC-2;
ncount-szl;
fwrite(sl, szl, nr, fa);

/* remaining segments */
for(iseg-1; iseg< nseg; iseg++)

putc(cc0,fa); /* replace fortran line start characters */
putc(ccO, fa);
sl - sl+szl;
ncount-ncount+szl;
fwrite(sl, szl, nr, fa);

}
/* Last segment */

putc(cc2,fa); /* 2 indicates
putc (cc0, fa);
sl - sl+szl;
szl-sz-ncount;
fwrite(sl, szl , nr, fa);

else

last segment */

/* single record */

sl - &area[i*igx];
putc(cc3,fa); /* only record */
putc (ccO, fa);
fwrite(sl, sz , nr, fa);

else

fa-fopen (file, "w");
fprintf(fa,"%7d %7d %9.5f %9.5f\n",nx,ny,dx,dy);
for(i-0; i< ny; i++)
( for(j-0; j< nx-1; j++)
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fprintf(fa,"%5d",area[i*igx+J]);
- }

fprintf (fa, "1%5d\n",area i*igx+nx-1);

fclose(fa);

/* function to test if file name has .bin in it */
binary(file)

char *file;

char test[5];
char *bin;
int ret,i,j,maxln;
bin - ".bin";
ret-i;
maxln-strlen(file);

/* convert to lower case */
for(i-0; i<maxln; i++) file(i) -tolower(file(i]);
for(j-0; (j<maxln-3 && ret--1); j++)

for(i-0; i<4; i++)testfi)- file[i+j];
if(test(01--bin[0] && test[1--bin[1] && test(2]--bin[21

&& test[3]--bin(3])ret-0;
/* if(strcmp(test,bin)--)ret-0; */

return (ret);
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SETDIR.FOR

C Program to set up pointers from DEM elevation matrix file and adjust
C elevations of pits by increasing their elevation till they drain,
C i.e. pointers can be assigned consistently.
C
C CREATED BY DAVID G TARB10TN
C
C Input is read from file BRANCH.IN which has the following structure.
C Record 1: File name of raw elevation data file.
C Record 2: File name of pointer file to be output.
C Record 3: File name of area file (Not used).
C Record 4: File name of adjusted elevation data file to be output.
C Subsequent records: Number of subdivisions in X and Y directions for
C matrix to be divided into in first sweeps to speed up adjustment of
C elevations.

C MEANING OF POINTERS IS -------------
C 1 4 1 3 1 2 1
C 0 - POINTS TO SELF -------
C I.E. UNRESOLVED I 5 I 0 I 1 I
C -1- BOUNDARY PIXEL ----------
C 1 6 1 7 1 8 1
C -------------
C
C
C This program uses subroutines from DEMUTIL.FOR, the set of subroutines
C for I/O of binary matrix files.
C
C

Program SETDIR
PARAMETER( IGRIDY-1201, IGRIDX-1201)
PARAMETER (IGY-IGRIDY/2+1, IGX-IGRIDX/2+1)
INTEGER*2 ELEV(IGRIDY, IGRIDX) ,DIR(IGRIDY, IGRIDX)
INTEGER*2 ELEVP (IGY, IGX)
CHARACTER*80 DEMFILE,POINTFILE,AREAFILE,NEWFILE
CHARACTER*4 BIN
CHARACTER*11 FMAT
DATA BIN/'.BIN'/
LOGICAL IZERO

C
C READ INPUT
C

OPENt(UNIT-11,FILE-'BRANCH.IN',STATUS-'OLD',readonly)
READ (11, 22) DEMFILE, POINTFILE, AREAFILE, NEWFILE

22 FORMAT(A80/A80/A80/A80)
CALL IREAD2 (ELEV, DEMFILE, NX,NY, IGRIDY, DX, DY)
if (nx.gt.igridx.or.ny.gt .igridy) then

write (6, 38)nx, igridx,ny, igridy
38 format (1x, 'array dimensions too small'/

& lx,'x',218, y',28)
stop

endif
C
C---LOOP HERE FOR NESTED PARTITIONS
C

1 READ (11, *, END-99) NPX, NPY
DO 2 IP-1,NPY

DO 2 JP-1,NPX
Il-MAX ( ( (IP-1) *NY) /NPY, 1)
12- (IP*NY) /NPY
Ji-MAX ( ((JP-1) *NX) /NPX, 1)
J2- (JP*NX) /NPX
NXP-J2-Jl+l
NYP-12-Il+l
IF (NXP. LE. IGX.AND.NYP. LE.IGY) THEN

C
C----LOAD ELEVATIONS INTO PARTITION ARRAY
C

DO 3 I-Il, I2
DO 3 J-J1,J2

ELEVP (I-I1+1, J-J1+1) -ELEV (I, J)
3 CONTINUE

WRITE (6, 100) IP, JP
100 FORMAT(1X, 'PARTITION',2I5)

CALL SETDF (ELEVP,DIR,IGX, IGY,NXP,NYP,DX,DY)
C
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C---WRITE ELEVATIONS BACK INTO MAIN ARRAY
C -

DO 4 I-I1,I2
DO 4 J-J1,J2

ELEV(I,J) -ELEVP (I-Il+1,J-J1+1)
4 CONTINUE

ELSE
WRITE (6,*) 'PARTITION TOO BIG', IP, JP, NXP, NYP

ENDIF
2 CONTINUE

GO TO 1
C
C--- CALL SETDF FOR WHOLE AREA TO SMOOTH OFF JOINS
C

99 CALL SETDF (ELEV, DIR, IGRIDX, IGRIDY, NX,NY, DX, DY)
CALL IWR2 (E LEV, NEWF ILE, NX, NY, IGRIDY, DX, DY)
CALL IWR2 (DIR, POINTFILE, NX, NY, IGRIDY, DX, DY)

END
C
C---SUBROUTINE TO DO THE BULK OF THE WORK
C

SUBROUTINE SETDF (ELEV,DIR,IGRIDX,IGRIDYNX,NY,DX,DY)
INTEGER*2 ELEV(IGRIDY, IGRIDX) ,DIR(IGRIDY, IGRIDX)
INTEGER*2 IS(500000),JS(500000)
LOGICAL CH1,CH2, IZERO
DIMENSION FACT (8)
INTEGER D1 (8) , D2 (8)
DATA D1/,-1,-1,-1,0,1,1,1/
DATA D2/1,1,0,-1,-1,-1,0,1/

C
C MEANING OF POINTERS IS -------------
C 1 4 1 3 1 2 1
C 0 - POINTS TO SELF -------------
C I.E. UNRESOLVED I 5 I 0 I 1 I
C -1- BOUNDARY PIXEL -------------
C 1 6 1 7 1 8 1
C -------------
C
C INITIALISE BOUNDARY POINTERS IN MATRIX DIR
C

DO 2 I-1,NX
DIR(1,I)--l
DIR (NY, I) -- l

2 CONTINUE
DO 3 I-1,NY

DIR(I,1)--1
DIR (I, NX) -- l

3 CONTINUE
IUP-O

C
c---initialise internal pointers (-ve elevation indicates outside domain)
C

do 31 i-2,ny-1
do 31 j-2,nx-1

if(elev(i,j).le.O)then
dir(i, j)--1

else
dir(i, j)-0

endif
31 continue

C
C TEST ALL INTERNAL ELEVATIONS AND SET POINTERS
C
C WRITE (6, *) 'FACTORS'

DO 21 K-1,8
FACT (K) -1. /SQRT (D1 (K) *DY*D1 (K) *DY+D2 (K) *D2 (K) *DX*DX)

C WRITE(6,*)K,FACT(K)
21 CONTINUE

WRITE (6, *) 'PROBLEM PIXELS'
WRITE (6, *)' FLATS UNRESOLVED'

C
C TEST ALL INTERNAL ELEVATIONS AND SET POINTERS
C

1 DO 4 I-2,NY-1
DO 4 J-2,NX-1

if (elev (i, j) .gT.0) CALL SET (ELEV, DIR, I,J, IGRIDY, FACT)
4 CONTINUE

C
C---FIRST FIXING PASS
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C ELIMINATE FLATS
C STORE UNRESOLVED PIXELS IN A STACK

N-0
DO 7 I-2,NY-1

DO 7 J-2,NX-1
IF (DIR (I, J) .EQ. 0) THEN

N-N+1
IS(N)-I
JS (N) -J

ENDIF
IF (N.GE.500000) THEN

WRITE (6, *) I ARRAYS NOT BIG ENOUGH 1'
C WRITE (6,*)I,J
C WRITE(6,*)ELEV(I-1,J-1) ,ELEV(I-1,J) ,ELEV(I-1,J+1)
C WRITE (6, *)ELEV (I, J-1) , ELEV (I, J) , ELEV (I, J+1)
C WRITE(6,*)ELEV(I+1,J-1),ELEV(I+1,J),ELEV(I+l,J+1)

RETURN
ENDIF

7 CONTINUE
NFLAT-N

C---CALL ROUTINE TO MAKE FLATS DRAIN TO NEIGHBOUR'S
CALL VDN (ELEV, DIR, IS, JS, IGRIDY, N)

C
C ANY UNRESOLVED PIXELS HERE ARE POOLS SO RAISE THEM AND START
C AGAIN
C

IUP-IUP+1
DO 51 II-1,N

I-IS (II)
J-JS (II)

C---DETERMINE ELEVATION OF LOWEST NEIGHBOUR
ILN-MIN (ELEV(I, J+l), ELEV(I-1, J+1) ,ELEV(I-1, J), ELEV(I-1, J-1) ,

& ELEV (I, J-1) , ELEV (I+1, J-1) , ELEV (I+, J) , ELEV (I+l, J+l))
C---INCREMENT IS 1 OR DIFFERENCE BETWEEN LOWEST NEIGHBOUR

ELEV(I,J)-ELEV(I,J)+MAX(1,ILN-ELEV(I,J))
51 CONTINUE

WRITE (6, *) NFLAT, N
C---TEST IF COMPLETE

IF (N.GE.1)GO TO 1 LOOP BACK IF SOMETHING CHANGED
RETURN
END

C
C ROUTINE TO DRAIN UNRESOLVED PIXELS TOWARDS NEIGHBOURS
C

SUBROUTINE VDN (ELEV,DIR, IS,JS, IGRIDY,N)
INTEGER*2 IS(*),JS(*),ELEV(IGRIDY,*),D IR(IGRIDY,*),ED
INTEGER*2 DN(500000)
INTEGER*2 D1(8),D2(8),I1,I3,K,I2
DATA D1/0, -1, -1, -1, 0, 1, 1, 1/
DATA D2/1,1,0,-1,-1,-1,0,1/

C---INITIALISE NEW DIRECTIONS TO 0
1 DO 4 IP-1,N
4 DN(IP)-0

DO 2 K-1,7,2
DO 2 IP-1,N

ED-ELEV(IS(IP),JS(IP))-ELEV(IS(IP)+D1(K),JS(IP)+D2(K))
IF (ED.GE.0.AND.DIR(IS(IP)+D1(K),JS(IP)+D2(K)) .NE.0.AND.

& DN(IP) .EQ.0)DN(IP)-K ! LOGICAL EQUIVALENTS TO COND M'S BELOW
C Il-CVMP(1,0,ED)
C---Il IS 1 IF DROP IS .GE.0
C 13-CVMGZ(0,1,DIR(IS(IP)+D1(K),JS(IP)+D2(K)))
C--13 IS 0 UNLESS NEIGHBOUR HAS DIRECTION SET
C DN (IP) -CVMGZ (11*13*k, dn (ip) , DN (IP))
C---DN IS NEW DIRECTION POINTER
2 CONTINUE

DO 12 K-2,8,2
DO 12 IP-1,N

ED-ELEV(IS(IP),JS(IP))-ELEV(IS(IP)+D1(K),JS(IP)+D2(K))
IF(ED.GE.0.AND.DIR(IS(IP)+D1(K),JS(IP)+D2(K)) .NE.O.AND.

& DN(IP).EQ.0)DN(IP)-K LOGICAL EQUIVALENTS TO COND M'S BELOW
C I1-CVMGP (1, 0, ED)
C---Il IS 1 IF DROP IS .GE.0
C 12-CVMGZ (K, DIR (IS (IP) , JS (IP) ),DIR (IS (IP) , JS (IP)))
C---13 IS 0 UNLESS NEIGHBOUR HAS DIRECTION SET
C DN (IP) -CVMGZ (il*i3*k, dn (ip) , DN (IP))
C---DN IS NEW DIRECTION POINTER
12 CONTINUE

NI-0
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DO 3 IP-1,N
- IF(DN(IP) .GT.O)THEN

DIR(IS(IP),JS(IP))-DN(IP)
ELSE

NI-NI+1
IS (NI) -IS (IP)
JS (NI) -JS (IP)

ENDIF
3 CONTINUE

C WRITE(6,*)'IN VDN: NI, N ',NI,N
IF (NI .LT.N) THEN
N-NI
GO TO 1

ENDIF
N-NI
RETURN
END

C
C SUBROUTINE TO SET POINTERS IN DIRECTION OF STEEPEST DECENT
C

SUBROUTINE SET (ELEV, DIR, I, J, IGRIDY,FACT)
INTEGER*2 ELEV(IGRIDY, 1) ,DIR(IGRIDY, 1)
DIMENSION SLOPE (8) ,FACT(8)
INTEGER Dl (8), D2 (8)
DATA Dl/,-1,-l,-1,0,l,1,1/
DATA D2/1,1,0,-l,-l,-1,0,1/
DO 2 K-1,8

SLOPE (K) -FACT (K) *FLOAT (ELEV (I, J) -ELEV (I+Dl (K) , J+D2 (K)))
2 CONTINUE

SMAX-0.
DIR(I,J) -O
DO 3 K-1,8

IF (SLOPE (K) .GT.SMAX) THEN
SMAX-SLOPE (K)
DIR(I,J)-K

ENDIF
3 CONTINUE

RETURN
END
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AREAC.C

/* Program to compute area contributing to each pixel from pointers using */
/* recursive algorithm */

/* Created by David G Tarboton */

/* Input is read from file BRANCH.IN which has the following structure. */
/* Record 1: File name of raw elevation data file (not used).
/* Record 2: File name of pointer file input. */
/* Record 3: File name of area file output. */
/* Record 4: File name of adjusted elevation data file (not used). */
/* Subsequent records: (not used) */

/* This program uses Input/Output routines from CUTIL.C */

#include <stdio.h>
#define IGX 1201
#define IGY 1201
#define MAXLN 80
main()

extern int nx,ny;
extern float dx,dy;
char efile[MAXLN], pfile [MAXLN], afile [MAXLN];
extern short int dir(IGY][IGX];
extern int area[IGY][IGXdl[9],d2[9];
FILE *fin;
int i,j;

/* define directions */
dl[l]-0; dl[2]- -1; dl[31- -1; dl[41- -1; dl[5]-0; dl[6]-l; dl[7]-l; dl[8]-l;
d2[1]-1; d2[21-1; d2(3]-0; d2[4]- -1; d2[5]- -1; d2[6]- -1; d2[7]-0; d2[81-1;

/* read in data */
fin-fopen("branch.in","r");
fscanf(fin, "%s", efile);
fscanf(fin, "Ws, pfile);
fscanf(fin, "%s", afile);

/* read pointers */
iread2(pfile,dir,&nx,&ny,&dx,&dy,IGX);

/* initialize area array to 0 */
for(i-0; i<ny; i++)

for(j-0; j<nx; j++)
area i][j]-0;

/* call drainage area subroutine for each area */
/* work from middle outwards to avoid deep recursions */

for(i-ny/2; i<ny-1; i++)
for(j-nx/2; j<nx-1; j++)

darea(i, j);
for(j-nx/2-1; j>-l; j--)
darea(i,j);

for(i-ny/2-1; i>-l; i--)
for(j-nx/2; j<nx-1; j++)
darea(i,j);

for(j-nx/2-1; j>-l; j--)
darea(i, j);

/* write out areas */
iwr(afile,area,nx,ny,dx,dy,IGX);

/* function to compute area recursively */
darea(i,j)

int i,j;

extern int area[IGY[IGX],d1[9),d2[9],nx,ny;
extern short int dir(IGY][IGX];
int in,jn,k;
if(area[i][j1--0)

if(i!-0 && i!-ny-1 && j!-0 && j!-nx-1 && dir[i][j]!- -1)
/* not on boundary */

area (i] [j]-1;
for(k-1; k<-8; k++)
{ in-i+dl[k];
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jn-j+d2(k];
/* test if neighbor drains towards cell excluding boundaryies */

if(dir[in] [jn]>-O && (dir[in] [jn]-k-411 dir(in] (jn]-k---4))

darea (in, jn):
area(i](j]-area(i][j)+area[in][jn];

BRANCH.IN

W7ELEV.BIN
W7P.BIN
W7AREA.BIN
W7ADJ.BIN
5 5
3 3
2 2
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PIXMAP.FOR

C Program to plot a cell array of pixels that exceed a specified threshold
C from a DEM matrix file. This is used to identify river networks In DEM
C data sets and determine the outlet pixel to be used to isolate the basin.
C
C CREATED BY DAVID G TARBOTON
C
C Input is read from file PIXMAP.IN which has the following structure:
C
C
C
C
C
C
C
C
C
C
C
C
C

Record 1: Number of bits per data item in input file
(1- real, 2- 2 bit integer, 4- 4 bit integer).

Record 2: Threshold for real data (used only if record 1 - 1).
Record 3: File name of matrix file to be mapped.
Record 4: Device unit number for remainder of input.

This should be 11 for continued input from the same file of 5
for interactive input.

Remainder: The rest of the file is only read if record 4 is 11 and is the
response to interactive questions regarding the plot to be produced.

This program uses subroutines from DEMUTIL.FOR, the set of subroutines
for I/O of binary matrix files.

PROGRAM PIXMAP
PARAMETER (IGPX-1201, IGPY-1201)
INTEGER COLP (IGPX, IGPY) ,col (igpy)
DIMENSION XL(5),YL(5)
CHARACTER*50 FNAME
CHARACTER*80 HEADER
character*5 reply
logical yes
OPEN(UNIT-11,FILE-'PIXMAP.IN',STATUS-'OLD')
READ (11, *) IBITS
read(1l,*)tresh tresh only used for real data files
CALL INPUT (COLP, NXi, NYi, tresh, IGPX, IBITS, dx, dy)
READ(11,*)IUNIT

1 FNAME-' '
CALL SETUP (FNAME, IDEV, IUNIT, ITYPE)
CALL GQDSP(ITYPE,IER,IUNITS,PX,PY,LX,LY)

C---DEFINE WORKSTATION TRANSFORMATION
PM-MAX(PX,PY)
Pl-PX/PM COORDS OF VIEWPORT ON NDC
IF (IDEV.EQ.1) THEN
P2-PY/PM*.9
PYM-0.1*PY

ELSE
P2-PY/PM
PYM-O.

ENDIF
CALL GSWKWN(1,0.,P1,D.,P2) SET WORKSTATION WINDOW
CALL GSWKVP(1,0.,PX,PYM,PY) SET WORKSTATION VIEWPORT
NWIND-1
RAT-Pl/P2
XWMIN-0
XWMAX-RAT
YWMIN-0
YWMAX-1.
CALL GSWN (NWIND, XWMIN, XWMAX, YWMIN, YWMAX) SET WINDOW
CALL GSVP(NWIND,0.,P1,0.,P2) SET VIEWPORT
CALL GSELNT(NWIND) SELECT NORM. TRANS.
call gsvpip(nwind,0,0) sets this transformation

c to be higher priority than default transformation no 0.
XR-XWMAX-.1 PLOTTING RANGES
YR-YWMAX-.2
RRAT-XR/YR

22 write(6,*)'input threshold'
read(iunit, *) itresh

13 WRITE(6,*) 'number of columns ',NXi
WRITE(6,*)'number of rows ',Nyi
WRITE (6, *) 'INPUT SUBARRAY TO PLOT'
WRITE (6, *) 'COLMIN,COLMAX,ROWMIN,ROWMAX'
READ (IUNIT, *) ICB, ICT, IRB, IRT
if(icb.gt.D.and.icb.lt.ict.and.ict.le.nxi)then

if(irb.gt.0.and.irb.lt.irt.and.irt.le.nyi)then
go to 15

endif
endif
write(6,*)'row and col out of range'
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go to 13
15 -NX-ICT-ICB+1

NY-IRT-IRB+1
DRAT-FLOAT (NX) *dx/ (FLOAT (NY) *dy)
IF(RRAT.LT.DRAT) THEN WIDTH (X) LIMITED

PX-XWMIN+.05
QX-XWMAX-.05
YMID-0.55
PY-YMID+ (QX-PX) / (DRAT*2.)
QY-YMID-+(QX-PX)/(DRAT*2.)

ELSE ! HEIGHT (Y) LIMITED
PY-.95
QY-.15
XMID-RAT/2.
PX-XMID-(PY-QY)*DRAT/2.
QX-XMID+(PY-QY)*DRAT/2.

ENDIF
XL(1)-PX
XL(2)-QX
XL(3)-QX
XL(4)-PX
XL(5)-PX
YL(1)-QY
YL(2)-QY
YL(3)-PY
YL(4)-PY
YL(5)-QY
do 2 i-1,nx

do 3 j-1,ny
col(j)-0

3 if(colp(icb+i-1,j+irb-1).ge.itresh)col(j)-1
pxp-px+ (qx-px) *float (i-1) /f loat (nx)
qxp-px+ (qx-px) *float (i) /float (nx)
CALL GCA(PXp,PY,QXp,QY, 1, IGPY, 1,1, 1,NY,COL)

2 continue
C---BOUNDARIES

CALL GPL(5,XL,YL)
WRITE (HEADER, 71) ITRESH

71 FORMAT(1X,'Pixels that exceed or equal threshold',15)
C---TEXT

X-0.25
Y-0.05
CALL GSTXFP(1,2)
CALL GSCHH ( (YWMAX-YWMIN) /50.)
CALL GTX (X, Y, HEADER)
write(6,*)Ido you want to locate a pixel'
read(iunit,144)reply
yes-.false.
do 146 1-1,5

if(reply(i:i).eq.'y'.OR.REPLY(I:I).EQ.'Y')yes-. true.
146 continue

if(yes)then locate pixel
CALL GSTXFP(1,2)
CALL GSCHH ( (YWMAX-YWMIN) /100.)

73 call grqlc (1,1, instatus, ixform,posx,posy)
ix-(posx-px)/(qx-px)*nx
iy-(posy-qy)/(py-qy)*ny
j-icb+ix
i-irt-iy
IF (Ix.Ge.0) THEN

X-PX+FLOAT (J-ICB) * (QX-PX) /FLOAT (NX)
Y-PY+FLOAT (I-IRB+l) * (QY-PY) /FLOAT (NY)
CALL GTX(X,Y,'X')

c CALL GUWK(1,GPERFO)
WRITE (6, *) i, j, COLP (J, I)
GO TO 73

ENDIF
endif
write (6,*) 'do you want another plot on same workstation'
read(iunit,144)reply

144 format(a5)
do 145 1-1,5

if(reply(i:i) .eq. 'y' .or.reply(I:I) .eq. 'Y')then
call gclrwk(l,l)
go to 22

endif
145 continue

CALL TIDYUP (IDEV)
write(6,*)Ido you want another plot'
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.read(iunit,144)reply
do 147 1-1,5

if(reply(i:i).eq.'y'.or.reply(I:I).eq.'Y')go to 1
147 continue

STOP
END

C
C
C

SUBROUTINE INPUT (COL,NX,NY,tresh, IGPX, IBITS, dx, dy)
INTEGER COL(IGPX,1),IROW(1201)
integer*2 irow2 (1201)
DIMENSION ROW(1201)
CHARACTER*80 FILEN
CHARACTER*4 BIN
CHARACTER*11 FMAT
DATA BIN/'.BIN'/
READ (11, 22) FILEN

22 FORMAT (A80)
C
C SEARCH FILE NAME FOR .BIN - IF IT IS PRESENT IT IS A BINARY FILE
C

FMAT-'FORMATTED '
DO 2 1-1,77

IF (FILEN (I: I+3) .EQ.BIN) THEN
FMAT-'UNFORMATTED'
GO TO 3

ENDIF
2 CONTINUE
3 OPEN(UNIT-10,FILE-FILEN,STATUS-'OLD' ,FORM-FMAT)

C
C READ FILE
C

IF (IBITS.EQ. 4) THEN INTEGER
IF (FMAT.EQ. 'UNFORMATTED') THEN
READ (10,err-33)NX,NY,dx,dy
go to 34

33 dx-30.
dy-30.

34 continue
DO 9 I-1,NY

READ (10) (IROW(J) , J-1, NX)
DO 9 J-1,NX

COL(J, I)-irow(j)
9 CONTINUE

ELSE
READ (10, *) NX, NY, dx, dy
DO 8 I-1,NY

READ(10,*) (IROW(J),J-1,NX)
C---SET COL ACCORDING TO THRESHOLD

DO 8 J-1,NX
COL(J, I) -irow(j)

8 CONTINUE
ENDIF
else IF(IBITS.EQ.2)THEN INTEGER*2
IF (FMAT .EQ. 'UNFORMATTED' ) THEN
READ (10,err-43)NX,NY,dx,dy
go to 44

43 dx-30.
dy-30.

44 continue
DO 29 I-1,NY

READ (10) (IROW2 (J) , J-1, NX)
DO 29 J-1,NX

COL(J, I) -irow2 (j)
29 CONTINUE

ELSE
READ (10, *) NX, NY, dx, dy
DO 28 I-1,NY

READ(10,*) (IROW2 (J) ,J-l,NX)
C---SET COL ACCORDING TO THRESHOLD

DO 28 J-1,NX
COL(J, I) -irow2 (J)

28 CONTINUE
ENDIF
ELSE REAL
IF (FMAT .EQ. 'UNFORMATTED') THEN
READ (10,err-53)NX,NY,dx,dy
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go to 54
53 - dx-30.

dy-30.
54 continue

DO 19 I-lNY
READ (10) (ROW(J) ,J-1,NX)
DO 19 J-1,NX

IF (ROW (J) .GE. TRESH) COL (J, I)-1
19 CONTINUE

ELSE
READ (10, *) NX, NY, dx, dy
DO 18 I-1,NY

READ (10, *) (ROW (J) , J-1, NX)
C---SET COL ACCORDING TO THRESHOLD

DO 18 J-1,NX
IF(ROW(J) .GE.TRESH)COL(J,I)-1

18 CONTINUE
ENDIF
ENDIF
CLOSE (10)
RETURN
END

PIXMAP.IN

4 NO OF BITS PER INTEGER IN UNFORMATTED FILE
1 THRESHOLD for real data
w7area.BIN
5 INPUT DEVICE NO FOR INTERACTION (11 FOR THIS FILE, 5 OTHERWISE)
2 DEVICE TYPE 1-SCREEN, 2-LASERWRITER, 3-tektronix
pixmap. las
1 threshold (must be <- 1 for real data)
1, 1201, 1, 1201 COL MIN AND MAX, ROW MIN AND MAX
n Locate pixel
n another plot same workstation
n another plot
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ZAREAC.C

/* Program to zero area of pixels that dont drain to a designated outlet */
/*'pixel by calculating areas of pixels draining to-the outlet pixel */
/* using a recursive algorithm starting from the outlet pixel */

/* Created by David G Tarboton */

Input is read from file ZAREA.IN which has the following structure.
Record 1: File name of pointer file input.
Record 2: File name of area file input (not used).
Record 3: File name of isolated area file output.
Subsequent Records: Row and Column of the outlet pixels isolate on.

More than one is possible to allow subnetworks to be computed
first to prevent recursion depth or storage of two networks
in the same file.

*1
*1
*1
*1
*1
*1

*1

/* This program uses Input/Output routines from CUTIL.C */

#include <stdio.h>
#define IGX 1720
#define IGY 1170
#define MAXLN 80
main()

int nx,ny,sz,nr;
float dx,dy;
char efile[MAXLN3,pfile[MAXLN),afile[MAXLN],ccl,cc2,cc3,cc4;
short int dir[IGY][IGX),row(IGX];
int area[IGY[IGX],dl[93,d2[9],row2[IGX);
FILE *fp, *fa, *fin;
int i,j,irz,icz;

/* define directions */
dl[1-0; d1[2]- -1; dl[3)- -1; dl[4]- -1; dl[5]-0; dl[6]-1; dl[7]-l; dl[8]-1;
d2[l]-l; d2[2]-l; d2[3]-0; d2[4]- -1; d2[5]- -1; d2[6]- -1; d2[7]-0; d2[8]-1;

/* read in data */
fin-fopen("zarea.in","r");
fscanf(fin, "%s", pfile);
fscanf(fin, "%s", efile); /* this file name not used */
fscanf(fin, "%s", afile);

/* read pointers */
iread2 (pfile,dir, &nx, &ny, &dx, &dy, IGX);

/* initialize area array to 0 */
for(i-0; i<ny; i++)

for(j-0; j<nx; j++)
area[i] [jI-0;

get pixels to zero on */
There may be several with the first few
restrict recursion depth */
i-fscanf(fin,"%d %d",&irz,&icz);
while(i !- 0)

judicuously chosen to */

/* call drainage area subroutine for pixel to zero on */
irz-irz-1; /* decrease index for c indexing starting from 0 */
icz-icz-1;
area[irz] (icz]-darea(irz,icz,dir,area,dl,d2,nx,ny);
i-fscanf(fin,"%d %d",&irz,&icz);

/* write out areas */
iwr (afile, area, nx, ny, dx, dy, IGX);

/* function to compute area recursively */
darea(i, j,dir,area,dl,d2,nx,ny)

int i, j,area(IGY [IGX),dl[9],d2[91,nx,ny;
short int dir[IGY][IGX];

int a,in,jn,k;
if(area[i][j]--0)

if(i!-0 && i!-ny-1 && j!-0 && j!-nx-1)

a-1;
for(k-1; k<-8; k++)

in-i+dl[k];
jn-j+d2[k];

/* not on boundary
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/* test if neighbor drains towards cell excluding boundaryies */
- if(dir[in][jn]>-O && (dir(inl[jn-k-41idir[in][jn-k---4))

a-a+darea(in, jn,dir,area,dld2,nx,ny);

area [i] (j] -a;

else
a-area[i] [j3;

return (a);

ZAREA.IN

w7p.BIN
w7area.BIN
w7AREAI.BIN
20,45
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NETEX.FOR

C
C Program to extract channel network from DEM area and pointer files
C based on a support area threshold.
C
C CREATED BY DAVID G TARBOTON
C
C Input is read from file NETEX.IN in the following format.
C Record 1: Pointer matrix file name for input.
C Record 2: Isolated area matrix file name for input.
C Record 3: Tree file name for output.
C Record 4: IJ file name for output of temporary pixel coordinates
C Record 5: Elevation matrix file name (Not Used).
C Record 6: Coordinate file name (Not used)
C Record 7: Support area threshold (Number of pixels)
C
C Based on the support area threshold this program identifies each link in
C the channel network and sets up the tree file defining its topological
C structure. The (I,J) row and column numbers of each pixel along each link
C are output in the temporary IJ file for later reading by NETPROP.FOR.
C
C This program uses subroutines from DEMUTIL.FOR, the set of subroutines
C for I/O of binary matrix files.
C

PROGRAM NETEX
PARAMETER(IGX-1201, IGY-1401,MNL-50000)
CHARACTER*80 TREEFILE, COORDFILE

C---with MNL - 50000 the number of links can exceed 32767 the max two
C bit integer value so link pointers have to be 4 bit integers
C (NEXTL,PREVL1,PREVL2, IPOINT)

INTEGER AREA (IGY, IGX) , NEXTL (MNL) , PREVL1 (MNL) , PREVL2 (MNL) , IPOINT (7)
INTEGER*2 DIR(IGY,IGX),Dl(8),D2(8),IST((MNL+1)/2),JST((MNL+1)/2),

&IORD(MNL),
&ISTART (MNL) , JSTART (MNL) , IEND (MNL) , JEND (MNL) , MAG (MNL) , IORDUP (7)

DATA Dl/0,-l,-l,-1,0,1,1,1/
DATA D2/1,1,0,-l,-l,-1,0,1/
LOGICAL START

C
C READ INPUT
C

CALL INPUT (AREA, DIR, NX, NY, IGX, IGY, TREEFILE, COORDFI LE, ITRESH)
C
C MEANING OF POINTERS IS -------------
C 1 4 1 3 1 2 1
C 0 - POINTS TO SELF -------------
C I.E. UNRESOLVED I 5 I 0 I 1 I
C -1- BOUNDARY PIXEL -------------
C 1 6 1 7 1 8 1
C -------------
C
C----FIRST FIND ALL START PIXELS
C

N-0
nmax-(mnl+l)/2
DO 2 I-1,NY

DO 2 J-1,NX
IF (START (I, J, AREA, DIR, NX,NY, IGX, IGY, ITRESH) ) THEN

N-N+l
if(n.le.nmax)then
IST(N)-I
JST(N)-J
endif

ENDIF
2 CONTINUE

WRITE (6,*) 'MAGNITUDE ', N
if(n.gt.nmax)stop 'too big'

C
C---ZERO AREA ARRAY
C

DO 12 I-1,NY
DO 12 J-1,NX

12 AREA(I,J)-0
C
C----TRACE STREAMS DOWNWARDS ADDING 1 TO MAGNITUDE OF EACH PIXEL
C (MAGNITUDE STORED IN AREA ARRAY)

DO 3 IS-1,N
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I-IST (IS)
J-JST (IS)

4 IF(DIR(I,J).GT.0)THEN
AREA (I, J)-AREA (I, J) +1
INEXT-I+D1 (DIR (I, J))
JNEXT-J+D2 (DIR (I, J))
I-INEXT
J-JNEXT
GO TO 4

ENDIF
3 CONTINUE

C
C----IDENTIFY LINKS BY DIFFERENT MAGNITUDES
C

ILINK-1
DO 5 IS-1,N

ISTART (ILINK) -IST(IS)
JSTART (ILINK) -JST (IS)

C---INITIALISE POINTERS
PREVL1 (ILINK) -O
PREVL2 (ILINK) -o
I-IST(IS)
J-JST(IS)
MAG (ILINK) -AREA (I, J)
IORD (ILINK) -1

6 INEXT-I+D1 (ABS (DIR (I, J)))
JNEXT-J+D2 (ABS (D IR (I, J)))

C----CHECK FOR END
IF (DIR (INEXT, JNEXT) .EQ.0) GO TO 90 END
MNEXT-AREA (INEXT, JNEXT)
I-INEXT
J-JNEXT
IEND (ILINK) -I
JEND (ILINK) -J
IF(MNEXT.EQ.MAG(ILINK))GO TO 6

C---CONTINUE HERE FOR NEW LINK
C----CHECK IF JUNCTION ALREADY REACHED (FLAGGED BY NEGATIVE DIREC

IF(DIR(I,J) .LT.0)THEN
C----CHECK IF ALL LINKS CONVERGING HERE HAVE BEEN DONE BY SUMING
C MAGNITUDE

MSUM-0
IORDM-0
ICONV-0
DO 7 IL-1,ILINK

IF(IEND(IL) .EQ.I.AND.JEND(IL) .EQ.J)THEN
ICONV-ICONV+1 COUNTER OF NUMBER OF LINKS T
IPOINT (ICONV) -IL
IORDUP (ICONV) -IORD (IL)
MSUM-MSUM+MAG (IL)

ENDIF
7 CONTINUE

IF (MSUM.EQ.MNEXT) THEN ! YES ALL LINKS HAVE BEEN P
C---SORT IORDUP, IPOINT INTO DECENDING STREAM ORDER

DO 11 IC-1,ICONV-1
DO 11 IIC-IC+1,ICONV

IF(IORDUP(IIC).GT.IORDUP(IC))THEN ! SWITCH TH
ITEMP-IORDUP (IIC)
IORDUP (IIC) -IORDUP (IC)
IORDUP (IC) -ITEMP
ITEMP-IPOINT (IIC)
IPOINT (IIC) -IPOINT (IC)
IPOINT (IC) -ITEMP

ENDIF
11 CONTINUE

DO 17 IC-1, ICONV-1
ILINK-ILINK+1
ISTART (ILINK) -I
JSTART(ILINK)-J
PREVL1 (ILINK) -IPOINT (IC)
PREVL2 (IL INK) -IPO INT (IC+1)
NEXTL (IPOINT (IC) ) -ILINK
NEXTL (IPOINT (IC+1).) -ILINK
MAG (ILINK) -MAG (PREVL1 (ILINK) ) +MAG (PREVL2 (ILINK))
IORD(ILINK)-MAX(IORDUP(1) , IORDUP (2) +1)
IPOINT (IC+1) -ILINK
IEND (ILINK) -I
JEND (ILINK) -J

17 CONTINUE
GO TO 6 ! CONTINUE TRACING DOWN

TION)

HAT CONVERGE

ROCESSED

ESE
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ELSE
ILINK-ILINK+1

ENDIF
ELSE

DIR(I,J)--DIR(I,J)
ILINK-ILINK+1

ENDIF
5 CONTINUE

WRITE(6,*)'LOGIC ERROR LINK LOOP ENDED'
STOP

C
C----WRITE TREE FILE
C
90 OPEN(UNIT-10,FILE-COORDFILE,STATUS-'NEW')

OPEN (UNIT-12, FILE-TREEFILE, STATUS-'NEW')
ICORD-0

C---WRITE ROOT LINK FIRST
DO 10 IL-ILINK,ILINK

I-ISTART (IL)
J-JSTART (IL)
ICS-ICORD

20 WRITE (10, *) I, J
ICEND-ICORD
ICORD-ICORD+1
IF (.NOT. (I.EQ. IEND (IL) .AND.J.EQ. JEND (IL) ))THEN

INEXT-I+D1 (ABS (DIR(I,J)))
JNEXT-J+D2 (ABS (DIR(I,J)))
I-INEXT
J-JNEXT
GO TO 20

ENDIF
WRITE(12,*)0,ICS,ICEND,-1,PREVL1(IL)

& ,PREVL2(IL),IORD(IL)
10 CONTINUE

WRITE (6,*) 'ROOT AT COORD. NUMBER ',ICORD
WRITE (11, *) ICORD

C---WRITE REMAINDER OF LINKS
DO 110 IL-1,ILINK-1

I-ISTART (IL)
J-JSTART (IL)
ICS-ICORD

120 WRITE (10, *) I, J
ICEND-ICORD
ICORD-ICORD+1
IF (.NOT. (I.EQ. IEND (IL) .AND.J.EQ. JEND (IL) ))THEN

INEXT-I+D1 (ABS (DIR (I, J)))
JNEXT-J+D2 (ABS (DIR (I, J)))
I-INEXT
J-JNEXT
GO TO 120

ENDIF
IF (NEXTL(IL) .EQ.ILINK)NEXTL(IL)-0
WRITE (12, *) IL, ICS, ICEND, NEXTL (IL) , PREVL1 (IL)

& ,PREVL2(IL),IORD(IL)
110 CONTINUE

END
C
C THIS FUNCTION RETURNS TRUE IF THE PIXEL IS A STREAM SOURCE
C ACCORDING TO THE THRESHOLD
C

LOGICAL FUNCTION START(I,J,AREA,DIR,NX,NY, IGX, IGY, ITRESH)
INTEGER*2 DIR(IGY, IGX)
INTEGER AREA(IGY,IGX) ,D1(8),D2 (8)
DATA D1/0,-1,-1,-1,0,1,1,1/
DATA D2/1,1,0,-1,-1,-1,0,1/
START-.TRUE.
IF(AREA(I,J) .LT.ITRESH) THEN

START-.FALSE.
IF(AREA(I,J).EQ.0)DIR(I,J)-0 ZERO DIRECTIONS OUTSIDE AREA

ELSE ! CHECK UPSTREAM PIXELS
DO 2 K-1,8

IN-I+D1(K) ! NEIGHBOUR PIXEL
JN-J+D2 (K)
IF (DIR (IN, JN) .GT.0) THEN
IND-IN+D1(DIR(IN,JN)) PIXEL DOWNSTREAM FROM NEIGHBOUR
JND-JN+D2 (DIR(IN,JN))
IF(IND.EQ.I.AND.JND.EQ.J)THEN !NEIGHBOUR DRAINS INTO (I,J)

IF(AREA(IN,JN) .GE.ITRESH)START-.FALSE.

248



ENDIF
- ENDIF

2 CONTINUE
ENDIF
RETURN
END

C
C

SUBROUTINE INPUT (AREA, DIR, NX, NY, IGX, IGY, TREEFILE, COORDFILE, ITR)
INTEGER*2 DIR(IGY, IGX)
INTEGER AREA (IGY, IGX)
CHARACTER*80 POINTFILE, AREAFILE, TREEFILE, COORDFILE, JFILE
OPEN(UNIT-11,FILE-'NETEX.IN',STATUS-'OLD')
READ (11, 22) POINTFILE, AREAF ILE, TREEFILE, COORDF ILE

22 FORMAT (A80/A80/A80/A80)
READ(11, 32)JFILE
READ (11, 32) JFILE

32 FORMAT (A80)
READ(11, *) ITR
CALL IREAD2 (DIR, POINTF ILE, NX, NY, IGY, DX, DY)
CALL IREAD (AREA, AREAFILE, NXN, NYN, IGY, DX, DY)
IF(NXN.NE.NX.OR.NYN.NE.NY)WRITE (6,*)'AREAFILE INCOMPATIBLE SIZES'
RETURN
END

NETEX.IN

W7P.BIN
W7AREAI.BIN
TREE.DAT
NETIJ.DAT
W7adj .BIN
COORD.DAT

50
9
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NET-PROP.FOR

C Program to compute channel network properties for each pixel on the channel
C network
C
C CREATED BY DAVID G TARBOTON
C
C Input is read from file NETEX.IN in the following format.

Record
Record
Record
Record

Record
Record
Record
Record

1:
2:
3:
4:

5:
6:
7:
8:

Pointer matrix file name for input.
Isolated area matrix file name for input.
Tree file name for input (Created by NETEX.FOR).
IJ file name for input of pixel row and column coordinates
(Created by NETEX.FOR)
Elevation matrix file name for input.
Coordinate file name for output.
Support area threshold (Number of pixels)
Number in coord file of outlet pixel (Input not required. This
is written into this file by NETEX.FOR)

C
C This program follows after NETEX.FOR and computes the X and Y coordinates
C of pixels on the channel network from row and column numbers using the SW
C (Lower left) corner as an origin. It also writes elevations, distances to
C the outlet along the streams and contributing area for each pixel to the
C coordinate file.
C
C This program uses subroutines from DEMUTIL.FOR, the set of subroutines
C for I/O of binary matrix files.
C

PROGRAM NETPROP
PARAMETER (IGX-1201, IGY-1201,MC-100000)
CHARACTER*80 IJFILE, COORDFILE, ELEVFILE, AREAFILE, POINTFILE

INTEGER AREA (IGY, IGX)
REAL RAREA (MC) , LENGTH (MC)
INTEGER*2 DIR(IGY,IGX),Dl(8),D2(8),ELV(MC),IA(MC),JA(MC)
DATA Dl/O,-l,-l,-1,0,1,1,1/
DATA D2/1,1,0,-l,-l,-1,0,1/

C
C READ INPUT
C

OPEN (UNIT-11,FILE-'NETEX.IN', STATUS-'OLD')
READ (11, 22) POINTFILE, AREAF ILE, IJF ILE, ELEVF ILE, COORDF ILE

22 FORMAT (A80/A80//A80/A80/A80)
OPEN (UNIT-10,FILE-IJFILE, STATUS- 'OLD')
DO 5 N-1,MC
READ (l0,*,END-ll0) IA(N) ,JA(N)

5 CONTINUE
WRITE(6,*) 'TOO MANY COORDS'

110 CLOSE(10)
N-N-1

C
C---COMPUTE AREAS
C

CALL IREAD (AREA, AREAF ILE, NX, NY, IGY, dx, dy)
DO 6 IC-l,N

6 RAREA (IC) -FLOAT (AREA (IA (IC) , JA (IC) ))*dx*dy
C
C---READ ELEVATIONS
C

CALL IREAD2 (DIR, ELEVFILE, NX, NY, IGY, dx, dy)
DO 7 IC-l,N
ELV (IC)-DIR(IA(IC) ,JA(IC))

7 CONTINUE
C---READ ROOT COORDS

READ(11,*)ISUP ! ISUP IS SUPPORT AREA
READ (11, *) ICR I ICR IS COORD OF ROOT
IROOT-IA (ICR)
JROOT-JA (ICR)

C
C---READ POINTERS AND COMPUTE LENGTHS
C

CALL IREAD2 (DIR, POINTFILE,NX, N
C
C MEANING OF POINTERS IS ------
C 1 4 1
C 0 - POINTS TO SELF ------
C I.E. UNRESOLVED I 5 I
C -1- BOUNDARY PIXEL ------

Y, IGY, dx, dy)

3 1 2 1

0 I 1 1
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C 1 6 1 7 1 8 1
C -------------
C
C----TRACE STREAMS DOWNWARDS

DO 3 IC-1,N
LENGTH (IC) -0.
I-IA(IC)
J-JA (IC)
IF(.NOT. (I.EQ.IROOT.AND.J.EQ.JROOT))THEN ! LOOP

4 INEXT-I+D1(DIR(I,J))
JNEXT-J+D2 (DIR(I,J))
DXx-dx*FLOAT (J-JNEXT)
DYy-dy*FLOAT (I-INEXT)
LENGTH (IC) -LENGTH (IC) +SQRT (DXx*DXx+DYy*DYy)
IF(.NOT. (INEXT.EQ.IROOT.AND.JNEXT.EQ.JROOT))THEN

I-INEXT
J-JNEXT
GO TO 4

ENDIF
ENDIF

3 CONTINUE
C--WRITE OUTPUT

OPEN (UNIT-10, FILE-COORDFILE, STATUS-'NEW')
DO 10 IC-1,N
X-JA(IC) *dx
Y-dy* (NY-IA (IC))
WRITE(10,*)X,Y,LENGTH(IC) ,ELV(IC) ,RAREA(IC)

10 CONTINUE
END
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