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A CHANNEL NETWORK EVOLUTION MODEL WITH
SUBSURFACE SATURATION MECHANISM AND

ANALYSIS OF THE CHAOTIC BEHAVIOR OF THE
MODEL

Abstract

In the first part of this work the overland flow production mechanism used in the
Willgoose-Bras-Rodriguez-Iturbe channel network and catchment evolution model was
modified from the Hortonian to the subsurface saturation runoff mechanism. Two important
differences were found oin the behavior of the new model; one was in the evolution of the
hypsometric curves of the catchment; the second was in the importance of mass movement
(e.g. creep and landsliding) sediment transport in the overall behavior of the system. A new
nondimensional number related to the threshold of saturation in hillslopes was added to the
list of nondimensional numbers belonging to the original model. Common
geomorphological statistics were measured on the simulated catchments and found to be
similar to field data.

The second part of this work examines the sensitivity to initial conditions present in the
WBR model. Using an appropiate measure between elevation fields, the evolution of
different catchments was examined. Exponential separation in phase space between
trajectories of the system was found in a variety of tests. This exponential separation is the
reason for the apparent randomness present in the evolution of the model. The influence of
different parameters of the model on this exponential separation was also examined.
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Chapter 1

Introduction

1.1 Scope

Hydrologists have always been interested in the geomorphologic aspects of

catchments and river networks. An understanding of the relationships between basin shapes

and hydrologic responses is fundamental for the purpose of hydrologic predictions,

especially in ungaged basins.

Another goal is to try to understand not only the properties and the response of a

catchment at a certain time but to study the evolution of the catchment over a long period of

time. This approach has potential applications in the study of geomorphologic impacts

produced by global climate changes. Water, as a vehicle of sediment transport, plays a

fundamental role in the process. Recently a model developed by Willgoose, Bras and

Rodriguez-Iturbe [471 quantified the evolution of the channel network and the catchment.

This work uses that model to address two questions: what is the influence of the overland

flow production mechanism in the overall behavior of the basin and why is there an

apparent randomness present in the evolution process even if the system is completely

deterministic.

1.2 Outline

Chapter 2 presents a general review of previous work. This chapter gives basic

definitions and describes some channel network models. The problems described in the

above section will be discussed in two separate chapters. Chapter 3 studies a modification

to the WBR model where a subsurface saturation mechanim is used to calculate the
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overland flow distribution. Several simulations are presented and the geomorphological

properties of the catchment and networks are studied. Also, comparisons between the

original model and its modified version are made. A non-dimensional form of the model is

developed which is useful for comparisons among basins of different spatial characteristics.

The influence of a probabilistic distribution of rainfall over the overland flow distribution

and the behavior of the model is studied in the last section of Chapter 3.

Chapter 4 addresses the hypothesis of the existence of transient chaos in the system

and its implication in the system's sensitivity to perturbations in the elevation field, a

reflection of the chaotic nature of the system. The possibility of the existence of chaos

would explain the apparent randomness in the resulting channel networks.

Chapter 5 summarizes this work and suggests further avenues for research. Appendix

A presents the values of the non-dimensional parameters of the different simulations.
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Chapter 2

Literature review

2.1 Basic Concepts

The flow of water shapes river basins but at the same time it is the form of the basin

that determines in what direction water flows. These two complementary effects constitute

the link between hydrology and geomorphology: hydrologic behavior of basins and

evolution of catchments and river networks.

The quantitative study of channel networks began with two papers by Horton (13],

[14] in which an ordering system of networks was introduced. Later, Strahler [41] modified

this system and it is his ordering that is most commonly used today. In this scheme a

stream that has a source as one of its extreme points is assigned order 1. Where two streams

of order i join, the channel downstream is of order i+ . If two channels of unequal order

join, the channel downstream has the same order as the higher order incoming stream. The

order of the outlet stream is the basin order, 92. Exterior links are those between a source

and a junction and interior links are those between two junctions. Various link properties

like length, area and slope are of interest to hydrologists. One of the purposes of network

ordering is to find general relationships between links of different orders across the basin.

The most common geomorphological measures are the Horton/Strahler statistics

which are stream based are:

R N (2.1)

R L -oo (2.2)
03-l
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Aw
Ra= AW (2.3)

R Sw (2.4)

where NW is the number of streams of order o, L. is the mean length of streams of order co,

Aw is the mean area contributing to streams of order co, and S. is the mean slope of streams

of order w. Rb, R1, Ra and Rs are the bifurcation, length, area and slope Horton's ratios. The

interest of these ratios is that they are approximately constant when plotted against order, a

property that is usually called Horton's law. A lot of work has been devoted to the analysis

of these ratios in real networks under a variety of conditions. These catchment statistics can

help to understand hydrologic properties of the basin and the work on the geomorphologic

instantaneous unit hydograph GIUH by Rodriguez-Iturbe and Valdes [31] and Gupta et al.

[10] has generated a renewed interest in this direction.

Another relationship has been proposed by Tokunaga [45]. Using Strahler's ordering

system, he defined = zE as the average number of streams of order j flowing laterally

into a single stream of order i. These ratios are approximately constant independently of

order. The ratio K=E; / E;_1 is also approximately constant.

Using elevations, another interesting relationship has been found empirically by Flint

[9]. The relationship between slope and area can be expressed as S = CA 0 , which is, like

Horton's slope law, a reflection of the fact that stream profiles are concave. Gupta and

Waymire [11] and Tarboton et al. [43] have also studied this relationship. Tarboton et al.

[42] has postulated a relationship of the form Rb=R 2 based on fractal arguments.
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2.2 Models of Channel Network

The stability of the Horton's ratios under a variety of conditions motivated

geomorphologists to develop random models that reproduce this behavior. Based on the

work on topological trees by Cayley [7], Shreve [32] developed the random topology

model. In this model it is assumed that in the absence of geologic controls, channel

networks are topologically random, i.e. all the topologically distinct channel networks with

the same number of sources are equally likely. As a consequence of this postulate, in such a

population of channel networks, the most probable set of stream numbers N. approximately

obeys Horton's law.

The random topology model was extended by Smart [36] and Shreve [33], [34] to

include the hypothesis that interior and exterior link lengths as well as their associated areas

are random variables with separate statistical distributions. This new postulate makes the

model have very interesting properties like numerical values of the bifurcation, length, and

area ratios that are similar to the values found in real networks.

Years later, Mesa [291 modelled the topologically random networks as a birth and

death Markov process where at any distance there is a probability of bifurcation or death of

the channel.

All the properties and all the network representations which have been shown up to

this point have a common characteristic: they look at a snapshot within the time of the

network history. One of the first attempts to model the process of growth of a network was

made by Howard [15] (see also van der Tak [46]). In this model the network grows over a

grid of points. Nodes are defined as active or inactive. Beginning at an outlet node the

network extends according to a growth probability assigned at each site. Avoiding closed

loops, the algorithm proceeds until it achieves a certain drainage density level.

Another model is the random walk model proposed by Leopold and Langbein
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[21] where source points and source areas assigned to them are distributed as a Poisson

process in space. Then, random walks proceed from the sources until they hit the boundary

or find other realizations originating in other sources. In this way networks are generated.

Other works like the ones by Kirkby [18] and Smith and Bretherton [40] look at

sediment transport, especially at the hillslope scale. The idea is to consider a sediment

continuity equation, with flow in the steepest slope direction. The amount of sediment

transported is a function of slope and flow of water. The amount of water flowing depends

on the contributing area to each point. Smith and Bretherton [40] present a perturbation

analysis of the 2D case around the ID equilibrium solution. They find that small

perturbations grow in concave 2D landscapes, an instability that is manifested in channel

growth. Luke [22] generalizes this approach to include erosion and deposition. In this case

the instabilities develop into shock discontinuities interpreted as channels.

Recently Willgoose et al. [47] have developed a catchment and channel network

evolution model. This model is used in this work and will be explained in Section 2.4.

2.3 A Simulation Model of Leaf Veins Growth

Meinhardt [24], [25] developed a model that simulates the growth of leaf vein cells

and their differentiation from normal leaf cells. Four variables were used in the model: an

activator variable "a" that triggers the differentiation process; an inhibitor h that has a

countereffect and reduces production of activator; a substrate z consumed by the

differentiation process and a differentiation variable Y that determines whether a cell is a

leaf vein cell or a normal cell. The model studied by Meinhardt was:

--- ca=---a+D -- + poY (2.5)
at h aax2
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= caz - vh + D azh + plY (2.6)

a= Co -7COZ - EYz + D a$ (2.7)
at 0ax

2

-- = c a -0. Y + (2.8)
at I +9Y 2

In the simulation process the initial values of the activator and inhibitor fields are

small and z=1 everywhere. A point is chosen as the seed and a value of Y=1 is defined at

this point. A random field with a small coefficient of variation is used as input in the

parameter c. Willgoose et al. [47] studied this model and showed analitically how very

small differences in the c field generated completely different leaf vein network structures.

The explanation was found in the chaotic nature of the system. Chapter 4 will explain in

more detail the concept of chaos in a dynamical system. Willgoose et al. [47] also studied

three features that made possible the generation of branched structures in the Meinhardt

model: a potential growth region exists around the growing branch and moves with it; the

growth potential is supressed behind the growing tip so that the branch grows as a line; a

repulsion between growing branches exists so that no closed loops appear and the final

network fills the entire space.

2.4 The WBR Model

Based on the conclusions derived in the study of the Meinhardt model, Willgoose,

Bras and Rodriguez-Iturbe [47] constructed a model that simulates the catchment evolution

and network growth in a grid. The model uses some concepts of erosion engineering to

define an activator function that triggers the growth of channels; the Einstein-Brown
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sediment transport equation; and the idea of preferred erosion in channels. Four variables

are studied: the elevation z, the indicator Y that tells whether a node is a channel or a

hillslope, and the channel formation function, a. The form of this model, henceforth called

the WBR model is:

az. a2z.
--= CO.+ AK~i; QI; + Dz (2.9)
t > x 2

ay. d Ka+ (-0.1Y + (2.10)
at \1+9y;2

aj = 5 Q "s Sns (2.11)

where Q, is the sediment transport (assumed to be equal to $, Q m S/i in channels and

OA[31Q"mSin with 0,<1 in hillslopes); Q, is the overland flow which is proportional to the

area that contributes to each node; Sj is the steepest slope downhill; c0 the tectonic input at

node j; Iii an indicator function that says whether node i drains into node j; and KI, K2 and d,

are constants. The physical processes on which this model is based will be explained in

more detail in Section 3.3. This model is the basis for the subsurface saturation

modification model described in Chapter 3. In this chapter a more detailed explanation of

the different variables, the physical mechanisms behind them and details about the

implementation of the simulations will be presented.

The WBR model generates realistic looking catchments and channel network with

values of statistical measures similar to the networks found in nature. In this work an

extension of the model to include a different way of generating overland flow and a closer

look at the chaotic behavior of the system will be presented.
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Chapter 3

A Catchment Evolution Model with a Subsurface Saturation Mechanism

3.1 Introduction

In this chapter a modified version of the WBR model is developed. The purpose is to

modify the mechanism of overland flow production to include subsurface saturation besides

the classical Hortonian infiltration excess. In the Hortonian mechanism overland flow is

assumed to be generated uniformly over the whole area whereas in the subsurface

saturation mechanism only saturated areas contribute to the overland flow. The modified

model will permit us to understand the role of overland flow distribution in the overall

behavior of the system.

The organization of this chapter is as follows. An analytical formulation of the

subsurface saturation mechanism is derived. This formulation is then incorporated in the

WBR model. An example of a typical simulation and the variation in time of the spatial

distribution of the principal variables of the model are shown. Afterwards, four different

random elevation fields are used as initial conditions for different smulations with exactly

the same parameter values. The variability of common geomorphological statistics is then

illustrated. The question of whether chaos is the explanation for this variability is addressed

in Chapter 4.

The following section studies the influence of diffusive sediment transport processes

like rainsplash and rockslide in the evolution of the networks. Then a non-dimensional

formulation of the modified model is developed. In this formulation the original parameters

are transformed into new non-dimensional ones that will allow comparisons between

catchments with different scales.
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whether a hillslope node is saturated or not. Then, various characteristics of importance that

have been studied and measured in real basins are examined in the resulting networks that

are generated by the modified version of the WBR model. Finally, in Section 3.11 the

influence of a probabilistic distribution of rainfall on the overall behavior of the system is

studied.

3.2 Overland Flow Distribution Using the Subsurface Saturation Mechanism

This section presents the analytical formulation of the procedure to assign

contributing flow to each node using the subsurface saturation mechanism. The overall

reasoning is as follows. Assuming an exponential profile of hydraulic conductivity with

depth, the amount of water required to obtain saturation at each node can be calculated

based on an average net rainfall. Then, for each node the difference between the rainfall at

the mean flood event and the saturation deficit can be calculated. If the difference is

positive then overland flow is produced at that node. By adding this difference along

elevation gradients contributing overland flows to each node can be found.

The following derivation is based on [4], [5], [6], [8], [19], [20], [30], and [35]. First

of all, assume exponential decrease of hydraulic conductivity in the soil profile [2]:

K(z) = Koe-aiz (3.1)

where z is the depth from the soil surface, K(z) and Ko are hydraulic conductivities at depth

z and at the soil surface respectively and cci is a parameter.

If the water table depth is h and the maximum depth of interest is H, then the

subsurface flow rate at node i is:

H (K
q1 = SjJ K(z)dz = Si (- [e-aih _eaH (3.2)
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where S; is the steepest downhill slope. Equation (3.2) assumes that the local hydraulic

gradient is everywhere equal to the surface slope angle [30]. If H is large enough, then qj

can be approximated to:

q = S; -- e-"ih (3.3)

The second main assumption is to consider a moisture profile as shown in Figure 3-1

00

h

0
"sat

z

Figure 3-1: Soil Profile Assumption in Subsurface Saturation Mechanism

The saturation deficit is defined as:

D;= h(0)'-e 0) (3.4)

Replacing in Equation (3.3):

q, = Si (- exp - a%
m: 9W-90

K
a 1--

(3.5)

0S-00
16- a (3.6)

The values of these two constants are assumed to be homogeneous over the whole

basin. Then replacing (3.6) in (3.5) results in:

Define:
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q =S c 2 e-D/06 (3.7)

from where:

Di= P36  [a2 S] (3.8)

Assume that subsurface flow is approximately in steady state with the net recharge

rate r at any time. Then:

qj= rA (3.9)

where Ai is the contributing area to node i. Replacing in Equation (3.8) and defining

Tc=a2/r results in:

D,= 6 in [ATC (3.10)

if this quantity is positive or D,=O otherwise. A negative value of the expression (3.10)

(i.e.D;=0) implies that the node i is saturated. The saturation criteria for a node is then:

A.
-- > Tc (3.11)
Si

For every point the excess water is calculated as the difference between f3 and D;. $,

is considered as the rainfall at the mean flood event (for a definition of this concept and its

relationship with the sediment transport equation to be used in the model, see Appendix

C.1.3. in [47]). The sum along the elevation gradient of the excess water at each node gives

the contributing overland flow to be used in the modified model.
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3.3 Model Description

This section presents the subsurface saturation mechanism modification to the WBR

model. Two variables are solved on a plane grid: the elevation at each node zi and the

indicator function Yi that identifies a node as either a channel or a hillslope. The downhill

slopes S; determine flow directions. Following these flow directions the contributing area

A; to each node is calculated. The next step is to find the deficits Di using areas and slopes

and the saturation criteria decribed in Section 3.2. The excess water is summed downhill

along the flow directions giving as a result the total overland flow through each node Q.

The flows Q. enter the channel formation function a and sediment transport Q, equations.

These two latter variables go into the elevation and indicator function differential equations.

The resulting model is:

1z a2z.
QI C +JI+ D L '.Z (3.12)

at p,(l-n)Lg2 Z

= d,[0.0025cia + (-0.1Y + ' ). (3.13)
at 1+9y 1 2

Q, =f(Y)Q/ " SL"j (3.14)

a;= $5Q !s S;n5 (3.15)

Qi= < 3-Dl>+ Qj I (3.16)

fly) =10, if Yi=O

P, if Yi=1 (3.17)
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Di = <P In( A )> (3.18)

where <x> stands for max(x,O) and the subindices i and j denote grid nodes. Most of the

variables have already been defined. The following is a complete list of all constants and

variables involved in the equations:

zL =elevation
Y =indicator variable for channelization (0 hillslope, 1 channel)
Q5  =sediment transport

a,. =channel formation function function
Q1 =discharge
D. =saturation deficit
t =time
CO =tectonic input

PS =density of eroded material
n =porosity of material before erosion and after deposition
Lg =grid spacing
Ii. =indicator function for whether node j drains into or out node i

-I(j=i,drainage of node i), 1(node j drains into node i),
0(node j does not drain into or out of node i)

DZ =diffusivity constant for diffusive transport processes
xi =horizontal distance in direction j
dt =rate constant for channel growth
ci =1/threshold on the channel formation function of channelization
m 1,ni =powers of Qj and SL in the sediment transport equation

$5 =multiplicative factor on channel formation function equation
m5 ,n5 =powers of Q and S. in the channel formation function equation
13 =additive term on overland flow equation
P6 =multiplicative factor on saturation deficit equation

TC =threshold value in saturation criteria

Let us explain in more detail the equations that govern the evolution of the system.

There are three basic variables: elevation, channelization indicator and value of channel

formation function. The first two are the variables to be solved in the grid plane. They are

related to each other through the channel formation function function. Grid points are

defined as channel or hillslope nodes according to the value of the indicator function Y, (1

for channels, 0 for hillslopes). The differential equation (3.13) for Y. is constructed in such
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a way that the values 0 and 1 are attractive fixed points. Y, depends on the values of the

channel formation function function defined by Equation (3.15). The purpose of the channel

formation function is to trigger the process that transforms a hillslope node into a channel

node. Once the channel formation function exceeds a threshold value given by 1/c1 , the

indicator function moves from 0 to 1 at a rate determined by d,. The specific way in which

Equation (3.13) rules this transformation is not important for the overall behavior of the

system; any equation with 0 and I as attractive fixed points and a dependence on a

parameter that behaves like a will work as well.

The definition of the channel formation function, in Equation (3.15), is a

conceptualization of erosion processes. Concepts like overland flow velocity and threshold

bed shear stress, that are commonly used in sedimentation engineering, can be placed into

the framework of Equation (3.15) (see [47] for details).

On the other hand, the variation in grid node elevations is produced by three factors:

the tectonic input, the fluvial sediment transport and diffusive transport. The tectonic input

can take a variety of forms. The expressions studied in this work correspond to a single

uplift event (see [26]) or a continuous process.

The fluvial sediment transport term is simply a sediment continuity equation. The

amount of sediment Q. that is washed away from the node by fluvial transport processes is

calculated using Equation (3.14). The term f(Y) in this equation parametrizes the difference

in sediment transport phenomena that occurs in hillslopes and channels. A small value of O,

in Equation (3.17) describes the fact that sediment transport in hillslopes is smaller than in

channels. Details about the derivation of Equation (3.14) from the well known Einstein-

Brown sediment transport equation can be found in [47].

The term Q in Equation (3.14) is the net overland flow contributing to node i.

Equation (3.16) is the overland flow continuity equation, where flow from adjacent nodes

that drain into node i and excess water from that node are equated to the flow from the



-26-

node. The excess water at each node is calculated based on the saturation deficit equation

(3.18) as described in Section 3.2.

The last term in the differential equation (3.12) for the elevation field corresponds to

transport processes that occur on the hillslope and can be modelled as diffusive processes.

These processes are soil creep, rainsplash and rockslide.

Finally, the sediment transport is the non-linear link between the elevation and

indicator variables. The sediment movement changes node elevations and this affects both

slopes and contributing overland flow. Then the channel formation function changes and its

new value enters the indicator differential equation, triggering the channelization process if

the value surpasses the threshold 1/cl. The indicator function is not just an artifact to

differentiate hillslope and channel nodes but it also affects the way sediment transport takes

place. The preferred transport in channels creates valleys around the channels and the whole

slope field behaves accordingly. The dependence cycle in the system is then closed.

In the implementation of the program, the system is solved in a rectangular grid. An

initial random elevation field with a very small coefficient of variation is generated and the

elevation at the bottom left-hand corner is set at a lower value. That node is defined as the

outlet and its elevation is kept constant during the simulation.

3.4 A Simulation Example

In order to show the overall behavior of the system described by Equations (3.12) to

(3.18), a simulation example will be presented in this section. No detailed analysis of the

different network properties will be performed here. Such an analysis will be presented in

subsequent sections. Rather, the variation in time of the most important properties of the

catchment and the channel network for a typical simulation are going to be shown

graphically.
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The parameters for this simulation BR643SATU10 are shown in Appendix A. Four

steps in the evolution of the network have been chosen to show the variation in time of

different properties. The time interval spans over the whole network growth period. The

properties to be examined are elevation, slope, contributing area, overland flow and channel

formation function at each node. For a better appreciation of the properties, three things are

presented in each graph: the spatial distribution of the property underneath an isometric

view of the elevation field; a contour map corresponding to the values of the property under

study; and the simulated channel network at that time step. The contour levels in each

figure are not evenly spaced; instead, their values have been chosen to highlight certain

aspects of the behavior of the system.

Figures 3-2 to 3-5 show the evolution of the elevation field. The preferential erosion

at channels, determined by 0, , produces well differentiated valleys along the channel.

Figure 3-6 to 3-9 correspond to the steepest slope S. in the downhill direction at each node.

Notice that the steepest slopes in the field occur not on the channel heads but on the lateral

hills along the channel. The zone outside the region captured by the network has slopes that

are very small. Figures 3-10 to 3-13 present the contributing area A;. As expected, channel

nodes have the larger areas as a result of the organization of flow directions in the

catchment. Figures 3-14 to 3-17 show which nodes are saturated (in black) and which

nodes are unsaturated (in white). Equation (3.11) was the criteria for selecting the saturation

status of each node. At the beginning, every node was saturated; with time, only channel

nodes and nodes around them remain saturated. Figures 3-18 to 3-21 correspond to the

channel formation function distribution. The contours show how the higher values of the

channel formation function are located in those zones of active network growing at the

channel heads. In the original WBR model the areas and contributing flow were directly

proportional. In the subsurface saturation mechanism modification the overland flow is not

directly proportional to areas anymore, even though strong links exist between both
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variables. In the modified model overland flows are calculated according to the derivation

presented in Section 3.2. Finally, Figure 3-22 shows the variation in time of the

hypsometric curve for the catchment. Detailed analysis of this curve under different

parameter values will be presented in a later section.

Table 3-I presents the values of commonly studied statistics for the final network.

Notice that all the values of the statistics are within reasonable limits.

The overall behavior of the system variables have been shown in a typical simulation.

The final result is a realistic catchment and geomorphologic network with characteristics

similar to real networks. An analysis of the dependence of the system's behavior on the

parameters and a comparison between the original WBR model with its subsurface

satuation modification will be presented in the following sections.

3.5 Variability in Final Channel Networks

This section will illustrate the high variability present in the final results of the

catchment evolution model. This variability is the reason for an apparent randomness in the

final channel network. The differential equations of the model have two important

characteristics: they are non-linear and they are coupled in space. This is the reason why

even if two different simulations have the same parameter values, small differences in the

elevation field generate completely different networks.

Four simulations are shown in this section. All of them have the same parameter

values. The difference between simulations lies in the initial elevation field. Different

realizations of random elevation fields with identical statistical properties were used. Final

networks are shown in Figure 3-23.

For each of the four catchment evolutions common geomorphological measures were

examined: Strahler's bifurcation, length, slope and area ratios. The evolution in time of
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Figure 3-22: Hypsometric Curve Variation in Time

Statistic Value

Rb(1- 2 ) 5.08
Rs(1-2) 2.85
RL(1- 2 ) 2.60
RA(1- 2 ) 5.85
Rb(2 -3) 4.00
Rs(2-3) 2.15
RL(2 -3 ) 1.82
RA( 2 -3 ) 4.96
Rb 4.75
Rs 2.67
RL 2.35
RA 5.53
K 1.96
el 2.67
Dd' 11.54
Magnitude 61
Mean Relief 9.90
Mean Stream Relief 3.12

Table 3-I: Final Network Statistic Values Simulation BR643SATU10
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Figure 3-23: Final Catchments for Simulations with
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each of these measures appears in Figures 3-24 to 3-3 1. These ratios were calculated

between links of order 1 and 2 and between links of order 2 and 3 according to Strahler's

ordering system. Notice that even though the values are within reasonable limits, a scatter

of results is apparent.

Figures 3-32, 3-33 and 3-34 correspond to the time evolution of drainage density,

magnitude and mean link lengths respectively. Notice how the variability in drainage

density is much smaller than the variability of those measures based on topological

variables.

Finally, Figure 3-35 shows the variation of the hypsometric curve with time. The

variation of both the hypsometric curves and the drainage density for the different

evolutions is relatively small. The advantage of these two measures is that they are

physically rather than topologically based.

Chapter 4 will look in greater detail at this inherent variability of the catchment

evolution model. This variability will be related to the concept of transient chaos and

quantitative measures will illustrate this effect.

3.6 Hypsometric Curves for Cases with Continuous and Instantaneous Uplift

In this section the time evolution of the hypsometric curves for simulations

BR643SATU10 and BR643SATU33 are studied. Both simulations have the same

parameter values. The difference between them is in the way tectonic uplift is applied. In

simulation BR643SATUJO the uplift is given as a single event at the beginning of the

evolution while in simulation BR643SATU33 the tectonic input is a continuous, constant

and uniformly distributed process in time. Figures 3-36 and 3-37 present the hypsometric

curve evolutions for both cases. The jump at the upper part of the curves is an effect of the

lower outlet elevation. With time, the elevation jump at the outlet corner is reduced because

of the sediment transport, and a smoother field of elevations appears.
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The case with continuous tectonic uplift tends to evolve into an S-shaped

hypsometric curve. This form appears because the tectonic input is applied everywhere in

the elevation field at the same rate. The erosion at hillslopes with high elevation is small

because the subsurface saturation threshold reduces contributing overland flow. Therefore,

those nodes with higher elevation in the catchment increase in their elevation while lower

nodes decrease further in elevation to the point of dynamic equilibrium where the S-shape

is attained. Notice, however, that the variable shown is normalized elevation.

The case with instantaneous tectonic uplift has a kink that is created because of the

differences in sediment transport between saturated and unsaturated nodes. It will be seen in

the next section how diffusive sediment transport processes have a major influence on the

evolution of the hypsometric curves.

3.7 Influence of Diffusion in Simulations

The evolution equation (3.12) for elevation in the catchment evolution model has

three components of which the two most important are the tectonic input and the fluvial

sediment transport. The third component corresponds to diffusive processes like rainsplash

and rockslide. Their effect is specially important on unsaturated hillslope nodes. While in

the original WBR model overland flow occurred at every node, in its subsurface saturation

modification there is no overland flow in unsaturated nodes. It is at those nodes where

diffusive processes are the impotant mechanism for sediment transport.

Simulations BR643SATUIO and BR643SATU32 share the same parameter values

except for the value of the diffusion coefficient D . In the first case DZ=O while in the

second case D,=3.5xlO5. Figure 3-38 shows the temporal evolution of the drainage density

for both simulations.

Figure 3-39 corresponds to the hypsometric curves as time varies. Notice how in the
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case with diffusion, hypsometric curves decrease faster because of the increased sediment

transport that comes especially from unsaturated nodes. In contrast with the original WBR

model where overland flow was present at every node and therefore the influence of

diffusion was small, in the subsurface saturation modification the diffusive sediment

transport processes have an interesting influence on the evolution of hypsometric curves. In

those cases with D =0 nodes at high elevation do not erode as fast -or do not erode at all- as

lower nodes that usually have larger contributing areas and smaller slopes which makes

them susceptible to saturation. The presence of diffusion makes the difference in behavior

between both sets of nodes smaller, smoothing out the kink that appears in the cases with

no diffusion.

30 0
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Despite the influence that diffusive processes have on the evolution of hypsometric

curves, physically-based geomorphological measures do not differ very much in both cases,

which reinforces the preference of these measures over the topologically based. Notice,
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however, that the form of the final networks is completely different; it also results in

different values of topologically-based network measures. Figure 3-40 presents the form of

the final networks. Chapter 4 will examine how small perturbations, in this case produced

by a new sediment transport factor, can affect the entire catchment evolution.

3.8 Non-Dimensional Formulation of the Model

Given that the different parameters and variables of the model are strongly

interconnected in the differential equations, in order to make thoughtful comparisons

between basin evolutions in different points of the parameter space, a non-dimensional

version of the model has to be defined. The basic idea is to combine parameters that work

in the same phenomena and to generate lumped non-dimensional parameters. This section

is mostly based on [47].
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The first step is to define the basic non-dimensional variables:

z' =.z (3.19)

x'= x (3.20)

R' -R (3.21)
LR

= (3.22)
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where z',x',R'and t' are non-dimensional elevation, horizontal distance, runoff rate and time

respectively. L,, L,, LR, TR and T are the corresponding scales in elevation, horizontal

length, runoff depth, runoff time and catchment evolution time respectively. The

expressions are self explanatory, except perhaps Equation (3.21) that comes from the

assumption of uniform rainfall over the area, which in terms of the model implies R=P3.

The second step is to define second-level variables of the model in this framework:

L
5' - * S (3.23)

1
A' - A

LX 2

Q'= - Q (3.24)LX2 LR

Q,'= TRi s (3.25)

Lni LRM1fP LXm,-n1

a'= TRm5 a (3.26)

LZns LRMs P 5 L 2
mPs-Pn

f'(Y) = fly) (3.27)

D' TR D (3.28)
L 2 LLx' 'R
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TR
T' = T (3.29)

a, L

where S',A',Q,',a',f'(Y) and T,' are the nondimensional expressions of the analogous

variables in the model. The only factors in the above expressions that remain to be defined

are:

(xy) = (XY) (3.30)

P5'(x,y) = (3.31)

CC,'(x,y) = (3.32)

CO'(x,y) = CO(x,y) (3.33)
CO

The Equations (3.30) to (3.33) express the fact that P, P5, (X2 and C0 may vary in

space. Therefore, they are defined in terms of a mean scale for each variable. This scale

cannot be related to the basic non-dimensional variables because they correspond to

different processes: P and P5 to details of the sediment transport phenomena like particle

size; co to the tectonic uplift process; and cx to hydraulic conductivity decrease in the soil.

The last step in the process is to lump the original parameters in order to form the

non-dimensional parameters. The way the original parameters are combined comes from

the specific form of the equations. The non-dimensionalized governing equations are now:
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'-TT CO'+ TS Qj'IJ + TD Dz L, (3.34)
iJ

Yi Yi 2
-= TC [0.0025TA ai' + (-0.1Y + ' y)] (3.35)

at' 1.

which together with the non-dimensional subsurface saturation criteria and the definitions

of second-level variables (Q,a,Q, and D) forms the model. The saturation criteria in non-

dimensional form is:

TSC T < (3.36)

TT,TS, TD, TC, TA and TSC are the nondimensional tectonic uplift, sediment

transport, diffusion, channelization rate, channel formation function and saturation criteria

numbers respectively. Their definitions follow from the model equations and are now

presented:

T C~
TT =- (3.37)

LZ

T D = L g T(3.39)
LX2

TC = Td, (3.40)

L f-5 L m5 C5
TA = Lz"s LL R 15s- (3.41)

TRm5



-66-

TSC = 2Lx3 TR (3.42)
LRLZ

Based on these non-dimensional numbers, comparisons can be made between

catchment evolutions. When two catchments have identical nondimensional parameters as

well as identical distributions of nondimensional catchment properties like discharge Q',

sediment transport f'(Y), elevation z' and tectonics C'O, they can be considered physically

similar.

Willgoose et al. 1471 present two definitions of non-dimensional numbers. The

definitions presented before correspond to transient conditions. There are analogous

expressions for catchments in dynamic equilibrium.

3.9 Influence of TSC in the Catchment Evolution

The value of the threshold that determines whether a node is saturated or not has

important implications on the overall behavior of the system. The value of TC (and in a

broader sense the value of TSC) affects the amount of overland flow that is distributed to

the nodes. In this section three different simulations with varying values of TSC will be

shown. The cases to be presented are BR643SATU10, 38 and 39 which have values of TSC

equal to 0.92x10 3, 4.6x10 3 and 0.28x10 3 respectively. All the other parameter values are the

same. Figures 3-41 to 3-43 show an isometric view of the catchment once the network stops

growing, a contour of elevations and the final network.

With decreasing values of TSC, a larger number of grid nodes enter into the saturated

group where overland flow and fluvial sediment transport is produced. An increase of

overland flow production produces a higher value of channel formation function, triggering

the growth of new channels as can be seen by comparing Figures 3-42 and 3-41. Channel

valleys are wider in case 39 compared with case 10 because of the increased fluvial

transport in hillslope nodes surrounding channels.
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If the value of TSC is small enough, then all the nodes would be saturated and the

behavior of the modified model would be identical to the original WBR model. Finally, it

should be noticed that it is the difference in overland flow distribution, produced by the

saturation deficits, that makes analytical calculations more difficult in the subsurface

saturation case compared to the original model.

3.10 Analysis of Geomorphological Relationships in Simulated Catchments

In this section a series of hypotheses and relationships that have been studied and

tested in real basins will be examined in the final catchments generated by the subsurface

modification to the WBR model.

The relationships studied are: the hypothesis of area-slope renormalization in

channels and the possibility of using analysis of this kind to distinguish channels from

hillslopes in digital elevation maps; statistical properties of link lengths and contributing

areas; and the behavior of some fundamental scales of the catchment.

3.10.1 Area-Slope Renormalization

Flint [9] found empirically that slopes and channels scale. He found a relationship

between area A and slope S of the form:

S= CA-8 (3.43)

with e ranging from 0.37 to 0.83 with a mean of 0.6. Recently, Tarboton [44] also found

that this scaling relationship holds between areas and slopes in catchments using digital

elevation maps. The scaling relation was tested for simulations with the WBR model in

[47] and an excellent fit was found in catchments at dynamic equilibrium.

In this subsection simulations using the subsurface saturation modification are

examined. Figure 3-44 shows the data points of area and slope for channelized nodes. The

simulation case under consideration was BR643SATU33 at dynamic equilibrium.
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Figure 3-44: Area-Slope Renormalization.
Case 33 at Dynamic Equilibrium

The fit of Equation (3.43) is also excellent in this modified model. The observed

value of e is 0.38. The analysis of Willgoose et al. [47] to calculate the value of 0 from the

parameters of the model cannot be applied to the subsurface saturation modification. The

reason is that in the modified model there is no a simple and direct relationship between Q

and A as in the original model (Q=03A) because of the presence of saturation deficits.

Tarboton [44] hypothesizes that channels and hillslopes can be distinguished in a

digital elevation map based on a slope break that appears in the renormalization analysis

when every pixel in the map is studied. The indicator function which defines exactly

whether a node is channelized or not in the WBR model permits this hypothesis to be

tested. Willgoose et al. [47] found that the criteria for hillslope distinction was not a break

in slope; instead he found a separate hillslope renormalization line. This behavior of the

model has to do with the fact that the only difference in sediment transport mechanisms
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between channels and hillslopes is the multiplicative factor O. Figures 3-45 and 3-46 show

the area-slope renormalization analysis for the case with continuous tectonic uplift before

the system reaches dynamic equilibrium. All the grid nodes are included in these graphs. It

can be seen at Figure 3-45 that at time 4000 transient points are present in the bottom left-

hand corner. These points correspond to those nodes where the action of the network has

not arrived. As time passes, the dispersion of the points in the graph reduces until it reaches

the straight line renormalization at dynamic equilibrium.

10 
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Figure 3-45: Area-Slope Renormalization. All Nodes Included.
Case 33 Before Dynamic Equilibrium.Time 4000

Figures 3-47, 3-48 and 3-49 show the area-slope graphs at three different times in the

evolution of a system that includes diffusive sediment transport processes but instantaneous

tectonic uplift. Again, there are transient points with small area and very small slope. These

points in the graph dissapear later in the evolution from the effect of sediment wash.

However, even though the fit of expression (3.43) is good as can be seen in Figure 3-49, it

is not as precise as it was in the continuous uplift case. In the diffusion case, a reduction of
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slope is present as areas decrease. Later on, some hillslope nodes are left behind in the

sediment wash process because they belong to the unsaturated group.

3.10.2 Link Lengths of Simulated Catchments

This section will study the planar properties of the simulated catchments using the

subsurface saturation modification. The results will be compared to the simulations

performed with the original model. Also some relationships that have been studied by field

workers will be examined. The relationships to be considered are: that the probability

distribution of exterior and interior link lengths are different [37]; that the link length

distribution is exponential [37] or Gamma [46]; and that link lengths are correlated with

link magnitude or the downstream link magnitude [39] and [1].

In order to test the different hypotheses, Table 3-11 presents the mean link length for

exterior, interior and the whole set of links (denoted by Le' L, and f~ respectively).

Following [47] a t-test was performed in order to find out whether a statistically significant

difference existed between interior and exterior mean lengths. The null hypothesis is:

L )L -I
0 ' =0 (3.44)

G LeILi

The mean value of the test variable is 0.29. Therefore the hypothesis cannot be

rejected at the 5% confidence limit, i.e. no statistical difference was found between the

mean values of exterior and interior link lengths.

Based on this result, it is possible to study the distribution of all the links at once,

both interior and exterior. Both the mean and the standard deviation of L, for different

simulations are presented in Table 3-I. Also in this table the shape factor for a moment-

fitted gamma distribution was calculated. The mean value of the shape factor was 1.43 +

0.28 which is consistent with the hypothesis that link lengths are gamma distributed with a

shape parameter factor of about 1.5 to 2.0 [46].



SIMULATION L LL

BR643SATU1O 3.81 3.14 +0.85

BR643SATU21 2.71 2.62 +0.14

BR643SATU29 3.91 3.83 +0.08

BR643SATU30 2.63 3.36 -0.86

BR643SATU31 3.03 2.49 +0.86

BR643SATU32 3.42 3.19 +0.29

BR643SATU33 2.74 3.10 -0.46

BR643SATU34 4.59 3.44 +1.33

BR643SATU35 4.20 4.02 +0.18

BR643SATU36 3.22 3.37 -0.18

BR643SATU37 4.36 3.90 +0.47

BR643SATU39 3.28 3.22 +0.07

BR643SATU40 5.09 7.50 -1.28

BR643SATU42 5.17 2.81 +3.34

BR643SATU43 2.58 2.55 +0.05

BR643SATU44 6.55 5.52 +0.74

BR643SATU45 2.21 2.69 -0.70

Table 3-I: T-test for Mean Exterior and Interior Link Lengths

Finally, link lengths were plotted against magnitude of the same link and the

following link downstream. Figures 3-50 and 3-51 correspond to these plots. The case

under consideration corresponds to runs BR643SATU10,34,35 and 36 which have the same

different parameters but different initial random elevation fields. Correlations for case 10

were found to be low (-0.15 for link length vs. magnitude and -0.18 for link length vs.

downstream magnitude) in agreement with results by [47] and [1].

-76-
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SIMULATION a~ 0 L L 2 /aL 2

BR643SATU10 3.48 3.04 1.31

BR643SATU21 2.66 2.17 1.50

BR643SATU29 3.87 3.21 1.45

BR643SATU30 2.99 2.33 1.65

BR643SATU31 2.77 2.20 1.59

BR643SATU32 3.31 3.21 1.06

BR643SATU33 2.91 2.11 1.90

BR643SATU34 4.02 3.39 1.41

BR643SATU35 4.11 3.88 1.12

BR643SATU36 3.29 2.34 1.41

BR643SATU37 4.13 3.44 1.44

BR643SATU39 3.25 2.68 1.21

BR643SATU40 6.26 5.89 1.13

BR643SATU42 4.00 4.27 0.88

BR643SATU43 2.57 1.98 1.68

BR643SATU44 6.05 4.36 1.93

BR643SATU45 2.45 1.89 1.67

Table 3-I1: Shape Parameter of a Gamma Distribution fitted to Link Lengths

3.10.3 Link Contributing Areas in Simulated Catchments

In Subsection 3.10.2 it was shown that the mean values of exterior and interior link

lengths were not statistically different. Smart in his paper [38] also suggested different

distributions for areas draining to an exterior and interior link. A t-test similar to the test
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performed in Section 3.10.2 was done using mean contributing areas (A, and Ai for exterior

and interior areas respectively) instead of link lengths. The values of A, A, are shown in

Table 3-IV. The t-test at the 5% level of significance shows A,/A, to be larger than 1. This

result is in agreement with [47]. The difference in the mean of the area distributions comes

from the source area that contributes only to exterior links. Given that no statistical

difference was found between mean exterior and interior link lengths and that lateral area

and link length are strongly correlated, then the difference between A, and Ai comes

basically from source areas. The mean proportion of source areas to total area is 27% which

is a little low when compared to the value of the proportion calculated from digital

elevation maps where its value is around 35-40% (Moglen and Bras, unpublished data).

3.10.4 Fundamental Length Scales in Simulated Catchments

In this subsection commonly studied catchment length scales will be measured in the

resulting simulated networks generated with the subsurface saturation modification to the

WBR model. These measures address the problem of determining a meaningful definition

of mean hillslope length. The lengths to be studied are: the mean link lengths of exterior,

interior and the whole set of links (I, IL and f, respectively); the drainage density-based

hillslope length (Lh=l/2 Dd) proposed by Horton [14]; the square root of the mean first order

Strahler area (XA; the mean value A,of the area contributing to channel heads (called

source area by Montgomery and Dietrich [28]); and the lateral hillslope length (defined in

[47] as the mean hillslope length of the lateral contributing areas).

In order to make a comparison between the results of the original WBR model and its

subsurface saturation modification, a simple linear least-square regression was fitted

pairwise to the different length scales described before. Results appear in Tables 3-V and

3-VI
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SIMULATION A,

BR643SATU10 15.38 7.07 2.34

BR643SATU21 8.02 4.09 1.91

BR643SATU29 20.11 9.40 2.26

BR643SATU30 10.27 7.42 0.75

BR643SATU31 9.63 4.00 2.80

BR643SATU32 14.27 7.20 1.79

BR643SATU33 10.82 6.63 1.25

BR643SATU34 18.00 7.11 3.04

BR643SATU35 16.69 9.78 1.41

BR643SATU36 12.85 7.37 1.47

BR643SATU37 18.16 9.10 1.99

BR643SATU39 13.31 6.83 1.89

BR643SATU40 51.00 36.44 0.79

BR643SATU42 20.98 5.86 5.12

BR643SATU43 8.97 4.45 2.02

BR643SATU44 53.11 25.06 2.22

BR643SATU45 6.76 4.50 0.99

Table 3-TV: t-Test for Mean Exterior and Interior Link Areas

The correlation between the different length scales is generally good. The only

exceptions are the correlation values between the mean exterior link length and the other

scales, even though the correlation between L and 4- 1 is high. In the WBR model the

variable with less correlation against the others was the mean interior link length. Notice
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also that the mean first Strahler order area is approximately 75% larger than the mean

source area and this influences the relation between mean and exterior areas that were

studied in the Subsection 3.10.3.

L,

1.00

0.62

0.96

1.32

0.79

0.92

1.99

Li

0.62

1.00

1.05

1.82

0.85

1.23

2.64

LI

0.96

1.05

1.00

1.56

0.82

1.07

2.31

Lh

1.32

1.82

1.56

1.00

0.43

0.61

1.36

q K

0.79

0.85

0.82

0.43

1.00

1.32

2.84

A,

0.92

1.23

1.07

0.61

1.32

1.00

2.13

Lh

1.99

2.64

2.31

1.36

2.84

2.13

1.00

Table 3-V: Linear Regression Between Fundamental Length scales

Le

1.00

0.67

0.91

0.71

0.90

0.77

0.76

0.67

1.00

0.92

0.91

0.90

0.96

0.93

f~,

0.91

0.92

1.00

0.89

0.99

0.95

0.93

Lh

0.71

0.91

0.89

1.00

0.92

0.95

0.96

q4A1

0.90

0.90

0.99

0.92

1.00

0.97

0.95

A,

0.77

0.96

0.95

0.95

0.97

1.00

0.97

Lh

0.76

0.93

0.93

0.96

0.95

0.97

1.00

Table 3-VI: Correlation Coefficients Between Fundamental Length scales
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Ie

i

Lh

Lth

X\Y
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Lh
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Lh
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3.11 The Influence of the Probabilistic Distribution of Rainfall

In Section 3.2 the excess water at every node was calculated as the difference

between the rainfall P3 at the mean flood event and the deficit Di calculated using Equation

(3.10). The sum along the elevation gradient of the excess water at each point gives the

contributing overland flow as in Equation (3.14). In all the simulations examined up to this

point, the calculations of the amount of overland flow at every node were based on the

fixed mean value [3. This implies that in the calculations some nodes were not saturated

and therefore no erosion due to overland flow is possible. However, given that the

timescales considered in the simulations are very long, typically on the order of millions of

years, it would be expected that some rainfall events corresponding to floods above the

mean value [3 would produce erosion on those nodes considered as unsaturated before.

Following Willgoose (personal communication) and [19], a way to modify the overland

flow calculation procedure is to assume a probabilistic distribution over the rainfall

amounts and calculate the excess water based on this distribution.

If an exponential distribution of rainfall amounts R with mean P3 is assumed, then the

excess water at a node i is:

Ei =J D> e-R/3 3 dR - (R-D) e-R 3
3 dR = P3 e-D/3 (3.45)

S03 -3 f0;

where again <x> stands for max(x,0).

A node is saturated if D; is equal to 0 and in this case E = 3 as in the original

formulation. The difference in the overland flow distribution in the new formulation comes

from the originally unsaturated nodes which now have some excess water production.

Equation (3.45) can be seen as a probabilistic proportion of overland flow assigned to the

nodes. Notice however, that in this approach, even though the probabilistic distribution of R

is taken into account, no stochastic term is included in the model's formulation.
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Furthermore, because of the special form of the exponential distribution, the calculation of

Ei still depends on the parameters of the original model.

The overland flow at a node i is now:

Qi = E + Qj IL (3.46)

and the other equations of the model remain the same.

Using the same parameters and the initial elevation field of the simulation example

presented in Section 3.4, a new simulation including the approach of this section was

performed. Comparisons between both runs will now be presented. Figure 3-52 shows the

final networks for the original simulation BR643SATU10 and the modified version

BR661SATU10. The differences are small but noticeable. Figure 3-53 to 3-56 show the

evolution of the elevation distribution with time. Figures 3-57 and 3-58 correspond to the

evolution in time of the drainage density and magnitude of the network.

Finally, Figure 3-59 shows the evolution of the hypsometric curves for both cases.

This figure shows clearly the effect of the new overland flow distribution on the catchment

evolution. It can be seen that those nodes at higher elevation, which usually fall into the

group of unsaturated nodes because of their smaller areas and larger slopes, are eroded

faster in the new formulation. The sharpness of the knee is reduced because of the erosion

in the unsaturated nodes and the hypsometric curves in both cases are almost identical in

the zones of channel and saturated nodes. The overland flow in the unsaturated nodes, even

though small, is enough to produce changes in the network. Similar behavior was observed

in different simulations that used the same parameter values as the experiments described in

previous sections. Figure 3-60 shows the hypsometric curve evolution for case 33 that was

analyzed in Section 3.6.

At the beginning of the basin evolution almost all the nodes are saturated and no

difference exists between both simulations. As time passes, some nodes become
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BR643SATU1 0 BR661 SATU1 0

Figure 3-52: Final Networks. Cases BR643SATU10 and BR661SATU10
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Figure 3-53: Elevations at Time 1000. Case BR661SATU10
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Figure 3-54: Elevations at Time 3000. Case BR661SATU10
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Figure 3-55: Elevations at Time 5000. Case BR661SATU10
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Figure 3-60: Hypsometric Curve
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BR643SATU33 and BR661SATU33

unsaturated and do not contribute to overland flow in the original formulation. However,

even though excess water is produced in those nodes in the second fomulation, the

exponential form of the distribution makes this quantity small. For example, in simulation

BR661SATUlO the probabilistic proportion of overland flow in unsaturated nodes was one

to three orders of magnitude smaller than in saturated nodes. The effect of Ei is small in the

overall evolution because in both cases the evolution of the catchments is led by the

channelized nodes.

Table 3-VII compares the statistics of the network for the cases BR643SATUIO and

BR661SATU10.

The role of Te also changes, being more important in the new approach described in

this section. In the original formulation T., through its effect on D., determined which nodes

were saturated and which were not. TC was also involved in the overland flow calculation in

LEC
/ BR64
7 BR6

U
900 1000

END
3SATU33
1SATU33
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Rs(2-3)
RL( 2 -3 )
RA(2-3)
Rb
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Magnitude
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BR643SATU10

5.08
2.85
2.60
5.85
4.00
2.15
1.82
4.96
4.75
2.67
2.35
5.53
1.96
2.67
11.54
61
9.90

BR661SATU1O

4.62
2.69
2.91
6.14
4.33
2.02
1.64
4.63
4.47
2.53
2.57
5.73
1.68
2.26
11.73
60
9.90

Table 3-VII: Final Network Statistic Values.
Simulations BR643SATU10 and BR661SATU1O

those nodes that were near complete saturation (i.e. those nodes with D;>0 but 33-Di>0). In

the approach described in this section, TC is important in calculating the overland flow at

every unsaturated node through Equation (3.45). TC affects the probabilistic proportion of

overland flow assigned to the unsaturated nodes. Figures 3-61 to 3-65 show simulations

with increasing values of TSC. The elevation fields and the resulting networks are

presented. The effect of Tc can be clearly seen in the variation of the hypsometric curves.

Figures 3-66 to 3-68 correspond to simulations with TSC equal to 0.276x10 3, 0.920x103

and 4.600x103. Notice how the knee in the hypsometric curves tends to reduce as TSC

decreases. The increasing number of saturated nodes and the increasing overland flow

production in unsaturated nodes are the reasons for this behavior. In the limit, as TSC

decreases, the subsurface saturation modification tends to the original WBR model.
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Figure 3-62: TSC=0.552x10 3

/

Figure 3-61: TSC=.0276x10 3
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Figure 3-64: TSC=1.840x1O3

Figure 3-63: TSC=0.920x103
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Figure 3-65: TSC=4.600x1O0
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Figure 3-66: Hypsometric Curve Evolution TSC=0.276x103
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Figure 3-67: Hypsometric Curve Evolution TSC=0.920x 103
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Chapter 4

Sensitivity to Initial Conditions in the WBR model

4.1 Introduction

The networks produced by both the WBR model and its subsurface saturation

modification have a random appearance. Keeping all the parameter values constant and

varying the initial elevation field by a small amount produce completely different networks.

Analytical results on the Meinhardt equations (described in Section 2.3.) show that small

perturbations in the system can grow and produce completely different results, making the

system chaotic; it is this transient chaos that causes the random appearance. The special

form of the Meinhardt system allows an analytical derivation of these facts, but this

procedure is not directly applicable to the WBR catchment evolution model. The

integration of contributing flow to each node along the elevation gradient is one of the

major difficulties. Nevertheless, numerical experiments can be performed in order to

establish whether the chaotic behavior found in the Meinhardt system is similar to the WBR

model and to what extent.

The organization of the chapter is as follows: a short review of definitions and

common procedures in the study of chaotic dynamical systems is presented. Then, after

defining an appropiate measure between elevation fields called the relief difference, various

experiments are presented. All these experiments try to examine the validity of the

hypothesis that evolutions that begin at very similar initial conditions evolve in a

completely different manner. Finally, the influence of the different parameters of the WBR

model over the dynamical evolution of the system is examined.
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4.2 Sensitivity to Initial Conditions and Lyapunov Exponents

There is still no agreement for an exact definition of a chaotic dynamical system.

Further research and stronger mathematical theory are required before a consensus about

such definition is reached. However, there is one property that all chaotic systems share and

which makes them interesting. This property is the sensitivity to initial conditions

(henceforth called SIC). The SIC property means that nearby trajectories in the phase space

will move away exponentially fast from each other on the average. It implies then that no

matter how precisely variable measurements are taken in a chaotic system, errors will grow

and dominate the solution making all long-term predictability impossible.

Complexity is by no means a- requirement in order for a system to exhibit SIC. A

system as simple as the logistic equation xn'" =ax,(l-x,) (with a a parameter in [0,4] and x,

in [0,1]) can exhibit this property. Figure 4-1 shows the evolution of two initial conditions

x0=0.2 and xo=0.2001 in different regimes: one periodic and one chaotic. In the periodic

regime (a=3.5) both solutions evolve side by side and the distance between them remains

bounded for all time. On the other hand, in the chaotic. regime (a=4.0) even though the

difference between the two initial conditions is very small, after some time the solutions

evolve in a completely different fashion. Any small error can produce loss of predictability

in the long term.

The rates at which nearby solutions diverge are called Lyapunov exponents. Their

sign indicates whether nearby trajectories diverge exponentially (i.e. if SIC is present or

not); positive signs imply chaotic behavior. Lyapunov exponents also indicate the time

scale on which predictions within a certain accuracy level can be performed.

In mathematical terms [27], if do is a measure of the separation between two

trajectories of a dynamical system at a certain time, the distance between them at a later

time can be described as:
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d(t) = do e"' (4.1)

where X is the Lyapunov exponent. Figure 4-2 shows this property graphically. If X is

positive, the system displays SIC and behaves chaotically, otherwise the system behaves

regularly. However, it is required that the dynamical system has dimensionality three or

larger in order to exist the possibility of chaotic behavior.

d(td)

d~ t0 dN ~2) do k ) I d k)

Figure 4-2: Exponential Separation of Trajectories in a Chaotic System

Of course, Equation (4.1) is not valid for all time because the system is bounded and

the distance between trajectories cannot go to infinity. This is the reason why some average

is required. Following Wolf et al. [48], a way to calculate the largest Lyapunov exponent is

to take two nearby initial conditions, follow their trajectories in time and when the distance

between them becomes too large, to replace one of the points with another one near the

base trajectory. Section 4.6 will examine this idea in detail.

The Lyapunov exponent is calculated then as:

1 n d(tk)- E log (4.2)
t,-to 1=1 o (t'_ )

where t; is the time at which a new measurement is taken, d(t) the distance between

trajectories at time tk and do(tk) the initial distance between the base trajectory and the new

trajectory chosen at time tk.
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If the Lyapunov exponent X is going to describe long-term behavior and have

dependence on the initial condition used for its calculation, the average should continue for

a long enough time. Notice also, if the system is 1-D and the time ti--t,_ is small, the

relation d(t,)/do(tzk) tends to the derivative f'(xk ,) of the solution of the system.

For systems of dimensionality larger than one, a whole set of Lyapunov exponents

can be defined, each of which describes the divergence of trajectories in a particular

direction. In a n-dimensional system a small n-ball of initial conditions evolves into an n-

ellipsoid with time. The exponential rate at which the different n principal axis of this

ellipsoid grows or decays is the generalization of the concept of the 1-D Lyapunov

exponent. Figure 4-3 from [27] explains this effect. The sum of all the Lyapunov exponents

is the time-averaged divergence of its phase space. Wolf et al. [48] use this idea to calculate

Lyapunov exponents: the growth of length elements (distance between two trajectories)

gives the largest Lyapunov exponent; the growth of area elements (using three trajectories)

gives the sum of the largest two exponents and so on.

S

Time

Volume

Figure 4-3: The Divergence of Volumes in Chaotic Systems

A word of caution is necessary at this point: there is a stricter definition of Lyapunov

exponents and expansion rates of a dynamical system. This definition examines the

eigenvalues of the transformation matrix corresponding to the linearization of the original

dynamical system. Given that the linearization as well as the direction of its eigenvectors

vary with time, an average over time of the eigenvalues is used to define Lyapunov
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exponents (see Berge et al. [3] for details). In this case the exponents also measure average

linearized expansions and contractions. It is expected that both definitions (the experimental

and the theoretical) are strongly related but further research is still necessary.

4.3 SIC in the Catchment Evolution Model

The WBR model has not only non-linear time evolution but it is also a spatially

extended system. Apart from some works by Kaneko and co-workers [16], [17] and [23] in

coupled logistic maps, studies of chaotic behavior in spatially extended systems do not

exist. They are to be expected in future years once the mathematical theory advances

enough to look at problems of turbulence where both time and space are inherently

unpredictable. This section will try to apply and generalize the concepts described in

Section 4.2 to the WBR model.

The first problem is to define a measure of distance between trajectories in order to

study the evolution of d(t) as in Equation (4.1). A plausible definition of the distance

between two elevation fields Z, and Z2 is:

d12(t) = 11Z(t)-Z 2(t)I = 1z1 )((j)-z2( t)(J) (4.3)
allnades

where z)(ij) is the elevation of node (ij) at time t. Measure (4.3) will be called the relief

difference between elevation fields Zi and Z2. In stricter mathematical terms, if the

elevation at each node is considered as an independent component of an n*m-dimensional

vector (where m and n are the vertical and horizontal dimensions of the numerical grid

respectively), then (4.3) is the Lo-norm in the n*m-D space. Of course, any other valid norm

in this space, for example the square root of the sum of the squares of the elevation

differences at grid nodes can also be used.

The SIC property can be tested then, under different conditions in the WBR model.

Two initial elevation fields are taken such that the distance (i.e. the relief difference)
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between them is small and the evolution of both catchments is followed measuring d12(). If

the system were regular d12 (t) would remain bounded for all times. In the experiments

performed, a base elevation field Zb was chosen randomly: elevations were drawn from an

uniform distribution with a very small coefficient of variation. Its evolution was compared

against trajectories of points in phase space (initial elevation fields in real space) near the

base elevation field. The details of how these points are chosen is described in the following

two sections.

4.4 Behavior of One-Node Perturbations

Once the base initial elevation field Z1 (0) is fixed, a way to choose another elevation

field Z2 "near" Z1 is to perturb the elevation at one of the nodes by a small amount. The

measure of how separate Z2 is from Z, is given by the relief difference between them.

Given that only the elevation at one node is varied, d12(0) is equal to the variation in z at

that node. Figure 4-4 shows the location of points at which the elevation was perturbed in

each case. The final network is presented only for illustrative purposes; at the beginning of

the simulation no channel network exists. The elevation was changed by the same amount

in every experiment (approximately 3% of the notch). Figure 4-5 shows the evolution in

time of the value of the relief difference (i.e. the distance in phase space) between Z, and

Z2. Notice how, for some of the cases, d12(t) grows exponentially with time and continue

this expansion until the network captures the entire catchment. Once the catchment is

captured, at approximately dimensionless time 1500 in the experiment shown, the growth of

d12(t) stops. Then, the relief difference between the random fields begins to decrease slowly

because in the case with episodic uplift both catchments tend ultimately to a flat plane. The

exponential separation between trajectories is an indication of the transient chaos present in

the WBR model. The logarithmic scale in the relief difference axis makes it possible to

infer visually that the sign of the Lyapunov exponent (which corresponds to the slope of the

graphs) is positive.
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Some other trajectories do not diverge exponentially from the base trajectory during

the whole network expansion period as can be seen in Figure 4-5. In these cases d12(t)

decreases rapidly even if there was a small initial expansion. The interesting fact is that the

final networks are identical in the bounded case while on the exponentially divergent cases

the resulting networks are completely different. In terms of the phase space, the base

trajectory attracts some of the perturbed trajectories. The relationship between exponential

divergence and different final network is one-to-one. Final networks are presented in Figure

4-6

There are some features common to the chaotic behavior of the Meinhardt and the

WBR systems. The analytical formulation of the Meinhardt model permits the ellucidation

of the way in which perturbations grow and dominate the solution (see [47]). Fluctuations

in the channel formation function near the branch will propagate in an unstable manner, and

fluctuations away from the differentiation process are reduced. However, if the

differentiation boundary passes at a later time through the zone where traces of the original

fluctuations still exist, then they also propagate unstably. In the WBR model, elevation

perturbations affect both flow directions and channel formation function values (the latter

through the slope factor in the channel formation function equation).These variations enter

into the model equations and eventually dominate the solution. Notice also that

perturbations at nodes away from the differentiation process do not grow at all.

This unstable propagation of fluctuations raises the issue of whether the numerical

solution of the WBR model is really a true catchment evolution. Given that numerical

errors grow unstably, the numerical solution may not be a true trajectory. A possibility is

that the numerical solution bounces around different real trajectories of the dynamical

system. However, recent research by Yorke, Grebogi and coworkers [12] in simple systems

seems to indicate that there is always a true solution near a numerical one in chaotic

dynamical systems. Even though further research is still necessary, these preliminary steps



-103-

original- 2000.ret3

BRANCHPERT3-2OOO.RST3

BRANCHPERT1 -200a.RST3

BRANCHPERT4- 2000.RST3

BRANCHPERT2- 2000.RST3

BRANCHPERTS-2000.RST3

BRANCHPERTS-2000.RST3 8RANCHPER7-2000.RST3

Figure 4-6: Final Networks for One-Node Perturbed Elevation Fields
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give confidence on the good behavior of numerical solutions of chaotic dynamical

solutions. Of course, long-term predictability is not possible in these systems if the

precision is finite.

4.5 Expansion of a Ball in the Phase Space of Elevation Fields

In Section 4.4 Z2 was constructed by changing the elevation at one node in Z,.

Another possibility is to change the elevations at every node, i.e. to take a completely

different initial elevation field drawn from the same distribution to which Zi belongs. Given

that the coefficient of variation of the uniform distribution of node elevations is small, the

relief difference d12(0) will be also small. Thinking in terms of the n*m-D phase space,

perturbations at one node correspond to movement along one of the axes while

perturbations corresponding to new random elevation fields are represented by points

positioned away from the origin into the space. Various trajectories corresponding to

different initial random fields were compared in time with the evolution of Zb. These initial

elevation fields can be viewed as a ball in the phase space. The deformation of this small

ball was followed. The goal was to examine the possibility of exponential growth of the ball

as in Figure 4-3 in section 4.2 . If exponential growth occurs, the SIC property is shown not

to be restricted' to single node perturbations and the sum of the Lyapunov exponents can be

studied.

Figure 4-7 shows three measures of the ball's evolution: the maximum and the

minimum values of the set of the relief differences, and the maximum distance between

trajectories. All three measures provide insight into the ball expansion process. The second

measure proves that it is not a small group of trajectories that is diverging from Z, but that

effectively all of them are moving away exponentially fast. The last measure gives an idea

of the largest principal axis size (its exponential rate is equivalent to the largest Lyapunov

exponent, see [27]).
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Figure 4-7: Three Measures of the Expansion of a Volume of
Nearby Initial Random Fields in Phase Space

Even though a very large number of points is required to determine with precision the

value of the sum of the Lyapunov exponents based on the volume expansion of the ball of

initial conditions, Figure 4-7 gives adequate certainty about the positive sign of the largest

Lyapunov exponent and therefore the chaotic nature of the WBR system.

4.6 Another Test Related to the SIC Hypothesis

Another test, based on ideas by Wolf et al. [48] is to examine not only the evolution

of trajectories corresponding to initial points near the base elevation field, but also to look

at evolutions that begin near the base trajectory at later times, as was shown in Figure 4-2.

This method has a clear advantage: given that the size of the domain under consideration in

the phase space is finite, then exponential divergence cannot continue forever (as can be

seen in Figure 4-5). That is the reason why in chaotic dynamical systems both time and

space averages have to be taken in order to calculate Lyapunov exponents.
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For this reason perturbations of the base elevation field were performed at different

times and their trajectories were compared to the base field evolution. Results appear in

Figure 4-8. In this figure the perturbations that begin at different timesteps have been

translated to coincide with the origin. Times in the legend indicate the step at which the

elevation field is perturbed. Notice that SIC and chaotic behavior is present only while the

network is still growing. The network grows up to nondimensional time 2000; perturbations

initiated after this point decay in time.

Once the network captures the catchment and provides rigidity to the elevation field,

perturbations decrease with time. The WBR system exhibits what is called transient chaos.

The largest Lyapunov exponent can be calculated using the different perturbations and

Equation (4.2).

10 3

102

LEGEND
time 400

10 time 500
time 600
time 800
time 1000

m time 1500
F 4 e D n N X time 2000

Ao time 2500
xtime 3000

103-
0 1 2 3 4 5 6 7 8 9 10

TI-me 103

Figure 4-8: Relief Difference of Nearby Points
Along the Base Trajectory
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4.7 One-Node Perturbation Thresholds

By performing various experiments like the ones described in Section 4.4 it was

found that there was a perturbation size threshold that has to be exceeded in order to have

exponential divergence of trajectories in the system. This is to due to the one-to-one

relation between the exponential divergence of trajectories and the change of network form,

as well as the existence of an channel formation function threshold that has to be surpassed

in order to trigger channelization. Of course, the fact that only eight possible flow directions

are considered at each node also influences the perturbation threshold.

In classical chaotic studies the SIC property is always thought of in terms of

infinitesimal perturbations. The WBR model behaves differently on this respect. Consider

the base elevation field Zb and choose a node. If perturbations are made to the elevation at

that node, the perturbed fields are located along one of the axes of the phase space. The

evolution of the relief difference for perturbations performed this way over Zb at different

nodes are shown in figures 4-9 and 4-10.

Notice that if the perturbation is small enough, even though the separation grows

exponentially for some time, the distance between trajectories stops growing; it decreases

even before the network finishes the capture process. There exists a threshold value,

dependent on the elevation at neighboring nodes and on the parameter values but it is

certainly small. Above this threshold the perturbed trajectory continues its exponential

separation. These are the two different behaviors observed in Figures 4-9 and 4-10. In the

experiments the original node elevation was 10.10428. if the elevation at that node in Z2

were larger than 10.10850 or smaller than 10.10258 then the exponential separation occurs

during the whole network expansion period. The jump at these two values occurs, not

surprisingly with the change in network form. Regions in the catchment begin to evolve in a

different manner and the trajectories in phase space diverge from each other. Thinking in
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terms of the phase space, a cylinder of very small size exists around the base trajectory in

which nearby trajectories behave differently from those outside the cylinder.
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Figure 4-9: Perturbation Threshold One-Node Perturbations.
Upward Perturbations

Original Node Elevation 10.10428

The figures referred to earlier show a discontinuous jump between two regimes that

vary continuously with the size of the elevation perturbation. Figure 4-11 coresponds to the

slopes of least-squares lines fitted to the portion of the curves in the time interval

[300,1000] in the semilog plane. The results shown in Figure 4-11 are based on both

Figures 4-9 and 4-10. It can be observed that near the original node elevation (i.e. inside the

cylinder in phase space) slopes are negative and the base trajectory attracts neighbor

trajectories.
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4.8 Parameter Dependence of SIC

A number of parameters can be varied in the WBR model, and when this occurs the

chaotic behavior of the system changes as well. The most important parameters to be

studied are the exponents of the flow and slope terms in the sediment transport and channel

formation function equations (m,,ni,m5 , and n5 respectively), the channel formation

function threshold (1/c,), the coefficient P3 used in the relation flow-area (a rainfall

measure), the coefficient 1 in the sediment transport formula and the relation between

channel and hillslope sediment transport (0,).

In the next set of experiments the evolutions of a base elevation field Zb and a

perturbed one Z2 are again followed. The initial elevation field Z2 (O) was chosen as in

Section 4.5. This time, however, the fields under observation are kept constant and the

parameter values are varied. This procedure will show the dependence of the divergence of

the trajectories with respect to the parameter values. The following graphs show the

exponential trajectory divergence of the same two random initial elevation fields for

different parameter values. In each case a semilog graph corresponding to the long-term

behavior, a semilog graph that covers the network growth period, and an arithmetic graph

coresponding to that same period are presented. The first graph illustrates the behavior of

the system during the dying period of the catchment, the second graph shows the whole

period of network growth and the third graph presents in detail the most intense period of

network expansion.

An increasing trend of the exponential rate of separation with increasing values of m,

is observed in Figures 4-12 to 4-14. This effect appears simultaneously with an increase in

drainage density in the final networks: the perturbation information is communicated over

the whole catchment by the network. Without network there is no spatial communication of

elevation differences and no exponential divergence exists. The same effect is observed in
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the channel formation function threshold case (Figures 4-15 to 4-17). As cl increases, the

drainage density increases because the channel formation function threshold is reduced and

the exponential rate of divergence increases. A change of behavior occurs around c1 =0.0007

in this experiment because the network begins to lose its branched structure and a "blob" is

formed instead.
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Figure 4-12: Relief Difference Under mi Variations

The variation with n, is in the opposite direction. In Figures 4-18 to 4-20, as n,

increases, sharp peaks and steep slopes tend to be flattened out faster because the sediment

transport is larger everything else being the same, so the separation rate between trajectories

is smaller. The variations with 3 shown in Figures 4-33 to 4-35 correspond to the relation

between Lyapunov exponents and rainfall. In this case the drainage density is also a key

factor in explaining the behavior observed. Figures 4-24 to 4-26 correspond to 0,

variations. Notice how the relief difference decreases at long time in a manner directly

correlated to the size of 0,.
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Dependence on m, (Figures 4-27 to 4-29) as well as on n. (Figures 4-30 to 4-32) is

very similar to the dependence on m, and n, respectively. Finally, the variation in the

multiplicative factor P of the sediment transport equation is shown in Figures 4-33 to 4-35.

Of course, some of the parameter values may be out of the physically valid range but this

analysis provides additional insight on the behavior of the model as a dynamical system in

itself.

4.9 Final Remarks

The sensitivity to initial conditions and the chaotic behavior of systems are properties

that are going to be studied in much more detail in future years because of their

implications in predictability. In this chapter it has been shown how this property produces

completely different networks out of processes with identical parameter values but with
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small differences in the initial elevation fields. The intrinsic temporal and spatial variability

of the results imply the necessity of a statistical analysis of the networks. Furthermore, the

implications of the SIC property on long-term predictability have to be taken into account if

the WBR model is to be used in future years for field predictions.

The Lyapunov exponents were shown to have a positive sign in the system using

different tests that have been developed in the literature under a variety of conditions. The

fact that the signs are positive proves the existence of transient chaos in the evolution of the

system. However, calculations of the exact values of the Lyapunov exponents require a

very large number of experiments or a stronger theory on spatially extended systems which

has not been developed yet. The exact values of these exponents will provide a bound for

long-term predictions using this model and this may be one of the most important

applications of the understanding of the chaotic behavior of the system.
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Chapter 5

Conclusions

5.1 Summary of Results

This work consists of two sections. Both sections study different aspects of the

channel network and catchment evolution model developed by Willgoose, Bras and

Rodriguez-Iturbe [47], henceforth called the WBR model. This model uses a sediment

transport continuity equation to model elevations, and concepts of erosion engineering to

define a channel formation function that triggers the growth of channels. The overland flow

production mechanism used in the WBR model is the Hortonian. One of the most

interesting features of the WBR model is the way hillslopes and channels interact through

the different sediment transport processes. The purpose of the first section of this work is to

study the effect of the overland flow production mechanism at hillslopes on the overall

behavior of the system. This first part changes the Hortonian runoff of the WBR model to

the subsurface saturation mechanism. In the Hortonian case overland flow is assumed to be

generated uniformly over the whole area whereas in the subsurface saturation mechanism

only saturated areas contribute to the overland flow.

After a review of previous work, a modified version of the WBR model, including

the subsurface saturation runoff mechanism, is presented in Chapter 3. A series of

simulations were shown and their geomorphological characteristics studied. All the

measures under consideration (e.g. Strahler's bifurcation, length, slope and area ratios)

were within reasonable limits. The modified model still presented the inherent variability in

network's growth that appeared in the WBR model and which is the subject of study of

Chapter 4. The influence of diffusive sediment transport processes (e.g. rockslide and

rainsplash) was found to be more important in the modified model than in the original one.
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The influence of these processes was shown to be particularly important in the time

evolution of the hypsometric curve. Finally, various geomorphological characteristics (e.g.

area-slope renormalization, link length distribution, etc.) were studied in the simulated

catchments and their behavior was found to be similar to field data.

A non-dimensional form of the modified model, similar to the original non-

dimensional WBR model, was developed and a new non-dimensional number introduced to

describe the threshold value that distinguishes between saturated and unsaturated hillslope

nodes. The purpose of these non-dimensional numbers is to provide a way to meaningfully

compare catchments at different scales.

A second modification to the WBR model was developed in which the probabilistic

nature of rainfall was taken into account. In the first modification the rainfall at the mean

flood was used to determine which nodes were saturated and which were not. In the second

case, rainfalls above the mean that saturate and erode nodes previously considered as

unsaturated were included in the model. Differences were found in the evolution of the

hypsometric curves. Other geomorphological measures were not very different.

An important conclusion is the robustness of the WBR model in relation to overland

flow distribution. Even though some properties of the behavior change, the overall

characteristics of the catchment evolutions are very similar.

The second part of this work studies the sensitivity to initial conditions in the WBR

model and is presented in Chapter 4. Using the relief difference, a measure of the difference

between elevation fields, the sensitivity of the model to small variations in the initial

elevation field was studied. This sensitivity is a manifestation of the underlying transient

chaos present in the system. A variety of experiments, based on various tests described in

the chaos literature, were used to analyze the behavior of the model under different

parameter values. Analytical calculations to prove the existence of chaos are very difficult

to develop in the WBR model because of the way contributing areas, a fundamental term in
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almost every expression of the model, are calculated. Nevertheless, the series of

experiments shown in Chapter 4 demonstrates how the inherent variability of the resulting

model networks is related to extreme sensitivity to initial conditions.

5.2 Further Research

Both the analysis of the WBR model in [47] and in this work have begun to look at a

channel network evolution model that keeps the number of parameters as small as possible.

Based on these analyses a number of possibilities are open for further research. This

research can proceed in three directions: modification and improvement of the numerical

algorithm that solves the model; extensions of the model to include different

geomorphological and hydrological hypotheses about the evolution of the basin; and field

measurements that verify and provide a path for new theoretical work. Ideally, these three

branches should be developed in parallel.

First of all, underlying any proposed avenue of further research there exists the

problem of improving the numerical simulation scheme. The original code is time intensive

and the modified version is even more so. This is because of the overland flow calculation

that has to take into account the saturation deficits at unsaturated nodes. Reducing the

computer time will allow larger size domains to be studied, which are necessary to develop

some of the ideas that will be described in this section.

There are some interesting extensions and modifications to the WBR model. For

example, the study of the effect of geomorphological controls different from the tectonic

input used in the WBR model. Soil layering, horizontal variation of soil properties and

limits in sediment transport produced by the amount of material available for erosion, are

three possible problems to study. More realistic evolutions would probably arise from these

simulations.
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The tectonic input term that was used both in this work and in [47] was constant in

time and space. The effect of a history of discrete uplift events (e.g. produced by

earthquakes) instead of a continuous process, is also a possibility to be studied. Also, the

issue of erosion-deposition and its relationship with geomorphological configurations like

deltas may be a point to examine carefully with the model.

The boundary conditions used in all the simulations correspond to idealized walls

around the domain and a corner that was defined as outlet. Different boundary conditions

would allow the study of the competition for water and space between neighboring

watersheds and the behavior of their boundaries.

Another avenue of theoretical research comes from the inclusion of the probabilistic

distribution of flood rainfalls. In Section 3.11 the influence of this distribution on the

overland flow production was studied. Notice that the indicator function makes a clear and

permanent distinction between channel and hillslope nodes. However, a node defined as a

hillslope using the mean flood rainfall could erode as a channel under larger rainfall events.

The inclusion of this effect would smooth out the transition between channel and hillslope

nodes (Willgoose, personal communication). At this point sediment transport field data

linked to floods as well as to the advance and retreat of channel heads are necessary.

As Morisawa states in [26], vegetation plays an important role in the network

expansion process. After disruptive tectonic events like earthquakes, where vegetation is

sometimes destroyed, the protection of the soil decreases and the variation in elevations

make the network evolve. As time passes and vegetation regenerates, the characteristics of

the process change and a temporal variation of the parameters of the model could mimic

this effect.

As described in Chapter 3, even though the overland flow production mechanism is

different between the WBR model and the modified version developed in this work, there

are some features that are common to both models. Therefore, different simulation tools
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may help to increase the simulation speed at the cost of losing certain details of the

evolution but preserving some features of the model's evolution. Cellular automata, for

example, which involve discretization not only in time but also in the variables of interest

(elevation in this case), could be useful in large-scale simulations. These simulations with

large domain sizes could be used in studies that compare fractal properties of the surface or

the network generated by the model with those measured in the field. Notice that the tests to

measure fractal properties usually require large amounts of data implying very large

simulation domains.

Finally, notice that the analysis presented in Chapter 3 was based on certain

assumptions on the subsurface saturation mechanism which should be looked at carefully.

Processes like pipeflow and macropore bypassing and their effect on the geomorphological

evolution of the basin may also be important in certain situations.

The third avenue of research corresponds to the problem of field verification of the

model. Given that the timescales of network evolution are usually very large, field

measurements of the whole process at large scales will be limited except for a few special

cases. For example, settings like mines, volcanic eruptions or recently deforested zones in

tropical regions with high precipitation and easily erodable soils may be used for field sites.

Field experiments should try to measure characteristics that enable the calculation of both

the nondimensional numbers defined in Section 3.8 and the exponents of sediment

transport. Laboratory experiments like the ones performed in the 70's in the rainfall erosion

experiment facility at Colorado State University have been compared against simulations of

the WBR model, see [47]. Additional experiments that take into account the problem of

scales in the diffusive sediment transport processes (like rockslide and rainsplash) can be

performed. The linkage with real field data will permit, in the long term, the study and

prediction of effects that change in land use, change in topographical characteristics of a

basin (mines, earthquakes, etc.), or even change in climate will have on the geomorphology

of the basin. The implications of Chapter 4 should be taken into account at this point.
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It is important to notice that even though the first studies of the WBR model have

been concentrated specifically on geomorphological issues, the hydrological importance of

the model should not be ignored. In the long term, more research could be directed towards

the understanding of the possible links between the model parameters and the hydrologic

response of the basin. This would allow conclusions about the evolution of the hydrological

response as the geomorphology of the basins changes with time.

Finally, in a more abstract setting, work with this model could also add some

mathematical insight into the interesting basin evolution problem. In general terms the

problem can be stated as:

az -- Vn(5.1)

at

where z is elevation, n is the unit vector in the steepest slope direction, and F is the

sediment transport flux which is usually assumed to be a function of area and slope. Notice

that the WBR model is analogous to this problem when some assumptions about the form

of F are added. As stated in Chapter 4, the mapping that assigns the contributing area to

each point according to elevation gradients has not been studied in detail and is not easy to

handle. Up to now, only perturbation analyses of the system's behavior have been

performed in [40]. A mathematical analysis of the evolution of the process, which is not

only non-linear but also spatially variable, is yet to be developed. The WBR model could be

a useful tool for this purpose.
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Appendix A

Parameter Values of Simulations

SIMULATION TS TA TD TSC O,

10-3 10-8 103

BR643SATU10 6.59 17.97 0.0 0.92 0.1

SATU21 6.59 22.47 0.0 0.92 0.1

SATU29 32.95 17.97 0.0 0.92 0.1

SATU31 6.59 17.97 0.0 0.92 0.01

SATU32 6.59 17.97 2.0 0.92 0.1

SATU34 6.59 17.97 0.0 0.92 0.1

SATU35 6.59 17.97 0.0 0.92 0.1

SATU36 6.59 17.97 0.0 0.92 0.1

SATU37 6.59 17.97 0.0 0.92 0.1

SATU38 6.59 17.97 0.0 4.60 0.1

SATU39 6.59 17.97 0.0 0.28 0.1

SATU40 6.59 13.48 0.0 0.92 0.1

SATU42 6.59 7.07 0.0 0.92 0.1

SATU43 6.59 22.47 0.0 1.84 0.1

SATU44 6.59 13.48 0.0 0.42 0.1

SATU45 6.59 22.47 0.0 2.80 0.01

Table A-I: Parameters of Simulations

All the simulations had m1=2, n1=2, ms=0.4, n5=0.3, TT=1x10-6, TC=1, except

SATU42 that had m5=0.275. All the simulations had j36=1.0 except SATU31 with 0.1,

SATU37 with 10. and SATU45 with 0.5.
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