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ABSTRACT 
 

An alveolosphere is a type of stem cell derived lung organoid. They have a distinct 

“balloon-like” structure which resembles the alveoli in human lungs. In recent years, they have 

become increasingly popular as model systems for disease research and treatment development, 

especially with the onset of COVID-19. Patients born with a rare mutation on both copies of their 

SFTPB genes face severe respiratory issues after birth which often lead to poor outcomes.  Lung 

cells derived from the stem cells of patients with this double-mutation fail to form the complex 

structure indicative of successful alveolosphere development. The tension-dominated nature of 

this structure reveals that the biology of the formation of alveolospheres is heavily coupled with 

their mechanics. Therefore, in order to fully understand an alveolosphere’s biology it is essential 

to understand its mechanics. This thesis outlines a theoretical framework which, in conjunction 

with targeted experiments, could serve as the basis for a mathematical theory of the development 

and growth of alveolospheres. Such a theory would provide a better understanding of what needs 

to go right, and what can go wrong, during alveolosphere development. By extension, this 

framework offers a path forward towards the discovery of new treatments for genetic and 

pathological lung diseases that directly affect alveoli.    
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1. INTRODUCTION AND BACKGROUND 
 
  

Historically, fundamental research into the effects of diseases and treatments on specific 

organs relied on the use of animal models, which can differ significantly from humans both 

structurally and chemically [1]. Until recently there were few alternatives to animal-based studies. 

Recent developments in our understanding of pluripotent stem cells (PSCs) have allowed for the 

development of organoids; small clusters of cells that resemble the tissue of a specific organ; for 

use as model systems. Organoids allow for investigation of the effects of diseases and treatments 

on human organs in living human cells. Organoids are often the much more biologically simple 

than similar in vivo tissue, but can still demonstrate complex structure. Understanding the structure 

and physics of organoids can also give great insight into the role mechanics plays in the  

development (or dysfunction) of human organs.  

An alveolosphere is a fluid-filled, spherical lung organoid that gives insight into the 

development of human alveoli. Alveoli play an important role in gas exchange in the lungs, 

allowing for the absorption of oxygen into, and diffusion of carbon dioxide out of, the bloodstream 

[2]. The dysfunction of alveoli play a significant role in lung diseases including pulmonary 

fibrosis, COVID-19, and congenital lung disorders. Therefore, alveolospheres have become a 

valuable tool in research into lung disease and dysfunction [2-5].  

Understanding how and when alveolospheres are able to form and maintain their complex 

spherical structure may prove an effective tool in lung-disease research. Their tension-dominated 

balloon like structure is mechanically complex. Because they are so tightly coupled, understanding 

the mechanics of alveolospheres is critical to understanding their biology. This thesis aims to create 

a mathematical framework which can be used to understand the growth and development of 

alveolospheres. 

 

1.1 Organoids and Organs-on-chips 

In recent years, human organoids have become increasingly important model systems in 

biology and biological engineering. In simplest terms, an organoid is a specialized cluster of cells, 

derived from pluripotent stem cells (PSCs) or adult stem cells (AdSCs), which resemble tissue of 

a specific organ chemically and functionally [1]. Stem cells can be thought of as the “most 

generalized” type of human cells. Through the addition of growth factors and other hormones, 
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PSC’s and AdSCs can be coaxed into specializing into the cells that form organ-specific tissue. 

These specialized cells then form organoids which resemble the structure of their associated organ. 

As organoids develop, they often resemble the early stages of in vivo organ development [1].  

Organoids do not self-vascularize and therefore are often bounded in size by the limits of 

oxygen diffusion into their cores [6]. Non-vascularized PSC and AdSC derived organoids still 

present an exciting opportunity as model-systems for isolating and understanding the effect of 

specific diseases. They have already been utilized as model systems to better understand the 

diseases that affect at least eleven different organs ranging from the heart to the inner ear, and help 

to develop treatments for them [7]. In recent years, significant strides have been made in efforts to 

vascularize organoids to create systems more representative of whole organs. Many of these 

systems, often referred to as organs-on-chips (OOCs) are being designed with modularity in mind 

and aim to recreate as much organ functionality as possible [8]. The coming decade will prove 

instrumental in the development of successfully vascularized OOCs and the implementation of 

multi-organoid OOCs [9].  

 

1.2 Alveolospheres 

An alveolosphere is a lung organoid that can be derived from both AdSCs and PSCs. 

Alveolospheres are made up of the same cells and form a similar structure to that of alveoli, the 

millions of micrometer scale sacs that line the walls of the lungs and assist with the exchange of 

oxygen and carbon dioxide [2]. The importance of the of alveoli to lung function along with their 

unique balloon-like structure make alveolospheres an interesting and worthwhile candidate for 

study.  

1.2.1 Physical Overview 

Alveolospheres are a particularly interesting in that they have a high degree of similarity 

to their in vivo counterparts, alveoli (singular alveolus). As their name suggests alveolospheres are 

spherical in shape (as shown in figure 1-1 a). However, unlike many other organoids, 

alveolospheres are not solid clusters of cells. Instead, the cells of an alveolosphere form a one-cell-

thick spherical “bubble” filled with extracellular fluid (as shown in figure 1-1 b). During 

development alveoli are also relatively spherical in shape and remain so externally. In vivo, alveoli 

group together in structures called alveoli sacs and internally join together to form a much more 

complex structure (as shown in figure 1-2).  
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Figure 1-1:  Side-view and cross-sectional view of 3D alveolospheres. a) Side-view of fully 

developed 3D alveolosphere roughly 180 μm in diameter. Cell nuclei are marked in green. b) Cross-

sectional view of a 3D alveolosphere earlier in development. Cell nuclei are marked in blue, and     

F-actin is marked in green. Cells in the wall of the alveolosphere remain a relatively constant 12 – 

15 μm throughout development of the alveolosphere. Captured using a Leica SP8 confocal 

microscope at a 25x/0.9 water objective. Images courtesy of Wenhui Tang, MIT GuoLab.  

 

Figure 1-2: Diagram of a respiratory bronchiole and alveolar sacs. During development spherical 

alveoli (singular alveolus) join together to form alveolar sacs. Alveolar sacs facilitate gas exchange 

between the lungs and pulmonary blood vessels via their proportionally large surface area [2, 10]. 

This file is licensed under the Creative Commons Attribution 4.0 International.  

Alveolospheres begin development as a single alveolar epithelial cell, derived from a PSC 

or AdSC through the addition of growth factors and other hormones. The epithelial cell is then 

placed into a growth medium such as matrigel. When the cell first splits, a fluid-filled, surfactant-

100 μm  20 μm  

a) b) 

https://creativecommons.org/licenses/by/4.0/deed.en
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lined, almond shaped “bubble,” called a lumen, forms between its daughter cells [3-5, 11]. As the 

cells continue to divide, they form the aforementioned spherical balloon shape, which expands into 

the growth medium until growth halts at a relatively consistent size [3-5].  

Because alveolospheres are not solid clusters of cells this means that they are not subject 

to the same oxygen diffusion limits as other organoids and are instead limited by many of the same 

physical phenomena which govern the development of in vivo alveoli. As a result, alveolospheres 

halt growth at a size remarkably similar to that of alveoli. Images provided in [2], point to a rough-

estimate of the average diameter of a full grown alveolosphere of ~100 to 300 μm. A 2004 study 

on the size and number of alveoli in human lungs found a “rather constant” mean diameter of 200 

± 10 μm “irrespective of lung size” [12]. This implies that the limits on alveolosphere growth may 

be controlled not only by biological regulation, but also fundamental mechanical principals.  

As alveolospheres grow, one rather unusual trait is that the thickness of the cells that make 

up the wall of the alveolospheres remain relatively constant (12 to 15 μm) in thickness in the radial 

direction. As the cell grows the density of cells per unit surface area of the alveolosphere increases 

implying that the volume per cell decreases.  

Surfactants are particularly important to the development, structure, and function of both 

alveoli and alveolospheres. Surfactants are chemicals secreted by the cell to reduce the surface 

tension at the air cell interface of an alveoli. They are present on the inner surfaces of both alveoli 

and alveolospheres. By decreasing the surface tension less internal pressure is required to maintain 

their spherical shape. Additionally, surfactants reduce fluid accumulation in the alveolar sacs and 

prevent alveoli from drying out. Dysfunction of alveoli affecting surfactant production is often 

deadly and therefore understanding the role surfactants play in the physics of alveoli may help 

save lives (as will be discussed in 1.2.2) [5].  

1.2.2 Applications 

Most lung diseases and disorders directly affect the alveoli. Dysfunction of the alveoli 

directly affects the body’s ability to absorb necessary oxygen from the air and expel carbon dioxide 

from the bloodstream. Therefore, understanding the structure, development, and dysfunction of 

alveoli is critical to developing treatments for said diseases [2].  

Although they are a relatively new technology, lung organoids, and alveolospheres more 

specifically, have proven themselves valuable as model systems to assist in understanding lung 
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disease and dysfunction over most of the past decade [2]. For most of this time use of 

alveolospheres and other lung organoids has been focused on the investigation of pneumonia, 

fibroblasts and lung fibrosis, and lung cancer [7]. Since 2020, alveolospheres have gained some 

popularity as a model system for understanding the effect of COVID-19 on alveoli [4]. 

When an infant is born with a rare genetic mutation on both copies of SFTPB, a gene 

thought to control surfactant production in the alveoli, respiratory failure and death are a common 

outcome [12]. When epithelial alveolar stem cells are derived from the PSCs of patients who have 

had this rare double mutation, the epithelial cells do not form an alveolosphere, but instead cluster 

together in a much more disorganized structure [5]. The stability of bubbles and drops are 

canonical problems in mechanics because tension dominated systems are so clearly governed by 

fundamental physical laws. Alveolospheres, although also subject to the constraints of biological 

systems, are bound by these same fundamental physical laws. Therefore, understanding the 

mechanics of alveolospheres and what needs to go right to form them, may give great insight what 

exactly is going wrong in patients who suffer from rare lung diseases like this, and what possible 

directions to look for treatments or cures.  

 

1.3 Developing a Framework 

The goal of this thesis is to develop a basic mechanical and thermodynamic framework 

which can then be used to develop more complex models of the growth and development of 

alveolospheres. This framework is based on fundamental physical laws and bases many of its 

biological assumptions on those made in [11]. Chapters 2 and 3 of this thesis lay out this 

framework. Chapter 2 details a structural and mechanical model of an alveolosphere.  Chapter 3 

details a thermodynamic model of an alveolosphere and is broken up into two major sections. 

Section 1 outlines passive, active, and osmotic transport processes within an alveolosphere. 

Section 2 considers an energy limits that may halt alveolosphere growth.  

Chapter 4 applies the framework of sections 1 and 2 in the limit of a large, thin-walled 

alveolosphere in static equilibrium. In this limit it is demonstrated that the framework can 

accurately attain an order of magnitude estimate for the size of alveolospheres. Chapter 5 outlines 

a set of experiments which may be used to verify the assumptions made in this framework, and 

what a dynamic model based on this framework may look like. By understanding the mechanics 

of alveolospheres and by extension the biology to which they are so strongly coupled.  
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2. Structural Model of Alveolospheres 
 
  

The non-linearity and complexity of the contents of a cell have led to the development of 

a large number of methods and models for describing the mechanics of cells [13]. In this thesis a 

cell will be modeled as a thin fluid filled membrane (as was the case in [11]).  

We will begin by modeling an alveolosphere as a spherically symmetric shell of radius 𝑅 

made of cells of radial thickness 𝑑, as shown in figure 2-1. We assume the shell is subdivided into 

𝑁 cells by a network of radially oriented cell walls. As discussed in section 1.2.1, it can be assumed 

that 𝑑 remains a constant value throughout the alveolosphere growth process. This means that as 

𝑅 increases 𝑑 becomes proportionally smaller, which will aid in simplifying the model in the 

limiting case of a large alveolosphere (in chapter 4).  The cytoplasm in the cells is modeled as a 

fluid in constant pressure 𝑃𝑐𝑒𝑙𝑙 throughout the cell, and it is assumed that the cell is growing into 

some solid-continuous media with a known stretch-energy constitutive relationship (elastic, 

viscoelastic, poroelastic). Therefore, it is also assumed the pressure at the outer surface of the 

alveolosphere 𝑃𝑜𝑢𝑡 is  a known function of R. It is assumed that the inside of the alveolosphere is 

filled with extracellular fluid at a constant pressure 𝑃𝑖𝑛.  

 

Figure 2-1: Diagram of an alveolosphere of radius 𝑅 and radial cell thickness 𝑑. It is assumed 𝑑 

remains constant throughout alveolosphere growth (increasing 𝑅). It is assumed that the 

alveolosphere is subdivided into 𝑁 cells via radially oriented cell walls. The cytoplasm in the cells 

is modeled as a fluid at pressure 𝑃𝑐𝑒𝑙𝑙 . The alveolospheres outer is at a pressure 𝑃𝑜𝑢𝑡  due to the 

deformation of the growth medium. Extracellular fluid in the alveolosphere is at a pressure 𝑃𝑖𝑛 . 

𝑑 

𝑅 

𝑃𝑖𝑛 

𝑃𝑐𝑒𝑙𝑙 𝑃𝑜𝑢𝑡 



17 

 

2.1 Force Balance 

 By breaking down the alveolosphere into three subsystems and performing force balance 

on each of them, it is then possible to relate the pressures to the tensions in each section of the 

cells’ membranes. These three subsystems are the radial network of cell walls (figure 2-2 a), the 

outer walls of the cells (figure 2-2 b), and the inner walls of the cells (figure 2-2 c).  

                 

Figure 2-1: Free body diagrams sub-systems of an alveolosphere. a) The radial membrane network 

which separates the cells can be assumed to be in a state of hydrostatic pressure 𝑃𝑐𝑒𝑙𝑙  

circumferentially. At the boundary outer and inner boundary the membrane network has perimeter 

𝐿1and 𝐿2 in tension per length 𝜎3,1 and 𝜎3,2 respectively. b) The outer membrane can be assumed to 

be in circumferential tension per unit length 𝜎1. It also experiences radial tension per unit length 𝜎3,1 

on its inner surface from the radial membrane network and pressures 𝑃𝑜𝑢𝑡  and 𝑃𝑐𝑒𝑙𝑙 on its outer and 

inner surfaces respectively. c) The inner membrane can be assumed to be in circumferential tension 

per unit length 𝜎2. It also experiences tension per unit length 𝜎3,2 on its outer surface from the radial 

membrane network and pressures 𝑃𝑜𝑢𝑡  and 𝑃𝑐𝑒𝑙𝑙 on its outer and inner surfaces respectively. 

2.1.1 Radial Membrane Network 

 It can be assumed that due to the spherical symmetry, the network of membranes is in under 

hydrostatic pressure 𝑃𝑐𝑒𝑙𝑙 in the circumferential direction. This implies that we can consider only 

the radial forces due to tension in the membrane network. Because the perimeter of the network is 

not constant in the radial direction, but the force must remain constant in the radial direction to 

maintain equilibrium, the tension per length in the membrane changes in the radial direction.  

The perimeter of the cell wall network at the outer wall is defined as a function of 𝑅 and 

𝑁, 𝐿1{𝑅, 𝑁} and the tension per unit length in the membrane at the outer wall is defined as  𝜎3,1. 

Likewise, the perimeter and tension in the membrane network at the inner wall are defined as 

𝑃𝑖𝑛 

𝑃𝑐𝑒𝑙𝑙 

𝑃𝑐𝑒𝑙𝑙 

𝑃𝑜𝑢𝑡 

𝜎3,1 

𝜎1 𝜎2 

𝜎3,2 

𝜎3,2 

𝜎3,1 
a) b) c) 

𝑦 
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𝐿2{(𝑅 − 𝑑), 𝑁} and 𝜎3,2 respectively 1. In the following derivations it is assumed that all growth 

happens slowly enough to neglect inertial effects. By assuming the net of the membrane network 

is relatively spherically symmetric and evenly distributed, a force balance can be performed on the 

one half of the membrane network in the y direction (as shown in figure 2-2 a) yielding: 

Σ𝐹𝑦 =  
𝜋𝑅2

0.5{4𝜋𝑅2}
 𝐿1 𝜎3,1 − 

𝜋(𝑅−𝑑)2

0.5{4𝜋(𝑅−𝑑)2}
 𝐿2 𝜎3,2 = 0.                               (1)  

The magnitude of the Cartesian force resulting from the tension in the membrane network on a 

hemispherical half of the alveolosphere at the inner and outer wall is thus given as: 

F3 =  
1

2
 𝐿1 𝜎3,1 =  

1

2
 𝐿2 𝜎3,2.                                                  (2) 

2.1.2 Outer and Inner Wall 

 It is assumed that the cell walls that make up the outer wall of an alveolosphere are in a 

uniform state of circumferential tension per unit length 𝜎1. As shown in figure 2-2 b, the outer 

membrane also experiences pressure 𝑃𝑜𝑢𝑡 on its outer surface due to compression of the growth 

medium, pressure 𝑃𝑐𝑒𝑙𝑙 on its inner surface due to pressure in the cytoplasm, and the tension per 

unit length 𝜎3,1 on its inner surface from the outer perimeter of the radial membrane network. 

Using equation (2), and accounting for the 3D geometry of the alveolosphere, the following force 

balance in the y direction can be attained: 

Σ𝐹𝑦 = 𝜋𝑅2𝑃𝑐𝑒𝑙𝑙 − 𝜋𝑅2𝑃𝑜𝑢𝑡 − 2𝜋𝑅𝜎1 − 𝐹3 = 0.                                   (3) 

The pressure difference across the outer membrane of the alveolosphere can be defined as: 

𝛿𝑃1 =  𝑃𝑐𝑒𝑙𝑙 − 𝑃𝑜𝑢𝑡 .                                                          (4) 

Thus,  

𝛿𝑃1 =  
2𝜎1

𝑅
+ 

𝐹3

𝜋𝑅2
 .                                                            (5) 

Likewise, it can be assumed that the inner wall is in a state of uniform circumferential 

tension per unit length 𝜎2. As shown in figure 2-2 c, the inner membrane also experiences pressure 

                                                 
1 𝐿1 and 𝐿2 can be approximated by assuming that the inner and outer surfaces of the cells in the wall of the 

alveolosphere form an organized and relatively symmetric shape such as a Goldberg polyhedron. When 𝑁 is small 

(2 < 𝑁 < 12) it may be assumed that the cells take the form of a spherical triangles of equal size. For 𝑁 = 2 the force 

balance must change to reflect lumen formation [11]. 
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𝑃𝑐𝑒𝑙𝑙 on its outer surface due to pressure in the cytoplasm, pressure 𝑃𝑖𝑛 on its inner surface due to 

pressure in the extracellular fluid in the alveolosphere, and the tension per unit length 𝜎3,2 on its 

outer surface from the inner perimeter of the radial membrane network. Again using equation (2), 

and accounting for the 3D geometry of the alveolosphere, the following force balance in the y 

direction can be attained: 

Σ𝐹𝑦 = 𝜋(𝑅 − 𝑑)2𝑃𝑐𝑒𝑙𝑙 − 𝜋(𝑅 − 𝑑)2𝑃𝑜𝑢𝑡 − 2𝜋(𝑅 − 𝑑)𝜎1 + 𝐹3 = 0.                   (6) 

The pressure difference across the inner membrane of the alveolosphere can be defined as: 

𝛿𝑃2 =  𝑃𝑖𝑛 − 𝑃𝑐𝑒𝑙𝑙 .                                                           (7) 

Thus,  

𝛿𝑃2 =  
2𝜎2

(𝑅−𝑑)
−  

𝐹3

𝜋(𝑅−𝑑)2 .                                                     (8) 

 
2.2 Pressure as a Possible Limit to Growth 

 It is assumed that in order to maintain a “wrinkle-free” structure all sections of cell-

membrane must remain under (at least some) tension. Therefore, we can further assume that 

because no wrinkles are observed in a healthy alveolosphere 𝜎1, 𝜎2, and 𝐹3 are all positive. From 

equation (4) we find that in the case that both 𝜎1 and 𝐹3 are both positive, 𝛿𝑃1 must also be positive, 

enforcing that 𝑃𝑐𝑒𝑙𝑙 > 𝑃𝑜𝑢𝑡. This means that that the pressure inside the cell must always be greater 

than the pressure at the outer wall due to the deformation of the growth medium. In the case that 

𝑃𝑜𝑢𝑡 increases with 𝑅 from its initial value, this means that pressure in the cell must also increase. 

If any of the processes within the cell are pressure sensitive this could lead to the halting of 

alveolosphere growth or even cell death.  
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3. Thermodynamics of Alveolospheres 
 
  

 As in many other biological systems, thermodynamics, especially transport processes; are 

critical to the growth and development of alveolospheres. Much of the transport analysis in this 

chapter is based on Dasgupta’s work on lumen growth [11], as the development of alveolospheres 

is governed by many of the same physical phenomena. Section 3.1 details a model for the transport 

processes in alveolospheres and using osmotic pressure, allows for coupling of the structural 

mechanics and thermodynamics. Section 3.2 considers possible energetic limits to the size to 

which alveolospheres can grow.  

 

3.1 Transport Processes 

 As shown in figure 3-1, there are three major transport processes that are considered 

significant across the cell membranes: active ion pumping, flow through passive ion channels, and 

osmotic flow of water. Additionally, leakage flow radially between cells from the central “bubble” 

of ions and water into the growth medium, known as a paracellular leakage, may be significant. It 

is assumed that diffusion across the membrane occurs at a much longer timescale than fluid mixing, 

and thus all concentration gradients except for those across a membrane or between cells can be 

neglected. It is assumed that the fluid which permeates the growth medium outside of the 

alveolosphere is at a uniform ion concentration 𝜌𝑜𝑢𝑡. Inside the cell, it is assumed that the 

cytoplasm is at a uniform ion concentration 𝜌𝑐𝑒𝑙𝑙. Inside the alveolosphere, it is assumed that the 

extracellular fluid is at a uniform concentration 𝜌𝑖𝑛. A radial coordinate 𝑟 is defined as the distance 

from the center of an alveolosphere to a given point.  

Active ion pumping, represented by the molar flux 𝐽𝑖, is the active pumping of ions across  

a cell membrane. It is assumed that the pumps are always on. That is,  𝐽𝑖 is a constant and positive 

molar flux into the cell from the outside and into the alveolosphere center from the cell. Passive 

ion channel flow is represented by the molar fluxes 𝑗𝑖,1 and 𝑗𝑖,2, across the outer and inner 

membrane respectively, and is dependent on the concentration gradient across a membrane. 

Osmotic flow of water is represented by the water volume fluxes 𝐽𝑊,1 and 𝐽𝑊,2 across the outer 

and inner membranes respectively, and is dependent on the hydrostatic and osmotic pressure 
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gradients across a membrane. Paracellular leakage is dependent on each of these phenomena and 

can be determined by considering the chemical potential and pressure gradients between cells.  

 

 
Figure 3-1: Alveolosphere ion concentrations and transport processes. The fluid outside the growth 

medium is at a uniform ion concentration 𝜌𝑜𝑢𝑡, the cytoplasm in the cells is at a uniform ion 

concentration 𝜌𝑐𝑒𝑙𝑙 , and the extracellular fluid inside the alveolosphere is at uniform ion 

concentration 𝜌𝑖𝑛. Active transport of ions across cell membranes is represented by the constant 

molar ion flux 𝐽𝑖. Flow through passive ion channels is represented by the concentration gradient 

dependent fluxes 𝑗𝑖,1and 𝑗𝑖,2 across the outer and inner membranes respectively. Water flow due to 

osmotic and hydrostatic pressure gradients is represented by 𝐽𝑊,1and 𝐽𝑊,2, across the outer and inner 

membranes respectively. 𝑗𝑖,𝑙𝑒𝑎𝑘  and 𝐽𝑊,𝑙𝑒𝑎𝑘 represent the ion and water leakage from the 

alveolosphere to the growth medium via junctions between cells. A radial coordinate 𝑟 is defined as 

the distance radial distance from the center of the alveolosphere.  

3.1.1 Ion Conservation 

 As stated in the introduction to this chapter, the molar ion fluxes 𝑗𝑖,1 and 𝑗𝑖,2  through 

passive ion channels are related to the concentration gradients across the outer and inner 

membranes respectively. More specifically, a flux 𝑗𝑖 through a passive ion channel from one fluid 

at concentration 𝜌𝑎 to another fluid at concentration 𝜌𝑏 is given by the relationship: 

ji = Λ𝑖 𝑘𝐵 𝑇 ln (
𝜌𝑎

𝜌𝑏
) ,                                                      (9) 

𝐽𝑖 

𝐽𝑊,2 

𝑗𝑖,2 

𝜌𝑖𝑛 

𝑟 

𝑗𝑖,𝑙𝑒𝑎𝑘, 𝐽𝑊,𝑙𝑒𝑎𝑘 

𝐽𝑊,1 

𝐽𝑖 

𝑗𝑖,1  
𝜌𝑜𝑢𝑡 

𝜌𝑐𝑒𝑙𝑙 
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where Λ𝑖 is the transport coefficient which is determined by the density of ion channels in the cell 

membrane [11], 𝑘𝐵 is the Boltzmann constant, and  𝑇 is the temperature of the system. It is assumed 

that Λ𝑖, and 𝑇 are constant across the entire alveolosphere.  

First, ion conservation is performed on the cytoplasm within the cells. For simplicity, it is 

assumed that all meaningful flow of ions into and out of the cell occurs across the inner and outer 

membranes. Thus, all leakage from the cellular junctions into the cells can be neglected. Applying 

ion conservation in the cell layer results in the following relationship between time rate of change 

in the number of moles of ions in the cell, 𝑛𝑐𝑒𝑙𝑙, is related to the fluxes 𝐽𝑖, 𝑗𝑖,1, and 𝑗𝑖,2: 

𝑑𝑛𝑐𝑒𝑙𝑙

𝑑𝑡
= 𝐽𝑖(4𝜋𝑅2) − 𝐽𝑖(4𝜋(𝑅 − 𝑑)2) − 𝑗𝑖,1(4𝜋(𝑅2)) + 𝑗𝑖,2(4𝜋(𝑅 − 𝑑)2) .             (10) 

Applying equation (9) to equation (10) results in the relationship: 

𝑑𝑛𝑐𝑒𝑙𝑙

𝑑𝑡
= 4𝜋 {  𝐽𝑖(𝑅2 − (𝑅 − 𝑑)2) +  Λ𝑖 𝑘𝐵 𝑇 [−𝑅2 ln (

𝜌𝑐𝑒𝑙𝑙

𝜌𝑜𝑢𝑡
) + (𝑅 − 𝑑)2 ln (

𝜌𝑖𝑛

𝜌𝑐𝑒𝑙𝑙
)] } .   (11) 

In order to make the solution analytically tractable it will be useful to linearize the logarithmic 

terms for small chemical potential gradients. In order to perform this linearization, it is useful to 

define the concentration difference across the outer and inner membrane respectively as.  

𝛿𝜌1 ≡ 𝜌𝑐𝑒𝑙𝑙 − 𝜌𝑜𝑢𝑡 ,                                                       (12) 

and 

𝛿𝜌2 ≡ 𝜌𝑖𝑛 − 𝜌𝑐𝑒𝑙𝑙 .                                                       (13) 

Thus, the linearized relationship takes the form: 

𝑑𝑛𝑐𝑒𝑙𝑙

𝑑𝑡
= 4𝜋 {  𝐽𝑖(𝑅2 − (𝑅 − 𝑑)2) +  

Λ𝑖 𝑘𝐵 𝑇

𝜌𝑐𝑒𝑙𝑙
 [ − 𝛿𝜌1 𝑅2 + 𝛿𝜌2 (𝑅 − 𝑑)2 ] } .         (14) 

Next, ion conservation can be performed on the extracellular fluid inside the alveolosphere. 

In this case ion leakage is considered as the molar ion flux 𝑗𝑖,𝑙𝑒𝑎𝑘. Applying ion conservation in 

the cell layer results in the following relationship between time rate of change in the number of 

moles of ions in the alveolosphere, 𝑛𝑖𝑛, is related to the fluxes 𝐽𝑖, 𝑗𝑖,2, and 𝑗𝑖,𝑙𝑒𝑎𝑘: 

𝑑𝑛𝑖𝑛

𝑑𝑡
= 𝐽𝑖(4𝜋(𝑅 − 𝑑)2) − 𝑗𝑖,2(4𝜋(𝑅 − 𝑑)2) − 𝐿2 𝑤 𝑗𝑖,𝑙𝑒𝑎𝑘 ,                      (15) 
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where 𝐿2 is the inner perimeter of the cell membrane network (defined in chapter 1) and 𝑤 is the 

width of the junctions between cells. Applying equation (9) to equation (15) and then linearizing 

for small 𝛿𝜌2 results in the relationship: 

𝑑𝑛𝑖𝑛

𝑑𝑡
= 4𝜋(𝑅 − 𝑑)2 [  𝐽𝑖  − Λ𝑖 𝑘𝐵 𝑇

𝛿𝜌2

𝜌𝑐𝑒𝑙𝑙
  ] − 𝐿2 𝑤 𝑗𝑖,𝑙𝑒𝑎𝑘 .                        (16) 

Concentration between cells varies as a function of the radial coordinate 𝑟. In order to 

calculate 𝑗𝑖,𝑙𝑒𝑎𝑘, it is necessary to solve for the form of this concentration 𝜌(𝑟). It can be assumed 

that changes to 𝜌(𝑟) in time are small [11]. The differential form of ion conservation can be applied 

to the junctions between the cells and then linearized for small concentration differences, yielding: 

𝐷𝑖  𝑤
1

𝑟

𝑑

𝑑𝑟
 𝑟

𝑑𝜌(𝑟)

𝑑𝑟
= 2 Λ𝑖 𝑘𝐵 𝑇 (

𝜌(𝑟)

𝜌𝑐𝑒𝑙𝑙
− 1) ,                                         (17) 

where 𝐷𝑖 is the diffusion constant of ions through the junction. The factor of 2 accounts for the 

fact there are cell membranes on either side of the junction. 𝐽𝑖 is neglected in this case, because it 

is not clear which direction active ion pumps would bias. This differential equation can be solved 

analytically resulting in a series of modified Bessel functions [11].  

𝑗𝑖,𝑙𝑒𝑎𝑘 is equal to the flux through the cell junction at the inner membrane (𝑟 = 𝑅 − 𝑑) of 

the alveolosphere, which via Fick’s Law implies:  

 𝑗𝑖,𝑙𝑒𝑎𝑘 = −𝐷𝑖  
𝑑𝜌(𝑟)

𝑑𝑟
|

𝑟=(𝑅−𝑑)

 ,                                               (18) 

which can then be substituted into equation (16) yielding:  

d𝑛𝑖𝑛

dt
= 4𝜋(𝑅 − 𝑑)2 [  𝐽𝑖  − Λ𝑖 𝑘𝐵 𝑇

𝛿𝜌2

𝜌𝑐𝑒𝑙𝑙
  ] + 𝐿2 𝑤 𝐷𝑖  

𝑑𝜌(𝑟)

𝑑𝑟
|

𝑟=(𝑅−𝑑)

  .            (19) 

3.1.2 Volume Conservation 

 The volume in each layer of the alveolosphere is largely dictated by the amount of water 

in that layer. Because water can be considered incompressible, and mass must be conserved, 

volume must also be conserved. The flow of water between different layers of the alveolosphere 

is dictated by hydrostatic and osmotic pressure differences. The volume flux of water 𝐽𝑊,𝑎→𝑏, 

which flows across a water permeable membrane and concentration difference and pressure 

difference 𝛿𝜌𝑎→𝑏 and 𝛿𝑃𝑎→𝑏 respectively is given by the osmotic pressure law: 
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𝐽𝑊,𝑎→𝑏 = −Λ𝑉(𝛿𝑃𝑎→𝑏 −  𝛿Π𝑎→𝑏)  ,                                          (20) 

where Λ𝑉 is the volumetric transport coefficient of water across the membrane (which is dependent 

upon the density of aquaporins in the membrane). It is assumed that  Λ𝑉 is constant across the 

entire alveolosphere.  𝛿Π𝑎→𝑏 is the osmotic pressure difference between the two fluids defined as: 

𝛿Π𝑎→𝑏 = 2 𝑘𝐵 𝑇 𝛿𝜌𝑎→𝑏  ,                                                  (21) 

Where the factor of two accounts for the equal treatment anions and cations.  

Now, volume conservation can be applied to the cell layer of the alveolosphere. For 

simplicity, it is again assumed that all meaningful flow of water into and out of the cell occurs 

across the inner and outer membranes. Thus, all leakage from the cellular junctions into the cells 

can be neglected. Applying volume conservation in the cell layer results in the following 

relationship between time rate of change of volume in the cell, 𝑉𝑐𝑒𝑙𝑙, is related to the fluxes  𝐽𝑊,1, 

and 𝐽𝑊,2: 

𝑑𝑉𝑐𝑒𝑙𝑙

𝑑𝑡
= 𝐽𝑊,1(4𝜋𝑅2) − 𝐽𝑊,2(4𝜋(𝑅 − 𝑑)2) .                                   (22) 

Applying equations (20) and (21) to equation (22) results in the relationship 2: 

 
𝑑𝑉𝑐𝑒𝑙𝑙

𝑑𝑡
= 4𝜋 Λ𝑉 { [ (𝑅 − 𝑑)2𝛿𝑃2 − 𝑅2𝛿𝑃1 ] − 2 𝑘𝐵 𝑇 [ (𝑅 − 𝑑)2𝛿𝜌2 − 𝑅2𝛿𝜌1 ] } .     (23) 

 Next, volume conservation can be applied to the extracellular fluid within the 

alveolosphere. In this case ion leakage is considered as the molar ion flux 𝐽𝑊,𝑙𝑒𝑎𝑘. Applying volume 

conservation in the cell layer results in the following relationship between time rate of change in 

the volume of extracellular fluid in the alveolosphere, 𝑉𝑖𝑛, is related to the fluxes 𝐽𝑊,2 and 𝐽𝑊,𝑙𝑒𝑎𝑘: 

𝑑𝑉𝑖𝑛

𝑑𝑡
= 4𝜋 (𝑅 − 𝑑)2 𝐽𝑊,2 − 𝐿2 𝑤 𝐽𝑊,𝑙𝑒𝑎𝑘 .                                    (24) 

Equation (20) and (21) can then be applied to equation (24) resulting in the relationship: 

𝑑𝑉𝑖𝑛

𝑑𝑡
= 4𝜋  Λ𝑉 (𝑅 − 𝑑)2 (2 𝑘𝐵 𝑇 𝛿𝜌2 −  𝛿𝑃2) − 𝐿2 𝑤 𝐽𝑊,𝑙𝑒𝑎𝑘 .                    (25) 

                                                 
2 In this thesis it is assumed that, across the outer membrane of the alveolosphere, the hydrostatic pressure term in 

the osmotic pressure law is equal to the mechanical pressure 𝛿𝑃1. However, in the pressure seen by the osmotic 

pressure law may be better modeled as a partial pressure found via a hydrogel mixture theory [14].  
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Pressure varies between cells varies as a function of the radial coordinate 𝑟. To calculate 

𝐽𝑊,𝑙𝑒𝑎𝑘, it is necessary to solve for the form of the pressure 𝑃(𝑟). It can be assumed that changes 

to 𝑃(𝑟) in time are small [11]. The differential form of volume conservation can be applied to the 

junctions between the cells yielding: 

𝜅𝑉
1

𝑟

𝑑

𝑑𝑟
 𝑟

𝑑𝑃(𝑟)

𝑑𝑟
= −2Λ𝑉[(𝑃(𝑟) − 𝑃𝑐𝑒𝑙𝑙) − 2 𝑘𝐵 𝑇 (𝜌3(𝑟) − 𝜌𝑐𝑒𝑙𝑙)] ,              (26) 

where 𝜅𝑉 is the Poiseuille coefficient that links pressure gradients to volumetric flow rate. The 

factor of 2 accounts for the fact there are cell membranes on either side of the junction. After 

inputting the solution for 𝜌(𝑟), derived from equation (17), this differential equation can be solved 

analytically resulting in another series of modified Bessel functions [11].  

𝐽𝑊,𝑙𝑒𝑎𝑘 is equal to the flux through the cell junction at the inner membrane (𝑟 = 𝑅 − 𝑑) of 

the alveolosphere, which via Poiseuille’s Law implies:  

𝐽𝑊,𝑙𝑒𝑎𝑘 = −𝜅𝑉  
𝑑𝑃(𝑟)

𝑑𝑟
|

𝑟=(𝑅−𝑑)

 ,                                               (27) 

which can then be substituted into equation (26) yielding:  

𝑑𝑉𝑖𝑛

𝑑𝑡
= 4𝜋  Λ𝑉 (𝑅 − 𝑑)2 [2 𝑘𝐵  𝑇 𝛿𝜌2 −  𝛿𝑃2] + 𝐿2 𝑤 𝜅𝑉  

𝑑𝑃(𝑟)

𝑑𝑟
|

𝑟=(𝑅−𝑑)

 .             (28) 

 

3.2 Possible Energetic Limits  

 From the perspective of the growth medium, it can be assumed that the alveolosphere 

equates to a growing, pressurized spherical defect that deforms the medium around it. At any 

moment the alveolosphere can be described by its outer radius 𝑅, and the pressure which is 

required at its outer surface to deform the growth medium to that radius, 𝑃(𝑅). At a given R, the 

differential rate of work �̇� required to expand the by a volume rate �̇� is given by: 

�̇� = 𝑃(𝑅) ∙ �̇� = 𝑃(𝑅) ∙ (4𝜋𝑅2)
𝑑𝑅

𝑑𝑡
 .                                       (29) 

                                                 
3 As in [11], it is assumed that flow is below the Poiseuille limit due to the short length scales and relatively high 

viscosity between cells.  
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It may be assumed than an alveolosphere has some finite amount of process available to it 

based on the maximum rate it is able to attain and process ATP into usable energy. If the process 

is limited by the cells’ ability to attain and process ATP, it is likely that the available power scales 

with outer surface area. Therefore, we can write the maximum energy �̇�𝑚𝑎𝑥 as a function of the 

surface area 𝐴 as: 

�̇�𝑚𝑎𝑥 = 𝑞𝑚𝑎𝑥 ∙ 𝐴 = 𝑞𝑚𝑎𝑥 ∙ (4𝜋𝑅2) ,                                       (30) 

where 𝑞𝑚𝑎𝑥 is the maximum available energy available per unit surface area of the alveolosphere. 

When the alveolosphere is growing (
𝑑𝑅

𝑑𝑡
> 0) it is necessary that the maximum available energy 

is greater than the work required to expand the alveolosphere to a larger radius (�̇�𝑚𝑎𝑥 > �̇�). From 

equations (29) and (30) this implies: 

𝑞𝑚𝑎𝑥 > 𝑃(𝑅) ∙
𝑑𝑅

𝑑𝑡
 ,                                                      (31) 

It can also be assumed that at a given 𝑅, without power input from the cells, the 

alveolosphere would decrease in size due to osmosis. Therefore, if the assumption is made that 

near some maximum size the velocity due to diffusion and growth interact linearly, there must be 

some minimum 
𝑑𝑅

𝑑𝑡
 to continue growth. As a result, the following must remain true during growth: 

𝑃(𝑅) <  
𝑞𝑚𝑎𝑥

𝑣𝑠ℎ𝑟𝑖𝑛𝑘
 ,                                                          (32) 

where 𝑣𝑠ℎ𝑟𝑖𝑛𝑘 is the minimum velocity required to continue growth. 

 For materials where 𝑃(𝑅) is increasing over any interval, this implies the possible existence 

of an energetic limit which may potentially be used to estimate the maximum size of the 

alveolosphere in especially stiff mediums.  
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4. Large Alveolospheres in Static Equilibrium  
 
  

 As discussed in chapters 1 and 2, it has been observed that the thickness of the cell layer 

 of the alveolosphere remains relatively constant throughout development. This implies that in the 

limit of a large alveolosphere, the thickness of this layer becomes negligible (𝑅 ≫ 𝑑). This allows 

for simplification of the equations derived in chapters 2 and 3 and, as a result, for a simple order 

of magnitude estimation for the equilibrium size of the alveolospheres.  

 

4.1 Simplifications:  

 In the limit of a large alveolosphere (𝑅 ≫ 𝑑), it can be assumed that the radius of the inner 

membrane is approximately equal to the radius of the outer membrane (𝑅 − 𝑑 ≈ 𝑅). Additionally, 

in the limit of a thin cell layer, it can be assumed that the concentration and pressure gradients in 

the cell junctions are approximately constant, yielding:  

𝑑𝜌(𝑟)

𝑑𝑟
|

𝑟=(𝑅−𝑑)

=  
𝑑𝜌(𝑟)

𝑑𝑟
=  

−(𝛿𝜌1+𝛿𝜌2)

𝑑
 ,                                            (33) 

and: 

𝑑𝑃(𝑟)

𝑑𝑟
|

𝑟=(𝑅−𝑑)

=  
𝑑𝑃(𝑟)

𝑑𝑟
=  

−(𝛿𝑃1+𝛿𝑃2)

𝑑
 ,                                            (33) 

These three simplifications can be applied to equations (5), (8), (14), (19), (23), and (28) 

resulting in the following set of equations: 

𝛿𝑃1 + 𝛿𝑃2  =  
2(𝜎1+𝜎2)

𝑅
 ,                                                  (34) 

d𝑛𝑐𝑒𝑙𝑙

dt
= 4𝜋 

Λ𝑖 𝑘𝐵 𝑇

𝜌𝑐𝑒𝑙𝑙
𝑅2 (𝛿𝜌2  −  𝛿𝜌1) ,                                        (35) 

d𝑛𝑖𝑛

dt
= 4𝜋𝑅2 [  𝐽𝑖  − Λ𝑖 𝑘𝐵  𝑇

𝛿𝜌2

𝜌𝑐𝑒𝑙𝑙
  ] − 𝐿2 𝑤 𝐷𝑖  

𝛿𝜌1+𝛿𝜌2

𝑑
  ,                        (36) 

𝑑𝑉𝑐𝑒𝑙𝑙

𝑑𝑡
= 4𝜋 Λ𝑉𝑅2 [ (𝛿𝑃2 − 𝛿𝑃1) − 2 𝑘𝐵 𝑇 ( 𝛿𝜌2 − 𝛿𝜌1) ] ,                      (37) 

𝑑𝑉𝑖𝑛

𝑑𝑡
= 4𝜋  Λ𝑉 𝑅2 [2 𝑘𝐵 𝑇 𝛿𝜌2 −  𝛿𝑃2] − 𝐿2 𝑤 𝜅𝑉  

𝛿𝑃1+𝛿𝑃2

𝑑
 .                      (38) 
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From experiments, it is clear that alveolospheres reach an equilibrium size at which growth 

halts. Using this framework to estimate this equilibrium size will help to evaluate its accuracy. 

Therefore, we assume that at as the alveolosphere grows, it eventually reaches an steady state 

radius 𝑅𝑠. At this equilibrium, it is assumed that all derivatives with respect to time are necessarily 

equal to 0.  

Applying this simplification to equations (35) and (37) reveals that in this limit: 

𝛿𝜌1 = 𝛿𝜌2 ≡ 𝛿𝜌𝑠 ,                                                      (39) 

𝛿𝑃1 = 𝛿𝑃2 ≡ 𝛿𝑃𝑠 ,                                                      (40) 

and through substitution into equation (34),  

𝛿𝑃𝑠  =  
𝜎1+𝜎2

𝑅𝑠
≡  

𝜎𝑠

𝑅𝑠
 ,                                                    (41) 

𝛿𝜌𝑠 and 
𝜎𝑠

𝑅𝑠
 can then be substituted into equations (34), (36), and (38) resulting in the volume and 

ion conservation laws for a large alveolosphere in equilibrium: 

0 = 4𝜋𝑅𝑠
2 [  𝐽𝑖  − Λ𝑖 𝑘𝐵  𝑇

𝛿𝜌𝑠

𝜌𝑐𝑒𝑙𝑙
  ] −

𝐿2 𝑤 𝐷𝑖

𝑑
 𝛿𝜌𝑠   ,                            (42) 

and 

0 = 4𝜋𝑅𝑠
2 Λ𝑉 [2 𝑘𝐵 𝑇 𝛿𝜌𝑠 −  

𝜎𝑠

𝑅𝑠
] −

𝐿2 𝑤 𝜅𝑉

𝑅𝑠 𝑑
 𝜎𝑠 .                             (43) 

 

4.2 Order of Magnitude Estimations:  

 To test the general accuracy of this framework, it is useful to perform an order of magnitude 

estimation for the equilibrium size of alveolosphere (which is readily known from experiments). 

Table 4-1 contains estimations of the values of each of the parameters and sources for those 

estimations.   
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Table 4-1: Estimated values and sources for those values. 

Parameter Quantity Value Source 

𝑅𝑠 Alveolosphere Steady-State Radius ~100 μm MIT GuoLab Experiments 

𝑑 Cell Layer Thickness ~ 15 μm MIT GuoLab Experiments 

𝑤 Cell Junction Width ~1 μm MIT GuoLab Experiments 

𝐿2 Inner Perimeter of Membrane Network ~ 10 mm Estimated From Radius 

𝜎𝑠 Alveolosphere Steady-State Tension ~10 mN/m [15] 

𝐷𝑖  Cell Junction Ion Diffusion Coefficient ~10-10 m2/s [11] 

Λ𝑖  Ion Permeation Constant ~10-9 mol/(J∙m3∙s) [11] 

Λ𝑉 Water Permeation Constant ~10-10 m3/s [11] 

κ𝑉 Cell Junction Poiseuille Coefficient ~10-22 m3/Pa∙s [11], Poiseuille’s Law 

𝑘𝐵 Boltzmann Constant 8.314 J/mol Boltzmann Constant 

𝑇 System Temperature 310 K Body Temperature 

𝜌𝑐𝑒𝑙𝑙  Cell Ion Concentration ~1 mM [11] 

𝛿𝜌𝑖 Ion Balance Concentration ~1mM [11], given separately 

 

Using these values, the coefficients Λ𝑖 𝑘𝐵  𝑇
4𝜋𝑅𝑠

2

𝜌𝑐𝑒𝑙𝑙
 and 

𝐿2 𝑤 𝐷𝑖

𝑑
 can be compared. It becomes 

clear that the ion leakage term is roughly 4 orders of magnitude smaller and therefore can be 

neglected. This simplifies equation (42) further as: 

𝛿𝜌𝑠 =  
𝑗𝑖 𝜌𝑐𝑒𝑙𝑙

Λ𝑖 𝑘𝐵 𝑇
 ≡ 𝛿𝜌𝑖 ,                                                  (44) 

Similarly, the coefficients 4𝜋 𝑅𝑠 Λ𝑉 and 
𝐿2 𝑤 𝜅𝑉

𝑅𝑠 𝑑
 can be compared, after which it becomes 

evident that the water leakage term is roughly 9 orders of magnitude smaller and therefore can be 

neglected. This simplifies equation (43) further resulting in: 

𝑅𝑠 =  
𝜎𝑠

2 𝑘𝐵 𝑇 𝛿𝜌𝑖
 .                                                        (45) 

It is important to note that at this stage, there are significant discrepancies with [11]. Firstly, 

one would expect an increase in size from increased pumping efficiency. This is seen in the order 
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of steady state approximations in [11]. It is also important to note that the ranges of values in [11] 

show some discrepancy with one another, which is understandable, as estimation of parameters is 

always a challenge in biological systems. These two discrepancies may be related as the values 

chosen to justify neglecting the leakage terms may have been flawed themselves.  

That said, the order of magnitude estimation for the size of the alveolospheres is 𝑅𝑠 ≈ 1900 

μm. This is about one order of magnitude of the observed value of 50 to 150 μm. However, it is 

important to note that slightly changing parameters can give a large range of 𝑅𝑠, anywhere from 

10 μm to 1 cm. The order of magnitude estimation does not demonstrate that this framework is a 

polished or well-tuned theory for the development of alveolospheres. However, because the range 

is inclusive of the values of an actual alveolosphere, it demonstrates that with better estimations 

of parameters, and by extension, better application (or lack thereof) of simplifying assumptions, 

this framework may allow for a much more robust theory of alveolosphere development.  
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5. A Path Forward  
 
  

The framework described in chapters 1-4 contains the bare bones equations and 

assumptions that may be reconfigured to develop a more robust theory of alveolosphere 

development, and to identify and model possible causes for disease and dysfunction in alveoli. To 

truly understand how alveolospheres grow and develop and what can go wrong during that process 

there are two main tasks that must be accomplished. First, a dynamic model which tracks 

alveolospheres from initial lumen formation to equilibrium size must be developed. Next, 

experiments must be performed to verify the relevance of parameters and assumptions chosen in 

this model. A final model should be able to predict, not only, the growth and equilibrium size of a 

healthy alveolosphere, but also changes in parameters that result in modes of failure seen in reality.  

 

5.1 Dynamics of Alveolospheres:  

In principle, there are two primary ways in which dynamics can be coupled into this 

framework. The first is through the volume and ion conservation laws, and the second is through 

the active membrane tension.  

In a dynamic case, 
𝑑𝑉

𝑑𝑡
 and 

𝑑𝑛

𝑑𝑡
 are no longer set to zero, but instead enter into the 

conservation laws as 4𝜋𝑅2 𝑑𝑅

𝑑𝑡
 and 

4

3
𝜋

𝑑(𝜌𝑅3)

𝑑𝑡
 respectively. These forms are highly non-linear and 

mean that finding a solution to the partial differential equations which result from the conservation 

laws will likely require numerical methods.   

Although dynamics do not affect equilibrium force balance directly - because growth 

occurs on a timescale of days and the assumption can be made that the system is quasi-static from 

an inertial perspective - the form of 𝜎 in a membrane itself time dependent due to the presence of 

active actin fibers (as can be seen in figure 1-1). In [11], the tension in an active gel cortex is given 

as:  

𝜎(𝑡) =  𝜎0 [1 + 𝜏 (
1

𝑅(𝑡)

𝑑𝑅(𝑡)

𝑑𝑡
)],                                             (46) 

where 𝜏 is the characteristic timescale of the interaction between the viscous and elastic effects in 

the membrane and 𝜎0 is the steady state tension in the membrane. It may also be important to 

include time dependent effects from the growth medium. However, to try to extract the mechanics 
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of an alveolosphere at the most basic level it may be advantageous to also neglect viscoelastic and 

poroelastic effects in the growth medium, under the assumption that their timescales are relatively 

short.  

 During the beginning of growth, it may make the most sense to begin with the lumen model 

from [11] and then switch to this framework when the cell divides and 𝑁 > 2. The cell division 

itself is something that will most definitely also be highly time dependent and should have an 

extremely significant effect on the trajectory of alveolosphere growth. For instance, equation (46) 

assumes a single piece of membrane that is being stretched, but more membrane will be added as 

the cells which make up an alveolospheres wall divide.  

 All in all, there is a lot of work which needs to be done, and a lot of thought that needs to 

be put into developing a robust dynamic alveolosphere model, but this framework along with the 

experiments outlined in this chapter should provide a strong starting point.  

5.2 Proposed Experiments:  

British statistician, George Box declared, in his ubiquitous quote, “All models are wrong: 

some are useful.” In order to verify the significance of the parameters and assumptions in this 

framework, and eventually the robustness and accuracy of a dynamic alveolosphere model, 

experiments must be performed which isolate said parameters and assumptions. It is often easy to 

detach oneself from reality when exploring a problem mathematically, but at the end of the day a 

model ceases to be “useful” when it is not grounded in experimentation. The following is a short 

list of possible experiments which may give insight into the relevance of certain parameters and 

assumptions:  

1. Disrupt active ion pumps. Using inhibitors to disrupt the function of active pumps 

would decrease 𝐽𝑖, and give insight into its effect on alveolosphere development. 

2. Decrease adhesion between cells. Decreasing adhesion between cells would widen the 

junctions gap between cells, increasing 𝑤, and by extension increasing 𝐽𝑖,𝑙𝑒𝑎𝑘. This 

would give insight into the importance of leakage. 

3. Increase hydrostatic pressure. Attempting to grow alveolospheres under higher 

pressure conditions may give insight into whether pressure serves as a limit to growth.  

4. Increase external ion concentration. By increasing 𝜌𝑜𝑢𝑡 and observing the response of 

an alveolosphere, insight may be gained into the role of 𝑗𝑖 during development. 
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5. Decrease available ATP. By progressively lowering the concentration of ATP outside 

the alveolosphere (and by extension the rate at which it can diffuse into the cells) it 

may be possible to determine if the energy limit is far above or below any other limits 

to the system.  

6. Measure relevant quantities. To have any chance of accurately and precisely predicting 

alveolosphere behavior, the relevant material constants and cell dimensions must be 

well characterized.    
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6. Summary and Conclusion  
 
  

 Alveolospheres are PSC or AdC derived organoids which resemble alveoli in function. 

They have a unique, balloon-like structure, the mechanics of which is not thoroughly understood. 

Cells derived from diseased PSCs fail to create this complex structure. Therefore, understanding 

the development and growth of alveolospheres may give insight into developing treatments or 

cures for lung diseases. Developing a mathematical framework for understanding alveolosphere 

growth and development requires investigation of both their structure and thermodynamics.  

In chapter 2, equilibrium force balance is applied to three sub-systems of alveolospheres: 

the cell junction membrane matrix, the outer membrane, and the inner membrane. These 

mechanical equilibrium equations lead to two equations ((5) and (8)) which relate the tensions in 

each of these sections (𝐹3, 𝜎1, and 𝜎2 respectively) to the pressure drops across the outer and inner 

membrane (𝛿𝑃1 and 𝛿𝑃2 respectively). Pressure is also considered as a potential limit to 

alveolosphere growth.  

In chapter 3, ion conservation and volume conservation are applied to both cytoplasm in 

the cell layer and extracellular fluid inside the alveolosphere. This results in a set of 4 equations 

((14), (19), (23), and (28)) which relate the pressures across the outer and inner membrane, the 

concentration differences across the outer and inner membrane  (𝛿𝜌1 and 𝛿𝜌2 respectively), and 

the active pump ion flux (𝐽𝑖). Energetic arguments are also made to argue the existence of a power 

limited maximum alveolosphere size based on increasing pressure from the growth medium.  

In chapter 4, additional simplifying assumptions are applied to this framework of equations 

for the limit of a large, thin-walled alveolosphere in steady-state equilibrium. Estimated values for 

relevant parameters are then inputted into the resulting set of simplified equations to attain an order 

of magnitude estimation for the maximum equilibrium size of an alveolosphere of 1900 μm. This 

estimation is an order of magnitude large than the observed radius of alveolospheres of 50 to 150 

μm. However, by modulating parameters slightly away from what are assumed to be relatively 

middle of the road values, this equilibrium estimation can range from 10 μm to 1 cm. The observed 

range is contained within these margins, which implies that this mathematical framework shows 

some promise as a basis for a more polished theory of alveolosphere development.  
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Finally, chapter 5 describes the next steps in creating such a robust theory. It first describes 

how the framework might be adapted to create a dynamic model of alveolosphere development. 

Time dependence arises from within the conservation laws, and due to the active actin filaments 

in the epithelial cells which make up an alveolosphere. Next, it describes a set of experiments 

which may help identify which parameters and assumptions from this framework are relevant to 

the reality of alveolosphere development.  

The complex tension-dominated structure of alveolospheres showcases the mechanics 

which govern its development. The biology of alveolospheres cannot be separated from the set of 

fundamental physical laws which govern its mechanics. Therefore, a mechanical model is not just 

an exercise for nosey mechanicians, but is fundamental to fully understanding the biology of the 

lungs. Like two pieces of a puzzle, they are so strongly coupled that one cannot be understood 

without the other.  

Derived from basic physical principals, this thesis offers a loose, yet thorough framework 

which can be used as a tool to develop a more accurate and robust theory for the growth and 

development of alveolospheres. Crude, order of magnitude estimations for the equilibrium radius 

of an alveolosphere made using this framework already demonstrate potential by successfully 

bounding the experimentally observed radius. This framework may serve as a guide for careful 

experimentation and measurement of relevant parameters, and as a basis for a more polished model 

of alveolosphere growth and development.  
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