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ABSTRACT

In this thesis, a linear-plus-deadband controller is implemented on an
average system frequency model of a power system, under normal mode oper-
ation, and where only unknown-but-bounded disturbances of the loads are
considered. The deadband is added to both a conventional AGC as well as

a full state feedback control ; its design is based on set theoretic re-
lations which are then translated to relations between bounding ellipsoids.

Computational problems are solved by adding fictitious noise to the model
during the design process. This additional degree of freedom results in
sizeable savings in control signals. The deviations of frequency and tie-
line flow between areas are not significantly increased as compared to
the case where no deadband is used. Moreover, slightly better results are
obtained for the full state feedback deadband controller.

THESIS SUPERVISOR: Nils R. Sandell Jr.

TITLE: Assistant Professor of Electrical Engineering and
Computer Science



ACKNOWLEDGEMENT

I wish to express my gratitude to my thesis supervisor Professor
Nils R. Sandell Jr. His guidance as well as his constant and friendly
encouragement has been invaluable.

I am also indebted to Professor Fred C. Schweppe for initiating me
in this research and for his suggestions in the early phase of the work.

Special thanks go to Mrs. Myra Sbarounis and Mr. Arthur Giordani for
their efficient preparation of this manuscript.

I would also like to thank Daniel Orlhac for his support.

Finally, I am grateful to my parents who, in many ways, made it pos-
sible for me to study in this place.



TABLE OF CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
CHAPTER 1: INTRODUCTION
CHAPTER 2: Average System Frequency Model
2.1: Introduction
2.2: General Description
2.2.1: Power Plants
2.2.2: Transmission Network
2.2.3: Loads
2.3: Average System Frequency Model
2.3.1: Power Plants
2.3.2: Transmission Network
2.4: Model of an Interconnected System: A Two-areas-.
Three-Sources Example
CHAPTER 3: Control Strategy
3.1: Introduction
3.2: Linear-Plus-Deadband Control
3.2.1: Problem Statement
3.2.2: Set theoretic Relations
3.2.3: Bounding Ellipsoids

3.3: A Two-dimensional Example
-4 -

10

10

14

17

18

20

22

31

31

32

32

35

39

45



CHAPTER 4: Design Example and Results 50

4.1: Introduction 50

4.2: Specific test System 50

4.2.1: Continuous time model 50

4.2.2: Discrete time model 57

4.2.3: Disturbance bound 6l

4,3: Conventional AGC 62

4.3.1: General Description 62

4.3.2: Design 63

4,3.3: Simulations 71

4.4: Full State Feedback Optimal Controller 85

4.4.1: General Description 85

4.4.2: Design 86

4.4.3: Simulations 88

CHAPTER 5: Conclusion and Suggestions for future research 107
APPENDIX 109
REFERENCES 117



CHAPTER 1

INTRODUCTION

The oldest and most widely used power system central control is
Automatic Generation Control (AGC). It is essentially a feedback of tie-
line interchange power and system frequency which, integrated, provides
an appropriate supplementary control signal to power plant governors

when a mismatch between generation and demand occurs [1].

More sophisticated AGC laws, using modern control theory techniques,
have been investigated during the past few years. Most of them, inspired
by the success of the Optimal Linear Regulator, have called for a linear
feedback of all the state variables of the system while attempting to

minimize some quadratic cost function. Examples of these are given in

[2,3].

Also, a refinement of AGC, the "Error Adaptive Control Computer"
[4], has reduced inefficient control commands sent to power houses and

is presently often used.

The purpose of all those ideas was two fold. On one hand, the goal
was to improve the normal AGC function of keeping frequency and tie-line
power flow within scheduled limits by feeding back additional variables,

resulting therefore in a "smarter" control signal. On the other hand, it
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was also useful to reduce wear and tear on control equipment (turbine
valves) and the inefficiency of continuously pulsing machines by ignor-
ing random disturbances which would anyway be eliminated by the natural
damping of the power system. Moreover, it has been observed that in
several instances conventional AGC needlessly pulses machines up and down

[o1.

From another point of view, the difference in magnitude of time
constants associated with different elements of a power system suggests
different dynamic models. And, in connection with AGC, predominant interest
should be given to the slower speed dynamics by ignoring the much faster
individual intermachine oscillations. The "Average System Frequency" concept
is one such way to approach to problem and has been already presented in

several instances [5,6].

This thesis proposes to investigate a control strategy based on the
ideas presented above. The motivation for that is the ultimate aim of
designing an average frequency trajectory controller which would have, in

the normal mode of system behavior, the desired performance of:

- following the long term changes in demand while ignoring small rapid
variations.

* keeping frequency (and time) within limits.

- keeping tie-line flows (and energy) within limits about schedule.

+ causing a minimum number of changes in turbine valve positions.



N - .
A brief outline of the different chapters of the thesis is presented

below:

In chapter 2, the average system frequency model is presented and
derived for a specific test example of a two areas - three generators

interconnected power system.

Chapter 3 presents the control strategy to be used. The derivation
involves the use of different sets and it is found useful, for compu-
tational purposes, to derive ellipsoidal bounds to those sets. A simple
two dimensional example is given to illustrate the problem before going
to the more abstract geometry of the fifteen dimensional test system

modeled in chapter 2.

In chapter 4, & hypothetical set of data is chosen for the two areas-
three sources example of chapter 2 and the resulting continuous time model
is discretized. Then a linear plus deadband control is designed, first
using conventional AGC for the linear feedback, and second resorting to
optimal control theory for a full state feedback. In both cases simulations

are run and results discussed.

Chapter 5 draws a general conclusion to the thesis and provides a few

suggestions for future research.



CHAPTER 2

AVERAGE SYSTEM FREQUENCY MODEL

2.1 Introduction

In general, one can distinguish three parts in a power system: the
power plants, the transmission network and the loads. Also, each one of
these parts could lend itself to quite detailed mathematical models involv-
ing a large number of nonlinear differential equations. But, if a model
is to be of any practical use, it has to be simplified in most of the
cases to retain only the significant features relative to the problem at

hand.

The purpose of this chapter is therefore to obtain a state variable
model, i.e. first order differential equations, of an interconnected power
system, making it possible to use modern control techniques. Moreover,
this model should retain only the slow speed dynamics of the system since
the rapid intermachine oscillations are not the concern of the control
problem under study here. Finally, in view of the control strategy which

will be used later, a linear and time-invariant model is also sought.

It is with those requirements in mind that one can proceed in

developping the system model.
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2.2 General Description

2.2.1 Power Plants

Different energy sources can be used to feed a power system. The
only one to be considered here is the fossil-fuel steam boiler source. A
common simplification is to neglect the boiler dynamics which are much
slower than thoge Of the remaining parts of the system but to include the
boiler effects on the reheats. As a result, the turbine-governor model
presented by Chan, Dunlop and Schweppe [7] is chosen to represent the in-
cremental mechanical dynamics of the power plants. Mechanical deadbands
are neglected and the bloc digram is shown in figure 2.1. The different

parameters, for the kth power plant are:

Rk : droop of the speed governor

Ts,k: time constant of the speed control
Tv,k: time constant of the steam bowl
Tl,k: time constant of the first reheat
Tz,k: time constant of the second reheat
max,k’Mmin,k upper and lower margin of power due to valve limits

Afk(t): frequency deviation from 1 p.u (60 c/s)

APM k(t): total change (in p.u) in mechanical output power.
r

Also, the equivalent representation of the turbine-steam bowl model

suggested by Grandez-Gomez [5] will be used. The model is shown in figure
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2.2 along with the expressions for the new gains.

On the electrical side, the generator will be considered as a
voltage source of constant magnitude. This is also common practice since
the voltage regulator/excitor loop is much faster than the mechanical

turbine loop.

Finally, the mechanical and electrical models are connected by the

. . h ;
usual swing eguations, which, for the Kt power plant, is:

abf,
Moge - %Pyx " %Pex T Ppox

. ; . - h
where Mk is the inertia coefficient of the kt generator

th
APM K is the change in mechanical power delivered by the k

turbine (per unit)

th
APE k(t) is the change in electrical output power of the k
I

generator (per unit)

P k(t)=K

£ (t) is the damping power with K , the damping coef-
D, k D/k

D,k

ficient.

g ; ; th
Using the parameters of figures 2.1 and 2.2 the equationsof the k

power plant can now be written:

=_.é“. _k+ Aw (2.1)
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Figure 2-2: Egquivalent Turbine-Steam Bowl Model
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* %*
< w <
A‘wk Mmin,k A Mmax,k
by, = M A > 2
k max , k k = Mmax,k (2.2)
A *
ik, J e S Miin, k
dAPM i
’ !r — - =
7 = dj,k (Cj,kAwk PM,j,k) 3j 1,2,3
(2.3)
3
AP = E , P, .
M,k = M,J,k (2.4)
dAfk
Mot = 2Py x T PPex T Ppk (2.5)

And those will have to be combined with the equations of the trans-

mission network to be developped next.

2.3.2. Transmission network:

In general, the real power flowing into a transmission line from bus

i towards bus m can be expressed as:

% —
P, = Re v. I,
im i "im s

where, in phasor notation,
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s +304 . . . :
Y., =y, & Vim is the i-m line admittance

im im
— 'j6i . ) .
v, = Vie is the conjugate of voltage at bus 1
—im is the current in the i-m line

(0]

-85 381 36m\ 38im
then, P, = R v.e Y, vV.e -V e e
im i im i m

2 304im J (eim'ﬁi""sm)
Re Y. V, e -Y, V.V e
im i imim

]

2
Y.V, 0, -v B, -6, + ¢
Vg BO8 Ny BV, Yy 0B ( im 61 m

It is therefore to linearize and simplify this equation that the

following assumptions are now made. Those are also of standard practice

when a linear model is needed to replace a more exact load flow study [8].

Assume, first, the transmission lines to be modeled by a pure
reactance, thus, neglecting in effect the real power loss in the transmis-

i
sion network. As a result eim = -3 rad. and we get:

P, =Y,V V sin (§, - 6 )
im im i 'm i m
Second, assume the magnitudes of the voltages to be all aproximately

equal to a same value V and we get:



2
P. =Y.V sin(6, - § )
im im i m

Finally, assume the differences in phase angles § to be small enough

so that

_ 2
Pim = YimV (Si - cSm) (2.6)

and now, in a network containing Nt lines and Nb busses, a linear

relationship between the line flows and the bus powers can be found [8].

Let P be the N, -vector of line flows P,
—t t im

be the NtXNt diagonal matrix of line admittances Yim

o ‘L|<

be the (Nb—l)-vector of phase angles with respect to the
reference bus

be the Ntx (Nb-l) reduced bus incidence matrix

U

be the (Nb-l)-vector of bus powers, omitting the reference
bus

The elements a,. of A are:
ij —_r

aij=+l if transmission line i is connected to bus j and direct-
ed away from the bus.
=-1 if transmission line i is connected to bus j and direct-

ed towards the bus.

=0 if transmission line i is not connected to bus jJ

From equation (2.6)

8 (2.7
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On the other hand, conservation of power yields:

P, = AT P

- - -t

tituti E
Substituting for P

2 T

-V WL AlE

If the network has no isolated buses and since a reference bus has been

used, it can be shown [ 8 ] that B = [A? Yy A ] has an inverse
= = =t =z
Then
1 -1
é" 25 Bb
v
and p =y A [ay alle
-t -t -r —r —t-x b

Since the relations above are linear, they are aslo valid for

deviations from nominal values. Thus:

s -1
A [A al Agb (2.8)

A
S

and this will be connected to the power plant equations in section 2.3.

A model for the loads is still needed to complete the picture.

2.2.3 Loads

In general, transient characteristics of the load at a bus k, are

a function of fk’ Vk fk Vk' But since a slow speed dynamics model of
r r

the system will be set up, "constant" power loads will be assumed so that,



if bus k is disturbed

PL,k(t) =P k(nominal) + AP (t)

L, L,k

where no explicit dependance on frequency or voltage is retained.

Now the issue of modeling load disturbances AP k(t) is a very

L,
delicate one, since those actually depend on a great number of factors
(location, time, customers, accidents, etc...) This is why, in most of

the simulations, simple test models are used, such as steps, ramps or

completely random disturbances.

To be able to set up a simple regulator problem, load disturbances
are chosen as "unbiased uncertainties". Possible models would be a white
Gaussian random process or also a completely unknown-but-bounded in
magnitude function[l0]. Due to the structure of the control strategy
which will be used later the latter model is chosen for APL k(t).

r

2.3 Average System Frequency Model

The average system frequency concept has often been used to study

the slow speed dynamics of an interconnected power system [5].

AP , P as above, and

Using the same definitions for M , AP .k
r

k M, k' E,k

for a system containing Ng generators, let:



— TG =

Mk be the total inertia coefficient of the system

1
“ 1"
M«J i Q
'._l

AP (t)=

M AP k(t) be the total change in mechanical input power

1 M

kil

g
Ap__(t)= :E: Ap (t) be the total change in electrical output power
ET k=1 E,k
N
)
Prm(t)= E§; PD,k(t) be the total damping power

The definition of the average system frequency deviation is

N

;Mkﬂfk (t)

Af (t) = (2.9)
av

M
T

It is the weighted average of the individual frequency deviations
of the system's generators, with the inertia coefficients as weighting

factors.

Also, in view of equations (2.5) and (2.9) one gets the relation:

dAfav(t)
M ——= APMT(t) - APET(t) - P

(t) (2.10)
T at

DT

which does not contain, so far, any additional approximation.

Now, an average system frequency model can be obtained by neglect-
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ing the effects of (Afk-Afav) throughout the power system.

2.3.1 Power Plants

; t § i .
The mechanical power output of the k h turbine APM x 1s a function

of governor action and therefore of Af If, in the governor-turbine

K
model, Afk is replaced by Af , the implicit assumption is that APM x Dow

av r
depends only on Af o One can argue, in support of this, that,if the

a

disturbances are such that the system remairs in synchronism, and the trans-
mission system is not too weak [6], (Afk-Afav) is a high frequency oscil-
latory quantity relative to the large time constants of the turbine, and

tends to be filtered out as a result.

A similar argument holds for P

D,k
Showing explicitely the dependance on Afav, Equation (2.10) becomes,

using the above assumptions,

dAfav(t)
—_— = AP Af (t)] - Ap__(t) - P Af (& 2.11)
MT MT[ av( )1 ET( ) - [ av( )] {

dt
As for pET(t), the total electrical power output of all the generators,
since we are neglecting the losses in the transmission network, it depends
on the total electric power delivered to the loads PLT(t); and here again,

it is "physically reasonable" to assume dependance on the average frequency

only.



As a result,

. A t
single one for Af and equations (2.1) to (2.5) become, for the k
av

power plant:

the N
g

- P &

swing equations are reduced to an approximate

h

dAw Af
*
k. - Tl 2 4 by (2.12)
dt s,k Rt
A * " A *
wk Mmin 'k Wk Mmax 'k
A Awe > (2.13)
Wy ™3 Man . x Wy SN y
A *
Mmin,k wk - Mmin,k
P
* .k A A 1,2,3 (2.14)
a3 Sy (Cj,k " PMj,k) 3= s ’
3
Ap = AP . (2.15)
M,k =1 Mj.k
dAfav 1
. oo - = A 2.16)
” ” APMT [Afav(t)] APET(t) B [ fav(t)] (

T
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This average system frequency model for the power plants, coupled
to a nonlinear AC load flow solution for the transmission network, has
been tested (see [5]) and shown to be an effective model for slow speed
system dynamics. However, in view of the present task of putting together
a linear model, the next section will develop a linear load flow study,

considering real power flows only.

2.3.3 Transmission Network

Substracting (2.10) from (2.5) one gets the following relation:

M

d
Moge B AL = 8Py BPe ik Pp ok W (AP ~LP o Py
On the grounds of the same assumptions used already one can argue
(see appendix D of [6]) that, integrated over a "period" of oscillation
of (Afk—Afav), the left hand side vanishes. But the expression on the
right hand side is much "slower" than (Afk—Afav} and can be therefore

considered as constant over the period of integration. In other words, to

a good approximation:

Ap r\’AP P Mk Ap Ap P 1 (2.17)
E,k Mk Dk Mg [Py PEr Ppp )

Now, for every bus of the transmission network described in section

2.2.2 the change in bus power APbi is equal to the difference in changes
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of electric power AP
E,i

generated at that bus and load APL 5 connected

r

to the bus.

So

Substituting (2.17) for APE i
r

M

i
APb,i = APM,i - PD'i - MT [ APMT - APET - PDT 1 - APL’i

Ny,
APL, = - AP, = BPrg
and
My
A = A - - — [ AP - AP - - Ap
Pb,l PM,l D,1 MT [ MT LT ﬂUr ] o

So that, in view of (2.8), changes in tie-line power flows can be

expressed as a function of changes in mechanical and load powers.

2.4 Model of an Interconnected System - A Two Areas - Three Sources

Example

The different parts studied above can now be assembled to construct a
linear, state variable, average system frequency model of an intercon-

nected system. The working example will be that shown in fig. 2.3.
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BUS 1

AREA 1

AREA 2

BUS 3

Lg

Figure 2-3

Two Areas-Three Sources Interconnection
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To obtain a totally linear model, the valves of the power plant
turbines are assumed never to hit their limits. Once the control design
is carried out, one can go back and check the validity of this assumption.
Note that only normal mode operation of the system with no emergency

type disturbances occuring is under study here.

Damping power will also be neglected for simplicity.

With those changes in effect, equations (2.12) to (2.16) show that
each power plant requires four states of its own. All power plants share
a common fifth state: the average frequency deviation. Two states, the
integral of average frequency deviationand the integral of tie-line
power interchange between the two areas are added to the model, in view

of the AGC action which will be used later.

Tie-line power interchange is

BP ;o = APy, + APy 4

Using the developments of sections 2.2.2 and 2.3.2, with

Ap, = OPy, I A kT
y 0
AP13 13 -
Y
23
AP23
- 2 You
24
Y
34
| 8Pq | i -J




w G

and bus #4 as the reference bus, so that

—_— & - i = B
ABb B APJol . B
Apb2
| APy3 ]
-
A 1 0 0 0

APtle = [ cl c2 c3 ] f_b
_ M

= C AP - — [ AP -

1 i M1 M ( MT

_ M,

+ C2 APMZ - HT— (APMT -
_ u,

t Cqy LAMB 'LE (APM'I‘ -

1 273 M1

APM2

APMB
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3
S en
= i
where ai=ci-l——— H i=1, 2, 3
M'I'
3
e,
Q = o =1 o
4
M'I‘

Remark: the result should be independant of the choice of bus reference
since network losses are neglected and a linear model is used.
Finally, the control signals act directly on the governor servo, as

shown in fig. 2-4 and equation 2.12 becomes, when a control is applied:

dAw 1 Af u
at T - *hw |+ '-r£
Rk s,k

The model can now written in the form

x(t) = A x(t) + u(t) + G A4 P, (t)

B
=
where A, Ec and Ec are given in figure 2-5 and the physical interpretation

of the state variables is given in figure 2-6.

Note: There has been increasing interest in the idea of aggregation in
connection with the study of large scale systems (e.g. [15]). In
relation to that, the model developped in this chapter can be
considered as an approximate aggregation, based, though, on physical

assumptions and approximations.
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DROOP 5 SERVO BOWL
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|
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1
APya (1)
M,k
K > ™
i,k
> K
2,k
1-Ki.k 1-K2 .k
(1+T"ks) (f+T2’ks)

; ; th :
Figure 2-4 Linear Average System Frequency Model of the k  Power Plant with Control Signal Applied
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Linear Model of the Interconnected System
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®y = PPy

X, = APMZ,l Xq + X, + Xy = APMl
x3 = APMB,l

X, = Awl

Xg = APMI,Z

X, = APM2,2 Xg + Xe + X, = APM2
%, = APy o

Xg = sz

X9 = APy

%10 = Py2,3 Xg + Xy + Xy = APy
X177 DPus,3

X1 = Aw3

X137 Ay

Xiq4 T Aﬁav:f,ﬁfav

%15 = f APpje = f (bpy, + APy 3)

APMT =X, + X, + X, + X+ X + X, + Xy + X, + X

Figure 2.6:

Physical Interpretation of State Variables



CHAPTER 3

CONTROL STRATEGY

3.1 Introduction

In the modeling process of the previous chapter, individual inter-
machine oscillations were ignored by using the average system frequency
concept , This chapter concerns itself with the problem of reducing the
number of signals sent to power plants and therefore causing a minimum
number of changes in turbine valve positions. The motivation for this is
of course the resulting reduction in wear and tear on control equipment
and, moreover, the increase in efficiency in the operation of the turbine.
The problem is dealt with by using the linear-plus-deadband control

concept [3.,11].

Because of the sampled data nature of AGC, as presently used in the
power industry, it will be found convenient, in the next chapter to
convert the continuous time model of the system into a discrete time model
before going further into the design of a controller. Therefore, the
discussion in the present chapter will be based on a general discrete time

linear system.

Moreover, in view of the aim of finding a deadband set for control
action, space sets containing the state variables will be considered rather

than assuming a probabilistic structure.

- 31 -



- 32 -

This is why the load disturbances were chosen, is section 2.2, to be only

set constrained.

In the sequel, the control problem will be stated and the logic
behind the strategy will be first presented with set theoretic relations.
Then, eguations giving more manageable bounds to these sets will be
developed to match the working model assembled in Section 2.4. Finally a
simple numerical two dimensional example will illustrate the different

steps of the design procedure.

3.2 Linear - Plus - Deadband Control

3.2.1 Problem Statement

Consider the linear, time invariant system given in discrete time

by:

x(nA+A) ® x(nA) + B u(nd) + G w (nd) (3.1)

y(nd) =

|z

x(nA) (3.2)

where x(nd) is the Ns—dimensional state vector.
H(nA) is the Nc-dimensicnal control vector
w(ndA) is the Nz-dimensional disturbance vector
y(nA) is the N_-dimensional output vector

0

2', B, G, H are constant matrices of proper dimensions.
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Let the disturbances E(nﬂ) be unknown-but-bounded:

Ny
w(nA)e @ ,  is in R (3.3)
- w' W

Find a control of the form:

u(nd) =

|o

if  x(nd) € Q
K x(md) if  x(nd) £ 9 (3.4)

N
where QC is a deadband set in R s’ and such that

y(nd) € Qy Van:, = 0,160

N
where Qy is a specification set in R 0.

In other words, the control law is such that, if, at time nfA, the
state lies within a certain deadband or switching region Qc no control
action is taken and if, due to the disturbances of the loads, the state
has drifted out of Qc a control signal proportional to the state is fed

back.

The problem is to design the linear feedback gain K and the deadband
set Qc such that, with a minimum number of control signals the vector of
outputs y we are interested in keeping within specified limits about
schedule (fregquency, tie line flows), does indeed remain within those
limits.

At this point, and in order to reconnect the control problem formula-

tion with the task at hand of controlling an interconnected power system,
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one can note the following.

Several approaches could be taken to design the linear part of the
control law (3.4). These include conventional automatic generation control
or, alternatively, a full state feedback linear regulator which minimizes
some quadratic cost function using optimal control theory. However, in
both cases, the closed loop should be of course stable. From Schweppe's
discussion [10] of dynamic systems driven by an unknown-but-bounded

disturbance, and for a time-invariant stable system given by:

_>5_(nA+A) =9 x(nd) + G _v\i(nA) , w(nd) € ﬂw

the steady-state value of E(nﬂ) will itself be constrained to some
constant set Qx(ss) which depends on the dynamics of the system i.e.

the transition matrix ®, as well as on the "size" of Qw.

Oon the other hand, in the model derived in chapter 2, the regulated
variables, i.e. the frequency, the integral of frequency (time) , and
the area interchange of energy, are included in the state vector so that

the matrix H of equation (3.2) is of the form:

E=101]

where I is the NO X N0 identity matrix.

on the grounds of those remarks, the control problem can be re-

stated roughly in the following manner:
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For the system given by (3.1), (3.2) and (3.3), find a control of

the form given by (3.4) such that:

N
i) the size of Qc in R is maximum (minimum number of control

signals) (3.5)

ii Q ; K 9] 3.6
ii) x|y(ss K) . ( )

N
where Qy is the specification set in R O.

N
Qxly(ss; K) is the projection of Qx(ss) in R ° down on to

(see appendix G of [10]) the No—dimensional subspace of y.

Explicit dependance of the steady-state set on the closed loop matrix

(and therefore on the feedback gain K) is shown.

3.2.2 Set theoretic relations

Two approaches to linear-plus-deadband control have been discussed
by Glover and Schweppe, [l1l]; However, it is the first one that has been

found more suitable to the problem as stated above.

Consider the system given by (3.1), (3.2) and (3.3); assume that a

linear control law
u(nd) = K x(nd) (3.7)

is chosen so that, for the closed loop:

x(nA+A) = (@ + B K) x(nd) + G w(nd)

= ¢ x(nd) + G w(nA)
— _cﬂ,_ ——

(3.8)
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N
there exists a steady state set Qx(ss; E) in R i that contains ﬁ(nA) "

¥n, and Yw(nd) € Qw’ if the control (3.7) is applied for all n, and

which satisfies relation (3.6).

N
Furthermore, let QC'U be defined as the largest set in R - that

satisfies:

2 @6, (ss; K (3.9)
where @ denotes a vector sum

@ Q‘(\:J denotes the set 9’}‘: translated by @

G Qw denotes the set Qw translated by G

={_Ci_¥£_:w

e}
w

As a result, if _x_(nA)E Q’g and E(nA) = 0, _;E(nA+A) eﬁx(ss; K) and:

y(nA+h) € Qx|y(ss; X)
Q (ss; K) CQ
x|y = y
Finally, since y_(nA)E ﬂx|y(ss;§) as well, define the deadband set

I as:
[

R = N 2 (ss;K) (3.10)
c c X =

In other words, the deadband set Qc is a subset of Qx(ss;K) such



that, if at time nA it contains the state X (nd), one can afford not to
apply a centrol u(nd) and keep x(nA+A) in Qx(ss;g). It follows that using

the control law

u(nd) = 0 7 if E(nA) € ﬂc

K x(ny , if x(nd) £ 8

will give, for all n:

nA) € f
X()Ey

And since Qc is chosen as large as possible, the number of control

signals applied will be kept at a minimum level.

Figure 3.1 illustrates the approach taken in this section.

Note that the design of K, using either conventional AGC or optimal

linear regulator theory, is not carried to maximize the size of Qc

directly. It follows that the control law will be, in terms of the dead-

band, only suboptimal in some sense.

Note also that it has been implicitely assumed all along in the
development that the states of the system can be measured perfectly.
This has the advantage of simplifying the problem to concentrate only
on the performance of the linear-plus-deadband control. If found

promissing, this approach could be always extended to include a state

estimator.



Q. (ss;k)

in here use

Space RrNs

Figure 3-1

Linear-Plus-Deadband Control

...BE‘ -
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Finally, the set theoretic relations developped above are not suitable
for a computer design. On the other hand, ellipsoidal sets are defined
by matrices which can be manipulated on a digital computer. They are

therefore very practical from a computational point of view; and this
is why bounding ellipsoids to the sets of the previous relations will

now be derived.

3.2.3 Bounding Ellipsoids:

The relevant mathematical material to the subsequent development

is gathered from [10, 11] in an Appendix for the sake of completeness.

Consider the system given by (3.1), (3.2) and (3.3); and assume

QW to be given by the following ellipsoid:

N
Qw={y_€RQ': W' -lﬁj_l}

where Q is a specified positive definite matrix.

If a linear control (3.7) is chosen so that the closed loop
system (3.8) is stable, then there exists (Appendix) a steady state

bounding ellipsoid Qx b(ss: K) given by:

r

N

) ; = = !
x’b(ss,E) {EER y = I s

i (ssi K) C &, (ss; K)



~ 40 -

_ 1 . L y (3.11)
wmere I = (g )ty Le 2+ o0

where 0 < B < 1 1is chosen so that I—ss is positive definite

Note that B is a design parameter which enters the picture when an
ellipsoidal bound to the set Qx(ss; K) is desired; and although, QW
is itself chosen as an ellipsoid, QX(SS;E) will not be one in general.
Moreover, equation (3.11) shows that a Bclose to "zero" tends to amplify
the effect of the disturbance bound whereas a B close to "one" tends to

amplify the dynamics of the system.

Note also that the ellipsoids considered here are all centered at the

origin since no deterministic quantities drive the system.
As for the output,

‘ | Ty -1 !
(ss; K) = leR A HT H'] xili

Q:n:,bly — —ss

(see aAppendix H of [10]), and condition (3.6) becomes

) (ss; K) T Q
- Y

x,b|y
Ns
Then, let Q(\:: be defined as the largest set in R that satisfies

g Q‘g + gﬂwcﬂxb(ss: K)
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N
Since Qw is an ellipsoid in R & with matrix Q, its translation
N
« . S ; i .
EQW is an ellipsoid in R =~ with matrix G Q G' (Appendix)

Here again, although Qx b(ss; K) and Gﬂw are ellipsoidal, in general
. 2

. ‘ _ s L .. . . .
Q«‘:’ is not, If ( -l:ss G Q G') is positive definite, i.e. Qx,b is bigger

than gﬂw, then an inner ellipsocidal bound v

¥ to 92;’ is given by (Appendix)

v ={x€RS-x'1"_lx<l}
c,b = = s
where ¢ I @' s -0GQG' (3.12)
—_— - 1+0. —ss P — 2
where

0 <a <A, (@ T _© -11>0

n

A (@' T s @) =minimum eigenvalue of @'

; 0
min — —s g i

T
—ﬁ
_Q is the matrix which transforms GQ §_' into

a sphere ( 0'GQ G' 0 =1I)

A derivation and geometrical interpretation of the limits on the
design parameter 0 are presented in the Appendix, Note that if (G Q G')

has not full rank, (©' G Q G' 0) could be only of the form

9 9

o
|+



s

Geometrically this means that the ellipsoid gﬂw, considered in the basis
defined by the eigenvectors of G 9 G', is flat in the directions correspond-
ing to the zero eigenvalues of G 9 G'. This will be the case in the physi-
cal problem treated in chapter 4 and the parameter o will be chosen using

such geometrical arguments.

The deadband set is now

Here again, an ellipsoidal inner bound to Qc could be found. But with every
bounding process the design gets more and more conservative. This last

step can therefore be avoided by replacing the test:

x(nhd) € Qc

by the combined:

-1
x(nd) € Qx'b(ss;“lg_) x'T os x <1
i
-1
1
x(nh) €y x*L 0 x21

in the linear-plus-deadband control strategy (3.4).

The design procedure can be now summarized by the flow chart shown

in fig. 3-2.



Step (i)

Step (ii)

Step (iii)

Step (iv)

Given: , B, G ; the model

I8~

Q > O, Disturbance bound

|

el Design K (Conventional AGC
~ or optimal control)
fcf ¢ +BK

Choose B8 and Solve forT

SS

. N A
s 1B Peolss ?cﬁ"'fg' GQG

Is I acceptable ?

Choose a and Solve for T

t a - 1
#Tc$' = 2 T oma QG

Figure 3-2 Summary of Design Procedure
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Note the similarity between equation (3.11l) and the discrete version
of the algebraic Lyapunov equation where Ess and Q would be covariance
matrices rather than magnitude bounds. This similarity leads to the con-
clusion that equation (3.11) will have a unique positive definite solution

ISS’ if and only if [12]:

i) |Ai(igcg | <1 , 121 wes N
\fl—B
ii) the pair ——L—-ECR r G is controllable
V1-8

where R is of course chosen between 0 and 1.

As for equation (3.12), provided o is chosen properly (see previous
discussion), it could always be solved for Ec since ®? is a result of a
discretization process and is, therefore, invertible; So:

-1 ol

=8 ngls 08| ¥

The design procedure described in this section will now be tried on
a simple two dimensional hypothetical system. The motivation for this, is
that some of the ideas are based on geometrical arguments and a two
dimensional example can be illustrated by exact figures. Those will give
a better picture of what the eguations derived above represent before they

are applied to the fifteen dimensional model of chapter 2.
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3.3 A Two Dimensional Example

Consider the hypothetical system given by the continuous time state

variable model:

:kl(t)

x(t) = = 5.§(t) + Ecu(t) + gcw(t)

where

r!w
]
| o

(]
(@]
o
I
=

Its structure was chosen to present as close features as possible
to those of the model of figure 2.5. The first state takes the place of
the first four states of a power plant and the second state that of the

average system frequency deviation (or x in fig. 2-6). The control u(t)

13
and load disturbance w(t), both scalars here, are applied accordingly.

A discrete time equivalent is now derived, lending itself to the
control strategy described in this chapter. The discretization is done
over a period A of two seconds and assuming u(t) and w(t) to be constant
over this period of time. This is to duplicate the discretization
which will be applied to the physical model in chapter 4 and where the as-

sumptions will be discussed and physically justified.
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i) 2=e=" = -e -2e = -0.135 -0.270
e 3~ 0.270 0.406
O a— 1 2¢72 0.270
E = e — dT = 5 =
0 0 1-3e 0.594
rA 0 i-ae = [ 0.594
A(A-T) =
E = — dt = > ]
0 -1 4e T-2 l_—l.46
Q is here a scalar, arbitrarily chosen as Q = 1
GQG'= 0.353 -0.867
-0.867 2.132
ii) Since this example has no physical meaning, K is also chosen

arbitrarily as K = [0 -1] for simplicity (the only requirement here is to

keep 9{:9. stable). Then

) =%+ BK = -0.135 -0.54
-l - ==

0.270 -0.188
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iii) Again, choosing B arbitrarily to be 0.5

T - 3.73 -0.78

-0.78 5.34
-
Diagonalized, I—ss becomes

3.41 0]

where \/Xi = 4/3.41 = 1.85 and \/lz = Vv5.65 = 2.38 are the lengths

of the semimajor axes of Qx b(ss)

r

iv) G Q G' has rank 1

Diagonalized, it becomes

0 0
where V)\2 = +/2.49=1.58
0 2.49

In this problem both Rx andGQwr have the same axis. So, from the

'b

geometrical discussion of the appendix,

2.38

172 0.51
1.58 =~ =°
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Taking o = 0.5

659 -409

T
< | -409 256

Q2 (s), G 2, ¥

%, b S and Qg'b are shown in figure 3.3.



1.85

_»
1.06 Qx ples) R

Figure 3-3 A Twc Dimensional Example

- -



CHAPTER 4

DESIGN EXAMPLE AND RESULTS

4.1 Introduction

In this Chapter, the linear-plus-deadband control law discussed in
Chapter 3 is implemented and tested on the average system frequency model
of fig. 2-5. First a typical set of data is chosen and the continuous
time model is discretized. Then, a deadband set is designed using con-
ventional AGC first, and full state feedback second, for the linear part

of the control law. Simulations are run for both cases.

All along, computational problems are met and discussed. The computer
programs written, use subroutines from Sandell and Athans[1l4] as well as

modified versions thereof to accomodate the discrete nature of the problem.

4.2 Specific test system

4,2.1 Continucus time model

The hypothetical set of data to be used for the power plants is that
used by Grandez-Gomez [5] and is shown in figure 4-1. Power plants G1 and
G3 of the system described by figure 2-3 are given the same set of values

while power plant G2 has a much smaller generating capacity as indicated

by its inertia coefficient. The system base is 100 MVA and, of course,

- 50 -



Kl K2 Tl 'I'l TV 'I‘S R M
0.2 0.25 10.5 6.0 0.45 0.4 0.01 15.6
0.2 0.25 10.5 6.0 0.45 0.4 0.06 2.4
0.2 0.25 10.5 6.0 0.45 0.4 0.01 15.6

Figure 4-1: Power Plant Data
Line Y
212 4,17
213 4.17
223 8. 33
224 8.33
234 8.33

Figure 4-2: Transmission Line Admittances
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60 Hz for frequency. Frequency and powers will therefore be expressed

in system p.u. values.

As mentioned above, the transmission lines are assumed to be modeled
by pure reactances. Lines 212 and 213 of the system given by figure 2-3
have the same length and double that of lines 223, 224 and 234. The per
unit values of the line admittances are given in figure 4-2.

Refering to figure 2-5, matrices A, EC and gc of the continuous time
model can be now evaluated and are given in figure 4-3. Note that due to

space limitation, the elements of A are printed out in the Fortran

(lPE8.1) Format and are therefore shown here rounded off.

A brief discussion of the model structure is useful at this point
and is motivated by the computational probems which are encountered

and described later inthis section.

Recall that states X14 and X5 were only added to the model in view
of their eventual participation to the feedback control action. The
open-loop dynamics are therefore such that these two states do not couple

back into the system and, as a result, do not affect the controllability

of the remainder of the system.

Consider now the submatrix £ﬁ3 obtained from the first thirteen rows

and columns of A. Due to the similar power plant parameters, Al is of

the form:



MATRIX A

=9.50-u2 J.4 2.2 le6D-C1 0.9 C.0 c.C 0.0 0.0 0.0 0.0 0.0 0.0
C.0 =-1.70-Cl 0.0 -1.40-01 0.0 0.0 0.0 0.0 0e0 0.0 0.0 0.0 0.0

O.u 0.0 -2.2C+00 4.3D=Cl 0,0 .0 0.0 0.0 0.0 0.0 ¢.0 0.0 0.0

.0 0.0 G.0 -2.5C+00C 7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -2450402
20 G. 0 0. 0 0.0 =9:,50-02 0.0 0.0 1.60-01 0.0 0.0 0.0 0.0 0.0

Vel Qa0 Ue0 Ue0 0.0 -1.7C-01 0.0 -1.4D-01 0.0 0.0 0.0 0.0 0.0

.0 0.0 0.0 0.0 0.0 0.0 -2.20400 4.3D=01 0.0 0.0 a0 0.0 0.0

0-0 0.0 0e 0 0e 0 0.0 0.0 0.0 =2.50+00 0.0 0.0 0.0 0.0 -4,2D+01
el N.3 0.0 0.0 0.0 0.0 0.0 0.0 =-9.5D-02 0.0 0.0 1.60-01 0.0

0.0 0.0 0.0 0. 0 0.0 0.0 0.0 0.0 0.0 -1le¢7D-01 0.0 -1le4D-01 0.0
0.0 [ Y UW0 v.0 0.0 0.0 0.0 G.0 0.0 0.0 -2.20+00 4.30-01 0.0

Ce0 3.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ~-2,50400-2.50+02
3.00-02 3.00-02 3.00-02 U.0 3,00-02 3.0C-02 3,00-02 0.0 3.00-02 3.00-02 3.00-02 0.0 0.0

Oew 2.0 0.0 Vel 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.00+00
5.4D-01 5.4D-Cl 5.4C-01 0.0 ~4,60-01-4.6C-01-4.60-01 0.0 —44 60-01-4%e 6D-01-4e 6D-01 Qa0 0.0

MATRIX BC
0.0 J.0 0.0
Ced 0.0 0.0
C.0 0.0 0.0
2.500020430 D0 0.0
0.0 3.0 0.0
0.9 00 0.0
0.9 J.0 G.0
0.0 2.500C0D+00 0.0
0-9 0.0 0.C
0.0 0.0 0.0
0.0 0. 0 0.0
(0] 2.0 2.50000D0+00
G0 0.0 0.0
(i } J. 0 0.0
Gald 3.3 0.0
MATRIX GC
C.2 0.0 040 .
0.0 C.C 0.0 g.g
C.0 C.C 2.0 0.0
.2 C.0 C.0 0.0
C.0 C.0 3.0 d.0
0.2 C.G 0.C J.0
0.0 2.0 0.0 9.0
0.6 .0 0.2 0.0
0.0 C.0C 0.9 0.0
0.0 C.C 0.0 0.0
Q.C C.C 0.0 0.0
3.0 C.C 0.0 0.0
=2.57619D-02 -2.97619D-02 -2.,97619L-0C2 -2.57619C=02
9.0 0.C 0.0 0.0
=5.35714D-C1 4.64286D-01 4.6U286L[-01 4.€

42E6L~11

Figure 4-3

0.0
0,0
0.0
0.0

0.9
0.0
0.0

0.0
0.0
0.0
0.0

£S5
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with a' b = a' ¢ = 0 and b = 0¢c and where:

i) Blocks 54 are identical and describe the dynamics of the four

individual power plant states.

ii) The 4-dimensional vectors b and g_describe the effect of the

average system frequency deviation on the power plant states.

iii) The last row describes the dynamics of the average system

frequency deviation as affected by the power plant states.

Furthermore, the four load disturbances affect the system through
X3¢ They could be replaced by a single eguivalent disturbance w with

covariance (or in this case magnitude bound) computed appropriately

such that QC'ISQEL(nA) is replaced by 90'13 eqw(nA) and where
221
G =
—,13 eq. 1

As a result,



] L] L) 1
[ S50 | 213%, 2300 | B3 S, 15 eq) v § Ais 8,1 e ]
— L} 1 ] L}
0O+ b ' A, b + A’y ' 1
=2 A2 Ak
] L} ) ]
0 ' c ; A cC ' - ;
=0 === e
T 1 ] 1 R
' ' . '
L} ) L L}
] ] ) L
i - y 2'3, (2btc) |

is of rank 5 only (recall b = o€) and the pair

Q513, Ec, 9 eq.} is not controllable [12]
Under these conditions, the continuous time model was discretized,
and the design procedure described in chapter 3 was attempted. Details
of such a development are treated later in this chapter. What is to be
emphasized at this point, however, is that the resulting matrices Ess
and IC, which respectively determine ellipsoids Qx'b(ss) and Qg,b defined
in chapter 3, were found to have a very large spread in their eigen-
values, going down to extremely small values. Therefore, from a numerical
point of view, the matrices were practically positive semi-definite and
their inverses could not be properly evaluated. This also corresponds,

from a geometrical point of view, to ellipsoids which are almost flat

along some of their axis.
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Now recall that the conditions for eg. (3.11) to have a positive
definite solution I'  are:
—ss

[ = e | < 1, i=1, ... N (stability)

s cl

ii) the pair ) Ggor {9 G }  is controllable.

g — T '

As a result, it seems that in the present situation the closed loop
system obtained by using a feedback control strategy retains some of the
properties linked to the uncontrollability of the pair {5, g} of the cpen

loop system.

Furthermore, controllability is, in a strict sense, a Yes-No type
of test without any comparative capabilities. Therefore, dissimilar power
plant parameter values would make the blocks 54 mentioned above non-
identical and the pair {é, g} controllable. But since the parameters used
here have typical values around which actual values would usually be found,

the same computational problems are expected to arise if the parameters

are varied.

Hence, those problems are actually related to the structure of the
average system frequency model. This can be shown by a comparison with
Glover's model [3] where individual machine frequencies are retained as
state variables of the system. In this case load disturbances enter the
model through each one of these states and the present computational

problem is avoided.



- 57 -

Therefore, and in order to obtain numerically more robuste bounds,
noise is artificially added to the models through all the previously un-
disturbed states. This will precisely "fatten" the ellipsoids of interest

and increase the eigenvalues of ' and [ .
—ss —c

The new model has now matrix gc as shown in figure 4-4. The disturb-
ance vector is now labeled w as in chapter 3; APLl,of the initial model

becomes w and AP

13 LZ'APL AP. are implicitely replaced by the single

3" TL4
equivalent disturbance W5 This will be taken into account in the choice

of matrix Q which determines the disturbance constraining ellipsoidal set

R«
w

4.2.2 Discrete time model

As already mentioned in the introduction to chapter 3, because auto-
matic generation control is a discrete time control law, and because simu-
lations on a digital computer involve a discretization of continuous
variables in any case, it was found natural in this context to convert
the continuous time model to a discrete time model. The discretization
time interval chosen is A = 2 second, which is a typical value of the sampl-
ing rate for AGC, as presently used in the power industry. The control
signal u(t) is therefore updated every 2 seconds and held constant over
this period of time. For computational convenience, the disturbance vector
w(t) is also considered to be constant over the same interval and the

discrete time version is obtained as:



MATRIX GC

109400 Jeis Dat! .0 1.0 Qe Jao O Ca0 0.0 J.0 Cal 0.0 0.0 0.0 0.0

Call 1.CN+CI Va0V Je0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. 0 0.0 000

(8 Y Jol 1.0D+0u 050 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 g.n 0.0 0.0

Ve J o Jef 1a72D#0D 0.0 C.0 0.0 0.0 C.0 0.0 0.0 0.0 0.0 0.0 0.0

Cetd G.0 0.0 0.0 1.00+30 C,0 00 00 0e0 0e0 0.0 0.0 0.0 0.0 0.0

N.J 2.0 0.0 .l Je 1loGC+CS 0.0 da.0 0.0 2.0 0.0 Cal 0.0 D0 0.0

.0 Deld C.0 0.0 0.3 0.0 1.CD400 0.0 C.0 0.0 0.0 0.0 0.0 0.0 0.0 I
0.0 0 C 0:0 D 0 0.0 0.0 (VP 1le0D+00 0.0 0,0 0.0 G0 0.0 0.0 0.0 éh
Qa2 Jeu D.0 Jetl 0.2 0.0 NeC Ce? 1.00+00 0.C 0.C 0.0 0.0 0.0 0.0 ®
Coeu Je0 Ue0 J.0 0.0 0.0 0.0 0.0 0.0 1le CO+00 O8O Oe O 0,0 00 0,0 )
0.0 a0 0s0 0.0 0.0 0.0 0.0 0.0 0.0 0.C 1.0D+4G0 £.C 0.0 0.0 0.3

e Jali Vel Oali CeD C.0 0.0 0.0 0.C 0.0 0.0 1.0D0+00 0.0 0.0 0.0

0.0 C.0 Ja0 20 Qe 0 0.0 0,0 0 0.0 00 0.0 0.0 -3,0D-02 0,0 -3.00-02

0.0 Jeid 0.0 .0 0.0 Q.0 Q.0 0.0 0.0 De 0.0 0.0 0.0 1.00+00 0.0

Geu Je ) 0.0 DL 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -5.40-01 000 40 6D-01

Figure 4-4
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x(nA+h) = @ x(nd) + B ulnd) + G w(nd) 2

where ( see [12], for example):

|
It
>
I3
o
I
—
[ol]
,_l
Al‘.d

f A(A-T)
G = e = dT G
- 0 -c

are evaluated and shown in figure 4-5. The discretized version of the
original matrix Gc (i.e. without the artificially added noise) is also

evaluated. It will be used later in the simulations.

Furthermore the variables to be kept within limits are, as mentioned

X and x._.. Therefore

previously X137 ¥4 15

y(nd) = H x(nh)

where

_— L]
L [96X12 + Laxs ]

and the steady state limits on Yy = X537 and Yy = X% are

Yy = %14 15

respectively given by the square root of the last three diagonal elements

of Ess (see section 3.2.3)
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4.2.3. Disturbance bound

Refering to the discussion in chapter 3, the perturbation vector Eﬁn&)

is considered to be a discrete time white unknown but bounded process.

A time invariant ellipscidal bound:

Q.= {wmh) : w'(mh) Q7 wind) <1, Vn }

is therefore chosen, where Q is a diagonal positive definite matrix, and
where the diagonal elements determine the magnitude of the perturbations.

[10].

In the power system model considered here, the four loads are assumed
to be of the same order of magnitude (around 0.7 p.u. MW) and their pertur-
|2 4

bations to be limited in magnitude to roughly 3%, or ]APL < 5%10 .

i
For future reference, note that a load change of 0.02 pu is large compared
to changes usually observed. This value was first chosen for computational
convenience in an attempt to correct for the flat ellipsoids resulting

from the original model. It was left unchanged when the artificial noise

was added as discussed in section 4.2.1.

As for the magnitude bound of the thirteen added disturbances, the
corresponding diagonal elements of @, g, had to be increased up to around
5><10_8 before obtaining numerically reasonable bounds. This value will be

further increased to study its effect on the design results.
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At this point, step (i) of the design procedure, as summarized in
figure 3-2, is completed and the procedure is carried on using either one

of the two proposed alternatives,

4.3 Conventional AGC

4.3.1 General description

The basic leatures of conventional AGC are widely presented and
motivated, in the literature (e.g. [1], [3]) and can be summarized here

as follows:

Each area i of an interconnected power system computes its area control
error (ACEi):
= Ap_, + B.Af, (t
ACEi(t) P '(t) Bl l( )

tie
1

where APtie (t) is the net deviation from scheduled values of tie-line
3

power flow out of the area.

Afi(t) is the deviation (from scheduled frequency) of the area

frequency.

B is a frequency bias coefficient usually chosen to match the

area frequency response characteristic.

Then, in each area, the control law u(t) is a piecewise constant

function which is proportional to the integral of the ACE



w5 =

t
IACE. (t) = J/ﬂ ACE. (T)dT (4.2)
i 0 i
-Ei(t) = - Ei [IACEi(nA)] (4.3)
nA < t < (n+1)A ; A = 2 seconds

It is this control law which constitutes the basis for the choice

of the djscretization interval of section 4.2.2.

4,3.2., Design:

Refering to the model used here, only the average system frequency is
assumed to prevail throughout the system. As a result, for both areas
considered, Afi(t) is replaced by Afav(t). Moreover, form the configuration

of the system at hand (shown in fig. 2-3)

AP, (t) = = AP, . (%)
tJ.el t1e2

So that, using the terminology of fig. 2-6, (4.2) can be written as:

xls(t) + B.x.,(t)

‘ IACE, (t) %14

(4.4)

1]

l IACEz(t) —xls(t) + B x,,(t)

2714

And the control law (4.3) becomes:
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ul(t) = - Kl [ xls(nA) + lel4(nA) 1
ul(t) = - K2 [ -xls(nA) + B2x14(n6) ] (4.5)
u3(t) = - K3 [ -xls(nA) + Ble4(nA) ]

n A<t < (n+tl1)A

or, in terms of step (ii) of the design procedure

u(nd) = K x(nd) (4.6)
where
' '
L By ¢
E= 9 3x13 E “Fuly i X,
g —K3B2 i K3

Since a typical value for the area frequency response characteristic
under normal conditions is about ten per cent of total power generation
per Hz [3], and since the generating capacities of both areas are not too
different, Bl and Bz are both chosen as:

Bl = B2 = 0.13X60 . 8 pu MW /pu Hz

Moreover, the proportionality constants are also chosen to be the

same for both areas with the AGC in area 2 to be allocated to power plants
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G2 and G3 according to their relative capacities, i.e.

~
I

0.13 K

~
Il

0.87 K

Now, in view of eqg. 3.11 (to be solved in step (iii)) it was shown in
Chapter 3 that a necessary contition for a positive definite solution_r_ss
to exist, is that

1 ;
[ = 2 o | <1, i=1, ... 15 (4.7)
V/1-8
.th
where Ai(g) denotes the i eigenvalue of x
(B is chosen between 0 and 1)

Ecﬂ = & + B K is the closed loop matrix with K given by (4.6)

A root locus study is therefore conducted, where the eigenvalues of
2 il are computed and plotted on the complex plane for several values of
Kl starting with Kl = 0 (no feedback). Only the dominant eigenvalues are

shown in fig. 4-6.

1 1
Since l AL —_— = —— l AL (D )I ’
: ( /B CR) /8 e

condition (4.7) is satisfied if all eigenvalues corresponding to one value



UNIT CIRCLE

X = OPEIN LOOP POLES

DATA POINTS FOR
K, =0, <3, .6, 8, 1.2, 1.5,

1.8, 2, 2.3, 2.6, 2.9, 3.2,
3.5, 3.8, 4.1

Figure 4-6

Eigenvalues of ECR for Different wvalues of K

K|=2
K1=2
<2
X
K1=2

1

0.83
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of K, lie within the circle of radius V1-B . Fig. 4-6 shows that, due

to the fixed pole at 0.83, B should not exceed 0.3 and that acceptable

values for K, are, for example:

i
2 < Kl < 4 for B = 0.2

(4.8)
2.4 <Kl < 3.8 for B = 0.3

At this point, Eq. (3.11) is solved using the matrix G which cor-
responds to the actual model of Chapter 2, and Kl taking several values
which span the limits given by (4.8). The values which minimize the steady

state limits on:
y=Hx

or, equivalently the last three diagonal elements of ESS (see section

4.2.2) are the values of K. and B which are retained.

1

In other words Kl is chosen such that Qx,b|y(55’§) defined in chapter
3, is roughly minimized rather than made to fit some specified ﬁy as ideal-
ly suggested. This approach is used here because the load disturbances

bounds, chosen in section 4.2.3, are larger than in actual situations

and the degree of freedom in the design of K is much narrower.

The square roots of the last three diagonal elements of Ess are shown
in figure 4-7 for different values of K, and 8. A good compromise is for:

Kl = 2.6 H B = 0.3



Ky 4£x10° § x10 ae,
Max,b Max,b Max, b
(| 2.0 4.65 6.97 0.242
2.2 4.73 740 0.21
2.4 4.82 7.1 0.2
2.6 4.9 7.15 0.19
2.8 4.99 7.21 0.186
B=0.2 < 3.0 5.0 7.28 0.187
5,2 5.19 7.35 0.192
3.4 5.3 7.43 0.2
3.6 5.41 7.52 0.217
3.8 5.54 7.62 0.242
4.0 5.68 7.73 0.288
$ 2.4 4.17 6.58 0.217
2.6 4.25 6.62 0.194
2.8 4.34 6.66 0.186
3.0 4.43 6.7 0.188
B=0.3 {
3.2 4.52 6.74 0.199
3.4 4.63 6.8 0.266
3.6 4.73 6.88 0.288
3.8 4,87 6.96 0.198
\

Figure 4-7
Square root of last three diagonal elements of rss for different values

of Kl and B
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for which the steady state limits on Af__, A§__ and d/hP . are
av av tie

3

- -3
+ 4.25X10 ~, £6.62X10 and +0.194 respectively (in p.u).

Note that those limits are bounds on the actual limits because of

the conservation inherent to the bounding process in which a bounding el-
lipsoid is used for the actual steady state set [Section 3.2.3]. As a mat-
ter of fact, in the simulations to be presented later, Afav' for example
did not exceed 12X10_3pu or +0.12 Hz. As expected, this value is still
larger than in real situations but since the model is linear, scaled down
results would be obtained with more realistic conditions; and since the
main object here is the study of the deadband control effect, the same

general conclusions would still be valid.

Using now zss’ obtained from eq. (3.11) with the modified matrix G
and the selected values of Kl and B, eqg. (3.12) of step (iv) is solved
with o taking several values, starting with 0=0.2. Rather than computing
directly the upper limit of & as suggested in Section 3.2.3, the iterations
are simply stopped when the solution Ec’ which determines Qg,b defined in

Chapter 3, becomes indefinite (see geometric interpretation in Section

3.2.3 and Appendix).

The eigenvalues of Ec for the different values of O are given in fig.

The deadband sets defined by those matrices Ec intersect one another

and it is no simple task to find the largest one of them. Moreover there



...OL_

a KleO- 12X10_3 lBXIO A4K102 )\SXlO2 XGXIO X7X103 XSXIO AgxlO AIOXIO A11X1o Alleos A13X106 K14X10 )\15X107
P.2 3.4 2.0 7.2 2.4 0.65 1.1 0.76 | 4.7 0.98 3.1 1.8 0.65 0.65 2.2 0.74
D.4 5.8 3.5 12.3 3.9 1.1 1.7 1.3 7.3 1.7 5.3 3.0 1.1 i 3.5 1.2
D.gq 7.7 4.5 16.1 | 4.7 1.5 2.2 1.7 8.7 2.2 6.9 3.5 1.5 1.4 4,3 1.4
.8 9.1 5.3 19.1 | 5.2 1.7 2.5 2.0 9.1 2.6 8.1 3.7 1.7 1.7 4.7 1.5
.0 10.2 5.9 21.4 | 5.4 1% 2.7 2.3 2.0 2.9 9.1 3.6 1.9 1.8 4.9 1.4
l.2{ 11.1 6.3 23.3 5.3 2.1 2.8 2.5 8.4 3.2 9.8 3.4 2.1 2.0 4.9 1.4
1.4 11.9 6.7 24.9 5.1 2.2 2.8 2.6 7.4 3.4 10.4 3.0 2.3 2.1 4.8 1.2
1.6 12.5 7.0 26.2 4.8 2.4 2.9 2.6 6.1 3.6 10.9 2.4 2.5 2.2 4.5 1.0
1.8 13.0 7.3 27.3 | 4.4 2.4 3.0 2.3 4.7 3.7 11.3 1.9 2.5 2.2 4,2 0.79
2.0 13.5 7.5 28.3 3.9 2.5 3.1 1.8 3.9 3.0 11.7 1.3 2.6 2.3 3.7 0.52
.2 13.9 7.6 29.1 3.4 2.4 3.2 0.92 4.0 1.3 11.7 0.56 2.7 2.3 3.2 0.22

Non-positive solution for o > 2.4

Figure 4-8 Eigenvalues of Ec for Different Values of o
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is no obvious definition of what would be the largest. Therefore, and
because the eigenvalues are an indication of the "thickness" of the el-

lipsoids at hand, a good compromise is found to be a = 1.6

The four steps are now completed for a conventional controller and

the whole set of results is given in fig. 4-9.

4,3.3. Simulations

A simulation is performed using the original model (i.e without the
added noise)but with the matrices E-ss and L “ derived in the previous

section (i.e. for the model with artificially added noise).

A random number generator is used to model the discrete time load
disturbances. Since those were assumed to be only unknown but bounded,
the standard deviation of the random numbers is chosen as the disturbance
magnitude bound reduced by a factor of three. Moreover, the same load

disturbance sequence is used in all the subsequent simulations.

Following the deadband logic described in section 3.2.3, the state

x of the system is tested at every step of 2 seconds. A first test insures

that x(nd) is indeed within the steady state set Qx L (88) (Numerically:

I

-1 . . ; :
x < 1), and a second test investigates wether EjnA) lies in the

x' T

deadband region Qg b (Numerically x' r_i x < 1) or not. Then, open loop

r

® or closed loop @ ol is used for the next iteration accordingly. The

outcome is shown in fig. 4-10 for 50 steps (100 seconds) and where:
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-2.19050-2.50400-ﬁ-6D-Dl-1-3£—Ul-2.70000-2.5£000—§.60-01-1.30—01-2.TDOJﬂ—Z.5D+ﬂﬂ—§.b0-01—1.30-01-7-30000-3-19—01 2.2D+00
2.70-C2 2:40-C2 1,4D-03 1.10-03 2,7D-02 244L-02 1a4D-03 1410-03 2.70-02 2.40-02 1.4D-03 14 10-03-2, 1D-01-2.3D-01-5.5D-17
4.10-32 3.90-02 1430=02 2.20-G3 4.10-02 3,90-02 1.30-02 2.20-03 4.10-02 3.90-02 1.30-02 2.20-03 1.00+00 B.2D0-01-2.8D-16
5uB-01 9.10-01 2,40-01 4,70-02-R+4D-01-T+9L-01-2410~01~44+00-02-8.4D-01-7.90~01~2.1D-01-4.0D-02 15 10-01-3, B0-01 3. 4D-01

MATRIX ETGENVALUES

RELL PART = 3.446455853797451D-01 IMAG PART = 5.648228578353557C-01
REAL PART = 3.4464568537874910-01 IMAG PART = -5.6482285783535570-01
REAL PART = -1l.4%92084u44531€3C-01 IMAG PART = 2,489717698435161C-01
REAL PART = -1.4492)84044531630-01 IMAG PART = -2.4E57176584351610-01
REAL PART = 6.125174074758821C-01 IMAG PART = 4,253028321770000D-01
OEAL PART = 6.125174074758821D-01 [MAG PART = -4.2530283217700000-01
R=AL PART = 5.584395361058455C-01 IMAG PART = 3,3474405861741560-01
OF AL PART = 5.5B4395361C584550-01 IMAG PART = -3,3474409861741560-01
REAL FART = 8.2656543762422870-01 IMAG PART = 0.0
AL PART = 5,8433509694623€4C-01 IMAG PART = (.0
QEAL PART = -1.278349551097853C-02 1MAG PART = 0.0
QEAL PART = 3.24B145186005524C-02 IMAG PART = (.0
REAL PART = £,737946595085457C-03 TMAG PART = 0.0
REAL PART = 7,1653131057378470-01 IMAG PART = 0.0
REAL PART = 1.1T4362845702136C-02 IMAG PART = 0.0

MATRIX GAMMA

4.90-02-4420-02 Ta50-03 2.80-02-5.00-03 4,10-03-9, TD-05-14 10-03-30 4D-02 2, 8D-02-94 BD-04-84 10-03~1s 6D-05-4s 3D-04 2. 4D-02
—4.20-02 3.80-02-1.00-02-4.4C-02 4.50-73-3,9C-C3 4.90-04 3.00-03 3.10-02-2.70-02 3.6D-03 2.1D-02 4.50-05 3.6D-04-1.70-02
7.50-33-1a00=02 1s6C-02 B.50-02-1.50-03 1.6C-C3-1,20-03-5.80-03-9.80-03 1.10-02-8,40-03-4.2D-02-2,50-04-1.80-05-9.10-03
2 8N-02-4,4D-C2 Be 50-02 4 B0-Cl=8,1D0-03 9¢1C-D3-6450-03-2090-02-5.30-02 6,00-02-4.60-02-2.10-01-1.7D~-03 3.20-04-5.50-02
-5.50-03 445C-03-1.50-03-8.1C-63 1.30-03-1.10-03 1.6D0-04 5.90-04 8.1D0-03-7.00-03 1.1D-03 4.50-03 5.10-05-1.00-04-2,20-03
4.10-03-3.90-03 1.60-03 9.1C-03-1.10-03 9.6L-04-2.30-04-9.7D-04-6.90-03 6.20-03- 1, 60-03-6,90-03-3,90-05 1. 10-04 1.00-03
9. 77-05 4.9D-0%-1c 20-03-6550-03 1.60-04-2.30-04 3.00-04 1.50-03 9.50-04-1.40-03 1.90-03 9.90-03-1.7D-05-5.80-05 2,10-03
~1e10-J3 3,00-03-5,80-03-2,9C-02 5.9D-04-9.7C-04 1.50-03 B.20-03 3,50-03-6.10-03 S.80-03 5.,30-02-1.50-04-2.,4D-04 l.10-02
~3.40-02 3.10-C2-9« BD-C3-5, 30-02 B. 10=03=6,90-03 9, 50-04 3.50-03 5¢30-02-4.50-02 6,90-03 2, 7D-02 3 30-0%-64 20-04-1.50-02
2.80-02-2.70-02 1.1C-02 6400-02-7.00-03 6420-C3=1.40-03-6,1D-03-4,5D-02 %.1D-02-9.90-03-4,30-02-2.,60-0% 6.5D0-04 7.60-03
—€,80-0% 3.6D-03-8,40-03-4460-02 1.10-03-1.6C-03 1.90-03 9.80-03 6,90-03-9,90-03 1.30-02 6.50-02-8.A0-05-3,80-04 l.30-02
—8.17-03 2-10-02-4, 20-02-25 10-01 4 50-03-6,9C-03 9,90-03 5.30-02 2.7D-02-4.30-02 6.50-02 3,5D-01-8.2D-04-1.60-03 7.00-02
—1e61-15 4.5D-05-2,50-04=1,T0-C3 5,10-05-3,9C=05-14 70-05-1450-04 2,30-04-2.60-04-8,80-05-8.2D-04 1.8D-05-2,2D-06-7.00-05
~4430-04 3.6D-C4-1.BC=05 342C-04~1.0D-04 1.1C-04-5.8C-05-244D-0%~6¢20-04 64 50-04~3,BD-04~ e 6D-03-2, 2D0-06 44 5D-05-4, 00-04
2,%0-02-1,TC-02-9.1C-03-5,50-02-2.20-072 1,00-03 2.10-03 1.10-02-1.50-02 7.60=03 1.3D-02 7.0D-02-7.00-05-4.00-04 3.70-02

ALPHA=  1.6330U

CEADBAND SET GAMCA

2.20401=-2,00401 le TD+D2-34 70402=14 30400 1,2C+00-1230401 1.40+01-9.3D+00 B,6D+00-8.80+01 1.00+02-5.8D-01 1.6D-01-44D+01
22.004%] 1.90401-1.60402 3.40462 1.20#30-1,1C+00 1.20401-1.30401 B.60+00-8.00+00 8.10+01-9.4D+01 5.3D-01-1.5D0-01 4.00+01
LeTN402-12 60402 1.40403-2.90#03-1.50401 1.,4D401-1,40402 2,0D+02-1.0D+02 92 6D¢01-S+20+02 1,4D+03-2,80+00 7, 8D-01-3.90+02
~3,T0+02 3.40+¢02-2.90+03 6.80403 6.4D# I =5.6C+00 9o BL+0L S.50401 5.3D#01-4.90401 7.1D402 3.50402 1.60+01-4.50400 6.0D+02
1230400 1e20400-1+50+#01 6.4C+00 7.20-011-6.T7C-01 5.50+400-1.4D+01 4.7D+00-4.30400 3.60+01-8.70401-2.10-01 5.8D0-02 8.6D+00
1 20400-1.1D4CJ lo%D+01=5:80400~6s TO-01 6¢2L-01-5:10400 Le3D+01-4o3C+00 4,00+00-3, 30401 8.1D+01 1.90-01-5.4D-02-8.00+00
1 30400 Le20431-1.40+02 9.80401 5.50400-5.1D+#50 4,20401-1.00402 3,6D+01-3,30401 2.8D+02-6.60+02-1,50400 4.1D0-01 7.00+01
1.404061-12304C]1 2.00402 9.50401-1.4D401 1.3C+01-1.0C+02 2.6D+02-8.8D+401 B.10401-€4 7D+02 1. 70403 4a 50+00~1e 30+00-14 50402
-9 30400 A.6N400-1,0C+02 5,30401 4,7D+00-4.30+00 3.60¢01-8.80+01 3.1D+01-2.80401 2.4D+02-5.7C+02-1.3D0+00 3.7D-01 5.7D+01
BabD+3C-8.00+C) GubD+01=%.9D401=443D+400 400+00-3230401 8.10+401-2.80+01 2.6D+01-2,2D0402 5,20+402 1.20+00-3.4D-01-5.30+01
—8.8D+01 BelD+CLl-9.20402 TalD4C2 3, 60+01-3o 2C+01 20 B0+02-64 70402 2,40402-2.20+402 1.8D403-4,3D+03-9, 50400 2, 6D+00 4, 60+02
LUl 402 -9.40401 1.40+N3 3,5D0+02-8,70+71 B,1C+0L-6.6C+02 1,TD+03-5.7D0402 5.20#02-443D0+¢03 1.10404 2,80401-7.90+00-9.,6D+02
-5,80-01 5.30-Gl-2.80+#00 1,6D+#U1-2,10-01 1.,9C-01-1.50+C0 4,5D0+400-1.3D+00 1.20400-5.5D+00 2.80+01 1,10-01-3,00-02-1. 10+00
1:60-Cl=1. 50-01 T B0-01-4s 50400 S50 80-02-5.4L-02 44 10-01-1.3D+00 3.70-01-3.4D-01 2.60+00-7.90+00-3,00-02 8.4D-03 3.10-01
“4,40601 4.004u1-3,90+02 6.0D+02 8,6D0+)0-8.C0+010 T.0D+01-1.50+402 5.70401-5.30401 4.6D+02-9,6C+02-1,10+400 3.10-01 1.40+02

Figure 4-9
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Figure 4-10 Simulation #1 (g=5X10
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i) Column labeled TEST indicates 0 if no control action is taken and 1
otherwise.

ii) Columns Tl and T2 indicate the numerical outcome of both tests
mentioned above.

iii) MONITOR gives the total number of steps for which a control action

is taken.

As mentioned in Section 4.2.1, it is to make these tests Tl and T2

numerically possible that artificial noise was added to the model used to
derive T and ' .
—ss —C
Plots of Af , Aé8 and .fAP , are shown in figures 4-11, 4-12 and
av av tie

r * s 2 My

2.6 for symbols) were also obtained; but since they follow similar patterns

4-13 respectively. Plots of APM ; Aw., APM ;, Dw_, AP, Aw3 (refer to fig.

only APM and Awl are shown here, in fig. 4-14 and 4-15. The figures also
1
give, for comparison, the behavior of the corresponding variables when the

system is left completely uncontrolled.

Then, using the same values for Kl, B and o, larger deadband regions

are derived by increasing the added diagonal elements of Q from 5><10_8 to

5X10_7, 5X10F6 and 5X10-5 successively. Simulations are also run using each
of those deadband regions and the results are given in figures 4-16, 4-17
and 4-18 respectively. The corresponding maximum deviations of the variables
mentioned above are given in fig. 4-19.

These results show reductions of successively 20%, 40%, 74% and 80%



Cu+do0u00"t

R e - S e e — 3 LurQoUOUG b
¢

.z 8

. -

. 6 =l

x-fhu-mwpu Lo+dLQo0u’ b
. Z -

, mm =

- o ©

a9

= ; o8

‘..,:._m_eu LO+deouLa "L
. ]

; _ .

. ]

.

......... LusLculuu 9

LU4GCCOL0°S

Lo+aoCClu

L{+dCluult

.............. x LO+GCO0U0"L

N ————— _—— g ————— ——— e ——— Em—mmm————— pm———————— e .L-C

EQ-GLO*2Z &€0-00T°L #0-Q00°m 6C-CC3°%u- e F=apdci= EG=0007c=

(Simulation #1)

versus time

av

Figure 4-11 Af



H
€0-020°% E£3-009'2 €3-032°1 LA—gnneT- €5=029%1= £L-000"E-

= 76 =

e mmm e e et x 2211700031

. - . -‘ . L] -
&'
- — - ~ e

M ——————— sz ——————— o ———— Hllnlib& IIIIIII ey, = = === } I1°+#3000233°%5
. . ‘“F‘l\ .
. L . l“"‘llh . L] .
. o g : . .

o 4
o == - R e ettt fom & TH8U00007%8
. ND . . "\‘m . . .
. O w . . ) . . .

[ I . -
- L - *l - L]
. Do . .¥. . . .
R -3 O bmmmm % 1EeO30030%Y
. AT . P . . .

BN h.t.l‘
. DO . lh_p . . .
L Ac . t’n"h . . -
. Ew . -‘ L4l . .
i ST fmmmmm et = 16+302022°9
. “ . J,'F . L] .
. . . N, . . .

] 2
. i . . . . .
e mmm e rmmmmmmmm - —— 262 Nazz=== - x——mmm—mm x  10+#320022°G
L L] . 'JJ -
>

- . . IlllllW\l‘ . .
. . f.lll.ln‘ll 0 .
g ey pEfesneaee R . et LT S s e e x 104320000
. “ ...llll-l.l..-l . . .
. _—— - . . .

fmmmm————— « T2#320202°E

1742200001

R———————— . Z . o*0

versus time (Simulation #1)

av

AS

Figure 4-12



Po—————— =g
.
-

m—
%\2\\&\ ’
-
b TR E

B o o o p-——=
EAY *
~ .
w-..

A PR s i i e
- .
- —
z 9 -
e B o
O .mw .
*——py—Sd--x
z £ -
< =2 ®
B .

o ©

a & °
#——tab - &>
o o -
. .
- L
" .
lllllllll x

g = $ro——————— - - ————— B —————— =

AL 44

a%9*T 13-t

27+323030°1

Ta%3292939%%

To+330529%8

1343220009%L

To+33 20923 9

T9¥a220T2%%

1243200390%%

10+330932%¢

FO+320203%¢

10+3000230*1

-IAPtie versus time (Simulation #1)

Figure 4-13



- TG -

L L]
", "
m L]
2z o °
0:1.__.
Cm._---.
oE
o =
o £ .
o O .
< QO
Y e
a 2

]

1

1
__

P 8 18 R |

1 g Sl e o g Jl

10+330390%8

1C+302232°9

LZ+123D3D%Y

10+322020°¢

15400 330%E

To#322302 0T

L™}
.
Lbw

Figure 4-14 APMl versus time (Simulation #1)



DEADBAND CONTROL

|
|

UNCONTROLLED

|
1
fr——
]

79 -

= - -

s S g ———— e oz -

12-002°1

=GR Y

b e ———————

¢3=4cl

3%

gottg=

CARE 3 e e s fo

T54323329°%

1E+02022905%8

To#D22302%9

PR

TC+233023%%

-
e ]
+
[4a}
L)
L_'
w0
(S ]
"_,I

.
T

T18+353238" &

12+#330032%2

Figure 4-15 Awl versus time (Simulation #1)



STEP

o e I e S R S R N

MOMITOR=

3C

TEST

e PO OO OO RO AN OO0 MO DO e O D e O O

Tk

0.0

N.23€6D+00
Nel471D+00
0.10130#00
0. 83760-01
Ne1241D+00
0-,1915D+00
0, 44S5D+N0
0.3159D+00
0,41 720+00
N, 22R9D+NN
0.37520+00
0. 4347D+00
0. 33860D+00
. 16C2D+CD
0.84€10-01
C>1155N+00
De1R24D+2N
0.1126D+00
0. 17COD+OC
De2354D 400
0:=1147N+00
0,3387°D+090
D.21270+00
N,2113D+00
1.1823N+(9D
0.4256N0+00
032470400
N,19580+00
0-1121D+C0
fe98210-N1
0 1D00S5D+00
D6 2172D+00
2.18570+00
D 144TN+00
0613100400
0. 746R8D-01
Ne7250D-101
0.80%3D-91
0, 1201D+00
Ne24750D+0N
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D 15T7CD+0D
Ng2375D+0N
0.21000+00
Ne 128850407
0,2284D+00
s 45€65N+00
N, 290 7D+

T2

0.0
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Ne1224D+01
0.1439D401
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0. 1642D+0N1
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De 79STD+00
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0aB8193D+00
Ne2536D+00
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"‘.42 880"“"‘1
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; : . =7
Figure 4-16 Simulation #2 (g=5%10 ')
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AP X10 Aw Ap  X10 Aw Ap_ X A X <
Ml il M2 2 M3 10 w3 Afav o Mavxlo APtie
' Max Max Max Max Max Max Max Max Max
No
deadband 3.7 0.18 0.5 0.02 3.1 0.13 1.36 2.7 0.039
used
case #1
20% saving 3.7 0.18 0.5 0.02 3.1 0.12 1.36 2.7 0.036
case #2
40% saving 3.2 0.15 0.54 0.02 3: 58 0.12 1.36 2.7 0.040
case #3
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No
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used
Figure 4-19

Maximum deviations corresponding to the different deadbands used with conventional AGC
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in the number of control signals sent to power plants. The larger savings
are obtained by using deadband regions derived for models to which a
relatively sizeable artificial noise was added. But figure 4-19 shows no
significant change in the maximum deviationsof the original model variables
as compared to those when no deadband is used. This, again, is essentially

due to the conservative nature of the ellipsoidal bounds.

One can note, in passing, (from figures 4-11 to 4-13) that the main
effect of the control here, is to reduce the maximum deviation in area inter-
change of energy from 0.14 pu for the uncontrolled system to 0.04 pu for
the controlled system. This is done at the expense of sometimes larger

deviations of the other variables of the system.

Finally, recall that one of the assumptions which lead to the linear
model at hand was that the values of the power plant turbines do not hit
as given by the

their limits. ( +£0.065 pu for G, and G_, £0.01 pu for G

3 2F
source of the data of figure 4-1. [5]). Now the plots of Awl, sz and Aw3
show that this is not the case here. However, as was already argued above
for Afav, the load disturbance bounds, chosen in section 4.2.3, are much

larger than in actual situations and scaled down results would be obtained
with more realistic conditions. Moreover the main purpose of this study

was to investigate the potential of the control strategy proposed in Chapter

3 and any further research will definitely have to take into account the



problem of valve limits.

To conclude this section, note that conventional AGC is, in effect,
a feedback of only two variables: the integral of frequency deviation and
that of tie-line power flow deviation. As a result, one would expect
further savings when the control signals carry more information about the
system. This is the motivation of the next section where a full state

feedback is used for control.

4,4 Full sState Feedback Controller

4.4.1: General description

Optimal linear regulator theory is found in many standard references
in modern control systems (e.g.[13]) and has been frequently applied to
power systems (e.g.[2], [3]). One can summarize the results to be used here

as follows:

Given a linear time invariant system represented by

x(nAt+h) = Ix(nd) + Bu(nd)

and a quadratic cost function of the form:

_ Z [x'(nd) Q@ x(nA) + u'(nd)
J = = =W — -
n=0

R u(ni)]
oy

where gw and Ew are respectively positive semi - definite and positive
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definite weighting matrices of proper dimensions, the control law which

minimizes the cost function J is

u(nd) = K x(nl)

where the feedback gain matrix K is given by:

(4.9)

|t
i
+
S
| 1
| e
]
e
1)
| o
|
1%}
|w
+

4.4.2 Design

The choice of the weighting matrices gw and Bw is the mpost subjective
factor of such a design and is guided by the extent to which deviations of
the different state variables and controls are to be minimized. Following
Glover's example [3], Qw is chosen at this point such that xl3 and xl5 (i.e
Af_ and fAPtie) are equally penalized , X, (A6 ) is penalized to a

lesser extent and x. through x,.. are not at all. This choice, given in fig.

1
4-20, will be later modified.

12

As for BW' it is chosen such that the control signals are weighted
more heavily than the state variables. Taking also into account their
relative orders of magnitude (from the simulations of the previous section,
say) a first choice for 5,\7 is 0,01 X I But then, solving Egs.

—=3X3

(4.9) for K and evaluating the eigenvalues of the resulting closed loop
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matrix Ecﬂ = ¢ + B K yields a pole at 0.95. Arguments similar to those
used for the root locus study of section 4.3.2 show that the choice of B
for eq. (3.11) would therefore be limited to extremely small values. As a
result, the diagonal elements of Bw are decreased until the largest closed
loop pole is at 0.83. As before, this then allows a B of 0.3. The new

matrix Bw is also given in fig. 4.20.

Following exactly the same steps of section 4.3.2, Eg. (3.11) is
then solved for Ess' Using this last result Eq. (3.12) is solved with
several values of 0. Comparing the eigenvalues of the different matrices

EC a value of o is then chosen to be:

o= 1.2

-8
A whole set of results is given in fig. 4.21 for g = 510 .

4,4,3, Simulations

A set of simulations, equivalent to those of section 4.3.3., can now

B 7, 5><10_6 and 5><10-5 are given

be performed. The results for q=SX10_ i 5%10
in figures 4-22, 4-28, 4-29 and 4-30 respectively. Plots of Afav' Adav’
J.APtie' APMl and AWl, corresponding to the first run, are also given in
figures 4-23 to 4-27. The maximum deviations of the variables of interest are

given, for all four runs in fig. 4.31.

The simulation results show reductions of succesively 42%, 60%, 78% and
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58% in the number of control signals. A comparison with the results of the
conventional controller (section 4.3.3) shows that for a same value of

g, i.e. for the same amount of artificial noise added to the model, one
gets a larger deadband region and therefore a greater saving in control
action. As a result, and as confirmed by figures 4-19 and 4-31, greater
savings in control action are obtained for egqual or even smaller maximum

deviations in the output variables.

An exception however, is for the last run where even with a larger
deadband region more control action had to be taken as compared to the
preceeding case. This indicates that at some point, it no longer pays to
enlarge the deadband region; because then, trying to decrease control action
further results indriving the states more often out of this new deadband

region and the purpose is defeated.

Here also, the plots show that the main effect of the control is to
reduce the maximum deviation (from schedule) in area interchange of energy.
Because no weight was assigned to the first twelve variables in the choice
of Qw’ this is still done at the expense of larger savings of those
variables. But now, the maximum deviation of sz in particular is much
larger than in the case where a conventional controller is used. It is
therefore felt that the arguments pertaining to this problem in section
4.3.3 do not hold here, and another design is carried out with a new weight-

ing matrix . The first twelve diagonal elements of are now set to 0.1
g
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and the fourteenth to 0.5; the frequency and tie-line interchange

weights are kept at the same value 1.0.

- -6 -
Then, simulations are run with g=5%10 7, 5%X10 and 5X10 ¢ and

results are given in figures 4-32, 4-33 and 4-34. A sample plot of
fAPtie is given in figure 4-35. The three curves, plotted on the
same graph for comparison, correspond to the behavior of X5 when no
deadband is used (continuous control action), when the deadband designed
with q=5XlO-6 is used (54% saving in control action) and when no control

action is taken at all.

Finally, figure 4-36 shows the maximum deviations of the different
variables for the new set of runs. Now the deviations of Awl, Aw2 and
Aw3 are brought down to levels comparable to those of the conventional

design but it is only for the last case that we have a greater saving

(88%) for equivalent maximum deviations.
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Figure 4-29 Simulation #7
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Figure 4-30 Simulation #8 (q=5XlO_5)
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Figure 4-31

Maximum deviations corresponding to the different deadbands used with full

state feedback control
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Figure 4-32 Simulation #9 (q=5XlO_7)
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Maximum deviations corresponding to different deadbands used with full state feedback control

and modified Qw



CHAPTER 5

CONCLUSION AND SUGGESTIONS FOR FUTURE RESEARCH

In this thesis, a linear-plus-deadband controller is implemented on
an average system frequency model of a power system. This model essential-
ly ignores the relatively fast dynamics of the intermachine oscillations
Furthermore, normal mode (non emergency, operation is assumed and only un-
known-but-bounded disturbances of the loads are considered. As for the
linear part of the control, two avenues are taken: conventional AGC and full
state feedback. The deadband is imposed on the controller for both cases.
Its design is based on set-theoretic relations which are then translated

to relations between bounding ellipsoids.

When applied to a simple working example, computational problems, link-
ed to the form of the average frequency model, are encountered. These are
solved by adding fake noise to the model during the design process. Owing
partly to the conservative nature of the ellipsoidal bounds, this additional
degree of freedom results in sizeable savings in control signals. The
deviations of frequency and tie-line flow between areas are not significantly
increased as compared to the case where no deadband is used (i.e.the control

action is continuous). Moreover, slightly better results are obtained for the
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full state feedback deadband controller.

The main criterion used all along, is the maximum deviations of the
variables of interest. However, in actual situations this is only but one
of many other considerations and as high savings as 88% (simulation #11)
may not at all be feasable or even desirable. But it is only meant here to

illustrate the promissing potentials of such an approach.

It is therefore suggested that future research along those lines
should take into account important non linearities such as the turbine
valve limits, and be extended to include a full blown nonlinear simulation.
It has also been assumed all along that the state variables are perfectly
known. In particular the average frequency is not a directly measurable
physical variable. A state estimator should therefore be included in a
further study. Finally, an extension of the deadband controller design to
situations where the loads have different models (superimposed steps,

ramps...) seems also necessary.



APPENDTIX

This appendix presents the relevant mathematical material for Chapter
3. It is composed mainly of extracts from Chapter H and Appendix H of [10]

and from Appendix A of [11].
1. Ellipsoids

An ellipsoid { with center m can be defined by

Q= {x: [x-m]" _I:—l[_:s-g] & 1} (a.1)

where E_is a positive definite matrix. The direction of the axis of {1 are
determined by the eigenvectors of E_and the lengths of the semimajor axes
of {1 are equal to the roots of the corresponding eigenvalues. (Appendix
H, [10]). The eigenvalues of I' thus give an idea of the thickness of the

ellipsoid in the corresponding directions.

Let 2 = )x: (x-m' E_l (x-m) <1
51 : Kl—dlmen81ona1
2, = x=x=§zi£r5€91

x|

Y : Kz-dimensional
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Then, (Appendix H, [10])

In chapter 3, the ellipsoids of interest are centered at the origin and

the transformations encountered are of the form Y = H x. Under those

conditions

R,= Jy:y @IEY ty<1

IfHT H']"ldoesrnot exist,gy is defined with the aid of support functions.

2. Support functions:

The support function s(Ip of a closed convex set {I is defined by

s(n) = maximum (x'N)
UVx e
nn =1

and the set ) can be expressed as

Q: Jx:x'n <s( Vﬂ,ﬂ'ﬂ=1)s

(see Fig. A.I)
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Let Ql and 92 have support functions sl(jp and 52(Ip respectively,

and let

Q Q Ql(:)ﬁz é ! X :

E

%
[l
"
+
"
<
X
m
0]

=
<
»
m
=2

Then, the support function of {l is (Appendix G, [10])

s(n) = s;(0) + s,(0

Moreover, 92(: Ql if and only if

s,( <s; (M Vn

a vector 1 such that Df =1

Support Hyper plane
of 2, Llto o

Figure A-1 Xy

Example of geometry of support funtion (Fig.G.2,[10])

(a.2)

(A.3)
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Finally, the support function of the ellipsoid given by (A.1l) is:

1
= A.4
3 (A.4)

3. Bounding ellipsoids ([10]1, [11])

Let Ql and 92 be two ellipsoids as defined by (A.1l) with m;, = m, = O.

In view of (A.4)

1
o ' 2
sl(ﬂ) =@ I, n (n.5)
L
s.(m = (', m?
2= - =2
Let § = Ql(:)ﬂz. Then (A.2)
1 1
7 2
s(m = (' _1”_111) + (n' £2 is)) (A.6)

is not in general the support function of an ellipsoid.

Using H older's inequality

2 1 2 1.2
(bl + b2) il I:E b, + E b2

1
(A.6) gives:
1
2
E2) n_] =5 (D

s(n) < {n_' (1—_1_-5-21 +

™|+
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In view of (A.4), Sy (n) is the support function of the ellipsoid

1

1l
%
1%

(%

1 1

1
_I_'bl _]._-'_ +-B- T (n.6)

\ 0 <B <1

and in view of (A.4)

e
|

= 2,(D9,C le

so that Qb is an ellipsoidal outer bound of (.

Refering to the dynamic system of chapter 3, let

x(nA+h) = Ecgﬁ(nf_\.) +Gw (nd)

where
wmt) €@ = {wiw g w<l )
and let
Qx(nA) be the smallest set that contains x(nd), Vw(kd) € Qw’
k=0, ... n-1.
then

Q_(nd+a) = 8 o Q (nb) (DG 2,
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Lf gcz is stable, Qx(nA) will reach a steady state value Qx(ss) given by

Qx(ss) = Ecz Qx(ss)(:) E_QW

In view of (A.6), Eq.(3.1l) of chapter 3 then follows.

Suppose now QZC: Ql or, equivalently, Eﬁ - EQ > 0 (from A.3 and A.5).

Let

be an ellipsoid such that

sabz @ QZC 2, (a.7)

From (A.6) we must have

T
-2 —b2
g T R
B 1-8
or
Zb = ~EL-£1 -a EQ where o = & 1 (A.8)
2 1+0 B

and since Ebz

0 and 1 or equivalently o any value between 0 and =,

must be positive definite B cannot take any value between



- 115 -

We then must have

o
— T, -al_>0
T —2

or
I, - (+w) [ >0 (2.9)

Let @ be the matrix such that Q' I‘_z © =1 (i.e change coordinates
such that 822 is transformed into a shpere of unit radius). Then (A.9)

becomes

Qr E—l 0 - (l+o) I>0 (ar.10)

Let V be the matrix of eigenvectors of Q' El ©. Then y_-l o' -I;l Qv is
diagonal and the diagonal elements are the eigenvalues of 0O' _1:'_1 © . Then

(A.10) becomes

(vler,ev)-@+mr>o

or

g ¥ - 1:| (A.11)
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Geometrically, this means that if o is increased beyond a certain
limit one cannot find an ellipsoid which satisfies (A.7). This is because
EQ (weighted by o ) is more amplified than Ei (weighted by E%a-as a
increases, and the "fit" is too close.

Referring again to the system of chapter 3, Eg. (3.12) follows now

from (A.8) and (a.11).
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