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ABSTRACT

In this thesis, a linear-plus-deadband controller is implemented on an

average system frequency model of a power system, under normal mode oper-

ation, and where only unknown-but-bounded disturbances of the loads are

considered. The deadband is added to both a conventional AGC as well as

a full state feedback control ; its design is based on set theoretic re-

lations which are then translated to relations between bounding ellipsoids.

Computational problems are solved by adding fictitious noise to the model

uring the design process. This additional degree of freedom results in

sizeable savings in control signals. The deviations of frequency and tie-

line flow between areas are not significantly increased as compared to

the case where no deadband is used. Moreover, slightly better results are

obtained for the full state feedback deadband controller.
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CHAPTER 1

INTRODUCTION

The oldest and most widely used power system central control is

Automatic Generation Control (AGC). It is essentially a feedback of tie-

line interchange power and system frequency which, integrated, provides

an appropriate supplementary control signal to power plant governors

when a mismatch between generation and demand occurs [1].

More sophisticated AGC laws, using modern control theory techniques,

have been investigated during the past few years. Most of them, inspired

by the success of the Optimal Linear Regulator, have called for a linear

feedback of all the state variables of the system while attempting to

minimize some quadratic cost function. Examples of these are given in

2,37.

Also, a refinement of AGC, the "Error Adaptive Control Computer"

4], has reduced inefficient control commands sent to power houses and

is presently often used.

The purpose of all those ideas was two fold. On one hand, the goal

was to improve the normal AGC function of keeping frequency and tie-line

power flow within scheduled limits by feeding back additional variables,

resulting therefore in a "smarter" control signal. On the other hand, it



was also useful to reduce wear and tear on control equipment (turbine

valves) and the inefficiency of continuously pulsing machines by ignor-

ing random disturbances which would anyway be eliminated by the natural

damping of the power system. Moreover, it has been observed that in

several instances conventional AGC needlessly pulses machines up and down

9]

From another point of view, the difference in magnitude of time

constants associated with different elements of a power system suggests

different dynamic models. And, in connection with AGC, predominant interest

should be given to the slower speed dynamics by ignoring the much faster

individual intermachine oscillations. The "Average System Frequency" concept

is one such way to approach to problem and has been already presented in

several instances [5,6].

This thesis proposes to investigate a control strategy based on the

ideas presented above. The motivation for that is the ultimate aim of

designing an average frequency trajectory controller which would have, in

the normal mode of system behavior, the desired performance of:

following the long term changes in demand while ignoring small rapid

variations.

keeping frequency (and time) within limits.

keeping tie-line flows (and energy) within limits about schedule.

causing a minimum number of changes in turbine valve positions.



— ¢

A brief outline of the different chapters of the thesis is presented

below:

In chapter 2, the average system frequency model is presented and

jerived for a specific test example of a two areas - three generators

interconnected power system.

Chapter 3 presents the control strategy to be used. The derivation

involves the use of different sets and it is found useful, for compu-

tational purposes, to derive ellipsoidal bounds to those sets. A simple

two dimensional example is given to illustrate the problem before going

to the more abstract geometry of the fifteen dimensional test system

modeled in chapter 2.

In chapter 4, a hypothetical set of data is chosen for the two areas-

three sources example of chapter 2 and the resulting continuous time model

is discretized. Then a linear plus deadband control is designed, first

using conventional AGC for the linear feedback, and second resorting to

optimal control theory for a full state feedback. In both cases simulations

are run and results discussed.

Chapter 5 draws a general conclusion to the thesis and provides a few

suggestions for future research.



CHAPTER 2

AVERAGE SYSTEM FREQUENCY MODEL

2.1 Introduction

In general, one can distinguish three parts in a power system: the

power plants, the transmission network and the loads. Also, each one of

these parts could lend itself to quite detailed mathematical models involv-

ing a large number of nonlinear differential equations. But, if a model

is to be of any practical use, it has to be simplified in most of the

cases to retain only the significant features relative to the problem at

hand.

The purpose of this chapter is therefore to obtain a state variable

model, i.e. first order differential equations, of an interconnected power

system, making it possible to use modern control techniques. Moreover,

this model should retain only the slow speed dynamics of the system since

the rapid intermachine oscillations are not the concern of the control

problem under study here. Finally, in view of the control strategy which

vill be used later, a linear and time-invariant model is also sought.

[t is with those requirements in mind that one can proceed in

developping the system model.



10 -

2.2 General Description

2.2.1 Power Plants

Different energy sources can be used to feed a power system. The

only one to be considered here is the fossil-fuel steam boiler source. A

common simplification is to neglect the boiler dynamics which are much

slower than thoge of the remaining parts of the system but to include the

boiler effects on the reheats. As a result, the turbine-governor model

presented by Chan, Dunlop and Schweppe [7] is chosen to represent the in-

cremental mechanical dynamics of the power plants. Mechanical deadbands

are neglected and the bloc digram is shown in figure 2.1. The different

h
parameters, for the kt power plant are:

Ry, : droop of the speed governor

Pe, i time constant of the speed control

2, i time constant of the steam bowl

Px’ time constant of the first reheat

Ty i! time constant of the second reheat

Yar, Jo" in «+ upper and lower margin of power due to valve limits

Af, (t): frequency deviation from 1 p.u (60 c/s)

op, (BE) : total change (in p.u) in mechanical output power.

Also, the equivalent representation of the turbine-steam bowl model

suggested by Grandez-Gomez [5] will be used. The model is shown in figure
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2.2 along with the expressions for the new gains.

On the electrical side, the generator will be considered as a

voltage source of constant magnitude. This is also common practice since

the voltage regulator/excitor loop is much faster than the mechanical

turbine loop.

Finally, the mechanical and electrical models are connected by the

1sual swing equations, which, for the xP power plant, is:

VL
Py

aAf
__k = Ap - Ap - Pp

dt M, k E,k D,F

i i i Co. h

where My 1s the inertia coefficient of the K* generator

: : ; . th

Ap, K is the change in mechanical power delivered by the k

turbine (per unit)

AP i (8) is the change in electrical output power of the ,th

generator (per unit)

&gt; = . . .

ox (B) Ky Ep (6) is the damping power with “ Ck! the damping coef-

ficient.

Using the parameters of figures 2.1 and 2.2 the equations of the pF

power plant can now be written:

x

nw, - 1 My, A
Ts.x\ Bx k

-

LC - mn)
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(2.4)

(z 5)

and those will have to be combined with the equations of the trans-

mission network to be developped next,

2.3.2. Transmission network:

In general, the real power flowing into a transmission line from bus

i towards bus m can be expressed as:

 kk

P. = Re ] I.im i “im

where, in phasor notation,



18

— +304 ,

y, =Y, e JYim is the i-m line admittance

im im

— -703

v. = V.8 301

I,
im

then, P. =
im

Re /
\

Re

is the conjugate of voltage at bus i

is the current in the i-m line

a1( -58i 3684 3m\ J3%im
v.e Y. V.e - V e e

i im i m

) 30im 3 (81m=81+6m) |
Y. V, e - YY, V.V e

im i im im

I

2
Y.V, cos 0, -y: 8, -6. + 6
 1 im Yim cos im 1 m

It is therefore to linearize and simplify this equation that the

following assumptions are now made. Those are also of standard practice

when a linear model is needed to replace a more exact load flow study [8].

Assume, first, the transmission lines to be modeled by a pure

reactance, thus, neglecting in effect the real power loss in the transmis-

m

sion network. As a result 0m = -3 rad. and we get:

Pp. =Y. V.V sin (§. = 6)
im im i m i m

second, assume the magnitudes of the voltages to be all aproximately

equal to a same value V and we get:
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2
Pp. =Y. V sin(§. - §)

im im i m

Finally, assume the differences in phase angles § to be small enough

SO that

Pp, =1Y, v2 (6. - 48)
im im 1 m

(2.6)

And now, in a network containing N, lines and Ng busses, a linear

relationship between the line flows and the bus powers can be found [8].

L~o P. be the N, -vector of line flows P,
a t im

Y be the N XN, diagonal matrix of line admittances Y,
a t t im

S be the (N, -1) -vector of phase angles with respect to the

reference bus

A be the NX (N, -1) reduced bus incidence matrix

PB be the (N, -1) -vector of bus powers, omitting the reference

bus

The elements aa of A are:

a, =+1 if transmission line i is connected to bus j and direct-

ed away from the bus.

2, .=1 if transmission line i is connected to bus j and
direct-

ed towards the bus.

a, ;~0 if transmission line i is not connected to bus
3

From equation (2.6)

2
P - {2.7



L /

On the other hand, conservation of power yields:

Pp =a Pp
~3y dp wd

Substituting for P_:

p =v? [AL Y A116
— -— —t—x-

If the network has no isolated buses and since a reference bus has been

used, it can be shown [ 8 ] that B = (a, YX, al has an inverse

Then

31,

5
he

—— 1

CB,

T -1

2.4.3, 13, %:. 01 3&amp;4

Since the relations above are linear, they are aslo valid for

deviations from nominal values. Thus:

T -1

pp, =, A [A ¥ AT AR
0 2.8)

and this will be connected to the power plant equations in section 2.3.

A model for the loads is still needed to complete the picture.

2.2.3 Loads

In general, transient characteristics of the load at a bus k, are

a function of fr Vi fe Vir But since a slow speed dynamics model of

the system will be set up, "constant" power loads will be assumed so that,



iR]

if bus k is disturbed

m

I. i
+) = P. (nominal) ob Ap. (E)

where no explicit dependance on frequency or voltage is retained.

Now the issue of modeling load disturbances Ap k(t) is a very

delicate one, since those actually depend on a great number of factors

(location, time, customers, accidents, etc...) This is why, in most of

the simulations, simple test models are used, such as steps, ramps or

completely random disturbances.

To be able to set up a simple regulator problem, load disturbances

are chosen as "unbiased uncertainties". Possible models would be a white

Gaussian random process or also a completely unknown-but-bounded in

magnitude function[10]. Due to the structure of the control strategy

which will be used later the latter model is chosen for Ap (8) .

2.3 Average System Frequency Model

The average system frequency concept has often been used to study

the slow speed dynamics of an interconnected power system [5].

Using the same definiti , andg initions for M, AP, yo APL Pox as above

for a system containing N_ generators, let:



10—-

M

AP, (£)=

Ap... (t)=

Pn (B=

The

N
g

&gt; My be the total inertia coefficient of the system

k=1

N

g

&gt; AP, i (8) be the total change in mechanical input power
k=1 ’

N
g

&gt; Ap i (8) be the total change in electrical output power

k=1 !

N
g

&gt; P (t) be the
= Dk

A=n.zion of the average system frequency deviation is

Ng
Af. (t)

Af (t)
yor

rar+)

It is the weighted average of the individual frequency deviations

of the system's generators, with the inertia coefficients as weighting

factors.

Also, in view of equations (2.5) and (2.9) one gets the relation:

JAE (¢)
——— Ap (t) - Ap (t) - Pont)M_ (2 20)

1b

which does not contain, so far, any additional approximation.

Now, an average system frequency model can be obtained by neglect-
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ing the effects of (Af,-AF J) throughout the power system.

2. 3.1 Power Plants

The mechanical power output of the kth turbine Ap, Kk is a function
7

of governor action and therefore of Af, . If, in the governor-turbine

model, Af, is replaced by Af , the implicit assumption is that Ap, jc TOW
av ’

depends only on Af v' One can argue, in support of this, that,if the
a

disturbances are such that the system remairs in synchronism, and the trans-

mission system is not too weak [6], (Af, AF) is a high frequency oscil-

latory quantity relative to the large time constants of the turbine, and

tends to be filtered out as a result.

A similar argument holds for Py I

showing explicitely the dependance on Af , Equation (2.10) becomes,
asr

using the above assumptions,

Vi
AE (t)

—— =0p [Af (£)] - Ap (t) =P [Af (t)] (2.11)
8

f.

As for Pp (t) , the total electrical power output of all the generators,

since we are neglecting the losses in the transmission network, it depends

on the total electric power delivered to the loads Pon(t)i and here again,

it is "physically reasonable" to assume dependance on the average frequency

arav.



 so. 7
es

As a result, the By swing equations are reduced to an approximate

single one for Af and equations (2.1) to (2.5) become, for the 0

power plant:

Aw k 1 Af ay i

Jt s,k Ry

(z  oq2)

(

| kK
Nin yk

*

M &lt; Aw, &lt;M
min, k k max,k

Aw,
*

&gt;
Aw, -_— Yu kK (2.13)

Aw. &lt;M,
kK — min,k

d. ] C . } A } MA
J = 1,2,3 (2.14)

Ap

3

&gt; ap ;
bed "j,kk

(+.15)

AA 1

ay

dt M

| AP [Af (£)] - Ap. (£) - Por te, 0) (2.16)
|
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This average system frequency model for the power plants, coupled

to a nonlinear AC load flow solution for the transmission network, has

been tested (see [5]) and shown to be an effective model for slow speed

system dynamics. However, in view of the present task of putting together

a linear model, the next section will develop a linear load flow study,

considering real power flows Only.

2.3.3 Transmission Network

Substracting

M =
Jt

(2.10) from (2.5) one gets the following relation:

My
(Af, -Af = APY x” i W [AP =OP Lr ~Prm]

On the grounds of the same assumptions used already one can argue

[see appendix D of [6]) that, integrated over a "period" of oscillation

of (Af, -Af_) , the left hand side vanishes. But the expression on the

right hand side is much "slower" than (Af, Af) and can be therefore

considered as constant over the period of integration. In other words, to

a good approximation:

n; M,
J oi - — [AP -AP_-P

APL1=BP Ph x M, [OP yp Far Fp
(2.17)

Now, for every bus of the transmission network described in section

2.2.2 the change in bus power Ap. . is equal to the difference in changes
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of electric power Ap i generated at that bus and load Ap i connected
’ ’

to the bus.

30

AP 4 = APL 4 ” Ap,

Substituting (2.17) for Ap 5

M,
1

, = — .  m— AP - - P - A .

AP, Ay, 5 rl M MT APL DT Pri

But since the power losses in the network are neglected:

“b

2 Ap, = AP,\ ©
~T

and

M,

AP. .=AP .-P ,-—=1[AP -AP. -P - Ap |
b.1 M,1 D.,1 M MT LT DT ] L.,1

So that, in view of (2.8), changes in tie-line power flows can be

sxpressed as a function of changes in mechanical and load powers.

2.4 Model of an Interconnected System - A Two Areas - Three Sources

Example

The different parts studied above can now be assembled to construct a

linear, state variable, average system frequency model of an intercon-

nected system. The working example will be that shown in fig. 2.3.
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To obtain a totally linear model, the valves of the power plant

turbines are assumed never to hit their limits. Once the control design

is carried out, one can go back and check the validity of this assumption.

Note that only normal mode operation of the system with no emergency

type disturbances occuring is under study here.

Damping power will also be neglected for simplicity.

With those changes in effect, equations (2.12) to (2.16) show that

sach power plant requires four states of its own. All power plants share

a common fifth state: the average frequency deviation. Two states, the

integral of average frequency deviationand the integral of tie-line

power interchange between the two areas are added to the model, in view

of the AGC action which will be used later.

Tie-line power interchange is

AP.Lo = AP, + Ap, 4

Using the developments of sections 2.2.2 and 2.3.2, with

3

nig

Ap
12

AP. ,

 1D

"13 9

7 na

AP,

L_

Ap
24

AP
34

J 7
J /]

1
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and bus #4 as the reference bus, so that

AP
bl

 gp1

\[

AP
b2

| 20b3|

AP. Cod

i’
3

N

0

0

-

+1 -1

+l 0

0

 To

- ]

0 +1  ~-

0 +1  ND

|
0 0 +1

0D Ap,

0 1]
T -l

Y A [A YB 17 8p

AP... =

AP, ie [CC C31 By

M
1

| ey, - i, (#21 - te) - AE. |

I

M, 1
c, |. - m (422m - 2p) - Ae, \

Lc, i,
| As - W_ (42 - w,) - AL

 _-

J

La
i 3 { ae,

AP
M2

AP a

 dh

1 a = = al AP
1

1

Ap
2

apg

LY |



7
l.

wt-— sat

— a. C.
1

3

&gt; CM.
i=1 i = 1, 2.5 3

i...

3.

J

&gt; CM.
i=1

M.

Remark: the result should be independant of the choice of bus reference

since network losses are neglected and a linear model is used.

Finally, the control signals act directly on the governor servo, as

shown in fig. 2-4 and equation 2.12 becomes, when a control is applied:

Aw, _ 1 Af v uy

wr |= tM) tTs,k Py s,k

The model can now written in the form

k(t) = A x(t) +B u(t) + GG A P_(t)
Song — — —_— - -_ —L

where A, B, and G, are given in figure 2-5 and the physical interpretation

of the state variables is given in figure 2-6.

Note: There has been increasing interest in the idea of aggregation in

connection with the study of large scale systems (e.g. [15]). In

relation to that, the model developped in this chapter can be

considered as an approximate aggregation, based, though, on physical

assumptions and approximations.
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Figure 2.6:

Physical Interpretation of State Variables



CHAPTER 3

CONTROL STRATEGY

3.1 Introduction

In the modeling process of the previous chapter, individual inter-

machine oscillations were ignored by using the average system frequency

concept , This chapter concerns itself with the problem of reducing the

number of signals sent to power plants and therefore causing a minimum

number of changes in turbine valve positions. The motivation for this is

of course the resulting reduction in wear and tear on control equipment

and, moreover, the increase in efficiency in the operation of the turbine.

The problem is dealt with by using the linear-plus-deadband control

concept [3,11].

Because of the sampled data nature of AGC, as presently used in the

power industry, it will be found convenient, in the next chapter to

convert the continuous time model of the system into a discrete time model

before going further into the design of a controller. Therefore, the

discussion in the present chapter will be based on a general discrete time

linear system.

Moreover, in view of the aim of finding a deadband set for control

action, space sets containing the state variables will be considered rather

than assuming a probabilistic structure.

3,
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This is why the load disturbances were chosen, is section 2.2, to be only

set constrained.

In the sequel, the control problem will be stated and the logic

behind the strategy will be first presented with set theoretic relations.

Then, equations giving more manageable bounds to these sets will be

developed to match the working model assembled in Section 2.4. Finally a

simple numerical two dimensional example will illustrate the different

steps of the design procedure.

3.2 Linear - Plus - Deadband Control

3.2.1 Problem Statement

“onsider the linear, time invariant system given in discrete time

tyy

X(nA+A) = @ x(nl) + B u(nl) + G w (nd)

y(nd) = H x(nd)

\-3. 1)

(2?)

where x(nl) is the N_-dimensional state vector.

u(nd) is the N_-dimensional control vector

w (nd) is the No-dimensional disturbance vector

y (nd) is the N,-dimensional output vector

®, B, G, H are constant matrices of proper dimensions.
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Let the disturbances w (nd) be unknown-but-bounded:

Find

v{nA)€ $00 0 is in ¥

a control of the form:

a(nA) SE
) k x(nd) , if

x(nl) £ £0

x(nd) £

(~ |")

( Yaf
LER]

1}

N

where {{_ is a deadband set in R , and such that

y (aA) c 9)
,

Vn n=0,1,..

where {} is a specification set in R

 nN

J

In other words, the control law is such that, if, at time nA, the

state lies within a certain deadband or switching region 2 no control

action is taken and if, due to the disturbances of the loads, the state

has drifted out of {2 a control signal proportional to the state is fed

back.

The problem is to design the linear feedback gain K and the deadband

set {2 such that, with a minimum number of control signals the vector of

outputs y we are interested in keeping within specified limits about

schedule (frequency, tie line flows), does indeed remain within those

limits.

At this point, and in order to reconnect the control problem formula-

tion with the task at hand of controlling an interconnected power system,



34

one can note the following.

Several approaches could be taken to design the linear part of the

~ontrol law (3.4). These include conventional automatic generation control

or, alternatively, a full state feedback linear regulator which minimizes

some quadratic cost function using optimal control theory. However, in

both cases, the closed loop should be of course stable. From Schweppe's

discussion [10] of dynamic systems driven by an unknown-but-bounded

disturbance, and for a time-invariant stable system given by:

x (nA+A) = 0 x(nd) + G w (nl) / w(nl) £ 2

the steady-state value of x(nd) will itself be constrained to some

constant set fo (ss) which depends on the dynamics of the system i.e.

the transition matrix 9, as well as on the "size" of 0, -

on the other hand, in the model derived in chapter 2, the regulated

variables, i.e. the frequency, the integral of frequency (time), and

the area interchange of energy, are included in the state vector so that

the matrix H of equation (3.2) is of the form:

H = {0 i

where I is the N, x Ng identity matrix.

on the grounds of those remarks, the control problem can be re-

stated roughly in the following manner:
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For the system given by (3.1), (3.2) and (3.3), find a control of

the form given by (3.4) such that:

N

i) the size of fog in R is maximum (minimum number of control

signals)

ii) © (ss; K) CQ
x |v = -

(3.5)

(3.6)

N
ym : . 0

where 8 is the specification set in R

N

2 |yi=S7 K) is the projection of (ss) in R ° down on to

(see appendix G of [10]) the N,-dimensional subspace of y.

Explicit dependance of the steadv-state set on the closed loop matrix

(and therefore on the feedback gain K) is shown.

3.2.2 Set theoretic relations

Two approaches to linear-plus-deadband control have been discussed

by Glover and Schweppe, [ll]; However, it is the first one that has been

found more suitable to the problem as stated above.

consider the system given by (3.1), (3.2) and (3.3); assume that a

linear control law

u(nd) = K x(nd) (.
-

7)

is chosen so that, for the closed loop:

x(nA+d) = (2 + B K) x(nd) + G w(nd) = 2.4 x(nd) + G w(nd)

(3.8)
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N
, . Ss

there exists a steady state set fo (ss; K) in R that contains x(nl) ’

Vn, and V w (nd) € $0 if the control (3.7) is applied for all n, and

which satisfies relation (3.6).

NN

Furthermore, let 2 be defined as the largest set in R ® that

satisfies:

9 hy ®c QC (ss; X)

where ® denotes a vector sum

ofn denotes the set {~ translated by ®

’ 3.4 y

= {0 x : x NV
LAA C

AS dd

G
= “'w

denotes the set { translated by G

{Gw : wef}
_— - wW

result, if x(n) e {rv and u(nd) = 0, x (nA+A) €_ (ss; K) and:

ss; K)
f z(t) ey

§
s; K) © y| ly

Finally, since y(nl)€ 1, (s8iK) as well, define the deadband set

2 3

(0  ON MN O (ss;¥)
tq=SN L0)

In other words, the deadband set §i_ is a subset of  (ss;K) such
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that, if at time nA it contains the state x (nd), one can afford not to

apply a centrol u(nld) and keep x(nA+A) in fo (s8;K) . It follows that using

the control law

uyaA)
—

2
)K x(n 7

x(nd) € a,

if x(nd) ££
\

vill give, for all n:

vo ~\ p- NL

And since 2 is chosen as large as possible, the number of control

signals applied will be kept at a minimum level.

Figure 3.1 illustrates the approach taken in this section.

Note that the design of K, using either conventional AGC or optimal

linear regulator theory, is not carried to maximize the size of {2

directly. It follows that the control law will be, in terms of the dead-

band, only suboptimal in some sense.

Note also that it has been implicitely assumed all along in the

development that the states of the system can be measured perfectly.

This has the advantage of simplifying the problem to concentrate only

on the performance of the linear-plus-deadband control. If found

promissing, this approach could be always extended to include a state

estimator.
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i here use \

. Q,(ss;k)
“a

u=kx
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\ /
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—

N,

\

Space RNs
Figure 3-1

[Linear-Plus-Deadband Control
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Finally, the set theoretic relations developped above are not suitable

for a computer design. On the other hand, ellipsoidal sets are defined

by matrices which can be manipulated on a digital computer. They are

therefore very practical from a computational point of view; and this

is why bounding ellipsoids to the sets of the previous relations will

now be derived.

3.2.3 Bounding Ellipsoids:

The relevant mathematical material to the subsequent development

is gathered from [10, 11] in an Appendix for the sake of completeness.

Consider the system given by (3.1), (3.2) and (3.3); and assume

2
 Ww

to be given by the following ellipsoid:

N

Q = {wer w' 0 Tw &lt;1)

where Q is a specified positive definite matrix.

If a linear control (3.7) is chosen so that the closed loop

system (3.8) is stable, then there exists (Appendix) a steady state

bounding ellipsoid 0 ,(ssi K) given by:

N

2 (ss;K) = {xeR =, x' T } x &lt; 1}
X,Db — oe —- — §8§ — —

2 (ss; K)Vv SC (ss; K)
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— 1 ' 4 '

where LA = (25 es I lo + EERE

where 0 &lt; B &lt; 1 is chosen so that Tes is positive definite

(71)3.

Note that B is a design parameter which enters the picture when an

ellipsoidal bound to the set Si (ss; K) is desired; and although, 2,

is itself chosen as an ellipsoid, fi (ss;iK) will not be one in general.

Moreover, equation (3.11) shows that a Bclose to "zero" tends to amplify

the effect of the disturbance bound whereas a B close to "one" tends to

amplify the dynamics of the system.

Note also that the ellipsoids considered here are all centered at the

origin since no deterministic quantities drive the system.

AS for +he outonut.

J
vb (ss; K)

(see Appendix H of (101),

ly er ©; y mT ut &lt;1
 ¥ ryt BL _H'DTy &lt;1

and condition (3.6) becomes

; C

te bly (557 K) £0,

N

Then, let {Vv be defined as the largest set in R ® that satisfies

AY
~

+ GQ cf (ss:
_— ty wv. b K)
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N

Since 0 is an ellipsoid in R =~ with matrix Q, its translation
N

GY is an ellipsoid in R ® with matrix GQ G' (Appendix)

Here again, although §0 p, (ssi KX) and Gi are ellipsoidal, in general

. _ ‘ys Co Co . : :

fo is not, If ( Tes G Q G') is positive definite, i.e. eb is bigger

than Gi, then an inner ellipsoidal bound {0 5 to $0 is given by (Appendix)

Ne -1
4" ={ x € R : x' IT "x &lt;1}
c.b - CC —

where ®I' ¢' =
og —

a

NL Cp

(01

140) vo m9 GQ G' (i 12)

0 &lt;a &lt;A; (OT 0) - 11&gt;0

A. (0 T ©) = minimum eigenvalue of O' T Q
min — =ss = — —ss —

0 is the matrix which transforms G Q G'

a sphere ( 0'G QG' 0 =1)

into

A derivation and geometrical interpretation of the limits on the

design parameter O are presented in the Appendix, Note that if (G Q G')

has not full rank, (0'G@G' 0) could be only of the form

oo
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Geometrically this means that the ellipsoid GS considered in the basis

defined by the eigenvectors of GQ G' , 1s flat in the directions correspond-

ing to the zero eigenvalues of G Q G'. This will be the case in the physi-

cal problem treated in chapter 4 and the parameter 0 will be chosen using

such geometrical arguments.

The deadband set is now

Q no nN 0 L(ssik)

Here again, an ellipsoidal inner bound to {, could be found. But with every

bounding process the design gets more and more conservative. This last

step can therefore be avoided by replacing the test:

x (nA) € 2

by the combined:

{

-1

x(nA) € fo p(ssik) x' I as x &lt;1

 rp

x (nA) € Ov x' rt x &lt;1
% co bh 2 ra ZL

)

\ J

in the linear-plus-deadband control strategy (3.4).

The design procedure can be now summarized by the flow chart shown

in fig. I="



Step (1)

Given: ¢, B, G; the moda:

Q &gt; O,; Disturbance bound

Step (ii) |
i

Design K (Conventional AGC
| ~ or optimal control)

Peps 2 +BK

Step (iii)

Step (iv)

Choose B and Solve for I's
- i ' | '

gs © 1-8 Peilss Pept B GQG

rop __—
Fr

Is Ia cceptable 7

y ~ry3

i Choose a and Solve for I.

dT d=- =" = 1&lt;+a Tss™@ $08

Figure 3-2 Summary of Design Procedure

A
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Note the similarity between equation (3.11) and the discrete version

of the algebraic Lyapunov equation where Loe and Q would be covariance

matrices rather than magnitude bounds. This similarity leads to the con-

clusion that equation (3.11) will have a unique positive definite solution

[or if and only if [12]:

1°

I=) &lt;2 i 1 gy
, 2 ® N

the pair | = 2.0 , 3 is controllable
1-8

where RB is of course chosen between 0 and 1.

As for equation (3.12), provided a is chosen properly (see previous

discussion), it could always be solved for r, since o is a result of a

discretization process and is, therefore, invertible; So:

 Lr =
mean(™

@” 1 2Tr -agoaG
1+0 —ss Se

dH 1
-—  h

LL

The design procedure described in this section will now be tried on

a simple two dimensional hypothetical system. The motivation for this, is

that some of the ideas are based on geometrical arguments and a two

dimensional example can be illustrated by exact figures. Those will give

a better picture of what the equations derived above represent before they

are applied to the fifteen dimensional model of chapter 2.
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3.3 A Two Dimensional Example

Consider the hypothetical system given by the continuous time state

variable model:

¥ (tt)

kit) A x(t) + B u(t) + Sw(t)

 Xp)|

Nr Te

A

«+ |

B_

|©
G
w—r

 Aq 0

|-1|

Its structure was chosen to present as close features as possible

to those of the model of figure 2.5. The first state takes the place of

the first four states of a power plant and the second state that of the

average system frequency deviation (or X,3 in fig. 2-6). The control u(t)

and load disturbance w(t), both scalars here, are applied accordingly.

A discrete time equivalent is now derived, lending itself to the

control strategy described in this chapter. The discretization is done

over a period A of two seconds and assuming u(t) and w(t) to be constant

over this period of time. This is to duplicate the discretization

which will be applied to the physical model in chapter 4 and where the as-

sumptions will be discussed and physically justified.
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-

i) 0=ec2b. ON

2
0a?

he”? 3.

3

|

Ll3

A

f= | e A(A-T) 40
nN

r A
A(A-e — T) at NEG

3

[
I -0.135 -0.270

0.270 0.406
1

[ 2672 1 .

1367 .

0.270]

0.594
.

-2 l
[1-36 _ me !

!

| 4 2.5 | 1.46

2 is here a scalar, arbitrarily chosen as Q = 1

GQG

pu

0.353

-0.867

-0.867

2.132

ii) Since this example has no physical meaning, K is also chosen

arbitrarily as K = [0 -1] for simplicity (the only requirement here is to

keep 2.0 stable). Then

® 0 = 9+ BK
© _0.135

0.270

-0.54

-0.188|
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iii) Again, choosing B arbitrarily to be 0.5

Pr

I
--g

u

| 3.73 -0.78
-0.78 5.34

a

Diagonalized, I' becomes
—sS

i
3.41

J 5.65

)

where vi, = 4/3.41 = 1.85 and VA, = V5.65 = 2.38 are the lengths

of the semimajor axes of 0 , (88)

Lv) GQ G!' has rank 1

Diagonalized, it becomes

0 0

where VA, = 4/2,49=1.58
0 2.49

L. _

In this problem both £0 b and G have the same axis. So, from the

geometrical discussion of the appendix,

9
2.28 v

Tg 1 0.51
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Taking a = 0.5

L

pl.

659 -409

-409 256
ed

i i . 3.

p(s) G S07 BN and ® are shown in figure 3
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Figure 3-3 A Two Dimensional Example



CHAPTER A

DESIGN EXAMPLE AND RESULTS

4.1 Introduction

In this Chapter, the linear-plus-deadband control law discussed in

Chapter 3 is implemented and tested on the average system frequency model

of fig. 2-5. First a typical set of data is chosen and the continuous

time model is discretized. Then, a deadband set is designed using con-

ventional AGC first, and full state feedback second, for the linear part

of the control law. Simulations are run for both cases.

All along, computational problems are met and discussed. The computer

programs written, use subroutines from Sandell and Athans[14] as well as

modified versions thereof to accomodate the discrete nature of the problem.

1 2 Specific test system

4.2.1 Continuous time model

The hypothetical set of data to be used for the power plants is that

used by Grandez-Gomez [5] and is shown in figure 4-1. Power plants G, and

G, of the system described by figure 2-3 are given the same set of values

while power plant G, has a much smaller generating capacity as indicated

by its inertia coefficient. The system base is 100 MVA and, of course,

20
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G,

G,

~~

3
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0.2 |
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Figure 4-1: Power Plant Data
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Lo,
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4,17

4.17

8.33

8.33

8.33

Figure 4-2: Transmission Line Admittances
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60 Hz for frequency. Frequency and powers will therefore be expressed

in system p.u. values.

As mentioned above, the transmission lines are assumed to be modeled

by pure reactances. Lines 210 and 13 of the system given by figure 2-3

have the same length and double that of lines L540 254 and Lig The per

unit values of the line admittances are given in figure 4-2.

Refering to figure 2-5, matrices A, B. and GS. of the continuous time

model can be now evaluated and are given in figure 4-3. Note that due to

space limitation, the elements of A are printed out in the Fortran

(1PE8.1) Format and are therefore shown here rounded off.

A brief discussion of the model structure is useful at this point

and is motivated by the computational probems which are encountered

and described later in this section.

Recall that states X14 and X. 5 were only added to the model in view

of their eventual participation to the feedback control action. The

open-loop dynamics are therefore such that these two states do not couple

back into the system and, as a result, do not affect the controllability

of the remainder of the system.

Consider now the submatritrix 25 obtained from the first thirteen rows

and columns of A. Due to the similar power plant parameters, Ala is of

the form:



MATRIX A

Jo 30-02
~

You Jel . le6D-C1 00 0.0 0.0 0.0 Ge0 0.0 0.0 d.0 0.0 0.0 0.0
,70-C1 0.0 -1¢40-01 0.0 0.0 0s 0 00 Oe 0 0e0 O.0 0e0 0.0 0.0 0,0

WU ‘0 -2.2C#00 4.3D-Cl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0 1.0 0.0 =-2.5C+00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -2.50¢02 0.0 0.0

 0 G0 00 0. 0 -Ge 50-02 00 0.0 le 60-01 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Cal 0.0 0.0 U.0 0.0 -1, 7-01 0.0 -1.4D-01 0.0 0.0 0.0 0.0 0.0 0.0 2.0

vo 0 0.0 0.0 00 0.0 0.0 =2.2D400 4430-01 0.0. __ 0,0 = 0s0 _ Qe 0 0: 0 Qe0 -

In 0 0.0 0e 0 0.0 0.0 0.0 0.0 -2.50¢00 0.0 0.0 0.0 0.0 -4,20401 0.0 . )
ra) 2.3 0.0 0.0 0.0 0.0 0.0 0.0 ~9,50-02 0.0 0.0 1.60-01 0.0 T.0 “x

0 Ge.0 0.0 Oe 0 Oe 0 Oe 0 0.0 00 0.0 1670-01 0.0 -1040-01 0.0 {,0
) Bot 0.0 v.0 D.0 0.0 0.0 d.0 ).0 J.0 ~2+20400 4030-01 0.0 0.0

4 1.0 0.0 2.0 3.0 0.0 0.0 0.0 J. 0 2.0 0.0 -2.50400-2.50402 (.0

0D-02 +,0D-02 3500-02 Uel “500-02 3,0C=02 3,00-02 0.0 100-02 1.00-02 3.00-02 0.0 . 0.0. . 0.0

Tew rs) 0.0 Jel De0 0.0 0.0 0.0 0.0 Ye 0 0.0 0.0 1.00400 0.0
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«173
 Dn

a, 0 0

0 A, Q

0 9 A,

'

| 2a at a 0

b

Cc

b

with a' b - a’ ¢ = 0 and b = 0c and where:

i) Blocks A, are identical and describe the dynamics of the four

individual power plant states.

ii) The 4-dimensional vectors b and Q describe the effect of the

average system frequency deviation on the power plant states.

iii) The last row describes the dynamics of the average system

frequency deviation as affected by the power plant states.

Furthermore, the four load disturbances affect the system through

Xe They could be replaced by a single equivalent disturbance w with

covariance (or in this case magnitude bound) computed appropriately

such that G, 130E; (nd) is replaced by €. 15 ag? (04) and where

~c,13 eq.

9,15x1
 1
L__

As a result,
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¥ i 2 i 1 12
! ¥ 1 1

| Sc, 13 eq. | B13 £., 13 eq. | 24 ge, 13 eq.) "°° 215 $13 os |

J b A,b
2

A. b

Q Cc A,Cc 2%
—

2

A,b0 b A,b

1 O 9
L

a'hAA, (2b+c)

is of rank 5 only (recall b = ac) and the pair

A, 3 Zc, 13 ed. s
is not controllable [12]

Under these conditions, the continuous time model was discretized,

and the design procedure described in chapter 3 was attempted. Details

of such a development are treated later in this chapter. What is to be

emphasized at this point, however, is that the resulting matrices I's

and I' , which respectively determine ellipsoids {2 (ss) and {¥v _ defined
—C Xx,b c,b

in chapter 3, were found to have a very large spread in their eigen-

values, going down to extremely small values. Therefore, from a numerical

point of view, the matrices were practically positive semi-definite and

their inverses could not be properly evaluated. This also corresponds,

from a geometrical point of view, to ellipsoids which are almost flat

along some of their axis.
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Now recall that the conditions for eq. (3.11) to have a positive

definite solution T are:
—gs

:

1i)

™ —1 2, | &lt; &amp;
MTR c

: 1

the pair | o opr 8 ( or {¢ Q C
/1-B c

+&gt; 8 0 N

&lt;

J

(stability)

1s controllable.

As a result, it seems that in the present situation the closed loop

system obtained by using a feedback control strategy retains some of the

properties linked to the uncontrollability of the pair {a, G} of the open

loop system.

Furthermore, controllability is, in a strict sense, a Yes-No type

of test without any comparative capabilities. Therefore, dissimilar power

plant parameter values would make the blocks A, mentioned above non-

identical and the pair {a, G} controllable. But since the parameters used

here have typical values around which actual values would usually be found,

the same computational problems are expected to arise if the parameters

are varied.

Hence, those problems are actually related to the structure of the

average system frequency model. This can be shown by a comparison with

Glover's model [3] where individual machine frequencies are retained as

state variables of the system. In this case load disturbances enter the

model through each one of these states and the present computational

problem is avoided.



 |

Therefore, and in order to obtain numerically more robuste bounds,

noise is artificially added to the models through all the previously un-

disturbed states. This will precisely "fatten" the ellipsoids of interest

and increase the eigenvalues of I' and I .
—ss —c

The new model has now matrix S. as shown in figure 4-4. The disturb-

ance vector is now labeled w as in chapter 3; Ap, sof the initial model

b . . .

ecomes Ww,4and Ap,AP os Ap, are implicitely replaced by the single

equivalent disturbance Wee This will be taken into account in the choice

of matrix Q which determines the disturbance constraining ellipsoidal set

2
‘ad

4.2.2 Discrete time model

As already mentioned in the introduction to chapter 3, because auto-

matic generation control is a discrete time control law, and because simu-

lations on a digital computer involve a discretization of continuous

variables in any case, it was found natural in this context to convert

the continuous time model to a discrete time model. The discretization

time interval chosen is A = 2 second, which is a typical value of the sampl-

ing rate for AGC, as presently used in the power industry. The control

signal u(t) is therefore updated every 2 seconds and held constant over

this period of time. For computational convenience, the disturbance vector

w(t) is also considered to be constant over the same interval and the

discrete time version is obtained as:
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where ( see

x (nA+4) = ® x(nd) + B u(nd) + G w (nd)

(12], for example):

(4. 1°

D

3

G

A
[ e A (A-T) | B.

ov

A A(A-T)
S/ ec — dart

0 Je
are evaluated and shown in figure 4-5. The discretized version of the

original matrix G, (i.e. without the artificially added noise) is also

~valuated. It will be used later in the simulations.

Furthermore the variables to be kept within limits are, as mentioned

previously SN Xa 4 and Xn Therefore

NEL”- ATa

y (A)

H =

x (nl)

1| O3x12 + 3x3 |

and the steady state limits on Y, = X537 Y, = Xi, and Yq = X)g are

respectively given by the square root of the last three diagonal elements

of I. (see section 3.2.3)
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4.2.3. Disturbance bound

Refering to the discussion in chapter 3, the perturbation vector w (nd)

is considered to be a discrete time white unknown but bounded process.

A time invariant ellipsoidal bound:

. { w(nd) : w' (nh) ot w(nA) &lt;1, Vn

is therefore chosen, where Q is a diagonal positive definite matrix, and

where the diagonal elements determine the magnitude of the perturbations.

110]

In the power system model considered here, the four loads are assumed

to be of the same order of magnitude (around 0.7 p.u. MW) and their pertur-

bations to be limited in magnitude to roughly 3%, or ap 2 &lt; 5x10” 4

For future reference, note that a load change of 0.02 pu is large compared

to changes usually observed. This value was first chosen for computational

convenience in an attempt to correct for the flat ellipsoids resulting

from the original model. It was left unchanged when the artificial noise

was added as discussed in section 4.2.1.

As for the magnitude bound of the thirteen added disturbances, the

corresponding diagonal elements of Qs 9s had to be increased up to around

-8 .

5X10 before obtaining numerically reasonable bounds. This value will be

further increased to study its effect on the design results.
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At this point, step (i) of the design procedure, as summarized in

figure 3-2, is completed and the procedure is carried on using either one

of the two proposed alternatives.

1.« Conventional AGC

4.3.1 General description

The basic Ieatures of conventional AGC are widely presented and

motivated, in the literature (e.g. [1], [3]) and can be summarized here

as follows:

Each area i of an interconnected power system computes its area control

2Y TOY

vhere

(ACE A

ACE
{t) = OF, te, (t) + BAL, (t)

Ap. (t) is the net deviation from scheduled values of tie-line

rower flow out of the area

Af

B

(t) is the deviation (from scheduled frequency) of

frequency.

the area

is a frequency bias coefficient usually chosen to match the

area frequency response characteristic.

Then, in each area, the control law u(t) is a piecewise constant

function which is proportional to the integral of the ACE
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t

/ IACE, (t) = va ACE, (T)dT

u.(t) = - K, [IACE “310

\ nA &lt; t &lt; (n+l)A ; A = 2 seconds

f [=

(' 2)

~

It is this control law which constitutes the basis for the choice

~f the discretization interval of section 4.2.2.

4.3.2. Design:

Refering to the model used here, only the average system frequency is

assumed to prevail throughout the system. As a result, for both areas

considered, Af,(t) is replaced by Af (t) . Moreover, form the configuration

of the system at hand (shown in fig. 2-3)

SO

Ap
4

chat, using

(t) = - Ap.
[

the terminology of fig. 2-6, (4.2) can be written as:

( IACE, (t) = x, (£) + Box, (t)
(

4
- 1)

i

( IACE, (t) = =x. (t) + Bx ,4(t)

And the control law (4.3) becomes:
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(
u, (t) = - K, [ x, (nd) He BX, , (nd) ]

u, (t) = - K, [ =x, ¢ (nd) + BX, , (nh) ]

Co = - K_ [ =X, ¢ (nd) + Bx,, (nd) ]

n4A t (n+1)A

or, in terms of step (ii) of the design procedure

Jd. aA) XK x (nl)

( / =)

( % 6)

where

K

 -

8 3X13

“B18

“KB,

-K,B,

-K,

&lt;,

K,
ww

Since a typical value for the area frequency response characteristic

under normal conditions is about ten per cent of total power generation

per Hz [3], and since the generating capacities of both areas are not too

different, B., and B, are both chosen as:

nn

B., = B, = 0.13X60 - 8 puMw/pu Hz

Moreover, the proportionality constants are also chosen to be the

same for both areas with the AGC in area 2 to be allocated to power plants
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G, and G, according to their relative capacities, i.e.

[*2 = 0.13 Ky

Now, in view of eq. 3.11 (to be solved in step (iii)) it was shown in

Chapter 3 that a necessary contition for a positive definite solution Los

to exist, is that

|X. (=5 da a) Co 15 ( 1 7)

where Ag (x) denotes the gh eigenvalue of x

(B is chosen between 0 and 1)

2. = ® + B K is the closed loop matrix with K given by (4.6)

A root locus study is therefore conducted, where the eigenvalues of

@ ol are computed and plotted on the complex plane for several values of

Xi starting with Ky = 0 (no feedback). Only the dominant eigenvalues are

shown in fig. 4-6.

)

~ondition (4.7) is satisfied if all eigenvalues corresponding to one value
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Yi

of K. lie within the circle of radius v1-B . Fig. 4-6 shows that, due

to the fixed pole at 0.83, B should not exceed 0.3 and that acceptable

values for K, are, for example:

2.4 &lt;XK

2

&lt; 3.8

“NC1}

for B = 0.3)

B= 0.2)
4.8 3

At this point, Eq. (3.11) is solved using the matrix G which cor-

responds to the actual model of Chapter 2, and K, taking several values

which span the limits given by (4.8). The values which minimize the steady

state limits on:

y H X

or, equivalently the last three diagonal elements of Ie (see section

4.2.2) are the values of K. and B which are retained.

In other words Ky is chosen such that 0, ALL defined in chapter
’

3, is roughly minimized rather than made to fit some specified f&amp;, as ideal-

ly suggested. This approach is used here because the load disturbances

bounds, chosen in section 4.2.3, are larger than in actual situations

and the degree of freedom in the design of K is much narrower.

The square roots of the last three diagonal elements of Ts are shown

in figure 4-7 for different values of K, and B. A good compromise is for:

) 6 2 = 0.3
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for which the steady state limits on Af__, AS__ and Jee , are
av av tie

- -3 } ]

t+ 4.25X10 3, +6.62X10 and #0.194 respectively (in p.u).

Note that those limits are bounds on the actual limits because of

the conservation inherent to the bounding process in which a bounding el-

lipsoid is used for the actual steady state set [Section 3.2.3]. As a mat-

ter of fact, in the simulations to be presented later, AE» for example

did not exceed £2x10 pu or +0.12 Hz. As expected, this value is still

larger than in real situations but since the model is linear, scaled down

results would be obtained with more realistic conditions; and since the

main object here is the study of the deadband control effect, the same

general conclusions would still be valid.

Using now Tar obtained from eq. (3.11) with the modified matrix G

and the selected values of Ky and RB, eq. (3.12) of step (iv) is solved

with o taking several values, starting with a=0.2. Rather than computing

directly the upper limit of O as suggested in Section 3.2.3, the iterations

are simply stopped when the solution I. which determines fo b defined in

Chapter 3, becomes indefinite (see geometric interpretation in Section

3.2.3 and Appendix).

The eigenvalues of
"

s, for the different values of 0 are given in fig.

1-9

The deadband sets defined by those matrices Tr, intersect one another

and it is no simple task to find the largest one of them. Moreover there
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is no obvious definition of what would be the largest. Therefore, and

because the eigenvalues are an indication of the "thickness" of the el-

lipsoids at hand, a good compromise is found to be 0a = 1.6

The four steps are now completed for a conventional controller and

-he whole set of results is given in fig. 4-9.

4. 3.3. Simulations

A simulation is performed using the original model (i.e without the

added noise)but with the matrices [ as and [ c derived in the previous

section (i.e. for the model with artificially added noise).

A random number generator is used to model the discrete time load

disturbances. Since those were assumed to be only unknown but bounded,

the standard deviation of the random numbers is chosen as the disturbance

magnitude bound reduced by a factor of three. Moreover, the same load

disturbance sequence is used in all the subsequent simulations.

Following the deadband logic described in section 3.2.3, the state

x of the system is tested at every step of 2 seconds. A first test insures

that x(nd) is indeed within the steady state set 0 , (58) (Numerically:

x! I x &lt;1), and a second test investigates wether x(nl) lies in the

; . -1

deadband region Tp (Numerically x' T x &lt;1) or not. Then, open loop

® or i i i® closed loop 2 of is used for the next iteration accordingly. The

outcome is shown in fig. 4-10 for 50 steps (100 seconds) and where:
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74

i) Column labeled TEST indicates 0 if no control action is taken and 1

otherwise.

ii) Columns T, and T, indicate the numerical outcome of both tests

mentioned above.

iii) MONITOR gives the total number of steps for which a control action

is taken.

As mentioned in Section 4.2.1, it is to make these tests Ty and T,

numerically possible that artificial noise was added to the model used to

derive [ and [' .
—S —C

Plots of Af , AS and for . are shown in figures 4-11, 4-12 and
av av tie

4-13 respectively. Plots of AP, Aw, Pu,’ Aw,» Pu,’ Aw (refer to fig.

2.6 for symbols) were also obtained; but since they follow similar patterns

only AP, and Aw are shown here, in fig. 4-14 and 4-15. The figures also
1

give, for comparison, the behavior of the corresponding variables when the

system is left completely uncontrolled.

Then, using the same values for Kv B and oa, larger deadband regions

; -8

are derived by increasing the added diagonal elements of Q from 5X10 to

5x10”, 5x10 ° and 5x10" successively. Simulations are also run using each

of those deadband regions and the results are given in figures 4-16, 4-17

and 4-18 respectively. The corresponding maximum deviations of the variables

mentioned above are given in fig. 4-19.

These results show reductions of successively 20%, 40%, 74% and 80%
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in the number of control signals sent to power plants. The larger savings

are obtained by using deadband regions derived for models to which a

relatively sizeable artificial noise was added. But figure 4-19 shows no

significant change in the maximum deviationsof the original model variables

as compared to those when no deadband is used. This, again, is essentially

due to the conservative nature of the ellipsoidal bounds.

One can note, in passing, (from figures 4-11 to 4-13) that the main

effect of the control here, is to reduce the maximum deviation in area inter-

change of energy from 0.14 pu for the uncontrolled system to 0.04 pu for

the controlled system. This is done at the expense of sometimes larger

deviations of the other variables of the system.

Finally, recall that one of the assumptions which lead to the linear

model at hand was that the values of the power plant turbines do not hit

their limits. ( 0.065 pu for G, and Gyr +£0.01 pu for PY as given by the

source of the data of figure 4-1. [5]). Now the plots of Bw 4 Bw, and Bw

show that this is not the case here. However, as was already argued above

for Af_ the load disturbance bounds, chosen in section 4.2.3, are much

larger than in actual situations and scaled down results would be obtained

with more realistic conditions. Moreover the main purpose of this study

was to investigate the potential of the control strategy proposed in Chapter

3 and any further research will definitely have to take into account the



- On

problem of valve limits.

To conclude this section, note that conventional AGC is, in effect,

a feedback of only two variables: the integral of frequency deviation and

that of tie-~line power flow deviation. As a result, one would expect

further savings when the control signals carry more information about the

system. This is the motivation of the next section where a full state

feedback is used for control.

1.4 Full State Feedback Controller

4.4.1: General description

Optimal linear regulator theory is found in many standard references

in modern control systems (e.g. [13]) and has been frequently applied to

power systems (e.g. [2], [3]). One can summarize the results to be used here

as follows:

Given a linear time invariant system represented by

x (nA+4) = Px(nh) + Bu (nA)

and a quadratic cost function of the form:

- [x' (nd) Q x(n) +&gt; 2 2, X

n=0

u’ (nd) R u(nl)]

where Q and R are respectively positive semi - definite and positive
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definite weighting matrices of proper dimensions, the control law which

minimizes the cost function J is

u(nd) = K x(nd)

where the feedback gain matrix K is given by:

[| K “ler so
(B'sB+R) B'S?

{ Gq. 4)

-1 ,

|s=g, +2 se-2sa@sBrr) Bs?

1.4.2 Design

The choice of the weighting matrices Q, and R, is the most subjective

factor of such a design and is guided by the extent to which deviations of

the different state variables and controls are to be minimized. Following

Glover's example [3], , is chosen at this point such that X,3 and X15 (i.e

Af, and Soe, are equally penalized , X14 (AS__) is penalized to a

lesser extent and 3 through Xq5 are not at all. This choice, given in fig.

4-20, will be later modified.

As for Rr it is chosen such that the control signals are weighted

more heavily than the state variables. Taking also into account their

relative orders of magnitude (from the simulations of the previous section,

say) a first choice for R, is 0.01 X Lax But then, solving Egs.

(4.9) for K and evaluating the eigenvalues of the resulting closed loop
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matrix 2.4 = &lt;Q + B K yields a pole at 0.95. Arguments similar to those

used for the root locus study of section 4.3.2 show that the choice of B

for eq. (3.11) would therefore be limited to extremely small values. As a

result, the diagonal elements of R. are decreased until the largest closed

loop pole is at 0.83. As before, this then allows a B of 0.3. The new

matrix R, is also given in fig. 4.20.

Following exactly the same steps of section 4.3.2, Eq. (3.11) is

then solved for Teer Using this last result Eq. (3.12) is solved with

several values of 0. Comparing the eigenvalues of the different matrices

LC a value of 0 is then chosen to be:

N 1 2?

A whole set of results is given in fig. 4.21 for gq = 5x10"°C.

4.4.3. Simulations

A set of simulations, equivalent to those of section 4.3.3., can now

-8 -7 -6 -5 .

be performed. The results for g=5X10 ~, 5X10 , 5X10 and 5X10 are given

in figures 4-22, 4-28, 4-29 and 4-30 respectively. Plots of AE AS_

fap . +» AP and AW., corresponding to the first run, are also given in

tie M 1

figures 4-23 to 4-27. The maximum deviations of the variables of interest are

given, for all four runs in fig. 4.31.

The simulation results show reductions of succesively 42%, 60%, 78% and



- 89=~

58% in the number of control signals. A comparison with the results of the

conventional controller (section 4.3.3) shows that for a same value of

q, i.e. for the same amount of artificial noise added to the model, one

gets a larger deadband region and therefore a greater saving in control

action. As a result, and as confirmed by figures 4-19 and 4-31, greater

savings in control action are obtained for equal or even smaller maximum

deviations in the output variables.

An exception however, is for the last run where even with a larger

deadband region more control action had to be taken as compared to the

preceeding case. This indicates that at some point, it no longer pays to

enlarge the deadband region; because then, trying to decrease control action

further results indriving the states more often out of this new deadband

region and the purpose is defeated.

Here also, the plots show that the main effect of the control is to

reduce the maximum deviation (from schedule) in area interchange of energy.

Because no weight was assigned to the first twelve variables in the choice

of Qu, this is still done at the expense of larger savings of those

variables. But now, the maximum deviation of Aw, in particular is much

larger than in the case where a conventional controller is used. It is

therefore felt that the arguments pertaining to this problem in section

4.3.3 do not hold here, and another design is carried out with a new weight-

ing matrix Q . The first twelve diagonal elements of Q are now set to 0.1
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and the fourteenth to 0.5; the frequency and tie-line interchange

weights are kept at the same value 1.0.

"7 -6 wi
Then, simulations are run with g=5%X10 , 5X10 and 5X10 3 and

results are given in figures 4-32, 4-33 and 4-34. A sample plot of

Joe. is given in figure 4-35. The three curves, plotted on the

same graph for comparison, correspond to the behavior of Xig when no

deadband is used (continuous control action), when the deadband designed

. -6 : ’ :

with g=5X10 is used (54% saving in control action) and when no control

action is taken at all.

Finally, figure 4-36 shows the maximum deviations of the different

variables for the new set of runs. Now the deviations of Aw., Aw, and

Aw, are brought down to levels comparable to those. of the conventional

design but it is only for the last case that we have a greater saving

(88%) for equivalent maximum deviations.
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CHAPTER 5

CONCLUSION AND SUGGESTIONS FOR FUTURE RESEARCH

In this thesis, a linear-plus-deadband controller is implemented on

an average system frequency model of a power system. This model essential-

ly ignores the relatively fast dynamics of the intermachine oscillations

Furthermore, normal mode (non emergency, operation is assumed and only un-

known-but-bounded disturbances of the loads are considered. As for the

linear part of the control, two avenues are taken: conventional AGC and full

state feedback. The deadband is imposed on the controller for both cases.

Its design is based on set-theoretic relations which are then translated

to relations between bounding ellipsoids.

When applied to a simple working example, computational problems, link-

ed to the form of the average frequency model, are encountered. These are

solved by adding fake noise to the model during the design process. owing

partly to the conservative nature of the ellipsoidal bounds, this additional

degree of freedom results in sizeable savings in control signals. The

deviations of frequency and tie-line flow between areas are not significantly

increased as compared to the case where no deadband is used (i.e.the control

action is continuous). Moreover, slightly better results are obtained for the
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full state feedback deadband controller.

The main criterion used all along, is the maximum deviations of the

variables of interest. However, in actual situations this is only but one

of many other considerations and as high savings as 88% (simulation #11)

may not at all be feasable or even desirable. But it is only meant here to

illustrate the promissing potentials of such an approach.

It is therefore suggested that future research along those lines

should take into account important non linearities such as the turbine

valve limits, and be extended to include a full blown nonlinear simulation.

It has also been assumed all along that the state variables are perfectly

known. In particular the average frequency is not a directly measurable

physical variable. A state estimator should therefore be included in a

further study. Finally, an extension of the deadband controller design to

situations where the loads have different models (superimposed steps,

ramps...) seems also necessary.



APPENDIX

This appendix presents the relevant mathematical material for Chapter

3. It is composed mainly of extracts from Chapter H and AppendixHof [10]

and from Appendix A of [11] x

l. Ellipsoids

An ellipsoid {I with center m can be defined by

Q = (x: [x-ml' I ‘[x-m] ~

—-——

11 (A.1)

where I is a positive definite matrix. The direction of the axis of {I are

determined by the eigenvectors of I and the lengths of the semimajor axes

of { are equal to the roots of the corresponding eigenvalues. (Appendix

H, [10]). The eigenvalues of I thus give an idea of the thickness of the

ellipsoid in the corresponding directions.

x em Im &lt;1

Xx

2.

y

K,~dimensional

Y Xh,
— ——

— xX

: = H x +y
I =a

 .~dimensional
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Then, (Appendix H, [10])

 7 (x: @-h-Em' BIE1T @-h-Hm &lt;1

In chapter 3, the ellipsoids of interest are centered at the origin and

the transformations encountered are of the form y = H x. Under those

conditions

0) zx aranyss|
-1

If [HI H'] “does not exist (0 is defined with the aid of support functions.

2. Support functions:

The support function s(n) of a closed convex set { is defined by

(sm = maximum (x'n)

Vx € Q

|

\ nn =1

and the set {i can be expressed as

() ®

» hx: x n &lt;sm Vn, n'n = 1

(see Fig. A.I)



- 3.1

Let £0, and 2, have support functions s, (1) and s, (I) respectively,

and let

52 a A

m@n, ff xxx x, Vx, € 8, Vx, © 9, |

Then, the support function of § is (Appendix G, 1101)

n) =SS (n) + Ss, tn)
*

A"
nN o 2)

Moreover, 2, C 2. if and only if

Ah — 1) vn (&gt; 3)

4 a vector 1 such that n' n= 1

~

“if
2

/

7
TE).

Support Hyper plane

of Q, Lto ny

rd

-

a

Figure A-1l 1

Example of geometry Of support funtion (Fig.G.2,[10])
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Finally, the support function of the ellipsoid given by (A.l) is:

1

s(n) =x" m+ (0 I m2
(7.4)

3. Bounding ellipsoids ([10], [11])

Let £0, and 0, be two ellipsoids as defined by (A.1l) with m, =m, = 0.

In view of (A.4)

~

—

1

=
, 2

=O I, n \“AL 5)

&gt;

s. (nn) = (n'T n 2
5 ll diy

Let §) = 2. (®9,- Then (A.2)

~~ (Nn)

x i

-@ In? +m np’ n. 6)

is not in general the support function of an ellipsoid.

Jsing H older's inegqualicy

'}
be hp

1 2 1.2
&lt; + = Db
= 19g Ppt Eb,

0 &lt; 3 &lt; 1

(A.6) gives:

1

Sil. £ | (me 3 r,) : | ‘= sp (ID)
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In view of (A.4), Sy (n) is the support function of the ellipsoid
1

{
i 2,

% : 1 Jd
x: x 5° n&lt;1]

= 1 i

) oy CTE I

\ o ~~ B &lt; 1

r

A. (
A

0

and in view of (A. 4)

+, 2 ( $2
 Hh

so that £0, is an ellipsoidal outer bound of fl.

Refering to the dynamic system of chapter 3, let

x (nA+A) = $_,x(nd) + G w (nA)

vhere

w(nl) ¢ o= we: w il

«
_

fw &lt;1

and let

?_(nl) be the smallest set that contains x(nd), Vw(kd) e §&amp;,

k=0, ... n-1.

 ~~ 5 |

2 (A+d) = 2 Q (nd) (HG 2
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If 2.0 is stable, §2_ (nd) will reach a steady state value (ss) given by

iy) 1 ss) = 2, {i (ss) +)
-

I
i"

$2
a7

In view of (A.6), Eq. (3.11) of chapter 3 then follows.

Suppose now Q,C 2. or, equivalently, I, I')&gt; 0 (from A.3 and A.5).

.

 ae

RE | « ww! -4

2 = 1x: x Ty x &lt;1}

be an ellipsoid such that

 NO Q,C a
h

A. 7)

From (A.6) we must have

I 5
Poo 2 2

R 1-83

SY

ol
I = =I =a where oo =

—D, 140i —1 —2

i
A Le Az 3)

and since Ip must be positive definite PB cannot take any value between
2

0 and 1 or equivalently 0 any value between 0 and «©.



 i+ Lh
a

We then must have

a

140
Ly = ol’,

I, - (1+) Ly

J

0 ofFY3)

Let © be the matrix such that Q' I © =I (i.e change coordinates

such that (J), is transformed into a shpere of unit radius). Then (A.9)

becomes

0 I; © = (+a) I G (r.10)

Let V be the matrix of eigenvectors of O° I, O. Then vt Oo I, OV is

diagonal and the diagonal elements are the eigenvalues of O' I, © . Then

(A.10) becomes

r

2
\/

we A

9 r.ev) - nN) 0

- Lyn

A,
i (9° T.,0)-qQ Tr OY} 0 i = 1. - 8® n

Therefore, a should satisfy

 XxX A !

min (9 Li 0)-1.
]

(A.11)
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Geometrically, this means that if a is increased beyond a certain

limit one cannot find an ellipsoid which satisfies (A.7). This is because

: o

r, (weighted by 0 ) is more amplified than I (weighted by wg as ©

increases, and the "fit" is too close.

Referring again to the system of chapter 3, Eg. (3.12) follows now

from (A.8) and (A.1ll).
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