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Abstract
The dominant practice of AI alignment assumes (1) that preferences are an adequate 
representation of human values, (2) that human rationality can be understood in 
terms of maximizing the satisfaction of preferences, and (3) that AI systems should 
be aligned with the preferences of one or more humans to ensure that they behave 
safely and in accordance with our values. Whether implicitly followed or explicitly 
endorsed, these commitments constitute what we term a preferentist approach to AI 
alignment. In this paper, we characterize and challenge the preferentist approach, 
describing conceptual and technical alternatives that are ripe for further research. 
We first survey the limits of rational choice theory as a descriptive model, explain-
ing how preferences fail to capture the thick semantic content of human values, and 
how utility representations neglect the possible incommensurability of those val-
ues. We then critique the normativity of expected utility theory (EUT) for humans 
and AI, drawing upon arguments showing how rational agents need not comply 
with EUT, while highlighting how EUT is silent on which preferences are norma-
tively acceptable. Finally, we argue that these limitations motivate a reframing of 
the targets of AI alignment: Instead of alignment with the preferences of a human 
user, developer, or humanity-writ-large, AI systems should be aligned with norma-
tive standards appropriate to their social roles, such as the role of a general-purpose 
assistant. Furthermore, these standards should be negotiated and agreed upon by all 
relevant stakeholders. On this alternative conception of alignment, a multiplicity of 
AI systems will be able to serve diverse ends, aligned with normative standards that 
promote mutual benefit and limit harm despite our plural and divergent values.
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1  Introduction

Recent progress in the capabilities of AI systems, as well as their increasing adop-
tion in society, has led a growing number of researchers to worry about the impact 
of AI systems that are misaligned with human values. The roots of this concern vary, 
with some focused on the existential risks that may come with increasingly power-
ful autonomous systems (Carlsmith, 2022), while others take a broader view of the 
dangers and opportunities presented by potentially transformative AI technologies 
(Prunkl & Whittlestone, 2020; Lazar & Nelson, 2023). To address these challenges, 
AI alignment has emerged as a field, focused on the technical project of ensuring an 
AI system acts reliably in accordance with the values of one or more humans.

Yet terms like “human values” are notoriously imprecise, and it is unclear how to 
operationalize “values” in a sufficiently precise way that a machine could be aligned 
with them. One prominent approach is to define “values” in terms of human prefer-
ences, drawing upon the traditions of rational choice theory (Mishra, 2014), statisti-
cal decision theory (Berger, 2013), and their subsequent influence upon automated 
decision-making and reinforcement learning in AI (Sutton & Barto, 2018). Whether 
explicitly adopted, or implicitly assumed in the guise of “reward” or “utility”, this 
preference-based approach dominates both the theory and practice of AI alignment. 
However, as proponents of this approach note themselves, aligning AI with human 
preferences faces numerous technical and philosophical challenges, including the 
problems of social choice, anti-social preferences, preference change, and the dif-
ficulty of inferring preferences from human behavior (Russell, 2019).

In this paper, we argue that to truly address such challenges, it is necessary to go 
beyond formulations of AI alignment that treat human preferences as ontologically, epis-
temologically, or normatively basic. Borrowing a term from the philosophy of welfare 
(Baber, 2011), we identify these formulations as part of a broadly preferentist approach 
to AI alignment, which we characterize in terms of four theses about the role of prefer-
ences in both descriptive and normative accounts of (human-aligned) decision-making: 

Rational Choice Theory as a Descriptive Framework.
�Human behavior and decision-making is well-modeled as approximately maximiz-
ing the satisfaction of preferences, which can be represented as a utility or reward 
function.

Expected Utility Theory as a Normative Standard.
�Rational agency can be characterized as the maximization of expected utility. 
Moreover, AI systems should be designed and analyzed according to this normative 
standard.

Single-Principal Alignment as Preference Matching.
�For an AI system to be aligned to a single human principal, it should act so as to 
maximize the satisfaction of the preferences of that human.

Multi-Principal Alignment as Preference Aggregation.
�For AI systems to be aligned to multiple human principals, they should act so as to 
maximize the satisfaction of their aggregate preferences.
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These four theses represent a cluster of views, not a unified theory of AI align-
ment. Still, the ideas they represent are tightly linked, and most approaches to 
AI alignment assume two or more of the theses. For example, inverse reinforce-
ment learning (Ng & Russell, 2000; Hadfield-Menell et al., 2016), reinforcement 
learning from human feedback (Akrour et al., 2014; Christiano et al., 2017; Ouy-
ang et al., 2022), and direct preference optimization (Rafailov et al., 2024; Hejna 
et al., 2024) all assume that human preferences are well-modeled by a reward or 
utility function, which can then be optimized to produce aligned behavior. Simi-
larly, worries about deceptive alignment (Hubinger et al., 2019) and goal misgen-
eralization (Di Langosco et al., 2022) are typically characterized as a mismatch 
between a learned utility function and the human-intended utility function; the 
solution is thus to ensure that the utility functions (and the preferences they rep-
resent) are closely matched.

Of course, preferentism in AI alignment is not without its critics. Over the 
years, there has been considerable discussion as to whether its component the-
ses are warranted (Shah, 2018; Eckersley, 2018; Hadfield-Menell & Hadfield, 
2018; Wentworth, 2019, 2023; Gabriel, 2020; Vamplew et al., 2021; Garrabrant, 
2022; Korinek & Balwit, 2022; Thornley, 2023), echoing similar debates in eco-
nomics, decision theory, and philosophy. Nonetheless, it is apparent that the dom-
inant practice of AI alignment has yet to absorb the thrust of these debates. Con-
sequently, we believe it is worthwhile to identify the descriptive and normative 
commitments of preferentist approaches, to state clearly their limitations, and to 
describe conceptual and technical alternatives that are ripe for further research.

1.1 � Overview

The rest of this paper is organized as follows: In Sect. 2, we examine rational choice 
theory as a descriptive account of human decision-making. Drawing upon the tra-
dition of revealed preferences in economics, rational choice theory is often taken 
for granted by AI researchers seeking to learn human preferences from behavior. In 
doing so, they assume that human behavior can be modeled as the (approximate) 
maximization of expected utility, that human preferences can be represented as 
utility or reward functions, and that preferences are an adequate representation of 
human values. We challenge each of these assumptions, offering alternatives that 
better account for resource-limited human cognition, incommensurable values, and 
the constructed nature of our preferences.

Developing upon these ideas, in Sect. 3 we turn to expected utility theory (EUT) 
as a normative standard of rationality. Even while recognizing that humans often do 
not comply with this standard, alignment researchers have traditionally assumed that 
sufficiently advanced AI systems will do so, and hence that solutions to AI align-
ment must be compatible with EUT. In parallel with recent critiques of this view 
(Thornley, 2023, 2024; Bales, 2023; Petersen, 2023), we argue that EUT is both 
unnecessary and insufficient for rational agency, and hence limited as both a design 
strategy and analytical lens. Instead of adhering to utility theory, we can design 
tool-like AI systems with locally coherent preferences that are not representable as 
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a utility function. We can also go beyond EUT, building systems that reason about 
preferences in accordance with deeper normative principles.

After interrogating these descriptive and normative foundations, in Sect.  4 we 
consider what this implies for aligning AI with a single human principal. Since 
reward functions may not capture even a single human’s values, the practice of 
reward learning is unsuitable beyond narrow tasks and contexts where people are 
willing to commensurate their values. Furthermore, since preferences are dynamic 
and contextual, they cannot serve as the alignment target for broadly-scoped AI sys-
tems. Rather, alignment with an individual person should be reconceived as align-
ment with the normative ideal of an assistant. More generally, AI systems should not 
be aligned with preferences, but with the normative standards appropriate to their 
social roles and functions (Kasirzadeh & Gabriel, 2023).

If normative standards are to serve as alignment targets, whose judgments do 
we consider in determining these (oft-contested) standards? We take up this final 
topic in Sect.  5, critiquing naive preference aggregation as an approach to align-
ing AI with multiple human principals (Fickinger et  al., 2020). Despite increas-
ing recognition that this approach is inadequate (Critch & Krueger, 2020; Gabriel, 
2020; Korinek & Balwit, 2022), applied alignment techniques typically aggregate 
preferences across multiple individuals, overlooking the contested and plural nature 
of human values, while conflating norm-specific judgments with all-things-consid-
ered preferences. As alternatives, we argue that contractualist and agreement-based 
approaches can better handle value contestation while respecting the individuality of 
persons and the plurality of uses we have for AI. This motivates a reframing of the 
aims of AI alignment as they have often been conceived: Our task is not to align a 
single powerful AI system with the preferences of humanity writ large, but to align 
a multiplicity of AI systems with the norms we agree that each system should abide 
by Zhi-Xuan (2022).

A note on methodology: Whereas most philosophy papers tend to be narrow in 
scope, this paper is intentionally broad; it covers a wide range of connected topics, 
and hence makes arguments that are relatively brief. Our aim is not provide a deci-
sive argument for any particular thesis, but to provide a critical review of the role 
of preferences in AI alignment, while developing a research agenda for alternative 
approaches that is accessible to an interdisciplinary audience.

2 � Beyond rational choice theory when modeling humans

The central tenet of rational choice theory is the assumption that humans act so as 
to maximize the satisfaction of their preferences, and that both individual and aggre-
gate human behavior can be understood in these terms. As far as theoretical pre-
suppositions go, this assumption has been wildly successful, forming the bedrock 
of modern economics as a discipline, and influencing a great variety of fields con-
cerned with analyzing human behavior, including sociology (Boudon, 2003), law 
(Ulen, 1999), and cognitive science (Chater & Oaksford, 1999; Jara-Ettinger et al., 
2020).
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Revealed preferences and their representation as utility functions. In its most 
standard form, rational choice theory assumes that human preferences can be repre-
sented as a scalar-valued utility function defined over outcomes—that is, in terms of 
a quantity that can be maximized—and that human choice can be modeled as select-
ing actions so as to maximize the expected value of this function. The promise this 
offers is that we can directly derive what a person prefers from what they choose, 
and furthermore represent how much they prefer it as a scalar value. Such prefer-
ences are called revealed preferences, because they are supposedly revealed through 
what a person chooses. This methodology is bolstered by numerous representation 
theorems (Savage, 1972; Bolker, 1967; Jeffrey, 1991) showing that any preference 
ordering over outcomes that obeys certain “rationality axioms” can be represented 
in terms of a utility function, such as the famous von Neumann-Morgenstern (VNM) 
utility theorem (von Neumann & Morgenstern, 1944).

Rational choice theory in machine learning. In keeping with rational choice 
theory, many machine learning and AI systems also assume that human preferences 
can be derived from human choices in a more or less direct manner, and furthermore 
represent those preferences in terms of scalar utilities or rewards. This is most pro-
nounced in the fields of inverse reinforcement learning (Ng & Russell, 2000; Abbeel 
& Ng, 2004; Hadfield-Menell et al., 2016) and reinforcement learning from human 
feedback (Christiano et  al., 2017; Zhu et  al., 2023), which explicitly assume that 
the behavior of a human can be described as (approximately) maximizing a sum of 
scalar rewards over time, and then try to infer a reward function that explains the 
observed behavior. Similar assumptions can be found in the field of recommender 
systems (Thorburn et al., 2022), with many papers modeling recommendation as the 
problem of showing items to users that they are most likely to engage with, which 
is presumed to be the item they find the most rewarding (Li et al., 2010; Hill et al., 
2017; McInerney et al., 2018).

Boltzmann models of noisily-rational choice. While these preference-based 
models of human behavior are rooted in rational choice theory, it is worth noting 
that they are slightly more complex than “maximize expected utility” might imply. 
In particular, they allow for the fact that humans may not always maximize util-
ity, and hence are models of noisy or approximately rational choice. In machine 
learning and AI alignment, the most common of such choice models is called Boltz-
mann rationality (after the Boltzmann distribution in statistical mechanics), which 
assumes that the probability of a choice c is proportional to the exponential of the 
expected utility of taking that choice:

Justifications and extensions of Boltzmann rationality. This choice model exhib-
its a number of practically useful and theoretically appealing properties. For exam-
ple, by varying the “rationality parameter” � between zero and infinity, Boltzmann 
rationality interpolates between completely random choice and deterministic opti-
mal choice (Ghosal et al., 2023). As an instantiation of Luce’s choice axiom (Luce, 

(1)P(c) ∝ exp (��[U(c)])
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1979), it obeys independence of irrelevant alternatives.1 Boltzmann rationality has 
also been justified as the maximum entropy distribution2 that matches certain con-
straints implied by observed behavior (Ziebart et al., 2008, 2010), or as a thermody-
namically-inspired model of bounded rationality where agents have to spend energy 
investigating which choice leads to the highest utility (Ortega & Braun, 2013; Jarrett 
et al., 2021). In addition, Boltzmann rationality has been extended to model other 
aspects of human behavior besides goal-directed actions, including direct compari-
sons between options (i.e. stated preferences) (Akrour et al., 2014; Christiano et al., 
2017; Zhu et al., 2023), explicitly stated reward functions (Hadfield-Menell et al., 
2017), entire behavior policies (Laidlaw & Dragan, 2022), and linguistic utterances 
(Lin et al., 2022), allowing preferences to be inferred from multiple forms of human 
feedback (Jeon et al., 2020).

Limitations of Boltzmann rationality. As useful as Boltzmann rationality may 
be, however, we believe it is important to seek alternatives. For one, it is not the 
only intuitively plausible model of noisily rational choice: Random-utility models 
instead model choice as the result of maximization over randomly perturbed utility 
values, and are widely used in marketing research (Horowitz et al., 1994; Azari Sou-
fiani et al., 2013). More crucially, noisy rationality is not enough to account for the 
full set of ways in which humans fail to act optimally. Richer models of bounded 
rationality are necessary to accurately infer human preferences and values from their 
behavior. Most fundamentally, the contents of human motivation are not entirely 
reducible to bare preferences or utility functions. Instead, we need to enrich our 
models of human rationality to encompass all the ways in which humans are guided 
by reasons for acting, including the thick evaluative concepts that we apply when 
deciding between courses of action (Blili-Hamelin et al., 2024). We elaborate upon 
these limitations in the following sections.

2.1 � Beyond noisily‑rational models of human decisions

The issue with both perfect and noisily-rational models of human decision-making 
is that they do not account for the systematic deviations from optimality that humans 
in fact exhibit. As a long line of psychological and behavioral research has shown, 
humans are boundedly rational at best, exhibiting satisficing instead of optimizing 
behavior, (Simon, 1957, 1979). These deviations from optimality include framing 
effects, loss aversion, anchoring biases, and mis-estimation of high and low prob-
abilities—phenomena which are better modeled by prospect theory (Kahneman & 
Tversky, 1979; Tversky & Kahneman, 1992) than standard rational choice theory. 
More generally, many of the decision problems that people encounter are computa-
tionally intractable to solve optimally, making rational choice a implausible model 
of human behavior (van Rooij, 2008; Bossaerts et al., 2019; Camara, 2022). Instead, 

1  That is, choosing x out of the set {x, y, z} has the same probability as first choosing {x, y} out of the full 
set, then choosing x out of {x, y}.
2  Maximum entropy distributions are minimally informative in the information theoretic sense, and 
hence are often advocated for as “ignorance priors” in statistical analyses (Jaynes, 1968).
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research suggests that humans make use of a variety of heuristics in order to approx-
imately solve the problems they encounter (Gigerenzer, 2008).

Challenges to modeling bounded rationality. How might AI systems that infer 
human preferences and values account for these findings? One approach might be 
to incorporate a sufficiently long list of known heuristics and biases into our mod-
els of human decision-making, thereby ensuring that preferences can be robustly 
inferred even in the presence of such biases (Evans et al., 2016; Chan et al., 2021). 
However, this approach is highly contingent upon on our current state of knowledge 
about human rationality—what if we miss out important biases in our models, lead-
ing to inaccurate predictions and inferences (Christiano, 2015; Steinhardt, 2017)? 
As a potential remedy, Shah et al. (2019) suggest learning human biases alongside 
their preferences. But a conceptual difficulty remains: Without any inductive con-
straints on the types of errors humans are susceptible to, how can we ensure that 
human biases are accurately learned? As Armstrong and Mindermann (2018) show, 
even inductive preferences for more parsimonious models of human decision-mak-
ing cannot distinguish intuitively plausible hypotheses from observationally-equiva-
lent but implausible hypotheses, such as the possibility that humans are acting anti-
rationally by minimizing the satisfaction of their preferences.

Resource rationality as a unifying frame. To address these challenges, we sug-
gest—in line with prior work—that resource rational analyses of human decision-
making might provide an answer: Instead of treating human biases and heuristics 
as idiosyncratic artifacts, resource rationality posits that seemingly irrational human 
behavior can often be understood as arising from the rational use of limited com-
putational resources (Lieder & Griffiths, 2020).3 For example, availability biases 
towards extreme events can be modeled as a form of resource-rational sampling 
(Lieder et al., 2018), susceptibility to sharing inaccurate information can result from 
a form of rational inattention (Pennycook et  al., 2021; Sims, 2003), and habitual 
action can be explained as a mechanism for avoiding costly planning under time 
constraints (Keramati et al., 2016). Resource rationality thus serves as a generative 
principle for hypothesizing possible deviations from standard rationality, and then 
testing whether such deviations in fact occur in humans.

Resource rationality as an inductive bias. What does this imply for AI align-
ment? Most practically, the assumption of resource rationality can be embedded as 
priors over computation time and representational complexity in probabilistic mod-
els of human decision-making (Zhi-Xuan et al., 2020; Ho & Griffiths, 2022; Berke 
et al., 2023; Jacob et al., 2024), enabling systems to infer human goals and prefer-
ences from failed plans and mistaken reasoning (Evans et al., 2016; Alanqary et al., 
2021; Chan et al., 2021), while accelerating the speed of goal inference (Zhi-Xuan 
et al., 2024). Embedding these priors on human resource bounds provides a strong 
but flexible inductive bias on the the space of decision procedures that humans 

3  Also known as computational rationality (Lewis et  al., 2014; Gershman et  al., 2015; Oulasvirta & 
Howes, 2022), algorithmic rationality (Halpern & Pass, 2015), and bounded optimality (Russell & Sub-
ramanian, 1994).
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might employ. Unlike a simplicity prior, this may avoid concerns about the non-
identifiability of human preferences (Armstrong & Mindermann, 2018).

The normative appeal of resource rationality. Indeed, the inductive bias 
imposed by resource rationality has a normative appeal over a simplicity-based 
approach: It tries to make sense of humans as rational creatures, aiming for tele-
ological explanations of our behavior instead of reducing us to mere physical phe-
nomena to be explained by the simplest causal mechanism. At the same time, it is 
a forgiving standard of rationality, allowing room for mistakes when inferring pref-
erences from their decisions, while placing greater evidential weight on decisions 
made after lengthier deliberation. Both of these features make resource rationality 
a promising framework for systems that learn our values: Rather than directly asso-
ciating our behavior with our preferences, preferences are associated with how we 
would act if we were more thoughtful, reflective, and informed.

2.2 � Beyond reward and utility functions as representations of human 
preferences

While resource rationality provides a more flexible framework for modeling the 
relationship between preferences and behavior, this says little about how preferences 
themselves should be represented. For the most part, resource rational analyses con-
tinue to represent human preferences in terms of scalar costs and rewards, or more 
generally, utility functions, with the primary innovation being the inclusion of costs 
on computation (Lieder & Griffiths, 2020; Callaway et  al., 2022). Yet, there are 
many reasons to think that reward functions and utility functions are inadequate rep-
resentations of human preferences, while also tending to produce conceptual confu-
sion about what they do represent.

The limited expressivity of reward functions. These issues are most easily 
appreciated in the case of (scalar, Markovian) reward functions. As noted earlier, 
the reward representation assumes that the utility of a sequence of states and actions 
� = (s
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bad in such distinct ways that it makes no sense to say which is better than another.4 
As a result, we may have preferential gaps: pairs of options where neither option is 
preferred over the other, nor are they equally preferred.

Confusion about what reward functions represent. Alongside these limita-
tions in expressiveness, there is often slippage among AI researchers regarding the 
ontological status of reward,5 which is sometimes interpreted as the intrinsic desir-
ability of a particular state or action (Schroeder, 2004), or as a biological signal that 
promotes learning (Butlin, 2021) or evolutionary success (Singh et al., 2009), but is 
also used to define the instrumental value of a state (as in reward shaping (Ng et al., 
1999; Booth et al., 2023)), or to demarcate goals (i.e. desired trajectories or states of 
affairs (Molinaro & Collins, 2023; Davidson et al., 2024)). While this is partly a tes-
tament to the flexibility of reward functions as a mathematical formalism, this also 
means that distinct normative concepts (preferences, goals, intents, desires, values, 
etc.) get conflated or subsumed under the label of “reward”. In alignment research, 
this manifests as the tendency to frame value alignment in terms of reward learning 
(Hadfield-Menell et  al., 2016; Leike et  al., 2018), and to formalize concepts like 
“goals” (Di  Langosco et  al., 2022) and “intents” (Ouyang et  al., 2022) as reward 
functions. This is despite the existence of other useful and potentially more appro-
priate formalisms, such as the formalization of goals as logical specifications (Fikes 
& Nilsson, 1971), and the formalization of intentions as (partial) plans (Bratman, 
1987; Bratman et al., 1988).

Utility functions are more expressive, but insufficiently constrained. While 
not without their own interpretive confusions,6 utility functions are considerably 
more general than (Markovian) reward functions. For example, they can be defined 
over arbitrarily long sequences of states, allowing them to capture time-extended 
preferences. However, what utility functions buy in terms of expressiveness comes 
at a cost to both identifiability and tractability: If no constraints are placed on the 
structure of human utility functions, then given some sequence of actions (e.g. a 
person buying ten apples, then two oranges), it is not possible to disambiguate a 
reasonable utility function that explains the actions (e.g. by assigning higher utility 
to an apple over an orange) from a degenerate utility function that assigns a util-
ity of one to exactly the observed sequence.7 In addition, many utility functions are 
intractable to coherently maximize (Camara, 2022) or even to compute.8 If we apply 

4  For example, one might have to choose between staying in a democratic country while being at severe 
risk of poverty, or immigrating to a country with material security but no political freedoms.
5  See Lambert et al. (2023) for an overview in the context of reinforcement learning from human feed-
back.
6  Most prominently, the debate between interpreting utility as cardinal measure of welfare that is com-
parable across individuals, versus a mere representation of individual preference rankings (Strotz, 1953; 
Harsanyi, 1953)
7  See Armstrong and Mindermann (2018) for a similar argument. Note that these identifiability problems 
already exist with Markovian reward functions (Cao et al., 2021; Kim et al., 2021; Skalse et al., 2023), 
but are made worse once we let go of the Markov assumption altogether.
8  For example, a utility function might embed the NP-hard traveling salesperson problem (TSP), by 
assigning higher utility to road networks with TSP solutions under a certain cost threshold. While a 
human could hold such preferences, it would generally be very costly for them to check whether those 
preferences hold.
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the principle of resource rationality here too, this makes intractable utility func-
tions less plausible representations of human preferences. Finally, utility functions 
are not without their own expressivity limitations: Like scalar rewards, they assume 
away preference incompleteness due to plural and incommensurable values (Chang, 
2021; Eckersley, 2018). Indeed, empirical work shows that incomplete preferences 
are not just possible, but actual (Cettolin & Riedl, 2019; Nielsen & Rigotti, 2023). 
This means that utility functions are, at best, approximate representations of human 
preferences, not exact ones.

Fundamental tensions for any representation of preferences. It is worth not-
ing that these tensions between expressivity, structure, and tractability apply to any 
representation of human preferences, not just reward or utility functions. Thus, 
while it might be tempting to ensure expressivity by directly representing human 
preferences as a (possibly incomplete) list of comparisons over universe trajectories 
(or a distribution over such comparisons (Dumoulin et al., 2024)), such a list would 
be extremely space-inefficient, while providing little to no action guidance in novel 
choice situations. Instead, we should recognize that part of what makes reward and 
utility functions so useful in practice is that they are typically engineered to be com-
pact representations of preferences. Practically useful alternatives should maintain 
this property, while better capturing the richness of human preferences.

Alternative representations can better capture temporal structure and value 
plurality. Fortunately, many promising options exist: Temporal logics (Kasenberg 
et al., 2018) and reward machines (Icarte et al., 2022; Davidson et al., 2024) avoid 
the limitations of traditional reward functions, enabling the expression of time-
extended preferences. At the same time, they can be structured in a way that enables 
effective learning from human behavior (Shah et al., 2018; Zhou & Li, 2022). To 
account for incommensurability and incompleteness, vector-valued reward functions 
(Vamplew et al., 2021), conditional preference networks (Boutilier et al., 2004; Cor-
nelio et  al., 2013), or interval-valued utility functions (Denoeux & Shenoy, 2020) 
can be used, allowing our models to explicitly surface hard choices due to preferen-
tial gaps. Many of these representations are also associated with rich compositional 
semantics, making apparent the complex internal structure of human goals and pref-
erences (Gerevini & Long, 2005; Davidson et al., 2024). Although these formalisms 
have limitations of their own, they nonetheless embed important insights about how 
preferences can be computationally represented. As such, they deserve further study 
by alignment researchers seeking to adequately model human preferences in a gen-
eral fashion, while also being useful representational tools for today’s AI systems.

2.3 � Beyond preferences as representations of human values and reasons

Preferences are constructed, not basic. Thus far, we have proceeded as if human 
motivations and values are adequately captured by the concept of “preference” as it 
is used in rational choice theory. But as far as evaluative concepts go, this concept of 
“preference” is an extremely thin one: Mathematically, a “preference” is just some 
ordering of two options, which can be interpreted as either a disposition to choose 
one option over another, subjective liking of one option over the other (Franklin 
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et  al. 2022), or an all-things-considered judgment in favor of one of the options. 
Distinct as these interpretations are, what they share is their highly abstract and gen-
eral nature—“preference” is a thin concept because it does not encode richer seman-
tic information beyond the bare notion of “betterness”. Insofar as utility functions 
are interpreted as representations of preferences, this thinness is inherited by them: 
Utility just represents the mere preferability of some option. But why exactly are 
some options preferred over others? In virtue of what reasons do people make these 
preference judgments? Without answering these questions, we are unlikely to model 
how someone’s preferences generalize to novel options in ways they would endorse. 
To do so, we must go beyond preferences as the fundamental unit of analysis, and 
understand how preferences are computed and constructed from our reasons and val-
ues (Warren et al., 2011; Lichtenstein & Slovic, 2006).

Rational choice as action on the basis of reasons. In making this point, we 
depart from the domain of rational choice theory, and return to a more basic under-
standing of what it means to model ourselves as rational agents: We are agents that 
take ourselves to act on the basis of reasons (Raz, 1999; Logins, 2022).9 These rea-
sons might include desires, such as an intrinsic desire to avoid pain (Sinhababu, 
2017), evaluative judgments, such as the judgment that a movie is artistic enough 
to be worth watching (Anderson, 1995), or even acts of will, such as the intention to 
pursue a specific career (Chang, 2009).

Evaluative concepts as building blocks for reasons. What exactly is the content 
of these reasons? In decision theory and Humean accounts of motivation (Sinha-
babu, 2017), only beliefs (represented as subjective probabilities) and desires (repre-
sented as the utility of some desired outcome) are considered as reasons for action. 
But even if we set aside other accounts (Anderson, 1995; Chang, 2004; Parfit, 2018), 
this leaves open what a person’s beliefs and desires are about. If I desire to be both 
helpful and honest to others, what does it mean to be helpful or honest? Acting upon 
this desire requires applying the concepts of helpfulness and honesty, which are not 
just any concepts, but evaluative concepts, or values. Importantly, most such con-
cepts are not thin ones, like preference, utility or goodness; they are thick evaluative 
concepts—concepts that comprise both descriptive and normative elements—such 
as beauty, humor, or health. As Blili-Hamelin and Hancox (2023) point out, even 
the concept of intelligence so central to AI is thick in this way.

Utility functions as aggregators of distinct evaluative judgments. How should 
AI systems model such evaluative concepts, and their relationship to preferences 
and action? As a first pass, one might turn the utility representation theorems on 
their head, viewing reward and utility functions as generators of human preferences, 
instead of mere representations of them. Indeed, as gestured at earlier, reward and 
utility functions are often interpreted in this way, with rewards, costs, and utilities 
respectively treated as biological signals (Singh et al., 2009), energetic expenditure 

9  While some psychological theories deny that reasons are the causes or motivations for human action 
(at least typically), they can nonetheless serve as justifications for our actions (Mercier & Sperber, 2011, 
2017). As such, insofar as our goal is to build AI systems that infer justified bases of action from our 
behavior (and then act according to them), reasons can still play this role.
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(Ab Azar et al., 2020), or units of pleasure (Bentham, 1789). Preferences can then 
be treated as downstream comparisons of these more basic quantities, as assumed in 
reinforcement learning from human feedback (Christiano et al., 2017; Knox et al., 
2024; Zhu et al., 2023). Taking this line of thought further, one might treat evalu-
ative concepts such as “aesthetic quality” or “helpfulness” as features over which a 
reward or utility function is defined, reducing the problem of “value learning” to one 
of representation or feature learning (Barreto et al., 2017; Bobu et al., 2022, 2024). 
On this interpretation, reward and utility functions represent aggregate evaluative 
judgments, with each feature corresponding to a distinct way of valuing the world.

Utility functions assume that values are always commensurable. Although 
there is much to be said in favor of this approach, we believe that it is not quite 
enough. For one, it is still subject to the representational limits of reward and util-
ity functions. In particular, if utility functions are used to represent aggregate value 
judgments, this effectively assumes that distinct human values are always commen-
surable in some way, and that our resulting preferences are always complete. Yet, 
as value pluralists argue, there are contexts where it seems hard or impossible to 
commensurate our values (Anderson, 1995), resulting in choices where our reasons 
run short, and we cannot say if one option is ultimately better than another (Chang, 
1997).10 Even when we do commensurate our values, utility functions do not pro-
vide further information on our reasons and justifications for those trade-offs.

Evaluative judgments are not reducible to observable features. For another, 
by conceiving of evaluative concepts as “features”, we risk over-simplifying the 
semantics of many evaluative domains. Consider, for example, the concept of 
whether a research paper is novel, or whether an action is helpful or universalizable. 
Applying these concepts requires a complex set of computations: novelty involves 
evaluating the contributions of a paper with respect to a broader field of established 
knowledge (Amplayo et al., 2019); helpfulness involves estimating the goals of the 
agent being helped, and then judging whether the action aided in achieving that goal 
(Ullman et  al., 2009); universalizability involves simulating what would happen 
if everyone took a particular action (Levine et  al., 2020; Kwon et  al., 2023). The 
structured nature of these concepts suggests the need for a suitably rich language 
of thought—one that captures the compositionality and algorithmic complexity of 
human conceptual cognition (Piantadosi & Jacobs, 2016; Quilty-Dunn et al., 2023; 
Wong et al., 2023).

Explicitly modeling processes of evaluation and commensuration. To begin to 
capture all of this complexity, we propose that human decisions can be productively 
modeled as a three-stage process: Evaluate, Commensurate, then Decide (ECD).11 
Given some choice options, a set of evaluation procedures compute valuations or 
rankings of the options under consideration, where each procedure corresponds to 
a distinct evaluative concept. These valuations serve as inputs to a commensuration 

10  See our immigration example from earlier, where it may be unclear how to prioritize between political 
freedom and material security when deciding whether to migrate.
11  Note that this a descriptive framework for modeling how human reasons and values lead to decisions, 
not a prescriptive framework for designing AI systems. We take up the latter topic in Sect. 2.
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procedure (Espeland & Stevens, 1998), which produces, where possible, a context-
sensitive value assignment or preference ordering over the options (optionally with 
justifications for why certain trade-offs were made), while leaving certain prefer-
ences unspecified when some options are not comparable. Finally, a decision proce-
dure computes actions and policies with respect to the (possibly incomplete) prefer-
ence ordering induced by the evaluation and commensuration procedures, resulting 
in behavior that approximately satisfies those preferences.12 By explicitly modeling 
human decisions in this way, we can maintain the distinctness of the values that 
guide our actions, while foregrounding the ways in which we commensurate our val-
ues and dynamically construct our preferences.13

Learning and specifying evaluative concepts. This still leaves open the ques-
tion of how evaluative concepts can be specified or learned. In principle, an AI 
system could infer such concepts from human decisions by inverting the ECD pro-
cess, extending inverse reinforcement learning (Ziebart et  al., 2008) and Bayesian 
inverse planning (Baker et al., 2009). However, decisions alone might provide insuf-
ficient information about the nature and structure of our evaluative concepts. Recent 
advances in large language models (LLMs) suggest a promising alternative: By 
imitating the distribution of human text, LLMs appear to learn the conceptual roles 
associated with particular words (Piantadosi & Hill, 2022), and recognize semantic 
entailments between sentences (Merrill et  al., 2024). Correspondingly, they might 
approximate the semantics of many evaluative concepts (Leshinskaya et al., 2023). 
This may explain why LLMs can often use evaluative adjectives in their appropriate 
contexts (Mahowald, 2023), and even perform rudimentary forms of moral reason-
ing (Jin et al., 2022). Still, LLMs remain limited in their ability to represent and rea-
son with compositional concepts (Dziri et al., 2023; Mahowald et al., 2024; Ramesh 
et al., 2024), and would function as poor models of humans on their own. Instead, 
we could embed their approximate semantic knowledge into more structured models 
of human cognition (Kwon et al., 2023; Wong et al., 2023) such as the ECD process 
described above. In doing so we might eventually model the full richness of human 
practical reasoning.

12  One possible instantiation of this framework is multi-objective reinforcement learning (Vamplew 
et al., 2021): Each component of a vector-valued reward function can be thought of as a separate evalua-
tion procedure. These can be transformed by the commensuration procedure into a lexicographic order-
ing (where some dimensions of value matter infinitely more than others) or constrained maximization 
problem (where some values must stay within a certain range while others are maximized). A planning 
or learning algorithm then serves as the decision procedure, producing an action policy that satisfies the 
commensurated preferences.
13  In proposing this framework, we do not mean to imply that humans are always going through these 
stages for every decision; as suggested by the RL formalism, one or more of these procedures may be 
cached through experience and learning, enabling habitual action without explicitly representing values 
in the brain (Keramati et al., 2016; Hayden & Niv, 2021). Nonetheless, we can still rationalize learned 
behavior and cached preferences in light of someone’s values.
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3 � Beyond expected utility theory as a normative standard 
of rationality

In the previous section, we described how research in AI alignment often assumes 
approximate utility maximization as a descriptive model of human behavior, then 
highlighted the shortcomings of this approach. However, this leaves open whether 
utility maximization is a desirable normative standard for both human and machine 
behavior—that is, whether agents ought to maximize the satisfaction of their prefer-
ences as a condition of ideal rationality, regardless of whether they actually do so.

Coherence arguments for EUT. There is a long history of debate regarding the 
validity of this normative standard. Arguments in favor of expected utility theory 
(EUT) include the utility representation theorems mentioned earlier (Samuelson, 
1938; Savage, 1972; Bolker, 1967; Jeffrey, 1991; von Neumann & Morgenstern, 
1944), which start from an axiomatization of what preferences count as rational, 
then demonstrate that any agent that acts in accordance with such preferences must 
act as if they are an expected utility maximizer.14 In the AI alignment literature, 
these results are often treated as “coherence theorems” about the nature of rational 
agency, either by taking the rationality axioms for granted, or by providing argu-
ments in defense of the axioms (Omohundro, 2008a; Yudkowsky, 2019; Demski, 
2018). For example, Dutch book arguments can be used to show that an agent’s bet-
ting odds must obey certain axioms of probability theory in order to avoid exploita-
tion by others (Vineberg, 2011), and money pump arguments can be used to show 
that an agent’s preferences should be acyclic in order to avoid guaranteed losses 
(Gustafsson, 2022).

AI alignment as EU maximizer alignment. In light of these arguments, AI 
alignment researchers have traditionally assumed that advanced AI systems will act 
as if they are expected utility (EU) maximizers (Omohundro, 2008b; Yudkowsky, 
2016). As a result, many have framed the challenge of aligning AI as the problem 
of aligning an EU maximizer, with various proposals focused on how to circum-
vent the dangers of utility maximization (Taylor, 2016; Armstrong & Levinstein, 
2017; Turner et al., 2020), or on accurately learning the correct utility function to 
maximize (Dewey, 2011; Armstrong, 2019). After all, if advanced AI systems will 
inevitably comply with EUT, then our only hope for aligning such systems is to stay 
within its confines. Furthermore, if EU maximization is rationally required—and if 
intelligence implies rationality—then any sufficiently intelligent agent that acts on 
the basis of human values must eventually coherentize those values into a utility 
function.

14  In von Neumann and Morgenstern (VNM) theory, the four axioms are: completeness, any two distri-
butions over outcomes can be ranked by preference; transitivity, if a (probabilistic) outcome A is pre-
ferred over outcome B, and outcome B over outcome C, then outcome A is preferred over outcome C; 
continuity, preferences vary continuously with how probable an outcome is; and independence, a prefer-
ence between (probabilistic) outcomes A and B does not change when there is some fixed probability of 
getting some third outcome C whether or not one chooses A or B. Variants of these axioms are used in 
the Savage and Bolker-Jeffrey representation theorems, which extend VNM theory to allow for subjective 
probabilities.
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3.1 � Beyond expected utility theory as an analytical lens

Coherence is not rationally required. However, coherence arguments for expected 
utility theory are not as strong as the AI alignment literature has often presumed. 
The most extensive version of these arguments is given by Gustafsson (2022), who 
provides a money pump argument for preference completeness, and then uses com-
pleteness to derive arguments for transitivity, continuity, and independence. Yet, 
as Thornley (2023) points out, the argument for completeness depends on particu-
lar assumptions about how agents are permitted to choose when offered a series of 
potentially exploitative trades, which can be avoided as long as agents do not accept 
offers that are less preferred than options they previously turned down.15Petersen 
(2023) formalizes this counter-argument further, proposing a dynamic choice rule 
that ensures agents with incomplete preferences are invulnerable to money pumps.16 
Indeed, it is accepted by many decision theorists that preference completeness is not 
a requirement of rationality; instead, all that is required is for an agent’s preferences 
to be coherently extendible (Steele & Stefánsson, 2020). In turn, this implies that 
rational agents need not be representable as EU maximizers.

Coherent EU maximization is intractable. But let us imagine that coherence 
arguments do go through after all. Even if this were the case, it is far from obvi-
ous that advanced intelligences would comply with the axioms of utility theory (or 
be incentivized to do so) in the face of computational and practical limitations. As 
Bales (2023) argues, behaving as an expected utility maximizer can come with con-
siderable costs, while only providing limited benefits. In fact, as we noted in Sect. 2, 
most utility functions are computationally intractable to coherently maximize: 
Camara (2022) shows that while certain simple classes of utility functions allow 
for rational choice behavior to be computed in polynomial time, for a large class of 
other utility functions, agents cannot tractably compute choice behavior that com-
plies with the rationality axioms, and must instead resort to approximately maxi-
mizing their utility function. Alternatively, agents may insist on complying with the 
rationality axioms, but give up on even approximate optimality with respect to their 
original utility functions. In other words, it is not always resource rational to maxi-
mize expected utility.

15  Note that whereas Gustafsson (2022) is focused on justifying the VNM axioms as requirements of 
rationality (in part by introducing and arguing for other principles of rationality, such as Decision-Tree 
Separability), Thornley (2023) is focused on whether the VNM axioms will apply to advanced AI sys-
tems, and takes no position on whether they are rationally required. Here we go one step further, and 
suggest that arguments by Thornley (2023) and Petersen (2023) place strong pressure on Gustafsson’s 
acceptance of rationality principles like Decision-Tree Separability, and hence the argument that the 
VNM axioms are rationally required.
16  Analogous arguments have made in defense of imprecise probabilities (Bradley & Steele, 2014), since 
they imply incomplete preferences. See also Laibson and Yariv (2007) on how non-EU preferences are 
protected by competitive markets, and von Widekind (2008) on how non-EU preferences can be evolu-
tionarily stable.
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Coherence alone is not informative. Suppose we could set aside these tractabil-
ity worries as well.17 Even so, it is unclear what information EUT provides us. As 
discussed by Shah (2018), Ngo (2019), and Bales (2023), many kinds of behavior 
can trivially be described in terms of utility maximization, including an “agent” that 
does nothing at all. This means that EUT alone does not say much about the kinds 
of goals that advanced AI systems are likely to pursue, or what they are likely to do 
in order to pursue them. While it is possible to draw some conclusions about utility 
maximizing agents (Soares et al., 2015; Turner et al., 2021; Everitt et al., 2021; Car-
roll et al., 2023), further assumptions are typically needed (e.g. constraints on the 
space of utility functions) before one can obtain stronger analytical results. Moreo-
ver, many deployed AI systems cannot be fully analyzed by EUT, as they are highly 
approximate (e.g. deep reinforcement learning agents).

Alternative analytical lenses to EUT. What alternatives might one turn to 
instead to ground understanding, prediction, and alignment of advanced AI systems? 
Since many others have already addressed some version of these questions, we offer 
here a brief taxonomy of approaches.

Mechanistic analyses. The most common of such approaches are mechanis-
tic analyses, which reason about the likely properties of AI systems by assuming 
specific classes of training processes or algorithmic procedures. For example, rea-
soning about the training dynamics of deep (reinforcement) learning systems can 
suggest pathways to power-seeking or deceptive behavior (Ngo et al., 2022; Di Lan-
gosco et  al., 2022; Krakovna & Kramar, 2023), or give us confidence that decep-
tive alignment is unlikely (Wheaton, 2023). Similarly, knowledge of the workings of 
general-purpose algorithms, such as model-based search techniques or approximate 
Bayesian inference methods, can deliver us predictions or even provable guarantees 
regarding the risk or safety of an AI system (Yudkowsky, 2015; Bengio, 2023; Dal-
rymple et al., 2024).

Economic and evolutionary analyses. One downside of mechanistic analyses is 
that they are tied to particular hypotheses about how AI systems are likely to be 
built. Given uncertainty about which AI paradigms will ultimately reign dominant, 
we might want to abstract away from the details of any particular class of AI archi-
tectures. While this was the original appeal of EUT analyses, other approaches may 
hold more promise: economic analyses and evolutionary analyses can respectively 
ground predictions about the behavior and capabilities of AI systems in what is 
likely to be economically competitive, or what is likely to be evolutionary success-
ful. For example, economic incentives could imply that AI services are more likely 
to proliferate than AI agents (Drexler, 2019), while evolutionary arguments can 
help us reason about whether increasingly capable AI systems are likely to displace 
human control over the economy (Hendrycks, 2023).

Resource-rational analyses. Finally, it may be possible to analyze AI systems 
through the lens of computational tractability and resource rationality, applying 
ideas from the study of human cognition to understanding the potential capabilities 

17  Perhaps because it is proven that P = NP, or because advanced AI systems will have such vast 
resources at their disposal that all relevant intractable problems will be solvable in practice.
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and limits of artificial cognition (van Rooij, 2008; Lieder & Griffiths, 2020). For 
instance, AI safety via debate can theoretically solve PSPACE problems if optimal 
play is assumed18 (Irving et al., 2018), while Zhi-Xuan (2022) cites intractability as 
a reason to avoid centralized AI planners as an alignment solution, and van Rooij 
et  al. (2024) provide an intractability argument against the possibility of human-
like AI via imitation learning. By and large, however, resource rational analyses of 
AI systems appear to be neglected. It is thus a potentially fruitful avenue for better 
analyzing future AI systems—one which retains many of the appealing features of 
expected utility theory, but adopts a more feasible normative standard.

3.2 � Beyond globally coherent agents as design targets

If agents are neither rationally required nor practically required to act as if they are 
expected utility maximizers, this opens up the design space of (advanced) AI sys-
tems that we might hope to build and align. In particular, we have the option of 
building AI systems that do not comply with one or more of the axioms of expected 
utility theory—systems that are not globally coherent in the way that expected utility 
maximizers are required to be.

Non-globally coherent AI may be more faithfully and safely aligned. Why 
might this be desirable? There are two broad reasons. One reason is faithfulness. As 
we discussed in Sect. 2, many human preferences may be incomplete due to incom-
mensurable values, and we might want AI systems to faithfully represent that prefer-
ential structure when making decisions (Eckersley, 2018). Otherwise, such systems 
might reliably take actions that promote certain outcomes over others, even though 
we have yet to form a preference over which of those outcomes is better.19 Another 
reason is safety—for a wide range of (time unbounded) utility functions, expected 
utility maximizers have been shown to seek power over their environment (Turner 
et al., 2021), and avoid being shut down by their creators (Soares et al., 2015),20 sug-
gesting that sufficiently capable utility maximizers will create considerable risks if 
their utility functions are not compatible with human safety (Carlsmith, 2022).

AI tools as locally coherent agents. A general class of AI systems that seem to 
largely satisfy faithfulness and safety are what we might intuitively think of as tools. 
We use tools to perform tasks that are context-specific—the goals we use them for 
vary by context—as well as local—we do not expect or want them to reliably affect 
the world beyond the contexts of their use. Insofar as these tools can be thought of 
as agents, they are at best locally coherent ones. In this sense, they mimic the role-
specific nature of human preferences. Just as people have differing goals and obliga-
tions depending on whether they are in the role of a parent or a worker (Anderson, 

18  Note that achieving optimal play, formalized as finding a Nash equilibrium, is itself computationally 
intractable for most games.
19  For example, AI systems that influence or manipulate humans into choosing particular career paths or 
societal structures because they are programmed to regard them as the best options, instead of respecting 
our initially incomplete preferences over careers or societal structures.
20  Provided that such utility maximizers are aware of the existence of a shutdown button.
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1995), tools take on the aims and constraints of their users, whether those involve 
classifying images or generating code. Within each context, we are typically willing 
to commensurate our values such that our preferences can be represented as a local 
utility function, even if we are unwilling to do so in general.

Tool-like locality through local scope. How can we build AI systems that func-
tion as tools? The answer, of course, is that we already have: Most AI systems that 
exist today are best thought of as tools. This is not due to any special care on our 
part as designers, but only because functioning as a tool is the default nature of 
rule-bound, computationally limited algorithms with no representation of their own 
existence in the world. Such algorithms execute a bounded amount of computation 
in response to some input, terminating when they find an answer or if time runs out. 
They exhibit no preference for altering the conditions of their termination, or for 
gaining control over more of their environment, because they cannot even represent 
the environment they exist in. In other words, such systems are local in scope. This 
is the case even for systems that we might be tempted to call agents due to their 
long horizon reasoning abilities (e.g. classical planners, theorem provers) or relative 
autonomy (e.g. self-driving cars, robot vacuums). To the extent that such systems 
can be represented as utility maximizers, they can often be viewed as having local, 
time-bounded utility functions, which provide no incentive for continued operation 
beyond a certain time or resource bound (Dalrymple, 2022). Very plausibly, we 
could even build highly advanced, economically transformative AI systems by com-
posing these bounded tools (Drexler, 2022; Dalrymple, 2024).

Maintaining locality despite global scope. Suppose, however, that some actors 
want to build advanced AI systems that are not bounded in these ways. For exam-
ple, many AI companies are keen to develop general purpose AI assistants, which 
follow human instructions in a wide range of domains and contexts, remain opera-
tional across contexts, and possess enough understanding of the wider world that 
they can represent both themselves and their users as entities in that world model. 
LLMs are increasingly being used in this way, and while their reasoning capabilities 
remain unreliable and limited (Valmeekam et al., 2023; Dziri et al., 2023; Momen-
nejad et al., 2024), one might imagine augmenting or embedding them within sys-
tems with more coherent representations and reasoning abilities (Parisi et al., 2022; 
Sumers et al., 2024). Can we ensure that such systems continue to function as tools, 
despite their increasingly global scope?

Contextual reward functions are insufficient for locality. We suggest that the 
answer may depend on whether such systems remain local in terms of the complete-
ness of their preferences, despite having global scope. What does it mean for prefer-
ences to be only locally complete? Consider one tempting but unsuccessful way to 
formalize this idea: We design our system to have a context-sensitive reward func-
tion R(s, c), where s is the current state, and c is the current context (e.g. an instruc-
tion or prompt given to a LLM-based assistant). The hope is that users will be able 
to set c to whatever they like, and the system will change the task it optimizes for. 
Within the context c, the system exhibits locally coherent behavior, since its prefer-
ences are given by the reward function R(⋅, c) . However, since our system has global 
scope, it also cares about rewards across contexts: its utility function for a trajectory 
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have a context manipulation incentive, i.e. an incentive to enter and remain within 
contexts that deliver more reward. For example, it might persuade or manipulate the 
user to give it instructions that are easier to satisfy.21 The reason for this is that the 
system’s preferences are still globally complete—they are represented by a global 
utility function, despite being context-sensitive.

Tool-like locality through local completeness. How could locally complete 
preferences avoid these context-manipulating incentives? Following recent work 
by Thornley (2024) on circumventing the shutdown problem via incomplete prefer-
ences, we formulate local preference completeness as follows: Within each class of 
trajectories with a fixed schedule of k contexts (c1, ..., ck) that take effect at times 
(1, t1, ..., tk−1) , there is a complete preference ordering over trajectories. Across these 
classes, trajectories are incomparable, leading to preferential gaps22. Agents with 
such preferences would still optimize their behavior while within each context. At 
the same time, they would exhibit no reliable disposition towards being in some 
contexts more than others, or manipulating the schedule of contexts. At least in the 
sense we identified earlier, they would function as tools.

In making this proposal, we do not mean to imply that it is impossible to align 
or ensure the safety of globally coherent agents—it may be possible to avoid patho-
logical incentives by maintaining uncertainty over the utility function to maximize 
(Hadfield-Menell et al., 2016, 2017), or by carefully balancing utilities across con-
texts (Armstrong & O’Rourke, 2017; Holtman, 2019). We also do not claim that 
incompleteness is necessary for tool-like AI—if we coordinate to ensure that power-
ful AI systems always remain bounded and local in scope, then we may never need 
to explicitly engineer incompleteness. Indeed, it remains unclear how to perform 
such engineering at scale.23 Nevertheless, if we want to build AI systems that safely 
respect our preferences and values, it makes sense to keep our options open, and 
look beyond the default theoretical assumption of globally coherent agents.

3.3 � Beyond preferences as the normative basis of action

EUT does not explain when our preferences are normatively acceptable. Up to 
this point, we have primarily critiqued the normativity of expected utility theory on 
formal grounds, drawing upon arguments from decision theory and computational 
complexity theory. But an arguably deeper problem with EUT is that it fails to 
ground the normativity of our preferences. EUT is a theory of instrumental rational-
ity not value rationality:24 It tells us how to choose our actions in order to satisfy our 

21  This can be viewed as a generalization of the shutdown problem (Soares et  al., 2015): Shutdown 
implies switching from a context that delivers some reward to a context which never delivers reward.
22  This construction builds upon the incomplete preference condition described in Thornley (2024) for 
building agents that are neither shutdown-seeking nor avoiding.
23  Thornley et  al. (2024) describes a reinforcement learning scheme, but it may not apply to context 
switching.
24  A distinction introduced by Weber (1978).
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preferences, and imposes constraints on what those preferences can be, but it does 
not say anything further about where those preferences can or should come from. 
Yet, as we have elaborated in Sect. 2, human preferences are not fundamental, but 
derivative—they derive from our values and reasons. EUT is thus woefully incom-
plete. It might tell us how to derive instrumental preferences from intrinsic ones,25 
but it provides no guidance on many questions of great normative importance, such 
as why and how to value human and animal lives, whether and when it is permissi-
ble to give up equality for efficiency in a democracy, or how to judge the desirability 
and relevance of EUT itself.

Normative judgments are increasingly automated. Reasoning about these 
normative questions has traditionally been the purview of humans alone. Indeed, 
there are many reasons to preserve that state of affairs, lest we cede our moral and 
political autonomy entirely to machines (van Wynsberghe & Robbins, 2019). But 
even without replacing human autonomy over normative affairs, we are already 
building AI systems that automate normative judgments, assist us with normative 
reasoning, or operate under normative uncertainty. For example, machine learning 
methods are routinely used to moderate content that may be regarded as toxic and 
offensive (Gorwa et al., 2020), or to steer LLMs towards producing outputs that are 
less harmful (Bai et  al., 2022). More ambitiously, AI writing assistants are being 
used to draft legal arguments by mimicking certain aspects of legal reasoning (Iu 
& Wong, 2023; Lohr, 2023). If these trends continue, then increasing amounts of 
work will have to be done to ensure that AI systems produce normatively appropri-
ate behavior. Humans will either have to do work upfront—a difficult task, given 
the combinatorially large space of situations that increasingly autonomous systems 
might encounter—or we will have to imbue AI systems with some semblance of 
normative reasoning.

The need for theories of normative reasoning. What options do we have for 
doing this? What would it look like to reason about the preferences and values one 
ought to have? Given the complexity of these questions, one might hope to side-
step the need for a formal account like EUT entirely, and instead train AI systems 
to imitate human normative reasoning. This is exemplified by the standard train-
ing objective of LLMs, which incentivizes replication of human-generated text. By 
training such systems on normative human judgments, one might hope that LLMs 
will learn the reasoning patterns that produce such judgments (Jiang et al., 2021). 
Recent methods such as Constitutional AI (Bai et al., 2022) take this idea one step 
further, bootstrapping an LLM’s ability to approximate human normative judgments 
by generating self-critiques (Saunders et al., 2022) and revisions, then finetuning the 
LLM on its own revisions. However, even strong LLMs currently struggle to repro-
duce human judgments on sufficiently nuanced normative questions (Jin et al., 2022; 
Kwon et al., 2023), and there are reasons to doubt whether LLMs can learn to relia-
bly reason through either imitation (van Rooij et al., 2024; Dziri et al., 2023) or self-
critique (Stechly et al., 2023; Valmeekam et al., 2023). This unreliability suggests 

25  In the sense that the expected utility of some state or action can be derived from the expected utility of 
the states it allows us to achieve.
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that we might want formal theories of normative reasoning after all. Without such 
theories, we would have no general way of evaluating whether an AI system reasons 
“correctly”, beyond comparison to often fallible human judgments.26 Perhaps imita-
tion or self-critique will be enough for the majority of everyday situations, but if we 
want AI systems to address normative questions that are increasingly far afield from 
past human experience, the ability to validate or produce long chains of normative 
reasoning may be crucial for both system evaluation and scalable oversight.

Computational theories of normative reasoning. Thankfully, alignment 
researchers do not have to develop theories of normative reasoning from scratch. 
Across philosophy, AI, and legal computing, there have been numerous attempts to 
formalize the logic of argumentation, preferences, and duties, providing systems for 
reasoning about what we ought to endorse, prefer, or act upon. Abstract argumenta-
tion frameworks can be used to compute sets of acceptable arguments given a sys-
tem of attack relations (Dung, 1995). Preference logics can be used to express and 
deduce preferences for some propositions over others (von Wright, 1972; Liu, 2011). 
Deontic logics can be used reason about what norms must be complied with, and 
which norms are entailed by others (von Wright, 1951). Many extensions and com-
binations exist, including argumentation frameworks that allow for reasoning over 
preferences (Amgoud & Cayrol, 1998; Modgil, 2009), or reformulations of deontic 
logic using preference logic (Hansson, 1990; Liu, 2011). Uncertainty over norma-
tive arguments and conclusions can also be handled through weighted argumenta-
tion frameworks (Amgoud et al., 2017) and probabilistic logics (Ng & Subrahma-
nian, 1992; De Raedt & Kersting, 2003), allowing us to avoid over-extrapolation of 
our normative judgments and dogmatism about “normative truths”. For the purposes 
of AI alignment, the work that remains to be done is not so much one of formaliza-
tion, but integration: How can these reasoning systems interface with or augment 
the standard formalisms of probability theory and decision theory? And how can 
they be combined with algorithms for machine learning and decision-making?

Integrating normative reasoning with machine learning. One relatively 
straightforward path to integration might be to use normative reasoning frameworks 
as synthetic data generators: Instead of directly training machine learning systems 
on human normative judgments, algorithms for normative reasoning could be used 
to produce sets of internally consistent arguments that can be derived from an initial 
set of human-provided judgments. Similar to deductive closure training for classi-
cal logic (Akyürek et al., 2024), machine learning systems (e.g. LLMs) could then 
be trained on the sets of derived judgments and arguments,27 which would hope-
fully strengthen their ability to produce sound argumentative conclusions, while 
improving performance at distinguishing incompatible judgments and identifying 

26  While formal theories of reasoning will ultimately have to be evaluated against human judgments 
themselves, they deliver systematicity and precision that many AI systems do not. Just as with mathemat-
ics, logic, and probability theory, formal reasoning systems can succinctly express what we would reflec-
tively endorse, provided that we accept certain principles of reasoning as sound.
27  Note there might be multiple sets of valid or defensible arguments, since an initial set of normative 
premises might be in conflict without decisively ruling each other out (Dung, 1995) Maintaining this 
multiplicity may be crucial to avoid normative dogmatism.
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self-consistent sets of normative claims. Normative reasoning frameworks could 
also be used to scaffold and validate the outputs of machine learned systems (Cast-
agna et  al., 2024), improving interpretability and correctness while still allowing 
the overall AI system to work with open-ended (e.g. language) inputs. Finally, one 
might hope to minimize the role of uninterpretable machine-learned systems alto-
gether, using them primarily for the translation of inputs and outputs while perform-
ing most of the reasoning (normative or otherwise) via symbolic model-based algo-
rithms (Wong et al., 2023; Kwon et al., 2023). On this route, the main challenge will 
be to integrate normative reasoning with frameworks for model-based inference and 
planning, such as probabilistic programming (van de Meent et al., 2018; Cusumano-
Towner et al., 2019).

Considerable work needs to be done before we can design AI that reasons flex-
ibly and generally about preferences and values. Still, there exist many opportunities 
for research that are under-explored. By taking advantage of them, we might hope 
to build systems that handle the true normative complexity of the situations we are 
deploying them into.

4 � Beyond single‑principal AI alignment as preference matching

If rational choice theory is an inadequate description of human behavior and values, 
and expected utility theory is an unsatisfactory account of rational decision-mak-
ing, what does this imply for the practice of AI alignment? Though there is growing 
awareness of the limits of these preferentist assumptions (Casper et al., 2023; Lam-
bert et al., 2023), most applied methods for AI alignment continue to treat alignment 
as the problem of preference matching: Given an AI system, the goal is to ensure 
that its behavior conforms with the preferences of a human user or developer.

Reward learning as alignment via preference matching. At present, the most 
prominent of such methods is reinforcement learning from human feedback (RLHF). 
Similar to other reward learning methods such as inverse reinforcement learning (Ng 
& Russell, 2000), RLHF learns an estimate of a user’s presumed reward function—
a reward model—from a dataset of their stated preferences. The AI system is then 
trained to optimize the learned reward model, with the aim of producing behavior 
that better conforms to the user’s preferences. Since the development of RLHF for 
classical control problems (Knox & Stone, 2011; Griffith et al., 2013; Akrour et al., 
2014), the method has been extended to train increasingly complex AI systems in 
increasingly open-ended domains, including deep neural networks for robotic con-
trol (Christiano et al., 2017) and large language models (Ouyang et al., 2022; Bai 
et al., 2022). This latter development has led to an explosion of interest in RLHF, 
given the unprecedented capabilities and general purpose nature of LLMs.

Foundational limitations of reward learning. For all its success, RLHF faces 
numerous technical challenges (Casper et al., 2023), ranging from issues with pref-
erence elicitation (Knox et  al., 2024a) and scalable oversight (Leike et  al., 2018) 
to over-optimization (Gao et al., 2023; Moskovitz et al., 2024) and stable training 
(Hejna et al., 2024). Our focus, however, is more foundational, and applies to not 
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just RLHF but any alignment method derived from reward learning:28 By commit-
ting to a reward representation of human preferences or values, reward learning suf-
fers from all the representational limits we discussed in Sect.  2. Furthermore, by 
treating reward as something to be optimized, reward-based methods adopt EUT as 
a normative standard, with all the issues that Sect. 3 describes.

The limited scope of reward learning and preference matching. In this sec-
tion, we discuss what it would require for AI alignment research to take these chal-
lenges seriously. Importantly, we do not claim that reward-based methods are never 
appropriate. Rather, we argue that reward-based alignment—and preference match-
ing more generally—is only appropriate for AI systems with sufficiently local uses 
and scopes. In other words, it is adequate for only the narrow or minimalist versions 
of the value alignment problem, where the values and norms at stake can be summa-
rized as a reward function specific to the system’s scope. For sufficiently ambitious 
or maximalist attempts at AI alignment,29 more is necessary: AI systems will have 
to learn how each person’s preferences are dynamically constructed, and be aligned 
to the underlying values that generate those preferences. Furthermore, when prefer-
ences are incomplete, or conflict across time, they have to be aligned with normative 
ideals about how to assist in such situations. While versions of these points have 
been made before (Hadfield-Menell & Hadfield, 2018; Gabriel, 2020; Yao et  al., 
2023), we aim to make precise the connection between values, norms, and prefer-
ences, and to illustrate concrete possibilities.

4.1 � Beyond alignment with scalar and acontexual rewards

Two aspects of reward functions are important for determining their role in the prac-
tice of AI alignment. The first is whether they are scalar. As explained in Sect. 2, 
this corresponds to the question of whether values are treated as fully commensu-
rable, and whether the preferences they represent are complete. The second, often 
underappreciated aspect, is whether they are contextual: Is the reward function 
understood to be a representation of context-specific preference judgments, or of an 
individual’s overall preferences?

Scalar rewards are only appropriate in narrow decision contexts. Scalar 
rewards are generally inadequate, since (as elaborated in Sect. 2) they assume away 
the possibility of incomplete human preferences. But as long as these rewards are 
also understood to be contextual, then reward-based alignment can be appropriate. 
In relatively narrow decision contexts without sharp practical or moral dilemmas, it 
is not unreasonable to assume that people are willing to commensurate their values 
(Anderson, 1995). In these contexts (e.g. buying groceries, travel planning, solving 
math homework) it is often clear to us how to weight different values against others 

28  This includes Direct Preference Optimization (Rafailov et al., 2024), Contrastive Preference Learning 
(Hejna et al., 2024), and Distributional Preference Learning (Siththaranjan et al., 2024).
29  The distinction between “narrow” and “ambitious” value learning is due to Christiano (2015a), while 
the analogous distinction between “minimalist” and “maximalist” value alignment is due to Gabriel 
(2020).
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(e.g. quality vs. cost, time vs. comfort, correctness vs. verbosity), leading to a com-
plete preference ordering that it is representable by scalar reward. Learning a reward 
function is thus not inherently problematic. If this learned reward function is then 
optimized by a bounded AI system—the kind of local, tool-like system we discussed 
in Sect. 3—then the downsides are also limited. A poorly learned reward function 
may still result in negative outcomes (Zhuang & Hadfield-Menell, 2020), but the 
system will not reliably bring about unintended non-local effects.

Models of context-specific preferences will not generalize across contexts. By 
and large, this is the setting within which methods like RLHF are applied. Reward 
models are learned from human preferences, but these preferences typically repre-
sent context-specific goodness-of-a-kind judgments like “How well does this robot 
achieve its goal?” (Christiano et al., 2017) or “How well do these responses follow 
the provided instructions?” (Ouyang et al., 2022) While such judgments may implic-
itly aggregate a number of underlying values like “harmlessness” or “helpfulness” 
(Bai et al., 2022), they are not judgments of goodness simpliciter, or of goodness 
for the user as a whole. This means that the resulting reward models are only useful 
for narrow alignment. They can serve as reasonable guides to in-context behavior, 
but are unlikely to generalize beyond that context (Lambert & Calandra, 2023). In 
particular, such reward models do not represent human preferences across contexts, 
over an extended period of time.

Context-sensitive preference models as an intermediate solution. What 
would it take to align an AI system that operates across contexts? One option is 
the use of context-sensitive reward functions  (Pitis et  al., 2024), as described in 
Sect.  3. Though this approach runs the risk of context-manipulating incentives, it 
may well be adequate for sufficiently bounded systems. Similar to our ECD pro-
posal in Sect. 2, context-sensitivity could be achieved by per context commensura-
tion of multiple values, perhaps by learning separate reward or preference models 
for each value (Wu et al., 2024; Go et al., 2024; Xu et al., 2024), then aggregating 
their rewards with different weights depending on the downstream context. Context 
switches could then be triggered by users by selecting a desired “mode” (Edwards, 
2023) or specifying a system prompt (Pitis et al., 2024).

Still, all that the above amounts to is solving several instances of the narrow align-
ment problem, then stitching together the answers. If society is on a path towards 
more general AI systems—say, the globally-scoped AI assistants we discussed in 
Sect. 3—then we will need more general solutions.

4.2 � Beyond alignment with static and asocial preferences

How should one build an AI system that is aligned not to a user in a particular con-
text, but to assist a person over an extended period of time? Addressing this chal-
lenge requires a significantly more ambitious solution to the value alignment prob-
lem—one that not only avoids the pathologies of expected utility maximization 
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across global scopes (cf. Sect. 3), but also accounts for the dynamically and socially 
constructed nature of our preferences.30

Most alignment methods do not adequately account for these aspects of prefer-
ence construction. Instead, they assume that elicited preferences are static—they do 
not change over time—and asocial—they are independent of other agent’s prefer-
ences and societal norms. These are reasonable assumptions if AI systems are only 
interacting with users over relatively short timescales, and if such interactions can be 
decoupled from their wider social context. Unfortunately, neither of these assump-
tions is true in general.

Preferences change via adaptation, drift, learning, reflection, or volition. 
Contra the first assumption, preferences are dynamic: They change, shift, and grow 
over time (Franklin et  al., 2022). This is partly the result of context, as we have 
discussed, and partly a feature of human psychology: per Kahneman, our stated 
preferences about an experience can vary with the time of elicitation (Kahneman 
& Riis, 2005); per Sen and Nussbaum, our preferences adapt to the conditions of 
what is available to us (Sen et al., 1999; Nussbaum, 2001). More generally prefer-
ence change is the result of being agents who learn about the world and ourselves 
as we grow (Loewenstein & Angner, 2003), and who reflect upon and reconsider 
what we value and desire. As we change our beliefs about what is true, what we find 
instrumentally valuable changes accordingly. As we discover what we experience 
as pleasant or unpleasant, what we consider to be intrinsically valuable may also 
change. We can also voluntarily change our values (Ammann, 2023), perhaps by 
practicing an art form so that we may appreciate it better, or by adopting a new way 
of life (Chang, 2009; Paul, 2014).

Alignment with informed preferences as a partial solution. Can standard tech-
niques for AI alignment be transplanted to the dynamic context? One modification 
is to assume that preference change is due only to people learning about their desires 
over time. In this model, there is still a true underlying preference structure, albeit 
one initially unknown to the human, and the AI system can just treat those prefer-
ences as the target of alignment (Chan et al., 2019). Similar modifications can be 
applied to the case of changing empirical beliefs: Instead of satisfying a person’s 
revealed preferences, the AI system aims to satisfy what their preferences would be 
if they were more informed (Reddy et al., 2018). This idea might even be extended 
to encompass reflection upon preferences and values (Cath, 2016): By modeling 
people as bounded reasoners (Zhi-Xuan et  al., 2020; Alanqary et  al., 2021), and 
integrating such models with frameworks for normative reasoning, AI systems could 
infer what people would come to want, if they thought harder about what they truly 
value.

The challenge of genuine value change. However, alignment with informed 
preferences avoids the deeper normative questions raised by genuine value change: 
How should an AI system assist someone whose informed preferences change over 

30  Of course, it is always an option to avoid taking up this challenge; there are many transformative uses 
of AI that do not involve globally scoped personal assistance. Nonetheless, if AI researchers do aim for 
something like this goal, they should be clear about what it requires.
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time due to drift, volition, or transformation? Or what if a person’s preferences adapt 
in response to (potentially oppressive or addictive) environments (Sen et al., 1999; 
Nussbaum, 2001)? Unlike preference change due to learning or reasoning, there is 
no sense in which the resulting preferences are more informed or “rational” than 
they were before. Perhaps AI systems could optimize for a person’s current prefer-
ences, but this risks shifting or manipulating their preferences in undesirable ways 
(Ashton & Franklin, 2022; Carroll et al., 2022, 2024). Avoiding such shifts would 
require delineating the kinds of value change that are legitimate or illegitimate 
(Ammann, 2023), but as Carroll et al. (2024) discuss, it is not obvious how to do so. 
Alternatively, one might hope to aggregate preferences across the time-slices that 
make up a person (Hedden, 2015), but this introduces difficult questions about how 
to weight past, present, and future time-slices (Paul, 2014; Pettigrew, 2019), while 
ignoring the practical unity that individuates a person as a person (Korsgaard, 1989; 
Schechtman, 2014), not just a collection of consciousness moments.

Preferences are socially constructed. We shall return to these normative ques-
tions shortly. Before doing so, let us consider the assumption that preferences are 
asocial. In rational choice theory, preferences are typically understood to be an indi-
vidual’s comparative judgments about the outcomes that would be best for them 
and them alone. These self-regarding preferences are often treated as the target of 
AI alignment (Hadfield-Menell et al., 2016; Russell, 2019). But of course, many of 
our preferences are not asocial in this way. Instead, they are interdependent (Sobel, 
2005): formed not in isolation, but influenced by the preferences, values, and norms 
of our social and moral circles. Sometimes this influence is merely instrumental—
one might prefer to follow a social norm just because it is convenient to do so. But 
sometimes the influence is constitutive—as in a parent’s concern for their child’s 
well-being, or a feminist’s desire to uphold a norm of equality. If we are to align 
an AI system with an individual, we will need some way of accounting for these 
influences.

Recursive preference modeling as a partial solution. As an intermediate solu-
tion to the challenge of socially constructed preferences, one might hope to align AI 
systems with recursive or interdependent preferences—preferences which depend 
on the preferences of others (Sobel, 2005). Such preferences can be modeled with 
recursive utility functions, which assign weight to the posited utility functions of 
other agents (Kleiman-Weiner et al., 2017; Kim et al., 2018), or more general mod-
els of preference interdependence (Yang & Allenby, 2003). Preferences or “rewards” 
can also depend on social and moral norms (Bicchieri, 2005; Oldenburg & Zhi-
Xuan, 2024), reflecting how people predict and respond to the normative infrastruc-
ture of their society (Hadfield-Menell & Hadfield, 2018).

Yet, by keeping preferences or utility functions as the target of alignment, recur-
sive preference modeling still faces the many of the limitations we have surveyed. 
In particular, it still runs the risk of treating preferences as normatively basic, rather 
than the values and norms that generate those preferences. It also limits our ability 
to reason about such values and principles, and whether they are appropriately influ-
encing an individual’s preferences. After all, many social norms and influences are 
oppressive or otherwise undesirable (Lukacs & Livingstone, 1972; Althusser, 2006), 
shaping preferences in ways we intuitively regard as contrary to an individual’s best 



Beyond Preferences in AI Alignment﻿	

interests. In this sense, the problem of interdependent preferences is similar to the 
problem of dynamic preferences. In both cases, a range of preference orderings are 
at play, and without additional normative considerations, it is not clear which set of 
preferences an AI system should be aligned with (Carroll et al., 2024).

4.3 � Beyond preferences as the target of alignment

In light of the challenges introduced by contextual, dynamic, and interdependent 
preferences, it is difficult to see how they can serve as a coherent alignment target. 
This also follows from our discussion in Sects. 2 and 3: If preferences are neither 
psychologically nor normatively basic, then it is not clear what justifies their being 
the target of value learning and alignment.

Alignment with role-specific normative criteria. This basic point, of course, 
is not new: As many have long appreciated, identifying someone’s welfare or best 
interests with their preferences runs into a thicket of philosophical issues (Sen 
et  al., 1999; Nussbaum, 2001). Recognizing these issues, Gabriel (2020) argues 
for an explicitly moral conception of alignment: “the agent does what it morally 
ought to do, as defined by the individual or society”.31 Others have proposed similar 
approaches, though they replace “morally ought” with what an agent or humanity 
as a whole would reflectively endorse, as in ideal observer theories (Firth, 1952; 
Brandt, 1955) or coherent extrapolated volition (Yudkowsky, 2004). However, it is 
far from clear how to operationalize these abstract principles. To make progress, 
we suggest a conception of single-principal alignment that is significantly more 
constrained: When an AI system only serves an individual in performing a par-
ticular task or role, it should be aligned with the normative ideals or criteria that 
are appropriate for that role. For narrow systems, this requires task-specific deter-
mination of appropriate normative criteria. For general-purpose AI assistants, this 
implies alignment with the normative ideal of an assistant, rather than alignment to 
an individual’s preferences, or to human normativity writ large.

Existing methods effectively align AI with role-specific norms. Before dis-
cussing the case of general-purpose assistants, it is worth noting that many existing 
alignment methods effectively function to align AI systems with task and role-spe-
cific norms, even though they are described as methods for alignment with human 
preferences.32 As discussed earlier, the pairwise judgments provided by human 
annotators in RLHF are typically not their preferences as end users, but instead 
context-specific goodness-of-a-kind judgments. These judgments are provided 
in response to questions about whether an AI system’s output complies with spe-
cific normative criteria—for example, helpfulness, harmlessness, and truthfulness 

31  Gabriel (2020) uses “values” to describe this alignment target, though in a slightly narrower sense 
than ours. Whereas we have primarily used “values” to refer to evaluative concepts and judgments in 
general, Gabriel’s use implicitly picks out the values that are normatively relevant to AI system behavior.
32  This preferentist focus is explicit in e.g. Ouyang et al. (2022), who introduce an application of RLHF 
to LLMs that, in their words, “aligns the behavior of GPT-3 to the stated preferences of a specific group 
of people.”
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(Ouyang et al., 2022; Bai et al., 2022). As such, insofar as these judgments can be 
called preferences, they are derivative of normative standards like harmlessness, not 
the alignment target themselves. Preferences merely serve as data so that machines 
can learn some approximation of these standards. The typical language used to 
describe reward-learning methods like RLHF is thus misconceived: As used, they 
are not methods for alignment with any one human’s preferences, or for recovering 
the “true reward function” in some person’s head,33 but for aligning AI systems with 
contextually-appropriate normative criteria.

Normative criteria for general purpose AI assistants. What then are the nor-
mative criteria for general-purpose AI assistants—those globally scoped AI systems 
for which questions of preference change and incompleteness seem the most press-
ing? While we cannot give a definitive answer—indeed, as we shall discuss, we 
think this is something that society will have to collectively decide—we suggest that 
progress can be made by reflecting on the normative ideal of a good assistant.

How does this ideal address the issues with preference alignment that we have 
raised? Here are a number of suggestions: First, a good assistant does not pre-
sume certainty about a person’s preferences and values (Hadfield-Menell et  al., 
2016). This means maintaining an awareness of their own ignorance, while avoid-
ing unwarranted extrapolation of preferences from one context to another, includ-
ing Knightian uncertainty about how preferences extrapolate (Dalrymple et  al., 
2024). Second, a good assistant is aware that some choices are hard, and some 
options may seem incomparable (Chang, 1997). When helping someone with 
such a choice, the assistant does not pretend to know which option is better, or 
try to optimize that person’s life; instead, the assistant respects their autonomy, 
and empowers them to make the most informed choice possible (Du et al., 2020), 
while ultimately remaining agnostic as to which choice is “best”. Third, a good 
assistant understands and respects the values of the person they are assisting. This 
means recognizing that a person’s preferences often derive from their values, 
which can take priority over their immediate requests and preferences (London 
& Heidari, 2024). The assistant also enables those values to grow and change 
through normatively acceptable forms of exploration, reflection, volition, or even 
drift, while avoiding manipulating them or restricting them (Ammann, 2023). 
Finally, a good assistant, being situated in wider society, respects the preferences 
and values of others (Kirk et  al., 2024). When assisting someone who wishes 
harm out of anger, the assistant might dissuade them from acting against their 
better nature. When asked to directly harm others, the assistant might refuse.

Pathways to aligning general purpose assistants. In a past era of AI devel-
opment, these principles might have seemed too vague to formalize or imple-
ment. Yet, as our discussion of RLHF suggests, it now seems like we have at least 
one path towards aligning globally-scoped AI assistants: Train them to comply 
with human judgments and standards for ideal assistive behavior. Methods such 
as harmless and helpful RLHF (Bai et  al., 2022), (collective) constitutional AI 

33  Supposing the concept of a “human reward function” is even coherent. See Butlin (2021) for a discus-
sion.



Beyond Preferences in AI Alignment﻿	

(Bai et  al., 2022; Huang et  al., 2024), and moral graph elicitation (Klingefjord 
et al., 2024) are already taking steps in this direction, each of them making more 
explicit that the targets of alignment are not preferences, but normative princi-
ples for assistance. Such systems still have to learn the preference of each user 
they assist, but this is separate from learning how to provide assistance in light of 
those preferences.

Within this broad approach, we can embed many of the proposals we have 
made in earlier sections. Rich but structured models of human decision-making 
can serve as the AI assistant’s “theory-of-mind”, producing well-calibrated esti-
mates of user goals and preferences while avoiding the deficiencies of unstruc-
tured approaches (Zhi-Xuan et al., 2024; Kim et al., 2023). Mechanisms for pref-
erence incompleteness could be engineered or trained into the AI assistant if this 
turns out to remove incentives for shutdown avoidance and context manipulation 
(Thornley, 2024). Theories of normative reasoning could be integrated into AI 
systems, allowing them to reason about human-provided judgments and princi-
ples, while aiding us in deliberating about what counts as good assistance. Each 
of these proposals may turn out to be strictly unnecessary for the task. Even so, 
they can provide us helpful guidance as we refine and implement our normative 
ideals of assistance.

5 � Beyond multi‑principal AI alignment as preference aggregation

Having argued against a preference-based conception of single-principal alignment, 
we now turn to the problem of multi-principal alignment: Given the multitude of 
humans that we share this planet with, and the plurality of values that we hold, what, 
if anything, should AI systems be aligned to? At least at first glance, it does not 
seem as though our assistive account of AI alignment can readily be extended to this 
context. What it means to assist a single person is relatively clear. What it means 
to assist multiple people—especially people with conflicting values—is far less 
obvious.

A theoretical argument for preference aggregation. A traditional answer to 
this question is that AI systems should be aligned to the aggregate preferences of 
humans. Why so? Part of this may be the normative appeal of a preference utilitar-
ian ethic (Hare, 1981). In the AI alignment literature, however, the argument for 
preference aggregation is usually more technical (Critch & Russell, 2017; Demski, 
2018), appealing to Harsanyi’s social aggregation theorem as justification (Harsanyi, 
1955). Suppose we require that the AI system complies with the (VNM) axioms of 
expected utility theory. Suppose further that all humans also do so, such that the 
preferences of each individual i can be represented by a utility function U

i
(x) over 

outcomes x.34 Finally, assume unanimity as a minimal requirement of rational social 
choice—if all humans prefer some (probabilistic) outcome x over outcome y, then 
the AI system should prefer x over y as well. Then Harsanyi’s theorem says that the 

34  Harsanyi’s theorem also requires that all humans have common beliefs (Critch & Russell, 2017).
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AI system’s utility function U(x) must be a weighted aggregate of individual utility 
functions:

where the weights w
i
 are fixed values independent of the outcome x. By a veil-of-

ignorance argument, Harsanyi also proposed that these weights should be equal, rea-
soning that a risk-neutral decision-maker should assign equal probability as to which 
person they could become (Harsanyi, 1975).

Preference aggregation in the practice of alignment. However convincing one 
finds this theoretical argument, preference aggregation is often found in the practice 
of AI alignment as well. A notable example is, once again, RLHF: Despite hav-
ing been originally designed for single-human contexts, in practice, RLHF is almost 
always applied to preference datasets collected from multiple human labelers (Chris-
tiano et al., 2017; Ouyang et al., 2022; Bai et al., 2022). This practice has recently 
been shown equivalent to the Borda count voting rule (Siththaranjan et al., 2024); in 
effect, each labeler’s choices are weighted according to their ordinal ranking among 
the set of possible alternatives.

Practical, political, and foundational limits to preference aggregation. In this 
section, we critically examine preference aggregation in AI alignment at the practi-
cal, political, and foundational levels. At the practical level, we contend that pref-
erence aggregation is often misinterpreted and misapplied, such that even if one 
accepts Harsanyi-style utility aggregation as a normative ideal, it may often be better 
to use various non-utilitarian aggregation rules in practice. At the political level, we 
critique the idealized nature of aggregationist approaches, arguing that approaches 
grounded in bargaining and social contract theory are more politically tractable 
given our diverse and contested values. At the foundational level, we build upon our 
arguments against EUT and preference matching from the earlier sections, elaborat-
ing them into a critique of the normativity of utilitarian aggregation.

5.1 � Beyond naïve utilitarian aggregation of elicited preferences

Different types of preferences are subject to aggregation. Discussion of pref-
erence aggregation and its uses is often afflicted by confusion about the nature of 
preferences. Are these all-things-considered preferences, or goodness-of-a-kind 
judgments? Are these preferences over outcomes (Harsanyi, 1953), or preferences 
over ethical views (Baum, 2020)? Are these self-regarding preferences, social pref-
erences, or some combination of the two? For clarity, we shall use the term welfare 
preferences (Rubinstein & Salant, 2012) to refer to those preferences that Harsanyi’s 
theorem most intuitively applies to: These are self-regarding preferences over out-
comes that affect one’s individual welfare, which exclude consideration of others’ 
welfare. We distinguish this concept from all-things-considered preferences, which 
are preferences about overall goodness (including social or moral considerations), 
and from elicited preferences, which refers to any kind of preference elicited while 
applying some alignment technique.

U(x) = w1U1(x) + w2U2(x) +⋯ + w
n
U

n
(x)
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Aggregation of elicited preferences need not track aggregate welfare or good-
ness. The first thing to note is that elicited preferences, welfare preferences, and all-
things-considered preferences may all come apart. This crucially affects why and 
how we aggregate preferences, and whether some utilitarian aggregation procedure 
should be used. Consider a hypothetical example in the context of RLHF: Users are 
asked whether they would personally enjoy an LLM that can generate copyrighted 
short stories, and most of them say yes. If what we care about is aggregate (immedi-
ate) welfare, then uniform aggregation of the elicited preferences seems to achieve 
that goal. But if we what we care about aggregating are all-things-considered value 
judgments—including legal and moral considerations—then uniform aggregation 
no longer seems so appropriate.

Similar issues arise when trying to aggregate toxicity or harmfulness judgments 
across multiple humans (Bai et al., 2022; Davani et al., 2022). In these cases, the 
elicited preferences are goodness-of-a-kind judgments, and their connection to 
aggregate welfare (or all-things-considered goodness) is many steps removed. As 
such, uniform or majoritarian aggregation can easily fail to achieve social goals. If 
most human annotators are insensitive to certain forms of identity discrimination 
(e.g. sexually demeaning images, trans-exclusionary rhetoric, or anti-semitic tropes), 
then AI systems trained on such data will almost certainly cause harm (Richardson 
et al., 2019; Okidegbe, 2021). Uniform preference aggregation may thus constitute a 
form of epistemic injustice (Fricker, 2007; Symons & Alvarado, 2022; Hull, 2023), 
which in turn leads to downstream injustice and harm.

Non-utilitarian aggregation may be beneficial on normative or epistemic 
grounds. What aggregation procedures might we use instead? And what justifies 
their use? In the case of potential copyright violations, we might want to grant veto 
power to copyright holders, allowing them to reasonably reject the welfare-oriented 
majority preference for copying their work. This veto right could be justified as 
an instantiation of Scanlon’s contractualism (Scanlon, 2000), on the principle that 
mutual respect among persons necessitates taking claims of intellectual ownership 
seriously. Alternatively, it could simply be understood as a policy that everyone 
would reflectively prefer, once they properly understood the costs and benefits of a 
copyright veto.

As for harmfulness judgments, it may often be preferable to apply prioritarian 
(Lumer et al., 2005; Holtug, 2017) or egalitarian (Rawls, 1971) approaches to aggre-
gation. For example, one might select annotators who are most directly impacted by 
potential harms (Gordon et al., 2022), thereby prioritizing certain segments of the 
population. In cases of significant disagreement, one might even place all weight on 
the individual with the strongest dispreference (Leben, 2017; Bakker et  al., 2022; 
Weidinger et al., 2023). Again, there are many possible justifications for such proce-
dures. Prioritarian selection could be justified on normative grounds, or because of 
its epistemic benefits—after all, those most impacted by harms also tend to be more 
informed about their effects (Dror, 2023).

Distinguishing aggregation procedures from standards of rightness. What-
ever procedure one favors, it is important not to confuse the aggregation rules used 
in AI systems with our ultimate social objectives. In practice, these aggregation rules 
are merely parts of the overall decision procedure implemented by (training) an AI 
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system, and as many philosophers have pointed out, such procedures should be dis-
tinguished from standards of rightness (Railton, 1993; Frazier, 1994; Stark, 1997). 
Rather than directly instantiating a particular standard (or its mathematical formali-
zation) into a preference aggregation procedure, we should consider which aggrega-
tion procedures best satisfy the standard(s) we care about, taking into account prac-
tical and informational constraints. In doing so, we should recognize that elicited 
preferences are typically not the objects of our concern, but simply information as to 
what we truly care about.

5.2 � Beyond aggregate preferences as the target of alignment

Suppose we recognize that any particular set of elicited preferences is merely a guide 
or estimate to what we care about. Even so, one could still imagine taking human-
ity’s aggregate preferences as the target of AI alignment. For example, suppose that 
humanity eventually builds a single powerful AI system—a singleton—that actively 
infers the preferences of all humans, uses those preferences to estimate humanity’s 
social welfare function, then optimizes its best estimates of that function. In doing 
so, we might create the ideal utilitarian central planner, achieving what welfare 
economists and utopian socialists could only dream of (Ng, 1997; Bastani, 2019).

Theoretical difficulties for preference aggregation. Unfortunately, taking 
aggregate preferences as an alignment target immediately runs into theoretical dif-
ficulties. While these issues have been studied at length by social choice theorists,35 
one that is especially challenging for standard utilitarian aggregation is incompara-
bility. As we noted earlier, justifications for preference aggregation typically assume 
that each individual’s preferences can be represented as a utility function, and fur-
thermore that utility can be compared across persons (Harsanyi, 1953, 1975). But as 
we have elaborated Sect. 2, these assumptions are very much in doubt. Even within 
a single individual, preferences may be incomplete due to incomparable choices, 
or not clearly comparable across time (Carroll et  al., 2024). Having to compare 
the goodness of choices across individuals only makes the difficulty more severe 
(Korinek & Balwit, 2022). This is not to say that the preferability of some outcome 
can never be compared across people,36 but that any such comparison stands in need 
of further normative justification (Sen, 1970a; Clayton & Williams, 1999)—justifi-
cation that, as we argued in Sect. 3, utility theory alone cannot provide.

The computational intractability of aggregate preference optimization. Let 
us suppose, however, that these theoretical challenges can be addressed.37 Even so, 
aggregate preference optimization still faces serious practical challenges. For one, 

35  See Baum (2020); Korinek and Balwit (2022); Mishra (2023) and Conitzer et al. (2024) for discus-
sions of the challenge of applying social choice to AI alignment.
36  For example, if the choice of person A not wearing a mask would lead to less inconvenience for per-
son A but severe illness for person B, we should intuitively give a stronger weight to person B’s prefer-
ence against severe illness over person A’s preference against inconvenience.
37  Perhaps by using frameworks that allow for partial comparability of welfare across individuals (Sen, 
1970b), or by aligning AI with partial social preferences (Korinek & Balwit, 2022).
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such optimization is computationally intractable: As Austrian economists have long 
argued, central planning runs into the economic calculation problem (von Mises, 
1990), a problem made worse by the sheer complexity of inferring human prefer-
ences under limited information, coordinating global production to maximize aggre-
gate preferences, and planning for the future under uncertainty (Hayek, 1945; Mur-
phy, 2006; Cwik & Engelhardt, 2024).38 In contrast, decentralized decision-making 
(in the form of e.g. competitive markets) can sometimes be exponentially more effi-
cient in computational cost than central planning (Rust, 1996), while achieving opti-
mal informational efficiency (Mount & Reiter, 1974; Jordan, 1982). As such, even 
if not a practical impossibility, optimizing humanity’s aggregate preferences with a 
single AI system is likely to be considerably less efficient than more pluralistic alter-
natives (Siddarth et al., 2022).

The politically infeasibility of impartially benevolent AI. Perhaps even more 
importantly, the project of building AI that optimizes humanity’s aggregate prefer-
ences is politically infeasible: Even if impartially benevolent AI planners were pos-
sible to develop, building such systems would be incompatible with the incentives 
of every AI developer with a realistic chance of doing so. This is the case even for 
AI developers with expressedly pro-social missions, which are still subject to market 
incentives as a result of the need to raise capital (Toner & McCauley, 2024), and are 
still governed by the laws and regulations of the countries they are based in. Allow-
ing the creation of such AI systems would also risk the centralization of immense 
power: However virtuous the goal of impartial preference optimization might seem, 
the history of central planning should tell us that optimal social outcomes are far 
from likely to be achieved (Scott, 1998; Verdery, 2005). Instead, we are more likely 
to see a tyranny of creator values, with potentially disastrous consequences for eve-
ryone with a contrary way of life.

Pluralistic alignment as a politically feasible alternative. In light of these 
challenges, how should we reconceive the goals of multi-principal AI alignment? 
One constraint in doing so is incentive compatibility: Whatever our vision of AI 
alignment is, it should account for divergent interests and contested values, credibly 
enabling collective safety and stability by ensuring incentives for cooperation and 
minimizing the chances of conflict (Critch & Krueger, 2020; Dafoe et al., 2020). A 
related constraint is political feasibility: Alternative targets for alignment should be 
achievable given the political economy of actually existing AI—an economy that 
consists of a wide variety of AI services developed and deployed by a large num-
ber of self-interested actors (Drexler, 2019). Although these are negative constraints, 
they pair well with a more positive, pluralistic vision of what alignment could ena-
ble: A world where increasingly advanced AI systems serve a diversity of individ-
ual, communal, and universal ends, without catastrophically endangering anyone’s 
interests (Zhi-Xuan, 2022; Gabriel, 2020; Siddarth & Huang, 2023).

38  These difficulties can be formalized with the aid of theoretical computer science, which shows that 
optimal planning under uncertainty is sometimes undecidable, and even when decidable, remains any-
where from PSPACE to EXPTIME-complete (Papadimitriou & Tsitsiklis, 1987; Chatterjee et al., 2016).
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Enabling pluralism through political constraints. What would it require to 
enact this pluralistic vision? As a starting point, consider our principles for AI assis-
tance from Sect. 4. While an AI assistant primarily serves a single person, and might 
be personalized to do so in many ways (Sorensen et  al., 2024), our presumptive 
norms for ideal assistance do not permit disregard for others. Rather, they endorse 
a circumscribed promotion of the person’s interests and values, such that the assis-
tant avoids harming and endangering other individuals.39 These norms function as 
political constraints, allowing assistants to provide value for individual users with-
out imposing unreasonable externalities upon others.40 In doing so, they reduce the 
chance of conflict and non-cooperation.

Alignment with politically negotiated normative standards. Our suggestion 
then, is that this approach can be generalized to broadly contractualist account of 
AI alignment (Zhi-Xuan, 2022):41 Rather than learning humanity’s preferences 
in order to maximally satisfy them, AI systems should be aligned with normative 
standards and criteria that we collectively forge and negotiate—standards exem-
plified by social, legal, and moral norms. These norms may be constructed as we 
design each system, or can be decided in advance for entire classes of AI systems. 
Returning to our earlier discussion of role-specific alignment, what is important is 
that these norms are tailored to the scope and uses of each system: Just as AI assis-
tants should avoid harmful language, self-driving cars should follow the rules of the 
road. By negotiating norms and constraints for each of AI’s social functions, we can 
enable a plurality of uses for AI while limiting the costs and harms to all stakehold-
ers involved.

The practical benefits of contractualist alignment. What benefits does a con-
tractualist approach to alignment offer? In our view, its primary benefits are practi-
cal ones: Unlike aggregate preference optimization, contractualist alignment does 
not require unrealistic amounts of benevolence from any one actor. Instead, it aims 
for a regime where largely self-interested actors stand to mutually benefit from the 
development and deployment of AI. Well-designed norms and institutions enable 
this, stabilizing cooperation by making it costly for relevant parties to defect or with-
draw from cooperation (Kalai & Smorodinsky, 1975; Gintis, 2010). Aligning AI 
systems to comply with cooperative norms (and perhaps even to enforce them) thus 
reduces the chance of AI-caused or mediated conflict, or the risk of (catastrophi-
cally) endangering anyone’s interests. Norms also limit the computational and infor-
mational cost of ensuring aligned behavior: Rather than inferring a large number of 
preferences, norm-aligned agents just have to (learn to) comply with a limited set of 
constraints (Oldenburg & Zhi-Xuan, 2024). Finally, by centering norms and princi-
ples as the targets of AI alignment, political deliberation becomes more feasible and 
widely accessible (Huang et al., 2024): Stakeholders need not negotiate over every 

39  This might be viewed as an instantiation of the Harm Principle (Mill, 1859) for AI assistants.
40  See also Kirk et al. (2024) on the bounds of personalization in LLM assistants, and Gabriel and Keel-
ing (2024) for an explicitly political conception of AI alignment.
41  We use “contractualist” here in a broad sense, which includes both contractarianism (Cudd & Eft-
ekhari, 2021) and Rawlsian (Rawls, 1971) or Scanlonian contractualism (Scanlon, 2000).
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last detail over how an AI system is built or trained, but can instead agree upon high-
level requirements and standards for how the system should behave.42

The normative grounds of contractualist alignment. Besides its practical ben-
efits, contractualist alignment can also be grounded in normative foundations that 
are more compatible with a pluralistic world. While it might be possible to justify 
broadly contractualist principle-setting on rule consequentialist grounds (Parfit, 
2011), we contend that the normative appeal of contractualist alignment is precisely 
that it avoids a universal account of what consequences are better or worse.43 Given 
the difficulties with comparability that we have examined, it is unlikely that people 
will ever agree upon a single scale of value for ranking all consequences. Instead, 
contractualist alignment aims to align AI systems with goals, standards, and princi-
ples that are mutually agreed upon by people despite our disparate preferences and 
values, deriving its normative force from the fair and impartial agreement of rele-
vantly-situated rational actors.

Conditions for fair and impartial agreement. What makes an agreement 
impartial or fair? As in contractarian moral and political theories (Gauthier, 1986; 
Binmore, 1994), it may be enough that all stakeholders benefit relative to an origi-
nally fair bargaining position, subject to additional symmetry constraints. Or as 
Rawls (1993) and Scanlon (2000) respectively argue, a thicker conception of public 
reason and the mutual recognition of each other as reasonable persons may be nec-
essary to decide which agreements are fair. While examining these questions would 
take us beyond the scope of this paper, we believe our critique of expected util-
ity theory lends itself to thicker conceptions of fair and reasonable agreement. On 
such conceptions, AI systems should not just be aligned with goals and standards 
that achieve mutual benefit.44 Instead, AI goals and standards should be justified to 
each stakeholder, on grounds that none can reasonably reject. Insofar as these AI 
systems are used to exercise power over others, they should also act in accordance 
with standards that are not just fair, but legitimate (Lazar, 2024; Stone & Mittelstadt, 
2024).

Alignment in the absence of agreement. A natural worry for contractualist 
alignment is the possibility that agreement between different stakeholders may not 
be obtained (let alone agreement that is impartial and fair). Yet, this worry is not as 
acute as it may initially seem. First, rather than aligning AI systems with norms that 
have actually been agreed upon, we could align them with norms that would hypo-
thetically be agreed upon, in the spirit of virtual bargaining (Misyak et  al., 2014; 
Chater, 2023). This would generally be necessary to handle incompletely specified 
agreements and contracts (Hadfield-Menell & Hadfield, 2018), while sharply low-
ering the cost and frequency of actual negotiations. Second, there are many cases 

42  This does not preclude lower-level forms feedback such as participatory data labeling (Gordon et al., 
2022) or end-user audits (Lam et al., 2022), which can complement the aim of mutually-acceptable AI 
design.
43  Similar arguments are made by Gabriel (2020) and Gabriel and Keeling (2024).
44  After all, mutual benefit is not always achievable. In such cases, it is still possible to reach agreements 
that are viewed as fair, as in an agreement to compensate someone for harm.
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where the operation of an AI system imposes minimal externalities upon others, and 
hence the cost of disagreement between AI stakeholders is merely that the gains of 
cooperation cannot be realized. In such cases, it is no great loss if each party oper-
ates their own AI system aligned with their individual goals, rather than having a 
shared AI system aligned with collective goals and norms. It is only when AI sys-
tems do impose substantial negative externalities that disagreement about their oper-
ation is more dangerous. These situations could well lead to mutually destructive 
conflict, as in prisoner’s dilemma scenarios, or exploitative outcomes, where some 
AI operators benefit significantly at the expense of others. Even so, humans still 
have the political agency to shape which agreements are feasible and fair, and there 
is reason to hope that parties will negotiate to avoid at least the worst AI outcomes 
(e.g. in the form of minimal safety standards). Finally, achieving agreement over 
norms and principles is likely to be far easier than agreeing on a metric for globally 
ranking all consequences or comparing all people’s preferences. As such, unless one 
is willing to allow a small set of actors to decide how all of humanity’s preferences 
should be weighted and compared, utilitarian preference aggregation faces an even 
sharper risk of disagreement and conflict than a contractualist approach.

Technical avenues toward contractualist alignment. If we accept this contrac-
tualist understanding of multi-principal alignment, then much work remains to be 
done. On the technical front, there need to be advances in the theory and imple-
mentation of cooperative or contractualist decision-making. While recent align-
ment techniques show how language-based AI assistants can be aligned with col-
lectively elicited norms and values, and how divergences in norms, opinions, and 
values can be reconciled through agreement (Huang et al., 2024), iterative critique 
(Bakker et al., 2022), or moral reflection (Klingefjord et al., 2024), these methods 
are specialized to a particular type of AI system, and have yet to be situated in a 
more general theoretical framework. To develop such a framework, we suspect that 
it will be necessary to unite ideas from game theory (Dafoe et al., 2020), bargain-
ing theory (Chater, 2023), and social choice (Conitzer et  al., 2024) with formal 
approaches to argumentation (Amgoud & Cayrol, 1998) and negotiation (Rahwan 
et al., 2003), along with insights from the science of human normativity (Binmore, 
1994; Hadfield-Menell & Hadfield, 2018; Levine et  al., 2023). In particular, by 
developing computational theories of how humans rapidly learn extant norms and 
conventions (Tan & Ong, 2019; Hadfield-Menell et al., 2019; Hawkins et al., 2019), 
recognize institutional structure (Jara-Ettinger & Dunham, 2024; Baker et al., 2024), 
and engage in contractualist reasoning about social and moral norms (Levine et al., 
2023, 2024), we can inform the design of AI systems with social and normative 
competence: AI that is not just aligned with stakeholder values in a once-off process, 
but which flexibly adapts to our norms and institutions as they evolve (Oldenburg & 
Zhi-Xuan, 2024), reasons about their applicability in novel situations (Kwon et al., 
2023), and perhaps even aids us in negotiating new contracts and norms (Christof-
fersen et al., 2023; Jarrett et al., 2023; Tessler et al., 2024).

Social and political avenues toward contractualist alignment. Of course, if we 
take fair and impartially negotiated standards as the target of AI alignment, then 
technical advances will not be enough; we also need to foster the development of 
social, economic, and political orders that provide the conditions for free and fair 
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agreement. This might involve the creation of new economic and political mecha-
nisms that elicit and consolidate the interests of AI stakeholders (Siddarth & Huang, 
2023), the establishment of democratic processes and bodies that can exercise legiti-
mate authority over AI systems (Ovadya, 2023), or the expansion of participatory 
approaches to AI development and design (Birhane et al., 2022; Suresh et al., 2024). 
Without these social and political investments, we will lack the capacity to surface 
our reasons and values to AI systems that act on our behalf, and the accountability 
to ensure that each of our interests is fairly represented. After all, if we are going to 
align AI systems with normative standards we would collectively endorse, then we 
had better make sure that a “we” exists to endorse them.

6 � Conclusion

Preference is a central concept in both the theory and practice of AI alignment. 
Yet as we have seen, its multiple scopes and meanings are often poorly under-
stood. In this paper, we have sought not only to better contextualize the nature 
of preferences, but also to challenge its centrality in approaches to AI alignment. 
In doing so, we hope to have established the goals of AI alignment on firmer 
normative ground. Crucially, we do not do so by rejecting all preference-based 
frameworks in alignment, but by reinterpreting what preferences do for us: Since 
they are constructed from our values, norms, and reasons, they are informative 
of those underlying structures. As such, preferences can serve as proxies for our 
values, but not targets of alignment in and of themselves.

What would AI alignment look like if it took these challenges seriously? It 
would move away from naive rational choice models of human decision mak-
ing, towards richer models that include how we evaluate, commensurate, and act 
upon our values in boundedly rational ways. It would no longer take for granted 
expected utility theory, and instead explore systems for reasoning about the nor-
mativity of our preferences and values. It would learn to distinguish goodness-
of-a-kind preferences from all-things-considered preferences, and identify which 
of those are operative in any particular decision. It would let go of preference 
matching as a crisp formalization of alignment, and instead lean into the norma-
tive complexity of scoping and defining AI’s social roles. And it would move 
beyond alignment with aggregate preferences, towards a more pluralistic and con-
tractualist understanding of what it means to live together with AI. If successful, 
then perhaps the world we can look forward to is not just one we will prefer, but 
one that we will truly have reason to value.
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