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Quantum linear system algorithms (QLSA) have the potential to speed up Interior Point Methods (IPM). However, a major

bottleneck is the inexactness of quantum Tomography to extract classical solutions from quantum states. In addition, QLSAs

are sensitive to the condition number, and this sensitivity is exacerbated when the Newton systems arising in IPMs converge

to a singular matrix. Recently, an Inexact Feasible Quantum IPM (IF-QIPM) has been developed that addresses the inexactness

of QLSAs. However, this method requires a large number of gates and qubits to be implemented. Here, we propose a new

IF-QIPM using the normal equation system, which requires less number of gates and qubits. To mitigate the sensitivity to

the condition number and other input data-related parameters, we use preconditioning coupled with iterative reinement to

obtain better complexity. Finally, we demonstrate the efectiveness of our approach on IBM Qiskit simulators.

CCS Concepts: · Theory of computation→ Linear programming; Quantum complexity theory; Preconditioning.

Additional Key Words and Phrases: Quantum Linear System Algorithm, Quantum Interior Point Method, Linear Optimization,

Iterative Reinement, Preconditioning

1 Introduction

Mathematical optimization problems arise in many ields and their solution yields signiicant computational

challenges. Researchers have attempted to develop quantum optimization algorithms, such as the Quantum

Approximation Optimization Algorithm (QAOA) for unconstrained quadratic binary optimization problems [14],

and a quantum subroutine for simplex algorithm [36]. Another class of quantum algorithms are Quantum Interior

Point Methods (QIPMs) [4, 23, 31], which are hybrid-classical IPMs that use Quantum Linear System Algorithms

(QLSAs) to solve the Newton system at each IPM iteration. Before reviewing prior work on QIPMs for Linear

Optimization problems (LOP), we provide the necessary deinitions, fundamental results, and properties.

Authors’ Contact Information: Mohammadhossein Mohammadisiahroudi, Industrial and System Engineering Department, Lehigh Uni-

versity, Bethlehem, Pennsylvania, United States; e-mail: mom219@lehigh.edu; Zeguan Wu, Industrial and System Engineering Depart-

ment, Lehigh University, Bethlehem, Pennsylvania, United States; e-mail: zew220@lehigh.edu; Brandon Augustino, Sloan School of

Managementhttps://orcid.org/0000-0003-1953-1971, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States; e-mail:

baug@mit.edu; Arielle Carr, Computer Science and Engineering Department, Lehigh University, Bethlehem, Pennsylvania, United States;

e-mail: arg318@lehigh.edu; Tamás Terlaky, Industrial and System Engineering Department, Lehigh University, Bethlehem, Pennsylvania,

United States; e-mail: tat208@lehigh.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 2643-6817/2024/10-ART

https://doi.org/10.1145/3702244

ACM Trans. Quantum Comput.

HTTPS://ORCID.ORG/0000-0002-4046-0672
HTTPS://ORCID.ORG/0000-0002-5695-7579
HTTPS://ORCID.ORG/0000-0001-8265-1779
HTTPS://ORCID.ORG/0000-0001-5827-0132
HTTPS://ORCID.ORG/0000-0003-1953-1971
https://orcid.org/0000-0002-4046-0672
https://orcid.org/0000-0002-5695-7579
https://orcid.org/0000-0001-8265-1779
https://orcid.org/0000-0001-5827-0132
https://orcid.org/0000-0003-1953-1971
https://doi.org/10.1145/3702244


2 • M. Mohammadisiahroudi et al.

Deinition 1.1 (LOP: Standard Formulation). For � ∈ R� , � ∈ R� , and matrix � ∈ R�×� with rank(�) =� ≤ �,

the LOP is deined as

(P)
min ���,

s.t. �� = �,

� ≥ 0,

(D)
max ���,

s.t. ���+� = �,

� ≥ 0,

where � ∈ R� is the vector of primal variables, and � ∈ R� , � ∈ R� are vectors of the dual variables. Problem (P)

is called primal problem and problem (D) is called dual problem.

In each step of IPMs, a Newton system is solved to determine the Newton step. There are four approaches:

(1) Full Newton System


0 � 0

�� 0 �

0 � �





Δ�

Δ�

Δ�


=



0

0

��� − ��


; (FNS)

(2) Augmented System [
0 �

�� −�−2
] [

Δ�

Δ�

]
=

[
0

� − ��� −1�

]
; (AS)

(3) Normal Equation System

��2��
Δ� = �� − ����−1�; (NES)

(4) Orthogonal Subspaces System

[
−��� ��

] [
Δ�

�

]
= ��� − ��, (OSS)

where � = diag(�), � = diag(�), � = �−1/2� 1/2, � =
�� �
�
, � , 0 < � < 1, and � is an all-one vector. Further, the

columns of � form a basis for the null space of �.

System Size of system Symmetric Positive Deinite Rate of Condition Number

FNS 2� +� ✗ ✗ O
(
1
�2

)

AS � +� ✓ ✗ O
(
1
�2

)

NES � ✓ ✓ O
(
1
�2

)

OSS � ✗ ✗ O
(
1
�

)

Table 1. Characteristics of Coeficient Matrix of Diferent Newton Systems

Table 1 shows that NES has a smaller size since in most practical LO problems � << �. In addition, its

symmetric positive deinite coeicient matrix is favorable since classically it can be solved faster with Cholesky

factorization or conjugate gradient. It is also more adaptable to QLSAs since QLSAs are able to solve linear systems

with a Hermitian matrix. To solve linear systems whose matrix is not Hermitian, like (OSS) must be embedded in a

bigger system with a Hermitian matrix. Furthermore, solving normal equations has better complexity on quantum

machines by using quantum singular value transformation [9]. Thus, NES has a better structure compared to

others, however, its condition number grows at a faster rate than the one of the OSS. The key takeaway is that

inexact solutions of NES, FNS, and AS may lead to infeasibility, whereas inexact solutions to OSS allow to preserve

the feasibility [32]. In this paper, we develop an Inexact Feasible Quantum Interior Point Method (IF-QIPM) based

on a modiied version of the NES.

ACM Trans. Quantum Comput.
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1.1 Related Works

Inexact IPMs: IPMs can be divided into two main types: Feasible IPMs and Infeasible IPMs. Feasible IPMs

(F-IPMs) necessitate an initial feasible interior point to begin the optimization process. These methods often

utilize a self-dual embedding model of the LOP, facilitating the construction of a feasible interior solution [38].

Conversely, Infeasible IPMs (I-IPMs) start with a solution that is infeasible but strictly positive. Theoretical studies

indicate that the optimal time complexity for F-IPMs in addressing LO problems is � (
√
��), where L represents

the binary length of the input data. In contrast, the optimal time complexity for I-IPMs applied to LO problems is

� (��). Although F-IPMs theoretically outperform I-IPMs in terms of time complexity, both types are efective in

practically solving LO problems, as noted by [44].

The prevailing approach to solve LOPs is Exact IPMs, in which the Newton direction is calculated by solving

NES using Cholesky factorization [38]. Thus, although IPMs enjoy a fast convergence rate, the cost per iteration

of IPMs is considerably high when applied to large-scale LOPs. In an efort to reduce the per-iteration cost of

IPMs, inexact infeasible IPMs (II-IPMs) were proposed, in which the Newton system is solved with an iterative

method, e.g., using conjugate gradient methods (CGMs) [1, 35].

Mizuno and colleagues initially explored the convergence properties of II-IPMs through a series of studies

[15, 28]. Subsequently, Baryamureeba and Steihaung demonstrated the convergence of a variant of the I-IPM

originally proposed by Kojima [24], incorporating an inexact Newton step [6]. Furthermore, Korzak established

that his speciic version of an II-IPM operates within polynomial time complexity [25].

As early as the 1980s, partial update techniques were utilized to compute the inexact Newton direction through

several rank-one updates to the inverse of the NES matrix. This strategy achieved the total complexity of O(�3�)
arithmetic operations for solving LOPs [38]. This concept has been signiicantly strengthened in recent years

through the adoption of advanced techniques such as fast matrix multiplication, spectral sparsiication, and

stochastic central path methods [11, 26]. By leveraging these modern techniques, the complexity of IPMs can be

reduced to O(���), where� < 2.3729 is the matrix multiplication constant [40].

The use of Preconditioned CGMs (PCGMs) in II-IPMs has been extensively studied by several researchers

[1, 35]. AL-Jeiroudi and Gondzio utilized the I-IPM framework from Wright [44] to solve (AS) using a PCGM [1].

In a similar vein, Monteiro and O’Neal applied a PCGM to solve (NES) [35]. Inexact linear systems algorithms

like CG exhibit favorable dependence on dimension compared to factorization methods and are able to exploit

sparsity patterns present in the Newton system. The rub is that these inexact approaches depend on a condition

number bound, which could pose a challenge. To tackle the ill-conditioned Newton system, they used the so-called

maximum weight basis (MWB) precondition [34].

Further investigations into II-IPMs have been conducted by Bellavia, who examined their convergence for

general convex optimization problems [7], and by Zhou and Toh, who developed an II-IPM speciically for

Semideinite Optimization (SDO) problems [47]. It has been established that the best-known bound for the

number of iterations required by II-IPMs to solve LOPs is O(�2�).
All mentioned inexact versions of IPMs tend to be inherently infeasible, as the inexact solutions to the

conventional formulations of Newton systemsÐsuch as FNS, AS, and NESÐresult in infeasibility. Gondzio

highlighted conceptionally that if Newton systems within IPMs can be solved inexactly while still maintaining

feasibility, IPMs could achieve the best iteration complexity of O(
√
��) for quadratic optimization [21]. To

leverage this superior complexity, inexact feasible IPMs (IF-IPMs) have been introduced. These methods utilize

the OSS system to derive inexact but feasible Newton directions [4, 32]. In this paper, we present a novel IF-IPM

that, at each iteration, employs a modiied version of the NES that is solved inexactly. This modiication is crucial

as it ensures that the inexact direction remains within the feasible region.

Quantum IPMs: QIPMs were irst proposed by Kerenidis and Prakash [23], who sought to decrease the cost

per iteration by classically estimating the Newton step through the use of a QLSA and quantum state tomography.

ACM Trans. Quantum Comput.
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Adopting this approach, Casares and Martin-Delgado [8] developed a predictor-correcter QIPM for LO. However,

these algorithms were proposed and analyzed using an exact IPM framework, which is invalid because the use

of quantum subroutines naturally introduces errors into the solution and leads to inexactness in the Newton

step. Speciically, without further safeguards this inexactness means that the sequence of iterates generated the

algorithms in [8, 23] may leave the feasible set, and so convergence cannot be guaranteed.

To address these issues, Augustino et al. [4] proposed an inexact-infeasible QIPM (which closely quantized the

II-IPM of [47]) and a novel inexact-feasible QIPM using OSS. The latter algorithm was shown to solve LOPs to

precision � ∈ (0, 1) using at most1

Õ�,�, 1�

(
�2

�2

�

)

QRAM queries and Õ�,�, 1�
(
�2.5

)
arithmetic operations, where � is an upper bound on the Newton system

coeicient matrices that arise over the run of the algorithm.

Mohammadisiahroudi et al. [31, 32] specialized the algorithms in [4] to LO and used iterative reinement

techniques to exponentially improve the dependence of the algorithms in [4] on precision and the condition

number bound. In particular, [31] developed an inexact-infeasible QIPM (II-QIPM), which addresses the inexactness

of QLSA. [32] improved this complexity by developing a short-step IF-QIPM for LOPs with

Õ�,��,∥�∥,� (�2��2∥�∥2�2�)

QRAM queries and O(�2.5�) arithmetic operations where � is an upper bound for the norm of the optimal

solution and �� is the condition number of matrix �.

Note that the use of iterative reinement techniques indirectly led to another improvement in the complexity,

reducing the dependence on a condition number bound � for the intermediate Newton systems with the condition

number �� of the input matrix � [33]. IF-QIPMs built on similar techniques have also been developed for linearly

constrained quadratic optimization problems in [45] and second-order cone optimization problems in [5].

A month after the original submission of this paper, Apers and Gribling [3] introduced a QIPM for LO that

operates independently of any condition number. Under speciic conditions2, and with access to QRAM, this

approach reports a quantum speedup for "tall" LOPs. In these problems, all constraints are inequalities, and the

number of constraints substantially exceeds the number of variables. Instead of employing QLSAs to resolve the

Newton system, the method calculates Newton steps using spectral approximations of the Hessian. Although

their worst-case complexity has no dependence on the condition number, for general LO problems their approach

can have unfavorable dimension dependence of �7.5 and their complexity has a linear dependence on the inverse

of the precision. In this paper, we show how iterative reinement and preconditioning can mitigate the impact of

condition number on the complexity of the proposed IF-QIPM using modiied NES.

Iterative reinement. Iterative reinement (IR) is a well-established method used to enhance numerical

accuracy when solving linear systems of equations [20, 42]. Gleixner et al. pioneered the adaptation of this

technique to LOPs, introducing the irst iterative reinement methodology speciically tailored for constrained

optimization [19]. They successfully applied this method to achieve precise solutions to LOPs using limited-

precision oracles [18].

In parallel developments, other studies have illustrated the utility of IR in achieving high-precision solutions for

LOPs, particularly those emerging in the context of integer optimization [12, 13]. More recently, Mohammadisi-

ahroudi et al. applied IR techniques to obtain exact solutions for LOPs within the framework of limited-precision

1The Õ�,� (� (� ) ) notation indicates that quantities polylogarithmic in �, � and � (� ) are suppressed.
2The algorithmic speed-up proposed in [3] applies to LO problems where the bit-complexity of each entry in �,�, � is at most polylog(�,�) ,
and � ≥ �10, with � and� denoting the number of constraints and variables in their standard dual form, respectively.

ACM Trans. Quantum Comput.
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QIPMs. Their research demonstrated that IR could efectively mitigate the efects of ill-conditioned Newton

systems, thereby reducing the overall computational complexity associated with QIPMs [31].

1.2 Contributions of this paper

The contributions of this paper are outlined as follows:

• A novel IF-QIPM is proposed by modifying the NES, which ensures the inexact Newton direction remains

within the feasible region. This modiication allows our IF-QIPM to achieve the best-known iteration

complexity of O(
√
��), an improvement over traditional inexact infeasible IPMs that use the NES and

exhibit a complexity of O(�2�).
• The modiied NES features an�-by-� symmetric positive deinite matrix, which is advantageous for both

classical and quantum linear solvers. Notably, while the state-of-the-art QIPM requires solving systems of

dimension 2�, our proposed IF-QIPM only needs to solve�-dimensional systems and in many practical

problems,� is usually much smaller than �. Additionally, the favorable structure of the NES facilitates the

use of more eicient matrix inversion techniques on quantum computers [9], enhancing the complexity

performance of our IF-QIPM.

• Iterative reinement and preconditioning are utilized to mitigate the efects of the condition number of

the Newton system. The integration of these techniques into our IF-QIPM results in a speed-up relative

to classical solvers in terms of dimension and compared to previous QIPMs, a speed-up relative to the

condition number and other problem-dependent parameters.

• We have implemented a version of our IF-QIPM using the QISKIT platform and the IBM QLSA simulator.

Numerical experiments demonstrate that iterative reinement and preconditioning can signiicantly alleviate

issues related to the condition number.

The rest of this paper is structured as follows. Section 2 reviews some notations and preliminaries. In Section 3,

a modiied NES is utilized to produce an inexact but feasible Newton step, and a short-step Inexact Feasible IPM

is developed. Section 4 explores how we use QLSA to solve the modiied NES system in order to develop an

IF-QIPM. In Section 5, an iterative reinement method coupled with preconditioning is developed to address

the impacts of the condition number on the complexity. Finally, numerical experiments using the IBM Qiskit

simulator are carried out in Section 6, and Section 7 concludes the paper.

2 Preliminaries

We denote the quantity � to the �-th power by �� , and the notation � (� ) , indicates the value of � at iteration � of

an algorithm. In the rest of the paper, ∥� ∥ = ∥� ∥2 is the 2-norm of matrix� , and ∥� ∥� is the Frobenius norm of

� . Further, R� denotes the set of �-dimensional vectors of real numbers and C� denotes the set of �-dimensional

vectors of complex numbers.

The set of feasible primal-dual solutions is deined as

PD =
{
(�,�, �) ∈ R� × R� × R� | �� = �, ��� + � = �, (�, �) ≥ 0

}
.

Then, the set of all feasible interior solutions is deined as

PD0
= {(�,�, �) ∈ PD | (�, �) > 0} .

In this work, we assume PD0 is not empty. By the Strong Duality theorem, optimal solutions exist and belong to

the set PD∗ deined as

PD∗ =
{
(�,�, �) ∈ PD | �� � = 0

}
.

ACM Trans. Quantum Comput.
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Let � ≥ 0, then the set of � -optimal solutions is deined as

PD� =

{
(�,�, �) ∈ PD

��� �
� �

�
≤ �

}
.

Assuming integer data, we denote the binary length of the input data by

� =�� +� + � +
︁

�, �

⌈log( |�� � | + 1)⌉ +
︁

�

⌈log( |�� | + 1)⌉ +
︁

�

⌈log( |� � | + 1)⌉,

where �� � represents the � �-element of matrix �. It is well-established that one can ind the exact solution of an

LOP using a rounding procedure if the solution provided IPM has 2−2� precision [38, 44].

Generally, IPMs approach the optimal set by traversing along a central path. The central path is deined as

CP =

{
(�,�, �) ∈ PD

�� ���� = � for � ∈ {1, . . . , �}
}
,

where � =
�� �
�
. As moving exactly on the central path is not possible, Newton steps need to be calculated in a

way that the iterates remain in a neighborhood of the central path. For any � ∈ [0, 1), a small neighborhood of

the central path is deined as

N(� ) =
{
(�,�, �) ∈ PD0

�� ∥��� − �� ∥2 ≤ ��
}
.

Algorithm 1 demonstrate the generic scheme of IPMs. In this paper, we use a feasible short-step version of IPMs

Algorithm 1 Conventional IPM

1: Choose 0 < � , �, � < 1.

2: � ← 0

3: Choose initial feasible interior solution (�0, �0, �0) ∈ N (� )
4: while (� (� ) , � (� ) , � (� ) ) ∉ PD� do

5: � (� ) ← (� (� ) )� � (� )
�

6: (Δ� (� ) ,Δ� (� ) ,Δ� (� ) ) ← Solve FNS, AS, NES, or OSS

7: Choose a proper steplength � (� ) ∈ (0, 1)
(� (�+1) , � (�+1) , � (�+1) ) ← (� (� ) , � (� ) , � (� ) ) + � (� ) (Δ� (� ) ,Δ� (� ) ,Δ� (� ) )

8: � ← � + 1
9: end while

10: Return (� (� ) , � (� ) , � (� ) )

in which � is close to one, i.e., there is a small reduction in the optimality gap at each iteration. Consequently, we

can take a full Newton step, � (� ) = 1, at each iteration [38].

When we refer to complexity, we mean the number of queries to the controlled version of the input oracles

and their inverses. We deine O(·) as
� (�) = O(�(�)) ⇐⇒ there exist � ∈ R, � ∈ R+ such that � (�) ≤ ��(�) ∀� > � .

We also deine Õ(� (�)) = O(� (�) · polylog(� (�))). When the function depends polylogarithmically on other

variables, we write Õ�,� (� (�)) = O(� (�) · polylog(�, �, � (�))). It should be mentioned that the complexity of a

classical algorithm refers to the number of arithmetic operations. When we refer to the complexity of quantum

algorithms, we mean the number of queries to the controlled version of the input oracles and their inverses, and

we also specify the bound for classical arithmetic operations

ACM Trans. Quantum Comput.
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3 Inexact-Feasible Newton Step using NES

In this section, we discuss how an inexact but feasible Newton direction can be calculated using the NES at each

iteration of the proposed IF-QIPM.

To compute the Newton step, we need to determine (Δ� (� ) ,Δ� (� ) ,Δ� (� ) ) such that

�Δ� (� ) = 0,

��
Δ� (� ) + Δ� (� ) = 0,

� (� )Δ� (� ) + � (� )Δ� (� ) = �� (� )� − � (� )� (� ) .
(1)

As discussed in the introduction, we are interested in using NES as it has a smaller symmetric positive deinite

matrix, favorable for both quantum and classical linear system solvers. First note that an exact solution Δ� to

NES satisies

�(� (� ) )2��
Δ� (� ) = �� (� ) − �� (� )�(� (� ) )−1�. (2)

Having obtained Δ� (� ) , we then compute Δ� (� ) and Δ� (� ) using as follows:

Δ� (� ) = −��
Δ� (� ) , (3a)

Δ� (� ) = �� (� (� ) )−1� − � (� ) − (� (� ) )2Δ� (� ) . (3b)

Now, when system (2) is solved inexactly, the resulting solution Δ�
(� )

satisies

�(� (� ) )2��
Δ�
(� )

= �� (� ) − �� (� )�(� (� ) )−1� + � (� ) ,

where � is the residual as ∥�� − ���(� (� ) )−1� −�(� (� ) )2��
Δ�
(� ) ∥. In place of (3a) and (3b), we now have

�Δ� (� ) = � (� ) ,

��
Δ� (� ) + Δ� (� ) = 0,

� (� )Δ� (� ) + � (� )Δ� (� ) = �� (� )� − � (� )� (� ) .

While dual feasibility is preserved, the same cannot be said for primal feasibility. In order to preserve primal

feasibility using inexact solutions to (2), one can alternatively solve

Δ� (� ) = −��
Δ� (� ) ,

Δ� (� ) = �� (� ) (� (� ) )−1� − � (� ) − (� (� ) )2Δ� (� ) − � (� ) ,

where �� (� ) = � (� ) . Updating Δ� (� ) in this way, we correct primal infeasibility, and one can verify that

�Δ� (� ) = 0,

��
Δ� (� ) + Δ� (� ) = 0,

� (� )Δ� (� ) + � (� )Δ� (� ) = �� (� )� − � (� )� (� ) + � ′ (� ) ,

where � ′ (� ) = −� (� )� (� ) . Next, we describe two procedures to calculate � (� ) eiciently.

Procedure A. Since � has full row rank, we can calculate

�̂ = �� (��� )−1,

as a preprocessing step before the IPM starts. Then, in each iteration, we calculate � (� ) = �̂� (� ) using classical
matrix-vector products. To recover the convergence analysis of [32], the residual must satisfy ∥� ′ (� ) ∥ ≤ �� (� ) for

ACM Trans. Quantum Comput.
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� ∈ [0, 1). One can show that this requirement amounts to

∥� (� ) ∥ ≤ �
� (� )

∥� (� ) ∥∞�max

,

where �max is the maximum singular value of �. Since ∥� (� ) ∥∞ and �max can be exponentially large, this residual

bound can be unacceptably small.

Procedure B. Letting �̂ be an arbitrary basis for matrix �, we can calculate

� (� ) = (� (� )
�̂

, �
(� )
�
) = (�−1

�̂
� (� ) , 0).

It is straightforward to verify that �� (� ) = � (� ) . Now, we show that this procedure coupled with an appropriate

modiication of the NES leads to a favorable residual bound.

Since � has full row rank, one can choose an arbitrary basis �̂, and subsequently calculate �−1
�̂
, �̂ = �−1

�̂
�, and

�̂ = �−1
�̂
�. These steps require O(�2�) arithmetic operations and take place only once prior to the irst iteration

of IPM. The cost of this preprocessing can be reduced by leveraging the structure of �. For example, there is no

need for this preprocessing if the problem is in the canonical form as

(P’)
min �′��,

s.t. �′� ≥ �′,

� ≥ 0,

(D’)
max �′��,

s.t. �′�� ≤ �′,

� ≥ 0.

The reason is that after adding slack variables to the primal constraint, we have [�′, � ] and the identity part can

be used as ��̂ , which does not require inversion. In this paper, we neglect the cost of preprocessing, since it can

be avoided by using the following reformulation.

min ���,

s.t. �� + � = �,

−�� + �′ = −�,
�,�,�′ ≥ 0.

This is a standard form LOP, but its interior is empty. This issue is remedied upon using the self-dual embedding

model [46] and we refer the readers to [32] for details. While this formulation does not require calculation, the

price one pays for this case is using a larger system. In the rest of this paper, we assume that we are working

with the preprocessed problem with input data that includes an identity matrix.

Now, we can modify system (NES) with coeicient matrix � (� ) = �(� (� ) )2�� and right-hand side vector

� (� ) = � − �� (� )�(� (� ) )−1� to
�̂ (� )� (� ) = �̂ (� ) (MNES)

where

�̂ (� ) = (� (� )
�̂
)−1�−1

�̂
� (� ) ((� (� )

�̂
)−1�−1

�̂
)� = (� (� )

�̂
)−1�̂(� (� ) )2�̂� (� (� )

�̂
)−1,

�̂ (� ) = (� (� )
�̂
)−1�−1

�̂
� (� ) = (� (� )

�̂
)−1�̂ − �� (� ) (� (� )

�̂
)−1�̂(� (� ) )−1�.

We use the following procedure to ind the Newton direction by solving (MNES) inexactly with QLSA+QTA.

Step 1. Find �̃ (� ) such that �̂ (� ) �̃ (� ) = �̂ (� ) + �̂ (� ) and ∥�̂ (� ) ∥ ≤ �√
1+�

︁
� (� ) .

Step 2. Calculate Δ̃� (� ) = ((� (� )
�̂
)−1�−1

�̂
)� �̃ (� ) .

Step 3. Calculate � (� ) = (� (� )
�̂

, �
(� )
�̂
) = (� (� )

�̂
�̂ (� ) , 0).

ACM Trans. Quantum Comput.
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Step 4. Calculate Δ̃� (� ) = −��
Δ̃� (� ) .

Step 5. Calculate Δ̃� (� ) = �� (� ) (� (� ) )−1� − � (� ) − (� (� ) )2Δ̃� (� ) − � (� ) .
It is noteworthy that, this modiication technique is similar to MWB preconditioning techniques of [1, 35]. One

major diference is that we modify the NES for a feasible IPM setting, although others apply it for infeasible IPMs.

In addition, we preprocess the data initially, before starting IPM although in preconditioning, one needs to do the

modiication, calculating the precondition with O(�3) cost, in each iteration. Thus, we show that the complexity

of our approach has better dimension dependence O(�2.5) although the complexity of other infeasible approaches

with preconditioning has O(�5) dimension dependence. In Section 5, we explore how quantum computing can

speed up the preconditioning part.

Lemma 3.1. For the Newton direction (Δ̃� (� ) , Δ̃� (� ) , Δ̃� (� ) ), we have
�Δ̃� (� ) = 0,

��
Δ̃� (� ) + Δ̃� (� ) = 0,

� (� ) Δ̃� (� ) + � (� ) Δ̃� (� ) = �� (� )� − � (� )� (� ) + � ′ (� ) .
(4)

where � ′ (� ) = −� (� )� (� ) .

Proof. For the Newton direction (Δ̃� (� ) , Δ̃� (� ) , Δ̃� (� ) ), one can verify that �̂ (� ) �̃ (� ) = �̂ (� ) + �̂ (� ) implies

� (� ) Δ̃� (� ) = � (� ) +��̂�
(� )
�̂

�̂ (� ) .

For the irst equation of (4), we can write

�Δ̃� (� ) =�(�� (� ) (� (� ) )−1� − � (� ) − (� (� ) )−1� (� ) Δ̃� (� ) − � (� ) )
=�(�� (� ) (� (� ) )−1� − � (� ) − (� (� ) )−1� (� ) (−��

Δ̃� (� ) ) − � (� ) )
=�� (� )�(� (� ) )−1� −�� (� ) +�(� (� ) )−1� (� )��

Δ̃� (� ) −�� (� )

=�� (� )�(� (� ) )−1� −�� (� ) + � (� ) +��̂�
(� )
�̂

�̂ (� ) −�� (� )

=0.

The second and third equations of (4) are obtained from Steps 4 and 5. □

To have a convergent IPM, we need ∥� ′ (� ) ∥∞ ≤ �� (� ) , where 0 ≤ � < 1 is an enforcing parameter. The next

lemma gives an analogous residual bound for the modiied NES.

Lemma 3.2. For the Newton direction (Δ̃� (� ) , Δ̃� (� ) , Δ̃� (� ) ), if the residual ∥�̂ (� ) ∥∞ ≤ �√
1+�

︁
� (� ) , then ∥� ′ (� ) ∥∞ ≤

�� (� ) .

Proof. As (� (� ) , � (� ) , � (� ) ) ∈ N (� ), we have
(1 − � )� (� ) ≤ ���� ≤ (1 + � )� (� ) .

Thus,

∥(� (� )
�̂
)1/2 (� (� )

�̂
)1/2∥∞ = max

�∈�̂

√
���� ≤

�
max
�=1

√
���� ≤

︃
(1 + � )� (� ) .

Now we can conclude that

∥� ′ (� ) ∥∞ = ∥� (� )
�̂

�
(� )
�̂
∥∞ = ∥� (� )

�̂
�
(� )
�̂

�̂ (� ) ∥∞ ≤ ∥(� (� )
�̂
)1/2 (� (� )

�̂
)1/2∥∞∥�̂ (� ) ∥∞ ≤

︃
(1 + � )� (� ) ∥�̂ (� ) ∥∞ ≤ �� (� ) .

□
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In the next subsection, we analyze the complexity of QLSA+QTA to solve the (MNES).

3.1 Solving MNES by QLSA+QTA

Before discussing QLSAs, we should mention that the |�⟩ notation represents the quantum state corresponding to

the unit classical vector �. We denote the basis state |�⟩, which is a column vector with dimension � , with value

one in coordinate � and zero in other coordinates [10].

The irst QSLA was proposed by Harrow, Hassidim and Loyd [22] and known as HHL algorithm. It takes as

input a sparse, Hermitian matrix� , and prepares a state |�⟩ = |�−1�⟩ that is proportional to the solution of the

linear system �� = � . The complexity of the HHL algorithm is Õ� (�2�2�/�), where � is the dimension of the

problem, � is the maximum number of non-zeros found in any row of� , and � is the target bound on the error.

This complexity bound shows a speed-up with respect to. dimension, although it depends on an upper bound for

the condition number �� of the coeicient matrix. Generally, the HHL algorithm starts from quantum state |�⟩
and performs an eigendecomposition of � through the following general steps:

(1) Represent � as a quantum state |�⟩ = ∑�
�=1 �� |�⟩.

(2) Apply the conditional Hamiltonian evolution ���� to |�⟩ for a superposition of diferent times � . With the

phase estimation algorithm, we can decompose |�⟩ in the eigenbasis of � and ind the corresponding

eigenvalues � � . After this stage, the state of the system is close to
∑�

�=1 � � |� � ⟩ |� � ⟩, where� � is the eigenbasis

of� , and |�⟩ = ∑�
�=1 � � |� � ⟩.

(3) By uncomputing the |� � ⟩ register, we can invert the eigenvalues and prepare the solution state

�︁

�=1

� ��
−1
� |� � ⟩ = |�⟩ .

Following a number of improvements to HHL algorithm [2, 10, 41, 43], the current state-of-the-art QLSA is

attributed to Charkraborty et al. [9], who use variable-time amplitude estimation and so-called block-encoded

matrices, while HHL algorithm uses the sparse-encoding model [22].

The block-encoding model was formalized in [27], and it assumes that one has access to unitaries that store

the coeicient matrix in their top-left block:

� =

(
�/� ·
· ·

)
,

where� ≥ ∥� ∥ is a normalization factor chosen to ensure that� has operator norm at most 1. Assuming access

to QRAM, the QLSA of [9] has Õ�,�� , 1�
(��� ) complexity, where� = ∥� ∥� . For the details of the QLSA and its

complexity analysis, the reader is refered to [4, 9, 17].

If the linear system of equations has the normal equation form, i.e., ���� = �� for a rectangular matrix �, one

can use the block encoding of � and apply singular value inversion of � on � and prepare solution state |�★�⟩,
where �★ = (��� )−1� is the pseudoinverse (or Moore–Penrose inverse) of �. In this framework, we can avoid

the matrix-matrix product aiming the total query complexity is Õ�,�� , 1� (�� ∥�∥� ) [9]. As we see, by singular

value inversion, we can improve the complexity of QLSA for normal equations from �� = O(�2
�
) to �� and from

∥� ∥� to ∥�∥� . As the proposed (MNES) has this favorable structure, we can use this framework to get better

complexity than previous QIPMs.

While QLSAs provide a quantum state proportional to the solution, it is not possible to extract the classical

solution by a single measurement. Quantum Tomography Algorithms (QTAs) are needed to extract the classical

solution. There are several papers improving QTAs, and the best QTA [39] has O( ��
�
) complexity, where �

is a bound for the norm of the solution. The direct use of the QLSA from [9] and the QTA by [39] costs

ACM Trans. Quantum Comput.
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Õ�,�� , 1�

(
��2

�
∥� ∥� ∥� ∥�

)
. Mohammadisiahroudi et al. [29] used an iterative reinement approach employing limited

precision QLSA+QTA with Õ
�,�� ,

∥� ∥
�

(
� ∥� ∥��2�

)
complexity with Õ ∥� ∥

�

(
�2

)
classical arithmetic operations.

Theorem 3.3. Using the linear solver of [29], the (MNES) system can be built and solved to obtain a solution �̃ (� )

satisfying ∥�̂ (� ) ∥ ≤ �√
1+�

︁
� (� ) with at most Õ

�,�
(� )
�

,
∥�̂ (� ) ∥
� (� )

(
�(� (� )

�
)2∥� (� ) ∥�

)
complexity and Õ ∥�̂ (� ) ∥

� (� )
(��) classical

arithmetic operations, where � (� ) = (� (� )
�̂
)−1�̂� (� ) , and � (� )

�
is the condition number of � (� ) .

Proof. Building the (MNES) system in a classical computer requires matrix multiplications, which cost O(�2�)
arithmetic operations. We can write (MNES) as

� (� ) (� (� ) )� �̃ (� ) = �̂ (� ) = � (� )
(
(� (� ) )1/2 (� (� ) )1/2� − �� (� ) (� (� ) )−1/2 (� (� ) )−1/2�

)
,

where � (� ) = (� (� )
�̂
)−1�̂� (� ) . Calculating � (� ) and �̂ (� ) requires just O(��) arithmetic operations. Then, we can

use the quantum linear system solver of [29] with Õ
�,�

(� )
�

,
∥�̂ (� ) ∥
� (� )

(
�(� (� )

�
)2∥� (� ) ∥�

)
complexity and Õ ∥�̂ (� ) ∥

� (� )
(��)

classical arithmetic operations. □

We should remark that the error of the solution from QLSA+QTA can have several sources in practice. Part of

the error is from the algorithmic errors of QLSA and QTA. Another part has a physical source of noise, especially

in current NISQ devices. In the theoretical analysis of QLSAs, we address the algorithmic error and assume that

we have fault-tolerant quantum computers on which the error correction procedure can handle physical noises.

However, the proposed framework is designed very robust against errors, which may also handle some level of

hardware noise in practice. This is further discussed in Section 6.

In the next section, we apply the proposed modiication of NES to develop an IF-QIPM.

4 Inexact-Feasible uantum Interior Point Method

We develop the IF-QIPM using the modiied NES with the short-step version of IPMs.

As the IF-QIPM is a feasible IPM, it requires an initial feasible interior solution to start with. It is well-known

in the literature [38] that this is not an issue as one can embed an LO problem in a homogeneous self-dual

embedding formulation for which an all-one vector is a feasible and interior solution. We also apply IF-QIPM to

the self-dual embedding formulation in practice.

In the next section, we prove the convergence of the IF-QIPM and analyze its complexity.

4.1 Convergence Analysis

To prove the convergence of IF-QIPM, we use the analysis of IF-QIPM in [32]. The only diference is the choice of

the Newton system: In [32], the authors use OSS and in the current work we propose the use of MNES, however

both compute (Δ�,Δ�,Δ�) such that

�Δ� = 0,

��
Δ� + Δ� = 0,

�Δ� + �Δ� = ��� − � (� )� (� ) + � ′,
where ∥� ′∥ ≤ �√

1+�
√
�.

Next we provide relevant theory for our IF-QIPM in lemmas 4.1 and 4.2 and theorem 4.3. For the relevant

proofs, we refer to lemmas 3.1 and 3.2 and theorem 2.6, respectively, in [32].
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Algorithm 2 Short-step IF-QIPM using QLSA

1: Choose � > 0, � = 0.1, � = 0.7 and � = (1 − 0.2√
�
).

2: � ← 0

3: Choose initial feasible interior solution (�0, �0, �0) ∈ N (� )
4: while (� (� ) , � (� ) , � (� ) ) ∉ PD� do

5: � (� ) ← (� (� ) )� � (� )
�

6: �̃ (� ) ← Solve �̂ (� ) �̃ (� ) = �̂ (� ) using IR+QLSA+QTA of [29] with ∥�̂ (� ) ∥ ≤ �√
1+�

︁
� (� ) .

7: Δ� (� ) ← ((� (� )
�̂
)−1�−1

�̂
)� �̃ (� )

8: � (� ) ← (� (� )
�̂

, �
(� )
�̂
) = (� (� )

�̂
�̂ (� ) , 0)

9: Δ� (� ) ← � −��� (� ) − � (� ) −��
Δ� (� ) .

10: Δ� (� ) ← �� (� ) (� (� ) )−1� − � (� ) − (� (� ) )2Δ� (� ) − � (� ) .
11: (� (�+1) , � (�+1) , � (�+1) ) ← (� (� ) , � (� ) , � (� ) ) + (Δ� (� ) ,Δ� (� ) ,Δ� (� ) )
12: � ← � + 1
13: end while

14: Return (� (� ) , � (� ) , � (� ) )

Lemma 4.1. Let the step (Δ�,Δ�,Δ�) be calculated from (MNES) in each iteration of the IF-IPM. Then

Δ��Δ� = 0,

(� + Δ�)� (� + Δ�) ≤ (� + �
√
1 + �

)�� �,

(� + Δ�)� (� + Δ�) ≥ (� − �
√
1 + �

)�� � .

Now, we can show that the iterates of IF-QIPM remain in the neighborhood of the central path in Lemma 4.2,

by using results of Lemma 4.1.

Lemma 4.2. Let (�0, �0, �0) ∈ N (� ) for a given � ∈ [0, 1), then (� (� ) , � (� ) , � (� ) ) ∈ N (� ) for any � ∈ N.
Based on Lemma 4.2, IF-IPM remains in the neighborhood of the central path, and it converges to the optimal

solution if � (� ) converges to zero. In Theorem 4.3, we prove that the algorithm reaches � -optimal solution after

O(
√
� log( �0

�
)) iteration.

Theorem 4.3. The sequence � (� ) converges to zero linearly, and we have � (� ) ≤ � after O(
√
� log( �0

�
)) iterations.

This demonstrates that the IF-IPM achieves the best-known iteration complexity, and the proof holds for any

values satisfying the following two conditions.

� ≤ (1 − � + 0.01
√
�
), (5)

� 2 + �(1 − �)2 + �2

23/2 (1 − � )
+ � ≤ � (� − �

√
�
). (6)

It is not hard to check that � = 0.7 and � = 0.1 satisfy these conditions.

An exact solution can be calculated by rounding [44], provided that we terminate with � (� ) ≤ O(2−�).
Accordingly, the IF-IPM may require O(

√
��) to determine an exact optimal solution; for more details see [44,

Chapter 3].
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4.2 Complexity

The next theorem characterizes the total time complexity of the proposed IF-QIPM for inding a � optimal solution

of an LO problem.

Theorem 4.4. The proposed IF-QIPM of Algorithm 2 determines a � -optimal solution using at most

Õ
�,��̂,∥�̂∥,∥�̂ ∥,�0,

�
�

(√
���2

�̂
∥�̂∥�

�5

� 5

)

queries to the QRAM and Õ�0, 1�
(
�1.5�

)
classical arithmetic operations.

Proof. The complexity analysis of the diferent parts of IF-QIPM 2 is outlined as follows:

• After O(
√
� log( �

0

�
)) the IF-QIPM obtains a � -optimal solution.

• In Theorem 4.2 of [31], the norm and condition number bounds of MNES are derived as

∥� (� ) ∥ = O
(
∥�̂∥ + ∥�̂∥

�

)
, ∥� (� ) ∥� = O

(
�

�
∥�̂∥�

)
, �

(� )
�

= O
(
�2

� 2
��̂

)
,

where � is a bound on ∥�∗, �∗∥∞ for all (�∗, �∗, �∗) ∈ PD∗.
• Applying Theorem 3.3, the complexity of quantum subroutine to solve the MNES is

Õ
�,��̂,∥�̂∥,∥�̂ ∥,

�
�

(
��2

�̂
∥�̂∥�

�5

� 5

)
.

• In each iteration of IF-QIPM, we need to build � (� ) classically and load to QRAM with O(��) complexity.

Also, some classical matrix products happen with O(��) cost. Thus, the classical cost per iteration is

O(��).
• Thus, in the worst case the IF-QIPM requires

Õ
�,��̂,∥�̂∥,∥�̂ ∥,�0,

�
�

(√
���2

�̂
∥�̂∥�

�5

� 5

)

accesses to the QRAM and Õ�0, 1�
(
�1.5�

)
classical arithmetic operations.

□

4.3 Improving the error dependence of the IF-QIPM

To get an exact optimal solution, the time complexity contains the exponential term 2� , due to the polynomial

dependence on 1
�
. To address this problem, we can ix � = 10−2 and improve the precision by iterative reinement

in O(�) iterations [31]. The irst iterative reinement method for linear optimization is proposed by Gleixner et al.

[19]. Here, we adopt the iterative reinement of [32], which is designed speciically for IF-QIPM as Algorithm 3.

First, we scale the LOP by

� ← max {∥�∥� , ∥�∥, ∥� ∥}
and then we solve the scaled problem (�̃, �̃, �̃) ← 1

�
(�,�, �) instead of the original problem. Let (�∗, �∗, �∗) be

�

�
-optimal solution for the scaled LOP (�̃, �̃, �̃). It is easy to verify that (�∗, �∗, ��∗) is an � -optimal solution for the

original problem. By this scaling, we can improve the complexity from polynomial to polylogarithmic dependence

on the norm of input data.
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In the IR method, we initially solve the LO problem with limited precision �̂ and then iteratively improve the

precision by solving the following reining problem with the limited precision �̂ ,

min
�̂
∇�� �̂,

s.t. �̃�̂ = 0,

�̂ ≥ −∇�,

max
�̂,�̂
−∇�� �̂,

s.t. �̃� �̂ + �̂ = ∇�,
�̂ ≥ 0,

(7)

where ∇ > 1 is a scaling factor. By changing variables, one can easily reformulate this problem to a standard

LOP. The next lemma demonstrates the core idea of the iterative reinement technique.

Lemma 4.5. If (�̂, �̂, �̂) is a �̂ -optimal solution for reining problem (7), then (�� , �� , �� ) is a �̂

∇2 -optimal solution

for LO problem (�,�, �), where �� = � + 1
∇ �̂ , �

�
= � + 1

∇ �̂, and �
�
= � −���� .

The proof for Lemma 4.5 is analugous to the one of Lemma 6.1 in [32]. Based on this result, we develop the IR

method as outlined in Algorithm 3.

Algorithm 3 IR-IF-QIPM

Require:
(
� ∈ R�×�, � ∈ R�, � ∈ R�, � < �̂ < 1

)

1: � ← max {∥�∥� , ∥�∥, ∥� ∥}
2: (�̃, �̃, �̃) ← 1

�
(�,�, �)

3: � ← 1 and ∇0 ← 1

4: (� (1) , � (1) , � (1) ) ← solve (�̃, �̃, �̃) using IF-QIPM of Algorithm 2 with �̂ precision

5: while (� (� ) , � (� ) , � (� ) ) ∉ PD �
�

do

6: ∇(� ) ← 1(
� (� )

)�
� (� )

7: (�̂ (� ) , �̂ (� ) , �̂ (� ) ) ← solve (�̃, 0,∇(� )� (� ) ) using IF-QIPM of Algorithm 2 with �̂ precision

8: � (�+1) ← � (� ) + 1
∇ (� ) �̂

(� ) and � (�+1) ← � (� ) + 1
∇ (� ) �̂

(� )

9: � ← � + 1
10: end while

11: return (� (� ) , � (� ) , �� (� ) )

Theorem 4.6. The proposed IR-IF-QIPM of Algorithm 3 produces a � -optimal solution with at most O
(
log(�/� )
log(1/�̂ )

)

inquiry to IF-QIPM with precision �̂ .

Theorem 4.7. The total time complexity of inding an exact optimal solution with the IR-IF-QIPM is

Õ
�,��̂,∥�̂∥,∥�̂ ∥,�0

(√
���2

�̂
�5�

)

with Õ�0
(
�1.5��

)
classical arithmetic operation.

The proof is similar to the proof of [32, Theorem 6.2].

In the next section, we investigate how preconditioning can help to mitigate the efect of the condition number

with respect to ��̂ and � .
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5 Iteratively Refined IF-QIPM using preconditioned NES

To mitigate the impact of the condition number, we need to analyze how the matrices � (� ) and � (� ) evolve
through the iterations. As in Theorem 6.8 of [44] or Lemma I.42 of [38], considering the optimal partition B and

N , we have

�
(� )
�

�
(� )
�

= O
(
�̂

� (� )

)
→∞ for � ∈ B and

�
(� )
�

�
(� )
�

= O
(
� (� )

�̂

)
→ 0 for � ∈ N , (8)

where �̂ is a constant dependent on the LO problem’s parameters. For a more detailed analysis, see pages 121-124

of [44]. To analyze the condition number of NES, we have

� (� ) = �(� (� ) )2��
= �B (� (� )B )

2��
B +�N (�

(� )
N )

2��
N .

As the sequence of iterates converges to the optimal set, it is easy to see that �N (� (� )N )
2��
N → 0. Thus, the

dominant component is the�B (� (� )B )
2��
B term. If�B includes a basis of�, i.e. rank(�B) =�, then the condition

number of� (� ) will converge to a constant depending on
max�∈B �2

�

min�∈B �2
�

. This implies that when the problem is primal

nondegenerate, the condition number will converge to a constant, though that constant may be as big as O(22�)
in the worst case. If �B has a rank less than�, then the condition number of � (� ) goes to ininity with the rate

of 1
�2
, which can be addressed by iterative reinement. In the proposed IF-QIPM, we initially choose basis �. If in

each iteration of IF-QIPM, we choose basis �̂ (� ) represents the� largest
�
(� )
�

�
(� )
�

, then by modifying MNES, we can

precondition it too. We refer the readers to [34] for the algorithm for determining basis �̂ (� ) . Suppose that the
LO problem is non-degenerate. As the trajectory generated by the IF-QIPM converges to the optimal solution, we

have

�̂ (� ) → �

�N (� (� )N )
2��
N → 0

� (� ) → �� (� (� )B )
2��
B

�̂ (� ) = (� (� )
�̂
)−1�−1

�̂
� (� ) ((� (� )

�̂
)−1�−1

�̂
)� → � .

Thus, (� (� )
�̂
)−1�−1

�̂
is a precondition for� (� ) . When the LO problem is degenerate, which is the more general

setting, Theorem 2.2.3 of [37] asserts that the condition number of �̂ (� ) is bounded by ( �̄)2 where
�̄ = max

{
∥�−1� �∥� : �� is a basis of �

}
. (9)

Furthermore, based on Lemma 2.2.2 of [37], we have ∥�̂ (� ) ∥� = O( �̄).
To utilize this preconditioning method within our IF-QIPM framework, we adopt the following procedure.

Step 1. Choose basis �̂ (� ) as indices of� largest,
�
(� )
�

�
(� )
�

where ��̂ (� ) are linearly independent

Step 2. Build block-encoding of (� (� )
�̂
)−1 and ��̂

Step 3. Calculate �−1
�̂

on the quantum computer

Step 4. Build �̂ (� ) = (� (� )
�̂
)−1�−1

�̂
� (� ) ((� (� )

�̂
)−1�−1

�̂
)� on the quantum computer

Step 5. Find �̃ (� ) such that �̂ (� ) �̃ (� ) = �̂ (� ) + �̂ (� ) and ∥�̂ (� ) ∥ ≤ �√
1+�

︁
� (� ) on the quantum computer

Step 6. Calculate Δ̃� (� ) = ((� (� )
�̂
)−1�−1

�̂
)� �̃ (� ) .
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Step 7. Calculate � (� ) = (� (� )
�̂

, �
(� )
�̂
) = (� (� )

�̂
�̂ (� ) , 0).

Step 8. Calculate Δ̃� (� ) = � −��� (� ) − � (� ) −��
Δ̃� (� ) .

Step 9. Calculate Δ̃� (� ) = �� (� ) (� (� ) )−1� − � (� ) − (� (� ) )2Δ̃� (� ) − � (� ) .
As we can see, the only change in the Newton step calculation is that the basis �̂ (� ) is changing at each iteration,

thus we need to calculate �−1
�̂

at each iteration. One can verify that the Newton steps calculated with the above

steps admit properties of Lemma 3.2. It is straightforward to provide a convergence proof of an IF-QIPM that

uses this procedure, since it produces feasible-inexact iterates satisfying ∥�̂ (� ) ∥ ≤ �√
1+�

︁
� (� ) . Thus, the iteration

complexity of IF-QIPM using preconditioned NES is O(
√
� log( �

0

�
)). However, the cost-per-iteration is diferent

as classically calculating �−1
�̂

requires O(��2) arithmetic operation in the worst case. If only a few columns in

�̂ (� ) are changing from one iteration to another, one can update �−1
�̂

by Sherman-Morrison-Woodbury formula

which is computationally cheaper than the full inversion. Here, we apply the inverse of the block-encoding of�−1
�̂

and build block-encoding of �̂ (� ) = �
(� )
�̂
)−1�−1

�̂
� (� ) on a quantum machine. As the complexity of applying the

inverse of a block-encoding has a logarithmic dependence on 1
�
, we can do that calculation with high-precision,

i.e. � = 2−O(�) . Thus, errors in those steps are negligible, and analysis of IF-QIPM in Section 4 is valid.

In order to estimate the asymptotic scaling of the overall complexity, we begin by analyzing the cost of solving

the Preconditioned NES at each iteration. As discussed in Section 3.1, the preconditioned NES is still a normal

equation system and we need to build the block-encoding of �̂ (� ) , then we can use singular value transformation

of [9] and ind the solution of the preconditioned NES by QLSA+QTA with Õ
�,�

(� )
�̂

,
∥�̂ (� ) ∥
� (� )

(
�(� (� )

�̂
)2∥�̂ (� ) ∥�

)

quantum complexity and Õ ∥�̂ (� ) ∥
� (� )
(��) classical arithmetic operations. As in IR, we scale the LO problem initially,

so in our analysis here we assume ∥�∥� ≤ 1.

Proposition 5.1. Suppose � and��̂ are stored in a QRAM data structure. Then, one can prepare a block-encoding

of �̂ (� ) accesses to the QRAM and Õ (�) arithmetic operations.

Proof. First, observe that we always have classical access to � (� ) and � (� ) . We can therefore store the nonzero

entries of the matrices � (� ) and
(
�
(� )
�̂

)−1
in QRAM using Õ� (�) classical operations. From here, applying [17,

Lemma 50] asserts that Õ�, 1
��

(1) accesses to QRAM suices to construct an (�� , log(�) + 2, �� )-block-encoding

of �
(� )
�̂

and an
(
���̂

, log(�) + 2, ��
)
-block-encoding of (� (� )

�̂
)−1. As (� (� )

�̂
and (� (� )

�̂
)−1 are diagonal matrices,

they can be eiciently encoded on QRAM and the normalization parameters ��−1 and �� have upper bound

O(�
�
) as analyzed in [31]. Likewise, with � and ��̂ stored in QRAM, invoking [17, Lemma 50] we can construct a

(∥�∥� , log(�) + 2, ��)-block-encoding of� and a
(��̂


�
, log(�) + 2, ��

)
-block-encoding of��̂ , using Õ�,�, 1

��

(1)
accesses to the QRAM.

Having prepared block-encodings of� and� (� ) , we can take their product prepare an (�� ∥�∥� ,O (log(�)) , �� )-
block-encoding of� (� ) as

����2��⊤ = �� .

Similarly, having prepared a
(��̂


�
, log(�) + 2, ��

)
-block-encoding of��̂ for��̂ , applying [16, Corollary 3.4.13],

we can prepare a
(��̂


�
���̂

, log(�) + 2, ��
)
-block-encoding of

(
��̂

)−1
. From here, applying [9, Lemma 4], we can
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take the product of block-encodings of
(
��̂

)−1
and (� (� )

�̂
)−1, which yields an

(
��−1���̂

��̂


�
,O (log(�)) , ��

)
-

block-encoding of � .

Observe that we have prepared block-encodings �� and �� for � (� ) and � such that ���� corresponds

to a
(
��−1�����̂

∥�∥�
��̂


�
,O (log(�)) , ��

)
-block-encoding of � , since it is deined as the product of block-

encodings [9, Lemma 4]. The complexity result follows from observing that constructing the unitary ��̂ has a

gate cost of Õ�,�, 1�
(1), where we have properly set the parameters �� and �� , such that��̂ implements �̂ up to

error � . We also needed Õ� (�) classical operations to create the QRAM data structures for �−1 and � . The proof

is complete. □

Corollary 5.2. Suppose �, ��̂ , �
(� ) , � (� ) and �̂ (� ) are stored in a QRAM data structure and deine

� := ��−1�� .

Then, one can obtain an
�√
1+�

︁
� (� ) -precise solution (in ℓ∞-norm) to the linear system

�̂ (� ) �̃ (� ) = �̂ (� ) ,

using at most

Õ�,�, 1�

(
���2

�̂

)

QRAM accesses and O (��) arithmetic operations.

Proof. Using the linear systems algorithm from [29] with the subnormalization factor ��−1�
2
�2�

2
��̂
∥�∥2�

��̂

2
�

and condition number ��̂ gives the result. □

For both ��−1 and �� we can use upper bound O(�
�
). Thus � = O(�2

�2
). We are now in a position to state the

complexity of the Iteratively Reined IF-QIPM using preconditioned NES.

Theorem 5.3. Suppose that the LO problem data �,�, � is stored in QRAM. Then, the Iteratively Reined IF-QIPM

using preconditioned NES obtains an �-precise solution to the primal-dual LO pair (�) − (�) using at most

Õ
�,∥�∥,∥� ∥,��, �

0

�

(√
���̄2�2

)

QRAM accesses and Õ∥�∥,∥� ∥, 1�
(
��1.5

)
arithmetic operations.

Proof. The result follows upon adjusting the proof of Theorem 4.4 to account for the result in Corollary

5.2. □

Based on the analysis in [37], we have � = O(�2) and ��̂ = O( �̄). Thus, we can simplify the quantum

complexity to

Õ
�,∥�∥,∥� ∥,��, �

0

�

(√
���̄2�2

)

with Õ∥�∥,∥� ∥, 1�
(
��1.5

)
arithmetic operations.

ACM Trans. Quantum Comput.



18 • M. Mohammadisiahroudi et al.

6 Numerical Experiments

In this section, we present a series of numerical experiments aimed at elucidating the behavior of various QIPMs.

Additionally, we compare the impact of employing iterative reinement versus preconditioning techniques. It

is important to note that our analysis presupposes access to QRAM; however, it is essential to highlight that

physical QRAM infrastructure has yet to be realized. Likewise, QLSAs remain beyond the capabilities of existing

quantum hardware.

Consequently, our experiments are conducted using the IBM Qiskit HHL simulator, and it is imperative to

acknowledge that our numerical results cannot be extrapolated to gauge the performance of QIPMs and QLSAs on

actual quantum hardware. Simulating quantum computers on classical computers is known to be exponentially

time-consuming, which precludes any empirical time comparison between classical and quantum methodologies

at this juncture. Notwithstanding, we are capable of simulating QLSAs for problems with limited numbers of

variables and manageable condition numbers.

Our primary focus therefore centers on presenting numerical indings pertaining to QIPMs, and we refrain

from presenting QLSA results in this paper. Interested readers are referred to [29] for comprehensive numerical

experiments related to QLSAs. Each of the algorithms discussed in this paper have been implemented in Python and

are readily accessible on our GitHub repository at https://github.com/QCOL-LU. Our Python package encompasses

a versatile array of QIPMs designed to solve linear, semideinite, and second-order cone optimization problems.

To enhancing their versatility and eicacy, we have also incorporated iterative reinement techniques into both

Quantum Linear System Algorithms (QLSAs) and QIPMs. Users are ofered the lexibility to conduct experiments

with QIPMs using either classical or quantum linear solvers, with the option to employ preconditioning.

For our experimental setup, we employ the LOP generators described in [30]. These generators have been

demonstrated to produce randomly generated Linear Optimization Problems (LOPs) with predeined optimal and

interior solutions, thereby facilitating the evaluation of IF-QIPMs. Furthermore, these generators ofer users the

lexibility to control various characteristics of the problems, including the condition number of the coeicient

matrixÐa critical parameter for assessing QIPMs’ performance. Our numerical experiments were conducted on a

workstation equipped with Dual Intel Xeon® CPU E5-2630 @ 2.20 GHz, featuring 20 cores and 64 GB of RAM.

To illustrate how the condition numbers of diferent Newton systems evolve in IPMs, Fig. 1 shows the condition

number of diferent linear systems trend for four problems. As Fig. 1a shows, the condition number of FNS,

OSS, and NES converge to a constant for nondegenerate LOPs with a well-conditioned matrix �. However, the

condition number of the augmented systemmay go to ininity, even for nondegenerate well-conditioned problems,

as approaching the unique optimal solution. For nondegenerate problems with ill-conditioned matrices, Fig. 1b,

the condition number of NES, OSS, and FNS still converge to a constant which can be very large, like 1012. If the

LO problem is degenerate, Fig. 1c, the condition number of all Newton systems goes to ininity as approaching

the optimal solution. However, the FNS and OSS have a better rate than the NES and AS. The worst case happens

when the problem is degenerate and matrix � is ill-conditioned, Fig. 1d. In this case, the condition number of

NES can be as large as 1020 for � = 10−6. As these igures illustrate, the condition number of the Newton systems

is afected by the condition number of matrix � and the degeneracy status of the problem. Generally, OSS has a

better condition number than the NES. In the next igures, we show how iterative reinement and preconditioning

can mitigate the condition number of Newton systems, especially for NES.

Fig. 2 shows the performance of diferent IF-QIPMs with respect to condition number to solve a nondegenerate

problem with an ill-conditioned matrix �. As we can see, preconditioned NES (PNES) has a signiicantly smaller

condition number, even better than OSS. However, iterative reinement is not helping with the condition number

since for this type of problem, early stopping the IF-QIPM and restarting it will not change the condition number

as it is almost constant, dependent on the condition number of �. The performance of IF-QIPMs for solving

a primal degenerate LOP with well-conditioned coeicient matrix � is depicted in Fig. 3. Although for PNES,
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(a) A nondegenerate LO with �� = 10 (b) A nondegenerate LO with �� = 106

(c) A degenerate LOP with �� = 10 (d) A degenerate LOP with �� = 106

Fig. 1. Condition number trend of diferent Newton systems for diferent types of LOPs.

there is a theoretical uniform condition number bound, which is independent of the algorithm’s iterates and

depends only on the problem’s input data. However, in this problem, as is the case for many other problems

such as degenerate problems, this upper bound can be extremely large. The condition number can grow with

a slightly lower rate but at the same rate as the one for MNES. On the other hand, for degenerate problems,

iterative reinement can help with condition numbers. As Fig. 3b shows, in the iterative reinements steps, we stop

IF-QIPMs early, when � = 10−2 and so the condition number remains bounded. Then we restart the IF-QIPM for

the reining problems, where the condition number is as low as the initial condition number. By IR, the condition

number will not grow above an upper bound.

Fig. 4 shows how iterative reinement coupled with preconditioning can keep the condition number of the NES

bounded during iterations of the QIPM for this challenging degenerate LOP with an ill-conditioned matrix. All in

ACM Trans. Quantum Comput.



20 • M. Mohammadisiahroudi et al.

Fig. 2. Efect of preconditioning on the condition number sequence of linear systems arising in IR-IF-QIPM to solve a
nondegenerate LOP with �� = 106

(a) Without iterative refinement (b) With iterative refinement

Fig. 3. Condition number sequence of linear systems arising in diferent IF-QIPM to solve a degenerate LOP with �� = 10

all, iterative reinement can mitigate the impact of degeneracy on the condition number of Newton systems. On

the other hand, preconditioning is efective for addressing problems with an ill-conditioned matrix �.

We also solved 100 randomly generated problems with diferent IF-QIPMs using the IBM QISKIT simulator.

Fig. 5 shows some statistics of solved problems. As we can see, with the OSS system we could not solve problems

with more than 8 variables as the size of the linear systems that could be solved by the Qiskit simulator is limited

to 16. In addition, the OSS has a nonsymmetric �-by-� coeicient matrix. However, with MNES, we could solve

an LOP with a million variables and 16 constraints as the dimension of MNES is dependent on the number of

constraints. These results show that the proposed IF-QIPM is more adaptable to near-term devices. In addition,
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(a) Without iterative refinement (b) With iterative refinement

Fig. 4. Condition number sequence of linear systems arising in diferent IF-QIPM to solve a degenerate LOP with �� = 106

Fig. 5. Statistics of 100 randomly generated LOPs solved by IF-QIPM using QISKIT Simulator (max time =2 hrs)

we can see that the iterative reinement coupled with preconditioning enables the solution of the problem with

a larger condition number. In addition, with both inner and outer iterative reinement, we could improve the

precision from 10−1 to 10−4 on average.
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Algorithm System Linear System Solver Quantum Complexity Classical Complexity Bound for �

IPM with Partial Updates [38] NES Low rank updates O(�3�)
Feasible IPM [38] NES Cholesky O(�3.5�)

II-IPM [35] PNES PCG O(�5��̄2) �̄2

II-QIPM [31] NES QLSA+QTA Õ�,��,� (�4��4��19∥�∥) Õ� (�4�) O(�2
�̂
�5)

IF-QIPM [32] OSS QLSA+QTA Õ�,��,� (�2��2��5∥�∥) Õ�0 (�2.5�) O(��̂�2)
The proposed IR-IF-IPM MNES CG Õ�0 (�2.5��2��4) O(�2

�̂
�4)

The proposed IR-IF-IPM PNES PCG Õ�0 (�3.5��̄2) �̄2

The proposed IR-IF-QIPM MNES QLSA+QTA Õ
�,��̂,∥�̂∥,∥�̂ ∥,�0

(
√
����2

�̂
�5) Õ�0 (�2.5�) O(�2

�̂
�4)

The proposed IR-IF-QIPM PNES QLSA+QTA Õ�,��,∥�∥,∥� ∥,�0
(√
����̄2�2

)
Õ�0 (�2.5�) �̄2

Table 2. Complexity of diferent IPMs for LO

7 Conclusion

In this paper, we propose an inexact-feasible quantum interior point method in which we solve a modiied

normal equation system with QLSA+QTA. In addition, we apply an iterative reinement and preconditioning to

mitigate the efect of condition number on the complexity of QIPMs. Applications of these classical ideas lead to

improvements of QIPMs as follows:

• By modifying the NES, in each iteration of the proposed IF-QIPM, we solve a linear system with�-by-�

symmetric positive deinite matrix, which is smaller than the OSS with �-by-� nonsymmetric matrix. In

other words, the proposed IF-QIPM needs fewer Qubits and gates.

• We use an iterative reinement scheme coupled with preconditioning the NES that builds a uniform bound

on the condition number and speeds up QIPMs with respect to. precision, and condition number.

• By preconditioning the NES in the quantum setting, we achieved speed up with respect to. the dimension

compared to classical inexact approaches.

In Table 2, the complexities of some recent classical and quantum IPMs are provided. As we can see, IR-IF-QIPM

with MNES achieves the best complexity of IR-IF-QIPM using OSS with slightly better dependence on ∥�∥,
due to using quantum solver of [29]. By switching to preconditioned NES, complexity improves with respect

to dimension compared with classical preconditioned IPMs. It is natural that calculating preconditioner on

a quantum machine will have better complexity with respect to dimension but the challenge is addressing

normalization factors in block-encoding. Another diference is dependence on �̄ instead of � which is an upper

bound for norm of optimal solution. It should be mentioned that both � and �̄ are constants depending on input

data. However, for some problems, they can be extremely large. As numerical results demonstrate, one advantage

of iterative reinement and preconditioning is bounding the condition number. Mostly iterative reinement avoids

the growing condition number of the Newton system in degenerate problems, and preconditioning alleviates the

impact of the condition number of matrix �. All in all, QIPMs have the potential to speed up the solution of LOPs

with respect to dimension compared to classical but they are more dependent on condition number and norm of

the coeicient matrix. In this paper, we explored some classical ideas like using a better formulation of Newton’s

system and using iterative reinement coupled with preconditioning to shorten this gap. Table 2 demonstrates

that the proposed IR-IF-QIPM using modiied NES or preconditioned NES outperforms previous quantum and

classical IPMs with respect to worst-case complexity.

Using MNES also enables regularizing the Newton system. It is worth exploring the regularization in the

quantum setting to address the impact of condition number on QIPMs. In addition, the proposed IR-IF-QIPM

with preconditioned NES can be generalized to other conic problems such as Semi-deinite optimization where

the size of Newton systems may grow quadratically for large-scale problems.
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