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ABSTRACT 
Deep Reinforcement Learning (DRL) offers a powerful approach 
to training neural network control policies for stochastic queuing 
networks (SQN). However, traditional DRL methods rely on offiine 
simulations or static datasets, limiting their real-world application 
in SQN control. This work proposes Online Deep Reinforcement 
Learning-based Controls (ODRLC) as an alternative, where an intel­
ligent agent interacts directly with a real environment and learns 
an optimal control policy from these online interactions. SQNs 
present a challenge for ODRLC due to the unbounded nature of the 
queues within the network resulting in an unbounded state-space. 
An unbounded state-space is particularly challenging for neural 
network policies as neural networks are notoriously poor at extrap­
olating to unseen states. To address this challenge, we propose an 
intervention-assisted framework that leverages strategic interven­
tions from known stable policies to ensure the queue sizes remain 
bounded. This framework combines the learning power of neural 
networks with the guaranteed stability of classical control policies 
for SQNs. We introduce a method to design these intervention­
assisted policies to ensure strong stability of the network. Fur­
thermore, we extend foundational DRL theorems for intervention­
assisted policies and develop two practical algorithms specifically 
for ODRLC of SQNs. Finally, we demonstrate through experiments 
that our proposed algorithms outperform both classical control 
approaches and prior ODRLC algorithms. 
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1 INTRODUCTION 
In the field of Deep Reinforcement Learning (DRL), agents are of­
ten trained using offiine simulated environments prior to being 
deployed on the real-world environment. DRL is a promising tech­
nique for training stochastic network control agents. However, the 
traditional simulation-based training paradigm has two major pit­
falls. If the true network dynamics are not able to be accurately 
captured irt simulation, then the agent trained on the simulation 
dynamics may perform poorly on the real-network. This is often 
referred to as the sim-to-real gap [13, 21] . Additionally, the policies 
of agents are often overfit to the training environments, and thus 
struggle to generalize to unseen environments in their deployment. 
[3, 27, 28]. In the context ofSQN control, an agent would have to be 
trained on all possible dynamics of a particular network if the true 
network dynamics are not known with certainty. To overcome these 
limitations, we propose an Online Deep Reinforcement Learning­
based Controls (ODRLC) paradigm for training SQN control agents. 
In ODRLC, an intelligent agent directly interacts with a real-world 
environment and learns to optimize its policy through these online 
interactions. This approach ensures the agent's policy is optimized 
for the true environment and does not require access to simulations 
prior to deployment. 

Applying ODRLC to SQN control tasks presents significant chal­
lenges due to the unbounded state space. The infinite buffer model 
is commonly used in network control because of its analytical sim­
plicity and the reality that network buffers are often extremely large. 
However, neural networks (NNs), which are use for policy and/or 
value function approximation in DRL, struggle with extrapolating 
or generalizing to unseen inputs [5, 11, 25]. In most control tasks, 
this poor generalization is not a major issue, as the state space is 
usually bounded, and sufficient exploration during training allows 
the agent to encounter nearly all possible states, minimizing the 
need for generalization. 

However, in the context of an unbounded state space, especially 
with purely onlirte training, this issue becomes critical. When an 
agent encounters an unseen state, it tends to take suboptimal actions 
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due to the NN's poor extrapolation capabilities. These suboptimal 
actions increase cumulative costs and drive the agent further into 
unexplored regions, perpetuating a catastrophic feedback loop. This 
cycle, which we term as the extrapolation loop of unbounded state 
spaces, can be difficult to break, leading to continuously escalat­
ing costs as the agent interacts with the environment. In offiine 
simulation-based training, this loop can be mitigated by periodically 
resetting the environment's state. However, in ODRLC, such resets 
may be infeasible or costly. Therefore, ensuring the environment's 
state remains within a finite region of the state space is crucial and 
closely related to the concept of strong stability often desired in 
SQN control algorithms. 

This work addresses the challenge of ODRLC for SQN control 
tasks with unbounded state spaces. We propose a novel intervention­
assisted agent framework that leverages a known stable policy to 
guarantee network stability while incorporating a NN policy for 
exploration and policy improvement. We prove these intervention­
assisted policies are strongly stable, enabling their use for ODRLC. 
We extend key DRL theorems to the intervention-assisted setting, 
and introduce two practical ODRLC algorithms for SQN control. 
Our experiments show that these algorithms outperform existing 
SQN control and DRL-based methods in the ODRLC setting. 

1.1 Related Works 
Despite the wide applicability of queuing network models to var­
ious domains such as communication networks, manufacturing, 
and transportation, and their rich historical context in the controls 
literature, the integration of DRL for SQN controls remains a rela­
tively underexplored avenue. The authors of [2] leverage DRL to 
optmize for delay in SQN control tasks that are similar to those 
studied in this paper, however their methods are not developed for 
the ODRLC setting. In [12], the authors use Deep Deterministic 
Policy Gradient to learn queuing network control policies via offiine 
environments that provide explicit guarantees on the end-to-end 
delay of the policy. Each of these aforementioned works uses the 
standard offiine simulation-based training paradigm of DRL and 
thus the algorithms do not extend well into the ODRLC setting. 

The ODRLC setting is most similar to continuing or average re­
ward Reinforcement Learning. In [29] , the authors provides a novel 
policy improvement theorem for the average-reward case, which is 
fundamental in the development of trust-region methods including 
PPO. Ma et. al propose a unified policy improvement theorem that 
combines both the average reward and discounted reward settings 
in addition to addressing the Average Value Constraint problem 
that arises in average reward DRL [8]. The theoretical results in 
both [8, 29] hinge on the assumption that the state-space is finite 
and thus don't apply to environments with unbounded state-spaces 
such as queuing networks. In [11] , the authors develop a Lyapunov­
inspired reward shaping approach that encourages agents to learn 
a stable policy for online DRL over unbounded state-spaces. 

Safe-DRL is a branch of DRL that incorporates interventions 
during training to maximize a reward function while adhering 
to safety constraints. For example, [23] employs human interven­
tions in robotic navigation, while [22] uses automatic advantage­
based interventions to enforce safety constraints in DRL algorithms 
designed for unconstrained tasks. These methods align with our 
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Figure 1: (SH2) An example of a single-hop wireless network. 
Packets arrive to each user according to user-dependent ar­
rival distributions. All packets are destined for the base­
station (BS). At each time step, the central controller chooses 
from one of the four links to activate. 

Y l,t Ys,t 

Y 4,t Y3,t 

Y 2,t Y6 ,t 

Figure 2: (MHl) An example of a multi-hop network. Packets 
from two different classes arrive to node 1 and all packets are 
destined for node 4. At each time-step, the central network 
controller must choose an action at which dictates how many 
packets from each class is transmitted over each directed 
link. 

approach, emphasizing the role of external guidance in ensuring sta­
bility and safety during training. Safe-DRL can also be formulated 
using Constrained Markov Decision Processes (MDPs), which intro­
duce constraint functions alongside traditional MDPs [7]. However, 
satisfying these constraints in model-free DRL is challenging, as 
agents often violate them during exploration. Common techniques 
for addressing constrained MDPs in DRL include Lagrangian relax­
ation [17], projection-based optimization [26] , and Lyapunov-based 
approaches [ 1]. While these methods share similarities with our 
intervention-assisted strategies, they address constrained optimiza­
tion, whereas ODRLC for SQN control involves unconstrained op­
timization, with challenges arising from an unbounded state space 
and online learning requirements. 

2 PRELIMINARIES 

2.1 Stochastic Queuing Network Model 
In this paper, we focus on the objective of delay minimization for 
general discrete time SQNs with Markovian dynamics. Under these 
models, the delay minimization task is well modeled by a Markov de­
cision process. The networks under consideration consist of nodes 
connected by directed links, with each node hosting one or more 
queues equipped with unbounded buffers that store undelivered 
packets. Let qt = { qi,t }Yi denote the vector of all queue backlogs 
within the network, and let 'lt = Li qi,t denote the network backlog 
which is the sum of backlogs across all queues within the network 
at the beginning of time t. The delay minimization objective is 
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equivalent to minimizing the long-term average queue backlog [6]. 
Thus our objective function can be given as: 

T-1 

min lim .!. L ii.t 
T-+oo T t=O 

(1) 

For the SQN models considered, two random processes - sto­
chastic packet arrivals and stochastic link capacities - govern the 
dynamics, along with the actions taken by a central network con­
troller or agent. All packets belong to one of K ;:: 1 traffic classes, 
where each class has an associated packet arrival distribution, ar­
rival node, and a destination node. For any class k, Xk,t packets 
arrives at time t, where xk,t is drawn i.i.d. from a finite discrete 
distribution P(xk)- The notation Xt = {xk,t }vk denotes the vector 
of all arrivals in time t. 

We denoted the capacity oflink mat time step t by Ym,t, which is 
also referred to as link m's link state. At the beginning of each time 
step Ym,t is sampled i.i.d. from a finite discrete distribution P(Ym,t)­

We use y t = {Ym,t hm to denote the set of all link states over all M 

links at time t. We assume that arrival and link state distributions 
are mutually independent and independent of the overall network 
state. The network state at time tis captured by St = (qt,Yt), 
encompassing both the queue states qt and link states Yt• At the 
start of each time step, the central network controller observes 
St and selects an action at from its policy n. The set of allowable 
actions depend on the specific network instance and its current 
state. An action at is a vector that specifies the amount of packets to 
transmit over each link for each class. The central controller aims 
to efficiently route all packets to their destinations by choosing 
which packets are transmitted on each link during each time step. 
A packet leaves the network once it arrives to its destination node. 
In Section 5, we test our algorithms on the following SQN control 
tasks: 

2.1.1 Single-Hop Wireless Network Scheduling Task. For single-hop 
wireless scheduling problems, the network instance is described by 
a set of K user nodes, a base-station, and a single link between each 
user and the base-station. There is a traffic class associated with 
each user, and the base-station serves as the destination node for 
all user's traffic. To model wireless interference constraints, only a 
single link may be activated by the central controller in each time 
step. When the central controller selects user k's link at time step t, 
the number of packets that are transmitted to the base station is 
ak,t = min { qk,t, Yk,t}. This constraint reflects that user k can only 
transmit the number of packets in its queue qk,t, and cannot exceed 
the link's capacity Yk,t· In the reinforcement learning setting, the 
central controller aims to learn a state-dependent scheduling policy 
1r that minimizes the long-term average backlog. 

2.1.2 Multi-hop Network Control Task. For multi-hop networks, 
the network instance is described by a graph g('V, 8) where 'V 
denote the set of nodes and 8 denotes the set of directed links 
between nodes. Figure 2 shows an example a topology of a multi­
hop network. Each of the K packet classes have an fixed source node 
and destination node. Each node maintains K queues, one for each 
class of traffic. At each time-step, the control policy observes the 
network state St= (qt, Yt), and selects an action at= {am,k,t}vm,k 

where where am,k,t ;:: 0 is the number of class k packets to be 

transmitted on link m in time-step t. This action at must satisfy the 
following constraint: 

L am,k,t ::;; Ym,t, Vm = 1, ... , M (2) 
k 

This link-capacity constraint means the total number of packets 
transmitted over each link must be less than the total capacity of 
the link. The central controller's decision at encompasses both a 
routing and scheduling decision. It determines not only the path 
each packet takes but also the order at which each class of traffic 
is transmitted over each link in every time step. Link activation 
constraints may also be included to model interference in wireless 
multi-hop networks, but we do not add this constraint for the 
experiments in Section 5 

2.2 Markov Decision Process 
Each SQN control tasks can be formulated as an average-cost 
Markov Decision Process (MDP) defined by the tuple ( S, 31, P, c, po) 
where: 

(1) S represents the state-space, comprised of all possible states 
s = ( q, y). As its assumed each buffer within the network is 
unbounded, the state-space S is also unbounded. 

(2) 3{ denotes the action-space, which is comprised is the set of 
feasible control decisions and depends on the task. Addition­
ally, we assume there is a set of valid actions 3I(s) for each 
s E S that is known by the central controller for each SQN 
control task. 

(3) P(s' Is, a) is the probability of transitioning to states' from 
state s after applying action a. This transition probability 
captures the inherent uncertainty stemming from stochastic 
packet arrivals and stochastic link states. 

(4) c(st) is the cost function. For delay minimization tasks, this 
equates to c(st) = ii.t• 

(5) po(s) = P(so = s) is the initial state distribution. For Sec­
tion 5, we assume that at the beginning of each task, all 
queues are empty and each link state is sampled randomly 
from its respective distribution. However, none of our theo­
retical results depend on this assumption. 

For an SQN control task, the central controller takes actions 
according to its policy n. We assume 7C is stochastic and n(als) 
denotes the probability of taking action a in states. We use n(·ls) 
to denote the distribution over all valid actions 3I(s) in state s. 
In the ODRLC setting, 7C generates a single long trajectory -r = 
(so,ao,co,s1,a1, ... ) where so ~ po, at~ n(·ls), Ct= c(st), and 
St+1 ~ P(·lst, at)- Unlike the traditional offline simulation setting, 
the state cannot be extemally reset. The policy 7C is updated at fixed 
intervals oflength Te. The aim is to learn a policy 1r to solve the 
following average-cost minimization problem: 

1 00 

min17(1r) = lim - LE,,.[c(st)] 
,rEII T -+oo T t=O 

(3) 

where E,,.[·] denotes the expectation under policy n. The policy 
space II denotes the set of all valid policies. We restrict II to only in­
clude stationary Markovian polices. This means each 1r E II makes 
decisions solely based on the current state, St, and is independent 
of the time step t. 
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Any stationary Markov policy :n: induces a Markov chain over 
the states with a state-transition distribution P,r(s'ls). When the 
state Markov Chain is positive recurrent we have the equivalence 
TJ(:n:) = Es~d(1r) [c(s)] where d(:n:) is the steady-state distribution 
of the Markov chain induced by :n:. Note that for TJ(:n:) to be finite, 
the state Markov chain must be positive recurrent. When TJ(:n:) is 
finite, the following value functions are well defined: 

res)= E,r rt c(st) - TJ(:n:)lso = sl (4) 

Q,r (s, a) = E,r rt c(st) - TJ(:n:)lso = s, ao =al (5) 

~~aj=~~aj-rw oo 
2.3 Lyapunov Stability 
Each queue backlog qi,k(t) must remain finite over any trajectory 
r ~ :n:, in order for the limit in equation (3) to be finite. This require­
ment is strongly related to the following notion of stability: 

DEFINITION 2.1 (STRONG STABILITY [10]). A discrete time process 
{qt} is strongly stable under transition function P if for any initial 
state qo the following condition is satisfied: 

. l T-1 
limsup - L Jap[lqtl] < oo (7) 

T->oo T t=O 

If the queue state Markov chain {qt} under P 1r is strongly stable 
for each queue in the network, the corresponding policy :n: is called 
a strongly stable policy. Strong stability is an important property 
for queuing networks that ensures the state Markov chain {qt} 
is positive recurrent with unique steady-state distribution d(:n:) 
that is independent of the initial state. Additionally, strong-stability 
implies that the number of packets in each buffer remains finite 
which is essential in the ODRLC setting as it ensures finite packet 
delay throughout the learning process. 

Lyapunov Optimization is a technique for ensuring stability of 
dynamical systems through the use ofLyapunov functions. A Lya­
punov function <I> : S 1-+ JR+ maps state vectors to non-negative 
scalars which quantify the "energy" of each state. Specifically, for 
SQNs, <l>(st) is typically defined to grow large as the queue sizes 
grow large. Stability is achieved by taking actions that cause the Lya­
punov drift defined as E,r [ t.(st)] = Ja [<1>(st+1)-<l>(st)lst] 

St+t ~P,.( • ls) 
to be negative when queue sizes grow too large. For the SQN models 
considered in this work, the Lyapunov function is solely a function 
of the queue state <I>( St) = <I>( qt) as the link-states are not influ­
enced by control decisions. The following Lyapunov drift condition 
can be used to guarantee stability properties of classical network 
control algorithms: 

THEOREM 1. The policy :n: is strongly stable if there exists a Lya­
punov function <I> : S 1-+ [ 0, oo], a finite region of the state space 
S1 c S and a finite constant B such that: 

Ja [<l>(st+1) - <l>(st)lst] :,; -(1 + iit) + B1s1 (st) Vst ES 
St+1~P,.(·ls,) 

where, 
St E S1, 

otherwise 
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This theorem is a modified version of the (V3) Lyapunov drift 
condition with f = l + iit [9, Ch. 14]. Examples of strongly stable 
policies include the MaxWeight scheduling and Backpressure rout­
ing policies. [9, 20]. MaxWeight assigns weights (qi,t x Yi,t) to each 
node-link pair, and activates the link with the largest weight in each 
time step. Backpressure dynamically routes traffic based on con­
gestion gradients without prespecified paths in Multihop networks. 
Both aim to to minimize bounds on the expected Lyapunov drift at 
each time step. While the throughput benefits of these algorithms 
are well established, they may suffer from poor delay performance 
as shown Section 5. 

2.4 Policy Gradient Methods 
In this work we focus on policy gradient methods, a class of DRL 
algorithms designed to directly optimize an agent's policy. We as­
sume a NN is used to represent the policy for a particular task. We 
refer to these policy-NNs as actor networks. We denote a policy 
as :n:9, where 0 represents the weights of the actor network. For 
parametric policies, the minimum cost objective can be expressed as 
min0EE> 1J(:n:9). This minimization is over the possible policy param­
eters 0, where El is determined by the actor network's architecture. 
Policy gradient methods perform this minimization iteratively: first 
estimating the gradient of TJ ( :n:0) with respect to the actor network's 
parameters, 0, and then performing gradient descent. The analytical 
form of the gradient V0TJ(:n:0) is provided by the classical policy 
gradient theorem [19]: 

V0TJ(:n:0) = Es~d(1re) [Q1r0(s,a)V9log:n:9(als)] (8) 
a~1r0(·ls) 

where d(:n:0) is the stationary-distribution of the Markov chain 
induced by the policy :n:9. Implementations that utilize automatic 
differentiation software work by constructing a loss function whose 
gradient approximates the analytical gradient: 

T-1 

Lpc(:n:0) = ½ L_J1r9 (st,at)log:n:9(atlst) 
t=O 

(9) 

where .J1r9 (st, at) is an estimate of the advantage function with 
respect to the policy :n:9. Utilizing the advantage function estimate is 
often preferred to an estimate of the state-action value (J1r9 ( St, at) 
as it offers a lower-variance estimate of the gradient [ 4]. A signifi­
cant limitation of policy gradient algorithms is their one-time use of 
each state-action pair (st, at) E r. Re-using trajectories for multiple 
gradient updates often leads to destructively large policy updates 
which cause "performance collapse" [16]. 

Trust region methods, a subset of policy gradient methods, are 
designed to address the challenge of making the largest possible 
steps towards performance improvements upon each update to the 
policy without risking performance collapse. The theoretical foun­
dation for these methods are bounds on the relative performance 
8(:n:0, :n:9) = TJ(:n:0) - TJ(:n:0) between two policies. These bounds 
take the following form: 

8(:n:9,:n:0):,; 18s~d(1r0) r:0c(:11:))A1r0(s,a)l +D(:n:9,:n:0) (10) 
a~1r0(•ls) 9 

where D(:n:0, :n:9) is proportional to a measure of dissimilarity be­
tween the policies :n:0 and :n:9. Practical algorithms define surrogate 
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objectives that such that minimizing the surrogate objective corre­
sponds to minimizing this upper bound. These surrogate objectives 
are typically defined as to minimize the first term while constrain­
ing the KI.-divergence between :rr~ and :rr0. However, like policy­
gradient methods, this optimization is performed via gradient up­
dates on the policy parameters 0, and thus effective algorithms 
must determine a suitable step-size to ensure 8{:rr~, :rr0) < 0. Trust­
region Policy Optimization (TRPO) approaches this by framing the 
problem as a constrained minimization, solved approximately via 
conjugate gradient methods [14]. Proximal Policy Optimization 
{PPO), conversely, employs a clipped surrogate objective to deter 
substantial policy shifts, optimizing the bound while limiting large 
changes between successive policies [16]. 

3 INTERVENTION-ASSISTED POLICY 
FRAMEWORK 

This section introduces the intervention-assisted policy framework 
for online training ofSQN control agents. This framework addresses 
two critical questions: (1) how to design a policy that guarantees 
strong stability in the ODRLC setting? (2) how to update this policy 
based on the online interactions with the SQN environment? The 
proofs for each theorem in this section are omitted for brevity but 
can be found in the technical report [24]. The following assumption 
is required for this framework: 

AssuMPTION 1. The agent has access to a known strongly stable 
policy:rro 

This assumption is not restrictive for SQN controls. Classical SQN 
control algorithms such as the MaxWeight or Backpressure policies 
can serve as :rro for single-hop and multi-hop problems respectively 
[9]. Its crucial to recognize that strong stability does not imply opti­
mality, where the optimal policy is defined as :,r* = ar~,,. ( 17 ( :,r)). 
We restrict our attention to SQN environments that may be stabi­
lized. In which case, the optimal policy :rr* is strongly stable. 

3.1 Intervention Assisted Policy 
The intervention-assisted framework is based on the partitioning 
the state-space S into two disjoint regions: a bounded "learning 
region" Se and and unbounded "intervention region" S 0. When 
the current state St falls within the learning region Se, the agent 
samples an action at from the actor policy :rr0. Conversely, if St E So, 
the agent samples an action at from the known strongly stable 
policy :rro. Section 4.2 details a practical method of choosing this 
partitioning to ensure sample efficient learning. The intervention­
assisted policy :rr1 is formulated as follows: 

:rr1(·ls) = J(s):rro(·ls) + (1 - J(s)):rre(·ls) (11) 

where 

J(s) = {1, s E So, 
0, s E Se 

{12) 

indicating that it utilizes policy :rro(·ls) when the state belongs 
to the set So, and :rre{•ls) for states in Se. We leverage on-policy 
policy gradient methods where the intervention policy :rr1 is used 
by the agent to generate a trajectory r ~ :rr1. Each trajectory is 
a sequence of states, intervention indicators, actions, and costs 

T = ( so, Io, ao, co, s1, ... ) where It E { 0, 1} indicates if an intervention 
occurred at time-step t. 

3.1.1 Guaranteeing Stability of Intervention-Assisted Policies. This 
section details how the intervention-assisted policy :rrr ensures 
strong stability using a Lyapunov optimization framework. Strong 
stability is vital from an SQN control perspective as it ensure packet 
delay is finite which is necessary for any policy deployed on a 
real-network. From a learning perspective, strong-stability guar­
antees a steady-state distribution d(:rr1), which is is necessary for 
well-defined policy gradient updates. The proofs of stability for 
intervention-assisted policies rely on the following lemma: 

LEMMA 1. Under the assumption that all a"ivals are finite, if the 
Lyapunov function <I>{·) is bounded for each s E S, then there exists 
a constant Bi > O for any bounded subset Si c S, such that 

{13) 

for any policy :rr. 

Lemma 1 means that given any finite region Si c S, the max­
imum conditional drift is bounded above. Intuitively this is true 
because the max conditional drift is achieved by idling for any St, 

and since arrivals are bounded, the max conditional drift is bounded. 
The following theorem provides details how to ensure an intervention­

assisted policy :rrr is strongly stable. 

THEOREM 2. Let Se denote the learning region and So = S \ Se 
denote the intervention region for an intervention assisted policy :rrr. 
If S0 is finite and :rro satisfies Theorem 1 for some <I>{·), B, and S1, 
then the following Lyapunov drift condition is satisfied: 

Ep,,.1 [<I>{st+1)-<I>{st)lst] :5 -(1+qt)+B1,01s1,0 (st) Vst ES {14) 

for a constant B1,0 < oo and the region S1,0 = S1 U Se where U 

denotes the union between two sets. 

COROLLARY 1. If the conditions of Theorem 2 are satisfied, the 
intervention-assisted policy :rrr is strongly stable. 

Thus to achieve strong-stability given a strongly stable :rro, we 
only need to ensure that the learning region Se is finite. These con­
ditions also mitigate the extrapolation burden on the actor network 
:rr0. Since the possible state inputs into :rr0 is confined to the finite 
region Se. 

3.2 Intervention Assisted Policy Gradients 
This section extends the classical policy gradient theorem [19] 
to derive the analytical form of the gradient of the intervention­
assisted performance objective V 0 T/ ( :rrr). 

THEOREM 3. Given a strongly stable intervention-assisted policy 
:rrr(·ls) = J(s):rro(·ls) + (1- J(s)):rre(·ls), and average-cost objective 
TJ(:rr1), the policy gradient is: 

V017{:rrr) = la [(l-J(s)Q"1 (s,a)V0log:rr0{als)] (15) 
s~d(:1r1) 

a~nr(·ls) 

where d(:rrr) is the steady-state distribution induced by :rrr, and Q"1 

is the state-action value function with respect to policy :rrr. 
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Equation (15) bears a strong resemblance to the original policy 
gradient theorem given in equation (9) albeit with a few key dis­
tinctions. First, the expectation for the intervention-assisted policy 
gradient is with respect to the steady-state and action distributions 
induced by the intervention-assisted policy 7rJ. Additionally, the 
intervention-assisted policy gradient depends on the state-action 
value function Q71'1 (s, a) which captures the state-action values 
with respect to the entire intervention-assisted policy instead of 
just 1r0 . Like equation (8), the intervention-assisted policy gradient 
depends on V 0 log 1r0(als), but note that the (1- I(s)) term blocks 
direct contributions to the overall gradient from any states where 
an intervention occurred. The overall performance of 1r1, includ­
ing the contributions from 1ro during interventions, still effects the 
gradient through the state-action value function Q"1 (s, a) and the 
dependence on the steady-state distribution d(1r1). Like in the non­
intervention assisted case, equation (15) only theoretically supports 
a single update-step per trajectory generated. 
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4 ALGORITHMS 
Building on the theoretical foundations of the previous sections, 
this section presents two practical algorithms for online training of 
intervention-assisted policies. These algorithms follow the same 
structure of on-policy actor-critic reinforcement learning algo­
rithms [18]. Both algorithms follow a two-phase approach, con­
sisting of a policy rollout phase and policy update phase, repeated 
across multiple training episodes e = 1, 2, ... , E: 

(1) Policy Rollout Phase: The current policy 1r?) interacts 

with the environment and generates a trajectory r<e). 

(2) Policy Update Phase The trajectory r< e) is used in comput­
ing gradient updates. The trajectory is re-used in U update 
epochs to provide a sequence of updated policies 

( (e,O) (e,l) (e,U)) 
:,rI ':,rI ' ••• :,rI 

where 1r?•u) for u > 0 refers to the intervention assisted 
policy after the uth update epoch. 

3.3 Intervention-Assisted Policy Improvement 0 ( ) 
B d Here 1r?• ) corresponds to the original policy :,r1 e that gener-oun s () 

Thi · bl" h b d fth ti ti (l0) ti . t t· ated the trajectory T e in policy rollout phase. After all U updates, s section esta 1s es oun so e orm equa on or m erven mn- . (e,U) . . 
assisted policies. These bounds allow us to extend the trust-region the moSt rece~tly updated pohcy :,rI becomes startmg policy 
methods for intervention-assisted policies. for the next episode (e + 1). 

Each of the following algorithms differ only in their loss func-
THEOREM 4. Consider two different strongly stable intervention 

assisted policies 1r; and 1r1 that utilize the same learning region So 
and intervention policy 1ro and only differ in their actor policies :,r~ 
and 1r0 respectively. The performance difference is bounded as: 

c5(1r;, 1r1) ~ 18 [A"1 (s, a)'Rr (als) I s E so] + 
s~d(nr) 

a~no(·ls) 

18 [A"1 (s, a) I s E So] + V(d(1r;), d(1r1)) (16) 
s~d(n1) 

a~,ro(·ls) 

where R81 (als) = " 0' (als) and: 
0 no(als) 

Equation (16) resembles analogous bounds for non-intervention­
assisted methods shown in equation (10), but with some key distinc­
tions. The first difference is in conditioning. In equation (16), the 
first term is only considered when the state falls within the learning 
region So. Similar to equation (15), it depends on the intervention 
assisted policy through the advantage function A"1 (s, a) and on 
the actor policies through Rr ( al s). To minimize this term, the ratio 

Rr (als) should be maximized (minimized) when A"1 (s, a) is nega­
tive (positive). The next major difference is that equation (10) lacks 
the second term present in equation (16). This term accounts for 
the performance of the intervention assisted policy 1r1 in the region 
So. This term goes to zero as the actor policy 1r0 learns to keep 
the state within S9. The last term in equation (16) is a measure of 
dissimilar between the steady-state distributions induced by 1r; and 
7rJ. This term is strictly positive, meaning to minimize the bound, 
the difference between policies should be minimized. 

tions. For each algorithm, a trajectory r<e) is generated during the 
rollout phase of episode e, and the policy parameters are updated 
U times via stochastic gradient descent: 

(17) 

where a is the learning rate and Lpol ( 1r; e,u), r< e)) is the policy loss 

function which is a function of the current policy 1r?'u) and the 
trajectory r< e). 

The first algorithm, the Intervention-Assisted Policy Gradient 
(IA-PG) algorithm, is an extension of the Vanilla Policy Gradient 
(VPG) algorithm1 to the intervention-assisted setting. The IA-PG 
algorithm utilizes the following loss function: 

1 T-1 (e) 

Lpc(1r?'u),T(e)) = y_L)l-ft)A;1 log:,r~e,u)(atlst) 
t=O 

(18) 

,r(e) (e) 
where A/ = A"r (st, at). Similar to the non-intervention assisted 
case, this loss function is designed to have a gradient that approxi­
mates the analytical gradient presented in equation (15). However, 
to reduce variance, IA-PG employs the advantage function estimate 
, (e) , (e) 

A "r instead of the state-action value estimate Q"r . It's important 
to note that this loss function does not incorporate any constraints 
on the policy updates. This lack of restriction can potentially lead 
to performance degradation issues. 

Our next algorithm, the Intervention-Assisted PPO (IA-PPO) al­
gorithm, is designed to prevent such performance degradation. The 
IA-PPO algorithm builds upon the bound presented in theorem 4 
to derive a loss function that resembles the original PPO algorithm 
[16]. Recall that iteratively minimizing the the right-hand side of 

1Vanilla Policy Gradient - Spinning Up documentation (openai.com) 
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equation (16) leads to a monotonically improving sequence of poli­
cies with respect to the average cost objective. Since only the actor 
network parameters 0 change between updates, the bound in equa­
tion (16) suggests solving the following optimization problem for 
updates: 

9(e,u+l) = argmin 1B [ ((1 - I(s))A"-J°l(s, a)'Ri:)u) (als)] + 
0 

(19) 

where the expectation is overs ~ d(n:Je)) and a~ n:Je) (·Is), and 
(e,u) ( I ) 

'R(e,u) (als) _ n6 as 
(e) - ,r~•l (als) • 

Notice, equation (19) omits the second term in equation (16) 
in as it does not depend on the variable 0. Minimizing the first 

term of equation (19) encourages maximizing the ratio 'Ri:t (als) 

for negative advantages, and encourages minimizing 'Ri:)u) (als) 
for positive advantages. However, the second term penalizes large 
deviations between policies. As n:o and I(s) remain unchanged 
between updates, the primary factor influencing this term is the 
difference between the actor policies between updates. To this end, 
the IA-PPO algorithm uses the following clipped loss: 

L t· (n:(e,u) T(e)) c zp J , 

l T-1 (e) (e) 

= T ,L(l-I(st))max{A;1 Ri:)u)(atlst),clip(E,A;1 ) 
t=O 

(20) 

where€ E (0, 1) is a hyperparameter and 

l. ( A) {(1 + e)A, A;:: O 
C Ip €, = 

(l -e)A, A< 0 

This clipped loss function creates more conservative updates by at­
tempting to limit the divergence of policies between updates while 
still increasing (decreasing) the likelihood of actions that decrease 
(increase) the advantage. This focus on conservative updates is 
even more critical in online training compared to simulation-based 
training. Online training relies on a single sample path generated 
from the previous trajectory's end state. This limitation leads to 
inherently noisier and potentially more biased advantage function 
estimates compared to settings where multiple trajectories are gen­
erated from various starting states (simulation-based training). The 
clipped loss function helps to mitigate the impact of this noise and 
bias on policy updates. 

4.1 Pseudocode 
Algorithm 1 provides an outline of the IA-PG and IA-PPO algo­
rithms as actor-critic style algorithms. The only difference between 
the two algorithm is the computation of Lpol in line 12, as the 
IA-PG algorithm uses equation (18) while the IA-PPO uses equa­
tion (20) for the policy loss. The algorithm as written assumes that 
So and So have been pre-determined. The next section details how 
these regions were selected for the results shown in Section 5. In the 
update phase, the algorithm operates without requiring knowledge 
of the underlying MDP, such as the transition and cost functions. 
Instead, it relies solely on the collected transitions from the previous 

trajectory r, making it a model-free approach. The advantage func­
tion is estimated using an average cost variant of the Generalized 
Advantage Estimation (GAE) algorithm [15]. This GAE algorithm 
utilizes a separate NN, a "critic" network, to for value estimation. 
The details of critic network and advantage function estimator are 
given in [24]. 

Algorithm 1 Intervention-Assisted PG/PPO Algorithm 

1: for each epoch e = l, E do 
2, # Policy Rollout Phase 
3: Initialize an empty trajectory buffer r 
4: for each step t = 0, 1..., Te - l do 
5: Observe state St and compute It = 1(st E So) 
6: Sample action at ~ n:1(·lst) 
7: Execute action at, observe cost Ct and next state St+l 
8: Store transition (st, ft,, at, Ct, St+1) in r 

9: # Update Phase 
A (e) 

10: Estimate advantages A1r1 (st, at) V (at, St) E r 
11: for each update epoch u = l, U do 
12: Compute policy loss Lpol 
13: Compute value loss Lval 
14: Update policy parameters: 0 - 0 - aV 0Lpol 
15: Update critic parameters function: <f, - <f, - aV q,Lval 

4.2 Learning Region Selection 
To achieve sample efficient learning, the finite learning region So 
should be specified to minimize the amount of interventions. To 
this end, we can leverage Theorem 1 to ensure that interventions 
not only stabilize the network, but also push the network state 
back towards the non-intervention region So in expectation. Given 
a strongly stable intervention policy n:o, according to Theorem 1, 
there exists a bounded sub-region S1 E S such that all states s <I. S1 
have negative expected drift, or more specifically: 

E,r0 [<l>(St+1) - <I>(st) I St <I. S1] :$;-(qt+ 1) (21) 

Setting So = S1 would ensure that each intervention results in 
negative expected drift, effectively pushing the state Markov chain 
back to So once it leaves. If S1 is not known beforehand, it can be 
estimated by producing a trajectory using only n:o. In practice, it 
may be very difficult to estimate S1 exactly as it requires learning 
the relationship between high-dimensional state-space and the 
expected drift. To address this challenge, we aim to learn a superset 
S 9 ;;1 S1 where S 9 can be estimated using a lower-dimensional 
representation of the states. To this end, we use the following 
corollary: 

COROLLARY 2. Given an strongly stable policy n: and a convex 
function g : S H [ 0, oo), we can bound the expected drift conditioned 
ong(st) V St as: 

lBp,.. [<I>(st+l) - <I>(st)lg(st)] :$; -(1 + iit) + B91s9 (st) (22) 

whereS9 = {s' ES: g(s') :$; maxsESi g(s)} andB9 is a constant. 

This corollary ensures that if S9 is known, the expected drift for 
s <I. S9 is negative. Letting g(st) = iit means S9 is defined based off 
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the network backlog and we only need to estimate a q* such that: 

lEp,,,[<I>{st+t)-<I>{st)lii.t,ii.t > q*] ~ -(1 +qt) (23) 

This quantity q; is easier much easier to estimate compared to the 
exact region S1. Once q; is estimated, the intervention criteria can 
be defined as: 

(24) 

Under this criteria, S9 remains bounded thus the intervention as­
sisted policy is strongly stable given that n-o is strongly stable, 
and the expected drift given I(st) = 1 is negative. Note that ii.t 
only contains partial information about the high-dimensional state 
St = ( qt, y t) as it neglects all the information on the link states y t in 
addition to averaging the information over the queue state qt. As a 
result, S9 isn't minimal in the sense that it can contains some states 
such thatlEp,,,0 [<I>(st1)-<I>{st)lst] < 0, butinpracticewehavefound 
this backlog based intervention criteria a good strategy for sample 
efficient learning as long as we use a pessimistic estimate of q*. To 
form this pessimistic estimate, we use n-o to collect a trajectory ro, 
and estimate the backlog at which the drift is negative from this 
trajecory i.e. q* = min{q: /',.,r0 {q) < (cl} where the hyperparameter 
(u < 0 is a constant and l',.1r0 (qt) = lE,r0 [<I>(st+1) - <I>{st)lii.t] is the 
expected drift given the current backlog ii.t• For the experiments 
in section 5, we collect ro by only using n-o until the state-Markov 
chain converges. The full details of this procedure can be found in 
[24]. 

5 EXPERIMENTS 
We conducted a series of experiments to evaluate the IA-PG and 
IA-PPO algorithms. The following SQN environments were used in 
the experiments: 

(1) SHl: A two user (K = 2) single-hop wireless network. 
(2) SH2: A four user (K = 4) single-hop wireless network. The 

topology is shown in Figure 1. 
(3) MHl: A multihop environment with two classes (K = 2), 

six links (M = 6), and four nodes (N = 4). The topology is 
shown in Figure 2. 

(4) MH2: A multihop environment with four classes {K = 4), 
thirteen links {M = 13), and eight nodes {N = 8). The 
topology can be found in Figure 4 of [24]. 

The arrival and service distributions for each SQN environment 
can be found in the technical report [24]. 

We evaluate the performance of all learning algorithms against 
the MaxWeight algorithm for single-hop network instances and 
Backpressure for the multi-hop network instances. In addition to 
these classic network control algorithms, we evaluate the perfor­
mance of the following DRL algorithms developed for average­
reward tasks: 

(1) Average Cost PPO (AC-PP0)[8]: an average-cost variant 
of the original PPO algorithm that does not leverage inter­
ventions. 

(2) Stability then Optimality PPO (STOP-PPO) [11]: an av­
erage reward policy gradient algorithm designed for envi­
ronments with unbounded state-spaces. STOP-PPO utilizes 
reward shaping to first train the agent to learn how to stabi­
lize the queuing network before learning how to optimize 

Wigmore, Shrader, & Modiano 

the queuing network. Our variant differs from the original 
as it includes the PPO clipping mechanism in the policy loss 
function and utilizes the Average Value Constraint method 
to control the bias of the critic network. 

5.1 ODRLC Experiment Procedure 
The following online-training process akin to an ODRLC setting 
for all algorithms (IA-PG, IA-PPO, AC-PPO, and STOP-PPO). The 
agent interacts continuously with the SQN environment from t = 0 
until a long-time horizon Tend· The performance of the agent is 
monitored over the entire long trajectory. We measure the follow-

ing two metrics: the time-averaged backlog q}t) = f Lt:;~ ii.hand 

TMA = 10,000 step moving average q}MA) = ~ Lt:;~-TMA ii.t• 
The moving average captured shorter-term performance, while the 
time-averaged metric assessed performance up to the current time 
step. 

The experiment time horizon Tend was divided into distinct 
episodes oflength Te. For the IA-PG and IA-PPO algorithms, the 
first Eo episodes only the intervention policy n-o was used. These 
trajectories ( r<0), r<1), ... r(Eo) were then used to estimate q; and 
determine the learning S9 and intervention regions So accord­
ing to the learning region estimation algorithm given in [24]. The 
performance of n-o was measured and included in analysis of the 
intervention-assisted algorithm's performance. After episode Eo, 

the full intervention-assisted policy n-?) is used to generate all 

future trajectories. After each trajectory r(e) ~ n-;e) was generated, 
the actor network was updated U times using the corresponding 
policy loss function. The AC-PPO and STOP PPO algorithms the 
same training procedure, minus the initial learning region estima­
tion phase meaning their actor policy n-0 generates all trajectories 
starting from t = 0. For all algorithms, the environment state is 
never reset. Additionally, for the IA-PG, IA-PPO, and AC-PPO al­
gorithms, the cost shaping function r'(st) = 1~J, was used. This 
cost shaping function ensures that the scales of costs are similar 
for different environments even if the backlog of the the respective 
optimal policies differ substantially, which allowed us to use the 
same learning rate for all environments as the magnitude of the 
gradients were comparable. We also used the symmetric natural 
log state transformation for all DRL algorithms to decrease the 
magnitude of divergence between inputs to the actor and critic 
networks [ 11]. 

All experiments were repeated five times for each algorithm us­
ing the same random seeds. This ensured identical arrival processes 
and link states across corresponding algorithms in each environ­
ment. All algorithms employed the Average Value Constrained 
Critic, with advantages estimated using an average-cost variant 
of the Generalized Advantage Estimation (GAE) algorithm. For 
consistency, identical hyperparameters were used across all envi­
ronments for each algorithm if they shared hyperparameters. A 
detailed description of hyperparameters and network architectures 
can be found in the technical report [24]. 

5.2 Results 
5.2.1 Intervention-less DRL Baselines. We start by demonstrating 
how the intervention-less DRL algorithms struggle to stabilize the 
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queues resulting in very poor performance on most environments. 
The online-performance of the AC-PPO and STOP-PPO algorithms 
are shown in Figure 3 which can be found on the last page. For the 
SH2, MHl, and MH2 environments, neither the AC-PPO nor the 
STOP-PPO algorithm can can stabilize the queuing network result­
ing in the networks queue backlog growing without bounds. For 
the SHl environment, the AC-PPO algorithm was able to stabilize 
the queuing network for each seed while the STOP-PPO algorithm 
only stabilized the queuing network in three of the five seeds. The 
variation in performance between the SHl network and the other 
network scenarios is best explained by examining the performance 
of a randomized policy on each network scenario. Only in the SHl 
network scenario does the randomized policy stabilize the queuing 
network. The randomized policy performance is a good indicator of 
whether or not an intervention-less policy can work in the ODRLC 
setting as an untrained agent's initial policy is typically close to a 
randomized policy. If this initial randomized policy is stable and the 
policy updates are conservative enough, as enabled by PPO-style 
updates, then its possible for the agent to avoid the extrapolation 
loop. However, its evident that an intervention-less approach to 
ODRLC will fail on many SQN control tasks due to the unbounded 
extrapolation loop of ODRLC in unbounded state-spaces. 

5.2.2 Intervention-Assisted Algorithms. Now that we have estab­
lished the necessity of intervention-assisted methods for online­
training of queueing network control algorithms we demonstrate 
that the IA-PG and IA-PPO algorithms can learn a better policy 
than classical network control algorithms online. These results are 
shown in Figure 4. Since the intervention-less DRL approaches 
failed in a majority of the environments, we focus on the compar­
ison between the intervention-assisted algorithms and the classi­
cal network control algorithms as a baseline. In all environments, 
the time-averaged backlog of the intervention-assisted algorithms 
outperforms the non-learning baseline. It is also evident that the 
IA-PPO algorithm is more sample-efficient than the IA-PG algo­

rithm. This is best seen by the average rate at which qf MA) drops 
below the time-averaged backlog of the non-learning baseline in 
each environment. It can also be seen that the moving average 
backlog ift1A of the IA-PPO algorithm is less noisy than that of 
IA-PG, especially for the SH2 and MH2 results. The SH2 and MH2 
environments were also the more challenging environments as it 

took approximately 300,000 timesteps before q~MA) of the IA-PPO 
algorithm was less than that of the MaxWeight/Backpressure poli­
cies, wheare is took closer to 100,000 timesteps to accomplish the 
same in the SHl and MHl environments. These environments had 
a higher-dimensional state-space compared to the SHl and MHl 
environments. Also, it can be inferred that the effective state-space 
in which the agent's encountered is much larger as seen by the 
maximum of q}MA) encountered over the experiments length. 

6 CONCLUSION 
In conclusion, this work introduces a novel intervention-assisted 
policy gradient approach for enabling Online Deep Reinforcement 
Learning Controls (ODRLC} in stochastic queuing networks. Our 
methods, IA-PG and IA-PPO, merge classical control's stability 

with neural networks' adaptability, showing superior queue stabil­
ity and network optimization in real-time over traditional methods. 
Experiments confirm our framework's effectiveness, overcoming 
unbounded queue challenges and setting a theoretical groundwork 
for future DRL applications in complex systems. Future efforts will 
refine intervention mechanisms, explore scalability, and extend 
our framework to other domains with similar issues. This research 
paves the way for integrating traditional control and modern ma­
chine learning for advanced system optimization and control. 
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Figure 3: Performance of the AC-PPO, STOP-PPO, and randomized policy on each network scenario. The Y-axis represents the 
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Figure 4: Performance of the IA-PG, IA-PPO, and MaxWeight/Backpressure algorithms on each environment. The Y-axis 
represents the actual queue backlog llt• Each line represents an average over five seeds. The solid lines correspond with the 
time-averaged backlog metrics q}') and the dashed lines correspond with a TMA = 10,000 step moving average qfMA). The 
shaded regions correspond to the 95% confidence intervals for each performance metric. 
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