
MIT Open Access Articles

Intervention-Assisted Online Deep Reinforcement
Learning for Stochastic Queuing Network Optimization

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Wigmore, Jerrod, Shrader, Brooke and Modiano, Eytan. 2024. "Intervention-Assisted
Online Deep Reinforcement Learning for Stochastic Queuing Network Optimization."

As Published: https://doi.org/10.1145/3641512.3686383

Publisher: ACM|The Twenty-fifth International Symposium on Theory, Algorithmic Foundations,
and Protocol Design for Mobile Networks and Mobile Computing

Persistent URL: https://hdl.handle.net/1721.1/157553

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of use: Creative Commons Attribution

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/157553
https://creativecommons.org/licenses/by/4.0/

301

This work is licensed under a Creative Commons Attribution International 4.0 License.

Intervention-Assisted Policy Gradient Methods for Online
Stochastic Queuing Network Optimization

Jerrod Wigmore
jwigmore@mit.edu

Massachusetts Institute of Technology
Cambridge, Massachusetts, USA

Brooke Shrader
brooke.shrader@ll.mit.edu

Eytan Modiano
modiano@mit.edu

Massachusetts Institute of Technology
Cambridge, Massachusetts, USA

MIT Lincoln Laboratory
Lexington, Massachusetts, USA

ABSTRACT
Deep Reinforcement Learning (DRL) offers a powerful approach
to training neural network control policies for stochastic queuing
networks (SQN). However, traditional DRL methods rely on offiine
simulations or static datasets, limiting their real-world application
in SQN control. This work proposes Online Deep Reinforcement
Learning-based Controls (ODRLC) as an alternative, where an intel­
ligent agent interacts directly with a real environment and learns
an optimal control policy from these online interactions. SQNs
present a challenge for ODRLC due to the unbounded nature of the
queues within the network resulting in an unbounded state-space.
An unbounded state-space is particularly challenging for neural
network policies as neural networks are notoriously poor at extrap­
olating to unseen states. To address this challenge, we propose an
intervention-assisted framework that leverages strategic interven­
tions from known stable policies to ensure the queue sizes remain
bounded. This framework combines the learning power of neural
networks with the guaranteed stability of classical control policies
for SQNs. We introduce a method to design these intervention­
assisted policies to ensure strong stability of the network. Fur­
thermore, we extend foundational DRL theorems for intervention­
assisted policies and develop two practical algorithms specifically
for ODRLC of SQNs. Finally, we demonstrate through experiments
that our proposed algorithms outperform both classical control
approaches and prior ODRLC algorithms.

CCS CONCEPTS
• Networks - Network algorithms; • Theory of computation
- Reinforcement learning.

This work was supported by NSF grants CNS-2148183 and CNS-2106268.

;

MOBIHOC '24, October 14-17, 2024, Athens, Greece
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0521-2/24/ I0
https:/ /doi.org/10.1145/3641512.3686383

KEYWORDS
Deep Reinforcement Learning, Queuing Networks, Lyapunov Sta­
bility, Online Learning and Control

ACM Reference Format:
Jerrod Wigmore, Brooke Shrader, and Eytan Modiano. 2024. Intervention­
Assisted Policy Gradient Methods for Online Stochastic Queuing Network
Optimization. In International Symposium on Theory, Algorithmic Foun­
dations, and Protocol Design for Mobile Networks and Mobile Computing
(MobiHoc '24), October 14-17, 2024, Athens, Greece. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3641512.3686383

1 INTRODUCTION
In the field of Deep Reinforcement Learning (DRL), agents are of­
ten trained using offiine simulated environments prior to being
deployed on the real-world environment. DRL is a promising tech­
nique for training stochastic network control agents. However, the
traditional simulation-based training paradigm has two major pit­
falls. If the true network dynamics are not able to be accurately
captured irt simulation, then the agent trained on the simulation
dynamics may perform poorly on the real-network. This is often
referred to as the sim-to-real gap [13, 21] . Additionally, the policies
of agents are often overfit to the training environments, and thus
struggle to generalize to unseen environments in their deployment.
[3, 27, 28]. In the context ofSQN control, an agent would have to be
trained on all possible dynamics of a particular network if the true
network dynamics are not known with certainty. To overcome these
limitations, we propose an Online Deep Reinforcement Learning­
based Controls (ODRLC) paradigm for training SQN control agents.
In ODRLC, an intelligent agent directly interacts with a real-world
environment and learns to optimize its policy through these online
interactions. This approach ensures the agent's policy is optimized
for the true environment and does not require access to simulations
prior to deployment.

Applying ODRLC to SQN control tasks presents significant chal­
lenges due to the unbounded state space. The infinite buffer model
is commonly used in network control because of its analytical sim­
plicity and the reality that network buffers are often extremely large.
However, neural networks (NNs), which are use for policy and/or
value function approximation in DRL, struggle with extrapolating
or generalizing to unseen inputs [5, 11, 25]. In most control tasks,
this poor generalization is not a major issue, as the state space is
usually bounded, and sufficient exploration during training allows
the agent to encounter nearly all possible states, minimizing the
need for generalization.

However, in the context of an unbounded state space, especially
with purely onlirte training, this issue becomes critical. When an
agent encounters an unseen state, it tends to take suboptimal actions

https://creativecommons.org/licenses/by/4.0/

302

MOBIHOC '24, October 14-17, 2024, Athens, Greece

due to the NN's poor extrapolation capabilities. These suboptimal
actions increase cumulative costs and drive the agent further into
unexplored regions, perpetuating a catastrophic feedback loop. This
cycle, which we term as the extrapolation loop of unbounded state
spaces, can be difficult to break, leading to continuously escalat­
ing costs as the agent interacts with the environment. In offiine
simulation-based training, this loop can be mitigated by periodically
resetting the environment's state. However, in ODRLC, such resets
may be infeasible or costly. Therefore, ensuring the environment's
state remains within a finite region of the state space is crucial and
closely related to the concept of strong stability often desired in
SQN control algorithms.

This work addresses the challenge of ODRLC for SQN control
tasks with unbounded state spaces. We propose a novel intervention­
assisted agent framework that leverages a known stable policy to
guarantee network stability while incorporating a NN policy for
exploration and policy improvement. We prove these intervention­
assisted policies are strongly stable, enabling their use for ODRLC.
We extend key DRL theorems to the intervention-assisted setting,
and introduce two practical ODRLC algorithms for SQN control.
Our experiments show that these algorithms outperform existing
SQN control and DRL-based methods in the ODRLC setting.

1.1 Related Works
Despite the wide applicability of queuing network models to var­
ious domains such as communication networks, manufacturing,
and transportation, and their rich historical context in the controls
literature, the integration of DRL for SQN controls remains a rela­
tively underexplored avenue. The authors of [2] leverage DRL to
optmize for delay in SQN control tasks that are similar to those
studied in this paper, however their methods are not developed for
the ODRLC setting. In [12], the authors use Deep Deterministic
Policy Gradient to learn queuing network control policies via offiine
environments that provide explicit guarantees on the end-to-end
delay of the policy. Each of these aforementioned works uses the
standard offiine simulation-based training paradigm of DRL and
thus the algorithms do not extend well into the ODRLC setting.

The ODRLC setting is most similar to continuing or average re­
ward Reinforcement Learning. In [29] , the authors provides a novel
policy improvement theorem for the average-reward case, which is
fundamental in the development of trust-region methods including
PPO. Ma et. al propose a unified policy improvement theorem that
combines both the average reward and discounted reward settings
in addition to addressing the Average Value Constraint problem
that arises in average reward DRL [8]. The theoretical results in
both [8, 29] hinge on the assumption that the state-space is finite
and thus don't apply to environments with unbounded state-spaces
such as queuing networks. In [11] , the authors develop a Lyapunov­
inspired reward shaping approach that encourages agents to learn
a stable policy for online DRL over unbounded state-spaces.

Safe-DRL is a branch of DRL that incorporates interventions
during training to maximize a reward function while adhering
to safety constraints. For example, [23] employs human interven­
tions in robotic navigation, while [22] uses automatic advantage­
based interventions to enforce safety constraints in DRL algorithms
designed for unconstrained tasks. These methods align with our

Wigmore, Shrader, & Modiano

Figure 1: (SH2) An example of a single-hop wireless network.
Packets arrive to each user according to user-dependent ar­
rival distributions. All packets are destined for the base­
station (BS). At each time step, the central controller chooses
from one of the four links to activate.

Y l,t Ys,t

Y 4,t Y3,t

Y 2,t Y6 ,t

Figure 2: (MHl) An example of a multi-hop network. Packets
from two different classes arrive to node 1 and all packets are
destined for node 4. At each time-step, the central network
controller must choose an action at which dictates how many
packets from each class is transmitted over each directed
link.

approach, emphasizing the role of external guidance in ensuring sta­
bility and safety during training. Safe-DRL can also be formulated
using Constrained Markov Decision Processes (MDPs), which intro­
duce constraint functions alongside traditional MDPs [7]. However,
satisfying these constraints in model-free DRL is challenging, as
agents often violate them during exploration. Common techniques
for addressing constrained MDPs in DRL include Lagrangian relax­
ation [17], projection-based optimization [26] , and Lyapunov-based
approaches [1]. While these methods share similarities with our
intervention-assisted strategies, they address constrained optimiza­
tion, whereas ODRLC for SQN control involves unconstrained op­
timization, with challenges arising from an unbounded state space
and online learning requirements.

2 PRELIMINARIES

2.1 Stochastic Queuing Network Model
In this paper, we focus on the objective of delay minimization for
general discrete time SQNs with Markovian dynamics. Under these
models, the delay minimization task is well modeled by a Markov de­
cision process. The networks under consideration consist of nodes
connected by directed links, with each node hosting one or more
queues equipped with unbounded buffers that store undelivered
packets. Let qt = { qi,t }Yi denote the vector of all queue backlogs
within the network, and let 'lt = Li qi,t denote the network backlog
which is the sum of backlogs across all queues within the network
at the beginning of time t. The delay minimization objective is

303

Intervention-Assisted Policy Gradient Methods for Online Stochastic Q,euing Network Optimization MOBIHOC '24, October 14-17, 2024, Athens, Greece

equivalent to minimizing the long-term average queue backlog [6].
Thus our objective function can be given as:

T-1

min lim .!. L ii.t
T-+oo T t=O

(1)

For the SQN models considered, two random processes - sto­
chastic packet arrivals and stochastic link capacities - govern the
dynamics, along with the actions taken by a central network con­
troller or agent. All packets belong to one of K ;:: 1 traffic classes,
where each class has an associated packet arrival distribution, ar­
rival node, and a destination node. For any class k, Xk,t packets
arrives at time t, where xk,t is drawn i.i.d. from a finite discrete
distribution P(xk)- The notation Xt = {xk,t }vk denotes the vector
of all arrivals in time t.

We denoted the capacity oflink mat time step t by Ym,t, which is
also referred to as link m's link state. At the beginning of each time
step Ym,t is sampled i.i.d. from a finite discrete distribution P(Ym,t)­

We use y t = {Ym,t hm to denote the set of all link states over all M

links at time t. We assume that arrival and link state distributions
are mutually independent and independent of the overall network
state. The network state at time tis captured by St = (qt,Yt),
encompassing both the queue states qt and link states Yt• At the
start of each time step, the central network controller observes
St and selects an action at from its policy n. The set of allowable
actions depend on the specific network instance and its current
state. An action at is a vector that specifies the amount of packets to
transmit over each link for each class. The central controller aims
to efficiently route all packets to their destinations by choosing
which packets are transmitted on each link during each time step.
A packet leaves the network once it arrives to its destination node.
In Section 5, we test our algorithms on the following SQN control
tasks:

2.1.1 Single-Hop Wireless Network Scheduling Task. For single-hop
wireless scheduling problems, the network instance is described by
a set of K user nodes, a base-station, and a single link between each
user and the base-station. There is a traffic class associated with
each user, and the base-station serves as the destination node for
all user's traffic. To model wireless interference constraints, only a
single link may be activated by the central controller in each time
step. When the central controller selects user k's link at time step t,
the number of packets that are transmitted to the base station is
ak,t = min { qk,t, Yk,t}. This constraint reflects that user k can only
transmit the number of packets in its queue qk,t, and cannot exceed
the link's capacity Yk,t· In the reinforcement learning setting, the
central controller aims to learn a state-dependent scheduling policy
1r that minimizes the long-term average backlog.

2.1.2 Multi-hop Network Control Task. For multi-hop networks,
the network instance is described by a graph g('V, 8) where 'V
denote the set of nodes and 8 denotes the set of directed links
between nodes. Figure 2 shows an example a topology of a multi­
hop network. Each of the K packet classes have an fixed source node
and destination node. Each node maintains K queues, one for each
class of traffic. At each time-step, the control policy observes the
network state St= (qt, Yt), and selects an action at= {am,k,t}vm,k

where where am,k,t ;:: 0 is the number of class k packets to be

transmitted on link m in time-step t. This action at must satisfy the
following constraint:

L am,k,t ::;; Ym,t, Vm = 1, ... , M (2)
k

This link-capacity constraint means the total number of packets
transmitted over each link must be less than the total capacity of
the link. The central controller's decision at encompasses both a
routing and scheduling decision. It determines not only the path
each packet takes but also the order at which each class of traffic
is transmitted over each link in every time step. Link activation
constraints may also be included to model interference in wireless
multi-hop networks, but we do not add this constraint for the
experiments in Section 5

2.2 Markov Decision Process
Each SQN control tasks can be formulated as an average-cost
Markov Decision Process (MDP) defined by the tuple (S, 31, P, c, po)
where:

(1) S represents the state-space, comprised of all possible states
s = (q, y). As its assumed each buffer within the network is
unbounded, the state-space S is also unbounded.

(2) 3{ denotes the action-space, which is comprised is the set of
feasible control decisions and depends on the task. Addition­
ally, we assume there is a set of valid actions 3I(s) for each
s E S that is known by the central controller for each SQN
control task.

(3) P(s' Is, a) is the probability of transitioning to states' from
state s after applying action a. This transition probability
captures the inherent uncertainty stemming from stochastic
packet arrivals and stochastic link states.

(4) c(st) is the cost function. For delay minimization tasks, this
equates to c(st) = ii.t•

(5) po(s) = P(so = s) is the initial state distribution. For Sec­
tion 5, we assume that at the beginning of each task, all
queues are empty and each link state is sampled randomly
from its respective distribution. However, none of our theo­
retical results depend on this assumption.

For an SQN control task, the central controller takes actions
according to its policy n. We assume 7C is stochastic and n(als)
denotes the probability of taking action a in states. We use n(·ls)
to denote the distribution over all valid actions 3I(s) in state s.
In the ODRLC setting, 7C generates a single long trajectory -r =
(so,ao,co,s1,a1, ...) where so ~ po, at~ n(·ls), Ct= c(st), and
St+1 ~ P(·lst, at)- Unlike the traditional offline simulation setting,
the state cannot be extemally reset. The policy 7C is updated at fixed
intervals oflength Te. The aim is to learn a policy 1r to solve the
following average-cost minimization problem:

1 00

min17(1r) = lim - LE,,.[c(st)]
,rEII T -+oo T t=O

(3)

where E,,.[·] denotes the expectation under policy n. The policy
space II denotes the set of all valid policies. We restrict II to only in­
clude stationary Markovian polices. This means each 1r E II makes
decisions solely based on the current state, St, and is independent
of the time step t.

304

MOB I HOC '24, October 14-17, 2024, Athens, Greece

Any stationary Markov policy :n: induces a Markov chain over
the states with a state-transition distribution P,r(s'ls). When the
state Markov Chain is positive recurrent we have the equivalence
TJ(:n:) = Es~d(1r) [c(s)] where d(:n:) is the steady-state distribution
of the Markov chain induced by :n:. Note that for TJ(:n:) to be finite,
the state Markov chain must be positive recurrent. When TJ(:n:) is
finite, the following value functions are well defined:

res)= E,r rt c(st) - TJ(:n:)lso = sl (4)

Q,r (s, a) = E,r rt c(st) - TJ(:n:)lso = s, ao =al (5)

~~aj=~~aj-rw oo
2.3 Lyapunov Stability
Each queue backlog qi,k(t) must remain finite over any trajectory
r ~ :n:, in order for the limit in equation (3) to be finite. This require­
ment is strongly related to the following notion of stability:

DEFINITION 2.1 (STRONG STABILITY [10]). A discrete time process
{qt} is strongly stable under transition function P if for any initial
state qo the following condition is satisfied:

. l T-1
limsup - L Jap[lqtl] < oo (7)

T->oo T t=O

If the queue state Markov chain {qt} under P 1r is strongly stable
for each queue in the network, the corresponding policy :n: is called
a strongly stable policy. Strong stability is an important property
for queuing networks that ensures the state Markov chain {qt}
is positive recurrent with unique steady-state distribution d(:n:)
that is independent of the initial state. Additionally, strong-stability
implies that the number of packets in each buffer remains finite
which is essential in the ODRLC setting as it ensures finite packet
delay throughout the learning process.

Lyapunov Optimization is a technique for ensuring stability of
dynamical systems through the use ofLyapunov functions. A Lya­
punov function <I> : S 1-+ JR+ maps state vectors to non-negative
scalars which quantify the "energy" of each state. Specifically, for
SQNs, <l>(st) is typically defined to grow large as the queue sizes
grow large. Stability is achieved by taking actions that cause the Lya­
punov drift defined as E,r [t.(st)] = Ja [<1>(st+1)-<l>(st)lst]

St+t ~P,.(• ls)
to be negative when queue sizes grow too large. For the SQN models
considered in this work, the Lyapunov function is solely a function
of the queue state <I>(St) = <I>(qt) as the link-states are not influ­
enced by control decisions. The following Lyapunov drift condition
can be used to guarantee stability properties of classical network
control algorithms:

THEOREM 1. The policy :n: is strongly stable if there exists a Lya­
punov function <I> : S 1-+ [0, oo], a finite region of the state space
S1 c S and a finite constant B such that:

Ja [<l>(st+1) - <l>(st)lst] :,; -(1 + iit) + B1s1 (st) Vst ES
St+1~P,.(·ls,)

where,
St E S1,

otherwise

Wigmore, Shrader, & Modiano

This theorem is a modified version of the (V3) Lyapunov drift
condition with f = l + iit [9, Ch. 14]. Examples of strongly stable
policies include the MaxWeight scheduling and Backpressure rout­
ing policies. [9, 20]. MaxWeight assigns weights (qi,t x Yi,t) to each
node-link pair, and activates the link with the largest weight in each
time step. Backpressure dynamically routes traffic based on con­
gestion gradients without prespecified paths in Multihop networks.
Both aim to to minimize bounds on the expected Lyapunov drift at
each time step. While the throughput benefits of these algorithms
are well established, they may suffer from poor delay performance
as shown Section 5.

2.4 Policy Gradient Methods
In this work we focus on policy gradient methods, a class of DRL
algorithms designed to directly optimize an agent's policy. We as­
sume a NN is used to represent the policy for a particular task. We
refer to these policy-NNs as actor networks. We denote a policy
as :n:9, where 0 represents the weights of the actor network. For
parametric policies, the minimum cost objective can be expressed as
min0EE> 1J(:n:9). This minimization is over the possible policy param­
eters 0, where El is determined by the actor network's architecture.
Policy gradient methods perform this minimization iteratively: first
estimating the gradient of TJ (:n:0) with respect to the actor network's
parameters, 0, and then performing gradient descent. The analytical
form of the gradient V0TJ(:n:0) is provided by the classical policy
gradient theorem [19]:

V0TJ(:n:0) = Es~d(1re) [Q1r0(s,a)V9log:n:9(als)] (8)
a~1r0(·ls)

where d(:n:0) is the stationary-distribution of the Markov chain
induced by the policy :n:9. Implementations that utilize automatic
differentiation software work by constructing a loss function whose
gradient approximates the analytical gradient:

T-1

Lpc(:n:0) = ½ L_J1r9 (st,at)log:n:9(atlst)
t=O

(9)

where .J1r9 (st, at) is an estimate of the advantage function with
respect to the policy :n:9. Utilizing the advantage function estimate is
often preferred to an estimate of the state-action value (J1r9 (St, at)
as it offers a lower-variance estimate of the gradient [4]. A signifi­
cant limitation of policy gradient algorithms is their one-time use of
each state-action pair (st, at) E r. Re-using trajectories for multiple
gradient updates often leads to destructively large policy updates
which cause "performance collapse" [16].

Trust region methods, a subset of policy gradient methods, are
designed to address the challenge of making the largest possible
steps towards performance improvements upon each update to the
policy without risking performance collapse. The theoretical foun­
dation for these methods are bounds on the relative performance
8(:n:0, :n:9) = TJ(:n:0) - TJ(:n:0) between two policies. These bounds
take the following form:

8(:n:9,:n:0):,; 18s~d(1r0) r:0c(:11:))A1r0(s,a)l +D(:n:9,:n:0) (10)
a~1r0(•ls) 9

where D(:n:0, :n:9) is proportional to a measure of dissimilarity be­
tween the policies :n:0 and :n:9. Practical algorithms define surrogate

305

Intervention-Assisted Policy Gradient Methods for Online Stochastic Qi,euing Network Optimization MOBIHOC '24, October 14-17, 2024, Athens, Greece

objectives that such that minimizing the surrogate objective corre­
sponds to minimizing this upper bound. These surrogate objectives
are typically defined as to minimize the first term while constrain­
ing the KI.-divergence between :rr~ and :rr0. However, like policy­
gradient methods, this optimization is performed via gradient up­
dates on the policy parameters 0, and thus effective algorithms
must determine a suitable step-size to ensure 8{:rr~, :rr0) < 0. Trust­
region Policy Optimization (TRPO) approaches this by framing the
problem as a constrained minimization, solved approximately via
conjugate gradient methods [14]. Proximal Policy Optimization
{PPO), conversely, employs a clipped surrogate objective to deter
substantial policy shifts, optimizing the bound while limiting large
changes between successive policies [16].

3 INTERVENTION-ASSISTED POLICY
FRAMEWORK

This section introduces the intervention-assisted policy framework
for online training ofSQN control agents. This framework addresses
two critical questions: (1) how to design a policy that guarantees
strong stability in the ODRLC setting? (2) how to update this policy
based on the online interactions with the SQN environment? The
proofs for each theorem in this section are omitted for brevity but
can be found in the technical report [24]. The following assumption
is required for this framework:

AssuMPTION 1. The agent has access to a known strongly stable
policy:rro

This assumption is not restrictive for SQN controls. Classical SQN
control algorithms such as the MaxWeight or Backpressure policies
can serve as :rro for single-hop and multi-hop problems respectively
[9]. Its crucial to recognize that strong stability does not imply opti­
mality, where the optimal policy is defined as :,r* = ar~,,. (17 (:,r)).
We restrict our attention to SQN environments that may be stabi­
lized. In which case, the optimal policy :rr* is strongly stable.

3.1 Intervention Assisted Policy
The intervention-assisted framework is based on the partitioning
the state-space S into two disjoint regions: a bounded "learning
region" Se and and unbounded "intervention region" S 0. When
the current state St falls within the learning region Se, the agent
samples an action at from the actor policy :rr0. Conversely, if St E So,
the agent samples an action at from the known strongly stable
policy :rro. Section 4.2 details a practical method of choosing this
partitioning to ensure sample efficient learning. The intervention­
assisted policy :rr1 is formulated as follows:

:rr1(·ls) = J(s):rro(·ls) + (1 - J(s)):rre(·ls) (11)

where

J(s) = {1, s E So,
0, s E Se

{12)

indicating that it utilizes policy :rro(·ls) when the state belongs
to the set So, and :rre{•ls) for states in Se. We leverage on-policy
policy gradient methods where the intervention policy :rr1 is used
by the agent to generate a trajectory r ~ :rr1. Each trajectory is
a sequence of states, intervention indicators, actions, and costs

T = (so, Io, ao, co, s1, ...) where It E { 0, 1} indicates if an intervention
occurred at time-step t.

3.1.1 Guaranteeing Stability of Intervention-Assisted Policies. This
section details how the intervention-assisted policy :rrr ensures
strong stability using a Lyapunov optimization framework. Strong
stability is vital from an SQN control perspective as it ensure packet
delay is finite which is necessary for any policy deployed on a
real-network. From a learning perspective, strong-stability guar­
antees a steady-state distribution d(:rr1), which is is necessary for
well-defined policy gradient updates. The proofs of stability for
intervention-assisted policies rely on the following lemma:

LEMMA 1. Under the assumption that all a"ivals are finite, if the
Lyapunov function <I>{·) is bounded for each s E S, then there exists
a constant Bi > O for any bounded subset Si c S, such that

{13)

for any policy :rr.

Lemma 1 means that given any finite region Si c S, the max­
imum conditional drift is bounded above. Intuitively this is true
because the max conditional drift is achieved by idling for any St,

and since arrivals are bounded, the max conditional drift is bounded.
The following theorem provides details how to ensure an intervention­

assisted policy :rrr is strongly stable.

THEOREM 2. Let Se denote the learning region and So = S \ Se
denote the intervention region for an intervention assisted policy :rrr.
If S0 is finite and :rro satisfies Theorem 1 for some <I>{·), B, and S1,
then the following Lyapunov drift condition is satisfied:

Ep,,.1 [<I>{st+1)-<I>{st)lst] :5 -(1+qt)+B1,01s1,0 (st) Vst ES {14)

for a constant B1,0 < oo and the region S1,0 = S1 U Se where U

denotes the union between two sets.

COROLLARY 1. If the conditions of Theorem 2 are satisfied, the
intervention-assisted policy :rrr is strongly stable.

Thus to achieve strong-stability given a strongly stable :rro, we
only need to ensure that the learning region Se is finite. These con­
ditions also mitigate the extrapolation burden on the actor network
:rr0. Since the possible state inputs into :rr0 is confined to the finite
region Se.

3.2 Intervention Assisted Policy Gradients
This section extends the classical policy gradient theorem [19]
to derive the analytical form of the gradient of the intervention­
assisted performance objective V 0 T/ (:rrr).

THEOREM 3. Given a strongly stable intervention-assisted policy
:rrr(·ls) = J(s):rro(·ls) + (1- J(s)):rre(·ls), and average-cost objective
TJ(:rr1), the policy gradient is:

V017{:rrr) = la [(l-J(s)Q"1 (s,a)V0log:rr0{als)] (15)
s~d(:1r1)

a~nr(·ls)

where d(:rrr) is the steady-state distribution induced by :rrr, and Q"1

is the state-action value function with respect to policy :rrr.

306

MOB I HOC '24, October 14-17, 2024, Athens, Greece

Equation (15) bears a strong resemblance to the original policy
gradient theorem given in equation (9) albeit with a few key dis­
tinctions. First, the expectation for the intervention-assisted policy
gradient is with respect to the steady-state and action distributions
induced by the intervention-assisted policy 7rJ. Additionally, the
intervention-assisted policy gradient depends on the state-action
value function Q71'1 (s, a) which captures the state-action values
with respect to the entire intervention-assisted policy instead of
just 1r0 . Like equation (8), the intervention-assisted policy gradient
depends on V 0 log 1r0(als), but note that the (1- I(s)) term blocks
direct contributions to the overall gradient from any states where
an intervention occurred. The overall performance of 1r1, includ­
ing the contributions from 1ro during interventions, still effects the
gradient through the state-action value function Q"1 (s, a) and the
dependence on the steady-state distribution d(1r1). Like in the non­
intervention assisted case, equation (15) only theoretically supports
a single update-step per trajectory generated.

Wigmore, Shrader, & Modiano

4 ALGORITHMS
Building on the theoretical foundations of the previous sections,
this section presents two practical algorithms for online training of
intervention-assisted policies. These algorithms follow the same
structure of on-policy actor-critic reinforcement learning algo­
rithms [18]. Both algorithms follow a two-phase approach, con­
sisting of a policy rollout phase and policy update phase, repeated
across multiple training episodes e = 1, 2, ... , E:

(1) Policy Rollout Phase: The current policy 1r?) interacts

with the environment and generates a trajectory r<e).

(2) Policy Update Phase The trajectory r< e) is used in comput­
ing gradient updates. The trajectory is re-used in U update
epochs to provide a sequence of updated policies

((e,O) (e,l) (e,U))
:,rI ':,rI ' ••• :,rI

where 1r?•u) for u > 0 refers to the intervention assisted
policy after the uth update epoch.

3.3 Intervention-Assisted Policy Improvement 0 ()
B d Here 1r?•) corresponds to the original policy :,r1 e that gener-oun s ()

Thi · bl" h b d fth ti ti (l0) ti . t t· ated the trajectory T e in policy rollout phase. After all U updates, s section esta 1s es oun so e orm equa on or m erven mn- . (e,U) . .
assisted policies. These bounds allow us to extend the trust-region the moSt rece~tly updated pohcy :,rI becomes startmg policy
methods for intervention-assisted policies. for the next episode (e + 1).

Each of the following algorithms differ only in their loss func-
THEOREM 4. Consider two different strongly stable intervention

assisted policies 1r; and 1r1 that utilize the same learning region So
and intervention policy 1ro and only differ in their actor policies :,r~
and 1r0 respectively. The performance difference is bounded as:

c5(1r;, 1r1) ~ 18 [A"1 (s, a)'Rr (als) I s E so] +
s~d(nr)

a~no(·ls)

18 [A"1 (s, a) I s E So] + V(d(1r;), d(1r1)) (16)
s~d(n1)

a~,ro(·ls)

where R81 (als) = " 0' (als) and:
0 no(als)

Equation (16) resembles analogous bounds for non-intervention­
assisted methods shown in equation (10), but with some key distinc­
tions. The first difference is in conditioning. In equation (16), the
first term is only considered when the state falls within the learning
region So. Similar to equation (15), it depends on the intervention
assisted policy through the advantage function A"1 (s, a) and on
the actor policies through Rr (al s). To minimize this term, the ratio

Rr (als) should be maximized (minimized) when A"1 (s, a) is nega­
tive (positive). The next major difference is that equation (10) lacks
the second term present in equation (16). This term accounts for
the performance of the intervention assisted policy 1r1 in the region
So. This term goes to zero as the actor policy 1r0 learns to keep
the state within S9. The last term in equation (16) is a measure of
dissimilar between the steady-state distributions induced by 1r; and
7rJ. This term is strictly positive, meaning to minimize the bound,
the difference between policies should be minimized.

tions. For each algorithm, a trajectory r<e) is generated during the
rollout phase of episode e, and the policy parameters are updated
U times via stochastic gradient descent:

(17)

where a is the learning rate and Lpol (1r; e,u), r< e)) is the policy loss

function which is a function of the current policy 1r?'u) and the
trajectory r< e).

The first algorithm, the Intervention-Assisted Policy Gradient
(IA-PG) algorithm, is an extension of the Vanilla Policy Gradient
(VPG) algorithm1 to the intervention-assisted setting. The IA-PG
algorithm utilizes the following loss function:

1 T-1 (e)

Lpc(1r?'u),T(e)) = y_L)l-ft)A;1 log:,r~e,u)(atlst)
t=O

(18)

,r(e) (e)
where A/ = A"r (st, at). Similar to the non-intervention assisted
case, this loss function is designed to have a gradient that approxi­
mates the analytical gradient presented in equation (15). However,
to reduce variance, IA-PG employs the advantage function estimate
, (e) , (e)

A "r instead of the state-action value estimate Q"r . It's important
to note that this loss function does not incorporate any constraints
on the policy updates. This lack of restriction can potentially lead
to performance degradation issues.

Our next algorithm, the Intervention-Assisted PPO (IA-PPO) al­
gorithm, is designed to prevent such performance degradation. The
IA-PPO algorithm builds upon the bound presented in theorem 4
to derive a loss function that resembles the original PPO algorithm
[16]. Recall that iteratively minimizing the the right-hand side of

1Vanilla Policy Gradient - Spinning Up documentation (openai.com)

307

Intervention-Assisted Policy Gradient Methods for Online Stochastic Q,euing Network Optimization MOBIHOC '24, October 14-17, 2024, Athens, Greece

equation (16) leads to a monotonically improving sequence of poli­
cies with respect to the average cost objective. Since only the actor
network parameters 0 change between updates, the bound in equa­
tion (16) suggests solving the following optimization problem for
updates:

9(e,u+l) = argmin 1B [((1 - I(s))A"-J°l(s, a)'Ri:)u) (als)] +
0

(19)

where the expectation is overs ~ d(n:Je)) and a~ n:Je) (·Is), and
(e,u) (I)

'R(e,u) (als) _ n6 as
(e) - ,r~•l (als) •

Notice, equation (19) omits the second term in equation (16)
in as it does not depend on the variable 0. Minimizing the first

term of equation (19) encourages maximizing the ratio 'Ri:t (als)

for negative advantages, and encourages minimizing 'Ri:)u) (als)
for positive advantages. However, the second term penalizes large
deviations between policies. As n:o and I(s) remain unchanged
between updates, the primary factor influencing this term is the
difference between the actor policies between updates. To this end,
the IA-PPO algorithm uses the following clipped loss:

L t· (n:(e,u) T(e)) c zp J ,

l T-1 (e) (e)

= T ,L(l-I(st))max{A;1 Ri:)u)(atlst),clip(E,A;1)
t=O

(20)

where€ E (0, 1) is a hyperparameter and

l. (A) {(1 + e)A, A;:: O
C Ip €, =

(l -e)A, A< 0

This clipped loss function creates more conservative updates by at­
tempting to limit the divergence of policies between updates while
still increasing (decreasing) the likelihood of actions that decrease
(increase) the advantage. This focus on conservative updates is
even more critical in online training compared to simulation-based
training. Online training relies on a single sample path generated
from the previous trajectory's end state. This limitation leads to
inherently noisier and potentially more biased advantage function
estimates compared to settings where multiple trajectories are gen­
erated from various starting states (simulation-based training). The
clipped loss function helps to mitigate the impact of this noise and
bias on policy updates.

4.1 Pseudocode
Algorithm 1 provides an outline of the IA-PG and IA-PPO algo­
rithms as actor-critic style algorithms. The only difference between
the two algorithm is the computation of Lpol in line 12, as the
IA-PG algorithm uses equation (18) while the IA-PPO uses equa­
tion (20) for the policy loss. The algorithm as written assumes that
So and So have been pre-determined. The next section details how
these regions were selected for the results shown in Section 5. In the
update phase, the algorithm operates without requiring knowledge
of the underlying MDP, such as the transition and cost functions.
Instead, it relies solely on the collected transitions from the previous

trajectory r, making it a model-free approach. The advantage func­
tion is estimated using an average cost variant of the Generalized
Advantage Estimation (GAE) algorithm [15]. This GAE algorithm
utilizes a separate NN, a "critic" network, to for value estimation.
The details of critic network and advantage function estimator are
given in [24].

Algorithm 1 Intervention-Assisted PG/PPO Algorithm

1: for each epoch e = l, E do
2, # Policy Rollout Phase
3: Initialize an empty trajectory buffer r
4: for each step t = 0, 1..., Te - l do
5: Observe state St and compute It = 1(st E So)
6: Sample action at ~ n:1(·lst)
7: Execute action at, observe cost Ct and next state St+l
8: Store transition (st, ft,, at, Ct, St+1) in r

9: # Update Phase
A (e)

10: Estimate advantages A1r1 (st, at) V (at, St) E r
11: for each update epoch u = l, U do
12: Compute policy loss Lpol
13: Compute value loss Lval
14: Update policy parameters: 0 - 0 - aV 0Lpol
15: Update critic parameters function: <f, - <f, - aV q,Lval

4.2 Learning Region Selection
To achieve sample efficient learning, the finite learning region So
should be specified to minimize the amount of interventions. To
this end, we can leverage Theorem 1 to ensure that interventions
not only stabilize the network, but also push the network state
back towards the non-intervention region So in expectation. Given
a strongly stable intervention policy n:o, according to Theorem 1,
there exists a bounded sub-region S1 E S such that all states s <I. S1
have negative expected drift, or more specifically:

E,r0 [<l>(St+1) - <I>(st) I St <I. S1] :$;-(qt+ 1) (21)

Setting So = S1 would ensure that each intervention results in
negative expected drift, effectively pushing the state Markov chain
back to So once it leaves. If S1 is not known beforehand, it can be
estimated by producing a trajectory using only n:o. In practice, it
may be very difficult to estimate S1 exactly as it requires learning
the relationship between high-dimensional state-space and the
expected drift. To address this challenge, we aim to learn a superset
S 9 ;;1 S1 where S 9 can be estimated using a lower-dimensional
representation of the states. To this end, we use the following
corollary:

COROLLARY 2. Given an strongly stable policy n: and a convex
function g : S H [0, oo), we can bound the expected drift conditioned
ong(st) V St as:

lBp,.. [<I>(st+l) - <I>(st)lg(st)] :$; -(1 + iit) + B91s9 (st) (22)

whereS9 = {s' ES: g(s') :$; maxsESi g(s)} andB9 is a constant.

This corollary ensures that if S9 is known, the expected drift for
s <I. S9 is negative. Letting g(st) = iit means S9 is defined based off

308

MOB I HOC '24, October 14-17, 2024, Athens, Greece

the network backlog and we only need to estimate a q* such that:

lEp,,,[<I>{st+t)-<I>{st)lii.t,ii.t > q*] ~ -(1 +qt) (23)

This quantity q; is easier much easier to estimate compared to the
exact region S1. Once q; is estimated, the intervention criteria can
be defined as:

(24)

Under this criteria, S9 remains bounded thus the intervention as­
sisted policy is strongly stable given that n-o is strongly stable,
and the expected drift given I(st) = 1 is negative. Note that ii.t
only contains partial information about the high-dimensional state
St = (qt, y t) as it neglects all the information on the link states y t in
addition to averaging the information over the queue state qt. As a
result, S9 isn't minimal in the sense that it can contains some states
such thatlEp,,,0 [<I>(st1)-<I>{st)lst] < 0, butinpracticewehavefound
this backlog based intervention criteria a good strategy for sample
efficient learning as long as we use a pessimistic estimate of q*. To
form this pessimistic estimate, we use n-o to collect a trajectory ro,
and estimate the backlog at which the drift is negative from this
trajecory i.e. q* = min{q: /',.,r0 {q) < (cl} where the hyperparameter
(u < 0 is a constant and l',.1r0 (qt) = lE,r0 [<I>(st+1) - <I>{st)lii.t] is the
expected drift given the current backlog ii.t• For the experiments
in section 5, we collect ro by only using n-o until the state-Markov
chain converges. The full details of this procedure can be found in
[24].

5 EXPERIMENTS
We conducted a series of experiments to evaluate the IA-PG and
IA-PPO algorithms. The following SQN environments were used in
the experiments:

(1) SHl: A two user (K = 2) single-hop wireless network.
(2) SH2: A four user (K = 4) single-hop wireless network. The

topology is shown in Figure 1.
(3) MHl: A multihop environment with two classes (K = 2),

six links (M = 6), and four nodes (N = 4). The topology is
shown in Figure 2.

(4) MH2: A multihop environment with four classes {K = 4),
thirteen links {M = 13), and eight nodes {N = 8). The
topology can be found in Figure 4 of [24].

The arrival and service distributions for each SQN environment
can be found in the technical report [24].

We evaluate the performance of all learning algorithms against
the MaxWeight algorithm for single-hop network instances and
Backpressure for the multi-hop network instances. In addition to
these classic network control algorithms, we evaluate the perfor­
mance of the following DRL algorithms developed for average­
reward tasks:

(1) Average Cost PPO (AC-PP0)[8]: an average-cost variant
of the original PPO algorithm that does not leverage inter­
ventions.

(2) Stability then Optimality PPO (STOP-PPO) [11]: an av­
erage reward policy gradient algorithm designed for envi­
ronments with unbounded state-spaces. STOP-PPO utilizes
reward shaping to first train the agent to learn how to stabi­
lize the queuing network before learning how to optimize

Wigmore, Shrader, & Modiano

the queuing network. Our variant differs from the original
as it includes the PPO clipping mechanism in the policy loss
function and utilizes the Average Value Constraint method
to control the bias of the critic network.

5.1 ODRLC Experiment Procedure
The following online-training process akin to an ODRLC setting
for all algorithms (IA-PG, IA-PPO, AC-PPO, and STOP-PPO). The
agent interacts continuously with the SQN environment from t = 0
until a long-time horizon Tend· The performance of the agent is
monitored over the entire long trajectory. We measure the follow-

ing two metrics: the time-averaged backlog q}t) = f Lt:;~ ii.hand

TMA = 10,000 step moving average q}MA) = ~ Lt:;~-TMA ii.t•
The moving average captured shorter-term performance, while the
time-averaged metric assessed performance up to the current time
step.

The experiment time horizon Tend was divided into distinct
episodes oflength Te. For the IA-PG and IA-PPO algorithms, the
first Eo episodes only the intervention policy n-o was used. These
trajectories (r<0), r<1), ... r(Eo) were then used to estimate q; and
determine the learning S9 and intervention regions So accord­
ing to the learning region estimation algorithm given in [24]. The
performance of n-o was measured and included in analysis of the
intervention-assisted algorithm's performance. After episode Eo,

the full intervention-assisted policy n-?) is used to generate all

future trajectories. After each trajectory r(e) ~ n-;e) was generated,
the actor network was updated U times using the corresponding
policy loss function. The AC-PPO and STOP PPO algorithms the
same training procedure, minus the initial learning region estima­
tion phase meaning their actor policy n-0 generates all trajectories
starting from t = 0. For all algorithms, the environment state is
never reset. Additionally, for the IA-PG, IA-PPO, and AC-PPO al­
gorithms, the cost shaping function r'(st) = 1~J, was used. This
cost shaping function ensures that the scales of costs are similar
for different environments even if the backlog of the the respective
optimal policies differ substantially, which allowed us to use the
same learning rate for all environments as the magnitude of the
gradients were comparable. We also used the symmetric natural
log state transformation for all DRL algorithms to decrease the
magnitude of divergence between inputs to the actor and critic
networks [11].

All experiments were repeated five times for each algorithm us­
ing the same random seeds. This ensured identical arrival processes
and link states across corresponding algorithms in each environ­
ment. All algorithms employed the Average Value Constrained
Critic, with advantages estimated using an average-cost variant
of the Generalized Advantage Estimation (GAE) algorithm. For
consistency, identical hyperparameters were used across all envi­
ronments for each algorithm if they shared hyperparameters. A
detailed description of hyperparameters and network architectures
can be found in the technical report [24].

5.2 Results
5.2.1 Intervention-less DRL Baselines. We start by demonstrating
how the intervention-less DRL algorithms struggle to stabilize the

309

Intervention-Assisted Policy Gradient Methods for Online Stochastic Q,euing Network Optimization MOBIHOC '24, October 14-17, 2024, Athens, Greece

queues resulting in very poor performance on most environments.
The online-performance of the AC-PPO and STOP-PPO algorithms
are shown in Figure 3 which can be found on the last page. For the
SH2, MHl, and MH2 environments, neither the AC-PPO nor the
STOP-PPO algorithm can can stabilize the queuing network result­
ing in the networks queue backlog growing without bounds. For
the SHl environment, the AC-PPO algorithm was able to stabilize
the queuing network for each seed while the STOP-PPO algorithm
only stabilized the queuing network in three of the five seeds. The
variation in performance between the SHl network and the other
network scenarios is best explained by examining the performance
of a randomized policy on each network scenario. Only in the SHl
network scenario does the randomized policy stabilize the queuing
network. The randomized policy performance is a good indicator of
whether or not an intervention-less policy can work in the ODRLC
setting as an untrained agent's initial policy is typically close to a
randomized policy. If this initial randomized policy is stable and the
policy updates are conservative enough, as enabled by PPO-style
updates, then its possible for the agent to avoid the extrapolation
loop. However, its evident that an intervention-less approach to
ODRLC will fail on many SQN control tasks due to the unbounded
extrapolation loop of ODRLC in unbounded state-spaces.

5.2.2 Intervention-Assisted Algorithms. Now that we have estab­
lished the necessity of intervention-assisted methods for online­
training of queueing network control algorithms we demonstrate
that the IA-PG and IA-PPO algorithms can learn a better policy
than classical network control algorithms online. These results are
shown in Figure 4. Since the intervention-less DRL approaches
failed in a majority of the environments, we focus on the compar­
ison between the intervention-assisted algorithms and the classi­
cal network control algorithms as a baseline. In all environments,
the time-averaged backlog of the intervention-assisted algorithms
outperforms the non-learning baseline. It is also evident that the
IA-PPO algorithm is more sample-efficient than the IA-PG algo­

rithm. This is best seen by the average rate at which qf MA) drops
below the time-averaged backlog of the non-learning baseline in
each environment. It can also be seen that the moving average
backlog ift1A of the IA-PPO algorithm is less noisy than that of
IA-PG, especially for the SH2 and MH2 results. The SH2 and MH2
environments were also the more challenging environments as it

took approximately 300,000 timesteps before q~MA) of the IA-PPO
algorithm was less than that of the MaxWeight/Backpressure poli­
cies, wheare is took closer to 100,000 timesteps to accomplish the
same in the SHl and MHl environments. These environments had
a higher-dimensional state-space compared to the SHl and MHl
environments. Also, it can be inferred that the effective state-space
in which the agent's encountered is much larger as seen by the
maximum of q}MA) encountered over the experiments length.

6 CONCLUSION
In conclusion, this work introduces a novel intervention-assisted
policy gradient approach for enabling Online Deep Reinforcement
Learning Controls (ODRLC} in stochastic queuing networks. Our
methods, IA-PG and IA-PPO, merge classical control's stability

with neural networks' adaptability, showing superior queue stabil­
ity and network optimization in real-time over traditional methods.
Experiments confirm our framework's effectiveness, overcoming
unbounded queue challenges and setting a theoretical groundwork
for future DRL applications in complex systems. Future efforts will
refine intervention mechanisms, explore scalability, and extend
our framework to other domains with similar issues. This research
paves the way for integrating traditional control and modern ma­
chine learning for advanced system optimization and control.

REFERENCES
[1] Yinlam Chow, Ofir Nachum, Aleksandra Faust, M. Ghavamzadeh, and Edgar A.

Dueiiez-Guzman. 2019. Lyapunov-Based Safe Policy Optimization for Continuous
Control. ArXiv Oan. 2019).

[2] J. G. Dai and Mark Gluzman. 2022. Queueing Network Controls via Deep Rein­
forcement Learning. Stochastic Systems 12, 1 (March 2022), 30-67.

[3] Jesse Farebrother, Marlos C. Machado, and Michael Bowling. 2020. Generalization
and Regularization in DQN. arXiv:1810.00123

[4] Evan Greensmith, Peter L. Bartlett, and Jonathan Baxter. 2004. Variance Reduction
Techniques for Gradient Estimates in Reinforcement Learning. Journal of Machine
Leaming Research 5, Nov (2004), 1471-1530.

[5] P J. Haley and D. Soloway. 1992. Extrapolation Limitations of Multilayer Feedfor­
ward Neural Networks. In [Proceedings 1992] JJCNN International Joint Conference
on Neural Networks, Vol. 4. 25-30 vol.4.

[6] John D. C. Little. 1961. A Proof for the Queuing Formula: L= .it W. Operations
Research 9, 3 (1961), 383-387. jstor:167570

[7] Yongshuai Liu, Avishai Halev, and Xin Liu. 2021. Policy Learning with Constraints
in Model-free Reinforcement Learning: A Survey. In Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence. International Joint Con­
ferences on Artificial Intelligence Organization, Montreal, Canada, 4508-4515.
https:/ /doi.org/10.24963/ijcai.2021/614

[8] Xiaoteng Ma, Xiaohang Tang, Li Xia, Jun Yang, and Qianchuan Zhao. 2021.
Average-Reward Reinforcement Learning with Trust Region Methods. arXiv
(2021).

[9] Sean Meyn and Richard L. Tweedie. 2009. Markov Chains and Stochastic Stability
(2 ed.). Cambridge University Press, Cambridge.

[10] Michael Neely. 2010. Stochastic Network Optimization with Application to
Communication and Queueing Systems. Synthesis Lectures on Communication
Networks 3, 1 (2010), 1-211.

[11] Brahma S. Pavse, Yudong Chen, Qiaomin Xie, and Josiah P. Hanna. 2023. Tack­
ling Unbounded State Spaces in Continuing Task Reinforcement Learning.
arXiv:2306.01896

[12] Majid Raeis, Ali Tizghadam, and Alberto Leon-Garcia. 2021. Queue-Learning: A
Reinforcement Learning Approach for Providing Quality of Service. Proceedings
of the AAAI Conference on Artificial Intelligence 35, 1 (May 2021), 461-468.

[13] Erica Salvato, Gianfranco Fenu, Eric Medvet, and Felice Andrea Pellegrino. 2021.
Crossing the Reality Gap: A Survey on Sim-to-Real Transferability of Robot
Controllers in Reinforcement Learning. IEEE Access 9 (2021), 153171-153187.

[14] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter
Abbeel. 2017. Trust Region Policy Optimization. arXiv:1502.05477

[15] John Schulman, Philipp Moritz, Sergey Levine, Michae]Jordan, and Pieter Abbeel.
2018. High-Dimensional Continuous Control Using Generalized Advantage
Estimation. arXiv:1506.02438

[16] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. arXiv:1707.06347

[17] Adam Stooke, Joshua Achiam, and Pieter Ahhee!. 2020. Responsive Safety in
Reinforcement Learning by PID Lagrangian Methods. https://doi.org/10.48550/
arXiv.2007.03964 arXiv:2007.03964 [cs, math]

[18] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Leaming: An Intro­
duction (second edition ed.). The MIT Press, Cambridge, Massachusetts.

[19] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. 1999.
Policy Gradient Methods for Reinforcement Learning with Function Approxima­
tion. In Advances in Neural Information Processing Systems, Vol. 12. MIT Press.

[20] L. Tassiulas and A. Ephremides. 1992. Stability Properties of Constrained Queue­
ing Systems and Scheduling Policies for Maximum Throughput in Multihop
Radio Networks. IEEE Trans. Automat. Control 37, 12 (1992), 1936-1948.

[21] Eugene Valassakis, Zihan Ding, and Edward Johns. 2020. Crossing the Gap: A
Deep Dive into Zero-Shot Sim-to-Real Transfer for Dynamics. In 2020 IEEEIRSJ
International Conference on Intelligent Robots and Systems (IR.OS). 5372-5379.

[22] Nolan Wagener, Byron Boots, and Ching-An Cheng. 2021. Safe Reinforcement
Learning Using Advantage-Based Intervention. arXiv:2106.09110

[23] Fan Wang, Bo Zhou, Ke Chen, Tingxiang Fan, Xi Zhang, Jiangyong Li, Hao Tian,
and Jia Pan. 2018. Intervention Aided Reinforcement Learning for Safe and
Practical Policy Optimization in Navigation. In Proceedings of The 2nd Conference

310

MOBIHOC '24, October 14-17, 2024, Athens, Greece Wigmore, Shrader, & Modiano

- AC-PPO -- STOP-PPO Randomized

Intervention-less DRL Policy Performance
MH2

MHI

SH2

SHI STOP-PPO
(Average)

al' 'F ~ i B~- /- ~~~---~--~~--~---~---~
E · - ~;-+-----+------+-----+-----+-----+--------<

i-f-- .. ~ ... ~ ... -:,: ... 7:: ••• +:: .. ::: ... ::'. ... -.... ---... ---... ---... -.. f--... -... -... -... -... -... = ... =1 ... r-... = ... = ... = ... = ... = ... = ... =1 .. = ... = ... = ... = = ... = ... = ... =P. I ;::•s~::~
lreest\

,.,
Timestep le6

Randomized Policy Performance
MH2

~ - MHI

/ SH2 ---=
I~

fl

SHI

Timestep le6

Figure 3: Performance of the AC-PPO, STOP-PPO, and randomized policy on each network scenario. The Y-axis represents the

natural logarithm of the time-averaged backlog log(q}t)). Each solid line represents an average over five seeds.

-- IA-PPO (TA) IA-PPO(MA) - IA-PG(TA) --- IA-PG (MA) MaxWeight/Backpressure

SH2

Timestept Timcstep t le6

MHl

. \\\

Timestcpt le6 lc6

Figure 4: Performance of the IA-PG, IA-PPO, and MaxWeight/Backpressure algorithms on each environment. The Y-axis
represents the actual queue backlog llt• Each line represents an average over five seeds. The solid lines correspond with the
time-averaged backlog metrics q}') and the dashed lines correspond with a TMA = 10,000 step moving average qfMA). The
shaded regions correspond to the 95% confidence intervals for each performance metric.

on Robot Leaming. PMLR, 410-421.
[24] Jerrod Wigmore, Brooke Shrader, andEytan Modiano. 2024. Intervention-Assisted

Policy Gradient Methods for Online Stochastic Queuing Network Optimization:
Technical Report. arXiv:2404.04106

[25] Keyulu Xu, Mozhi Zhang, Jingling Li, Simon S. Du, Ken-ichi Kawarabayashi, and
Stefanie Jegelka. 2021. How Neural Networks Extrapolate: From Feedforward to
Graph Neural Networks. arXiv:2009.11848

[26] Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J. Ramadge.
2020. Projection-Based Constrained Policy Optimization. https://doi.org/10.
48550/arXiv.2010.03152 arXiv:2010.03152 [cs]

[27] Amy Zhang, Nicolas Ballas, and Joelle Pineau. 2018. A Dissection of Overfilling
and Generalization in Continuous Reinforcement Learning. arXiv:1806.07937

[28] Chiyuan Zhang, Oriol Vinyals, Remi Munos, and Samy Bengio. 2018. A Study on
Overfilling in Deep Reinforcement Learning. arXiv:1804.06893

[29] Yiming Zhang and Keith W. Ross. 2021. On-Policy Deep Reinforcement Learn­
ing for the Average-Reward Criterion. In Proceedings of the 38th International
Conference on Machine Leaming. PMLR, 12535-12545.

accepted 28 August 2024

