
MIT Open Access Articles

Optimal Slicing and Scheduling with Service
Guarantees in Multi-Hop Wireless Networks

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Jones, Nicholas and Modiano, Eytan. 2024. "Optimal Slicing and Scheduling with
Service Guarantees in Multi-Hop Wireless Networks."

As Published: https://doi.org/10.1145/3641512.3686385

Publisher: ACM|The Twenty-fifth International Symposium on Theory, Algorithmic Foundations,
and Protocol Design for Mobile Networks and Mobile Computing

Persistent URL: https://hdl.handle.net/1721.1/157554

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of use: Creative Commons Attribution

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/157554
https://creativecommons.org/licenses/by/4.0/

Optimal Slicing and Scheduling with Service Guarantees in
Multi-Hop Wireless Networks

Nicholas Jones

jonesn@mit.edu

Massachusetts Institute of Technology

Cambridge, MA, USA

Eytan Modiano

modiano@mit.edu

Massachusetts Institute of Technology

Cambridge, MA, USA

ABSTRACT
We analyze the problem of scheduling in wireless networks to meet

end-to-end service guarantees. Using network slicing to decouple

the queueing dynamics between flows, we show that the network’s

ability tomeet hard throughput and deadline requirements is largely

influenced by the scheduling policy. We characterize the feasible

throughput/deadline region for a flow under a fixed route and set

of slices, and find throughput- and deadline-optimal policies for

a solitary flow. We formulate the feasibility problem for multiple

flows in a general topology, and show its equivalence to finding a

bounded-cost cycle on an exponentially large graph, which is un-

solvable in polynomial time by the best-known algorithm. Using a

novel concept called delay deficit, we develop a sufficient condition

for meeting deadlines as a function of inter-scheduling times, and

show that regular schedules are optimal for satisfying this condi-

tion. Motivated by this, we design a polynomial-time algorithm

that returns an (almost) regular schedule, optimized to meet service

guarantees for all flows.

CCS CONCEPTS
• Networks→ Network performance modeling; Network per-
formance analysis;Mobile ad hoc networks;Network control
algorithms.

KEYWORDS
Wireless networks, Scheduling, Service guarantees, Network slicing

ACM Reference Format:
Nicholas Jones and Eytan Modiano. 2024. Optimal Slicing and Scheduling

with Service Guarantees in Multi-Hop Wireless Networks. In The Twenty-
fifth International Symposium on Theory, Algorithmic Foundations, and Pro-
tocol Design for Mobile Networks and Mobile Computing (MOBIHOC ’24),
October 14–17, 2024, Athens, Greece. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3641512.3686385

1 INTRODUCTION
Future wireless networks must provide stringent throughput and

delay guarantees to support new technologies, including real-time

control and virtual reality systems. These guarantees take the form

of service agreements, and due to their critical nature, network

MOBIHOC ’24, October 14–17, 2024, Athens, Greece
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0521-2/24/10

https://doi.org/10.1145/3641512.3686385

Figure 1: Effect of Scheduling Order on Packet Delay

providers must move beyond best-effort service to ensure the agree-

ments are met. As a result, work has begun on new methods of

handling such traffic using network slicing [2]. The 5G standard

contains support for Quality of Service (QoS) guarantees at the flow

level [1], including guarantees on maximum latency seen by any

packet up to a given throughput. A largely open question, however,

is how to make these service guarantees in wireless networks with

limited resources, unreliable links, and interference constraints.

In this work we follow a similar approach, using network slicing

to decouple the queueing dynamics between traffic flows. This

is not only practical for making service guarantees at the flow

level, but useful for highlighting how wireless interference affects

a network’s ability to meet these guarantees. By understanding the

impact of interference, we can enable networks to meet service

requirements with fewer resources and to support more flows.

To illustrate the effect of interference on delay, consider a line

network with a flow traveling from node 1 to node 4 as in Figure 1,

and for ease of exposition assume an interference model where

only one link can transmit at a time. The bottom of the figure

shows two round-robin scheduling, policies and the worst-case

end-to-end delay that a given packet sees in each case, ignoring

any queueing delay. The packet sees very different delays between

the two policies, and the reason is clear. On the left it is served in

three consecutive slots, while on the right it must wait five slots

each time it is served before being served again.

This example shows the impact of scheduling order on packet

delays. The activation rates and the packet’s route remain the same

in both examples, but ordering the schedule in the direction of the

flow has a significant impact on worst-case delay. As the size of the

network grows, more complex interference models are considered,

and more flows are introduced with different routes, this impact

becomes even more pronounced, while at the same time harder to

analyze. Motivated by this, we study the impact of interference and

scheduling order on packet delays. Then, coupled with network

slicing, we seek to characterize feasible service guarantees and to

find supporting policies in general wireless networks.

181

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3641512.3686385
https://doi.org/10.1145/3641512.3686385
https://creativecommons.org/licenses/by/4.0/

MOBIHOC ’24, October 14–17, 2024, Athens, Greece Nicholas Jones and Eytan Modiano

There is a large body of work onwireless scheduling for maximiz-

ing throughput [18, 22, 24, 32]. Most notably, Hajek and Sasaki [18]

designed an algorithm to find a minimum schedule length which

meets a set of link demands in polynomial time, and Kodialam

et al. [24] used Shannon’s algorithm for coloring a multigraph to

efficiently find schedules that are guaranteed to achieve at least 2/3

of the maximum throughput.

There has also been considerable work done on making QoS

guarantees in networks. One of the first approaches was Cruz’s

network calculus [11, 12], which uses a traffic shaping envelope

and the convolution of service processes to bound the delay each

packet experiences over multiple hops in a wired network. Several

works have extended this to the wireless setting using a variant

called stochastic network calculus [3, 6, 17, 25], which bounds the

tails of arrival and service processes to obtain a high-probability

bound on end-to-end delay.

A novel QoS framework for single-hop wireless networks was

developed by Hou and Kumar [20]. They assume strict deadlines

by which each packet must be delivered over an unreliable channel,

and design a policy to ensure the “delivery ratio,” or time average

fraction of packets which are delivered by their deadline, meets

a reliability requirement. They extend this framework in [21] to

solve utility maximization and in [19] to support Markov arrival

processes. Several works have extended a version of this framework

to multi-hop. In [27], the authors analyze a multi-hop network

with end-to-end deadline constraints and develop policies to meet

delivery ratio requirements over wired links. In [28], the authors

design a spatio-temporal architecture with virtual links to solve a

similar problem. In [30] and [31], the authors analyze a multi-hop

wireless network with unreliable links. They develop policies for

maximizing throughput with hard deadlines, using relaxed link

capacity constraints and assuming no interference.

The closest to our work is [14] and [15], which consider a multi-

hop wireless network with interference constraints and find trans-

mission schedules to meet traffic deadlines under constant arrivals.

They show that when the direction of traffic is uniform, the opti-

mal ordering can be found in polynomial time, and they develop

heuristics for when the traffic direction is not uniform. The effi-

ciency of these schedules was improved in [10] by optimizing slot

re-use for non-interfering links. The authors of [7, 8] generalize

the arrival processes to calculus-style envelopes and consider the

case of sink-tree networks, while [9] incorporates routing.

Each paper in this line of work considers policies where links

are scheduled in one contiguous block of time slots per scheduling

period, which reduces the problem complexity but leads to end-to-

end packet delays that grow with the schedule length. In this paper,

we generalize and extend this line of work by designing scheduling

policies without this restriction, deriving feasibility conditions on

service guarantees, and incorporating network slicing. Using a

novel concept called delay deficit, we are able to meet much tighter

deadlines without sacrificing throughput or adding complexity. Our

main contributions can be summarized as follows.

• In Section 3, we develop necessary conditions on feasibililty

for throughput and deadline guarantees, and both throughput-

and deadline-optimal policies for a solitary flow under gen-

eral interference.

• In Section 4, we derive exact solutions to these optimal poli-

cies for primary interference, and show that packet delays

can grow linearly with the schedule length if the schedule

order is not carefully designed.

• In Section 5, we show that when deadlines are non-trivial,

solving the feasibility problem for service guarantees in gen-

eral networks is intractable, and we prove an alternative

upper bound on packet delays based on schedule regularity.

• Finally, in Section 6, we develop a polynomial-time algo-

rithm to construct (almost) regular schedules, which are

guaranteed to satisfy throughput and delay requirements.

2 PRELIMINARIES

2.1 System Model
We consider a wireless network with fixed topology modeled as a

directed graph 𝐺 = (𝑉 , 𝐸). Each link 𝑒 ∈ 𝐸 has a fixed capacity 𝑐𝑒
and can transmit up to this number of packets in each time slot it is

activated. Because links are wireless and share a wireless channel,

they are subject to interference, which restricts the sets of links

that can be scheduled at the same time. Time is slotted, with the

duration of one slot equal to the transmission time over each link,

so in each time slot a controller chooses a non-interfering set of

links to be active.

We consider a set of interference models Φ, which take the form

of 𝜙-hop interference constraints. Specifically, for any 𝜙 , no two

links can be activated at the same time if they are separated by fewer

than 𝜙 hops. We will also refer to the interference model itself as

𝜙 ∈ Φ. The main focus of this work is primary interference, where

𝜙 = 1, but our framework can be generalized to any interference

model in Φ, and we present general results where possible. Denote

𝑀𝜙
as the set of feasible link activations, i.e., non-interfering links

which can be activated simultaneously, under the model 𝜙 .

Traffic arrives at the network in the form of flows, which can

represent a single customer or an aggregation of customers. Denote

flow 𝑖 as 𝑓𝑖 and the set of flows as F . Arrivals are deterministic

with 𝜆𝑖 packets from 𝑓𝑖 arriving at the beginning of each slot
1
.

Each packet belonging to 𝑓𝑖 has a deadline 𝜏𝑖 , and we say that a

packet meets its deadline if it is delivered to its destination within

𝜏𝑖 slots of when it arrives, otherwise it expires. Flow 𝑓𝑖 is assigned

a fixed pre-determined route 𝑇 (𝑖)
from source to destination, and

we denote𝑇
(𝑖)
𝑗

as the 𝑗-th hop in the route. The set of flows is fixed

over a finite horizon 𝑇 , which is independent of packet deadlines

and assumed to be substantially larger. Assume that packet arrivals

stop at time𝑇 , but packets remaining in the network are given time

to be served by their respective deadlines.

Each link 𝑒 ∈ 𝑇 (𝑖)
reserves capacity for 𝑓𝑖 in the form of a net-

work slice, with capacity, or slice width, equal to𝑤𝑖,𝑒 . We will also

refer to the slice itself as 𝑤𝑖,𝑒 when there is no risk of confusion.

Because link capacities are fixed, the sum of all slice widths al-

located on link 𝑒 must be bounded by 𝑐𝑒 . Each slice has its own

first-come-first-served queue, which decouples the queueing dy-

namics between flows. Let𝑄𝑖,𝑒 (𝑡) be the size of the queue belonging

1
This can be generalized to a network calculus-style envelope, and for simplicity of

exposition we assume traffic shaping occurs before packets arrive at the source.

182

Optimal Slicing and Scheduling with Service Guarantees in Multi-Hop Wireless Networks MOBIHOC ’24, October 14–17, 2024, Athens, Greece

to slice 𝑤𝑖,𝑒 at the beginning of time slot 𝑡 , after packets have ar-

rived but before any packets are served. We assume the network is

empty before 𝑡 = 0, so 𝑄𝑖,𝑒 (𝑡) = 0 for all 𝑖 and 𝑒 , and 𝑡 < 0.

2.2 Policy Structure
Define Π as the set of admissible scheduling policies, which are

work-conserving and satisfy the interference constraints 𝜙 . Let

𝜇𝜋 (𝑡) ∈ 𝑀𝜙
be the set of links activated at time 𝑡 under 𝜋 , and

let 𝜇𝜋𝑒 (𝑡) = 1 if 𝑒 ∈ 𝜇𝜋 (𝑡), and 0 otherwise. The work-conserving

property ensures that each link 𝑒 ∈ 𝜇𝜋 (𝑡) serves the smaller of its

queue size and its slice capacity each time it is activated.

We are interested in policies which meet the following criteria.

Definition 1. A policy 𝜋 ∈ Π supports a set of flows F if and
only if it allows no packets to expire.

Specifically, we would like to understand how wireless interfer-

ence affects scheduling delay, what sets of flows can be supported

in general, and how to design policies which support a set of flows

while minimizing slice widths, thus leaving as much capacity as

possible for best-effort traffic.

Without wireless interference, this problem would be trivial

because there is no scheduling component. Under our model of

constant arrivals with fixed routes and slicing, each link can forward

a slice width of packets at every time step. Then the network need

only guarantee that slice widths satisfy both throughput and link

capacity constraints, and that the number of hops in each flow’s

route is less than its deadline. In the wireless setting, this problem

becomes nontrivial and interesting. The scheduling policy, which

is a function of the interference, dictates how often and in what

order links are scheduled. The less frequently a link is served, the

larger its slice width must be for a given throughput, and the more

delay a packet sees at that link in the worst case.

It can be shown that if a policy exists that supports F , then there

must exist a cyclic policy 𝜋 that supports F , has a period of length

𝐾𝜋 , and repeats itself once every period. Therefore, without loss

of optimality, we consider only cyclic policies in the remainder of

this work, and denote this subclass of policies as Π𝑐 ⊆ Π. Note that
proofs of all results are omitted for brevity and can be found in the

technical report [23].

Under a policy 𝜋 ∈ Π𝑐 , define the time average activation fre-

quency of link 𝑒 as

𝜇𝜋𝑒 ≜
1

𝐾𝜋

𝐾𝜋∑︁
𝑡=0

𝜇𝜋𝑒 (𝑡), (1)

and the number of activations per scheduling period as 𝜂𝜋𝑒 ≜ 𝜇𝜋𝑒 𝐾
𝜋
.

Finally, let the time average service rate of slice𝑤𝑖,𝑒 be

𝑤̄𝜋𝑖,𝑒 ≜ 𝜇𝜋𝑒 𝑤𝑖,𝑒 . (2)

We will make heavy use of these quantities in the analysis going

forward.

3 FEASIBILITY
Having defined our policy class, we now turn to characterizing the

feasibility region. Define the feasible region for a route 𝑇 (𝑖)
with

slices {𝑤𝑖,𝑒 , ∀ 𝑒 ∈ 𝑇 (𝑖) } as the set of all throughput/deadline pairs
which a flow can achieve under 𝜙 and any scheduling policy in

Π𝑐 , and denote this region as Λ
𝜙

𝑖
. We define this region for a given

route to show the feasible throughput/deadline guarantees that can

be made to a flow on that route by optimizing the scheduling policy

independently of other flows. In the general setting, with many

flows on separate routes coupled through the scheduling policy,

the jointly achievable region is defined as

Λ𝜙 ⊆
∏

𝑇 (𝑖) ∈T
Λ
𝜙

𝑖
, (3)

where the scheduling policy must optimize over all flows jointly.

Analyzing Λ
𝜙

𝑖
allows us to define optimal policies for a single flow,

as well as bounds on feasibility in the general case. We begin by

characterizing throughput optimality.

3.1 Throughput Optimality
Define 𝜆∗

𝑖
(𝜋) as the maximum throughput a policy 𝜋 can support

on 𝑇 (𝑖)
, given by the following intuitive result.

Lemma 1. For any admissible policy 𝜋 ∈ Π𝑐 ,

𝜆∗𝑖 (𝜋) = min

𝑒∈𝑇 (𝑖)
𝑤̄𝜋𝑖,𝑒 . (4)

Now define a throughput-optimal policy as follows.

Definition 2. A policy 𝜋 ∈ Π𝑐 is throughput-optimal for a route
𝑇 (𝑖) and slice widths {𝑤𝑖,𝑒 , ∀ 𝑒 ∈ 𝑇 (𝑖) } if 𝜆∗

𝑖
(𝜋) ≥ 𝜆∗

𝑖
(𝜋 ′) for all

𝜋 ′ ∈ Π𝑐 .

Because 𝜆∗
𝑖
(𝜋) is the largest supported throughput for a given

𝜋 , a throughput-optimal policy is one that maximizes this quantity

over all 𝜋 ∈ Π𝑐 . In particular, it is any solution to

max

𝜋∈Π𝑐

min

𝑒∈𝑇 (𝑖)
𝜇𝜋𝑒 𝑤𝑖,𝑒

s.t. 𝜇𝜋 (𝑡) ∈ 𝑀𝜙 , ∀ 0 ≤ 𝑡 ≤ 𝐾𝜋 ,
(5)

and we denote this solution as 𝜆∗
𝑖
. Wewill solve this problem exactly

for the case of primary interference in the next section, but note

that on average the optimization tries to drive 𝜇𝜋𝑒 𝑤𝑖,𝑒 to equality

along all links, so in general links wth smaller slice widths tend to

be activated more frequently.

3.2 Deadline Optimality
Define 𝜏∗

𝑖
(𝜋, 𝜆𝑖) as the smallest deadline the network can guarantee

to a flow on 𝑇 (𝑖)
with a throughput of 𝜆𝑖 under policy 𝜋 . Equiva-

lently, we refer to 𝜏∗
𝑖
as the largest end-to-end delay experienced

by any packet in the flow. Likewise, let 𝜏∗
𝑖
(𝜋) = lim𝜆𝑖→0

𝜏∗
𝑖
(𝜋, 𝜆𝑖)

be the smallest deadline that 𝜋 can guarantee for any 𝜆𝑖 > 0. Note

that because 𝜆𝑖 can be arbitarily close to zero, 𝜏∗
𝑖
(𝜋) is independent

of slice widths. Because of the equivalence of maximum packet

delays and minimum guaranteed deadlines, we will refer to 𝜏∗
𝑖

interchangeably by either of these definitions.

To derive a lower bound on 𝜏∗
𝑖
(𝜋), we begin by introducing the

concept of inter-scheduling times. Denote the set of time slots where

link 𝑒 is scheduled under a policy 𝜋 as T𝜋
𝑒 ≜ {𝑡 ≥ 0 | 𝜇𝜋𝑒 (𝑡) = 1}.

Then define the minimum inter-scheduling time 𝑘𝜋𝑒,𝑒+1
of links 𝑒

and 𝑒 + 1 to be the smallest time interval between consecutive

scheduling events of links 𝑒 and 𝑒 + 1, in that order, so that

𝑘𝜋𝑒,𝑒+1
≜ min

𝑡𝑒 ∈T𝜋
𝑒

min

𝑡𝑒+1>𝑡𝑒 :𝑡𝑒+1∈T𝜋
𝑒+1

(𝑡𝑒+1 − 𝑡𝑒), (6)

183

MOBIHOC ’24, October 14–17, 2024, Athens, Greece Nicholas Jones and Eytan Modiano

and the maximum inter-scheduling time 𝑘
𝜋

𝑒,𝑒+1
to be the largest

such time, defined as

𝑘
𝜋

𝑒,𝑒+1
≜ max

𝑡𝑒 ∈T𝜋
𝑒

min

𝑡𝑒+1>𝑡𝑒 :𝑡𝑒+1∈T𝜋
𝑒+1

(𝑡𝑒+1 − 𝑡𝑒) . (7)

We can also speak of the inter-scheduling times of a single link

𝑒 as the times between consecutive scheduling events of that link,

and denote this as 𝑘𝜋𝑒 and 𝑘
𝜋

𝑒 respectively for ease of notation.

Using these quantities, we can lower bound minimum deadlines as

follows.

Lemma 2. For any admissible policy 𝜋 ∈ Π𝑐 ,

𝜏∗𝑖 (𝜋) ≥ 𝑘
𝜋
0
+

∑︁
0≤ 𝑗< |𝑇 (𝑖) |−1

𝑘𝜋𝑗,𝑗+1
+ 1, (8)

for all 𝑓𝑖 ∈ F , and where link 𝑗 = 𝑇 (𝑖)
𝑗

for all 𝑗 .

This bound begins to formalize the idea that schedule order plays

an important role in minimizing delay. In particular, it motivates us

to minimize inter-scheduling times between consecutive links on a

route to keep packet delays small. We will show that this results in

a deadline-optimal policy, per the following definitions.

Definition 3. A policy 𝜋 ∈ Π𝑐 is deadline-minimizing for a
route 𝑇 (𝑖) , slice widths {𝑤𝑖,𝑒 , ∀ 𝑒 ∈ 𝑇 (𝑖) }, and throughput 𝜆𝑖 if
𝜏∗
𝑖
(𝜋, 𝜆𝑖) ≤ 𝜏∗𝑖 (𝜋

′, 𝜆𝑖) for all 𝜋 ′ ∈ Π𝑐 .
Furthermore, a policy 𝜋 ∈ Π𝑐 is deadline-optimal for a route 𝑇 (𝑖)

if 𝜏∗
𝑖
(𝜋) ≤ 𝜏∗

𝑖
(𝜋 ′) for all 𝜋 ′ ∈ Π𝑐 .

To avoid confusion, we distinguish between the terms deadline-
minimizing when speaking in terms of a specific throughput, and

deadline-optimal when speaking independently of throughput.

We will show that deadline optimality is achieved by a subclass

of Π𝑐 we call ordered round-robin (ORR) scheduling policies, which

minimize the bound in (8) while showing that it is tight. Denote the

ORR policy for𝑇 (𝑖)
as𝑂𝑅𝑅(𝑖), and recall that under an interference

model 𝜙 , links separated by fewer than 𝜙 hops cannot be scheduled

simultaneously. Then define the ORR policy as follows. At each

time 𝑡 , activate link𝑇
(𝑖)
𝑗

, where 𝑗 = 𝑡 mod 𝜙 , along with every 𝜙 +1

subsequent links. This ensures that, at each slot, links at equally

spaced intervals of 𝜙 + 1 hops are activated, beginning with hops

{0, 𝜙 + 1, 2𝜙 + 2, . . . } at time 𝑡 = 0, hops {1, 𝜙 + 2, 2𝜙 + 3, . . . } at
𝑡 = 1, and so on. Note that this schedule has a period of 𝜙 + 1.

Theorem 1. The ORR policy is deadline-optimal under any inter-
ference model 𝜙 ∈ Φ, with a maximum packet delay

𝜏∗𝑖
(
𝑂𝑅𝑅(𝑖)

)
= |𝑇 (𝑖) | + 𝜙, (9)

and activation rates

𝜇
𝑂𝑅𝑅 (𝑖)
𝑒 =

1

𝜙 + 1

,∀𝑒 ∈ 𝑇 (𝑖) . (10)

Note that the ORR policy meets the bound in (8) with equality, be-

cause the minimum inter-scheduling times are 𝑘
0
= 𝜙 and 𝑘𝑒,𝑒+1

=

1 for all 𝑒 . From (4), the maximum throughput under the ORR policy

is 𝜆∗
𝑖
(𝑂𝑅𝑅(𝑖)) = min𝑒∈𝑇 (𝑖)

𝑤𝑖,𝑒

𝜙+1
, which is not throughput-optimal in

general, and highlights the tradeoff between maximizing through-

put and minimizing delay. When slice widths are equal, however,

this tradeoff does not occur.

Figure 2: Feasible Region Λ1

𝑖
Under Primary Interference

Corollary 1. When slice widths are equal across 𝑇 (𝑖) , the ORR(i)
policy is both throughput-optimal and deadline-optimal.

4 PRIMARY INTERFERENCE
Having characterized bounds on the feasibility region and the struc-

ture of throughput- and deadline-optimal policies under general

interference, we develop exact results for primary interference,

which is the main focus of this work.

The deadline-optimal point 𝜏min is straightforward. From Theo-

rem 1, recalling that 𝜙 = 1 under primary interference, the mini-

mum achievable deadline is 𝜏∗
𝑖
= |𝑇 (𝑖) | + 1 under an ORR(i) policy.

Furthermore, from Lemma 1, this policy can support a maximum

throughput of 𝜆∗
𝑖
(𝑂𝑅𝑅(𝑖)) = 1

2
min𝑒∈𝑇 (𝑖) 𝑤𝑖,𝑒 .

Obtaining the throughput-optimal point 𝜆max is less trivial. A

throughput-optimal policy can be derived from (5) by relaxing

the link activation constraint to be 𝜇𝑒 + 𝜇𝑒+1 ≤ 1 for all adjacent

link pairs (𝑒, 𝑒 + 1). In our single route scenario under primary

interference, only adjacent links interfere with one another, so

this is a necessary and sufficient condition for feasibility. Then a

throughput-optimal set of activations is any solution to

max

𝜋∈Π𝑐

min

𝑒∈𝑇 (𝑖)
𝜇𝜋𝑒 𝑤𝑖,𝑒

s.t. 𝜇𝜋𝑒 + 𝜇𝜋𝑒+1
≤ 1, ∀ 0 ≤ 𝑒 < |𝑇 (𝑖) | − 1,

(11)

which can be solved exactly.

Theorem 2. Any throughput-optimal policy 𝜋 ∈ Π𝑐 on 𝑇 (𝑖)

under primary interference constraints has a maximum throughput
of

𝜆∗𝑖 (𝜋) = min

𝑒∈𝑇 (𝑖)

𝑤𝑖,𝑒𝑤𝑖,𝑒+1

𝑤𝑖,𝑒 +𝑤𝑖,𝑒+1

(12)

As a byproduct of the proof (found in [23]), one throughput-

optimal set of activation rates is shown to be

𝜇𝜋
∗

𝑒 = min

{ 𝑤𝑖,𝑒−1

𝑤𝑖,𝑒 +𝑤𝑖,𝑒−1

,
𝑤𝑖,𝑒+1

𝑤𝑖,𝑒 +𝑤𝑖,𝑒+1

}
, ∀ 1 ≤ 𝑒 < |𝑇 (𝑖) | − 1,

𝜇𝜋
∗

0
=

𝑤𝑖,1

𝑤𝑖,0 +𝑤𝑖,1
, 𝜇𝜋

∗
−1

=
𝑤𝑖,−2

𝑤𝑖,−1 +𝑤𝑖,−2

, (13)

where we slightly abuse notation to denote |𝑇 (𝑖) | − 𝑗 as − 𝑗 . Let the
corresponding optimal throughput be 𝜆∗

𝑖
. If the activation rates are

feasible, algorithms exist to find a throughput-optimal policy 𝜋∗ in
polynomial time [18]. In order to ensure that rates are met and the

number of activations 𝜂𝜋
∗

𝑒 = 𝜇𝜋
∗

𝑒 𝐾𝜋
∗
is integer, the schedule length

𝐾𝜋
∗
must be at least as large as the least common multiple of the

184

Optimal Slicing and Scheduling with Service Guarantees in Multi-Hop Wireless Networks MOBIHOC ’24, October 14–17, 2024, Athens, Greece

denominators of the activation rates, which can become arbitrarily

large.

While 𝜋∗ is guaranteed to be throughput-optimal if it exists, it is

not deadline-minimizing in general. Finding a deadline-minimizing

policy for this throughput is more difficult because, while through-

put optimality requires only time average constraints, we have

seen that deadline guarantees are largely dependent on schedule

order. When slice widths are equal, 𝜇𝜋
∗

𝑒 = 1

2
for all 𝑒 , and the

throughput-optimal point converges to the deadline-optimal (and

therefore deadline-minimizing) point as described in Corollary 1.

In the general case, finding a deadline-minimizing policy is equiva-

lent to finding a cost-minimizing cycle on a graph, where vertices

represent the size of each queue and edges represent valid link

activations. This has complexity which is exponential in |𝑇 (𝑖) |. We

omit the analysis due to space constraints and encourage readers

to reference the technical report [23].

When schedule order is not optimized, packet delays can become

large for a given schedule length and set of activation rates, as

shown in the following result.

Theorem 3. For any policy 𝜋 ∈ Π𝑐 ,

𝜏∗𝑖 (𝜋, 𝜆𝑖) ≤ 𝐾𝜋
∑︁
𝑒∈𝑇 (𝑖)

(1 − 𝜇𝜋𝑒) + 1 (14)

under primary interference constraints, for any feasible throughput
0 < 𝜆𝑖 ≤ 𝜆∗

𝑖
(𝜋). Moreover, there exists at least one policy where this

bound is tight, and many policies where 𝜏∗
𝑖
grows linearly with 𝐾𝜋 .

We have seen that 𝐾𝜋 can grow arbitarily large for general acti-

vation rates, so the bound in Theorem 3 does not provide strong

deadline guarantees. In fact, it shows there is at least one policy

𝜋 ∈ Π𝑐 where packets experience delays within a constant factor of

𝐾𝜋 |𝑇 (𝑖) |, and many policies where packets experience delays that

grow with𝐾𝜋 . As detailed in the proof in [23], these policies are not

pathological examples, but rather any policy with inter-scheduling

times that growwith the schedule length. This includes policies that

schedule each link in one contiguous block per scheduling period

(as in [14] and the following line of work), or simply random or-

derings of activations which happen to have large inter-scheduling

times. We formalize this idea in the next section, and to avoid

delays that grow with 𝐾𝜋 , we introduce policies with bounded

inter-scheduling times. We show that by restricting ourselves to

this class of policies, we can make deadline guarantees that are

independent of the schedule length without sacrificing thoughput.

In Figure 2, we show the feasible throughput/deadline region

for a flow under primary interference, highlighting the deadline-

optimal point and the throughput-optimal point with the upper

bound on packet delay from Theorem 3. The shaded region between

the two optimal points is as equally hard to characterize as the

minimum deadline under 𝜆∗
𝑖
, but one can show the boundary is

monotonic, and a proof sketch is in the technical report [23].

5 SCHEDULING FOR SERVICE GUARANTEES
We now move to the problem of scheduling multiple flows in a

general network under primary interference, drawing on the feasi-

bility results of the previous section. As a secondary goal, we seek

to keep slices as close as possible to resource-minimizing, per the

following definition, which follows from Lemma 1.

Definition 4. A set of slices under a given policy 𝜋 ∈ Π𝑐 and a
set of flows F is resource-minimizing if𝑤𝑖,𝑒 =

𝜆𝑖
𝜇𝜋𝑒

for all 𝑓𝑖 ∈ F and

𝑒 ∈ 𝑇 (𝑖) .

Efficiently sized slices allow the network to supportmore deadline-

constrained traffic, as well as more best-effort traffic with the un-

allocated capacity. We have seen that it is challenging to design

policies with deadline guarantees that are tighter than the universal

upper bound in Theorem 3. This is true in the case of a solitary

flow, as shown in the previous section, and certainly remains true

in the general case with multiple flows.

Theorem 4. Given a set of flows F with non-trivial deadlines (i.e.,
tighter than the bound in Theorem 3), finding a policy 𝜋 ∈ Π𝑐 that
supports F under any set of slices has complexity which is exponential
in 𝑂

(∑
𝑓𝑖 ∈F |𝑇 (𝑖) |

)
.

We provide a brief proof sketch, and refer readers to the technical

report [23] for more details. By fixing slice widths, we can constrain

the state space of possible queue sizes to be finite, which allows us

to represent them as vertices on a graph. Then, following the same

idea used in the previous section for a solitary flow, we show that

finding a policy which supports F is equivalent to finding a cycle

on this graph, where edges represent valid link activations. This is

𝑂 (𝑉) in the worst case, which is exponential in 𝑂
(∑

𝑓𝑖 ∈F |𝑇 (𝑖) |
)
.

From this result, it is clear that searching over all policies in Π𝑐
is intractable. To narrow our search, it will prove helpful to identify

a tighter bound on packet delays as a function of the scheduling

policy. Using a similar argument to that in Lemma 2, which gives a

lower bound on 𝜏∗
𝑖
in terms of minimum inter-scheduling times, we

will show an upper bound on 𝜏∗
𝑖
subject to conditions on maximum

inter-scheduling times.

To do so, we introduce a concept called delay deficit. Intuitively,

delay deficit provides a quota of worst-case delay which a packet

should expect to see at a link under some scheduling assumptions,

and it tracks how long each packet has been in the network relative

to this quota. The details are in the technical report [23], but at a

high level, a negative delay deficit signifies that a packet has spent

less than its allocated time on its route so far, and is ahead of sched-

ule. A delay deficit larger than the delay quota at a packet’s current

link signifies that the packet is behind schedule. By induction on

the delay deficit at each link, a packet’s end-to-end delay can be

bounded by the sum of delay quotas along its route, under certain

slice conditions. In particular, it leads to the following bound.

Theorem 5. For any policy 𝜋 ∈ Π𝑐 , with slice widths𝑤𝑖,𝑒 ≥ 𝜆𝑖𝑘
𝜋

𝑒

for all 𝑓𝑖 ∈ F and 𝑒 ∈ 𝑇 (𝑖) ,

𝜏∗𝑖 (𝜋, 𝜆𝑖) ≤
∑︁
𝑒∈𝑇 (𝑖)

𝑘
𝜋

𝑒 , ∀ 𝑓𝑖 ∈ F , (15)

where 𝑘
𝜋

𝑒 is the maximum inter-scheduling time of link 𝑒 under 𝜋 .

We note several things about this result. First, it subsumes the

worst-case delay bound in Theorem 3. In the proof of that theorem,

the worst-case scenario is described to have a maximum inter-

scheduling time 𝑘
𝜋

𝑒 = 𝐾𝜋 (1 − 𝜇𝜋𝑒) for all links 𝑒 , which makes

the bounds identical up to a difference of 1 slot. Second, when

links are scheduled more regularly and 𝑘𝑒 is independent of the

schedule length, this bound can be significantly tighter than that

185

MOBIHOC ’24, October 14–17, 2024, Athens, Greece Nicholas Jones and Eytan Modiano

in Theorem 3. In fact, it is a constant factor of (∑𝑒∈𝑇 (𝑖) 𝑘
𝜋

𝑒)/|𝑇 (𝑖) |
from the deadline-optimal lower bound on 𝜏∗

𝑖
for a solitary flow in

Theorem 1.

A final thing to note is that Theorem 5 requires slice widths

that are not resource-minimizing in general. Define the additional

capacity required beyond the resource-minimizing value as

Δ𝑤𝑖,𝑒 (𝜋) ≜ 𝜆𝑖
(
𝑘
𝜋

𝑒 − 1

𝜇𝜋𝑒

)
≥ 0, ∀ 𝑓𝑖 ∈ F , 𝑒 ∈ 𝑇 (𝑖) . (16)

Because the average inter-scheduling time is 1/𝜇𝜋𝑒 , the quantity
Δ𝑤𝑖,𝑒 (𝜋) is small when inter-scheduling times are somewhat regu-

lar and 𝑘
𝜋

𝑒 is not much larger than this average.

It is important to clarify that, with these conditions on slice

widths, a link is not guaranteed to empty its queue each time it is

scheduled. Any given packet can spend more than 𝑘
𝜋

𝑒 slots at link

𝑒 , but Theorem 5 guarantees it will make up for this by spending

fewer than 𝑘
𝜋

𝑒′ slots at some other link 𝑒′ on its route. The strength

of Theorem 5 lies in this fact, which enables us to keep Δ𝑤𝑖,𝑒 (𝜋)
small and to allocate slices efficiently.

From (15) and (16), we see that minimizing maximum inter-

scheduling times leads to both tighter delay bounds and more

efficient slices. If inter-scheduling times are exactly equal, and

𝑘𝜋𝑒 = 𝑘
𝜋

𝑒 = 1

𝜇𝜋𝑒
for all 𝑒 ∈ 𝐸, then 𝑘𝜋𝑒 is by definition minimized for

a fixed 𝜇𝜋𝑒 . If this holds, we say that 𝜋 is a regular schedule.

Corollary 2. A policy 𝜋 ∈ Π𝑐 supports a set of flows F with slice
widths𝑤𝑖,𝑒 = 𝜆𝑖𝑘

𝜋

𝑒 , for all 𝑓𝑖 ∈ F and 𝑒 ∈ 𝑇 (𝑖) , if∑︁
𝑒∈𝑇 (𝑖)

𝑘
𝜋

𝑒 ≤ 𝜏𝑖 , ∀ 𝑓𝑖 ∈ F ,∑︁
𝑓𝑖 :𝑒∈𝑇 (𝑖)

𝜆𝑖𝑘
𝜋

𝑒 ≤ 𝑐𝑒 , ∀ 𝑒 ∈ 𝐸.
(17)

If 𝜋 is a regular schedule, then slices are resource-minimizing.

While the bound in Theorem 5 is not tight in general, and smaller

deadline guarantees may be possible, it highlights the importance

of keeping inter-scheduling times small. This intuitively makes

sense given our knowledge of the deadline-optimal ORR policy.

The number of interfering links and the multi-directional flows in

this general setting make it impossible to schedule links in order

along a flow’s route, as in the ORR policy. Rather, by bounding

the inter-scheduling times, we can minimize how far the schedule

deviates from this order, and do this simultaneously for all flows.

This keeps end-to-end delays from growing too large, and allows us

to tune the inter-scheduling times on some flows’ routes to become

“closer” to the ORR policy when subject to tighter deadlines. Setting

𝑘𝑒 = 2 for all links on a flow’s route recovers the ORR policy exactly

under primary interference.

Motivated by this, we develop efficient algorithms in the next

section to construct schedules with bounded inter-scheduling times,

focusing particularly on regular schedules. Wewill see that by using

the sufficient conditions in Corollary 2, we are able to develop poli-

cies which support F in polynomial time. Because the conditions

in Corollary 2 are not necessary, this does not violate Theorem 4,

but rather accomplishes our goal of narrowing the policy search

to a smaller subclass of Π𝑐 , trading some performance for a large

reduction in complexity.

6 ALGORITHM DEVELOPMENT
In this section, we continue to focus on primary interference, for

which activation sets are matchings on the graph 𝐺 . We have seen

that regular schedules allow for resource-minimizing slices, which

maximize network capacity, so we seek to find regular schedules

whenever possible. Unfortunately such schedules often do not exist

for a given set of activation rates (we will show this later), so we

allow for almost-regular schedules, where inter-scheduling times

can differ by at most one slot. The remainder of the section details

the steps our algorithm takes to construct these schedules.

6.1 Initialization
Our algorithm takes as input a set of flows F , and throughput and

deadline constraints 𝜆𝑖 and 𝜏𝑖 respectively for each 𝑓𝑖 ∈ F . Assume

we are able to design an almost-regular schedule, where link 𝑒 has 𝛼

inter-scheduling times of 𝑘𝑒 and 𝛽 inter-scheduling times of 𝑘𝑒 − 1.

Then for any schedule length𝐾 , 𝛼𝑘𝑒 +𝛽 (𝑘𝑒−1) = 𝐾 . Recall also that
𝜇𝑒 = 𝜂𝑒/𝐾 = (𝛼 + 𝛽)/𝐾 , so by rearranging terms and substituting,

𝑘𝑒 =
𝐾

𝛼 + 𝛽 + 𝛽

𝛼 + 𝛽 =
1

𝜇𝑒
+ 𝛽

𝛼 + 𝛽 =

⌈
1

𝜇𝑒

⌉
<

1

𝜇𝑒
+ 1, (18)

for any 𝛼 and 𝛽 , because 𝑘𝑒 is integer-valued. Note that the last

equality holds because 𝛽/(𝛼 +𝛽) < 1 and 1/𝜇𝑒 is integer if and only
if the schedule is regular and 𝛽 = 0.

From Corollary 2 and the bound in (18), any set of activation

rates which solve the following program meet service guarantees,

provided the algorithm can construct an almost-regular schedule

satisfying these rates.

min

∑︁
𝑒∈𝐸

𝜇𝑒

s.t.

∑︁
𝑒∈𝑇 (𝑖)

(
1

𝜇𝑒
+ 1

)
≤ 𝜏𝑖 , ∀ 𝑓𝑖 ∈ F ,∑︁

𝑓𝑖 :𝑒∈𝑇 (𝑖)

𝜆𝑖

(
1

𝜇𝑒
+ 1

)
≤ 𝑐𝑒 , ∀ 𝑒 ∈ 𝐸.

(19)

This problem is convex, and we denote the solution as 𝜇0
, also

referred to as the initial link rates. The algorithm must now find an

almost-regular schedule where 𝜇𝑒 ≥ 𝜇0

𝑒 for all links 𝑒 .

6.2 Unique-Edge Matchings
One hurdle in finding schedules with regularity constraints under

primary interference is that, in general, work-conserving policies

assign links to more than one matching [18]. As a result, construct-

ing a regular schedule of matchings does not guarantee the schedule

is regular for each link, which complicates the problem.

Lemma 3. Determining the existence of an almost-regular sched-
ule, which satisfies the constraints in (19) under primary interference,
is NP-complete.

This result follows from the equivalence of our problem to the

well-studied Periodic Event Scheduling Problem [29], which is

known to be NP-complete [13]. The details can be found in the

technical report [23], but we note that much of the hardness in the

problem comes from the matching constraints and the ability of

each link to belong to more than one matching. It may seem that

we are back to square one, given that this problem is at least as

186

Optimal Slicing and Scheduling with Service Guarantees in Multi-Hop Wireless Networks MOBIHOC ’24, October 14–17, 2024, Athens, Greece

hard as the problem we started with in Theorem 4. If we constrain

the problem further, however, by forcing each link to belong to a

single matching, we can make the problem tractable in a way that

was initially unavailable.

Following this idea, we design an algorithm which assigns each

link to a single matching in an efficient manner. Then when match-

ings are scheduled regularly, each link is also scheduled regularly.

We refer to such matchings as unique-edge matchings, and will see

that under this additional constraint we are able to find almost-

regular schedules in polynomial time.

Clearly each link in a unique-edge matching is activated at the

same rate as its matching. In order to ensure the constraints in (19)

are met, our algorithm must guarantee the initial matching rate

𝜇0

𝑚 ≥ 𝜇0

𝑒 for all links 𝑒 belonging to matching𝑚, and for all match-

ings𝑚. Coupled with the unique-edge condition, this problem can

be written as

min

𝑀⊆𝑀1

∑︁
𝑚∈𝑀

𝜇0

𝑚

s.t. 𝜇0

𝑚 ≥ 𝜇0

𝑒 , ∀ 𝑒 ∈𝑚,𝑚 ∈ 𝑀
𝑒 ∈ 𝑀, ∀ 𝑒 ∈ 𝐸,
𝑚 ∩𝑚′ = ∅, ∀𝑚,𝑚′ ∈ 𝑀,

(20)

where 𝑀1
is the set of all feasible matchings. Because only one

matching can be activated at a time, 𝑀 is feasible if and only if∑
𝑚∈𝑀 𝜇0

𝑚 ≤ 1, which motivates the objective function.

Despite being of practical interest, and related to the minimum

edge sum coloring problem [4] and the weighted sum coloring

problem [5, 16], this exact formulation has received no attention in

the literature. We define a Greedy Matching (GM) algorithm, which

has complexity 𝑂 (|𝐸 |2) and provides an approximate solution to

this problem, in Algorithm 1.

Algorithm 1: Greedy Matching (GM)

Input: Initial link activation rates 𝜇0

𝑒 , ∀ 𝑒 ∈ 𝐸
Output :Set of unique edge matchings𝑀𝐺𝑀

1 Sort links in 𝐸 by 𝜇0

𝑒 , largest to smallest

2 Define matching set𝑀𝐺𝑀

3 while 𝐸 is not empty do
4 Add new matching𝑚 to𝑀𝐺𝑀

5 Add first link 𝑒′ ∈ 𝐸 to𝑚 and remove 𝑒′ from 𝐸

6 Set 𝜇0

𝑚 = 𝜇0

𝑒′

7 for 𝑒 ∈ 𝐸 do
8 if 𝑚 ∪ 𝑒 is a valid matching then
9 Add 𝑒 to𝑚 and remove 𝑒 from 𝐸

10 Return𝑀𝐺𝑀 , 𝜇0

𝑚, ∀𝑚 ∈ 𝑀𝐺𝑀

The algorithm sorts links in decreasing order of initial rates, and

greedily adds them to a matching if they do not interfere with any

links previously added. Once all links have been considered, the

matching is full and is given an initial rate equal to that of the

first link added, which is guaranteed to be the largest. This greedy

heuristic ensures the constraints in (20) are met and the matchings

it returns are unique-edge matchings, while keeping the objective

within a small factor of optimal as shown next.

Theorem 6. Let𝑀∗ be a solution (i.e., an optimal set of matchings)
to (20). The GM algorithm produces a set of matchings 𝑀𝐺𝑀 such
that ∑︁

𝑚∈𝑀𝐺𝑀

𝜇0

𝑚 ≤
(|𝑀𝐺𝑀 |
Δ(𝐺)

) ∑︁
𝑚∈𝑀∗

𝜇0

𝑚, (21)

where Δ(𝐺) is the maximum degree of 𝐺 . This is a factor of 2 from
optimal in the worst case, provided Δ(𝐺) = 𝑂 (log |𝑉 |).

6.3 Feasibility Conditions
Although we are satisfied with almost-regular schedules, we also

examine the feasibility conditions for regular schedules, which

will play a role in our algorithm development. Define a step-down
vector as a sorted vector of values, where each element is an integer

multiple of the next. When applied to activation rates, this property

turns out to be quite useful in constructing regular schedules.

Lemma 4. A regular schedule of unique-edge matchings exists if
(1)

∑
𝑚∈𝑀𝐺𝑀 𝜇𝑚 = 1,

(2) the vector of rates 𝜇 is step-down,
(3) and 𝑘𝑚 = ⌈ 1

𝜇𝑚
⌉ = 1

𝜇𝑚
for all𝑚.

Furthermore, an almost-regular schedule exists if only conditions (1)
and (2) hold.

Initial rates can always be increased without violating the con-

ditions in (17), so if a set of rates is feasible, then they can be nor-

malized to sum to 1 to meet condition (1). The other conditions are
more difficult to meet, particularly at the same time, and a regular

schedule is not guaranteed to exist for a feasible set of rates.

In [26], Li et al. construct a polynomial-time algorithm which

takes a set of rates and outputs a set of possibly larger augmented
rates 𝜇 that are step-down. When applied to initial activation rates,

the output satisfies condition (2) from Lemma 4.We do not replicate

the algorithm here due to space constraints, but encourage readers

to reference Algorithm 2 and the accompanying results in [26].

Because 𝜇 does not always satisfy condition (3), there is no

guarantee that we can form a regular schedule with this set of

rates. However, when

∑
𝑚 𝜇𝑚 ≤ 1, the rates can be normalized to

meet condition (1) without affecting the step-down property of the

vector. This ensures that we can form an almost-regular schedule.

A result from [26] shows that when the sum of input rates is at

most ln 2, the sum of augmented rates is at most 1. Extrapolating

to our setting yields the following result.

Lemma 5. An almost-regular schedule of unique-edge matchings
exists if

∑
𝑚 𝜇0

𝑚 ≤ ln 2 ≈ 0.69.

6.4 Schedule Construction
We finally move to the last step of the algorithm, which is sched-

ule construction. Lemma 5 shows that when initial rates are small

enough, the augmented rates algorithm produces a vector of rates

that are step-down and can be normalized to sum to 1. We can

construct an almost-regular schedule from these rates by first find-

ing a longer, regular schedule where not all slots are filled, and

then removing the unused slots. The algorithm for constructing

schedules in this manner is first described by Li et al. in [26]. We

replicate the algorithm here, and provide a full proof of correctness

in the technical report [23], which was omitted in the original work.

187

MOBIHOC ’24, October 14–17, 2024, Athens, Greece Nicholas Jones and Eytan Modiano

Algorithm 2: Almost-Regular Schedule Construction

Input: Flows F , throughput/deadline constraints (𝜆𝑖 , 𝜏𝑖)
Output :Almost regular schedule 𝜋 ∈ Π𝑐

1 Find initial link activations 𝜇0

𝑒 , ∀ 𝑒 , by solving (19)

2 Find unique-edge matchings𝑀𝐺𝑀 and initial rates 𝜇0

𝑚, ∀𝑚,

using Greedy Matching

3 Find 𝜇 using the Augmenting Rates algorithm from [26]

4 if
∑
𝑚 𝜇𝑚 > 1 then

5 Return None

6 Normalize rates 𝜇𝜋𝑚 = 𝜇𝑚/∑𝑚 𝜇𝑚 for all𝑚

7 Set𝑀 = |𝑀𝐺𝑀 |, 𝐾𝜋 = 1/𝜇𝜋
𝑀

and 𝜂𝑚 = 𝜇𝜋𝑚𝐾
𝜋
for all𝑚

8 Form an empty schedule with length 𝐾 ′ = ⌈ 1

𝜇𝜋
1

⌉𝜂1.

9 Assign slot 1 to𝑚1, along with every 𝐾 ′/𝜂1 subsequent slots

10 for 𝑖 = 2, 3, . . . , |𝑀 | do
11 Set 𝑆0 as the set of empty slots

12 for 𝑗 = 1, 2, . . . , 𝑖 − 1 do
13 Set 𝑆 𝑗 ⊆ 𝑆 𝑗−1 as the set of slots most closely

following a slot assigned to𝑚 𝑗

14 Assign the first slot in 𝑆𝑖−1 to𝑚𝑖 , along with every 𝐾/𝜂𝑖
subsequent slots

15 Remove the 𝐾 ′ − 𝐾𝜋 unassigned slots from the schedule

16 Set 𝑘
𝜋

𝑒 as the max inter-scheduling time of link 𝑒 in 𝜋

17 Set𝑤𝑖,𝑒 = 𝜆𝑖𝑘
𝜋

𝑒 for all 𝑓𝑖 ∈ F and 𝑒 ∈ 𝑇 (𝑖)

18 Return 𝜋, 𝑤

Let 𝜇 be the augmented vector of rates after normalizing, sorted

from largest to smallest, 𝑀 = |𝑀 | be the number of matchings,

and 𝐾 = 𝑘𝑀 = 1/𝜇𝑀 be the schedule length. From the step-down

property, this is guaranteed to be an integer. To see this, let 𝑧𝑖, 𝑗 =
𝜇𝑖
𝜇 𝑗

for all pairs of matchings 𝑖 and 𝑗 , and note that 𝑧𝑖, 𝑗 is integer-valued

by the step-down property when 𝑖 ≤ 𝑗 . Then 𝜇𝑚 = 𝑧𝑚,𝑀 𝜇𝑀 for all

𝑚. Substituting into condition (1) and rearranging yields

𝐾 =
1

𝜇𝑀
=
∑︁
𝑚

𝑧𝑚,𝑀 , (22)

which by definition is an integer.

Define the number of occurences of matching𝑚 in the schedule

as 𝜂𝑚 = 𝜇𝑚𝐾 , and define an auxiliary schedule of length 𝐾 ′ =

𝑘1𝜂1 = ⌈ 1

𝜇1

⌉𝜂1. Note that the schedule length is an integer multiple

of 𝑘1, which allows matching 1 to be scheduled regularly every 𝑘1

slots when it does not overlap or “collide” with any other matching

in the schedule. Now consider an arbitrary matching𝑚. It too can be

scheduled regularly every 𝑘′𝑚 = 𝐾 ′
𝜂𝑚

slots (assuming no collisions)

if 𝑘′𝑚 is an integer. By definition,

𝑘′𝑚 =
𝐾 ′

𝜇𝑚𝐾
=
𝑧1,𝑚𝐾

′

𝜇1𝐾
=
𝑧1,𝑚𝐾

′

𝜂1

= 𝑧1,𝑚𝑘1, (23)

which is integer-valued. Therefore, every matching can be sched-

uled regularly in a schedule of length 𝐾 ′
, provided there are no

collisions in the schedule. Collisions can be avoided by scheduling

matchings in a greedy fashion, beginning with matching 1 and

proceeding in increasing order of 𝑘′𝑚 . Because the vector is already

sorted, this is simply the ordering of the vector. For each matching

𝑚, pick an empty slot in the schedule and assign it to𝑚, along with

every 𝑘′𝑚 subsequent slots. Due to the step-down property of the

vector and the greedy ordering, it is easy to show that no collisons

can occur following this method.

The resulting schedule is regular for all matchings, and has length

𝐾 ′
. If

1

𝜇1

is integer-valued, then 𝐾 ′ = 𝐾 , and the method described

above generates a regular schedule that supports F . If not, there

will be 𝐾 ′ − 𝐾 empty slots in the schedule after all matchings have

been added. These slots are simply removed, yielding a schedule of

length 𝐾 with activation rates 𝜇𝑚 for each matching𝑚. To ensure

this schedule is almost-regular, the first slot assigned to matching

𝑚 should be picked to spread out the remaining empty slots.

The full details of the schedule construction are described in

Algorithm 2, which we refer to as the Almost-Regular Schedule

Construction (ARSC) algorithm. This algorithm has complexity

𝑂 (|𝐸 |2 +𝑀2𝐾2 +𝑋), where𝑀 is the number of unique-edge match-

ings, 𝐾 is the schedule length, and 𝑋 is the complexity of the algo-

rithm used to solve the convex program (19). In addition to imple-

menting the procedure above, it yields the following result.

Theorem 7. If the augmented rates found in step 3 of the ARSC
algorithm satisfy

∑
𝑚 𝜇𝑚 ≤ 1, then the algorithm returns an almost-

regular schedule 𝜋 , which meets all throughput and deadline guaran-
tees for F , and a corresponding set of slices, where each slice𝑤𝑖,𝑒 is
within a factor of 1

𝑘𝜋𝑒
≤ 𝜇𝜋𝑒 of being resource-minimizing.

The final part of this theorem is critical, because it shows that

our algorithm does not waste network resources while meeting

service guarantees. A more naive method of meeting guarantees

is simply overprovisioning slices, but this result shows that the

network can operate at near capacity while implementing ARSC.

We further illustrate the schedule construction and details of

the ARSC algorithm through an example. Let the normalized aug-

mented rates be the step-down vector 𝜇 =
(

2

5
, 1

5
, 1

5
, 1

10
, 1

10
), the

schedule length 𝐾 = 10, and 𝜂1 = 4. We begin by constructing a

longer schedule of length𝐾 ′ = 𝜂1𝑘1 = 12 slots, and assign matching

1 to the first slot followed by every 𝑘1 = 3 subsequent slots. This

gives an initial schedule

1 1 1 1 .

For each subsequent matching 𝑖 , the algorithm takes the set of

empty slots 𝑆1 that most closely follow matching 1 in the schedule

(here 𝑆1 = {2, 5, 8, 11}). Note that because the schedule is cyclic,
we assume it wraps around when computing the closest following

slots. If 𝑖 > 2, it then forms a set 𝑆2 ⊆ 𝑆1 with the set of empty

slots that most closely follow matching 2. It proceeds through each

matching which has already been scheduled in the same fashion,

and finally assigns the first slot in 𝑆𝑖−1 to matching 𝑖 , followed

by slots at subsequent spacings of 𝐾/𝜂𝑖 . Following this method,

the first slot in 𝑆1 is slot 2, so matching 2 is assigned to this slot,

followed by slots at equal spacings of 𝐾/𝜂2 = 6. This yields

1 2 1 1 2 1 .

Moving on to matching 3, we have 𝑆1 = {5, 11}. Both of these

slots lag matching 2 by 3 slots in the schedule, so 𝑆2 = 𝑆1, and we

assign matching 3 to the first slot 5, followed by slots at increments

of 𝐾/𝜂3 = 6. This gives us

1 2 1 3 1 2 1 3 .

188

Optimal Slicing and Scheduling with Service Guarantees in Multi-Hop Wireless Networks MOBIHOC ’24, October 14–17, 2024, Athens, Greece

Figure 3: Example Network Diagram

For matching 4, 𝑆1 = {3, 6, 9, 12}, and 𝑆2 = 𝑆3 = {3, 9}. Therefore
we assign matching 4 to slot 3, and because 𝜂4 = 12, this is the only

slot where it is assigned. Finally, for matching 5, 𝑆1 = {6, 9, 12}, and
𝑆2 = 𝑆3 = 𝑆4 = 9. Adding matching 5 and removing the remaining

empty slots ultimately yields the schedule

1 2 4 1 3 1 2 5 1 3.

One can verify that this final schedule has length 𝐾 = 10, activation

rates match the initial 𝜇, and the schedule is almost-regular.

6.5 Discussion
The ARSC algorithm provides an efficient, polynomial-time method

for constructing schedules to meet hard throughput and deadline

constraints, under primary interference and general network topolo-

gies. It can meet tight deadline guarantees, and it allocates slices

within a small factor of being resource-minimizing. Of course, The-

orem 4 shows that finding a feasible policy in general suffers from

exponential complexity, so ARSC cannot find a schedule for every

set of flows where one exists. The algorithm runs in polynomial

time by constraining the problem and taking suboptimal steps.

Forcing the class of policies to be regular or almost-regular is

one such restriction, as are the unique-edge matching condition

and the requirement that augmented rate vectors be step-down.

These conditions are necessary for the ARSC algorithm to produce

a feasible schedule, but are not necessary for a feasible schedule

to exist. The gap between the set of all feasible schedules and the

set returned by ARSC is the price we pay for the reduction in

complexity. Lemma 5 shows that when the sum of initial matching

rates is less than ln 2 ≈ 0.69, ARSC will always succeed, but there

is no necessary condition on the algorithm’s success that we have

found. We explore the algorithm’s feasible solution rate through

simulations in the next section.

7 NUMERICAL RESULTS
We support our results in this section by simulating the ARSC

algorithm and observing its performance numerically. In all our

simulations we use the example network in Figure 3, and note

that while the diagram shows bidirectional links, we treat each of

these as two directional links which interfere as in the analysis. We

further assume the network topology and link capacities are fixed.

In each experiment, we generate 32 flows with randomly chosen

source/destination pairs, and fix their routes using shortest path

routing. We assume that each flow has an identical throughput 𝜆

and deadline 𝜏 . For perspective on our algorithm’s performance,

we compute the largest value 𝜆∗ that 𝜆 can take independent of

any deadline constraints, by finding a throughput-optimal set of

matchings. We then scale the throughput of each flow using this

value.

Figure 4: Feasibility Rate

Figure 5: Max Packet Delay

In the previous section, the ARSC algorithm was shown to meet

service guarantees when it returns a feasible almost-regular sched-

ule, so we first examine how often this occurs. In Figure 4, we show

the feasible solution rate of the ARSC algorithm under varying

throughputs 𝜆 and deadlines 𝜏 by generating 100 random sets of 32

flows and averaging the results. We directly compare these results

to the Credit-Based Heuristic (CBH) algorithm in [10], the closest

to our work and the most recent result in the line of work starting

with [14], which makes use of contiguous block scheduling and

which we have referenced on several occasions.

On the left, we sweep deadlines and run both algorithms under

three values of 𝜆, where 𝜖 is the smallest throughput allowed by

the implementation, and the other values are scaled by 𝜆∗. For an
arbitrarily small 𝜆 = 𝜖 , we expect ARSC to always return a policy

for a deadline of 60 and above, because the longest path any flow

can take is 6 hops, and the network can be colored with 10 colors.

Therefore, a simple round-robin policy will ensure the deadline is

met, and because a round-robin schedule is regular by definition,

ARSC will find it. The plot confirms that this is indeed the case.

In any direct comparison between ARSC and CBH, ARSC shows

significant improvement. This is most notable in the deadline range

between 40 and 70, during which CBH still has a small solution rate

but where ARSC reaches 100% for a throughput of 𝜖 and 70% for a

throughput of 0.2𝜆∗. Below this range, using the same arguments

of path length and graph coloring referenced above, the probabil-

ity that any policy can find a solution for all 32 flows becomes

increasingly low. By the opposite argument, it becomes easier to

do so as deadlines increase beyond this range. This region where

meeting deadlines is just barely feasible is where our algorithm

shines, proving that ARSC can meet tight deadline guarantees. On

the right side of Figure 5, we sweep throughput and perform the

same comparison for three fixed deadlines, showing more clearly

the tradeoff between feasibililty and throughput.

In Figure 5, we plot the maximum delay seen by any packet under

each simulated policy, averaged over the same 100 sets of randomly

189

MOBIHOC ’24, October 14–17, 2024, Athens, Greece Nicholas Jones and Eytan Modiano

generated flows. On the left, we again sweep deadlines and plot

results for both ARSC and CBH under varying throughputs. We

also plot the deadline bound for reference. When there is no feasible

policy under ARSC, the max delay is plotted as 0. As expected, no

packet sees a delay larger than the deadline bound under ARSC. The

difference in delay between throughput levels is relatively small,

which makes sense if the limiting factor is interference constraints

and schedule order, rather than link capacity.

The CBH algorithm sees much larger packet delays on average,

which we expect given that link inter-scheduling times are close

to the schedule length. This demonstrates our result that regular

schedules lead to much smaller packet delays, and thus tighter

achievable deadlines.

On the right, we sweep throughput and plot results for varying

deadlines. Because CBH is computed independently of the deadline

bound, the policy remains the same and is only plotted once. Once

again, ARSC produces consistent results and low delays across

throughputs and deadlines, while CBH sees much larger delays.

8 CONCLUSION
In this paper, we studied the effect of wireless interference on

scheduling for service guarantees. We defined the feasible region of

throughput and deadline guarantees for a solitary flow, and showed

that without carefully structuring the order of a scheduling policy,

packets can experience large scheduling delay. To alleviate this

problem, we showed that under regular schedules, tight deadline

guarantees can be made which are independent of the schedule

length. Finally, we developed an algorithm to construct almost-

regular schedules in polynomial time, which are guaranteed to

meet service requirements for all flows, while leaving sufficient

capacity for best-effort traffic to achieve near-optimal throughput.

Future work includes optimizing routing as well as scheduling, and

dealing with unreliable links, changing wireless topologies, and

stochastic traffic.

ACKNOWLEDGMENTS
This material is based upon work supported by the Department

of the Air Force under Air Force Contract No. FA8702-15-D-0001.

Any opinions, findings, conclusions or recommendations expressed

in this material are those of the author(s) and do not necessarily

reflect the views of the Department of the Air Force.

This workwas also supported in part by NSF grants CNS-2148183

and CNS-2148128.

REFERENCES
[1] Accessed: 03-21-2024. Quality of Service (QoS) in 5G Networks. https://5ghub.us/

quality-of-service-qos-in-5g-networks/

[2] Accessed: 03-21-2024. T-Mobile Launches First-Ever 5G Network Slicing Beta for
Developers. https://www.t-mobile.com/news/network/t-mobile-launches-first-

ever-5g-network-slicing-beta-for-developers

[3] Hussein Al-Zubaidy, Jörg Liebeherr, and Almut Burchard. 2013. A (min,×) net-
work calculus for multi-hop fading channels. In 2013 Proceedings IEEE INFOCOM.

IEEE, 1833–1841.

[4] Amotz Bar-Noy, Mihir Bellare, Magnús M Halldórsson, Hadas Shachnai, and

Tami Tamir. 1998. On Chromatic Sums and Distributed Resource Allocation.

Information and Computation 140, 2 (Feb. 1998), 183–202.

[5] Amotz Bar-Noy, Magnús M Halldórsson, Guy Kortsarz, Ravit Salman, and Hadas

Shachnai. 2000. Sum multicoloring of graphs. Journal of Algorithms 37, 2 (2000),
422–450.

[6] Almut Burchard, Jörg Liebeherr, and Stephen D Patek. 2006. A min-plus calculus

for end-to-end statistical service guarantees. IEEE Transactions on Information

Theory 52, 9 (2006), 4105–4114.

[7] P. Cappanera, L. Lenzini, A. Lori, G. Stea, and G. Vaglini. 2009. Link scheduling

with end-to-end delay constraints in Wireless Mesh Networks. In 2009 IEEE
International Symposium on a World of Wireless, Mobile and Multimedia Networks
& Workshops. IEEE, Kos, Greece, 1–9.

[8] P. Cappanera, L. Lenzini, A. Lori, G. Stea, and G. Vaglini. 2011. Efficient link

scheduling for online admission control of real-time traffic in wireless mesh

networks. Computer Communications 34, 8 (June 2011), 922–934.
[9] Paola Cappanera, Luciano Lenzini, Alessandro Lori, Giovanni Stea, and Gigliola

Vaglini. 2013. Optimal joint routing and link scheduling for real-time traffic

in TDMA Wireless Mesh Networks. Computer Networks 57, 11 (Aug. 2013),

2301–2312.

[10] Shanti Chilukuri and Anirudha Sahoo. 2015. Delay-aware TDMA Scheduling for

Multi-Hop Wireless Networks. In Proceedings of the 16th International Conference
on Distributed Computing and Networking. ACM, Goa India, 1–10.

[11] Rene L Cruz. 1991. A calculus for network delay. I. Network elements in isolation.

IEEE Transactions on information theory 37, 1 (1991), 114–131.

[12] Rene L Cruz. 1991. A calculus for network delay. II. Network analysis. IEEE
Transactions on information theory 37, 1 (1991), 132–141.

[13] W. Dauscha, H. D. Modrow, and A. Neumann. 1985. On cyclic sequence types for

constructing cyclic schedules. Zeitschrift für Operations Research 29, 1 (March

1985), 1–30.

[14] Petar Djukic and Shahrokh Valaee. 2007. Quality-of-service provisioning for

multi-service TDMA mesh networks. In Managing Traffic Performance in Con-
verged Networks: 20th International Teletraffic Congress, ITC20 2007, Ottawa,
Canada, June 17-21, 2007. Proceedings. Springer, 841–852.

[15] P. Djukic and S. Valaee. 2009. Delay Aware Link Scheduling for Multi-Hop

TDMA Wireless Networks. IEEE/ACM Transactions on Networking 17, 3 (June

2009), 870–883.

[16] Leah Epstein, Magnús M. Halldórsson, Asaf Levin, and Hadas Shachnai. 2009.

Weighted Sum Coloring in Batch Scheduling of Conflicting Jobs. Algorithmica
55, 4 (Dec. 2009), 643–665.

[17] Markus Fidler. 2006. An end-to-end probabilistic network calculus with moment

generating functions. In 200614th IEEE International Workshop on Quality of
Service. IEEE, 261–270.

[18] B. Hajek and G. Sasaki. 1988. Link scheduling in polynomial time. IEEE Transac-
tions on Information Theory 34, 5 (Sept. 1988), 910–917.

[19] I-HongHou. 2013. Scheduling heterogeneous real-time traffic over fadingwireless

channels. IEEE/ACM Transactions on Networking 22, 5 (2013), 1631–1644.

[20] I.-H. Hou, V. Borkar, and P. R. Kumar. 2009. A Theory of QoS for Wireless. In

IEEE INFOCOM 2009. 486–494.
[21] I-Hong Hou and PR Kumar. 2010. Utility-optimal scheduling in time-varying

wireless networks with delay constraints. In Proceedings of the eleventh ACM
international symposium on Mobile ad hoc networking and computing. 31–40.

[22] Kamal Jain, Jitendra Padhye, Venkata N Padmanabhan, and Lili Qiu. 2003. Impact

of interference on multi-hop wireless network performance. In Proceedings of the
9th annual international conference on Mobile computing and networking. 66–80.

[23] Nicholas Jones and Eytan Modiano. 2024. Optimal Slicing and Scheduling with

Service Guarantees in Multi-Hop Wireless Networks. arXiv:2404.08637

[24] Murali Kodialam and Thyaga Nandagopal. 2003. Characterizing achievable rates

in multi-hop wireless networks: the joint routing and scheduling problem. In

Proceedings of the 9th annual international conference on Mobile computing and
networking. 42–54.

[25] Chengzhi Li, Almut Burchard, and Jörg Liebeherr. 2007. A network calculus

with effective bandwidth. IEEE/ACM Transactions on Networking 15, 6 (2007),

1442–1453.

[26] Chengzhang Li, Qingyu Liu, Shaoran Li, Yongce Chen, Y. Thomas Hou, and

Wenjing Lou. 2021. On Scheduling with AoI Violation Tolerance. In IEEE INFO-
COM 2021 - IEEE Conference on Computer Communications. IEEE, Vancouver, BC,
Canada, 1–9.

[27] Ruogu Li and Atilla Eryilmaz. 2012. Scheduling for end-to-end deadline-

constrained traffic with reliability requirements in multihop networks. IEEE/ACM
Transactions on Networking 20, 5 (2012), 1649–1662.

[28] Xin Liu, Weichang Wang, and Lei Ying. 2019. Spatial–temporal routing for sup-

porting end-to-end hard deadlines inmulti-hop networks. Performance Evaluation
135 (2019), 102007.

[29] Paolo Serafini and Walter Ukovich. 1989. A mathematical model for periodic

scheduling problems. SIAM Journal on Discrete Mathematics 2, 4 (1989), 550–581.
[30] Rahul Singh and PR Kumar. 2018. Throughput optimal decentralized scheduling

of multihop networks with end-to-end deadline constraints: Unreliable links.

IEEE Trans. Automat. Control 64, 1 (2018), 127–142.
[31] Rahul Singh and PR Kumar. 2021. Adaptive CSMA for decentralized scheduling of

multi-hop networkswith end-to-end deadline constraints. IEEE/ACMTransactions
on Networking 29, 3 (2021), 1224–1237.

[32] Leandros Tassiulas and Anthony Ephremides. 1990. Stability properties of con-

strained queueing systems and scheduling policies for maximum throughput in

multihop radio networks. In 29th IEEE Conference on Decision and Control. IEEE,
2130–2132.

190

https://5ghub.us/quality-of-service-qos-in-5g-networks/
https://5ghub.us/quality-of-service-qos-in-5g-networks/
https://www.t-mobile.com/news/network/t-mobile-launches-first-ever-5g-network-slicing-beta-for-developers
https://www.t-mobile.com/news/network/t-mobile-launches-first-ever-5g-network-slicing-beta-for-developers
https://arxiv.org/abs/2404.08637

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 System Model
	2.2 Policy Structure

	3 Feasibility
	3.1 Throughput Optimality
	3.2 Deadline Optimality

	4 Primary Interference
	5 Scheduling for Service Guarantees
	6 Algorithm Development
	6.1 Initialization
	6.2 Unique-Edge Matchings
	6.3 Feasibility Conditions
	6.4 Schedule Construction
	6.5 Discussion

	7 Numerical Results
	8 Conclusion
	Acknowledgments
	References

