
MIT Open Access Articles

Bluefish: Composing Diagrams with Declarative Relations

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Pollock, Josh, Mei, Catherine, Huang, Grace, Evans, Elliot, Jackson, Daniel et al. 2024.
"Bluefish: Composing Diagrams with Declarative Relations."

As Published: 10.1145/3654777.3676465

Publisher: ACM|The 37th Annual ACM Symposium on User Interface Software and Technology

Persistent URL: https://hdl.handle.net/1721.1/157611

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of use: Creative Commons Attribution

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/157611
https://creativecommons.org/licenses/by/4.0/

Bluefish: Composing Diagrams with Declarative Relations
Josh Pollock Catherine Mei Grace Huang
MIT CSAIL MIT CSAIL MIT CSAIL

Cambridge, MA, USA Cambridge, MA, USA Cambridge, MA, USA
jopo@mit.edu meic1212@mit.edu gracefh@mit.edu

Elliot Evans Daniel Jackson Arvind Satyanarayan
Unafliated MIT CSAIL MIT CSAIL

Ottawa, Ontario, Canada Cambridge, MA, USA Cambridge, MA, USA
vez@duck.com dnj@mit.edu arvindsatya@mit.edu

Figure 1: Diagrams built with the Bluefsh language. These graphics run the gamut from computer science to physics to math,
and are constructed with declarative, composable, extensible relations. From left to right: a quantum circuit equivalence [42],
topologies [59], a Python Tutor diagram [34], an Ohm parse tree [23], and a physics pulley diagram [49].

ABSTRACT
Diagrams are essential tools for problem-solving and communica-
tion as they externalize conceptual structures using spatial rela-
tionships. But when picking a diagramming framework, users are
faced with a dilemma. They can either use a highly expressive but
low-level toolkit, whose API does not match their domain-specifc
concepts, or select a high-level typology, which ofers a recognizable
vocabulary but supports a limited range of diagrams. To address
this gap, we introduce Bluefsh: a diagramming framework inspired
by component-based user interface (UI) libraries. Bluefsh lets users
create diagrams using relations: declarative, composable, and exten-
sible diagram fragments that relax the concept of a UI component.
Unlike a component, a relation does not have sole ownership over
its children nor does it need to fully specify their layout. To render
diagrams, Bluefsh extends a traditional tree-based scenegraph to
a compound graph that captures both hierarchical and adjacent
relationships between nodes. To evaluate our system, we construct
a diverse example gallery covering many domains including mathe-
matics, physics, computer science, and even cooking. We show that
Bluefsh’s relations are efective declarative primitives for diagrams.
Bluefsh is open source, and we aim to shape it into both a usable
tool and a research platform.

This work is licensed under a Creative Commons Attribution International
4.0 License.

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0628-8/24/10
https://doi.org/10.1145/3654777.3676465

CCS CONCEPTS
• Human-centered computing → Visualization toolkits; User
interface toolkits; • Software and its engineering → Con-
straints.

KEYWORDS
Diagramming, Domain-Specifc Languages, Relations
ACM Reference Format:
Josh Pollock, Catherine Mei, Grace Huang, Elliot Evans, Daniel Jackson,
and Arvind Satyanarayan. 2024. Bluefsh: Composing Diagrams with Declar-
ative Relations. In The 37th Annual ACM Symposium on User Interface Soft-
ware and Technology (UIST ’24), October 13–16, 2024, Pittsburgh, PA, USA.
ACM, New York, NY, USA, 21 pages. https://doi.org/10.1145/3654777.3676465

1 INTRODUCTION
Diagrams are essential to problem-solving and communication
as they externalize conceptual structures as spatial relationships,
thereby aiding recall, inference, and calculation [49, 63, 75]. By
representing information in new ways, the best diagrams unlock
new ways of thinking about a problem domain — for example, by
tracing events as a two-dimensional trajectory through space and
time, Feynman diagrams opened “new calculational vistas” and
quickly spread to many corners of modern physics [43]. Similarly,
citing Dagonet, Latour argued that “no scientifc discipline exists
without frst inventing a visual and written language which allows
it to break with its confusing past” [21, 29, 50]. Thus, scientifc
advances go hand-in-hand with novel diagrammatic notation.

To produce diagrams, authors increasingly turn to programmatic
frameworks as these tools enable data-driven diagramming, tar-
geted rendering for diferent platforms (e.g., as vector graphics for
web-based publishing or rasterized images for print-based media),

https://orcid.org/0000-0001-5141-0999
https://orcid.org/0009-0000-0334-0914
https://orcid.org/0009-0007-9840-065X
https://orcid.org/0009-0005-9528-3828
https://orcid.org/0000-0003-4864-078X
https://orcid.org/0000-0001-5564-635X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3654777.3676465
https://doi.org/10.1145/3654777.3676465

UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA Pollock et al.

and, more recently, automatic generation via large language models
(LLMs). Existing frameworks, however, lie along a spectrum that
trades of expressiveness for abstraction. At one end are highly
expressive toolkits, such as D3 [15] or p5.js [1], that force authors
to grapple with low-level concerns that are often orthogonal to the
semantics of their domain-specifc diagrams (e.g., manipulating the
DOM or issuing Canvas drawing commands). At the other end are
high-level typologies, such as Mermaid [76], which ofer a recogniz-
able vocabulary of diagrams (fowcharts, sequence diagrams, etc.)
but limit authors to only the available diagram types, with only a
handful of customization options.

To better balance between expressiveness and abstraction, we
introduce Bluefsh, a diagramming framework inspired by modern
component-based user interface (UI) toolkits such as React. The
basic building block of UI toolkits, the component, ofers authors
several advantages: UIs can be specifed declaratively, in terms of
what the interface should look like rather than how it should be
laid out and rendered; components can be composed together (e.g.,
by nesting them) to express custom UIs; and authors can extend
the specifcation language with custom components (e.g., to cap-
ture a recurring design pattern and make it reusable). However,
the component model imposes limitations when applied to author-
ing diagrams (Section 3). Components are assembled in tree-based
hierarchies. But unlike UI elements, diagrammatic relationships
frequently overlap — a single element (e.g., a shape) may partici-
pate in many visual relationships simultaneously (Figure 1). These
relationships cannot be easily expressed in a structure where an
element can only have a single parent. As a result, in UI frame-
works, diagram authors are forced to adopt low-level workarounds
(e.g., manual bounding box calculations) that undo many of the
advantages that components ofer.

In response, Bluefsh relaxes the defnition of a component to a
relation (Section 4.2). A relation, unlike a component, does not have
sole ownership over its children nor does it need to fully specify
their layout. Rather, a child element can be shared between multi-
ple relations through scoped declarative references, and its layout
determined jointly by all parents. With these changes, authors can
smoothly trade locality for expressiveness (Section 4.3) — opting
for a slightly more difuse specifcation as it enables a more nimble
prototyping process through the design space — without sacrifcing
the benefts of declarativity, composability, or extensibility.

Authors construct Bluefsh diagrams via the JSX syntax exten-
sion, which the language runtime compiles into a compound scene-
graph (Section 5) — an extension of a traditional tree-based scene-
graph that captures both hierarchical and adjacency relationships
between nodes. In contrast to traditional scenegraphs, compound
scenegraphs introduce two challenges for layout: a node’s layout
may be specifed by too few or too many parents. Thus, to handle
underconstrained systems, Bluefsh lazily materializes coordinate
transforms (Section 5.2.3) to ensure references can be properly re-
solved, even if the referent has not yet been fully positioned; to
handle overconstrained systems, Bluefsh tracks bounding box own-
ership (Section 5.2.4) and notifes the user when relations confict.

To evaluate Bluefsh, we developed a diverse gallery of example
diagrams in collaboration with Elliot Evans, a professional creative

coder1 (Section 6). These diagrams span several domains includ-
ing computer science, topology, physics, and cooking. We evaluate
Bluefsh’s performance on three examples in this gallery and fnd
that Bluefsh’s layout time scales linearly with the size of the scene-
graph (Section 6.3). Additionally, we compare the relational design
of Bluefsh to the designs of Penrose [90] and Basalt [6], two di-
agramming frameworks with diferent approaches to extending
UI composition (Section 7). Bluefsh’s component-inspired abstrac-
tion colocates data and display logic while Penrose, inspired by
HTML and CSS, groups data and display logic separately. Bluefsh
uses declarative references that describe spatial relationships while
Basalt uses low-level constraints. Finally, we refect with Evans on
Bluefsh’s abstraction design (Section 8). We fnd that relaxing the
component model provides a shallow learning curve for UI develop-
ers and that Bluefsh’s relational abstraction pushes specifcations
to be less hierarchical and more difuse.

Our long-term goal is to make Bluefsh both a usable tool and a
research platform for investigating graphic representations from di-
agrams to documents to notation augmentations the way Vega-Lite
has done for statistical graphics [71] and LLVM for compilers [51].
To support this goal, we have released Bluefsh as an open source
project at bluefshjs.org, and we present several promising direc-
tions for future research and tool development (Section 9).

2 RELATED WORK
We frst discuss the role of relations in diagrams, then we survey
existing diagramming languages and environments, and fnally we
discuss approaches to layout.

2.1 Relations and Diagrams
Relations are central to diagramming. According to James Clerk
Maxwell, a diagram is “a fgure drawn in such a manner that the
geometrical relations between the parts of the fgure illustrate rela-
tions between other objects” [57]. One salient kind of geometrical
relation are Gestalt relations [87], a collection of primitive visual
relations that associate elements together. Some examples include
distributing items with uniform density; aligning elements along
a particular spatial axis; containing elements in a common region;
and connecting elements with lines or arrows. Bluefsh’s relational
standard library corresponds loosely to these relations: Distrib-
ute to uniform density, Align to alignment, Background to
common region, and Arrow and Line to connectedness. Stack
uses a combination of alignment and uniform density.

Several researchers have formally analyzed diagrams in terms of
their relations. Richards extends Bertin’s retinal variables (shape,
color, size, etc.) [10] with Gestalt principles to describe diagrams [65].
Building on this work, Engelhardt proposes a recursive language
for diagram analysis [86]. The two have since collaborated on the
VisDNA analysis grammar [27]. Larkin and Simon analyze dia-
grams by constructing formal relational data structures [49]. These
approaches have informed Bluefsh’s own relational formalism, but
whereas these frameworks are designed for analysis, Bluefsh allows
a user to generate a diagram from a formal relational description.

1In recognition of his contribution, we include Evans as a co-author on this paper.

https://bluefishjs.org

Bluefish: Composing Diagrams with Declarative Relations UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA

2.2 Diagramming Languages and Environments
Direct manipulation editors like Figma, Omnigrafe, and tldraw
allow users to align and distribute objects as well as attach arrows
so they move when their attached objects are dragged. StickyLines
makes alignment and distribution persistent, frst-class objects
that can be manipulated [18]. Environments like Sketchpad [74],
TRIP [78], GLIDE [67], Juno [62], Dunnart [24], Delaunay [20],
Subform [2], and Charticulator [64], have integrated persistent
relations in some form. Bluefsh complements these approaches,
because diagramming environments are typically based on a text
representation that captures object state and sometimes constraints
or relations between them. Text representations are typically better
for defning and using abstractions than are direct manipulation
environments. Text thus facilitates authoring data-driven diagrams
and creating custom, reusable relation abstractions.

Some diagramming languages are restricted to just one or a
few diagram types. GoTree supports tree diagrams [53], and Set-
CoLa [37] and Graphviz [26] support node-link graphs using re-
lations like alignment, spatial proximity, and connectedness. In
contrast, Bluefsh provides a relational standard library that is ap-
plicable across diagram types as well as mechanisms that allow
users to customize and extend this set of relations.

General purpose diagramming languages provide various mecha-
nisms for composition. Some UI frameworks, including Garnet [61],
Grow [8], and Jetpack Compose [4], extend the component model
with an additional concept of a constraint. Constraints are declar-
ative equations or inequalities between variables that are solved
by a constraint solver. Basalt [6] is a diagramming framework that
does this as well. Juno [62] and IDEAL [83] allow users to spec-
ify reusable procedures that comprise collections of constraints.
More recent diagramming systems have experimented with other
abstractions. Haskell diagrams [89] and Diagrammar [33] extend
components with coordinate system modifers. For example, Haskell
diagrams’ align function modifes the local origin of a compo-
nent. Manim [68] is a Python library for making animated dia-
grams. It extends components with imperative actions. For example,
Manim provides a next_to method for shapes that, while sim-
ilar to Bluefsh’s Stack, mutates objects. This API is useful for
making animations where objects change over time. Penrose [90],
a language for mathematical diagrams, uses constraints. But in-
stead of organizing code with components, specifcations are split
across a Substance fle and a Style fle that are inspired by
the split between HTML and CSS. Bluefsh draws inspiration from
these systems’ approaches to composition. However, rather than
augmenting components with a new constraints concept, Bluefsh
relaxes the component model to relations. This provides a more con-
sistent representation for relations than previous systems, which
enables authors to more smoothly trade locality for expressiveness.

2.3 Diagramming Layout Engines
Laying out a diagram typically involves solving a system of con-
straints. Some engines use iterative methods that gradually con-
verge on a solution such as Newton-Raphson [62], force-direction [37,
67], gradient descent [24], and L-BFGS [90]. These methods can
handle a diverse collection of constraints and can provide best-
efort solutions when systems are unsatisfable. Other systems pick

a fxed constraint language and a specialized solver for it. TRIP [78],
IDEAL [83], GoTree [53], and Charticulator [64], for example, use
linear programming. Basalt [6] lays out diagrams using SMT.

The above solvers are global: they solve an entire constraint
system simultaneously. In contrast, local propagation methods fow
information incrementally between constraints. UI toolkits such
as Garnet [61], Grow [8], and Apogee [36] use this approach. In
contrast to global solvers, local solvers are much simpler. Because
they solve systems locally, it is easier to debug them when they
go wrong. However, they can be less expressive. For example, a
global solver can create an equilateral triangle from the constraints
that three points are equidistant, but this cycle is not solvable with
local propagation. More generally, global solvers tend to be better
at continuous, geometric problems while local propagation solvers
tend to be better at discrete problems. The UI layout engines in
CSS [44], Android’s Jetpack Compose [3], and Apple’s SwiftUI [52]
all employ local propagation strategies that are very similar to
each other. Just as we relax components to relations, we similarly
generalize modern UI layout architectures.

3 COMPARATIVE USAGE SCENARIOS
To better motivate the need for Bluefsh, and the design of its
language, we begin with a walkthrough of how an author might
construct a simple diagram (Figure 2) with common UI frameworks
and compare what the process looks like with Bluefsh instead.
This diagram depicts a row of the four terrestrial planets, with an
annotation on Mercury.

3.1 How UI Components Fail For Diagrams
For this walkthrough, we imagine an idealized UI framework. Since
React relies on HTML and CSS to perform layout, we borrow com-
ponent abstractions from SwiftUI and Jetpack Compose and express
them with React’s syntax for easier comparison with Bluefsh.

A user might start by creating a StackH (a horizontal stack,
or row) of Circle marks and nest this inside a Background
component:

<Background background={() => ... }>
<StackH spacing={50}>

<Circle r={15} fill={"#EBE3CF"} ... />
<Circle r={36} fill={"#DC933C"} ... />
<Circle r={38} fill={"#179DD7"} ... />
<Circle r={21} fill={"#F1CF8E"} ... />

</StackH>
</Background>

But problems quickly arise when they try to annotate Mercury
with some text. Ideally, the author should be able to place a Text
component relative to the planet’s position. That way if, for ex-
ample, the StackH’s spacing or layout changed, the Text would
move with it. However, the planet component is already contained
within the StackH so it cannot participate directly in any other
spatial relationships.2

2Note: One might be tempted to group the Mercury text and planet into a new compo-
nent and use that in the StackH. But the Mercury text is longer than the planet, so
grouping them together will afect the spacing between the planets.

UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA Pollock et al.

Figure 2: A comparison of specifying a simple diagram of the four terrestrial planets in a UI framework and in Bluefsh. In both
cases the user (1) makes a horizontal stack (StackH) of Circles contained in a Background; (2) places a Text component
above Mercury; and (3) surrounds the annotation and the planet with a background. In a UI framework, while (1) is declarative,
(2) and (3) require error-prone, low-level bounding box computations. In contrast, all three steps are declarative in Bluefsh.

Situations like these can arise when specifying UIs as well (e.g.,
when placing a tooltip), so UI frameworks provide escape hatches
to express more complicated layouts. A common escape hatch is
a low-level layout or constraint API based on bounding boxes [3,
4, 52]. For the purposes of demonstration, we present this as a
hypothetical useMeasure hook, akin to those found in React. The
useMeasure hook is a function that provides a reference that can
be assigned to a component and a bounding box object that can
be used to read and write dimensions of the referred component.
Using this hook, the author could reference the bounding box of
the Mercury circle and use it to position the text. They would frst
introduce a measure for Mercury, consisting of a reference and its
bounding box:

const [mercury, mercuryBounds] = useMeasure();

Then they would assign the mercury ref to the Circle:

<Circle ref={mercury} r={15} ... />

Finally, they would use this to compute the position of a new
Text component:

<Text bbox={{ bottom: mercuryBounds.top - 30,
centerX: mercuryBounds.centerX }}>

Mercury
</Text>

and that they have to ofset the bottom of the Text component
from the top of the Circle, and not vice versa.

These low-level escape hatches color the rest of the specif-
cation. Suppose the author now wants to place a Background
behind the planet and the text to further emphasize their relation-
ship. Again, since the Circle and the Text components have
diferent parents, they cannot also be children of another Back-
ground component. Instead the author must again use bounding
boxes. They frst add a new measure:

const [label, labelBounds] = useMeasure();

Then they assign it to the Text:

<Text ref={label} ...>
Mercury

</Text>

And fnally they must perform another complicated bounding
box computation to set the size of the background so that it contains
both the planet and the label:

<Rect
fill="none"
stroke="black"
stroke-width={3}
bbox={{

left: min(mercuryBounds.left, ...),
top: min(mercuryBounds.top, ...),
right: max(mercuryBounds.right, ...), Unlike , this step requires the user to suddenly switch the
bottom: max(mercuryBounds.bottom, ...),

level of abstraction they are working at: thinking explicitly about }}
bounding boxes. Moreover, the user must remember that the y-axis />
of the coordinate system points down (they must use -30 not +30)

Bluefish: Composing Diagrams with Declarative Relations UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA

To summarize, UI frameworks can prove to be quite brittle when
expressing even very simple diagrams. This is because diagrams of-
ten contain relationships that break out of a tree-shaped component
hierarchy. As a result users must resort to low-level escape hatches
that do not closely match the semantics they want to express.

3.2 Bluefsh
Now we consider how the same diagram is authored in Bluefsh.

In Bluefsh the user begins the same way as in the UI frame-
work, except that their code is contained within a Bluefish tag:

<Bluefish>
<Background background={() => ...}>

<StackH spacing={50}>
<Circle r={15} fill={"#EBE3CF"} ... />
<Circle r={36} fill={"#DC933C"} ... />
<Circle r={38} fill={"#179DD7"} ... />
<Circle r={21} fill={"#F1CF8E"} ... />

</StackH>
</Background>

</Bluefish>

This tag demarcates the region of their specifcation that uses
Bluefsh’s relations — a relaxed defnition of a UI component. While
Background and StackH appear identically to their UI counter-
parts, in Bluefsh we consider them to be relations and they can be
used in more scenarios than before.

Rather than resort to bounding box computations to add the
label, the user can use a relation instead. To do this, they frst name
the Mercury Circle so it can be referenced:

<Circle name="mercury" r={15} ... />

Then they write a StackV relation (StackH’s vertical counter-
part) and select the existing planet element using a Ref component:

</Background>
<StackV spacing={30}>

<Text>Mercury</Text>
<Ref select="mercury" />

</StackV>
</Bluefish>

Bluefsh provides this special Ref component to allow relations
to overlap — that is, for the same child element to participate in
multiple relations simultaneously. Roughly speaking, Ref works
as a proxy or stand-in for the element it selects. Since the StackH
already placed the “mercury” Circle, the StackV treats it as a
fxed element and positions the Text mark above it.

Compared to the explicit bounding box computations approach,
using Bluefsh’s relations means the user does not have to remember
low-level details like whether the label’s bottom or top must be
ofset from the circle’s top or bottom. Moreover, this specifcation is
more declarative and has a closer mapping to the resultant diagram:
as the Text mark is specifed before the Ref, the label is vertically
stacked above the Mercury circle — a relationship they would have
had to previously decode from low-level calculations.

To place the rectangle behind the planet and the label, the
user can wrap their new StackV in a Background relation:

</Background>
<Background background={() => ...}>

<StackV spacing={30}>
<Text>Mercury</Text>
<Ref select="mercury" />

</StackV>
</Background>

</Bluefish>

Compared to the UI framework approach, Bluefsh’s relations
allow the author to specify this diagram much more consistently.
A Stack is a Stack and a Background is a Background re-
gardless of whether it is used in a conventional hierarchy or by
referring to existing elements using Ref. This consistency extends
the declarative nature of UI specifcations to diagrams. As a result,
compared to a UI framework, an author can create many more
graphics using high-level APIs that closely match their intent.

4 THE BLUEFISH LANGUAGE
Bluefsh is a domain-specifc language (DSL) embedded in Type-
Script comprising a standard library of basic marks and relations;
scopes and references for overlapping relations; and helper func-
tions and components for composing relations to create new com-
posite marks and relations. Figure 3 lists Bluefsh’s API.

The key innovation in Bluefsh is its relation abstraction. To ad-
dress the limitations we describe in Section 3, relations relax the
component model by allowing child elements to be shared across
multiple parents via scoped declarative references. Moreover, a rela-
tion, unlike a component, can leave the sizes and positions of its
children underspecifed. As a result, the Bluefsh relation concept
allows users to smoothly trade locality for expressiveness (Sec-
tion 4.3). By gradually making a specifcation more difuse, a user
can unlock spaces of atomic edits that they can then rapidly explore
to prototype alternate diagram designs.

4.1 Design Goals
Motivated by the diagramming literature and by research on nota-
tional afordances, we identify three design goals to support expres-
sive and fexible diagram authoring that UI components already
exemplify. To these three, we add a fourth goal specifc to diagrams
that UI components poorly support.

Declarative. Declarative languages are popular across a range of
domains (including web design via HTML/CSS, data querying with
SQL, and data visualization using libraries such as Vega-Lite [71] or
ggplot2 [88]), because they decouple specifcation (the what) from
execution (the how). As a result, authors are able to focus on their
domain-specifc concerns — in our case, expressing the semantics
of their diagram — rather than contending with low-level compu-
tational and rendering considerations. Declarative specifcation is
particularly important for diagramming as authors come from a
variety of disciplinary backgrounds, with varying levels of expertise
with reasoning about execution considerations.

Composable. In contrast to diagram typologies (e.g., Mermaid [76])
which ofer authors monolithic diagram types to pick between, we
aim to achieve a greater expressive gamut by identifying a prim-
itive set of building blocks that authors can combine together to

UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA Pollock et al.

achieve their desired output. UI components support composition
through nesting: a component can be instantiated within another.
This nesting structure is possible because components make few
assumptions about the styling, layout, or state of their surround-
ing context. As a result, this compositional approach also allows
authors to reason about their specifcation in a more localized
manner — understanding one part at a time. Locality is especially
important for authoring diagrams, which are often complex and
non-hierarchical structures.

Extensible. While basic graphical shapes and elements — including
rectangles, circles, lines, and text — provide the foundations of UIs
and diagrams, they can present a greater articulatory distance [41]
for expressing the semantics of a diagram than a more domain-
specifc set of primitives (e.g., “pulleys,” “weights,” and “ropes” for
a physics diagram). As Ma’ayan & Ni et al. [55] and the Cognitive
Dimensions of Notations framework [11] describe, it is important
that authors have a specifcation language that has a correspon-
dence [55] or close mapping [11] to the vocabulary of their domain.
However, it is impossible for language designers to anticipate ev-
ery possible primitive for every potential domain. And, even if one
could produce such a collection, it would impose an enormous main-
tenance burden on those designers. Thus, following UI components,
Bluefsh empowers authors to create domain-specifc primitives.

Finally, there is one additional design goal that a diagramming
language must satisfy that UI components do not:

Overlapping. UI components can only relate to one-another
via hierarchical nesting. This nesting partitions the visual plane
into isolated sections that cannot easily communicate or be visually
associated with each other except through a shared ancestor. Parti-
tions help UI components achieve composability, because they can
be reasoned about separately. But this trades of the expressiveness
we need for diagramming. Diagram elements frequently crosscut a
purely hierarchical structure — for example, the Mercury Circle
in Figure 2 participates in both a horizontal relationship with the
other planetary circles and a vertical relationship with its text label.
Ideally a diagram author should be able to leverage locality when
they can and expressiveness when they must.

4.2 Language Design
4.2.1 Marks. A mark is a basic visual element. Bluefsh’s mark
standard library comprises Rect, Circle, Ellipse, Path, Im-
age, and Text. Marks are thin wrappers around SVG primitives,
except for Text. Text wraps visx’s Text primitive, which pro-
vides better support for text layout than SVG’s native Text. A
mark’s position and size arguments are often omitted in a Bluefsh
specifcation, because they are determined by relations instead.

4.2.2 Relations. A relation is a visual arrangement of elements that
conveys information about an abstract relationship between those
elements (e.g., a line connecting two circles represents a chemical
bond between two atoms). In addition to marks, relations are the
building blocks of diagrammatic representations [49, 57, 66, 79, 86],
and Bluefsh’s design refects this.

Bluefsh reifes the concept of a relation by relaxing UI compo-
nents, the building blocks of user interfaces. Relations are identical
to UI components in many respects. For example, relations can con-
tain zero or more children, be nested arbitrarily, and perform both

Figure 3: The Bluefsh API comprises a standard library of
marks and relations as well as a core set of language primi-
tives. Bluefsh relations are closely associated with Gestalt
relations (listed in gray next to each tag). Scoped declara-
tive references allow users to refer to existing elements. The
Group relation, withBluefish function, and Layout com-
ponent allow users to create new marks and relations.

rendering and layout. But relations relax the component model in
two ways. First, whereas components’ children are disjoint from
other components’ children, a relation may share children with
other relations. This allows Bluefsh elements to relate to other
elements via multiple parent relations. Second, while a component
must ensure its childrens’ sizes and positions are fully determined, a
relation can leave some unspecifed for other relations to determine.
Together, these two relaxations allow Bluefsh relations to overlap.

Bluefsh’s relations standard library is inspired by Gestalt rela-
tions [87]. We provide relations that correspond to uniform density,
alignment, common region, and connectedness (Figure 3). We se-
lected Gestalt relations that are commonly found in UI toolkits
and design tools. Toolkits like SwiftUI and Jetpack Compose pro-
vide components similar to Stack and Background, but they
can only express Distribute, Align, Arrow, and Line rela-
tions indirectly through modifers and bounding box calculations,
because they do not support overlapping relations. In contrast, Blue-
fsh supports all of these relations using the same abstraction. As
a result, Bluefsh’s API more closely maps to Gestalt theory and
allows users to more easily switch between diferent relations.

Bluefish: Composing Diagrams with Declarative Relations UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA

4.2.3 Relations Are Expressed with JSX. We surface Bluefsh’s marks
and relations through JSX, an extension to JavaScript popularized
by the React library. We map marks and relations to the two kinds
of JSX tags: self-closing tags (e.g., <Circle />) for marks, and
container tags (e.g., <Arrow>...</Arrow>) for relations. These
tags instantiate elements with zero or non-zero children, respec-
tively. JSX tags take attributes called props. For example, r and
fill are two of <Circle />’s props.

Our decision to represent relations using JSX instead of as props
or vanilla functions has syntactic and semantic consequences. Syn-
tactically, modeling relations as components allows for a closeness
of mapping [11]: a relation, which groups elements together, is
defned by wrapping a container tag around participating elements,
generalizing the notion of a grouping in other languages likely to be
familiar to diagram authors including HTML (e.g., <div> tags) and
SVG (i.e., <g> tags). Semantically, representing relations as a single,
consistent construct means they can be easily swapped for one
another. For example, many atomic edits like swapping a Back-
ground for an Arrow or replacing a StackV with an Align
and a Distribute take advantage of this consistency (Figure 4).

This representation stands in contrast to other diagramming
frameworks. Haskell diagrams, for example, represents a stack
using a function, but alignment using a coordinate transform. Sim-
ilarly, Penrose represents a stack as collection of constraints and
a background as a combination of a constraint and a mark. This
makes atomic edits much more difcult.

4.2.4 Scoped Declarative References (<Ref />). To allow rela-
tions to share children, we provide a special Ref component that
lets a user select an existing element to reuse as the child of another
relation. None, some, or all of a relation’s children may be Refs.

A Ref works like a declarative query selector. A user can refer-
ence an element by its name. This name is either a globally defned
string or scoped locally to the relation using the createName
function. A user may also specify a path of names. To resolve a path
selector, Bluefsh traverses the path one-by-one, entering a relation
each time and searching its local scope for the next named element.
Scopes encapsulate names so that changes to names in one relation
defnition cannot shadow names in another.

We considered using JavaScript’s own variable bindings instead
of a separate Ref component for specifying overlaps. However,
we found that this interpretation of bindings competed with users’
mental model of JSX: in JSX, using a component bound to a variable
in multiple places creates diferent copies of a component rather
than referencing it, as is needed with Bluefsh. Moreover, using
explicit Refs simplifes the implementation of the system, because
it allows us to construct a relational scenegraph within the confnes
of a tree-structured hierarchy. Section 5 explains this in more detail.
We leave to future work opportunities to expand the expressiveness
of how elements may be referenced (e.g., via XML query languages
such as XPath [9, 19] and XQuery [13], or by generalizing Cicero’s
specifers [45] and Atlas’s fnd function [54]).

4.2.5 Relations Are Immutable. Because of the hierarchical struc-
ture of a UI scenegraph, a component’s layout behavior typically
depends only on its props, its children, and its parent. As a result, a
developer reading a UI codebase usually does not have to look at
a component’s siblings or cousins to determine the component’s

behavior. Since Bluefsh allows siblings and cousins of a relation to
also be its children, this introduces additional dependencies that
could break the declarative nature of the component abstraction. To
reduce the impact of these non-local dependencies, Bluefsh ensures
that once some aspect of an elements’s size or position, such as its
width, has been set by a relation, no other relation may mutate it.
As a result, whenever a diagram author sees a relation like Align,
for example, a user can be confdent that Align’s children are
aligned regardless of other relations in the specifcation. We discuss
how we enforce this property in Section 5.2.

4.2.6 Marks and Relations Are User-Extensible. In addition to au-
thoring diagrams with Bluefsh’s standard library, users can defne
new marks and relations in two ways. Firstly, since relations relax
components, Bluefsh inherits the compositional afordances of the
UI framework model and JSX notation. For example, we can write
a custom Planet mark like so:

const Planet = withBluefish((props) => (
<Circle r={props.radius} fill={props.color}/>

));

The mark may then be used like a native tag:

<Planet radius={15} color="#EBE3CF" />

Any composition of marks and relations may be used as a cus-
tom mark, provided its elements have been completely sized and
positioned relative to each other. For example, a user might rewrite
Planet to place a Background around the planet as well:

const Planet = withBluefish((props) => (
<Background>

<Circle r={props.radius} fill={props.color}/>
</Background>
));

When compositions of existing marks and relations is not enough,
Bluefsh allows users to author their own primitives with a low-level
API. Inspired by the Jetpack Compose API [3], primitive marks and
relations are both described using a special Layout component
that registers a node in Bluefsh’s scenegraph. In addition to taking
a name (which may be provided implicitly by Bluefsh), Layout
requires a layout function that determines the bounding box
and coordinate system of the element and has an opportunity to
modify its children’s bounding boxes and coordinate systems as
well. Layout also requires a paint function that describes how
the element should render given information about its bounding
box and its children, which have already been rendered. Here is
the basic structure for authoring a new primitive mark and a new
primitive relation:

const Rect = withBluefish((props) => {
const layout = () => { ... }
const paint = (paintProps) => <rect ... />
return <Layout layout={layout} paint={paint}/>

})

UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA Pollock et al.

const Align = withBluefish((props) => {
const layout = (childNodes) => { ... }
const paint = (paintProps) => (<g ... >

{paintProps.children}
</g>)
return (

<Layout layout={layout} paint={paint}>
{props.children}

</Layout>
);

})

Bluefsh’s standard library is written using this API. As a result,
it is fully customizable and extensible from user space. We discuss
how layout functions work in Section 5.2.

4.3 Design Implication: Smoothly Trading
Locality for Expressiveness

In addition to extending the declarative component model to more
complex graphics, Bluefsh allows a user more fexibility to trade
locality for expressiveness. Specifcally one can make a specifcation
more difuse by denesting or breaking up relations. These processes
preserve the output diagram while afording new atomic ways to
modify the specifcation. Consider Figure 4.

Starting with the specifcation from Figure 2, one can already
make some atomic edits to explore alternative designs. For example,
by swapping the order of the StackV’s children, one can move
the label below the planet. By denesting the Background and
StackV relations, one can make the specifcation a little more dif-
fuse. This can be accomplished by naming the Text mark, moving
the Background so it is adjacent to the StackV instead of con-
taining it, and making Background’s children Refs to StackV’s
children. This results in a more verbose specifcation than in .
But the advantage is that now the Background can be replaced
with another relation like Arrow simply by swapping the tag.
Finally, for even more expressiveness, one can split StackV into
two more primitive relations. StackV is a compound relation that
horizontally aligns its children and vertically distributes them. Blue-
fsh provides Align and Distribute so that a user can specify
these relations individually. Splitting StackV allows one to re-
target Distribute at diferent children while keeping Align
fxed. For example one can place the label outside the planets Back-
ground as follows. First, label the Background, “planets”, and
then change the frst child of the Distribute to select it. This po-
sitions the label so that it is still horizontally aligned with Mercury
but vertically spaced relative to the planets.

Notice Align and Distribute cannot be expressed as com-
ponents in UI frameworks. This is because they only control their
childrens’ positions on one axis and so those children must have
more than one parent to be fully positioned. In SwiftUI and Jetpack
Compose, alignment is available as a guide argument to components
like HStack or as a modifer on individual elements. Compose also
exposes align and distribute constraints in special Constraint-
Layout components. To summarize, Bluefsh’s relation model
allows one to smoothly trade locality for expressiveness. One can

make a specifcation more difuse by denesting relations and break-
ing them apart. By doing so, one gains more opportunities to make
atomic edits.

5 THE BLUEFISH RELATIONAL SCENEGRAPH
Bluefsh is a implemented in SolidJS, a reactive UI framework. Solid
provides a JSX component abstraction, signal library, and renderer
for Bluefsh. We maintain a separate scenegraph and provide a
custom layout engine for this scenegraph. When a user composes
Bluefsh marks and relations, the language runtime compiles this
specifcation to a relational scenegraph: a data structure used to re-
solve references between elements and compute layout. Critically,
in contrast to tree-based scenegraphs that are standard in UI and vi-
sualization toolkits, Bluefsh’s relational scenegraph is an instance
of a compound graph: a data structure that maintains the hierar-
chical information of traditional scenegraphs while also encoding
adjacency relationships between nodes (Section 4.2.4). To compute
layout, we adopt the principle of conservative extension [28] such
that when a relational scenegraph is purely hierarchical its layout
behavior is indistinguishable from the behavior of a tree-based
scenegraph. This principle allows us to extend the benefts of UI
layout runtimes to Bluefsh.

5.1 Adapting a Compound Graph Structure
Compound graphs have been explored in research on graph draw-
ing [73] and hierarchical edge bundling [38]. They encode not only
hierarchical relationships between nodes (i.e., parent-child) but
also allow for non-hierarchical relationships called adjacencies. In
Bluefsh, we instantiate a compound graph as follows:

Nodes. Each node in the scenegraph corresponds to a Layout
or Ref tag instantiated in JSX. Layout nodes hold information
necessary for rendering the corresponding element (e.g., visual
styles) as well as computing layout. Layout information includes a
partially defned bounding box and any transformations needed to
position and size this node based on higher-level nodes.

Hierarchy and Adjacencies. Nodes are assembled into a hierarchy
following the nesting structured established by the JSX specifcation.
An adjacency relation is established for every Ref element: a node
is instantiated in the hierarchy for the Ref, and it links to the
referenced node as an adjacency. As a result, and unlike general
compound graphs where adjacencies can connect any pair of nodes,
adjacencies in Bluefsh always originate at leaf nodes (i.e., Refs
are self-closing tags rather than block or container tags). Figure 5
depicts the scenegraph for the UI specifcation and the relational
scenegraph for the Bluefsh specifcation from Figure 2.

5.2 Computing Layout by Conservatively
Extending UI Tree-Based Local Propagation

Bluefsh extends the layout architecture adopted by modern UI
layout engines including those underlying CSS [44], SwiftUI [5, 52],
and Jetpack Compose [3]. This architecture is a form of tree-based
local propagation [72]. Local propagation has a storied history in
UI toolkits [8, 14, 36, 60, 61, 69, 70, 84] and is straightforward to
implement in reactive datafow runtimes.

Bluefish: Composing Diagrams with Declarative Relations UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA

Figure 4: Relations can trade locality for expressiveness. (1) With the original spec, one can fip the direction of the label. (2-3)
After denesting the Background and StackV relations one can replace the Background with an Arrow. (4-5) After breaking
up StackV into Align and Distribute, one can space the label relative to the planets background while keeping it aligned
with Mercury.

UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA Pollock et al.

UI Framework Scenegraph

Group

TextBackground Rect

StackH

Circle CircleCircle Circle

Bluefish Relational Scenegraph

Group

Background Background

StackH

Circle CircleCircle Circle

StackV

mercuryText
mercury

Figure 5: The tree-structured and relational scenegraphs corresponding to Figure 2. Notice that Bluefsh’s scenegraph retains
more information than a tree-structured scenegraph. Bluefsh’s scenegraph represents the StackV and Background relations
between the label and the planet. In the traditional scenegraph the StackV relation between the label and the planet is missing,
and the Background relation has been reduced to a Rect component.

UI layout needs to be fast yet support diferent, specialized al-
gorithms like fex layout, line-breaking, and grids. To balance per-
formance and expressiveness, UI layouts execute in one pass over
the scenegraph, and each node can contain arbitrary code. Each
node in the scenegraph has an associated layout algorithm, and
layout commences at the scenegraph root. When a node’s layout
algorithm is evaluated, it invokes the algorithms of its children by
proposing a width and height for each child. Once the children are
laid out, they return their actual sizes and the parent may place
each child in its local coordinate system. This local information-
passing approach can express many kinds of layouts. For example,
to implement fex layout each child may optionally specify its fex
factor. During layout, the parent fex node can read its children’s
fex factors and distribute its free space proportionally to each child.

Instead of local propagation, many visualization and diagram-
ming frameworks use a diferent strategy, a global solver [6, 24, 37,
53, 62, 64, 67, 78, 83, 90] such as gradient descent, linear program-
ming, or SMT. Whereas a local solver specifes how values fow
through a constraint graph, a global solver specifes a constraint
language that all layout constraints must be written in such as
diferential programs for gradient descent, linear inequalities and
an objective function for linear programming, or quantifer-free
non-linear real arithmetic for SMT. Because global solvers solve all
constraints simultaneously, they can tackle very complex layout
problems that cannot be solved by local propagation. Indeed, we
implemented an early version of Bluefsh using the Cassowary lin-
ear programming solver [7]. However, in doing so, we identifed
a series of tradeofs at odds with our design goals of composabil-
ity and extensibility. First, a global solver increases viscosity for
diagram authors: it can be difcult to localize layout bugs because
the solver reasons about all constraints at once and a node’s layout
can, by design, be a function of a highly non-local set of inputs.
Second, while global solvers increase expressiveness by supporting
a larger class of layout problems, they actually limit extensibility:
common domain-specifc algorithms for domains like trees [82]
and graphs [30] rely on custom imperative code that cannot be
easily translated to or integrated with a global solver’s constraint
language. In contrast, Bluefsh layout problems can be debugged

more easily as layout information only fows locally. Moreover,
Bluefsh is able to integrate any external layout algorithm simply
by instantiating it as a node in the scenegraph. These benefts are
extended directly from UI layout architectures.

Local propagation does present some limitations — namely, it
does not provide special support for continuous optimization prob-
lems or complicated simultaneous constraints. Many International
Math Olympiad geometry problems, for example, can only be drawn
by solving a circular system of geometry constraints [48]. Diagrams
involving knots are well-suited to gradient-descent schemes [91].
Nevertheless, such domain-specifc solvers could be embedded as
special nodes in the Bluefsh architecture. In this way, Bluefsh
serves more as a layout fabric than a solver itself. It is concerned
with the interface between nodes more than the language those
nodes’ layouts are written in.

Algorithm 1: The layout algorithm for StackV

Data: alignment, spacing
XY foreach node ∈ subnodes do node.layout()
Y y←0
foreach node ∈ subnodes do

X x = switch alignment do
case left do 0
case centerX do −node.width/2
case right do −node.width

end
XY node.place(x, y)
Y y += node.height + spacing
end
return {

X w: maxBy(subnodes, ‘width’),
Y h: sumBy(subnodes, ‘height’) + spacing · (|subnodes| − 1)
}

5.2.1 A Running Example: Equivalent StackV Specifications. To
make a framework with low viscosity, we want to support author-
ing any given graphic representation in many diferent ways. This

Bluefish: Composing Diagrams with Declarative Relations UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA

property increases the malleability of the language, because a spec-
ifcation can be rewritten into many equivalent forms where each
form may be adjacent to diferent specifcations with new meanings.
In Section 4.3 we introduced two patterns for rewrites of this kind:
denesting relations and splitting them apart. We would like a layout
engine where the following three specifcations are equivalent.

A purely hierarchical specifcation:

<StackV>
<Rect width={10} height={20} />
<Rect width={30} height={10} />

</StackV>

A denested specifcation:

<Rect name="a" width={10} height={20} />
<Rect name="b" width={30} height={10} />
<StackV>

<Ref select="a" />
<Ref select="b" />

</StackV>

A denested specifcation where StackV has been split apart:

<Rect name="a" width={10} height={20} />
<Rect name="b" width={30} height={10} />
<Distribute direction="vertical">

<Ref select="a" />
<Ref select="b" />

</Distribute>
<Align alignment="centerX">

<Ref select="a" />
<Ref select="b" />

</Align>

We can work backwards from these equivalences to design a lay-
out semantics that ensures these equivalences as much as possible.

5.2.2 The StackV Layout Algorithm. Algorithm 1 (based on one
provided by Jetpack Compose [3]), gives pseudocode for StackV’s
layout algorithm. StackV takes as input an alignment (left,
centerX, or right) and a spacing between elements in pixels.
It then calls the layout algorithm of each of its children who de-
termine their own sizes to be used later. Next, StackV places each
of its children in its local coordinate space. The x coordinate refers
to the left edge of the child. The y coordinate refers to the top edge
of the child and is initialized to 0. Each child is placed horizontally
based on the alignment parameter. In each alignment case, 0
is used as the guideline to which all left edges, horizontal centers, or
right edges are aligned.3 Next, the node is placed and the next top
edge is calculated by moving spacing pixels below the previous
node. This repeats for each child. Finally, the width and height of
the StackV are returned for use by its own parent.

5.2.3 Lazy Materialization of Coordinate Transforms. To ensure
that Bluefsh is a conservative extension of UI architectures, layout
algorithms like Algorithm 1 must work correctly even when some
of their children are references, such as when denesting StackV.

3This guideline is in StackV’s local space, so the choice of 0 is arbitrary.

Figure 6: When a bounding box dimension is requested via a
Ref, intermediate transforms are lazily materialized. This en-
sures the dimension is well-defned relative to the requester.

UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA Pollock et al.

When the layout method is called on a Ref node, it triggers
reference resolution to instead return information about the bound-
ing box pointed to by the reference. To resolve a reference, we have
to transform the bounding box of the referent into the reference’s
coordinate frame. We accomplish this by walking the scenegraph
between the reference and the referent through their least common
ancestor. However, it is often the case that one or more of these inter-
mediate nodes does not have a defned coordinate transform of its
own. For example, since the Ref children of StackV are resolved
during StackV’s own layout algorithm. StackV’s transform is
not yet known. In these cases, we must materialize intermediate
coordinate transforms. Figure 6 depicts lazy coordinate transform
materialization during the layout of our running example. When
StackV attempts to set a’s x position, its own transform is not
yet known. We thus default StackV’s x transform to the identity
transform. Materializing this transform ensures that the horizontal
position of StackV is fxed relative to a, which helps guarantee
that all of StackV’s children are actually vertically stacked. By
deferring transform materialization lazily until a value is requested,
we help ensure that the specifcation is as fexible as possible. If
transforms were defaulted eagerly, the position of every object
would be fxed before layouts could set them.

type BBox<T> = {
 left?: T; centerX?: T; right?: T;
 top?: T; centerY?: T; bottom?: T;
 width?: T; height?: T;
};

type Transform<T> = { translate: { x?: T; y?: T } };

type ScenegraphNode = LayoutNode | RefNode;

type LayoutNode = {
 type: "layout";
 bbox: BBox<number>;
 transform: Transform<number>;
 children: Id[];
 parent: Id | null;
 bboxOwners: BBox<Id>;
 transformOwners: Transform<Id>;
};

type RefNode = {
 type: "ref";
 refId: Id;
 parent: Id | null;
};

Figure 7: The TypeScript type specifcation for Bluefsh’s
relational scenegraph. Bolded sections are extensions to a
typical tree-structured scenegraph. Specifcally, we (i) make
bounding box and coordinate transform felds optional; (ii)
track ownership of individual felds; and (iii) add a RefNode
type for adjacency relations.

5.2.4 Relaxing Node Ownership to Dimension Ownership. The StackV
layout in Algorithm 1 can be cleanly separated into a horizontal
Align and a vertical Distribute relation by using the lines
labeled X and Y, respectively, because the logic for each axis are es-
sentially disjoint. Though splitting StackV’s layout is straightfor-
ward, it creates an architectural problem. In order to split StackV
in two, we must allow multiple relations to modify a single node.

Typically in a UI layout engine a node is owned by a single parent
and only that parent’s layout may modify the node. As a result, the
relation established by that parent (such as a StackV) can never
be mutated. This makes UI specifcations declarative: a relation like
StackV always corresponds to a vertical stack in the diagram. We

want to preserve this correspondence when a node has more than
one parent. To account for this multiplicity, instead of a parent
node owning an entire child node, a parent node owns specifc
dimensions of a child node’s bounding box. Figure 7 summarizes
the modifcations to a tree-structured scenegraph datatype required
to implement bounding box ownership. Bluefsh throws an error if
another layout tries to write to a dimension that is already owned,
which guards against overconstrained layouts (such as aligning an
element to two diferent elements that have already been placed).
Tracking the specifc owner (rather than just whether or not a
property is owned) allows us to determine the two layouts that
confict. Overconstrained layouts occur frequently when editing
a diagram, but problems tend to be easy to localize with access to
ownership information and when relations are added one at a time.

6 EXAMPLE GALLERY
To evaluate the strengths and limitations of Bluefsh, we constructed
a gallery of example diagrams in collaboration with a creative
coder Figure 8. As there are no well-established diagram taxonomies,
we instead decided to collect diagrams that are highly complex and
that run the spectrum of common diagram structures including ta-
bles, overlapping containments (e.g. Venn diagrams), trees, graphs,
and lists. These examples are inspired by existing diagrams across
computer science, physics, math, and cooking. We created them
using only the primitives in the Bluefsh standard library with a few
exceptions where we take advantage of a special LayoutFunc-
tion relation to sidestep current limitations of the library. Live
examples and code are available in the supplemental material.

Table 1 lists the diagrams, their domains, the Gestalt relations
they use, and their render times. We frst describe two examples
in detail (Section 6.1) that we use for our comparisons in Section 7.
They illustrate how typical Bluefsh specifcations are constructed.
We then identify three general limitations of our current abstrac-
tions that we discovered when creating our gallery (Section 6.2).
Finally, we conducted a preliminary performance evaluation by
comparing Bluefsh to existing baseline implementations of three
diagrams from our gallery (Section 6.3). We fnd that Bluefsh scales
linearly with the size of its scenegraph. Bluefsh is asymptotically
faster than Penrose on the Insertion Sort diagram and less than ten
times slower compared to the original D3-based implementations
of the Python Tutor and Ohm Parse Tree diagrams.

6.1 Selected Examples
6.1.1 Insertion Sort [85, 90]. This diagram traces the steps of the
insertion sort algorithm and was originally created for the Pen-
rose [90] example gallery. We compare our specifcation to Pen-
rose’s in Section 7.1. The bordered region represents the sorted part
of the array, and the arrow shows the insertion of the next element
into the sorted region. In Bluefsh we encapsulate this diagram as
an element that takes an unsorted array:

<InsertionSort
array={[43, 9, 15, 95, 5, 23, 75]}

/>

This diagram is a good example of a deeply nested Bluefsh
specifcation built entirely with the standard library primitives.

Bluefish: Composing Diagrams with Declarative Relations UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA

Figure 8: To evaluate Bluefsh’s expressiveness, we created a diverse example gallery drawn from several domains including (a–c,
h) computer science, (d) cooking, (e–f) physics, and (g) math. Code and live examples are available in supplemental materials.

UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA Pollock et al.

Diagram Domain
Relations Render

time (ms) Alignment Uniform
density

Connectedness Common
region

(a) Insertion Sort [85, 90] CS ✓ ✓ ✓ ✓ 163.56
(b) DFSCQ File System [6, 16] CS ✓ ✓ ✓ ✓ 155.24
(c) Python Tutor [34] CS ✓ ✓ ✓ ✓ 149.74
(d) Baking Recipe [17] Cooking ✓ ✓ - ✓ 99.70
(e) Pulleys [49] Physics ✓ ✓ ✓ ✓ 95.18
(f) Quantum Circuit [42] Physics ✓ ✓ ✓ ✓ 68.99
(g) Three-Point Set Topologies [59] Math ✓ ✓ - ✓ 129.58
(h) Ohm Parse Tree [23] CS ✓ ✓ - ✓ 174.10

Table 1: The domains, relations, marks, and render times of the diagrams in Figure 8. The examples demonstrate coverage over
the four Gestalt relations supported by Bluefsh’s standard library. All examples run in less than 175ms.

InsertionSortDiagram creates a StackV of Insertion-
SortSteps then places labels using a series of StackH relations:

const InsertionSort = withBluefish(props => {
const insertionSortSteps =

computeInsertionSortSteps(props.array);
return (

<Group>
<StackV spacing={15}>

<For each={insertionSortSteps}>
{(data, i) => (

<InsertionSortStep
name={i()}
stage={i()}
data={data} />

)}
</For>

</StackV>
<For each={insertionSortSteps}>

{(_, i) => (
<StackH spacing={20}>

<LabelText>
{label(i(), props.array.length)}

</LabelText>
<Ref select={i()} />

</StackH>
)}

</For>
</Group>

)})

Like InsertionSort, InsertionSortStep is a custom
element. It specifes a StackH of custom ArrayEntry elements
inside a Background, then uses a custom DashedBorder rela-
tion that specializes Background to surround the sorted region of
the array, and fnally uses an Arrow relation to show the movement
of each element into the sorted region.

6.1.2 DFSCQ File System [6, 16]. This diagram describes the life of
a transaction in the DFSCQ fle system. The diagram was originally
created in Inkscape and recreated in the Basalt diagramming frame-
work to test the limits of its expressiveness [6]. We compare our
specifcation to Basalt’s in Section 7.2. As with the Insertion Sort

diagram, the DFSCQ File System diagram’s specifcation uses sev-
eral custom elements and relations composed of Bluefsh standard
library primitives. For example, the top level specifcation consists
of a StackV containing four custom TitledBackground rela-
tions interspersed with custom ActionText elements like these:

<TitledBackground title="LogAPI">
<StackH>

<BoxedAlign alignment="centerRight"
width={200}>

<Text font-family="monospace"
font-weight={300}
font-size="18">

activeTxn:
</Text>

</BoxedAlign>
<Blocks

colors={["#4582DE", "#4582DE", "#4582DE"]}
name="activeTxnBlock" />

</StackH>
</TitledBackground>
<ActionText text="commit" />

TitledBackground is a custom relation composed of Blue-
fsh standard library primitives:

const TitledBackground = withBluefish(props => (
<Align alignment="topLeft">

<Text font-family="serif" font-weight={300}
font-size="20" x={10} y={4}>

{props.title}
</Text>
<Background padding={30}>

<Align alignment="centerLeft">
<Rect height={0} width={680}

fill="transparent" />
{props.children}

</Align>
</Background>

</Align>
))

After these have been placed, we place the various lines and
labels that cut across this hierarchy including the arrows connecting

Bluefish: Composing Diagrams with Declarative Relations UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA

Figure 9: We evaluated Bluefsh’s performance on three examples against their original implementations. On Insertion Sort,
Bluefsh scales linearly with its scenegraph size whereas Penrose scales superlinearly. Bluefsh is roughly 2x and 6x slower
than the original D3-based implementations of the Python Tutor and Ohm Parse Tree diagrams, respectively.

neighboring TitledBackgrounds. To create the fanned arrows,
we create a StackH of invisible Rect marks to represent diferent
regions of the disk and connect each arrow to a diferent region.
We ran into limitations with Bluefsh for aligning the widths of
the backgrounds across the four rows (Section 6.2). To address this
limitation, we used a special LayoutFunction relation for more
expressive bounding box constraints.

6.2 General Limitations
We encountered three recurring limitations while making our gallery.

Width and Height Alignment. We needed to align widths
and heights of elements in several of our diagrams. For example,
in the Baking Recipe diagram, the widths of all the backgrounds
in the ingredients column must be the same size, and similarly
for the backgrounds in the DFSCQ File System diagram. At frst,
aligning sizes may appear to be a straightforward extension of
the Align relation. But unlike vertical and horizontal positions,
which can often be any value, the width and height of an element
typically must be large enough to contain their child elements.
For example, the Background behind each ingredient should not
be smaller than the text it contains. Aligning the size of multiple
elements therefore requires determining their minimum sizes before
performing layout. UI frameworks circumvent this problem by
allowing a parent to query its children’s preferred sizes before
performing layout. We could adopt a similar approach.

Precise Alignment and Spacing. We ran into limitations when
specifying more precise element positioning. For example, the Blue-
fsh standard library does not including a Padding relation, so
we sometimes used a Stack with an invisible Rect to shift el-
ements. This workaround could be encapsulated in a custom re-
lation. Similarly, Align’s vertical alignments — top, centerY,
and bottom — are not sufcient for more precise alignments with
text. One often wants to align to text’s visual baseline rather than
the bottom of its bounding box. We worked around this problem by
manually nudging text slightly in several examples. UI frameworks
provide extensible guideline abstractions for working with text and
images. We could adapt these solutions to Bluefsh, and we have
already prototyped this feature.

Boundary Curve Abstraction. We also ran into limitations
of Bluefsh’s bounding box shape abstraction. For example, when

labelling the pulley in the Pulleys diagram and the points in Three-
Point Set Topologies, we manually adjusted the text to avoid in-
tersecting other shapes. Similarly, we manually constructed the
concave set in the bottom right of the Three-Point Set Topologies dia-
gram to avoid overlapping the purple region. These nudges cannot
be done automatically, because Bluefsh represents shapes during
layout using axis-aligned bounding boxes, which are too coarse for
shapes like circles or paths. These examples suggest the need for
a boundary curve abstraction. Such an abstraction would allow a
user to specify that two shapes should be nested or be made disjoint
with greater precision than our bounding box model. It would also
support precise labeling along curved lines and arrows. We have
made experimental extensions to the system that probe this idea,
and we believe this is a promising future approach.

6.3 Performance
Though performance was not the primary focus of Bluefsh’s de-
sign, we conducted a preliminary evaluation to assess the potential
impact of Bluefsh’s expressiveness on performance. Every example
in our gallery renders in under 175ms. Because Bluefsh executes
each layout node once, we hypothesized that Bluefsh’s perfor-
mance scales linearly with the number of scenegraph nodes. To
test this, we ran the Insertion Sort, Python Tutor, and Ohm Parse
Tree diagrams with diferent input data since they have existing
data-driven baseline implementations. The Insertion Sort diagram
was originally written in Penrose. The Python Tutor and Ohm Parse
Tree diagrams were both originally written in a UI framework using
D3. We evaluated these diagrams on an Apple M1 Pro SoC with
32GB of RAM using Chrome Version 126. We used the console’s
performance analysis to measure the total time required to layout
and render each diagram.

Figure 9 visualizes the results of our performance testing. We
found that the render time for all three diagrams scaled linearly
with the number of nodes in the scenegraph. Compared to Penrose
on Insertion Sort, Bluefsh scales linearly while Penrose scales su-
perlinearly. Bluefsh is roughly 2x slower than the original Python
Tutor implementation and roughly 6x slower than the original Ohm
Parse Tree implementation. These results suggest the expressiveness
of Bluefsh’s relation abstraction preserves the linear performance
scaling of local propagation and UI layout architectures. Future
work can improve the constant factor overhead and investigate

UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA Pollock et al.

incremental layout performance to facilitate real-time interaction
and animation use cases.

7 COMPARISON TO OTHER COMPOSITIONAL
APPROACHES

In this section, we use our selected examples from Section 6.1
to compare Bluefsh to two recent diagramming frameworks re-
searchers have developed. This complements the comparison to UI
frameworks we conducted in Section 3.

7.1 Penrose: Substance + Style
Penrose is a programming language for creating mathematical
diagrams [90]. It features three languages: Substance for specifying
the content of a diagram, Domain for defning the content primitives,
and Style for visualizing the Substance specifcation.

7.1.1 Language Design. Figure 10 compares a snippet of the Blue-
fsh and Penrose specifcations of the sorted region highlight in the
Insertion Sort diagram. The Bluefsh code uses a custom Dashed-
Border relation that encapsulates a customized Background
relation. This relation is then used to contain the frst and last
entry of the sorted region. The Penrose Substance fle (generated
automatically from a Python script) establishes the elements and
relations visualized in the diagram. These include an Array, the
array’s Elements, a Group of the sorted elements, the inGroup
relation between elements and the group, and Labels for the ar-
ray elements. The Style program selects the elements of the group,
collecting them into a variable es, and constructs a Rectangle
that contains them.

The specifcations difer primarily in how the code is organized.
Bluefsh colocates related data (via props) and display logic. Penrose
colocates all of the data and all of the display logic in Substance
and Style fles, respectively. By colocating data and logic, Bluefsh
allows a user to encapsulate reusable pieces as custom relations like
DashedBorder. Furthermore, Bluefsh encapsulates low-level
bounding box calculations behind primitive relations. By separat-
ing data and display logic, Penrose allows a user to more easily
restyle an entire diagram. For mathematical domains like Euclidean
geometry, which have a fxed set of primitive elements and rela-
tions, this separation is especially useful. It also frees the Substance
language from conforming to a component-based syntax, which
allows it to more easily match math notation.

The diferences between Penrose and Bluefsh stem directly from
the inspirations for each system. Penrose’s Substance and Style lan-
guages are loosely inspired by HTML and CSS, which similarly
separate content and display logic into two DSLs. Meanwhile, Blue-
fsh is inspired by UI component frameworks like React, which
are specifcally designed to couple related HTML, CSS, and JS to-
gether [39] as well as take advantage of the expressiveness of a
general-purpose host language [40].

7.1.2 Layout Engine. Penrose’s layout engine uses L-BFGS, a global
solver. The Insertion Sort diagram, while deeply nested, does not
contain constraints that show the full power of Penrose. This engine
can easily encode constraints that are useful for geometry like
ensuring the angles of a triangle are at least 30 degrees, that labels
do not overlap, or that arbitrary shapes are contained inside a circle.

Figure 10: A comparison between Bluefsh and Penrose’s spec-
ifcations of the dashed border in the Insertion Sort diagram.
Bluefsh uses a declarative, component-based approach while
Penrose’s Style language draws inspiration from CSS and uses
low-level bounding box calculations.

Bluefish: Composing Diagrams with Declarative Relations UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA

As a result of its more powerful layout engine, Penrose can ex-
press more perceptual relations than Bluefsh including geometric
relations like line-line intersection. Bluefsh’s standard library and
internal node abstractions would have to be signifcantly extended
to support these relations. Even then, it would not be easy to incor-
porate minimum angle requirements into a local propagation solver,
because they often must be solved globally. Future work may in-
vestigate whether how to integrate global solvers as sublanguages
within Bluefsh to extend its relational expressiveness.

7.2 Basalt: Components + Constraints
Basalt is a diagramming DSL embedded in Python [6]. It is a modern
exemplar of languages that extend a component model with a fexi-
ble constraint system [8, 36, 60, 61]. Basalt authors create Python
classes similar to UI framework components. However, they can
also author constraints to relate information between components.

7.2.1 Language Design. Figure 11 compares a snippet of the Blue-
fsh and Basalt specifcations for the dashed funnel linkages in the
DFSCQ diagram. The Bluefsh relation takes as input four names
that are used to relatively position the funnel. The Basalt code
instead sets up four abstract Points inside the Explode com-
ponent and aligns them to other components using constraints
defned outside the component.

The Bluefsh specifcation is more declarative. Rather than us-
ing bounding box and point constraints, the Bluefsh code uses
StackVs to position the funnel. The Basalt specifcation, while
lower level, is more malleable. The Explode component merely
defnes Points that represent the corners of the bounding box and
Lines related to those corners. It leaves the positioning of the cor-
ner Points for later. While the constraints could be moved inside
the Explode component to look more like the Bluefsh specifca-
tion, the Bluefsh specifcation must explicitly take in the corners as
dependencies. To allow Bluefsh to move the corner dependencies
outside, we would have to introduce a way to position elements
relative to their enclosing container and have those relations run
only after the container’s size has been set.

This example highlights a viscosity tradeof between the two
systems. In Bluefsh, authoring specifcations is more high-level as
a user can think in terms of relations like Stack and Line. How-
ever, extending Bluefsh with new kinds of primitive relations often
requires stepping down to the low-level layout API. On the other
hand, systems like Basalt are more viscous for end-users, because
they must deal with constraints. But creating custom constraints
is much more straightforward, because the user is already work-
ing with an expressive, low-level API. Future work may explore
whether the locality-expressiveness tradeofs we highlighted in
Section 4.3 could be extended to the level of bounding box and
point constraints.

7.2.2 Layout Engine. Basalt uses Z3 [22], an SMT solver, to con-
struct solutions to constraint problems. Z3 is very expressive and
can handle circular constraints and nonlinear inequalities. This ex-
pressiveness leads to some of the low-viscosity properties of Basalt’s
design. However, nearly all of the constraints used to create the DF-
SCQ diagram are sparse linear equations similar to the ones shown

Figure 11: A comparison between Bluefsh and Basalt’s speci-
fcations of the dashed funnel lines connecting neighboring
rows in the DFSCQ diagram. Bluefsh uses a more declarative
abstraction while Basalt uses low-level constraints.

UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA Pollock et al.

in Figure 11. As a result, it may be possible to achieve the same
functionality with a local propagation system like Bluefsh’s.

8 DESIGN REFLECTIONS WITH A
PROFESSIONAL CREATIVE CODER

We built the example gallery in collaboration with a professional
creative coder, Elliot Evans. Except for the Python Tutor diagram,
Evans directed the implementation of the examples. Through dis-
cussions during and after building these examples, we surfaced two
main insights about Bluefsh’s abstractions.

8.1 Relations provide a shallow learning curve
for UI developers

In addition to providing conceptual simplicity, relaxing the compo-
nent model makes Bluefsh easier to understand for UI developers.
Evans found that programming in Bluefsh without using relations
was very similar to using Tailwind. For example, consider Tail-
wind’s flex-row specifcation versus Bluefsh’s StackH:

<div class="flex flex-row gap-5">
<div>1</div>
<div>2</div>
<div>3</div>

</div>

<StackH>
<Text>1</Text>
<Text>2</Text>
<Text>3</Text>

</StackH>

Evans frst familiarized himself with Bluefsh by using it as a UI
layout engine only, without Ref. He then learned Bluefsh’s rela-
tions concept through a bridge example much like our example in
Figure 2. Specifcally, he started building the Quantum Circuit Equiv-
alence diagram solely using nested hierarchies before placing the
Background highlight using a Ref. After using Background,
a traditional UI component, in an overlapping context, Evans used
the Line relation, which has no direct UI component analog.

8.2 Bluefsh specifcations often move from
hierarchical to difuse

While Bluefsh specifcations often start like UI specifcations —
compact and hierarchical — Evans observed that his diagram spec-
ifcations typically became more difuse and relational over time.
We demonstrate this pattern in Section 4.3.

Through language design conversations with Evans, we realized
this behavior stems from our choice to unify diferent Gestalt re-
lations with a shared abstraction. Relations can be composed to
create new elements, which means relations must have bounding
boxes. But while some relations (e.g., Background) have bound-
ing boxes that are easy to defne, the bounding boxes of other
relations like Arrow are more ambiguous. Should Arrow’s bound-
ing box contain the bounding boxes of the elements it connects? To
facilitate easy and predictable switching between diferent relations,
we decided that all relations’ bounding boxes should contain their

children. While this approach lowers editing viscosity, it requires
users to denest specifcations earlier than they may expect.

For example, consider the Python Tutor diagram. It depicts pro-
gram state of a running Python program. In Bluefsh we construct
a top-level element that accepts a description of the stack and heap:

<PythonTutor
stack={[

{ variable: "c", value: pointer(0) },
{ variable: "d", value: pointer(1) },
{ variable: "x", value: "5" }]}

heap={[
tuple("1", pointer(1), pointer(2)),
tuple("1", "4"),
tuple("3", "10")]}

heapArrangement={[
[0, null, null],
[null, 1, 2]]}

/>

Each pointer corresponds to an Arrow in the diagram. We
initially wanted to place the Arrow relations corresponding to
stack pointers inside the stack element. This nesting would mirror
the data structure driving the visualization. However, the Arrow
relation’s bounding box contains the heap object it points to. The
Arrow must therefore be denested out of the stack element or else
the stack would contain the Arrow and thus the heap object. The
tradeof of this early denesting is that switching the Arrow relation
for a Background is a predictable, atomic edit. If the Arrow were
nested and its bounding box did not contain its children, the user
might be surprised that switching it to a Background would
suddenly include a heap object in the stack.

9 DISCUSSION AND FUTURE WORK
In this paper, we presented Bluefsh, a diagramming framework
based on relations that is declarative, composable, and extensible.
We have demonstrated how relaxing the component model trans-
fers the benefts of UI framework design to diagramming without
the need for completely new concepts like constraints. Relations
allow users to smoothly trade the local afordances of hierarchi-
cal specifcation for the expressive afordances of adjacency. Our
long-term goal is to make Bluefsh both a usable tool and a research
platform for investigating graphic representations from diagrams
to documents to notation augmentations the way Vega-Lite has
done for statistical graphics [71] and LLVM for compilers [51]. To
support this goal, we have released Bluefsh as an open source
project at bluefshjs.org, and present several promising directions
for future research and tool development.

Interactive and Animated Graphic Representations. In this
paper, we explored formalisms of relations for static graphics. An
immediate next step would be to consider how our abstractions
could be extended to interactive and animated diagrams. First, there
are temporal analogs to static Gestalt relations. For example, com-
mon fate, where elements travel in the same direction are grouped
together, is alignment applied to velocity [87]. Similarly, we could
think of Bluefsh’s Distribute as distributing elements along
a time axis to stagger movements in time, and a temporal Align

https://bluefishjs.org

Bluefish: Composing Diagrams with Declarative Relations UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA

as unifying the start or end of multiple animations. Data visualiza-
tion grammars have explored these temporal analogs. For example
Gemini provides concat and sync operations for temporal dis-
tribution and alignment, respectively [46]. Animations may also
be staged or nested, conveying information similar to common re-
gion, as in Canis/CAST [31, 32]. Or an animation may follow a path
between two elements to represent a temporal link between them.
There are analogs in interaction as well. Gestalt relations seem
to manifest in interactions as on-demand relations. For example,
brushing can be thought of as on-demand common region, and
generalized selections [35] allow users to select sets of elements
based on similar attributes.

Formalizing Visual Structure and Domain Semantics. While
our standard library of relations covers a large number of use cases,
many domains have diferent sets of primitive relations. For exam-
ple, Euclidean geometry features relations like line-line intersection
and perpendicular bisector. Similarly, specifc features of a line con-
vey semantic intent in sketched route maps [81]. A straight line
means “go down,” a curved line means “follow around,” and a line
with a sharp corner can signify a “turn.” These primitives tie closely
to the underlying semantics of the domains they visualize, synthetic
planar geometry and routes, respectively. Mackinlay’s expressive-
ness principle[56], Tversky’s correspondence principle [80], and
Kindlmann and Scheidegger’s algebraic design process [47] suggest
we may fnd many such mappings between graphics and domain
semantics. The core idea underlying Bluefsh is that more powerful
formalisms of these correspondences not only lower authoring vis-
cosity, but also capture more underlying semantic information for
later analysis and processing.

Towards Richer Tools for Graphic Representations. Devel-
oping these formal mappings also enables more powerful tools for
end-users. For instance, how might Bluefsh’s scenegraph — which
explicitly encodes relationships between elements — be automati-
cally retargeted for screen reader use, blending approaches found
in tools such as Olli [12], which produces a hierarchical structure
for navigating statistical graphics, and Data Navigator [25], which
provides methods for navigating adjacency structures? Similarly,
while diagramming environments such as StickyLines [18] have
reifed alignment and distribution, Bluefsh’s relations suggest the
possibility of a more general, consistent interface for allowing end-
users to directly manipulate Gestalt relations. Tools like Draco [58]
and Scout [77] have explored automatic recommendations of sta-
tistical graphics and UIs, respectively, based on studies from the
perceptual literature. By providing an explicit encoding of relations
at the language level, we believe Bluefsh can serve as the base
for exploring diagramming recommendations based on the relative
efectiveness of Gestalt relations.

ACKNOWLEDGMENTS
Thanks to Josh Horowitz for pointing us to modern UI local propa-
gation layouts; to Tom George for his help on a previous iteration
of the project; and to our anonymous reviewers for their thoughtful
feedback that clarifed our contributions. This work is supported
by the National Science Foundation under Grant No. 1745302.

REFERENCES
[1] [n. d.]. p5.js. https://github.com/processing/p5.js.
[2] [n. d.]. Subform | Dynamic layout meets direct manipulation — subformapp.com.

https://subformapp.com/.
[3] 2023. Custom layouts | Jetpack Compose. https://developer.android.com/jetpack/

compose/layouts/custom.
[4] 2024. ConstraintLayout in Compose | Jetpack Compose. https://developer.

android.com/jetpack/compose/layouts/constraintlayout.
[5] Dave Abrahams and John Harper. 2019. Building Custom Views with Swif-

tUI - WWDC19 - Videos - Apple Developer — developer.apple.com. https:
//developer.apple.com/videos/play/wwdc2019/237 and https://developer.apple.
com/documentation/swiftui/building_custom_views_in_swiftui.

[6] Anish Athalye. 2019. Experiments in constraint-based graphic design. https:
//www.anishathalye.com/2019/12/12/constraint-based-graphic-design/

[7] Greg J Badros, Alan Borning, and Peter J Stuckey. 2001. The Cassowary linear
arithmetic constraint solving algorithm. ACM Transactions on Computer-Human
Interaction (TOCHI) 8, 4 (2001), 267–306.

[8] Paul S Barth. 1986. An object-oriented approach to graphical interfaces. ACM
Transactions on Graphics (TOG) 5, 2 (1986), 142–172.

[9] Michael Benedikt and Christoph Koch. 2009. XPath leashed. ACM Computing
Surveys (CSUR) 41, 1 (2009), 1–54.

[10] Jacques Bertin. 1983. Semiology of graphics. University of Wisconsin press.
[11] Alan F Blackwell, Carol Britton, Anna Cox, Thomas RG Green, Corin Gurr, Gada

Kadoda, Maria S Kutar, Martin Loomes, Chrystopher L Nehaniv, Marian Petre,
et al. 2001. Cognitive dimensions of notations: Design tools for cognitive technol-
ogy. In Cognitive Technology: Instruments of Mind: 4th International Conference,
CT 2001 Coventry, UK, August 6–9, 2001 Proceedings. Springer Berlin Heidelberg,
325–341.

[12] Matt Blanco, Jonathan Zong, and Arvind Satyanarayan. 2022. Olli: An extensible
visualization library for screen reader accessibility. IEEE VIS Posters 6 (2022).

[13] Scott Boag, Don Chamberlin, Mary F Fernández, Daniela Florescu, Jonathan
Robie, Jérôme Siméon, and Mugur Stefanescu. 2002. XQuery 1.0: An XML query
language. (2002).

[14] Alan Borning, Richard Anderson, and Bjorn Freeman-Benson. 1996. Indigo: A
local propagation algorithm for inequality constraints. In Proceedings of the 9th
annual ACM symposium on User interface software and technology. 129–136.

[15] Michael Bostock, Vadim Ogievetsky, and Jefrey Heer. 2011. D3 data-driven
documents. IEEE transactions on visualization and computer graphics 17, 12 (2011),
2301–2309.

[16] Haogang Chen, Tej Chajed, Alex Konradi, Stephanie Wang, Atalay İleri, Adam
Chlipala, M Frans Kaashoek, and Nickolai Zeldovich. 2017. Verifying a high-
performance crash-safe fle system using a tree specifcation. In Proceedings of
the 26th Symposium on Operating Systems Principles. 270–286.

[17] Michael Chu. 2006. Dark Chocolate Brownies - Recipe File - Cooking For En-
gineers — cookingforengineers.com. https://www.cookingforengineers.com/
recipe/158/Dark-Chocolate-Brownies.

[18] Marianela Ciolf Felice, Nolwenn Maudet, Wendy E Mackay, and Michel
Beaudouin-Lafon. 2016. Beyond snapping: Persistent, tweakable alignment and
distribution with StickyLines. In Proceedings of the 29th Annual Symposium on
User Interface Software and Technology. 133–144.

[19] James Clark, Steve DeRose, et al. 1999. XML path language (XPath).
[20] I.F. Cruz and P.S. Leveille. 2000. Implementation of a constraint-based visualiza-

tion system. In Proceeding 2000 IEEE International Symposium on Visual Languages.
13–20. https://doi.org/10.1109/VL.2000.874345

[21] François Dagognet. 1973. Écriture et iconographie. (1973).
[22] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efcient SMT solver. In

International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337–340.

[23] Patrick Dubroy, Saketh Kasibatla, Meixian Li, Marko Röder, and Alex Warth.
2016. Language hacking in a live programming environment. In Proceedings of
the LIVE Workshop co-located with ECOOP 2016.

[24] Tim Dwyer, Kim Marriott, and Michael Wybrow. 2009. Dunnart: A constraint-
based network diagram authoring tool. In Graph Drawing: 16th International
Symposium, GD 2008, Heraklion, Crete, Greece, September 21-24, 2008. Revised
Papers 16. Springer, 420–431.

[25] Frank Elavsky, Lucas Nadolskis, and Dominik Moritz. 2023. Data Navigator: An
accessibility-centered data navigation toolkit. arXiv:2308.08475 [cs.HC]

[26] John Ellson, Emden Gansner, Lefteris Koutsofos, Stephen C North, and Gordon
Woodhull. 2001. Graphviz—open source graph drawing tools. In International
Symposium on Graph Drawing. Springer, 483–484.

[27] Yuri Engelhardt and Clive Richards. 2021. A universal grammar for specifying
visualization types. In Diagrammatic Representation and Inference: 12th Interna-
tional Conference, Diagrams 2021, Virtual, September 28–30, 2021, Proceedings 12.
Springer, 395–403.

[28] Matthias Felleisen. 1991. On the expressive power of programming languages.
Science of computer programming 17, 1-3 (1991), 35–75.

https://github.com/processing/p5.js
https://subformapp.com/
https://developer.android.com/jetpack/compose/layouts/custom
https://developer.android.com/jetpack/compose/layouts/custom
https://developer.android.com/jetpack/compose/layouts/constraintlayout
https://developer.android.com/jetpack/compose/layouts/constraintlayout
https://developer.apple.com/videos/play/wwdc2019/237
https://developer.apple.com/videos/play/wwdc2019/237
https://developer.apple.com/documentation/swiftui/building_custom_views_in_swiftui
https://developer.apple.com/documentation/swiftui/building_custom_views_in_swiftui
https://www.anishathalye.com/2019/12/12/constraint-based-graphic-design/
https://www.anishathalye.com/2019/12/12/constraint-based-graphic-design/
https://www.cookingforengineers.com/recipe/158/Dark-Chocolate-Brownies
https://www.cookingforengineers.com/recipe/158/Dark-Chocolate-Brownies
https://doi.org/10.1109/VL.2000.874345
https://arxiv.org/abs/2308.08475
https://cookingforengineers.com
https://developer.apple.com
https://subformapp.com

UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA Pollock et al.

[29] Dagognet François. 1969. Tableaux et langages de la chimie: Essai sur la représen-
tation.

[30] Emden R Gansner, Eleftherios Koutsofos, Stephen C North, and K-P Vo. 1993. A
technique for drawing directed graphs. IEEE Transactions on Software Engineering
19, 3 (1993), 214–230.

[31] Tong Ge, Bongshin Lee, and Yunhai Wang. 2021. Cast: Authoring data-driven
chart animations. In Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems. 1–15.

[32] Tong Ge, Yue Zhao, Bongshin Lee, Donghao Ren, Baoquan Chen, and Yunhai
Wang. 2020. Canis: A High-Level Language for Data-Driven Chart Animations.
In Computer Graphics Forum, Vol. 39. Wiley Online Library, 607–617.

[33] Pontus Granström. [n. d.]. Diagrammar: Simply Make Interactive Diagrams.
YouTube. https://www.youtube.com/watch?v=gT9Xu-ctNqI

[34] Philip J Guo. 2013. Online python tutor: embeddable web-based program visual-
ization for cs education. In Proceeding of the 44th ACM technical symposium on
Computer science education. 579–584.

[35] Jefrey Heer, Maneesh Agrawala, and Wesley Willett. 2008. Generalized selection
via interactive query relaxation. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. 959–968.

[36] Tyson R Henry and Scott E Hudson. 1988. Using active data in a UIMS. In Pro-
ceedings of the 1st annual ACM SIGGRAPH symposium on User Interface Software.
167–178.

[37] Jane Hofswell, Alan Borning, and Jefrey Heer. 2018. SetCoLa: High-Level
Constraints for Graph Layout. In Computer Graphics Forum, Vol. 37. Wiley Online
Library, 537–548.

[38] Danny Holten. 2006. Hierarchical edge bundles: Visualization of adjacency
relations in hierarchical data. IEEE Transactions on visualization and computer
graphics 12, 5 (2006), 741–748.

[39] Honeypot. [n. d.]. How A Small Team of Developers Created React at Facebook
| React.js: The Documentary. YouTube. https://www.youtube.com/watch?v=
8pDqJVdNa44&t=2451s

[40] Pete Hunt. [n. d.]. Pete Hunt: React: Rethinking best practices – JSConf EU. YouTube.
https://www.youtube.com/watch?v=x7cQ3mrcKaY

[41] Edwin L Hutchins, James D Hollan, and Donald A Norman. 1985. Direct manipu-
lation interfaces. Human–computer interaction 1, 4 (1985), 311–338.

[42] Dintomon Joy, M Sabir, Bikash K Behera, and Prasanta K Panigrahi. 2020. Imple-
mentation of quantum secret sharing and quantum binary voting protocol in the
IBM quantum computer. Quantum Information Processing 19 (2020), 1–20.

[43] David Kaiser. 2005. Physics and Feynman’s Diagrams: In the hands of a postwar
generation, a tool intended to lead quantum electrodynamics out of a decades-
long morass helped transform physics. American Scientist 93, 2 (2005), 156–165.

[44] Ian Kilpatrick. 2022. CSS Layout API Explained. https://github.com/w3c/css-
houdini-drafts/blob/main/css-layout-api/EXPLAINER.md.

[45] Hyeok Kim, Ryan Rossi, Fan Du, Eunyee Koh, Shunan Guo, Jessica Hullman, and
Jane Hofswell. 2022. Cicero: A declarative grammar for responsive visualization.
In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems.
1–15.

[46] Younghoon Kim and Jefrey Heer. 2020. Gemini: A grammar and recommender
system for animated transitions in statistical graphics. IEEE Transactions on
Visualization and Computer Graphics 27, 2 (2020), 485–494.

[47] Gordon Kindlmann and Carlos Scheidegger. 2014. An algebraic process for
visualization design. IEEE transactions on visualization and computer graphics 20,
12 (2014), 2181–2190.

[48] Ryan Krueger, Jesse Michael Han, and Daniel Selsam. 2021. Automatically Build-
ing Diagrams for Olympiad Geometry Problems.. In CADE. 577–588.

[49] Jill H Larkin and Herbert A Simon. 1987. Why a diagram is (sometimes) worth
ten thousand words. Cognitive science 11, 1 (1987), 65–100.

[50] Bruno Latour. 1986. Visualization and cognition: Thinking with eyes and hands.
Knowledge and society: Studies in the sociology of culture past and present 6, 1
(1986), 1–40.

[51] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for
lifelong program analysis & transformation. In International symposium on code
generation and optimization, 2004. CGO 2004. IEEE, 75–86.

[52] Paul Lettieri. 2022. Compose custom layouts with SwiftUI - WWDC22 - Videos
- Apple Developer — developer.apple.com. https://developer.apple.com/videos/
play/wwdc2022/10056/ and https://developer.apple.com/documentation/swiftui/
composing_custom_layouts_with_swiftui.

[53] Guozheng Li, Min Tian, Qinmei Xu, Michael J McGufn, and Xiaoru Yuan. 2020.
Gotree: A grammar of tree visualizations. In Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems. 1–13.

[54] Zhicheng Liu, Chen Chen, Francisco Morales, and Yishan Zhao. 2021. Atlas:
Grammar-based Procedural Generation of Data Visualizations. In 2021 IEEE
Visualization Conference (VIS). IEEE, 171–175.

[55] Dor Ma’ayan, Wode Ni, Katherine Ye, Chinmay Kulkarni, and Joshua Sunshine.
2020. How domain experts create conceptual diagrams and implications for tool
design. In Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems. 1–14.

[56] Jock Mackinlay. 1986. Automating the design of graphical presentations of
relational information. Acm Transactions On Graphics (Tog) 5, 2 (1986), 110–141.

[57] James Clerk Maxwell. 1911. Diagram.
[58] Dominik Moritz, Chenglong Wang, Gregory Nelson, Halden Lin, Adam M. Smith,

Bill Howe, and Jefrey Heer. 2019. Formalizing Visualization Design Knowledge as
Constraints: Actionable and Extensible Models in Draco. IEEE Trans. Visualization
& Comp. Graphics (Proc. InfoVis) (2019). http://idl.cs.washington.edu/papers/
draco

[59] James R Munkres. 1999. Topology (2 ed.). Pearson, Upper Saddle River, NJ.
[60] Brad A Myers. 1991. Graphical techniques in a spreadsheet for specifying user

interfaces. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. 243–249.

[61] Brad A Myers, Dario A Giuse, Roger B Dannenberg, Brad Vander Zanden, David S
Kosbie, Edward Pervin, Andrew Mickish, and Philippe Marchal. 1995. GARNET
comprehensive support for graphical, highly interactive user interfaces. In
Readings in Human–Computer Interaction. Elsevier, 357–371.

[62] Greg Nelson. 1985. Juno, a constraint-based graphics system. In Proceedings
of the 12th annual conference on Computer Graphics and Interactive Techniques.
235–243.

[63] Don Norman. 2014. Things that make us smart: Defending human attributes in
the age of the machine. Diversion Books.

[64] Donghao Ren, Bongshin Lee, and Matthew Brehmer. 2018. Charticulator: Inter-
active construction of bespoke chart layouts. IEEE transactions on visualization
and computer graphics 25, 1 (2018), 789–799.

[65] Clive Richards. 1984. Diagrammatics. Ph. D. Dissertation. Royal College of Art.
Available from: diagrammatics.com.

[66] Clive Richards. 2002. The fundamental design variables of diagramming. Dia-
grammatic representation and reasoning (2002), 85–102.

[67] Kathy Ryall, Joe Marks, and Stuart Shieber. 1997. An interactive constraint-based
system for drawing graphs. In Proceedings of the 10th annual ACM symposium on
User interface software and technology. 97–104.

[68] Grant Sanderson. 2018. Manim. https://github.com/ManimCommunity/manim.
[69] Michael Sannella. 1994. Skyblue: A multi-way local propagation constraint solver

for user interface construction. In Proceedings of the 7th annual ACM symposium
on User interface software and technology. 137–146.

[70] Michael Sannella, John Maloney, Bjorn Freeman-Benson, and Alan Borning. 1993.
Multi-way versus one-way constraints in user interfaces: Experience with the
deltablue algorithm. Software: Practice and Experience 23, 5 (1993), 529–566.

[71] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jefrey Heer.
2016. Vega-lite: A grammar of interactive graphics. IEEE transactions on visual-
ization and computer graphics 23, 1 (2016), 341–350.

[72] Guy Lewis Steele Jr. 1980. The Defnition and Implementation of a Computer Pro-
gramming Language Based on Constraints. Technical Report. MASSACHUSETTS
INST OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB.

[73] Kozo Sugiyama. 2002. Graph drawing and applications for software and knowledge
engineers. Vol. 11. World Scientifc.

[74] Ivan E Sutherland. 1963. Sketchpad: A man-machine graphical communication
system. In Proceedings of the May 21-23, 1963, spring joint computer conference.
329–346.

[75] Masaki Suwa and Barbara Tversky. 2002. External representations contribute to
the dynamic construction of ideas. In Diagrammatic Representation and Inference:
Second International Conference, Diagrams 2002 Callaway Gardens, GA, USA, April
18–20, 2002 Proceedings 2. Springer, 341–343.

[76] Knut Sveidqvist and Sidharth Vinod. 2014. Mermaid. https://github.com/mermaid-
js/mermaid.

[77] Amanda Swearngin, Chenglong Wang, Alannah Oleson, James Fogarty, and
Amy J Ko. 2020. Scout: Rapid exploration of interface layout alternatives through
high-level design constraints. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems. 1–13.

[78] Shin Takahashi, Satoshi Matsuoka, Ken Miyashita, Hiroshi Hosobe, and Tomihisa
Kamada. 1998. A constraint-based approach for visualization and animation.
Constraints 3 (1998), 61–86.

[79] Barbara Tversky. 2001. Spatial schemas in depictions. In Spatial schemas and
abstract thought, Vol. 79. 111.

[80] Barbara Tversky. 2019. Mind in motion: How action shapes thought. Hachette UK.
[81] Barbara Tversky, Jef Zacks, Paul Lee, and Julie Heiser. 2000. Lines, blobs, crosses

and arrows: Diagrammatic communication with schematic fgures. In Theory and
Application of Diagrams: First International Conference, Diagrams 2000 Edinburgh,
Scotland, UK, September 1–3, 2000 Proceedings 1. Springer, 221–230.

[82] Atze van Der Ploeg. 2014. Drawing non-layered tidy trees in linear time. Software:
Practice and Experience 44, 12 (2014), 1467–1484.

[83] Christopher J Van Wyk. 1982. A high-level language for specifying pictures.
ACM Transactions on Graphics (TOG) 1, 2 (1982), 163–182.

[84] Bradley T Vander Zanden, Richard Halterman, Brad A Myers, Rich McDaniel, Rob
Miller, Pedro Szekely, Dario A Giuse, and David Kosbie. 2001. Lessons learned
about one-way, datafow constraints in the Garnet and Amulet graphical toolkits.
ACM Transactions on Programming Languages and Systems (TOPLAS) 23, 6 (2001),
776–796.

https://www.youtube.com/watch?v=gT9Xu-ctNqI
https://www.youtube.com/watch?v=8pDqJVdNa44&t=2451s
https://www.youtube.com/watch?v=8pDqJVdNa44&t=2451s
https://www.youtube.com/watch?v=x7cQ3mrcKaY
https://github.com/w3c/css-houdini-drafts/blob/main/css-layout-api/EXPLAINER.md
https://github.com/w3c/css-houdini-drafts/blob/main/css-layout-api/EXPLAINER.md
https://developer.apple.com/videos/play/wwdc2022/10056/
https://developer.apple.com/videos/play/wwdc2022/10056/
https://developer.apple.com/documentation/swiftui/composing_custom_layouts_with_swiftui
https://developer.apple.com/documentation/swiftui/composing_custom_layouts_with_swiftui
http://idl.cs.washington.edu/papers/draco
http://idl.cs.washington.edu/papers/draco
https://github.com/ManimCommunity/manim
https://github.com/mermaid-js/mermaid
https://github.com/mermaid-js/mermaid
https://diagrammatics.com
https://developer.apple.com

Bluefish: Composing Diagrams with Declarative Relations

[85] Vennobennu. 2024. feat: Add array-manipulation diagram to gallery · Pull Request
#1716 · penrose/penrose — github.com. https://github.com/penrose/penrose/pull/
1716.

[86] Jörg von Engelhardt. 2002. The language of graphics: A framework for the analysis
of syntax and meaning in maps, charts and diagrams. Yuri Engelhardt.

[87] J. Wagemans, J. H. Elder, M. Kubovy, S. E. Palmer, M. A. Peterson, M. Singh, and
R. von der Heydt. 2012. A century of Gestalt psychology in visual perception: I.
Perceptual grouping and fgure-ground organization. Psychol Bull 138, 6 (Nov
2012), 1172–1217.

UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA

[88] Hadley Wickham. 2010. A layered grammar of graphics. Journal of Computational
and Graphical Statistics 19, 1 (2010), 3–28.

[89] Ryan Yates and Brent A Yorgey. 2015. Diagrams: a functional EDSL for vector
graphics. In Proceedings of the 3rd ACM SIGPLAN International Workshop on
Functional Art, Music, Modelling and Design. 4–5.

[90] Katherine Ye, Wode Ni, Max Krieger, Dor Ma’ayan, Jenna Wise, Jonathan Aldrich,
Joshua Sunshine, and Keenan Crane. 2020. Penrose: from mathematical notation
to beautiful diagrams. ACM Transactions on Graphics (TOG) 39, 4 (2020), 144–1.

[91] Chris Yu, Henrik Schumacher, and Keenan Crane. 2021. Repulsive curves. ACM
Transactions on Graphics (TOG) 40, 2 (2021), 1–21.

https://github.com/penrose/penrose/pull/1716
https://github.com/penrose/penrose/pull/1716
https://github.com

	Abstract
	1 Introduction
	2 Related Work
	2.1 Relations and Diagrams
	2.2 Diagramming Languages and Environments
	2.3 Diagramming Layout Engines

	3 Comparative Usage Scenarios
	3.1 How UI Components Fail For Diagrams
	3.2 Bluefish

	4 The Bluefish Language
	4.1 Design Goals
	4.2 Language Design
	4.3 Design Implication: Smoothly Trading Locality for Expressiveness

	5 The Bluefish Relational Scenegraph
	5.1 Adapting a Compound Graph Structure
	5.2 Computing Layout by Conservatively Extending UI Tree-Based Local Propagation

	6 Example Gallery
	6.1 Selected Examples
	6.2 General Limitations
	6.3 Performance

	7 Comparison to Other Compositional Approaches
	7.1 Penrose: Substance + Style
	7.2 Basalt: Components + Constraints

	8 Design Reflections with a Professional Creative Coder
	8.1 Relations provide a shallow learning curve for UI developers
	8.2 Bluefish specifications often move from hierarchical to diffuse

	9 Discussion and Future Work
	Acknowledgments
	References

