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Figure 1: Diagrams built with the Bluefsh language. These graphics run the gamut from computer science to physics to math, 
and are constructed with declarative, composable, extensible relations. From left to right: a quantum circuit equivalence [42], 
topologies [59], a Python Tutor diagram [34], an Ohm parse tree [23], and a physics pulley diagram [49]. 

ABSTRACT 
Diagrams are essential tools for problem-solving and communica-
tion as they externalize conceptual structures using spatial rela-
tionships. But when picking a diagramming framework, users are 
faced with a dilemma. They can either use a highly expressive but 
low-level toolkit, whose API does not match their domain-specifc 
concepts, or select a high-level typology, which ofers a recognizable 
vocabulary but supports a limited range of diagrams. To address 
this gap, we introduce Bluefsh: a diagramming framework inspired 
by component-based user interface (UI) libraries. Bluefsh lets users 
create diagrams using relations: declarative, composable, and exten-
sible diagram fragments that relax the concept of a UI component. 
Unlike a component, a relation does not have sole ownership over 
its children nor does it need to fully specify their layout. To render 
diagrams, Bluefsh extends a traditional tree-based scenegraph to 
a compound graph that captures both hierarchical and adjacent 
relationships between nodes. To evaluate our system, we construct 
a diverse example gallery covering many domains including mathe-
matics, physics, computer science, and even cooking. We show that 
Bluefsh’s relations are efective declarative primitives for diagrams. 
Bluefsh is open source, and we aim to shape it into both a usable 
tool and a research platform. 
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1 INTRODUCTION 
Diagrams are essential to problem-solving and communication 
as they externalize conceptual structures as spatial relationships, 
thereby aiding recall, inference, and calculation [49, 63, 75]. By 
representing information in new ways, the best diagrams unlock 
new ways of thinking about a problem domain — for example, by 
tracing events as a two-dimensional trajectory through space and 
time, Feynman diagrams opened “new calculational vistas” and 
quickly spread to many corners of modern physics [43]. Similarly, 
citing Dagonet, Latour argued that “no scientifc discipline exists 
without frst inventing a visual and written language which allows 
it to break with its confusing past” [21, 29, 50]. Thus, scientifc 
advances go hand-in-hand with novel diagrammatic notation. 

To produce diagrams, authors increasingly turn to programmatic 
frameworks as these tools enable data-driven diagramming, tar-
geted rendering for diferent platforms (e.g., as vector graphics for 
web-based publishing or rasterized images for print-based media), 
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and, more recently, automatic generation via large language models 
(LLMs). Existing frameworks, however, lie along a spectrum that 
trades of expressiveness for abstraction. At one end are highly 
expressive toolkits, such as D3 [15] or p5.js [1], that force authors 
to grapple with low-level concerns that are often orthogonal to the 
semantics of their domain-specifc diagrams (e.g., manipulating the 
DOM or issuing Canvas drawing commands). At the other end are 
high-level typologies, such as Mermaid [76], which ofer a recogniz-
able vocabulary of diagrams (fowcharts, sequence diagrams, etc.) 
but limit authors to only the available diagram types, with only a 
handful of customization options. 

To better balance between expressiveness and abstraction, we 
introduce Bluefsh, a diagramming framework inspired by modern 
component-based user interface (UI) toolkits such as React. The 
basic building block of UI toolkits, the component, ofers authors 
several advantages: UIs can be specifed declaratively, in terms of 
what the interface should look like rather than how it should be 
laid out and rendered; components can be composed together (e.g., 
by nesting them) to express custom UIs; and authors can extend 
the specifcation language with custom components (e.g., to cap-
ture a recurring design pattern and make it reusable). However, 
the component model imposes limitations when applied to author-
ing diagrams (Section 3). Components are assembled in tree-based 
hierarchies. But unlike UI elements, diagrammatic relationships 
frequently overlap — a single element (e.g., a shape) may partici-
pate in many visual relationships simultaneously (Figure 1). These 
relationships cannot be easily expressed in a structure where an 
element can only have a single parent. As a result, in UI frame-
works, diagram authors are forced to adopt low-level workarounds 
(e.g., manual bounding box calculations) that undo many of the 
advantages that components ofer. 

In response, Bluefsh relaxes the defnition of a component to a 
relation (Section 4.2). A relation, unlike a component, does not have 
sole ownership over its children nor does it need to fully specify 
their layout. Rather, a child element can be shared between multi-
ple relations through scoped declarative references, and its layout 
determined jointly by all parents. With these changes, authors can 
smoothly trade locality for expressiveness (Section 4.3) — opting 
for a slightly more difuse specifcation as it enables a more nimble 
prototyping process through the design space — without sacrifcing 
the benefts of declarativity, composability, or extensibility. 

Authors construct Bluefsh diagrams via the JSX syntax exten-
sion, which the language runtime compiles into a compound scene-
graph (Section 5) — an extension of a traditional tree-based scene-
graph that captures both hierarchical and adjacency relationships 
between nodes. In contrast to traditional scenegraphs, compound 
scenegraphs introduce two challenges for layout: a node’s layout 
may be specifed by too few or too many parents. Thus, to handle 
underconstrained systems, Bluefsh lazily materializes coordinate 
transforms (Section 5.2.3) to ensure references can be properly re-
solved, even if the referent has not yet been fully positioned; to 
handle overconstrained systems, Bluefsh tracks bounding box own-
ership (Section 5.2.4) and notifes the user when relations confict. 

To evaluate Bluefsh, we developed a diverse gallery of example 
diagrams in collaboration with Elliot Evans, a professional creative 

coder1 (Section 6). These diagrams span several domains includ-
ing computer science, topology, physics, and cooking. We evaluate 
Bluefsh’s performance on three examples in this gallery and fnd 
that Bluefsh’s layout time scales linearly with the size of the scene-
graph (Section 6.3). Additionally, we compare the relational design 
of Bluefsh to the designs of Penrose [90] and Basalt [6], two di-
agramming frameworks with diferent approaches to extending 
UI composition (Section 7). Bluefsh’s component-inspired abstrac-
tion colocates data and display logic while Penrose, inspired by 
HTML and CSS, groups data and display logic separately. Bluefsh 
uses declarative references that describe spatial relationships while 
Basalt uses low-level constraints. Finally, we refect with Evans on 
Bluefsh’s abstraction design (Section 8). We fnd that relaxing the 
component model provides a shallow learning curve for UI develop-
ers and that Bluefsh’s relational abstraction pushes specifcations 
to be less hierarchical and more difuse. 

Our long-term goal is to make Bluefsh both a usable tool and a 
research platform for investigating graphic representations from di-
agrams to documents to notation augmentations the way Vega-Lite 
has done for statistical graphics [71] and LLVM for compilers [51]. 
To support this goal, we have released Bluefsh as an open source 
project at bluefshjs.org, and we present several promising direc-
tions for future research and tool development (Section 9). 

2 RELATED WORK 
We frst discuss the role of relations in diagrams, then we survey 
existing diagramming languages and environments, and fnally we 
discuss approaches to layout. 

2.1 Relations and Diagrams 
Relations are central to diagramming. According to James Clerk 
Maxwell, a diagram is “a fgure drawn in such a manner that the 
geometrical relations between the parts of the fgure illustrate rela-
tions between other objects” [57]. One salient kind of geometrical 
relation are Gestalt relations [87], a collection of primitive visual 
relations that associate elements together. Some examples include 
distributing items with uniform density; aligning elements along 
a particular spatial axis; containing elements in a common region; 
and connecting elements with lines or arrows. Bluefsh’s relational 
standard library corresponds loosely to these relations: Distrib-
ute to uniform density, Align to alignment, Background to 
common region, and Arrow and Line to connectedness. Stack 
uses a combination of alignment and uniform density. 

Several researchers have formally analyzed diagrams in terms of 
their relations. Richards extends Bertin’s retinal variables (shape, 
color, size, etc.) [10] with Gestalt principles to describe diagrams [65]. 
Building on this work, Engelhardt proposes a recursive language 
for diagram analysis [86]. The two have since collaborated on the 
VisDNA analysis grammar [27]. Larkin and Simon analyze dia-
grams by constructing formal relational data structures [49]. These 
approaches have informed Bluefsh’s own relational formalism, but 
whereas these frameworks are designed for analysis, Bluefsh allows 
a user to generate a diagram from a formal relational description. 

1In recognition of his contribution, we include Evans as a co-author on this paper. 

https://bluefishjs.org
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2.2 Diagramming Languages and Environments 
Direct manipulation editors like Figma, Omnigrafe, and tldraw 
allow users to align and distribute objects as well as attach arrows 
so they move when their attached objects are dragged. StickyLines 
makes alignment and distribution persistent, frst-class objects 
that can be manipulated [18]. Environments like Sketchpad [74], 
TRIP [78], GLIDE [67], Juno [62], Dunnart [24], Delaunay [20], 
Subform [2], and Charticulator [64], have integrated persistent 
relations in some form. Bluefsh complements these approaches, 
because diagramming environments are typically based on a text 
representation that captures object state and sometimes constraints 
or relations between them. Text representations are typically better 
for defning and using abstractions than are direct manipulation 
environments. Text thus facilitates authoring data-driven diagrams 
and creating custom, reusable relation abstractions. 

Some diagramming languages are restricted to just one or a 
few diagram types. GoTree supports tree diagrams [53], and Set-
CoLa [37] and Graphviz [26] support node-link graphs using re-
lations like alignment, spatial proximity, and connectedness. In 
contrast, Bluefsh provides a relational standard library that is ap-
plicable across diagram types as well as mechanisms that allow 
users to customize and extend this set of relations. 

General purpose diagramming languages provide various mecha-
nisms for composition. Some UI frameworks, including Garnet [61], 
Grow [8], and Jetpack Compose [4], extend the component model 
with an additional concept of a constraint. Constraints are declar-
ative equations or inequalities between variables that are solved 
by a constraint solver. Basalt [6] is a diagramming framework that 
does this as well. Juno [62] and IDEAL [83] allow users to spec-
ify reusable procedures that comprise collections of constraints. 
More recent diagramming systems have experimented with other 
abstractions. Haskell diagrams [89] and Diagrammar [33] extend 
components with coordinate system modifers. For example, Haskell 
diagrams’ align function modifes the local origin of a compo-
nent. Manim [68] is a Python library for making animated dia-
grams. It extends components with imperative actions. For example, 
Manim provides a next_to method for shapes that, while sim-
ilar to Bluefsh’s Stack, mutates objects. This API is useful for 
making animations where objects change over time. Penrose [90], 
a language for mathematical diagrams, uses constraints. But in-
stead of organizing code with components, specifcations are split 
across a Substance fle and a Style fle that are inspired by 
the split between HTML and CSS. Bluefsh draws inspiration from 
these systems’ approaches to composition. However, rather than 
augmenting components with a new constraints concept, Bluefsh 
relaxes the component model to relations. This provides a more con-
sistent representation for relations than previous systems, which 
enables authors to more smoothly trade locality for expressiveness. 

2.3 Diagramming Layout Engines 
Laying out a diagram typically involves solving a system of con-
straints. Some engines use iterative methods that gradually con-
verge on a solution such as Newton-Raphson [62], force-direction [37, 
67], gradient descent [24], and L-BFGS [90]. These methods can 
handle a diverse collection of constraints and can provide best-
efort solutions when systems are unsatisfable. Other systems pick 

a fxed constraint language and a specialized solver for it. TRIP [78], 
IDEAL [83], GoTree [53], and Charticulator [64], for example, use 
linear programming. Basalt [6] lays out diagrams using SMT. 

The above solvers are global: they solve an entire constraint 
system simultaneously. In contrast, local propagation methods fow 
information incrementally between constraints. UI toolkits such 
as Garnet [61], Grow [8], and Apogee [36] use this approach. In 
contrast to global solvers, local solvers are much simpler. Because 
they solve systems locally, it is easier to debug them when they 
go wrong. However, they can be less expressive. For example, a 
global solver can create an equilateral triangle from the constraints 
that three points are equidistant, but this cycle is not solvable with 
local propagation. More generally, global solvers tend to be better 
at continuous, geometric problems while local propagation solvers 
tend to be better at discrete problems. The UI layout engines in 
CSS [44], Android’s Jetpack Compose [3], and Apple’s SwiftUI [52] 
all employ local propagation strategies that are very similar to 
each other. Just as we relax components to relations, we similarly 
generalize modern UI layout architectures. 

3 COMPARATIVE USAGE SCENARIOS 
To better motivate the need for Bluefsh, and the design of its 
language, we begin with a walkthrough of how an author might 
construct a simple diagram (Figure 2) with common UI frameworks 
and compare what the process looks like with Bluefsh instead. 
This diagram depicts a row of the four terrestrial planets, with an 
annotation on Mercury. 

3.1 How UI Components Fail For Diagrams 
For this walkthrough, we imagine an idealized UI framework. Since 
React relies on HTML and CSS to perform layout, we borrow com-
ponent abstractions from SwiftUI and Jetpack Compose and express 
them with React’s syntax for easier comparison with Bluefsh. 

A user might start by creating a StackH (a horizontal stack, 
or row) of Circle marks and nest this inside a Background 
component: 

<Background background={() => ... }> 
<StackH spacing={50}> 

<Circle r={15} fill={"#EBE3CF"} ... /> 
<Circle r={36} fill={"#DC933C"} ... /> 
<Circle r={38} fill={"#179DD7"} ... /> 
<Circle r={21} fill={"#F1CF8E"} ... /> 

</StackH> 
</Background> 

But problems quickly arise when they try to annotate Mercury 
with some text. Ideally, the author should be able to place a Text 
component relative to the planet’s position. That way if, for ex-
ample, the StackH’s spacing or layout changed, the Text would 
move with it. However, the planet component is already contained 
within the StackH so it cannot participate directly in any other 
spatial relationships.2 

2Note: One might be tempted to group the Mercury text and planet into a new compo-
nent and use that in the StackH. But the Mercury text is longer than the planet, so 
grouping them together will afect the spacing between the planets. 
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Figure 2: A comparison of specifying a simple diagram of the four terrestrial planets in a UI framework and in Bluefsh. In both 
cases the user (1) makes a horizontal stack (StackH) of Circles contained in a Background; (2) places a Text component 
above Mercury; and (3) surrounds the annotation and the planet with a background. In a UI framework, while (1) is declarative, 
(2) and (3) require error-prone, low-level bounding box computations. In contrast, all three steps are declarative in Bluefsh. 

Situations like these can arise when specifying UIs as well (e.g., 
when placing a tooltip), so UI frameworks provide escape hatches 
to express more complicated layouts. A common escape hatch is 
a low-level layout or constraint API based on bounding boxes [3, 
4, 52]. For the purposes of demonstration, we present this as a 
hypothetical useMeasure hook, akin to those found in React. The 
useMeasure hook is a function that provides a reference that can 
be assigned to a component and a bounding box object that can 
be used to read and write dimensions of the referred component. 
Using this hook, the author could reference the bounding box of 
the Mercury circle and use it to position the text. They would frst 
introduce a measure for Mercury, consisting of a reference and its 
bounding box: 

const [mercury, mercuryBounds] = useMeasure(); 

Then they would assign the mercury ref to the Circle: 

<Circle ref={mercury} r={15} ... /> 

Finally, they would use this to compute the position of a new 
Text component: 

<Text bbox={{ bottom: mercuryBounds.top - 30, 
centerX: mercuryBounds.centerX }}> 

Mercury 
</Text> 

and that they have to ofset the bottom of the Text component 
from the top of the Circle, and not vice versa. 

These low-level escape hatches color the rest of the specif-
cation. Suppose the author now wants to place a Background 
behind the planet and the text to further emphasize their relation-
ship. Again, since the Circle and the Text components have 
diferent parents, they cannot also be children of another Back-
ground component. Instead the author must again use bounding 
boxes. They frst add a new measure: 

const [label, labelBounds] = useMeasure(); 

Then they assign it to the Text: 

<Text ref={label} ...> 
Mercury 

</Text> 

And fnally they must perform another complicated bounding 
box computation to set the size of the background so that it contains 
both the planet and the label: 

<Rect 
fill="none" 
stroke="black" 
stroke-width={3} 
bbox={{ 

left: min(mercuryBounds.left, ...), 
top: min(mercuryBounds.top, ...), 
right: max(mercuryBounds.right, ...), Unlike , this step requires the user to suddenly switch the 
bottom: max(mercuryBounds.bottom, ...), 

level of abstraction they are working at: thinking explicitly about }}
bounding boxes. Moreover, the user must remember that the y-axis />
of the coordinate system points down (they must use -30 not +30) 
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To summarize, UI frameworks can prove to be quite brittle when 
expressing even very simple diagrams. This is because diagrams of-
ten contain relationships that break out of a tree-shaped component 
hierarchy. As a result users must resort to low-level escape hatches 
that do not closely match the semantics they want to express. 

3.2 Bluefsh 
Now we consider how the same diagram is authored in Bluefsh. 

In Bluefsh the user begins the same way as in the UI frame-
work, except that their code is contained within a Bluefish tag: 

<Bluefish> 
<Background background={() => ...}> 

<StackH spacing={50}> 
<Circle r={15} fill={"#EBE3CF"} ... /> 
<Circle r={36} fill={"#DC933C"} ... /> 
<Circle r={38} fill={"#179DD7"} ... /> 
<Circle r={21} fill={"#F1CF8E"} ... /> 

</StackH> 
</Background> 

</Bluefish> 

This tag demarcates the region of their specifcation that uses 
Bluefsh’s relations — a relaxed defnition of a UI component. While 
Background and StackH appear identically to their UI counter-
parts, in Bluefsh we consider them to be relations and they can be 
used in more scenarios than before. 

Rather than resort to bounding box computations to add the 
label, the user can use a relation instead. To do this, they frst name 
the Mercury Circle so it can be referenced: 

<Circle name="mercury" r={15} ... /> 

Then they write a StackV relation (StackH’s vertical counter-
part) and select the existing planet element using a Ref component: 

</Background> 
<StackV spacing={30}> 

<Text>Mercury</Text> 
<Ref select="mercury" /> 

</StackV> 
</Bluefish> 

Bluefsh provides this special Ref component to allow relations 
to overlap — that is, for the same child element to participate in 
multiple relations simultaneously. Roughly speaking, Ref works 
as a proxy or stand-in for the element it selects. Since the StackH 
already placed the “mercury” Circle, the StackV treats it as a 
fxed element and positions the Text mark above it. 

Compared to the explicit bounding box computations approach, 
using Bluefsh’s relations means the user does not have to remember 
low-level details like whether the label’s bottom or top must be 
ofset from the circle’s top or bottom. Moreover, this specifcation is 
more declarative and has a closer mapping to the resultant diagram: 
as the Text mark is specifed before the Ref, the label is vertically 
stacked above the Mercury circle — a relationship they would have 
had to previously decode from low-level calculations. 

To place the rectangle behind the planet and the label, the 
user can wrap their new StackV in a Background relation: 

</Background> 
<Background background={() => ...}> 

<StackV spacing={30}> 
<Text>Mercury</Text> 
<Ref select="mercury" /> 

</StackV> 
</Background> 

</Bluefish> 

Compared to the UI framework approach, Bluefsh’s relations 
allow the author to specify this diagram much more consistently. 
A Stack is a Stack and a Background is a Background re-
gardless of whether it is used in a conventional hierarchy or by 
referring to existing elements using Ref. This consistency extends 
the declarative nature of UI specifcations to diagrams. As a result, 
compared to a UI framework, an author can create many more 
graphics using high-level APIs that closely match their intent. 

4 THE BLUEFISH LANGUAGE 
Bluefsh is a domain-specifc language (DSL) embedded in Type-
Script comprising a standard library of basic marks and relations; 
scopes and references for overlapping relations; and helper func-
tions and components for composing relations to create new com-
posite marks and relations. Figure 3 lists Bluefsh’s API. 

The key innovation in Bluefsh is its relation abstraction. To ad-
dress the limitations we describe in Section 3, relations relax the 
component model by allowing child elements to be shared across 
multiple parents via scoped declarative references. Moreover, a rela-
tion, unlike a component, can leave the sizes and positions of its 
children underspecifed. As a result, the Bluefsh relation concept 
allows users to smoothly trade locality for expressiveness (Sec-
tion 4.3). By gradually making a specifcation more difuse, a user 
can unlock spaces of atomic edits that they can then rapidly explore 
to prototype alternate diagram designs. 

4.1 Design Goals 
Motivated by the diagramming literature and by research on nota-
tional afordances, we identify three design goals to support expres-
sive and fexible diagram authoring that UI components already 
exemplify. To these three, we add a fourth goal specifc to diagrams 
that UI components poorly support. 

Declarative. Declarative languages are popular across a range of 
domains (including web design via HTML/CSS, data querying with 
SQL, and data visualization using libraries such as Vega-Lite [71] or 
ggplot2 [88]), because they decouple specifcation (the what) from 
execution (the how). As a result, authors are able to focus on their 
domain-specifc concerns — in our case, expressing the semantics 
of their diagram — rather than contending with low-level compu-
tational and rendering considerations. Declarative specifcation is 
particularly important for diagramming as authors come from a 
variety of disciplinary backgrounds, with varying levels of expertise 
with reasoning about execution considerations. 

Composable. In contrast to diagram typologies (e.g., Mermaid [76]) 
which ofer authors monolithic diagram types to pick between, we 
aim to achieve a greater expressive gamut by identifying a prim-
itive set of building blocks that authors can combine together to 
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achieve their desired output. UI components support composition 
through nesting: a component can be instantiated within another. 
This nesting structure is possible because components make few 
assumptions about the styling, layout, or state of their surround-
ing context. As a result, this compositional approach also allows 
authors to reason about their specifcation in a more localized 
manner — understanding one part at a time. Locality is especially 
important for authoring diagrams, which are often complex and 
non-hierarchical structures. 

Extensible. While basic graphical shapes and elements — including 
rectangles, circles, lines, and text — provide the foundations of UIs 
and diagrams, they can present a greater articulatory distance [41] 
for expressing the semantics of a diagram than a more domain-
specifc set of primitives (e.g., “pulleys,” “weights,” and “ropes” for 
a physics diagram). As Ma’ayan & Ni et al. [55] and the Cognitive 
Dimensions of Notations framework [11] describe, it is important 
that authors have a specifcation language that has a correspon-
dence [55] or close mapping [11] to the vocabulary of their domain. 
However, it is impossible for language designers to anticipate ev-
ery possible primitive for every potential domain. And, even if one 
could produce such a collection, it would impose an enormous main-
tenance burden on those designers. Thus, following UI components, 
Bluefsh empowers authors to create domain-specifc primitives. 

Finally, there is one additional design goal that a diagramming 
language must satisfy that UI components do not: 

Overlapping. UI components can only relate to one-another 
via hierarchical nesting. This nesting partitions the visual plane 
into isolated sections that cannot easily communicate or be visually 
associated with each other except through a shared ancestor. Parti-
tions help UI components achieve composability, because they can 
be reasoned about separately. But this trades of the expressiveness 
we need for diagramming. Diagram elements frequently crosscut a 
purely hierarchical structure — for example, the Mercury Circle 
in Figure 2 participates in both a horizontal relationship with the 
other planetary circles and a vertical relationship with its text label. 
Ideally a diagram author should be able to leverage locality when 
they can and expressiveness when they must. 

4.2 Language Design 
4.2.1 Marks. A mark is a basic visual element. Bluefsh’s mark 
standard library comprises Rect, Circle, Ellipse, Path, Im-
age, and Text. Marks are thin wrappers around SVG primitives, 
except for Text. Text wraps visx’s Text primitive, which pro-
vides better support for text layout than SVG’s native Text. A 
mark’s position and size arguments are often omitted in a Bluefsh 
specifcation, because they are determined by relations instead. 

4.2.2 Relations. A relation is a visual arrangement of elements that 
conveys information about an abstract relationship between those 
elements (e.g., a line connecting two circles represents a chemical 
bond between two atoms). In addition to marks, relations are the 
building blocks of diagrammatic representations [49, 57, 66, 79, 86], 
and Bluefsh’s design refects this. 

Bluefsh reifes the concept of a relation by relaxing UI compo-
nents, the building blocks of user interfaces. Relations are identical 
to UI components in many respects. For example, relations can con-
tain zero or more children, be nested arbitrarily, and perform both 

Figure 3: The Bluefsh API comprises a standard library of 
marks and relations as well as a core set of language primi-
tives. Bluefsh relations are closely associated with Gestalt 
relations (listed in gray next to each tag). Scoped declara-
tive references allow users to refer to existing elements. The 
Group relation, withBluefish function, and Layout com-
ponent allow users to create new marks and relations. 

rendering and layout. But relations relax the component model in 
two ways. First, whereas components’ children are disjoint from 
other components’ children, a relation may share children with 
other relations. This allows Bluefsh elements to relate to other 
elements via multiple parent relations. Second, while a component 
must ensure its childrens’ sizes and positions are fully determined, a 
relation can leave some unspecifed for other relations to determine. 
Together, these two relaxations allow Bluefsh relations to overlap. 

Bluefsh’s relations standard library is inspired by Gestalt rela-
tions [87]. We provide relations that correspond to uniform density, 
alignment, common region, and connectedness (Figure 3). We se-
lected Gestalt relations that are commonly found in UI toolkits 
and design tools. Toolkits like SwiftUI and Jetpack Compose pro-
vide components similar to Stack and Background, but they 
can only express Distribute, Align, Arrow, and Line rela-
tions indirectly through modifers and bounding box calculations, 
because they do not support overlapping relations. In contrast, Blue-
fsh supports all of these relations using the same abstraction. As 
a result, Bluefsh’s API more closely maps to Gestalt theory and 
allows users to more easily switch between diferent relations. 
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4.2.3 Relations Are Expressed with JSX. We surface Bluefsh’s marks 
and relations through JSX, an extension to JavaScript popularized 
by the React library. We map marks and relations to the two kinds 
of JSX tags: self-closing tags (e.g., <Circle />) for marks, and 
container tags (e.g., <Arrow>...</Arrow>) for relations. These 
tags instantiate elements with zero or non-zero children, respec-
tively. JSX tags take attributes called props. For example, r and 
fill are two of <Circle />’s props. 

Our decision to represent relations using JSX instead of as props 
or vanilla functions has syntactic and semantic consequences. Syn-
tactically, modeling relations as components allows for a closeness 
of mapping [11]: a relation, which groups elements together, is 
defned by wrapping a container tag around participating elements, 
generalizing the notion of a grouping in other languages likely to be 
familiar to diagram authors including HTML (e.g., <div> tags) and 
SVG (i.e., <g> tags). Semantically, representing relations as a single, 
consistent construct means they can be easily swapped for one 
another. For example, many atomic edits like swapping a Back-
ground for an Arrow or replacing a StackV with an Align 
and a Distribute take advantage of this consistency (Figure 4). 

This representation stands in contrast to other diagramming 
frameworks. Haskell diagrams, for example, represents a stack 
using a function, but alignment using a coordinate transform. Sim-
ilarly, Penrose represents a stack as collection of constraints and 
a background as a combination of a constraint and a mark. This 
makes atomic edits much more difcult. 

4.2.4 Scoped Declarative References (<Ref />). To allow rela-
tions to share children, we provide a special Ref component that 
lets a user select an existing element to reuse as the child of another 
relation. None, some, or all of a relation’s children may be Refs. 

A Ref works like a declarative query selector. A user can refer-
ence an element by its name. This name is either a globally defned 
string or scoped locally to the relation using the createName 
function. A user may also specify a path of names. To resolve a path 
selector, Bluefsh traverses the path one-by-one, entering a relation 
each time and searching its local scope for the next named element. 
Scopes encapsulate names so that changes to names in one relation 
defnition cannot shadow names in another. 

We considered using JavaScript’s own variable bindings instead 
of a separate Ref component for specifying overlaps. However, 
we found that this interpretation of bindings competed with users’ 
mental model of JSX: in JSX, using a component bound to a variable 
in multiple places creates diferent copies of a component rather 
than referencing it, as is needed with Bluefsh. Moreover, using 
explicit Refs simplifes the implementation of the system, because 
it allows us to construct a relational scenegraph within the confnes 
of a tree-structured hierarchy. Section 5 explains this in more detail. 
We leave to future work opportunities to expand the expressiveness 
of how elements may be referenced (e.g., via XML query languages 
such as XPath [9, 19] and XQuery [13], or by generalizing Cicero’s 
specifers [45] and Atlas’s fnd function [54]). 

4.2.5 Relations Are Immutable. Because of the hierarchical struc-
ture of a UI scenegraph, a component’s layout behavior typically 
depends only on its props, its children, and its parent. As a result, a 
developer reading a UI codebase usually does not have to look at 
a component’s siblings or cousins to determine the component’s 

behavior. Since Bluefsh allows siblings and cousins of a relation to 
also be its children, this introduces additional dependencies that 
could break the declarative nature of the component abstraction. To 
reduce the impact of these non-local dependencies, Bluefsh ensures 
that once some aspect of an elements’s size or position, such as its 
width, has been set by a relation, no other relation may mutate it. 
As a result, whenever a diagram author sees a relation like Align, 
for example, a user can be confdent that Align’s children are 
aligned regardless of other relations in the specifcation. We discuss 
how we enforce this property in Section 5.2. 

4.2.6 Marks and Relations Are User-Extensible. In addition to au-
thoring diagrams with Bluefsh’s standard library, users can defne 
new marks and relations in two ways. Firstly, since relations relax 
components, Bluefsh inherits the compositional afordances of the 
UI framework model and JSX notation. For example, we can write 
a custom Planet mark like so: 

const Planet = withBluefish((props) => ( 
<Circle r={props.radius} fill={props.color}/> 

)); 

The mark may then be used like a native tag: 

<Planet radius={15} color="#EBE3CF" /> 

Any composition of marks and relations may be used as a cus-
tom mark, provided its elements have been completely sized and 
positioned relative to each other. For example, a user might rewrite 
Planet to place a Background around the planet as well: 

const Planet = withBluefish((props) => ( 
<Background> 

<Circle r={props.radius} fill={props.color}/> 
</Background> 
)); 

When compositions of existing marks and relations is not enough, 
Bluefsh allows users to author their own primitives with a low-level 
API. Inspired by the Jetpack Compose API [3], primitive marks and 
relations are both described using a special Layout component 
that registers a node in Bluefsh’s scenegraph. In addition to taking 
a name (which may be provided implicitly by Bluefsh), Layout 
requires a layout function that determines the bounding box 
and coordinate system of the element and has an opportunity to 
modify its children’s bounding boxes and coordinate systems as 
well. Layout also requires a paint function that describes how 
the element should render given information about its bounding 
box and its children, which have already been rendered. Here is 
the basic structure for authoring a new primitive mark and a new 
primitive relation: 

const Rect = withBluefish((props) => { 
const layout = () => { ... } 
const paint = (paintProps) => <rect ... /> 
return <Layout layout={layout} paint={paint}/> 

}) 
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const Align = withBluefish((props) => { 
const layout = (childNodes) => { ... } 
const paint = (paintProps) => (<g ... > 

{paintProps.children} 
</g>) 
return ( 

<Layout layout={layout} paint={paint}> 
{props.children} 

</Layout> 
); 

}) 

Bluefsh’s standard library is written using this API. As a result, 
it is fully customizable and extensible from user space. We discuss 
how layout functions work in Section 5.2. 

4.3 Design Implication: Smoothly Trading 
Locality for Expressiveness 

In addition to extending the declarative component model to more 
complex graphics, Bluefsh allows a user more fexibility to trade 
locality for expressiveness. Specifcally one can make a specifcation 
more difuse by denesting or breaking up relations. These processes 
preserve the output diagram while afording new atomic ways to 
modify the specifcation. Consider Figure 4. 

Starting with the specifcation from Figure 2, one can already 
make some atomic edits to explore alternative designs. For example, 
by swapping the order of the StackV’s children, one can move 
the label below the planet. By denesting the Background and 
StackV relations, one can make the specifcation a little more dif-
fuse. This can be accomplished by naming the Text mark, moving 
the Background so it is adjacent to the StackV instead of con-
taining it, and making Background’s children Refs to StackV’s 
children. This results in a more verbose specifcation than in . 
But the advantage is that now the Background can be replaced 
with another relation like Arrow simply by swapping the tag. 
Finally, for even more expressiveness, one can split StackV into 
two more primitive relations. StackV is a compound relation that 
horizontally aligns its children and vertically distributes them. Blue-
fsh provides Align and Distribute so that a user can specify 
these relations individually. Splitting StackV allows one to re-
target Distribute at diferent children while keeping Align 
fxed. For example one can place the label outside the planets Back-
ground as follows. First, label the Background, “planets”, and 
then change the frst child of the Distribute to select it. This po-
sitions the label so that it is still horizontally aligned with Mercury 
but vertically spaced relative to the planets. 

Notice Align and Distribute cannot be expressed as com-
ponents in UI frameworks. This is because they only control their 
childrens’ positions on one axis and so those children must have 
more than one parent to be fully positioned. In SwiftUI and Jetpack 
Compose, alignment is available as a guide argument to components 
like HStack or as a modifer on individual elements. Compose also 
exposes align and distribute constraints in special Constraint-
Layout components. To summarize, Bluefsh’s relation model 
allows one to smoothly trade locality for expressiveness. One can 

make a specifcation more difuse by denesting relations and break-
ing them apart. By doing so, one gains more opportunities to make 
atomic edits. 

5 THE BLUEFISH RELATIONAL SCENEGRAPH 
Bluefsh is a implemented in SolidJS, a reactive UI framework. Solid 
provides a JSX component abstraction, signal library, and renderer 
for Bluefsh. We maintain a separate scenegraph and provide a 
custom layout engine for this scenegraph. When a user composes 
Bluefsh marks and relations, the language runtime compiles this 
specifcation to a relational scenegraph: a data structure used to re-
solve references between elements and compute layout. Critically, 
in contrast to tree-based scenegraphs that are standard in UI and vi-
sualization toolkits, Bluefsh’s relational scenegraph is an instance 
of a compound graph: a data structure that maintains the hierar-
chical information of traditional scenegraphs while also encoding 
adjacency relationships between nodes (Section 4.2.4). To compute 
layout, we adopt the principle of conservative extension [28] such 
that when a relational scenegraph is purely hierarchical its layout 
behavior is indistinguishable from the behavior of a tree-based 
scenegraph. This principle allows us to extend the benefts of UI 
layout runtimes to Bluefsh. 

5.1 Adapting a Compound Graph Structure 
Compound graphs have been explored in research on graph draw-
ing [73] and hierarchical edge bundling [38]. They encode not only 
hierarchical relationships between nodes (i.e., parent-child) but 
also allow for non-hierarchical relationships called adjacencies. In 
Bluefsh, we instantiate a compound graph as follows: 

Nodes. Each node in the scenegraph corresponds to a Layout 
or Ref tag instantiated in JSX. Layout nodes hold information 
necessary for rendering the corresponding element (e.g., visual 
styles) as well as computing layout. Layout information includes a 
partially defned bounding box and any transformations needed to 
position and size this node based on higher-level nodes. 

Hierarchy and Adjacencies. Nodes are assembled into a hierarchy 
following the nesting structured established by the JSX specifcation. 
An adjacency relation is established for every Ref element: a node 
is instantiated in the hierarchy for the Ref, and it links to the 
referenced node as an adjacency. As a result, and unlike general 
compound graphs where adjacencies can connect any pair of nodes, 
adjacencies in Bluefsh always originate at leaf nodes (i.e., Refs 
are self-closing tags rather than block or container tags). Figure 5 
depicts the scenegraph for the UI specifcation and the relational 
scenegraph for the Bluefsh specifcation from Figure 2. 

5.2 Computing Layout by Conservatively 
Extending UI Tree-Based Local Propagation 

Bluefsh extends the layout architecture adopted by modern UI 
layout engines including those underlying CSS [44], SwiftUI [5, 52], 
and Jetpack Compose [3]. This architecture is a form of tree-based 
local propagation [72]. Local propagation has a storied history in 
UI toolkits [8, 14, 36, 60, 61, 69, 70, 84] and is straightforward to 
implement in reactive datafow runtimes. 
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Figure 4: Relations can trade locality for expressiveness. (1) With the original spec, one can fip the direction of the label. (2-3) 
After denesting the Background and StackV relations one can replace the Background with an Arrow. (4-5) After breaking 
up StackV into Align and Distribute, one can space the label relative to the planets background while keeping it aligned 
with Mercury. 
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StackH
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Bluefish Relational Scenegraph

Group
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Figure 5: The tree-structured and relational scenegraphs corresponding to Figure 2. Notice that Bluefsh’s scenegraph retains 
more information than a tree-structured scenegraph. Bluefsh’s scenegraph represents the StackV and Background relations 
between the label and the planet. In the traditional scenegraph the StackV relation between the label and the planet is missing, 
and the Background relation has been reduced to a Rect component. 

UI layout needs to be fast yet support diferent, specialized al-
gorithms like fex layout, line-breaking, and grids. To balance per-
formance and expressiveness, UI layouts execute in one pass over 
the scenegraph, and each node can contain arbitrary code. Each 
node in the scenegraph has an associated layout algorithm, and 
layout commences at the scenegraph root. When a node’s layout 
algorithm is evaluated, it invokes the algorithms of its children by 
proposing a width and height for each child. Once the children are 
laid out, they return their actual sizes and the parent may place 
each child in its local coordinate system. This local information-
passing approach can express many kinds of layouts. For example, 
to implement fex layout each child may optionally specify its fex 
factor. During layout, the parent fex node can read its children’s 
fex factors and distribute its free space proportionally to each child. 

Instead of local propagation, many visualization and diagram-
ming frameworks use a diferent strategy, a global solver [6, 24, 37, 
53, 62, 64, 67, 78, 83, 90] such as gradient descent, linear program-
ming, or SMT. Whereas a local solver specifes how values fow 
through a constraint graph, a global solver specifes a constraint 
language that all layout constraints must be written in such as 
diferential programs for gradient descent, linear inequalities and 
an objective function for linear programming, or quantifer-free 
non-linear real arithmetic for SMT. Because global solvers solve all 
constraints simultaneously, they can tackle very complex layout 
problems that cannot be solved by local propagation. Indeed, we 
implemented an early version of Bluefsh using the Cassowary lin-
ear programming solver [7]. However, in doing so, we identifed 
a series of tradeofs at odds with our design goals of composabil-
ity and extensibility. First, a global solver increases viscosity for 
diagram authors: it can be difcult to localize layout bugs because 
the solver reasons about all constraints at once and a node’s layout 
can, by design, be a function of a highly non-local set of inputs. 
Second, while global solvers increase expressiveness by supporting 
a larger class of layout problems, they actually limit extensibility: 
common domain-specifc algorithms for domains like trees [82] 
and graphs [30] rely on custom imperative code that cannot be 
easily translated to or integrated with a global solver’s constraint 
language. In contrast, Bluefsh layout problems can be debugged 

more easily as layout information only fows locally. Moreover, 
Bluefsh is able to integrate any external layout algorithm simply 
by instantiating it as a node in the scenegraph. These benefts are 
extended directly from UI layout architectures. 

Local propagation does present some limitations — namely, it 
does not provide special support for continuous optimization prob-
lems or complicated simultaneous constraints. Many International 
Math Olympiad geometry problems, for example, can only be drawn 
by solving a circular system of geometry constraints [48]. Diagrams 
involving knots are well-suited to gradient-descent schemes [91]. 
Nevertheless, such domain-specifc solvers could be embedded as 
special nodes in the Bluefsh architecture. In this way, Bluefsh 
serves more as a layout fabric than a solver itself. It is concerned 
with the interface between nodes more than the language those 
nodes’ layouts are written in. 

Algorithm 1: The layout algorithm for StackV 

Data: alignment, spacing 
XY foreach node ∈ subnodes do node.layout() 
Y y←0 
foreach node ∈ subnodes do 

X x = switch alignment do 
case left do 0 
case centerX do −node.width/2 
case right do −node.width 

end 
XY node.place(x, y) 
Y y += node.height + spacing 
end 
return { 

X w: maxBy(subnodes, ‘width’), 
Y h: sumBy(subnodes, ‘height’) + spacing · ( |subnodes| − 1)
} 

5.2.1 A Running Example: Equivalent StackV Specifications. To 
make a framework with low viscosity, we want to support author-
ing any given graphic representation in many diferent ways. This 
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property increases the malleability of the language, because a spec-
ifcation can be rewritten into many equivalent forms where each 
form may be adjacent to diferent specifcations with new meanings. 
In Section 4.3 we introduced two patterns for rewrites of this kind: 
denesting relations and splitting them apart. We would like a layout 
engine where the following three specifcations are equivalent. 

A purely hierarchical specifcation: 

<StackV> 
<Rect width={10} height={20} /> 
<Rect width={30} height={10} /> 

</StackV> 

A denested specifcation: 

<Rect name="a" width={10} height={20} /> 
<Rect name="b" width={30} height={10} /> 
<StackV> 

<Ref select="a" /> 
<Ref select="b" /> 

</StackV> 

A denested specifcation where StackV has been split apart: 

<Rect name="a" width={10} height={20} /> 
<Rect name="b" width={30} height={10} /> 
<Distribute direction="vertical"> 

<Ref select="a" /> 
<Ref select="b" /> 

</Distribute> 
<Align alignment="centerX"> 

<Ref select="a" /> 
<Ref select="b" /> 

</Align> 

We can work backwards from these equivalences to design a lay-
out semantics that ensures these equivalences as much as possible. 

5.2.2 The StackV Layout Algorithm. Algorithm 1 (based on one 
provided by Jetpack Compose [3]), gives pseudocode for StackV’s 
layout algorithm. StackV takes as input an alignment (left, 
centerX, or right) and a spacing between elements in pixels. 
It then calls the layout algorithm of each of its children who de-
termine their own sizes to be used later. Next, StackV places each 
of its children in its local coordinate space. The x coordinate refers 
to the left edge of the child. The y coordinate refers to the top edge 
of the child and is initialized to 0. Each child is placed horizontally 
based on the alignment parameter. In each alignment case, 0 
is used as the guideline to which all left edges, horizontal centers, or 
right edges are aligned.3 Next, the node is placed and the next top 
edge is calculated by moving spacing pixels below the previous 
node. This repeats for each child. Finally, the width and height of 
the StackV are returned for use by its own parent. 

5.2.3 Lazy Materialization of Coordinate Transforms. To ensure 
that Bluefsh is a conservative extension of UI architectures, layout 
algorithms like Algorithm 1 must work correctly even when some 
of their children are references, such as when denesting StackV. 

3This guideline is in StackV’s local space, so the choice of 0 is arbitrary. 

Figure 6: When a bounding box dimension is requested via a 
Ref, intermediate transforms are lazily materialized. This en-
sures the dimension is well-defned relative to the requester. 
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When the layout method is called on a Ref node, it triggers 
reference resolution to instead return information about the bound-
ing box pointed to by the reference. To resolve a reference, we have 
to transform the bounding box of the referent into the reference’s 
coordinate frame. We accomplish this by walking the scenegraph 
between the reference and the referent through their least common 
ancestor. However, it is often the case that one or more of these inter-
mediate nodes does not have a defned coordinate transform of its 
own. For example, since the Ref children of StackV are resolved 
during StackV’s own layout algorithm. StackV’s transform is 
not yet known. In these cases, we must materialize intermediate 
coordinate transforms. Figure 6 depicts lazy coordinate transform 
materialization during the layout of our running example. When 
StackV attempts to set a’s x position, its own transform is not 
yet known. We thus default StackV’s x transform to the identity 
transform. Materializing this transform ensures that the horizontal 
position of StackV is fxed relative to a, which helps guarantee 
that all of StackV’s children are actually vertically stacked. By 
deferring transform materialization lazily until a value is requested, 
we help ensure that the specifcation is as fexible as possible. If 
transforms were defaulted eagerly, the position of every object 
would be fxed before layouts could set them. 

type BBox<T> = { 
  left?: T; centerX?: T; right?: T; 
  top?: T; centerY?: T; bottom?: T; 
  width?: T; height?: T; 
}; 

type Transform<T> = { translate: { x?: T; y?: T } }; 

type ScenegraphNode = LayoutNode | RefNode; 

type LayoutNode = { 
  type: "layout"; 
  bbox: BBox<number>; 
  transform: Transform<number>; 
  children: Id[]; 
  parent: Id | null; 
  bboxOwners: BBox<Id>; 
  transformOwners: Transform<Id>; 
};

type RefNode = { 
  type: "ref"; 
  refId: Id; 
  parent: Id | null; 
};

Figure 7: The TypeScript type specifcation for Bluefsh’s 
relational scenegraph. Bolded sections are extensions to a 
typical tree-structured scenegraph. Specifcally, we (i) make 
bounding box and coordinate transform felds optional; (ii) 
track ownership of individual felds; and (iii) add a RefNode 
type for adjacency relations. 

5.2.4 Relaxing Node Ownership to Dimension Ownership. The StackV 
layout in Algorithm 1 can be cleanly separated into a horizontal 
Align and a vertical Distribute relation by using the lines 
labeled X and Y, respectively, because the logic for each axis are es-
sentially disjoint. Though splitting StackV’s layout is straightfor-
ward, it creates an architectural problem. In order to split StackV 
in two, we must allow multiple relations to modify a single node. 

Typically in a UI layout engine a node is owned by a single parent 
and only that parent’s layout may modify the node. As a result, the 
relation established by that parent (such as a StackV) can never 
be mutated. This makes UI specifcations declarative: a relation like 
StackV always corresponds to a vertical stack in the diagram. We 

want to preserve this correspondence when a node has more than 
one parent. To account for this multiplicity, instead of a parent 
node owning an entire child node, a parent node owns specifc 
dimensions of a child node’s bounding box. Figure 7 summarizes 
the modifcations to a tree-structured scenegraph datatype required 
to implement bounding box ownership. Bluefsh throws an error if 
another layout tries to write to a dimension that is already owned, 
which guards against overconstrained layouts (such as aligning an 
element to two diferent elements that have already been placed). 
Tracking the specifc owner (rather than just whether or not a 
property is owned) allows us to determine the two layouts that 
confict. Overconstrained layouts occur frequently when editing 
a diagram, but problems tend to be easy to localize with access to 
ownership information and when relations are added one at a time. 

6 EXAMPLE GALLERY 
To evaluate the strengths and limitations of Bluefsh, we constructed 
a gallery of example diagrams in collaboration with a creative 
coder Figure 8. As there are no well-established diagram taxonomies, 
we instead decided to collect diagrams that are highly complex and 
that run the spectrum of common diagram structures including ta-
bles, overlapping containments (e.g. Venn diagrams), trees, graphs, 
and lists. These examples are inspired by existing diagrams across 
computer science, physics, math, and cooking. We created them 
using only the primitives in the Bluefsh standard library with a few 
exceptions where we take advantage of a special LayoutFunc-
tion relation to sidestep current limitations of the library. Live 
examples and code are available in the supplemental material. 

Table 1 lists the diagrams, their domains, the Gestalt relations 
they use, and their render times. We frst describe two examples 
in detail (Section 6.1) that we use for our comparisons in Section 7. 
They illustrate how typical Bluefsh specifcations are constructed. 
We then identify three general limitations of our current abstrac-
tions that we discovered when creating our gallery (Section 6.2). 
Finally, we conducted a preliminary performance evaluation by 
comparing Bluefsh to existing baseline implementations of three 
diagrams from our gallery (Section 6.3). We fnd that Bluefsh scales 
linearly with the size of its scenegraph. Bluefsh is asymptotically 
faster than Penrose on the Insertion Sort diagram and less than ten 
times slower compared to the original D3-based implementations 
of the Python Tutor and Ohm Parse Tree diagrams. 

6.1 Selected Examples 
6.1.1 Insertion Sort [85, 90]. This diagram traces the steps of the 
insertion sort algorithm and was originally created for the Pen-
rose [90] example gallery. We compare our specifcation to Pen-
rose’s in Section 7.1. The bordered region represents the sorted part 
of the array, and the arrow shows the insertion of the next element 
into the sorted region. In Bluefsh we encapsulate this diagram as 
an element that takes an unsorted array: 

<InsertionSort 
array={[43, 9, 15, 95, 5, 23, 75]} 

/> 

This diagram is a good example of a deeply nested Bluefsh 
specifcation built entirely with the standard library primitives. 
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Figure 8: To evaluate Bluefsh’s expressiveness, we created a diverse example gallery drawn from several domains including (a–c, 
h) computer science, (d) cooking, (e–f) physics, and (g) math. Code and live examples are available in supplemental materials. 
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Diagram Domain 
Relations Render 

time (ms) Alignment Uniform 
density 

Connectedness Common 
region 

(a) Insertion Sort [85, 90] CS ✓ ✓ ✓ ✓ 163.56 
(b) DFSCQ File System [6, 16] CS ✓ ✓ ✓ ✓ 155.24 
(c) Python Tutor [34] CS ✓ ✓ ✓ ✓ 149.74 
(d) Baking Recipe [17] Cooking ✓ ✓ - ✓ 99.70 
(e) Pulleys [49] Physics ✓ ✓ ✓ ✓ 95.18 
(f) Quantum Circuit [42] Physics ✓ ✓ ✓ ✓ 68.99 
(g) Three-Point Set Topologies [59] Math ✓ ✓ - ✓ 129.58 
(h) Ohm Parse Tree [23] CS ✓ ✓ - ✓ 174.10 

Table 1: The domains, relations, marks, and render times of the diagrams in Figure 8. The examples demonstrate coverage over 
the four Gestalt relations supported by Bluefsh’s standard library. All examples run in less than 175ms. 

InsertionSortDiagram creates a StackV of Insertion-
SortSteps then places labels using a series of StackH relations: 

const InsertionSort = withBluefish(props => { 
const insertionSortSteps = 

computeInsertionSortSteps(props.array); 
return ( 

<Group> 
<StackV spacing={15}> 

<For each={insertionSortSteps}> 
{(data, i) => ( 

<InsertionSortStep 
name={i()} 
stage={i()} 
data={data} /> 

)} 
</For> 

</StackV> 
<For each={insertionSortSteps}> 

{(_, i) => ( 
<StackH spacing={20}> 

<LabelText> 
{label(i(), props.array.length)} 

</LabelText> 
<Ref select={i()} /> 

</StackH> 
)} 

</For> 
</Group> 

)}) 

Like InsertionSort, InsertionSortStep is a custom 
element. It specifes a StackH of custom ArrayEntry elements 
inside a Background, then uses a custom DashedBorder rela-
tion that specializes Background to surround the sorted region of 
the array, and fnally uses an Arrow relation to show the movement 
of each element into the sorted region. 

6.1.2 DFSCQ File System [6, 16]. This diagram describes the life of 
a transaction in the DFSCQ fle system. The diagram was originally 
created in Inkscape and recreated in the Basalt diagramming frame-
work to test the limits of its expressiveness [6]. We compare our 
specifcation to Basalt’s in Section 7.2. As with the Insertion Sort 

diagram, the DFSCQ File System diagram’s specifcation uses sev-
eral custom elements and relations composed of Bluefsh standard 
library primitives. For example, the top level specifcation consists 
of a StackV containing four custom TitledBackground rela-
tions interspersed with custom ActionText elements like these: 

<TitledBackground title="LogAPI"> 
<StackH> 

<BoxedAlign alignment="centerRight" 
width={200}> 

<Text font-family="monospace" 
font-weight={300} 
font-size="18"> 

activeTxn: 
</Text> 

</BoxedAlign> 
<Blocks 

colors={["#4582DE", "#4582DE", "#4582DE"]} 
name="activeTxnBlock" /> 

</StackH> 
</TitledBackground> 
<ActionText text="commit" /> 

TitledBackground is a custom relation composed of Blue-
fsh standard library primitives: 

const TitledBackground = withBluefish(props => ( 
<Align alignment="topLeft"> 

<Text font-family="serif" font-weight={300} 
font-size="20" x={10} y={4}> 

{props.title} 
</Text> 
<Background padding={30}> 

<Align alignment="centerLeft"> 
<Rect height={0} width={680} 

fill="transparent" /> 
{props.children} 

</Align> 
</Background> 

</Align> 
)) 

After these have been placed, we place the various lines and 
labels that cut across this hierarchy including the arrows connecting 
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Figure 9: We evaluated Bluefsh’s performance on three examples against their original implementations. On Insertion Sort, 
Bluefsh scales linearly with its scenegraph size whereas Penrose scales superlinearly. Bluefsh is roughly 2x and 6x slower 
than the original D3-based implementations of the Python Tutor and Ohm Parse Tree diagrams, respectively. 

neighboring TitledBackgrounds. To create the fanned arrows, 
we create a StackH of invisible Rect marks to represent diferent 
regions of the disk and connect each arrow to a diferent region. 
We ran into limitations with Bluefsh for aligning the widths of 
the backgrounds across the four rows (Section 6.2). To address this 
limitation, we used a special LayoutFunction relation for more 
expressive bounding box constraints. 

6.2 General Limitations 
We encountered three recurring limitations while making our gallery. 

Width and Height Alignment. We needed to align widths 
and heights of elements in several of our diagrams. For example, 
in the Baking Recipe diagram, the widths of all the backgrounds 
in the ingredients column must be the same size, and similarly 
for the backgrounds in the DFSCQ File System diagram. At frst, 
aligning sizes may appear to be a straightforward extension of 
the Align relation. But unlike vertical and horizontal positions, 
which can often be any value, the width and height of an element 
typically must be large enough to contain their child elements. 
For example, the Background behind each ingredient should not 
be smaller than the text it contains. Aligning the size of multiple 
elements therefore requires determining their minimum sizes before 
performing layout. UI frameworks circumvent this problem by 
allowing a parent to query its children’s preferred sizes before 
performing layout. We could adopt a similar approach. 

Precise Alignment and Spacing. We ran into limitations when 
specifying more precise element positioning. For example, the Blue-
fsh standard library does not including a Padding relation, so 
we sometimes used a Stack with an invisible Rect to shift el-
ements. This workaround could be encapsulated in a custom re-
lation. Similarly, Align’s vertical alignments — top, centerY, 
and bottom — are not sufcient for more precise alignments with 
text. One often wants to align to text’s visual baseline rather than 
the bottom of its bounding box. We worked around this problem by 
manually nudging text slightly in several examples. UI frameworks 
provide extensible guideline abstractions for working with text and 
images. We could adapt these solutions to Bluefsh, and we have 
already prototyped this feature. 

Boundary Curve Abstraction. We also ran into limitations 
of Bluefsh’s bounding box shape abstraction. For example, when 

labelling the pulley in the Pulleys diagram and the points in Three-
Point Set Topologies, we manually adjusted the text to avoid in-
tersecting other shapes. Similarly, we manually constructed the 
concave set in the bottom right of the Three-Point Set Topologies dia-
gram to avoid overlapping the purple region. These nudges cannot 
be done automatically, because Bluefsh represents shapes during 
layout using axis-aligned bounding boxes, which are too coarse for 
shapes like circles or paths. These examples suggest the need for 
a boundary curve abstraction. Such an abstraction would allow a 
user to specify that two shapes should be nested or be made disjoint 
with greater precision than our bounding box model. It would also 
support precise labeling along curved lines and arrows. We have 
made experimental extensions to the system that probe this idea, 
and we believe this is a promising future approach. 

6.3 Performance 
Though performance was not the primary focus of Bluefsh’s de-
sign, we conducted a preliminary evaluation to assess the potential 
impact of Bluefsh’s expressiveness on performance. Every example 
in our gallery renders in under 175ms. Because Bluefsh executes 
each layout node once, we hypothesized that Bluefsh’s perfor-
mance scales linearly with the number of scenegraph nodes. To 
test this, we ran the Insertion Sort, Python Tutor, and Ohm Parse 
Tree diagrams with diferent input data since they have existing 
data-driven baseline implementations. The Insertion Sort diagram 
was originally written in Penrose. The Python Tutor and Ohm Parse 
Tree diagrams were both originally written in a UI framework using 
D3. We evaluated these diagrams on an Apple M1 Pro SoC with 
32GB of RAM using Chrome Version 126. We used the console’s 
performance analysis to measure the total time required to layout 
and render each diagram. 

Figure 9 visualizes the results of our performance testing. We 
found that the render time for all three diagrams scaled linearly 
with the number of nodes in the scenegraph. Compared to Penrose 
on Insertion Sort, Bluefsh scales linearly while Penrose scales su-
perlinearly. Bluefsh is roughly 2x slower than the original Python 
Tutor implementation and roughly 6x slower than the original Ohm 
Parse Tree implementation. These results suggest the expressiveness 
of Bluefsh’s relation abstraction preserves the linear performance 
scaling of local propagation and UI layout architectures. Future 
work can improve the constant factor overhead and investigate 
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incremental layout performance to facilitate real-time interaction 
and animation use cases. 

7 COMPARISON TO OTHER COMPOSITIONAL 
APPROACHES 

In this section, we use our selected examples from Section 6.1 
to compare Bluefsh to two recent diagramming frameworks re-
searchers have developed. This complements the comparison to UI 
frameworks we conducted in Section 3. 

7.1 Penrose: Substance + Style 
Penrose is a programming language for creating mathematical 
diagrams [90]. It features three languages: Substance for specifying 
the content of a diagram, Domain for defning the content primitives, 
and Style for visualizing the Substance specifcation. 

7.1.1 Language Design. Figure 10 compares a snippet of the Blue-
fsh and Penrose specifcations of the sorted region highlight in the 
Insertion Sort diagram. The Bluefsh code uses a custom Dashed-
Border relation that encapsulates a customized Background 
relation. This relation is then used to contain the frst and last 
entry of the sorted region. The Penrose Substance fle (generated 
automatically from a Python script) establishes the elements and 
relations visualized in the diagram. These include an Array, the 
array’s Elements, a Group of the sorted elements, the inGroup 
relation between elements and the group, and Labels for the ar-
ray elements. The Style program selects the elements of the group, 
collecting them into a variable es, and constructs a Rectangle 
that contains them. 

The specifcations difer primarily in how the code is organized. 
Bluefsh colocates related data (via props) and display logic. Penrose 
colocates all of the data and all of the display logic in Substance 
and Style fles, respectively. By colocating data and logic, Bluefsh 
allows a user to encapsulate reusable pieces as custom relations like 
DashedBorder. Furthermore, Bluefsh encapsulates low-level 
bounding box calculations behind primitive relations. By separat-
ing data and display logic, Penrose allows a user to more easily 
restyle an entire diagram. For mathematical domains like Euclidean 
geometry, which have a fxed set of primitive elements and rela-
tions, this separation is especially useful. It also frees the Substance 
language from conforming to a component-based syntax, which 
allows it to more easily match math notation. 

The diferences between Penrose and Bluefsh stem directly from 
the inspirations for each system. Penrose’s Substance and Style lan-
guages are loosely inspired by HTML and CSS, which similarly 
separate content and display logic into two DSLs. Meanwhile, Blue-
fsh is inspired by UI component frameworks like React, which 
are specifcally designed to couple related HTML, CSS, and JS to-
gether [39] as well as take advantage of the expressiveness of a 
general-purpose host language [40]. 

7.1.2 Layout Engine. Penrose’s layout engine uses L-BFGS, a global 
solver. The Insertion Sort diagram, while deeply nested, does not 
contain constraints that show the full power of Penrose. This engine 
can easily encode constraints that are useful for geometry like 
ensuring the angles of a triangle are at least 30 degrees, that labels 
do not overlap, or that arbitrary shapes are contained inside a circle. 

Figure 10: A comparison between Bluefsh and Penrose’s spec-
ifcations of the dashed border in the Insertion Sort diagram. 
Bluefsh uses a declarative, component-based approach while 
Penrose’s Style language draws inspiration from CSS and uses 
low-level bounding box calculations. 
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As a result of its more powerful layout engine, Penrose can ex-
press more perceptual relations than Bluefsh including geometric 
relations like line-line intersection. Bluefsh’s standard library and 
internal node abstractions would have to be signifcantly extended 
to support these relations. Even then, it would not be easy to incor-
porate minimum angle requirements into a local propagation solver, 
because they often must be solved globally. Future work may in-
vestigate whether how to integrate global solvers as sublanguages 
within Bluefsh to extend its relational expressiveness. 

7.2 Basalt: Components + Constraints 
Basalt is a diagramming DSL embedded in Python [6]. It is a modern 
exemplar of languages that extend a component model with a fexi-
ble constraint system [8, 36, 60, 61]. Basalt authors create Python 
classes similar to UI framework components. However, they can 
also author constraints to relate information between components. 

7.2.1 Language Design. Figure 11 compares a snippet of the Blue-
fsh and Basalt specifcations for the dashed funnel linkages in the 
DFSCQ diagram. The Bluefsh relation takes as input four names 
that are used to relatively position the funnel. The Basalt code 
instead sets up four abstract Points inside the Explode com-
ponent and aligns them to other components using constraints 
defned outside the component. 

The Bluefsh specifcation is more declarative. Rather than us-
ing bounding box and point constraints, the Bluefsh code uses 
StackVs to position the funnel. The Basalt specifcation, while 
lower level, is more malleable. The Explode component merely 
defnes Points that represent the corners of the bounding box and 
Lines related to those corners. It leaves the positioning of the cor-
ner Points for later. While the constraints could be moved inside 
the Explode component to look more like the Bluefsh specifca-
tion, the Bluefsh specifcation must explicitly take in the corners as 
dependencies. To allow Bluefsh to move the corner dependencies 
outside, we would have to introduce a way to position elements 
relative to their enclosing container and have those relations run 
only after the container’s size has been set. 

This example highlights a viscosity tradeof between the two 
systems. In Bluefsh, authoring specifcations is more high-level as 
a user can think in terms of relations like Stack and Line. How-
ever, extending Bluefsh with new kinds of primitive relations often 
requires stepping down to the low-level layout API. On the other 
hand, systems like Basalt are more viscous for end-users, because 
they must deal with constraints. But creating custom constraints 
is much more straightforward, because the user is already work-
ing with an expressive, low-level API. Future work may explore 
whether the locality-expressiveness tradeofs we highlighted in 
Section 4.3 could be extended to the level of bounding box and 
point constraints. 

7.2.2 Layout Engine. Basalt uses Z3 [22], an SMT solver, to con-
struct solutions to constraint problems. Z3 is very expressive and 
can handle circular constraints and nonlinear inequalities. This ex-
pressiveness leads to some of the low-viscosity properties of Basalt’s 
design. However, nearly all of the constraints used to create the DF-
SCQ diagram are sparse linear equations similar to the ones shown 

Figure 11: A comparison between Bluefsh and Basalt’s speci-
fcations of the dashed funnel lines connecting neighboring 
rows in the DFSCQ diagram. Bluefsh uses a more declarative 
abstraction while Basalt uses low-level constraints. 
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in Figure 11. As a result, it may be possible to achieve the same 
functionality with a local propagation system like Bluefsh’s. 

8 DESIGN REFLECTIONS WITH A 
PROFESSIONAL CREATIVE CODER 

We built the example gallery in collaboration with a professional 
creative coder, Elliot Evans. Except for the Python Tutor diagram, 
Evans directed the implementation of the examples. Through dis-
cussions during and after building these examples, we surfaced two 
main insights about Bluefsh’s abstractions. 

8.1 Relations provide a shallow learning curve 
for UI developers 

In addition to providing conceptual simplicity, relaxing the compo-
nent model makes Bluefsh easier to understand for UI developers. 
Evans found that programming in Bluefsh without using relations 
was very similar to using Tailwind. For example, consider Tail-
wind’s flex-row specifcation versus Bluefsh’s StackH: 

<div class="flex flex-row gap-5"> 
<div>1</div> 
<div>2</div> 
<div>3</div> 

</div> 

<StackH> 
<Text>1</Text> 
<Text>2</Text> 
<Text>3</Text> 

</StackH> 

Evans frst familiarized himself with Bluefsh by using it as a UI 
layout engine only, without Ref. He then learned Bluefsh’s rela-
tions concept through a bridge example much like our example in 
Figure 2. Specifcally, he started building the Quantum Circuit Equiv-
alence diagram solely using nested hierarchies before placing the 
Background highlight using a Ref. After using Background, 
a traditional UI component, in an overlapping context, Evans used 
the Line relation, which has no direct UI component analog. 

8.2 Bluefsh specifcations often move from 
hierarchical to difuse 

While Bluefsh specifcations often start like UI specifcations — 
compact and hierarchical — Evans observed that his diagram spec-
ifcations typically became more difuse and relational over time. 
We demonstrate this pattern in Section 4.3. 

Through language design conversations with Evans, we realized 
this behavior stems from our choice to unify diferent Gestalt re-
lations with a shared abstraction. Relations can be composed to 
create new elements, which means relations must have bounding 
boxes. But while some relations (e.g., Background) have bound-
ing boxes that are easy to defne, the bounding boxes of other 
relations like Arrow are more ambiguous. Should Arrow’s bound-
ing box contain the bounding boxes of the elements it connects? To 
facilitate easy and predictable switching between diferent relations, 
we decided that all relations’ bounding boxes should contain their 

children. While this approach lowers editing viscosity, it requires 
users to denest specifcations earlier than they may expect. 

For example, consider the Python Tutor diagram. It depicts pro-
gram state of a running Python program. In Bluefsh we construct 
a top-level element that accepts a description of the stack and heap: 

<PythonTutor 
stack={[ 

{ variable: "c", value: pointer(0) }, 
{ variable: "d", value: pointer(1) }, 
{ variable: "x", value: "5" }]} 

heap={[ 
tuple("1", pointer(1), pointer(2)), 
tuple("1", "4"), 
tuple("3", "10")]} 

heapArrangement={[ 
[0, null, null], 
[null, 1, 2]]} 

/> 

Each pointer corresponds to an Arrow in the diagram. We 
initially wanted to place the Arrow relations corresponding to 
stack pointers inside the stack element. This nesting would mirror 
the data structure driving the visualization. However, the Arrow 
relation’s bounding box contains the heap object it points to. The 
Arrow must therefore be denested out of the stack element or else 
the stack would contain the Arrow and thus the heap object. The 
tradeof of this early denesting is that switching the Arrow relation 
for a Background is a predictable, atomic edit. If the Arrow were 
nested and its bounding box did not contain its children, the user 
might be surprised that switching it to a Background would 
suddenly include a heap object in the stack. 

9 DISCUSSION AND FUTURE WORK 
In this paper, we presented Bluefsh, a diagramming framework 
based on relations that is declarative, composable, and extensible. 
We have demonstrated how relaxing the component model trans-
fers the benefts of UI framework design to diagramming without 
the need for completely new concepts like constraints. Relations 
allow users to smoothly trade the local afordances of hierarchi-
cal specifcation for the expressive afordances of adjacency. Our 
long-term goal is to make Bluefsh both a usable tool and a research 
platform for investigating graphic representations from diagrams 
to documents to notation augmentations the way Vega-Lite has 
done for statistical graphics [71] and LLVM for compilers [51]. To 
support this goal, we have released Bluefsh as an open source 
project at bluefshjs.org, and present several promising directions 
for future research and tool development. 

Interactive and Animated Graphic Representations. In this 
paper, we explored formalisms of relations for static graphics. An 
immediate next step would be to consider how our abstractions 
could be extended to interactive and animated diagrams. First, there 
are temporal analogs to static Gestalt relations. For example, com-
mon fate, where elements travel in the same direction are grouped 
together, is alignment applied to velocity [87]. Similarly, we could 
think of Bluefsh’s Distribute as distributing elements along 
a time axis to stagger movements in time, and a temporal Align 

https://bluefishjs.org
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as unifying the start or end of multiple animations. Data visualiza-
tion grammars have explored these temporal analogs. For example 
Gemini provides concat and sync operations for temporal dis-
tribution and alignment, respectively [46]. Animations may also 
be staged or nested, conveying information similar to common re-
gion, as in Canis/CAST [31, 32]. Or an animation may follow a path 
between two elements to represent a temporal link between them. 
There are analogs in interaction as well. Gestalt relations seem 
to manifest in interactions as on-demand relations. For example, 
brushing can be thought of as on-demand common region, and 
generalized selections [35] allow users to select sets of elements 
based on similar attributes. 

Formalizing Visual Structure and Domain Semantics. While 
our standard library of relations covers a large number of use cases, 
many domains have diferent sets of primitive relations. For exam-
ple, Euclidean geometry features relations like line-line intersection 
and perpendicular bisector. Similarly, specifc features of a line con-
vey semantic intent in sketched route maps [81]. A straight line 
means “go down,” a curved line means “follow around,” and a line 
with a sharp corner can signify a “turn.” These primitives tie closely 
to the underlying semantics of the domains they visualize, synthetic 
planar geometry and routes, respectively. Mackinlay’s expressive-
ness principle[56], Tversky’s correspondence principle [80], and 
Kindlmann and Scheidegger’s algebraic design process [47] suggest 
we may fnd many such mappings between graphics and domain 
semantics. The core idea underlying Bluefsh is that more powerful 
formalisms of these correspondences not only lower authoring vis-
cosity, but also capture more underlying semantic information for 
later analysis and processing. 

Towards Richer Tools for Graphic Representations. Devel-
oping these formal mappings also enables more powerful tools for 
end-users. For instance, how might Bluefsh’s scenegraph — which 
explicitly encodes relationships between elements — be automati-
cally retargeted for screen reader use, blending approaches found 
in tools such as Olli [12], which produces a hierarchical structure 
for navigating statistical graphics, and Data Navigator [25], which 
provides methods for navigating adjacency structures? Similarly, 
while diagramming environments such as StickyLines [18] have 
reifed alignment and distribution, Bluefsh’s relations suggest the 
possibility of a more general, consistent interface for allowing end-
users to directly manipulate Gestalt relations. Tools like Draco [58] 
and Scout [77] have explored automatic recommendations of sta-
tistical graphics and UIs, respectively, based on studies from the 
perceptual literature. By providing an explicit encoding of relations 
at the language level, we believe Bluefsh can serve as the base 
for exploring diagramming recommendations based on the relative 
efectiveness of Gestalt relations. 
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