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Abstract
Few-shot learning (FSL) usually trains models on data from one
set of classes, but tests them on data from a different set of classes,
providing a few labeled support samples of the unseen classes as a
reference for the trained model. Due to the lack of target-relevant
training data, there is usually high generalization error with re-
spect to the test classes. In this work, we conduct empirical ex-
plorations and propose an ensemble method (namely QuickBoost),
which is efficient and effective for improving the generalization of
FSL. Specifically, QuickBoost includes an alternative-architecture
pretrained encoder with a one-vs-all binary classifier (namely FSL-
Forest) based on random forest algorithm, and is ensembled with
the off-the-shelf FSL models via logit-level averaging. Experiments
on three benchmarks demonstrate that our method achieves state-
of-the-art performance with good efficiency∗.

CCS Concepts
• Computing methodologies → Ensemble methods.
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1 Introduction
Few-shot learning (FSL) in the context of classification, is defined
as a classification problem under a lack of supervision information
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Figure 1: Motivation illustration. (a) The estimation and ap-
proximation errors (Formula 9) are small under sufficient
training with supervision. (b) The errors becomes larger with
less relevant supervision in FSL. (c) Ensemble has lower er-
rors compared to (b), despite less supervision under the FSL
setting. (d) Compared to other ensemble-based FSL methods
(i.e., 𝐸3𝐵𝑀 [35]), our QuickBoost achieves state-of-the-art
performance at minimal cost.

on the target task [48, 55]. In many real-world scenarios, suffi-
cient labeled datasets are usually not readily available [19, 55, 61],
especially for rare object types. Therefore, the few-shot learning
classification algorithms serve to overcome the problem of general-
ization in the face of such data constraints. It is commonly assumed
that FSL models undergo training based on data from a different set
of classes compared to those of the test data set [3, 50, 55, 59]. With
few-shot training, models can predict classes of data they have not
been trained on.

However, the data constraint also limits the FSL model perfor-
mance. In deep neural networks (DNN), lower generalization er-
ror is generally achieved by having a large number of labelled
training examples coupled with models with sufficient parameters
[29, 39, 55]. With less supervision information, local search (e.g.,
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gradient descent) tends to get stuck at local minima [62]. Mean-
while, due to the lack of relevant data, the best hypothesis in the
hypothesis space† may not represent the target well [62]. Further-
more, on the one hand, a single model with less parameters can be
limited in its expressiveness to represent the target accurately; on
the other hand, with limited data, models with more parameters
can overfit [39], composing a dilemma for FSL.

To tackle the high generalization error, or the core challenge,
in FSL classification, different categories of methods are proposed.
Notably, in the data aspect, data augmentation techniques are used
to augment the training dataset for FSL models, providing more
supervision based on datasets related to the target tasks [21, 26, 37,
46, 52, 56]. In the model aspect, representation learning techniques
project training data to lower dimension, setting the similar samples
closer together while the dissimilar further apart [12, 34, 48, 50,
53, 59]. Both the data augmentation and the embedding learning
techniques tackle the FSL problems mainly via integrating more
prior information to FSL models [55]. In the algorithm aspect, meta-
learning algorithms [4, 32, 45, 49] can learn good model parameter
initialization which enables quick adaptation to the new unseen
task. However, the augmentation can introduce bias as argued in
works like Xu and Le [57]. Meanwhile, model-based embedding-
learning approaches are limited in performance, while algorithm-
based meta-learning algorithms can be unstable to train with nested
training loops [2].

To analyse the problem further, we define a hypothesis space
H . We have ℎ̂ as the most ideal optimal classifier in theory, ℎ∗ as
the best classifier within the hypothesis space considered, and ℎ𝐼
as the classifier we obtain via thorough empirical risk minimizing
over available training data. The expected difference between the
risk of ℎ𝐼 and ℎ̂ in FSL (i.e., the best room of improvement that
can be achieved in theory) can be decomposed into approximation
error and estimation error, as illustrated in Formula 9 and Figure 1.
When there is sufficient and relevant supervision data, both estima-
tion error (distance between ℎ∗ and ℎ𝐼 ) and approximation error
(distance between ℎ̂ and ℎ∗) are relatively small, as illustrated in
Figure 1(a). When the relevant labelled data reduce, both of the
errors increase. In particular, the estimation error increases due to
a higher chance of the estimator ℎ𝐼 getting stuck at local minima
during the optimum search. The approximation error increases due
to a decreased amount of labelled data learnt relevant to the target;
without enough relevant data, the best target of search ℎ∗ becomes
relatively inaccurate, as illustrated in Figure 1(b). Ensemble miti-
gates these two errors. Specifically, despite accessing less labelled
training data, the estimation error can be reduced by considering
alternative local search results which average out bias of local min-
ima. Meanwhile, the approximation error can be reduced through
greater model expressiveness; as ensemble involves more model
parameters, it can consider a larger hypothesis space and thus more
accurate targets of search [39, 55, 62], as illustrated in Figure 1(c).

According to existing literature, plenty of empirical and theoret-
ical results have demonstrated the effectiveness of ensemble [62],
in tackling the approximation and estimation errors, which are the

†Hypothesis space size is defined as the number of hypotheses. A hypothesis
is a way of classification that best classifies the training data seen so far, given the
representational ability of the function. In general, hypothesis space grows when there
are more training data or model parameters [39].

precise pain points of FSL.Meanwhile, “how to ensemble effectively”
is a question equally worthy of consideration. In fact, ensemble has
certain preconditions to fulfill in order to unleash and maximize its
potential benefits. It also has disadvantages. Specifically, to achieve
good ensemble performance, the predictors have to possess a fair
accuracy on their own and enough difference against other pre-
dictors to achieve complementary difference in their predictions.
The predictions can then complement one another well to achieve
improved overall accuracy [16, 62]. Besides, as multiple models
need to be trained, ensemble can be disadvantageous in terms of
computation efficiency and implementation convenience, which
are relevant considerations for real-world applications [15, 28, 62].

Therefore, our goal is to reduce generalization error in trained
FSL models, boosting their performance via resource-efficient en-
semble. In this paper, we design an ensemble method for FSL, called
FSL-Quickboost (Quickboost for short). Essentially, QuickBoost in-
volves pretrained features from an alternative encoder and a one-vs-
all [39] binary classifier to be ensembled with trained FSL models.
The binary classifier, called FSL-Forest, is random-forest-based [5].
We choose the random-forest algorithm due to its widely demon-
strated decency in performance. Importantly, it is ready for few-shot
classification tasks at minimal cost. To implement the FSL-Forest
classifier, we directly use the pretrained encoder to produce im-
age features, whose pairwise feature difference are fed as the in-
put features to FSL-Forest. The extensive experiments on standard
benchmarks demonstrate the superior performance.

Our main contributions can be summarized as follows:
• We analyse why ensemble can be a simple-yet-effective so-
lution to the challenging set-ups in FSL.

• We propose an ensemble scheme for trained FSL models,
which involves a pretrained encoder paired with a random-
forest-based FSL classifier. The classifier predicts based on
the average among a set of decision tree stumps, each of
whichmakes predictions based on pairwise differences among
pretrained data features. The decision trees consider the ele-
mentwise value differences of each feature pair, strenghthen-
ing initial predictions of the original FSL model.

• We provide extensive experiments to show the advantages
and potential of FSL-QuickBoost. For example, our FSL-
QuickBoost obtains approximately 6%, 6% and 7% perfor-
mance improvement in 5-way-5-shot tasks on tieredImagenet
[44], miniImagenet [44] and Cifar-FS [30], respectively.

2 Related Works
Few Shot Learning. Few-shot learning classification algorithms
can be broadly categorized into data-based approach, algorithm-
based approach and model-based approach [56]. Among data-based
algorithms, Gao et al. [21], Hariharan and Girshick [26], Mishra
et al. [37], Schwartz et al. [46], Verma et al. [52], Wang et al. [56]
expands the training dataset by, for example, combining object char-
acteristics across base classes, but the generation may involve bias
since certain combinations can be invalid [57]. Among algorithm-
based approaches, meta-learning [4, 18, 32, 45, 49] learns a good
initialization of model parameters, and model-based approaches
mainly involve metric-based learning, where models learn an em-
bedding space that contrasts input samples at a lower dimension
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[10, 11, 34, 48, 50, 53, 59]. Most of the methods are purely deep-
learning-based, which are data-hungry and time-consuming to train
[54]. In particular, meta-learning algorithms like MAML [18] can
be unstable to train [2]. Moreover, due to the challenging nature
of FSL, most methods have limited performance. Therefore, we are
motivated to improve the performance of existing FSL algorithms
while keeping the ensemble procedure simplistic.

In this paper, we examine a few typical FSL models to be en-
sembled with our methods, or namely the Prototypical Network
(ProtoNet), Matching Network (MatchNet), Relation Network (Re-
lationNet), FEAT, DeppSet and Infopatch. The FSL model encoders
include the Conv4, Res12 or Res18 structures. The Conv4 encoder
[50, 59] is a relatively simple 4-layer convolutional neural network
(CNN) [31]. Res12 and Re18 [59] are of a more complex Resnet [27]
structure. The Prototypical Network [48] is similar to the Matching
Network [53]. When there is just one shot for the support set, the
Matching Network and Prototypical Network are equivalent; when
there are multiple shots, the Prototypical Network considers the av-
erage embedding of all support set samples within one class, while
the Matching Network considers the support samples individually.
The Relation Network [50] is similar, except that the algorithm uses
a neural network to calculate the degree of similarity between two
image embeddings. FEAT [59], DeepSet [59] and InfoPatch [34]
have a similar set-up, but FEAT and DeepSet add in transformative
layers (e.g., self-attention-based mechanism [51]) to produce more
flexible embedding. InfoPatch produces more accurate embeddings
by blocking part of the query images, making the task harder [34].
Ensemble. Ensemble can be achieved using different approaches,
including independently constructed ensembles and coordinated
constructed ensembles [15, 28]. For an independently constructed
ensemble, boosting ensemblemethod combinesweak learners to pro-
duce a strong learner; random forest is also a type of independently
constructed ensemble that combines the predictions of decision
trees through majority voting [5]. The collection of tree structured
classifiers can be decision trees [6, 7]. For coordinated constructed
ensemble, Adaboost [15, 20] algorithm constructs new hypotheses
incrementally. In the intersection field of FSL and model ensem-
ble, Dvornik et al. [16] proposes to train multiple few-shot models
with a loss function that encourages diversity via KL-divergence
and cooperation via cosine similarity. Another work, Liu et al. [35]
𝐸3𝐵𝑀 learns and combines an ensemble of epoch-wise Bayes mod-
els. There are also other works involving ensemble of features
or classifiers for few-shot learning [1, 3, 9, 25, 33, 58]. The major
disadvantage of these ensemble schemes lies in the extra compu-
tation overhead and complication in implementation introduced.
Importantly, most of these methods (e.g., Dvornik et al. [16], Liu
et al. [35]) involve training of ensemble itself. Orthogonal to these
methods, our design focuses on efficiency, enabling easy and quick
performance boost via test-time-only ensemble, without involving
any extra training of the original model.

3 Method
3.1 Problem Formulation
FSL classification tasks commonly follow an 𝑁 -way-𝐾-shot set-up;
𝑁 represents the number of classes being classified and 𝐾 denotes
the number of labeled samples per class. These 𝑁 × 𝐾 samples,

denoted as 𝑆 = {𝑥 (1)1 , 𝑥
(1)
2 , . . . , 𝑥

(𝑁 )
𝐾−1, 𝑥

(𝑁 )
𝐾

}, are referred to as the
support set. It is commonly assumed that ℎ is trained on a set of
base classes 𝐶𝑏 with complete supervision information, and then
tested on a disjoint set of novel classes 𝐶𝑏 (i.e., 𝐶𝑏 ∩ 𝐶𝑛 = ∅).
∀𝑐 ∈ 𝐶𝑛 , 𝑐 contains limited supervision information, or just a few
labeled samples. These few labeled samples serve as the support
set 𝑆 during testing [14, 48, 50, 55, 59].

During training, an FSL classifier ℎ is presented with a labelled
support set comprising samples from 𝑁 classes, and a query 𝑞 sub-
sampled from the 𝑁 classes, and ℎ has to learn or predict which
category 𝑞 belongs to by referring to 𝑆 . The 𝑁 classes are a subset
of 𝐶𝑏 . During testing, ℎ has to predict classes of 𝑞 based on labels
of 𝑆 , where both 𝑞 and 𝑆 are sampled from 𝐶𝑛 . Note that according
to inductive FSL set-up [3], the support set sample labels from 𝐶𝑛

are not used during training.

3.2 FSL-QuickBoost
Overview. There are two important characteristics of ensemble.
Firstly, ensemble consumes extra computation resources, which
needs to be considered in practical applications. Secondly, in gen-
eral, to maximize the effectiveness of ensemble, ensembled models
need to be as accurate as possible individually, while possessing
differences in logit output against one another’s, so as to achieve
a complementary effect. As such, it is desirable if we can have
ensemble which achieves both computation efficiency and the com-
plementary difference. Therefore, guided by these principles, we
aim to develop an effective ensemble scheme for FSL, which boosts
single classifiers’ performance at minimal cost, thus minimizing
the pain points of both FSL and ensemble.

We introduce the FSL-QuickBoost ensemble scheme, where we
restrain our scope to just one FSL-Forest modelℎ2 for ensemble with
a trained FSL model ℎ1. ℎ1 comprises an encoder Φ1 and a classifier
𝑡1, and ℎ2 also has an encoder Φ2 and a classifier 𝑡2. Essentially,
we try to achieve the aforementioned complementary difference
at both feature level and classifier level. At the feature level, we
adopt different encoders for ℎ1 and ℎ2 respectively. At the classifier
level, we apply logit weighted-averaging of a random-forest-based
[5] one-vs-all [39] binary classifier (𝑡2) output and the original FSL
classifier (𝑡1) output. Meanwhile, for 𝑡2, the training data required is
few, and the training gets completed fast. The overall architecture
of QuickBoost is presented in Figure 2, which includes four stages:
stage (a) Pretraining of Encoder, stage (b) Preparation of Dataset,
stage (c) FSL-Forest and stage (d) Ensemble. In stage (a), we conduct
pretraining of encoder Φ2 on base classes 𝐶𝑏 . For stage (b), we
conduct preparation of dataset 𝐷 based on the Φ2 encoder. For
stage (c), we conduct training of FSL-Forest classifier 𝑡2, based on
the dataset 𝐷 . For stage (d), we conduct ensemble of ℎ2 = 𝑡2 ◦ Φ2
and a trained FSL model ℎ1 via weighted logit averaging.
(a) Pretraining of Encoder. Some works propose that the main-
stream meta-learning algorithms in FSL are sub-optimal [14, 23,
40, 41], and they demonstrate that a fine-tuned pretrained encoder
can achieve equivalent or even more superior performance as com-
plex meta-learning models [13, 14, 23, 41]. Essentially, while simple,
pretrained features can be effective for FSL classification. Follow-
ing the practise, as the first step, we pretrain an encoder Φ2 on
base classes 𝐶𝑏 , via standard cross entropy loss minimization [14].
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Figure 2: The overall architecture of our FSL-QuickBoost ensemble. In stage (a), an encoder is pretrained on base classes. In
stage (b), the squared of pairwise feature differences of sub-sampled images, along with labels indicating whether the image
pairs are of the same class, are stored as a training dataset file. In stage (c), a one-vs-all binary classifier based on random forest
is trained on the stage (b) dataset. In stage (d), weighted-averaging is performed among the random forest classifier and a model
trained via standard FSL algorithms like the Relation Net.

Specifically, given a dataset 𝐷𝑠 consisting of data from base classes
𝐶𝑏 , we obtain the model parameters 𝜃∗ for an encoder Φ𝜃

∗
2 :

𝜃∗ (𝐷𝑠 ) = argmin
𝜃

1
|𝐷𝑠 |

∑︁
(𝑥,𝑦) ∈𝐷𝑠

− log 𝑝𝜃 (𝑦 | 𝑥). (1)

We use Φ𝜃
∗

2 (Φ2 in short) for the subsequent preparation of dataset.
(b) Preparation of Dataset. After obtaining Φ2, we sub-sample
positive and negative image pairs {𝑥1, 𝑥2} from the base classes𝐶𝑏 ,
and produce pairwise supervision labels as:

𝒚 = 1(𝑦1 = 𝑦2). (2)

For each pair {𝑥1, 𝑥2}, where 𝑥𝑖 is ∈ R𝐹 , we calculate the squared
elementwise feature difference, denoted as diff(𝑥1, 𝑥2). In the con-
text of 𝑁 -way-𝐾-shot tasks, it is:

{(Φ2 (𝑞𝑓 ) − Φ2 (𝑥 (𝑛)𝑓
))2} ∈ R𝐹 , (3)

for 𝑛 ∈ [1, 𝑁 ] and 𝑓 ∈ [1, 𝐹 ]. Note that 𝐹 is the total number of
channels in Φ2 (𝑥), and 𝑞 is the query.

We save tuples 𝐷 ≔ {(diff(𝑥𝑖 , 𝑥 𝑗 ),𝒚)} for 𝑖, 𝑗 ∈ [1, 𝑀], where
𝑀 denotes the total number of samples collected from base classes
𝐶𝑏 . These tuples are stored as data files for subsequent training of
the random forest classifier 𝑡2.
(c) FSL-Forest.We perform training on a random forest classifier
𝑡2 with the prepared input 𝐷 . The random forest classifier is named
“FSL-Forest”. The classifier constitutes a set of decision trees, each
taking in the squared feature difference and returning a similarity
relation score for the input image pair. Each decision tree partitions
the input features recursively, based on some threshold, such that
samples with the same labels or target values are grouped together.
This procedure is also known as “impurity minimization”.

Let data at node𝑚 of the decision tree be denoted as 𝑄𝑚 with
𝑁𝑚 samples. Here, each element of 𝑄𝑚 , 𝑑 , is each element-wise
squared difference of two input vectors, originated from the pair

of images for comparison. Let 𝑑𝑚 = 1
𝑁𝑚

∑
𝑑∈𝑄𝑚

𝑑 . The “impurity”
𝐻 (·) is defined as the following mean squared error function [6–8]:

𝐻 (𝑄𝑚) = 1
𝑁𝑚

∑︁
𝑑∈𝑄𝑚

(𝑑 − 𝑑𝑚)2. (4)

For each decision tree in the random forest classifier 𝑡2, let 𝜔 de-
note the model parameters. Let 𝑒𝑚 be each candidate’s split thresh-
old value. Let threshold 𝑒𝑚 partition a node into two subsets, which
are respectively denoted as 𝑄 left

𝑚 (𝜔) = {𝑑 |𝑑 < 𝑒𝑚, 𝑑 ∈ 𝑄𝑚} and
𝑄
right
𝑚 (𝜔) = 𝑄𝑚\𝑄 left

𝑚 (𝜔). The training procedure of each decision
tree is tantamount to the following equation [6–8]:

𝐺 (𝑄𝑚, 𝜔) =
𝑁 left
𝑚

𝑁𝑚
𝐻 (𝑄 left

𝑚 (𝜔)) + 𝑁
right
𝑚

𝑁𝑚
𝐻 (𝑄right

𝑚 (𝜔)), (5)

𝜔∗ = argmin
𝜔

𝐺 (𝑄𝑚, 𝜔). (6)

Output scores 𝑡2 (·) from the random forest are based on the average
of individual output of each decision tree parameterized by 𝜔∗, in
a set of decision trees [6–8].

The rationale of the design is that each value of the squared
feature difference represents the visual strength of a particular
feature difference in the original data pair. If certain discrepancies
corresponding to important features are strong enough, the data
pair tends to be of different classes.
(d) Ensemble. Given two pretrained encoders Φ1 and Φ2, and
two classifiers 𝑡1 and 𝑡2 for ℎ1 and ℎ2 respectively, assuming
that the output from ℎ are normalized, ensemble returns 𝛼1 ·
ℎ1 (𝑞, 𝑆) + 𝛼2 · ℎ2 (𝑞, 𝑆) = 𝛼1 · 𝑡1 ◦ Φ1 (𝑞, 𝑆) + 𝛼2 · 𝑡2 ◦ Φ2 (𝑞, 𝑆)
at the logit level. Note that 𝑞 is the query, and 𝑆 is the aver-
age embedding of each support set class. Besides, 𝛼1 is the test-
accuracy of ℎ1, and 𝛼2 is the test-accuracy of ℎ2 on few labelled
support samples. Essentially, for ensemble with a high-accuracy
FSL model, QuickBoost gives more priority to the original predic-
tions. For an 𝑁 -way-𝐾-shot support set 𝑆 and a query 𝑞, 𝑡2 (·) input
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is {diff(𝑞, 𝑥 (1)1 ), diff(𝑞, 𝑥 (1)2 ), . . . , diff(𝑞, 𝑥 (𝑁 )
𝐾−1), diff(𝑞, 𝑥

(𝑁 )
𝐾

)}
for 𝑥 as a sample from one of the novel classes 𝐶𝑛 . Here, diff(·, ·)
denotes the set of element-wise squared difference between two fea-
tures. The final ensemble prediction for each query corresponding
to one support set is rendered as:

argmax
𝑛

𝛼1 · norm(ℎ𝑛1 (·)) + 𝛼2 · norm(ℎ𝑛2 (·)) for 1 ≤ 𝑛 ≤ 𝑁 , (7)

where the normalization function norm(𝑢) for a real value 𝑢 ∈ 𝑈
and𝑈 ∈ R𝑁 is defined as:

norm(𝑢𝑖 ) =
𝑢𝑖 −min𝑗 𝑢 𝑗

max𝑗 𝑢 𝑗 −min𝑗 𝑢 𝑗
for 1 ≤ 𝑖, 𝑗 ≤ 𝑁 . (8)

Note that the ensemble scheme is plug-and-play, happening only
during inference stage, where the trained FSL model does not need
to be trained further.

4 Theoretical Insights
In essence, FSL suffers from a high degree of approximation and es-
timation error, and ensemble can tackle such a pain point precisely.
Core Challenge(s) in FSL? The core challenge is high difference
between the best hypothesis obtainable via existing training data,
and the best hypothesis in theory. Such a difference is mainly caused
by the lack of supervision for the target tasks.

We define a hypothesis space H , the expected risk 𝑅(ℎ) as∫
ℓ (ℎ(𝑥), 𝑦)𝑑𝑝 (𝑥,𝑦) = E[ℓ (ℎ(𝑥), 𝑦)]. Empirical risk as 𝑅𝐼 (ℎ) as

1
𝐼

∑𝐼
𝑖=1 ℓ (ℎ (𝑥𝑖 ) , 𝑦𝑖 ), where 𝐼 is the total number of available train-

ing samples. Furthermore, we have ℎ̂ = argminℎ 𝑅(ℎ) as the func-
tion that minimizes 𝑅(ℎ); ℎ∗ = argminℎ∈H 𝑅(ℎ) as the function
inH that minimizes 𝑅(ℎ); ℎ𝐼 = argminℎ∈H 𝑅𝐼 (ℎ) as the function
in H that minimizes 𝑅𝐼 (ℎ). Essentially, ℎ̂ is the most ideal optimal
classifier, ℎ∗ is the best classifier within the hypothesis space con-
sidered, andℎ𝐼 is the classifier we can obtain via thorough empirical
risk minimizing training over available training data. The expected
risk difference between ℎ𝐼 and ℎ̂ can be written as:

E
[
𝑅 (ℎ𝐼 ) − 𝑅(ℎ̂)

]
= E

[
𝑅

(
ℎ∗

)
− 𝑅(ℎ̂)

]
︸                ︷︷                ︸

Eapp (H)

+E
[
𝑅 (ℎ𝐼 ) − 𝑅

(
ℎ∗

) ]︸                  ︷︷                  ︸
Eest (H,𝐼 )

. (9)

Here, Eapp (H , 𝐼 ) is the approximation error, and Eest (H) is the
estimation error [55].

The approximation error, representing the expected risk differ-
ence between ℎ∗ and ℎ̂, arises when the optimal classifier does not
exist within the considered hypothesis space. In deep learning, this
error can be caused by both the lack of relevant supervision data
and limited representational ability of deep neural networks. Gen-
erally, in FSL, as the target-task classes are novel, the chance of the
optimal classifier existing further outside of the hypothesis space is
high compared to standard classification problems [55]. This error
is also known as the representational issue in Zhou [62].

The estimation error arises when there is a difference between
the obtainable trained classifier and the best classifier within the hy-
pothesis space considered [55]. This error can be caused by getting
stuck at local minima during training, which relates to compu-
tational and statistical issues in Zhou [62]. Generally, the issues

can be mitigated with training on a large amount of labelled data
[29, 39, 55]. FSL remains challenging given the lack of such access.
Why Ensemble? In short, ensemble is a simple-yet-effective solu-
tion which tackles the aforementioned issues (i.e., representational,
computational and statistical) precisely [62].

Given FSL models {ℎ1
𝐼
. . . ℎ𝑇

𝐼
}, where ℎ𝐼 (𝒙) returns the logits of

𝒙 , simple averaging gives the combined output 𝑃 (𝒙) as:

𝑃 (𝒙) = 1
𝑇

𝑇∑︁
𝑖=1

ℎ𝑖𝐼 (𝒙). (10)

Suppose the underlying true function to learn is ℎ̂(𝒙), and 𝒙
is sampled according to a distribution 𝑝 (𝒙). The output of each
learner can be written as the true value plus an error item 𝜖 , which
is a result of both Eapp (H , 𝐼 ) and Eest (H) i.e.,

ℎ𝑖𝐼 (𝒙) = ℎ̂(𝒙) + 𝜖𝑖 (𝒙), 𝑖 = 1, . . . ,𝑇 . (11)

The mean squared error of ℎ𝑖
𝐼
can be written as:∫ (

ℎ𝑖𝐼 (𝒙) − ℎ̂(𝒙)
)2
𝑝 (𝒙)𝑑𝒙 =

∫
𝜖𝑖 (𝒙)2𝑝 (𝒙)𝑑𝒙 . (12)

The averaged error made by the individual learners is:

err(ℎ𝐼 ) =
1
𝑇

𝑇∑︁
𝑖=1

∫
𝜖𝑖 (𝒙)2𝑝 (𝒙)𝑑𝒙 . (13)

The expected error of the combined learner (i.e., ensemble) is:

err(𝑃) =
∫ (

1
𝑇

𝑇∑︁
𝑖=1

ℎ𝑖𝐼 (𝒙) − ℎ̂(𝒙)
)2
𝑝 (𝒙)𝑑𝒙

=

∫ (
1
𝑇

𝑇∑︁
𝑖=1

𝜖𝑖 (𝒙)
)2
𝑝 (𝒙)𝑑𝒙 .

(14)

If we assume that the errors 𝜖𝑖 ’s have zero mean and are uncor-
related, i.e.,∫

𝜖𝑖 (𝒙)𝑝 (𝒙)𝑑𝒙 = 0 and
∫

𝜖𝑖 (𝒙)𝜖 𝑗 (𝒙)𝑝 (𝒙)𝑑𝒙 = 0, (15)

for 𝑖 ≠ 𝑗, 𝑗 ∈ [1,𝑇 ], we can have:

err(𝑃) = 1
𝑇
𝑒𝑟𝑟 (ℎ𝐼 ). (16)

This suggests that ensemble error is smaller by a factor of 𝑇 than
the averaged error of the individual learners [62]. When 𝜖 increases
in magnitude, which is usually the case in FSL, err(ℎ) increases,
leading to a larger improvement brought by ensemble. From the
perspective of approximation and estimation error, on the one hand,
approximation error can be reduced via better representational
ability of ensemble, which can cover a larger hypothesis space;
on the other hand, estimation error characterized by local minima
can be reduced through combining multiple local search results.
The errors can be reduced best when ensemble involves accurate
classifiers sharing little correlation (See assumption of Formula 15),
which is also the complementary difference we refer to earlier.
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5 Experiments
5.1 Experimental Configurations
Benchmark Datasets. We use three popular FSL datasets,
miniImagenet, tieredImagenet and Cifar-FS [49]. Both the
miniImagenet dataset and the tieredImagenet are sampled from
the imagenet dataset [44], and the Cifar-FS dataset are sampled
from the Cifar-100 dataset [30]. In both the miniImagenet dataset
and the Cifar-FS dataset, there are 100 classes (train/validation/test
classes = 64/16/20) [32]. Each of the class contains 600 im-
ages. In the tieredImagenet dataset, there are more categories
(train/validation/test classes = 351/97/160) [59].
Implementation Details. For pretraining of the feature encoders,
we use a randomly initialized Res18 [27] model, whose last fully-
connected layer. For the input data, we only apply normalization
without any augmentation. We use a stochastic gradient descent
(SGD) optimizer. The batch size is 128. The momentum is 0.9. The
weight decay rate is 0.0001. The initial learning rate is 0.1. We train
the model for 100 epochs, and the learning rate is reduced by a
factor of 0.1 during the 30th, 60th and 90th epoch. The pretraining
only involves the respective train split of the FSL datasets to pre-
vent data leakage. After obtaining the image feature encoder for
each of the dataset, we combine pairs of image feature vectors ob-
tained via the pretrained encoder, and merge two 512-vectors into
one 512-vector by computing their squared vector difference. Each
merged 512-vector corresponds to either a positive label represent-
ing same-class pairs, or a negative label representing different-class
pairs. We sample 12,800 pairs, with half of them as positive pairs
and half of them negative pairs. Finally, we train a random forest
classifier implemented in the scikit-learn library [8] using the pre-
pared dataset. We set the number of estimators of random forest to
200, the maximum features to 4 and the random seed to 0.
Evaluation Protocols. For evaluation of our method, we test
trained FSL models with or without QuickBoost on standard 5-
way-1-shot and 5-way-5-shot few-shot classification tasks. We use
the Res12 and the Conv4 [50, 59] backbones for different FSL al-
gorithms (i.e., ProtoNet [48], RelationNet [50], MatchingNet [53],
FEAT [59], DeepSet [59], InfoPatch [34]). For evaluation of ensemble
performance, we show the performance of original models before
and after ensemble. All the reported accuracy scores of the original
methods are based on our reproduced experimental results. The re-
spective official implementations are used for the reproduction. For
each reported number, we report the top-1 accuracy score as well
as the 95% confidence interval. Note that all the results included are
of the inductive set-up, while transductive set-up are of a slightly
different problem formulation [3].

5.2 Comparison with the State-of-the-Art
Table 1 summarizes the performance of FSL-Forest in QuickBoost,
original FSL model and Quickboost respectively on 5-way-1-shot
and 5-way-5-shot tasks. The proposed ensemble helps trained FSL
models achieve considerable performance improvement, despite
the limited performance of FSL-Forest as a standalone classifier (e.g.,
42.01% for 5-way-1-shot tasks on the miniImagenet). For example,
on Conv4-based Prototypical Network trained on theminiImagenet,
QuickBoost can improve its performance by 5.99% on 5-way-1-shot
tasks, and 7.77% on 5-way-5-shot tasks. In general, as expected, the

improvement is more salient on 5-way-5-shot tasks compared to
5-way-1-shot tasks, which is likely because of the amplification of
benefits introduced by ensemble; when the number of shot size
increases, QuickBoost can return more predictions to average out
bias with greater efficacy.

While FSL classification is challenging, our simplistic approach
is competitive on state-of-the-art (SOTA) methods. Table 2 summa-
rizes the SOTA methods in few-shot classification 5-way-1-shot or
5-way-5-shot tasks. Non-ensemble methods for comparison include
DeepEMD [60], TADAM [40], MetaOptNet [32], LEO [45], SNAIL
[38], COSOC [36] and Shot-Free [42] . Ensemble methods include
Robust 20 Full [16], 𝐸3𝐵𝑀 [35], CHEF [1], MetaOptNet+MIMO [25]
and EASY [3]. As indicated, when ensembled with SOTA algorithm
like InfoPatch [34], we can achieve the enhanced SOTA results on
the common FSL benchmarks (e.g., 71.29% for miniImagenet and
81.81% for Cifar-FS 5-way-1-shot classification). Importantly, when
compared to other ensemble algorithms (e.g., Robust 20 Full [16],
𝐸3𝐵𝑀 [35]), our approach is capable of better performance despite
its little required computation resources and simplicity of usage.

5.3 Further Discussions
Visualization of Ensemble Features. We visualize the attention
maps for the two different encoders, which are illustrated by Figure
3. In the figure, we have 6 pairs of attention maps. In each pair,
we have, from left to right column, pairs of the original images,
together with their Res12 and Res18 attention. In the first row,
we have attention map comparison which is more precise when
generated from a Res12 encoder, while the Res18 encoder becomes
less precise in the second row. However, in the bottom-right-corner
pair, the Res12 attention is inaccurate in identifying the relevant
region of interest. In terms of prediction correctness, for the first
row, the Res12 encoder is correct in prediction (in a 2-way-1-shot
classification) while Res18 encoder is wrong, and the second row
accounts for the reverse case (i.e., Res18 encoder is right and Res12
is wrong). This visualization illustrates the complementary effect
among different encoders.

Note that the attention maps here are different from traditional
attention maps [24, 47], and is named mutual attention map in this
work. Instead of highlighting regions of interest in a traditional
classification setting, themutual attentionmap highlights regions of
interest during pairwise images comparisons. Originally, attention
map considers the backward-gradient-weighted features [24, 47].
Here, we visualize a set of features Φ(𝑥) = {𝑥𝑖 } of an original image
input𝑋 , where 𝑖 is the channel index from the output of an encoder
Φ. The output feature sum to be visualized for one particular image
𝑥 can be represented by

∑
𝑖

𝑥𝑖 ·𝑥 ′𝑖
∥𝑥𝑖 ∥ · ∥𝑥 ′𝑖 ∥

· 𝑥𝑖 , where 𝑖 is the channel

index, and 𝑥 ′
𝑖
is per-channel-feature from the image compared.

Encoder Combinations. Different encoder combinations can af-
fect ensemble results, which is summarized in Table 3. As stated
in past ensemble research works [62], in general, the higher the
accuracy of each model in ensemble and the difference among the
ensemble components, the better the results of ensemble. This phe-
nomenon can be reflected in the table, which are the 5-way-1-shot
and 5-way-5-shot results on miniImagenet, by Prototypical Net-
works with different encoders. Among the three different encoders,
Conv4 is the most shallow network consisting of 4 CNN layers.
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Method Backbone miniImagenet Cifar-FS tieredImagenet
1-shot (%) 5-shot (%) 1-shot (%) 5-shot (%) 1-shot (%) 5-shot (%)

QuickBoost Res18 42.01±0.18 60.40±0.18 41.66±0.16 60.02±0.20 45.05±0.18 64.09±0.18
ProtoNet [48] Conv4 49.79±0.20 66.89±0.16 - -
ProtoNet+QuickBoost Conv4 55.78±0.20 74.66±0.16 - - - -
ProtoNet Res12 60.02±0.21 75.11±0.14 66.73±0.20 77.07±0.14 68.23±0.14 84.03±0.11
ProtoNet+QuickBoost Res12 62.30±0.19 81.99±0.14 71.34±0.20 84.83±0.14 70.40±0.13 90.88±0.11
RelationNet [50] Conv4 49.63±0.84 65.16±0.69 58.50±0.83 74.37±0.60 - -
RelationNet+QuickBoost Conv4 56.40±0.89 71.85±0.44 64.50±0.89 80.67±0.44 - -
MatchingNet [53] Conv4 - - 55.87±0.22 - - -
MatchingNet+QuickBoost Conv4 - - 67.60±0.21 - - -
FEAT [59] Conv4 53.09±0.20 67.90±0.20 - - - -
FEAT+QuickBoost Conv4 57.08±0.19 76.69±0.18 - - - -
FEAT Res12 63.50±0.20 78.35±0.16 71.76±0.20 85.14±0.15 70.80±0.14 84.79±0.11
FEAT+QuickBoost Res12 67.70±0.20 84.71±0.15 74.46±0.19 89.23±0.14 73.32±0.13 90.45±0.11
DeepSet [59] Res12 60.34±0.20 74.47±0.16 68.04±0.18 77.26±0.15 68.59±0.14 84.36±0.11
DeepSet+QuickBoost Res12 66.98±0.20 84.00±0.15 71.35±0.17 82.91±0.15 72.90±0.13 90.44±0.11
InfoPatch [34] Res12 67.50±0.47 82.10±0.31 79.16±0.48 89.29±0.32 71.51±0.52 85.44±0.35
InfoPatch+QuickBoost Res12 71.29±0.47 88.26±0.33 81.81±0.48 93.16±0.31 75.47±0.48 91.71±0.34

Table 1: Accuracy for Original Few-shot Algorithms and Ensemble.

Original Original OriginalOriginal Res12 Res18 Original Res12 Res18 Original Res12 Res18

Res12 
Better

Res18 
Better

Figure 3:Mutual attention maps for 6 pairs of images. In each pair, we have, from left to right, the original image pair, their
Res12 attention map and their Res18 attention map, which illustrate the complementary nature of different encoders. Best
viewed in colors.

Res12 and Res18 are similar in size (Res12 has 12 million parame-
ters and Res18 has 11 million.). As expected, the better result (60.81%
for 5-way-1-shot and 76.86% for 5-way-5-shot) belongs to the the
combination of Res12 and Res18. This is because both of these
two encoders are accurate on their own while possessing comple-
mentary differences against each other. Conversely, combinations
involving Conv4 (e.g., Res12 + Conv4: 50.53% for 5-way-1-shot and
66.83% for 5-way-5-shot) tend to have worse performance, since
Conv4-based models have a lower independent accuracy (47.79%
for 5-way-1-shot tasks).
Hyperparameter Tuning.We study different hyperparameters
for the random forest classifier of FSL-Forest on 5-way-1-shot

miniImagenet classification tasks, as summarized in Table 4. We ob-
serve that FSL-Forest performance can be further improved through
tuning of hyperparameters. For example, whenwe increase themax-
imum features to consider from 4 to 8 and the number of estimators
from 200 to 800, the standalone FSL-Forest accuracy on 5-way-1-
shot tasks increases from 42.01% to 45.17%. Besides, we observe
that the classifier can be further enhanced when combined with
new features like cosine similarity, which can help achieve an even
higher standalone 5-way-1-shot accuracy score at 46.74%. In brief,
QuickBoost has potential to achieve better performance through
hyperparameter tuning and alternative designs of input features,
but usually at a higher computation cost.
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Algorithm Dataset 5-way Accuracy (%)
1-shot 5-shot

DeepEMD [60] miniImagenet 65.91±0.82 82.41±0.56
TADAM [40] miniImagenet 58.50±0.30 76.70±0.30
MetaOptNet [32] miniImagenet 62.64±0.82 78.63±0.46
LEO [45] miniImagenet 61.76±0.08 77.59±0.12
SNAIL [38] miniImagenet 55.71±0.99 68.88±0.92
COSOC [36] miniImagenet 69.28±0.49 85.16±0.42
Shot-Free [42] miniImagenet 59.04±0.43 77.64±0.39
Robust 20 Full [16] miniImagenet 59.38±0.65 76.90±0.42
𝐸3𝐵𝑀 [35] miniImagenet 64.09±0.37 80.29±0.25
CHEF [1] miniImagenet 64.11±0.32 79.99±0.21
MetaOptNet+MIMO [25] miniImagenet 57.97±0.68 73.21±0.51
EASY [3] miniImagenet 70.63±0.20 86.28±0.12
InfoPatch [34]+QuickBoost(Ours) miniImagenet 71.29±0.47 88.26±0.33
Shot-Free [42] Cifar-FS 69.20±0.40 84.70±0.40
EASY [3] Cifar-FS 75.24±0.20 88.38±0.14
MetaOptNet+MIMO [25] Cifar-FS 69.99±0.73 83.71±0.48
InfoPatch [34]+QuickBoost(Ours) Cifar-FS 81.81±0.48 93.16±0.31

Table 2: SOTA FSL Algorithms (Res12 Encoder).

Conv4 Res12 Res18 1-shot (%) 5-shot (%)

Prototypical Network + QuickBoost
✓ ✓ 62.30±0.19 81.99±0.14

✓ ✓ 55.78±0.20 74.66±0.16
Table 3: Different encoder combination results on
miniImagenet.

Maximum Features Number of Estimators 1-Shot (%) CPU Training Time (s)

4 200 42.01 7.70
8 200 42.73 14.62
4 600 44.03 27.51
8 800 45.17 58.80

Table 4: Hyperparameter Analysis for FSL-Forest.

Model 1-shot (%) Training Time ↓ Data (# of Comparisons) ↓

Prototypical Network (Conv4) 49.79 1.1 hr 1,500,000
Prototypical Network [59] (Res12) 60.02 1.5 hr 1,500,000
𝐸3𝐵𝑀 [35] (Res12) 64.09 1.5 hr 750,000
FSL-Forest + Trained InfoPatch 71.29 7.7 s 12,800

Table 5: Computation Resources Required.

Computation and Data Efficiency.FSL-Forest in QuickBoost is
computationally efficient. In principle, for small-scale training, tra-
ditional machine learning models such as those consisting of simple
decision tree stumps can be much more computationally efficient
when compared to DNNs, in terms of both time and data [54].
Table 5 summarizes the comparison between the Prototypical Net-
work, 𝐸3𝐵𝑀 ensemble algorithm [35] and FSL-Forest. Note that the
Prototypical Network computation requirement is also the basic
computation required for ensemble algorithms like Dvornik et al.
[16], which involves training of multiple such DNN models. In this
approximated comparison, all networks are already pretrained, and
the comparison excludes the pretraining stage. The DNN is trained
on one A5000 GPU, and FSL-Forest is trained on a CPU, whose
model is Intel(R) Xeon(R) Silver 4310 CPU @ 2.10GHz. While the
compute platforms are different (CPU vs GPU), FSL-Forest takes
up negligible training time (7.7 seconds) when compared to DNN
network training (approximately 1.5 hours). The numbers of com-
parisons are calculated based on the product of the support set class
size, and the total number of queries learnt throughout the training

procedure. In particular, during training, FSL-Forest only learns
from 12,800 comparisons.
Model Interpretability. We use Local Interpretable Model-
agnostic Explanations (LIME) [43] to qualitatively understand the
inner mechanisms of the model. LIME allows us to understand
the effects of superpixels in test images on the prediction of class
similarity. LIME scores are based on superpixels identified via un-
supervised image segmentation using Felzenszwalb’s graph-based
image segmentation [17]. We choose LIME as it can be applied to
the QuickBoost FSL-Forest classifier, which is a mixture of gradient
and non-gradient based models. Furthermore, recent studies find
theoretical guarantees and connections between LIME and inte-
grated gradient methods [22]. We randomly sample two classes
(class A and B) and select two images from each class (images A and
B), and one image from another class (image C). We then create 2
image pairs, (i) image A and B, (ii) image A and C. We designate the
randomly-selected image A as the input image for LIME’s pertur-
bations. Using a trained FSL-Forest on miniImagenet, we run LIME
on the model while feeding the model with pairs (i) and (ii). We
find qualitative results that validate our hypothesis that the random
forest classifier is able to identify image features that contribute to
similarity scoring. Figure 4 shows samples of our qualitative results.

Figure 4: LIME interpretability maps. Leftmost images are
input, the middle are the same-class, and the right are the
different-class. LIME maps on the left are generated based
on the same-class input, and the right are the different-class.
Green areas indicate regions that contributing to same class
prediction, while red regions indicate the different class. Best
viewed in colors.

6 Conclusions
To conclude, motivated by the nature of ensemble and FSL, we
explore empirically how ensemble can be effective in terms of
both performance and resource. Our proposed ensemble instance
strengthens the original FSL prediction scores with alternative
predictions, achieving boost for FSL performance at minimal cost.
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