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ABSTRACT
Recent advances in personalized sensing and comfort feedback have
spurred the development of data-driven comfort models tailored to
individual needs. However, because current models treat sequential
comfort feedback independently, they are subject to unstable pre-
dictions and limited interpretability, hindering their deployment in
building management. This study introduces a dynamic modeling
framework that utilizes a Neural Ordinary Differential Equations-
based Continuous-time Markov Chain to model the transitions
in comfort states over time. Our modeling approach, developed
through a field study utilizing smart glasses and mobile app feed-
back, tracks occupants’ comfort transitions across daily activities
and contexts. The results demonstrate that this model not only pre-
dicts comfort states more accurately and stably than conventional
classification models but also uniquely provides a representation
of how the hazards of state transitions are influenced by chang-
ing ambient and contextual conditions. This approach, therefore,
offers a new perspective on personalized building control, where
predictions of comfort transition hazards can preemptively suggest
building management interventions to avoid occupants experienc-
ing discomfort. In addition, insights into how environmental and
contextual characteristics relate to these hazards can guide holis-
tic management strategies that dynamically balance comfort with
energy targets in response to the occupants’ activities and contexts.
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1 INTRODUCTION
Management of occupant-centric buildings requires satisfying in-
dividual comfort requirements and intelligently balancing these
with energy efficiency goals. Conventional comfort models, such
as Fanger’s Predictive Mean Vote (PMV) and the adaptive thermal
comfort model, predict mean thermal sensations for a (large) group
of people, but cannot account for dynamic and nonuniform environ-
ments or individual differences. Furthermore, some of the required
inputs (e.g., clothing insulation in the PMV model) are difficult to
accurately measure in practice [6].

Recent advances in Internet of Things technology, wearable
sensors, and mobile applications have catalyzed a shift toward per-
sonalized comfort models [5, 10]. These models harness rich data
streams and employ advanced machine learning models to predict
comfort states based on these personalized data. The personalized
comfort prediction can further inform subsequent building design
[9] or enable personalized action recommendations for occupant-
centric building management [11]. Currently, most personalized
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comfort models treat sequential comfort state feedback as indepen-
dent incidents to satisfy the standard classification task formulation.
However, this approach results in models that yield unstable predic-
tions despite only moderate input variations, thus rendering them
unreliable for operations requiring robust and accurate occupant
comfort information. Specifically, when individual comfort predic-
tions are used for personalized controls aiming to optimize both
comfort and energy objectives, unstable results oscillating between
’comfort’ and ’discomfort’ states can lead to frequently switching
or even conflicting actions, such as adjusting temperature setpoints
up and down , or toggling window blinds. Such instability can
significantly damage the credibility of the suggested actions and
may even lead to complaints about building operations. As a result,
neither comfort nor energy objectives are achieved. Furthermore,
the lack of interpretability in these models makes it difficult to
diagnose and improve their performance [5, 8, 10].

Inspired by previous research that employed survival analysis
to track participants’ reactions under dynamic thermal stimuli [3],
we introduce a modeling framework that captures the dynamics of
recurrent comfort state transitions in response to the varying envi-
ronmental and contextual conditions with occupants’ daily routines.
Our appraoch uses a Neural Ordinary Differential Equations (Neu-
ral ODEs)-based Continuous-Time Markov Chain (CTMC) model
[4], which generalizes binary survival analysis into multi-state
transitions under complex interactions of condition features. The
modeling framework we introduce was developed in a field study
of occupant comfort using smart glasses ("AirSpecs") equipped with
multiple bodily and ambient sensors [1, 2, 12]. The occupants also
provided their longitudinal overall comfort state feedback alongside
other social and physiological context information via a companion
mobile app. Our analysis also investigates how environmental and
contextual conditions influence comfort state transitions. To do
this, we use Shapley value analysis to quantify feature importance
[7]. We also demonstrate our model’s unique capability to generate
marginal hazards under one or multiple shifting conditions. Overall,
our framework makes contributions in three key areas:

Stable prediction: A key motivation for this CTMC model is to
enable stable predictions that gradually updates comfort state prob-
ability following the changes of underlying transition hazard over
time, thereby overcoming the instability drawbacks inherent in
independent incident classification. Interpretation of transition
hazard: Our framework facilitates a comprehensive analysis of
how the transition hazards are influenced by marginal and concur-
rent changes in ambient and contextual conditions. Proactive and
holistic management: The representation and interpretation of
transition hazard enables building management strategies that can
propose interventions to avoid occupants experiencing discomfort
and dynamically balance comfort with energy targets in response
to the occupants’ varying activities and contexts.
2 METHODOLOGY
2.1 CTMC Comfort Transition Model
This study employs CTMC to model transitions between various
comfort states. In a CTMC, each state represents a distinct com-
fort level, with transitions governed by hazard rates that indicate
how likely the comfort state changes to the other at any given
time due to varying environmental and contextual conditions. A

CTMCmodel is fundamentally defined by a set of forward and back-
ward Kolmogorov equations. The forward equation predicts the
transition probability between any two states over a given future
time interval from the initial time, whereas the backward equation
connects future transitions back to the initial time.

Forward:
𝑑𝑃𝑖 𝑗 (𝑠, 𝑡)

𝑑𝑡
=
∑︁
𝑘

𝑃𝑖𝑘 (𝑠, 𝑡)𝜆𝑘 𝑗 (𝑡, 𝑥), (1)

Backward:
𝑑𝑃𝑖 𝑗 (𝑠, 𝑡)

𝑑𝑠
= −

∑︁
𝑘

𝜆𝑖𝑘 (𝑠, 𝑥)𝑃𝑘 𝑗 (𝑠, 𝑡) . (2)

Here, 𝑃𝑖 𝑗 (𝑠, 𝑡) denotes the transition probability from state 𝑖 at
time 𝑠 , to state 𝑗 at time 𝑡 . 𝜆𝑖 𝑗 is a critical concept in CTMC model,
it represents the instantaneous transition rate, called the "hazard",
i.e., the frequency of transitions per unit time between states 𝑖 and
𝑗 . This term reflects the tendency of a transition occurring before
it actually happens, which can be especially useful in preventing
transitions toward undesired states like discomfort. Hence, we will
consistently use the term "hazard" to denote this instantaneous
transition rate. These hazards typically vary over time 𝑡 and with
external factors 𝑥 (e.g., environmental and contextual conditions).

AirSpecs eyewear bodily 
& ambient sensing AirSpecs mobile app feedback

Figure 1: Illustration of how the CTMC comfort transition
model workswith streamed sensing and feedback. Themodel
tracks comfort state probability (above) and the underlying
transition hazard (below) to other states over time with 95%
credible intervals (based on percentiles). The timings with
sensing data and feedback updates are shown in dashed lines.

Identifying complex Kolmogorov equations directly from the
data presents significant challenges. Typically, researchers assume
a constant hazard (homogeneous CTMC) or adopt specific func-
tional forms for the transition hazard, limiting the ability to model
complex interactions between environmental and contextual condi-
tions effectively. To overcome these limitations, we employ a deep
learning-based framework, SurvNode. SurvNode integrates Neu-
ral ODEs to parameterize and dynamically solve the Kolmogorov
equations via a neural network, enabling a data-driven, adaptive
approach to model comfort transitions from streaming data. The
framework aims to maximize the likelihood of state transitions at a
given time based on observations. In our case, such observations
are participant-reported comfort states over time. Additionally,
SurvNode utilizes a Variational Autoencoder to compress high-
dimensional data into a few normal random variables. By sampling
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these random variables, themodel learns not only the transition haz-
ards but also their credible intervals, indicating potential epistemic
prediction errors arising from the variability and completeness of
the collected data (as shown in Fig. 1). Further technical details of
SurvNode are elaborated in [4].

Fig. 1 illustrates how the CTMC model is deployed to continu-
ously predict and update state probabilities with streamed comfort
feedback alongside contextual information and environmental mea-
surements. When an occupant provides their comfort feedback, an
initial state is determinedwith certainty. Themodel then propagates
state probabilities with dynamic hazard and transition probabilities.
As depicted, the model can update with new ambient measure-
ments, which are much more frequently collected than feedback,
predicting an increased probability and hazard of entering a "Not
Comfy" state. Ultimately, the occupant confirms the discomfort
state in subsequent feedback, and the model updates accordingly.
2.2 Field study and dataset overview
This model was developed using a dataset from a field study aimed
at tracking occupants’ recurring comfort transitions across various
daily activities and contexts, including homes, offices, cafeterias,
and libraries [1]. The study was carried out in three cities spread
around the world, Boston (USA), Fribourg (CH), and Singapore
(SG)—to capture environmental and individual preference variabil-
ity. Ten participants were recruited at each site to participate for five
consecutive days. For this study, a custom smart glasses platform
called AirSpecs [2] was developed. AirSpecs are equipped with am-
bient air temperature and humidity sensors, an air quality sensor
on a sideboard, lux sensors, and sensors for ambient noise levels
(dBA). Digital skin temperature sensors located on the nose and
temple provide data on both body thermal condition and cognitive
loads. Additionally, a mobile and smartwatch app was developed
to prompt participant surveys at irregular intervals (every 30-60
minutes) [12]. During these surveys, participants provided their
overall binary comfort feedback (“Comfy” or “Not Comfy”) along
with their desire for change in one or more domains, including
thermal, indoor air quality (IAQ), visual, and acoustic comfort. Par-
ticipants also provided other contextual information, such as their
current activity and physiological conditions.

Unfortunately, due to cloud storage failure, all data from Fribourg
(CH) was lost. This loss is particularly regrettable as it further
reduces the size of this dataset ( 684 feedback observations ) and
eliminates a valuable source of data representing a unique social
and climatic context. Another notorious issue in comfort prediction
is the class imbalance between discomfort and comfort states. To
address this issue, where discomfort states are underrepresented
[5, 8], we defined an intermediary state called “Comfy with desire
for change.” In this state, participants confirmed overall "comfy" but
also expressed a desire to change in some environmental conditions.
We further processed the measurements and survey data to extract
features for subsequent models as described in Table 1.
2.3 Performance benchmark experiment setup
To benchmark our model’s performance in predicting comfort
states, we selected four commonly used baseline classification mod-
els: Random Forest (RF), Support Vector Machine (SVM), Logistic
Regression (LR), and Multi-Layer Perceptron (MLP), and used F1
score as the evaluation metric. Because our model produces the

Table 1: Feature overview
Group Feature Note

Ambient

Ambient temperature (°C)

Dowsampled AirSpecs measurements
(one minute),exponential-weighted
moving average to tackle noisy and
missing data

Relative humidity (%)
CO2 index (%)
VOC index (%)
Sound level (dBA)
Illuminance (lux)

Bodily Temple temperature (°C)
Heart rate (s-1) Empatica measurements, same processing

Dynamic
context

Internal unease Binary, reported desires for better mood
or bodily condition in surveys

Alone/Group Binary

Focus level Categorical, defined by the time difference
between actual and perceived survey interval

#Past discomfort Counts of past discomfort report within this day

Demo-
graphic

BMI -Age
Country Categorical, participant’s study location

probability for each state, we employed the argmax function to
determine the most likely prediction. This prediction accuracy eval-
uation reflects how well each model captures genuine variations in
comfort levels due to changes in ambient and contextual conditions,
but it does not account for each model’s prediction stability.

Therefore, we progressively sampled random intervals between
5 and 20 minutes in bodily and ambient measurements between
each pair of consecutive comfort feedback observations across the
entire dataset. For these upsampled entries, we held the contextual
features constant by employing backward-filling between obser-
vations. By doing so, if there is an actual transition between two
observations, the upsampling allows us to pinpoint the transition
time more precisely. However, multiple rapid transitions between
different comfort states are very unlikely within the short intervals
between two observations. All models then predicted comfort states
for these upsampled entries. Ideally, a “stable“ model should not
predict more than one state transition between two actual observa-
tions on these upsampled entries. Hence, we define an “instability
score“—a metric expressed as the percentage of instances where
a model predicts more than one state change between each two
feedback observations across the dataset. This metric indicates
how prone a particular model is to changing predictions frequently.
Since the three comfort states represent distinctly different comfort
levels, unstable predictions oscillating among states may lead to
overly frequent and conflicting actions in building operation.

Additionally, we conducted a feature importance analysis for
both types of models. For this analysis, we utilized SHAP (Shapley
Additive exPlanations), a tool that attributes the predictions of a ma-
chine learning model to its input features based on Shapley values
from cooperative game theory [7]. This allows us to demonstrate
how the unique ability of our model to predict marginal hazards
under varying environmental and contextual conditions enhances
our understanding of feature contributions.

Given the limited size of the dataset, we trained a single model
for the participant group rather than individual models for each
participant. Participants’ differences were still accounted for in the
model through dynamic contextual and static demographic and
anthropocentric features. Thus, the model can still yield individual
comfort prediction given each participant’s distinct dynamic and
static features. For the CTMCmodel, additional inputs also included
the previous state from the last comfort feedback, and the relative
daily start and end times of each comfort transition (i.e., 𝑖 , 𝑠 and
𝑡 in Eq. 1 & 2). To ensure a fair comparison, we also included the
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previous state as an additional feature in the classification models.
We split the dataset into training and testing sets at a ratio of 70%
and 30%. For the classification models, to further address the class
imbalance issue, we applied weighted oversampling to the raw
data. During training, we did hyperparameter grid search using
5-fold cross-validation on the training set. For the CTMCmodel, we
manually tested ten sets of network architecture hyperparameters,
as the extensive training time precluded automatic network search.
We did not oversample the minority classes as it may have distorted
the state occupation distribution learned by the CTMC model.
3 RESULT AND DISCUSSION
3.1 Comfort state prediction
The results of the comfort state predictions are summarized in Table
2.With a relatively limited dataset size, all models produced amacro
F1 score of approximately 0.6. While prediction performance should
be improved, these results are still informative as they reflect typical
performance at the “cold-start” stage for any personalized comfort
model [10]. We observed that all classification models particularly
struggle with the “Not Comfy” state. This issue may result from the
aforementioned class imbalance issue in this minority state even
with the application of the oversampling techniques.

Interestingly, our model exhibits superior performance in pre-
dicting the “Not Comfy” state. We infer that this is because our
model explicitly learns the probability propagation from previous
states as depicted in Fig. 1, not just the overall state distribution, as
classification models do. This capability helps to capture scenarios
where discomfort persists or emerges from a previously less com-
fortable state, such as “Comfy with desire for change.” Conversely,
other classification models, despite also incorporating “previous
state” as an informative input feature (as shown in Fig. 2.(a)), often
yield unstable predictions and overlook such transitions due to the
rarity of this class. As the instability scores in Table 2 indicate, SVM
and LR maintain stable predictions since their simpler architectures
ensure decision boundaries that are less prone to fluctuate with
minor changes in input data. Despite its complex architecture, our
CTMCmodel is capable of explicit transition modeling and achieves
the lowest instability score.

Table 2: Performance benchmarking summary

Comfy Not comfy Comfy with desire
for change

Macro
avg. F1

Insta-
bility

RF 0.77 0.51 0.65 0.64 6.26%
SVM 0.72 0.53 0.62 0.62 1.18%
LR 0.79 0.44 0.65 0.63 3.89%
MLP 0.72 0.27 0.6 0.53 8.29%
CTMC 0.72 0.62 0.57 0.64 0.17%

It is important to note that the imbalanced distribution of transi-
tion originals and destinies also affects our model’s performance,
potentially compromising accuracy in “Comfy” and “Comfy with
desire for change” states. Additionally, as Fig. 1 shows, our model
may identify a correct trend towards a particular state in underlying
hazards but not always assign the highest probability to this state.
Therefore, we argue that when deploying our model for person-
alized control, using the transition hazard to define objectives or
rewards could guide controller actions more effectively than using
comfort states alone. This approach not only offers richer informa-
tion but also facilitates more proactive interventions, preventing

discomfort before it fully manifests. Additionally, the credible in-
tervals of hazards may serve as valuable indicators of epistemic
uncertainty, further guiding the precision of intervention strategies.
3.2 Feature analysis

（a）Classifiers average （b）CTMC

Feature Group
Ambient 
(thermal & IAQ)

Ambient 
(visual & acoustic)

Dynamic context 

Bodily

Static demographic 
& anthropometric

0 10% 20% 30% 0 10% 20% 30%

Figure 2: Feature importance from averaged value over all
classification models (left); CTMC model (right). For the
CTMCmodel, "Previous state" is not directly input as feature,
so this space is left blank for better comparison of the other
features. Color-coding indicating feature groups is labeled.

3.2.1 Overall Feature Importance. As Fig. 2 illustrates, ambient
measurements—particularly thermal and IAQ—play a critical role
in both model types. It is important to note that interpreting indi-
vidual feature importance scores in this group can be challenging,
as ambient temperature and humidity are interdependent, and both
VOC and CO2 indices primarily indicate the underlying ventilation
condition. Dynamic contextual features, particularly each individ-
ual’s internal unease, are also critical for both model types, under-
scoring the need to consider occupants’ physical and physiological
states beyond ambient conditions when developing personalized
comfort models. A significant difference between the CTMC and
classification models is that the CTMC assigns lower importance to
demographic and anthropocentric characteristics of each individ-
ual. This may be because these characteristics are static for each
participant, and thus offer limited information for dynamic state
transitions. This limitation may prevent the model from capturing
nuances across different occupants. We anticipate that this issue
could be mitigated with larger datasets, allowing for the develop-
ment of individual-specific models.

3.2.2 Marginal hazard analysis. Although SHAP also permits the
calculation of how specific feature variations influence the model’s
output, interpreting these variations can be challenging and less
intuitive compared to overall feature importance, particularly when
analyzing the interactions between features. Conversely, our model
uniquely enables analysis of how marginal hazards are influenced
by variations in one or multiple input features. To demonstrate
this, we analyze one of the most important measurements—ambient
temperature—and two of themost important contextual conditions—
internal unease and focus level. We vary these features while setting
other contextual features to their mode values and measurement
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features to their mean values. Here, we focus on the participant
group from Boston (US).

（a）Changing internal unease （b）Changing focus level

Standardized ambient temperature

Figure 3: Marginal hazards from "Comfy" to "Comfy with
desire for change" under shifting ambient temperature and
two contexts: Left (internal unease); right (focus level).

According to Fig. 3, the model captures a reasonable U-shaped
hazard pattern as the ambient temperature varies from low to high.
Fig 3.(a) further shows that occupants experiencing internal unease
are more inclined to seek adjustments in all ambient conditions. Fig
3.(b) depicts that the greater the focus on the current activity, the
less likely occupants are to transition to less comfortable states and
request changes. Both contextual conditions have the most impact
on moderate temperatures, while in extreme temperatures, ambient
conditions predominantly influence the transition hazards.

These results may trigger interesting designs that allow interac-
tion between building operations and health & focus management
apps. For instance, the building system can slightly tighten tem-
perature setbacks when the occupant sets the apps to be engaged
in concentrated activities. Then, when a short break and body re-
laxation are suggested to the occupant by the apps, the building
system can enable more comfortable temperature setpoints to allow
quick refreshing. The energy savings during concentrated periods
can be displayed to the occupants as an additional reward besides
productivity. Overall, such an interpretation of the synergy between
ambient and contextual conditions could inform more holistic and
dynamic personalized management strategies that trade off discom-
fort prevention and energy efficiency objectives in response to the
routines and activities of the occupants.

4 CONCULUSION AND OUTLOOK
This study introduces a modeling framework that captures the dy-
namics of comfort state transitions across various daily activities
and contexts using a deep-learning-based CTMC model. Our model
demonstrates superior performance over traditional classification
models, particularly in accurately predicting minority discomfort
states and dynamically updating with shifting conditions. The abil-
ity to analyze transition hazards under changing ambient and con-
textual conditions positions this framework as a foundational tool
for developing smart, personalized comfort management systems
that preemptively address discomfort and optimize the balance
between occupant comfort and energy efficiency.

The primary limitation of this study is the small dataset size,
which restricts the robustness and generalizability of our findings.
To address this, we are planning a larger-scale study using the same
eyewear with a web app feedback pipeline. Although this research
contrasts CTMCmodels with classification approaches, future work
will explore integrating these models to leverage their complemen-
tary strengths. For instance, established semi-supervised learning

paradigms and data augmentation techniques may better leverage
abundant sensor data and address the sparsity of labeled comfort
state observations, which in turn may enhance the CTMCmodeling
approach. Furthermore, while the inclusion of personal, contextual
conditions has shown potential benefits, privacy concerns regard-
ing data collection remain a challenge. Additionally, the deployment
costs and efforts to maintain participant compliance suggest that
exploring complementary data acquisition methods is necessary
for wider application. For example, more easily accessible localized
desk-level smart plugs, along with occupants’ interaction records
with thermostats and windows, may enable us to infer occupants’
comfort states and social activities, allowing us to implement the
proposed framework. In the end, this approach to creating more
reasonable and practical comfort state predictions can enhance
our understanding of individual comfort and provide more useful
information for advanced and personalized building controls.
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