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Abstract

Owing to people spending a large portion of their day sitting while
working, commuting, or relaxing, monitoring their sitting posture is
crucial for the development of adaptive interventions that respond
to the user’s pose, state, and behavior. This is because posture is
closely linked to actions, health, attention, and engagement levels.
The existing systems for posture estimation primarily use computer
vision-based measurements or body-attached sensors; however,
they are plagued by challenges such as privacy concerns, occlu-
sion issues, and user discomfort. To address these drawbacks, this
study proposed a posture-inference system that uses high-density
piezoresistive sensors for joint reconstruction. Tactile pressure data
were collected from six individuals, each performing seven different
postures 20 times. The proposed system achieved an average L2 dis-
tance of 20.2 cm in the joint position reconstruction with a posture
classification accuracy of 96.3%. Future research will focus on the
development of a system capable of providing real-time feedback
to help users maintain the correct sitting posture.
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1 Introduction

Sitting is the dominant posture adopted during various daily activi-
ties, such as working in an office, commuting in a vehicle, or relaxing
on a sofa. This sedentary lifestyle can directly affect productivity
by contributing to various health issues, including musculoskele-
tal disorders and decreased cognitive function [2]. Consequently,
maintaining proper posture is crucial for physical well-being and
enhancing productivity. Thus, monitoring sitting postures can be
an effective method to encourage healthier habits [6].

In such situations, the posture constantly changes based on the
task being performed. Moreover, the posture adopted can be influ-
enced by actions, health states, attention, and engagement levels.
For example, a desirable posture enhances work efficiency and
productivity [5, 8]. In addition, individuals may move from a com-
fortable and natural posture to another, indicating an increased
difficulty in performing the required task [3]. Thus, the relation-
ship between posture and these factors is bidirectional, with each
element having the potential to impact the other. Consequently,
tracking the sitting pose can provide a basis for monitoring the
actions and other states while working and relaxing in our daily
lives.

Similarly, in vehicular contexts, driver posture can be affected
by fatigue, which consequently influences driving performance
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[22]. In automated vehicle contexts, driver posture monitoring can
be used to assess the readiness to take control of the vehicle [19].
Considering these relationships, the monitoring and tracking of
sitting postures can provide important insights for the development
of adaptive interventions that respond to a user’s pose, state, and
behavior.

This study proposed a tactile-sensing-based approach to clas-
sify a user’s sitting posture and reconstruct joint-level motion for
unobtrusive monitoring, facilitating such interventions. The main
contributions of this study are as follows:

e The development of a high-density piezoresistive sensor
system integrated into a seat, enabling unobtrusive pressure
data capture.

o The implementation of a robust system that combines high-
accuracy posture classification with detailed motion analysis,
achieved through 3D joint position reconstruction.

2 Related Work

The continuous sensing and monitoring of user posture, particu-
larly in indoor environments, are considered essential for providing
adaptive and proactive interactions tailored to user posture and
behavior. Camera-based approaches are widely used for tracking
user poses at the joint level, classifying joint positions, and recon-
structing poses while seated [10, 12]. However, these methods are
plagued by privacy and occlusion concerns in crowded or cluttered
indoor environments [15, 16].

As alternatives to vision-based approaches, tactile sensor-based
methods have been proposed to preserve user privacy by reducing
the amount and type of data collected [25]. For example, load cells
[20] and pressure sensors [1, 4, 13, 23] installed on the backrests
and seat plates of chairs can be used to classify sitting postures.
Recent advancements in piezoresistive sensors with wider resolu-
tions have facilitated the capture of richer features regarding user
postures from pressure sensing. This has facilitated accurate three-
dimensional (3D) reconstruction and analysis of standing postures
[7, 17]. Consequently, this study is aimed to unobtrusively classify
user postures and reconstruct sitting postures at the joint level
using piezoresistive signals from sensors installed on the backrest
and seat of chairs. The proposed method facilitated an approach
for continuously monitoring and analyzing user sitting postures
while preserving user privacy.

3 System Overview
3.1 Tactile Seat

To collect tactile data, we developed and utilized a custom high-
density piezoresistive pressure-sensing seat (Figure 1). The tactile
pressure seat featured 32x32 metal contact points on each side, to-
taling 1024 sensing points for detecting pressure through electrical
signals. These metal contact points were orthogonally arranged on
piezoresistive films, which changed resistance upon the application
of pressure at the intersection of the conductive threads. The pres-
sure on the seat altered the resistance between the conductive wire
arrays, thereby changing the voltage output and facilitating the
identification of tactile readings from each pressure point. These
tactile readings from each point on the grid were sent to a computer
via a microcontroller. Each sensor could measure pressures of up
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Figure 1: Hardware setup and data collection process. The left
image shows the custom, high-density piezoresistive pres-
sure sensing seat. The right image depicts a participant wear-
ing the Perception Neuron Studio motion capture system,
which provides the ground truth for three-dimensional skele-
ton data.

.

Right Leg Cross Left Leg Cross

Lean Right

Figure 2: Illustration of the seven sitting postures used in our
study.

to 14 kPa, with the highest sensitivity of 0.3 kPa [17]. The tactile
data were collected at a frequency of 6 Hz.

3.2 Dataset

We utilized the IMU-based motion capture system called Perception
Neuron Studio to establish the ground truth for 3D skeleton data.
These data were collected at a frequency of 43 Hz. The x-, y-, and
z-coordinates of 21 global joint data points were collected, resulting
in 63 features. To simultaneously collect data from both the tactile
sensor and skeleton data, we used the ActionSense framework [9],
which was modified to include Perception Neuron Studio [21] and
tactile seat [14]. This framework concurrently stored data from the
tactile seat and the Perception Neuron Studio in separate threads.

We gathered data on seven types of sitting postures from six
participants, with each participant repeating each posture twenty
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Figure 3: Model architecture for 3D posture reconstruction and classification

times (see Figure 2). These postures were specifically selected to
represent common sitting behaviors frequently observed in office
environments [1, 11, 18, 24]. The participants held each posture for
approximately 2 seconds. We annotated the start and end times
and guided the participants to assume the posture correctly. This
ensured that the central 2-second window used for training accu-
rately represented the intended posture. We did not provide specific
guidance such as exact angles to move for each posture; instead,
we allowed the participants to assume the sitting pose based on the
posture type.

3.3 Preprocessing

The preprocessing stage involved the application of a low-pass filter
with a cutoff frequencies of 2 and 5 Hz for the tactile and Perception
Neuron Studio data, respectively, to remove high-frequency noise.
To ensure consistency and improve the model performance, the
data were normalized. In case of the tactile sensor data, normaliza-
tion was conducted by subtracting the mean sensor value obtained
during an initial 30-s calibration period from each data point and
then scaling the data to the range of (-1, 1) using the minimum and
maximum values from each data collection session. Further, the
dimensionality of the tactile sensor data (originally read as a 32 x
32 grid) was reduced via the application of pooling to downsample
the grid to an 8 x 8 resolution by averaging the values of all four
adjacent sensors.

To address the differing sampling rates of the tactile sensor and
Perception Neuron Studio, all data were resampled to a uniform
rate of 15 Hz over 2-s intervals. This preprocessing yielded a final
dataset with a shape of (840, 30, 191), where 840 corresponded to six
participants, seven types of actions, and 20 repetitions per action.
The 191 features represented the combined data from 128 tactile
sensor data points (64 each from the upper and lower sensors,
respectively) and 63 Perception Neuron Studio data points. The
tactile input sequence had a shape of (840, 30, 128), and the ground
truth data of the joint positions had a shape of (840, 30, 63).
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3.4 Proposed Architecture and Model Training

We designed an architecture that stacks multiple Conv2D layers, as
illustrated in Figure 3. The input sequence, comprising tactile data
from both the upper and lower sections of the seat, was processed
separately through Conv2D layers. Initially, the tactile sensor data
were provided in a 32 x 32 grid, which was reduced to an 8 x 8 grid by
averaging the values of every four adjacent sensors. Features from
the upper and lower data were extracted using Conv2D layers with
ReLU activation and MaxPool2D layers. The architecture started
with a Conv2D layer with 32 filters, followed by layers with 64, 128,
256, 512, and 1024 filters, each followed by ReLU and MaxPool2D
layers. The extracted features from both sections were concatenated
into a single feature map, which was then processed using fully
connected layers to reconstruct a 3D skeleton sequence. The fully
connected layers included a linear layer with 2048 input and 512
output features, followed by ReLU and a final linear layer. For the
reconstruction task, the final layer had 512 input features and an
output size of (30, 63), while for classification, the output size was
7.

The choice of filter sizes and the number of layers was guided
by the need to capture both simple and complex features from
pressure image maps. MaxPool2D layers were used to reduce spatial
dimensions while retaining essential features, and ReLU activation
functions were chosen to introduce non-linearity and mitigate the
vanishing gradient problem. Although extensive hyperparameter
tuning was not performed, the chosen architecture was based on
established deep learning practices for image data and validated
through preliminary experiments [1, 17].

4 Results

4.1 3D Pose Reconstruction

To assess the accuracy of the proposed 3D joint reconstruction, we
calculated the L2 distance, which measures the Euclidean distance
between the predicted and ground-truth coordinates for each joint.
This provides a direct measure of the deviation of the predicted 3D
skeleton joints from their actual positions. Before calculating the L2
distance, the predicted and ground-truth sequences were aligned
by matching the initial coordinates of the hip joint. Subsequently,
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the L2 distance was computed for each joint using the X, Y, and
Z coordinates between the aligned predicted and ground truth
coordinates, thereby measuring the discrepancy in the 3D joint
positions. The results are summarized in Table 1.

Table 1: L2 distance (in cm) between predicted and ground
truth coordinates for each joint.

Joint L2 (cm) Joint L2 (cm)
Middle Hip 2.1 Neck1 21.2
Right Hip 5.7 Head 22.4
Right Knee 29.2 Right Shoulder 17.7
Right Ankle 37.9 Right Arm 19.9
Left Hip 5.9 Right Forearm 20.6
Left Knee 36.7 Right Hand 26.2
Left Ankle 415 Left Shoulder 18.3
Spine 4.2 Left Arm 222
Spinel 9.9 Left Forearm 219
Spine2 13.7 Left Hand 27.6
Neck 19.9 Average 20.2

As presented in Table 1, the L2 distance of each joint ranged as
2.1-41.5 cm, indicating variations in the accuracy across different
joints. In general, the joints closer to the sensor (e.g., hip and spine)
exhibited higher accuracy than those farther away (e.g., feet and
hands). These observations aligned with the intuition that the pres-
sure map changed most significantly with movements of the spine
and upper leg. This trend indicated that the accuracy decreased for
joints farther from the hip.

4.2 Sitting Posture Classification

To classify the seven sitting postures, we utilized accuracy, balanced
accuracy, F1 score, recall, and precision as evaluation metrics. Our
dataset consisted of 840 instances, with each of the seven postures
represented by 120 instances, recorded for approximately 2 seconds
each. To ensure model generalization, we combined the data from
all six participants and split it into a 4:1 ratio for training and test-
ing. We employed stratified 5-fold cross-validation on this mixed
dataset to ensure that each fold maintained the same class distri-
bution as the original dataset. By averaging the metrics across the
five stratified folds, we obtained a robust estimate of the model’s
performance.

To prevent overfitting, we applied several strategies during train-
ing and network design. Early stopping monitored validation loss,
halting training if no improvement occurred over 10 epochs, thus
avoiding excessive adaptation to training data. Dropout layers in
the fully connected layers randomly set a fraction of input units to
zero during training to reduce neuron dependency. These strategies
collectively improved the model’s generalization, ensuring reliable
performance on unseen data.

For hyper-parameter tuning, we experimented with learning
rates of 0.0001, 0.0003, and 0.0005. We selected the model config-
uration that achieved the highest accuracy. Based on this optimal
configuration, we conducted an ablation study to assess sensor
importance by using only one sensor at a time.

We compared the results of our CNN-based model with two
baseline methods: major class voting and random voting. Since
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our dataset had an equal number of instances for each class (120
instances per class), in major class voting, the model always predicts
the most frequent class, which we chose to be class 0 for consistency.
In random voting, it randomly assigns one of the seven class labels
to each instance. The classification results are presented in Table 2.

Table 2: Evaluation metrics for sitting posture classification.

Model Acc. Bal. Acc. Precision Recall F1-score
Major Voting 14.4% 14.3% 2.1% 14.4% 3.6%
Random Voting  15.7% 15.7% 15.6% 14.4% 15.5%
Only Upper 86.5% 86.5% 87.6% 86.5% 86.5%
Only Lower 97.7% 97.7% 97.9% 97.7% 97.7%
All Sensors 96.3% 96.3% 96.8% 96.3% 96.2%

An accuracy of 96.3% and a balanced accuracy of 96.3% demon-
strated the overall effectiveness of the model in classifying various
sitting postures when using all sensors. Further, the F1 score of
96.2%, recall of 96.3%, and precision of 96.8% indicated the robust-
ness of the model, demonstrating balanced performance with min-
imal trade-offs between false positives and negatives. The model
using only the lower sensors also showed remarkable performance,
with an accuracy and balanced accuracy of 97.7%, precision of 97.9%,
recall of 97.7%, and F1 score of 97.7%, indicating that the lower sen-
sors play a crucial role in posture classification. The model using
only the upper sensors achieved an accuracy and balanced accu-
racy of 86.5%, precision of 87.6%, recall of 86.5%, and F1 score of
86.5%, showing lower performance compared to the models using
all sensors or only the lower sensors. The baseline methods, major
voting and random voting, showed expectedly lower performance,
with accuracies of 14.4% and 15.7% respectively, consistent with the
expected performance of random guesses given a balanced dataset
with 7 classes. In contrast, our CNN-based model demonstrated
robust and effective classification performance across all metrics,
significantly outperforming these baselines and highlighting the
model’s capability in accurately classifying sitting postures.

In addition, we present the confusion matrix for sitting posture
classification in Figure 4. The confusion matrices for models using
only the upper sensor, only the lower sensor, and all sensors are
displayed. The model using only the lower sensor and all sensors
showed the highest classification accuracy with minimal misclassi-
fication across all postures. The model using only the upper sensor,
while still effective, showed more misclassifications compared to
the other configurations, particularly between "Lean Forward" and
"Upright Position", and between "Lean Right" and "Lean Left".

These misclassifications can be attributed to the nature of the
pressure distributions for certain postures. For example, the confu-
sion between "Lean Forward" and "Upright Position" when using
only the upper sensor can be explained by the fact that both postures
involve similar upper body pressure patterns, making it difficult for
the model to distinguish between them. Similarly, the confusion
between "Lean Left" and "Lean Right" can be attributed to the fact
that these postures produce subtle pressure changes in the upper
sensors, which are not distinctive enough for accurate classification.
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Figure 4: Confusion Matrix for the sitting posture.

Additionally, the "Right Leg Crossed" and "Left Leg Crossed" pos-
tures primarily affect the lower body pressure distribution, leading
to misclassification when only upper sensor data is used.

These observations imply that for the classification of the seven
sitting postures we analyzed, using only the lower sensors is suf-
ficient to achieve high accuracy. Overall, our evaluations demon-
strated that the proposed system effectively classified the sitting
postures with high accuracy. These results validate the feasibility
of using pressure sensors for posture analysis and provide a founda-
tion for developing real-time posture monitoring and intervention
systems.

5 Limitations and Future Work

Although our proposed system showed promising results in posture
classification and joint reconstruction, several limitations must be
addressed for practical applicability and robustness.

First, the data collected in experimental scenarios need validation
in natural settings using more complex ground-truth methods like
cameras and depth sensing. Second, the wired sensor design limits
user convenience and complicates installation, suggesting a need
for wireless sensor technology to improve usability and scalability.

Furthermore, the pose classification tasks used in this study
were relatively simple, which may not fully challenge the model’s
capabilities. Future research should consider incorporating more
complex and contextually rich sitting postures to better evaluate
the model’s robustness. For instance, predicting sitting postures not
only based on position but also in the context of different activities,
such as reading a book or typing on a keyboard, would provide a
more comprehensive assessment of the system. Such complex tasks
would demand the model to understand and classify sitting postures
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in varied and realistic scenarios, reflecting real-world usage more
accurately.

Additionally, adjusting skeletons only at the hip position without
correcting for key rotational axes may lead to larger errors for joints
farther from the hip. Skeletal dimensions could also affect error
metrics, with taller individuals potentially showing larger positional
errors for the same joint angle error.

To address these issues, future work will involve defining and
analyzing essential joint angles for seated posture, expanding our
dataset, and incorporating these angles into our reconstruction
methods to deliver detailed feedback on seated posture. Moreover,
the system’s real-time capabilities have not yet been tested. Future
work will also include usability testing to evaluate if the system op-
erates effectively in real-time and if users perceive it as functioning
accurately.

6 Conclusion

This study developed a pressure-based posture estimation system
using high-density piezoresistive sensors for accurate 3D joint re-
construction and posture classification. The system reconstructed
joint positions with an average L2 distance of 20.2 cm and classi-
fied sitting postures with 96.3% accuracy. Integrated with real-time
feedback, it can help users maintain healthy sitting habits by en-
couraging posture adjustments. Combining this system with visual
or depth sensors could enhance accuracy and robustness, especially
for joints less influenced by seat pressure, such as the foot and hand
positions, which are crucial for understanding user behavior.
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