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ABSTRACT

In order to predict a pedestrian’s trajectory in a crowd accurately,
one has to take into account her/his underlying socio-temporal
interactions with other pedestrians consistently. Unlike existing
work that represents the relevant information separately, partially,
or implicitly, we propose a complete representation for it to be
fully and explicitly captured and analyzed. In particular, we intro-
duce a Directed Acyclic Graph-based structure, which we term
Socio-Temporal Graph (STG), to explicitly capture pair-wise
socio-temporal interactions among a group of people across both
space and time. Our model is built on a time-varying generative
process, whose latent variables determine the structure of the STGs.
We design an attention-based model named STGformer that af-
fords an end-to-end pipeline to learn the structure of the STGs
for trajectory prediction. Our solution achieves overall state-of-
the-art prediction accuracy in two large-scale benchmark datasets.
Our analysis shows that a person’s past trajectory is critical for
predicting another person’s future path. Our model learns this rela-
tionship with a strong notion of socio-temporal localities. Statistics
show that utilizing this information explicitly for prediction yields
a noticeable performance gain with respect to the trajectory-only
approaches.
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1 INTRODUCTION

When a person walks in a crowd, in addition to the location of
their destination, this person’s motion path is also affected by other
agents’ movements, e.g.following the lead, taking a detour to avoid
collisions, or making a stop at a rendezvous. Accurately forecasting
an agent’s motion trajectories depends on how accurately their
surrounding agents’ activities are captured and modeled. In vision-
based applications, including autonomous driving

In a scene of only pedestrians, there exists a hidden graph that
governs the socio-temporal interactions among the agents. Relative
information is either discarded, partially represented, or implicitly
encoded by various models proposed to date, such as pooling

To this end, we introduce a structure named Socio-Temporal
Graphs (STGs, see Fig. 1). An STG instance not only considers each
agent’s past trajectories or how they interact at each time instant,
but also explicitly describes how one’s past trajectory affects the
prediction for another one’s future trajectory. Also, in contrast to
existing work that lets such information be hard-coded into the
model
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(a) Trajectories of three agents (b) Learned STG (Ours)

Figure 1: (a) Given the observed trajectories of multiple
agents at time t =0-2, (b) ations at ¢ — 1, the socio-temporal
models for multi-agent trajectory forecastindg at ¢. (a) Most
previous models assume a fixed structure, while (b) our model
learns the socio-temporal graph (STG).

We design an attention-based model, named STGformer, that
realizes STG and allows it to be learned through an end-to-end
pipeline. In particular, when training the model by maximizing
the data likelihood, we introduce two separate modules, one repre-
senting the prior distribution of the latent sequence and the other
representing the posterior of the distribution conditioned on obser-
vations. By minimizing the corresponding KL divergence between
these two distributions, the latent prior can be learned recursively,
so the shape of the distribution is effectively regularized without
explicit parametric restrictions.

Our solution achieves state-of-the-art results on Stanford Drone
and ETH/UCY trajectory prediction benchmarks with respect to the
trajectory-only approaches. Interestingly, our analysis shows that
a person’s past trajectory is critical for predicting another person’s
future path, and explicitly utilizing this fact can yield a noticeable
performance gain. Furthermore, our experiment indicates that this
information exhibits strong spatial-temporal localities.
Contributions. (1) We introduce the STG structure and formulate
multi-agent trajectory forecasting based on learning it with a la-
tent sequential generative model. (2) We design an attention-based
model named STGformer that allows STG to be effectively learned
in an end-to-end fashion. (3) We provide analysis to identify the
efficacy of learning STG regarding performance gain.

2 RELATED WORK

Multi-agent trajectory prediction. Current trajectory forecast-
ing approaches exploit a variety of deep neural network mod-
els [7]. For instance, some methods adopt a set of LSTMs to char-
acterize the movement of pedestrians [1, 9]. By contrast, NSP-
SFM [51] formulates the trajectory forecasting with neural dif-
ferential equations [32]. PECNet [24] infers the endpoints to assist
in trajectory forecasting using a Conditional Variational AutoEn-
coder (CVAE) [7]. LB-EBM [26] generates predictions with a latent
energy-based model [5], while MID [8] uses diffusion processes [34].

Other approaches rely on graphs. Among these, some harness a
graph neural network to associate all agents in a fully-connected
fashion [11, 12, 33], while others [36, 40, 44, 48, 50] replace the
graph neural network with attention mechanisms [37]. Causal-
HTP [4] and CausalMR [20] analyze the causal effects with the aid
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of a pre-defined causal graph [27] that models the effects from the
confounding environmental elements to the agents.

Most of these studies share the idea of implicitly assuming a
fully-connected underlying structure to consider the interactions
among the agents per time step. However, the connectivity among
agents might be falsely addressed. For example, one agent might
be too far from another agent, so considering the motion of one
does not help predict the motion of the other. Learning these socio-
temporal dependencies and pruning irrelevant edges might reduce
overfitting and improve predictions.

Modeling socio-temporal interactions. Recent studies have
attempted to capture socio-temporal correlations in the context
of pedestrian trajectory forecasting. Some studies model socio-
temporal interactions implicitly. Among them, a subset first assign
anetwork to each person to obtain temporal cues, and subsequently
leverage another network for social cues [1, 4,9, 12, 13, 21, 24, 25, 29,
42, 46, 48, 51]. by contrast, some recent approaches [41, 50] tie the
social and temporal correlations jointly due to their co-occurrence.

New studies introduced learned time-invariant structures to
tackle different tasks, such as physical motion modeling, or to infer
the bioinformatic signaling [19, 22, 45]. DA-Former [10] leverages
a greedy strategy to search for an optimal graph for the machine
translation problem. Following these works, a set of recent tech-
niques explicitly learn a static graph [16, 43]. Nevertheless, more
than the static representation might be required to characterize
the time-varying socio-temporal correlations. EvolveGraph [17]
partially addresses this issue with a learned dynamic local social
structure. Our work takes inspiration from the aforementioned
recent advances, introducing a novel approach to learning time-
varying STGs for human trajectory forecasting.
Transformer-based trajectory prediction. With the success of
Transformer models in both fields of natural language processing
(NLP) and computer vision, many methods [6, 8, 18, 47, 49, 50]
employ the Transformer to build trajectory prediction systems.
Despite the strong representation ability of the attention model to
learn the relations, the Transformer-based framework implicitly
builds the fully-connected graph of all agents. This paper shows
that we can explicitly learn STG, which reduces ambiguity and
significantly improves trajectory prediction.

3 METHOD

Let xl.t denote the position of agent i at time t, and x* = {xl.t }i the
positions of all agents at time ¢. The goal is to predict x’ from the
collective past observations x%/~1.

3.1 Problem Formulation

We define the socio-temporal graph (STG) as a binary adjacency
matrix to represent how current observations are related to the past
in the form of the directed acyclic graph (DAG). For example, at
time ¢ = 3, directed edges with value 1 in binary adjacency matrix
G* (Fig. 2a) indicate a possible one-sided interaction between the
agent represented by the source node and the agent represented
by the destination node. Such interactions can span over time time
7 = {0 : t — 1} to t to indicate the fact that one’s past behavior
can influence another’s decision in the future. In other words, our
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Figure 2: Socio-temporal graph (STG). (a) STG definition as the ad-
jacency matrix between agents at the current step and all previous
steps. G> means at ¢ = 3 all agents establish a possible connection
with agents over ¢ < 3. (b) Autoregressive model for trajectory pre-
diction, where G! is the embedding from an evolving sequence that
constructs expanding G°. (c) G* has two components, G, and G3,
which produce G* through bilinear product.

hypothesis is that each observation x’ is generated not only by
x%=1 but also the underlying socio-temporal graph, G*.

To learn the dynamics of G over time from past observations/training

data as opposed to a static one

p(Xt, Gt |X0:t71, GO:tfl) =P (Xt |X0:t71, Gt)Pq/ (thGO:tfl ) (1)
Specifically, inspired by the bilinear model for graph generation
STG dynamic module. We model the STG prior model with a
multivariate Gaussian model
pe(GIIG™Y) = N (G g (G™71), D, @)

which is implemented by one Transformer decoder block
STG-aware trajectory module. We first introduce the STG-aware
attention block and then incorporate it into the trajectory module.

G! is obtained using Eqn. ?? to guide the evaluation of self-
attention

Similarly, to construct pg (x |x0:t -1 G"), we have

pq)(xt|x():t—l, Gt) — N(Xt;/Jq)(XO:t_l, Gt),I) (3)

with mean p! and an identity matrix of a Multivariate Gaussian:

4o = MLP,(STG-aware-attn®) 4)
We use another Transformer decoder, as well as an MLP to instanti-
ate yig. The prediction of x’ is then sampled according to the output
of Eqn. 4, using our proposed STG-aware attention (STG-aware-
attn).

3.2 Learning

Variational Inference. The goal of training is to determine ¥
and @ that maximize the log likelihood of the observed data p(x).
As obtaining the exact solution is intractable, we instead seek to
evaluate its evidence lower bound (ELBO) with a posterior model
for STG q@(ét |G%~1 x%) We denote the STG samples from the
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posterior model as G*, where those from the prior model as G.
p(XO:T, GO:T)
q@(GO:T |X0:T)

s ) T pcD(XtIXO:tfl)Gt)pT(thco:tfl)
- GU:TN‘I@ g SE0:E—1 :
LOI q@(Gt|GO t-1 x0it)

logp(XO:T) >L(6,0,9) = EGU:T~q® log

P@(Xt ‘XO:t—l’ G’)p\y(thGo"‘l) )

Eor_, lo —
G'T~qe g( o (GH|GV1~1, x01)

DM~ I

[Ect-qq log po (x'1x"71,G")

T
(=]

~Dir (40(G* 16"~ x") Ipy (G*1G™ D) )

where (.)%¢~1 is an empty set when t=0.
Training objective. First, due to the normality of pg, the first term
in Eqn. 3 reduces to the mean square error loss
T
t 0:t=1 ~ty)(2
Lus = ) Berego (11X = o™, GHI),
=0

(6)

where the expectation is evaluated numerically.
Then, we assume the posterior also takes a form of conditional
Multivariate Gaussian:

o (Gt|c"';0:t—1’ XO:t) — N(ﬂ@ (XO:t, GO:t—l), I),
where p(-; ©) is produced by a separate Transformer decoder
To further regularize the distribution of the resulting structure

G, we also apply a Ly-norm penalty. In conclusion, we have the
following training objective function

)

0:T
L=Lmse+Lgr +ZIG™ llo- ®)
3.3 Inference
During the initialization, given the known trajectory x%%~1, we

can use the posterior model to generate G%%~1, We then feed
G%~1 to the prior module to estimate G from Eq. 2 and ??. This
design exploits the historical data to learn the reasonable G for
predictions. To generate plausible future trajectories predictions,
we sample from pg (x![x%*~1, G*), following Eqn. 3 and 4.

Again, we expect the distribution of our prediction maximizes
the ELBO by minimizing the KL divergence in Eqn. 5 as the un-
derlying hypothesis is that predictions over new observations and
old samples used for training are drawn from a similar distribution
being captured by our learned G*.

4 EXPERIMENTS

We conducted extensive experiments to justify the effectiveness of
our approach in terms of trajectory prediction. We also conduct
experiments on the information captured by the STG by examining
its existence, efficacy, and socio-temporal characteristics.

4.1 Experimental Setup

Datasets. The performance of our approach to trajectory forecast-
ing was evaluated on two widely used datasets: ETH/UCY [15, 28]
and the Stanford Drone Dataset (SDD) [31]. The ETH/UCY dataset
contains five scenes, most of which include more than 700 differ-
ent pedestrians. The human trajectories are captured in real-world
scenes. The SDD dataset comprises long video sequences for 20
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Figure 3: Learning and inference for STGFormer model. (a) During training, we minimize the STG prediction from the prior
and posterior modules and the reconstruction from the trajectory module. (b) During inference, we first initialize STGs with
the posterior module and then predict future trajectories with the prior and trajectory modules.

Table 1: Results on the SDD dataset with best-of-20 ADE/FDE
scores. For fair comparison, We rank methods with trajec-
tory input only (T) 1st in bold and 2nd underlined. Also we
showcase the results from those with extra image input (T+I).

| Input [ ADE/FDE |
Y-Net T+1 | 7.85/11.85
V2-Net T+1| 7.12/11.39
NSP-SFM T+1 | 6.52/10.61
Muse-VAE T+1| 6.36/11.10
Social-GAN T 27.23/41.44
EvolveGraph T 13.90/22.90
GroupNet T 9.31/16.11
GP-Graph T 9.10/13.80
LB-EBM T 8.87/15.61
PCCSNET T 8.62/16.16
NPSN T 8.56/11.85
MemoNet T 8.56/12.66
AgentFormer T 8.35/13.03
Expert T 7.69/14.38
MID T 7.61/14.30
STGFormer (Ours) ‘ T 7.35/11.39

scenes captured using a drone in a top-down view around a univer-
sity campus. It labels complete trajectories of different categorized
moving objects (e.g., pedestrians, bicyclists, and vehicles) from
entering the scene until they exit. Both datasets include highly dy-
namic scenarios with rich socio-temporal correlations, and as such,
they are ideal for evaluating the performance of our approach.
Following state-of-the-art methods, [4, 9, 11, 12, 50], the trajec-
tories of all datasets are sampled at 0.4 seconds intervals. The first
3.2 seconds (8 frames) are observed for each video, and the next
4.8 seconds (12 frames) are to be predicted. We adopt a leave-one-
scene-out approach for our experiments on the ETH/UCY dataset,
training and validating our model on videos in 4 scenes and testing
on the 5th scene. We repeat this procedure for all five scenes. In
addition, we apply the same training and testing procedure for all
baseline methods to ensure a fair comparison.
Evaluation metrics. We follow the same evaluation metrics adopted
by previous work [4, 8, 12, 48, 50], including the Best-of-20 average
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displacement error (ADE) and final displacement error (FDE). In
addition, our evaluation is performed for each agent compared to
the respective ground truth, where ADE computes the mean square
error (MSE) of 20 predictions and the ground truth, while FDE cal-
culates the L2 distance between the final locations of 20 predictions
and the ground truth.

4.2 Comparing with State-of-the-art Methods

Methods in comparison. We categorize methods as Trajectory-
Only (T) and Trajectory-and-Image (T+I) methods, as the additional
image information may be crucial in certain circumstances yet in-
creases computation cost. Methods using T+I include Y-Net[23],
V2-Net [41], NSP-SFM [51], Muse-VAE [14], and Social-BiGAT [12].
Methods using T-only include GP-Graph [2], MID [8], MemoNet
[44], NPSN [3], GroupNet [43], Expert [52], PCCSNET [35], LB-EBM
[26], Trajectron++ [33], Y-Net[23], AgentFormer [50], EvolveGraph
[17], Social-GAN [9], Expert [52], CausalHTP [4], STAR [48], Tra-
jectron++ [33], SG-net[39], and Social-GAN [9].

Quantitative results on SDD dataset. Tab. 1 shows that STG-
Former outperforms other approaches with trajectories-only input
consistently in ADE and FDE. Notably, our method improves the
ADE by achieving a value of 7.35. In terms of FDE, our approach ac-
complishes a score of 11.39. These findings tip the balance towards
our approach with respect to the other approaches.

Quantitative results on ETH/UCY dataset. In the second part
of our benchmark experiments, our results on ETH/UCY datasets
are summarized in Tab. 2. Experiment results demonstrate that our
proposed method achieves the best average 0.18 ADE and 0.35 FDE
over the trajectory-only approaches.

Qualitative results. Fig. 4 and Fig. 6 showcase the most-likely
prediction from STGFormer and Expert [52] on SDD and ETH/UCY
datasets. STGFormer generates more accurate predictions concern-
ing the true future than Expert [52], especially for longer-term
predictions.

4.3 Analysis of Learned STGs

What differentiates STGformer from other models is that past trajec-
tories of copresent agents in the same scene are explicitly used by
our model to predict any agent’s future trajectory. We validate the
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Table 2: The benchmark Best-of-20 ADE/FDE results (|) on the ETH/UCY datasets. For fair comparison, We rank methods with
trajectory input only (T) 1st in bold and 2nd underlined. Also we showcase the results from those with extra image input (T+I).

 Up-to-date results from the official implementations are worse than the original ones due to an evaluation bug.

‘ Input ETH Hotel Univ. Zaral Zara2 AVG
Social-BiGAT T+1 | 0.69/1.29 0.49/1.01 0.30/0.62 0.36/0.75  0.55/1.32 | 0.48/1.00
Y-Net T+1 | 0.28/0.33 0.10/0.14 0.24/0.41 0.17/0.27  0.13/0.22 | 0.18/0.27
V2-Net T+1 | 0.23/037 0.11/0.16 0.21/0.35 0.19/0.30  0.14/0.24 | 0.18/0.28
NSP-SFM T+1I | 0.25/0.24 0.09/0.13 0.21/0.38 0.16/0.27  0.12/0.20 | 0.17/0.24
Social-GAN T 0.81/1.52  0.72/1.61  0.60/1.26  0.34/0.69  0.42/0.84 | 0.58/1.18
CausalHTP T 0.60/0.98  0.30/0.54 0.32/0.64 0.28/0.58  0.52/1.10 | 0.40/0.77
Trajectron++ T T 0.67/1.18  0.18/0.28  0.30/0.54 0.25/0.41  0.18/0.32 | 0.32/0.55
SG-Net T T 0.47/0.77  0.20/0.38  0.33/0.62  0.18/0.32  0.15/0.28 | 0.27/0.47
STAR T 0.36/0.65 0.17/0.36  0.31/0.62  0.26/0.55  0.22/0.46 | 0.26/0.53
GroupNet T T 0.46/0.73  0.15/0.25  0.26/0.49 0.21/0.39  0.17/0.33 | 0.25/0.44
GP-Graph T 0.43/0.63  0.18/0.30  0.24/0.42  0.17/0.31  0.150.29 | 0.23/0.39
AgentFormer T T 0.45/0.75  0.14/0.22  0.25/0.45 0.18/0.30  0.14/0.24 | 0.23/0.39
LB-EBM T 0.30/0.52  0.13/0.20  0.27/0.52  0.20/0.37  0.15/0.29 | 0.21/0.38
PCCSNET T 0.28/0.54 0.11/0.19  0.29/0.60  0.21/0.44  0.15/0.34 | 0.21/0.42
MID T 0.39/0.66  0.13/0.22  0.22/0.45 0.17/0.30  0.13/0.27 | 0.21/0.38
NPSN T 0.36/0.59  0.16/0.25  0.23/0.39  0.18/0.32  0.14/0.25 | 0.21/0.36
MemoNet T 0.40/0.61 0.11/0.17 0.24/0.43  0.18/0.32  0.14/0.24 | 0.21/0.35
Expert T 0.37/0.65 0.11/0.15 0.20/0.44 0.15/0.31 0.12/0.26 | 0.19/0.36
STGFormer (Ours) ‘ T 0.27/0.56 0.11/0.17 0.22/0.45 0.16/0.31 0.14/0.24 | 0.18/0.35

Ground Truth

Ours

Observation Expert
Figure 4: Qualitative results on SDD. Each example overlays
the predictions from MID [8] (yellow dashed line) and ours
STGFormer (cyan dashed line), historical observations (blue
line), and ground truth future (red line)

usefulness of this information by examining its distribution in space
and time, and its socio-temporal dynamics. On SDD dataset, we
compute the statistics of the edge weights of each learned instance
of G* and examine the relevant properties.

Spatial analysis:. Fig. 5a depicts the likelihood of the existence of
edges of a value 1 over space. The plot shows one agent is more
likely to be correlated with her/his nearby agents; the further away
two agents are located, the less likely they are to be correlated.
Temporal analysis:. The samples are re-grouped in terms of the
duration that each edge spans. The distribution presented in Fig. 5b
indicates two facts:(1) there are social edges that are learned to be
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non-trivial, indicating the socio-temporal notion pair-wise relation-
ship between two agents can be captured through learning; (2) this
notion becomes more apparent as the relationship is established in
a shorter time-span. The plot shows that “Short-term” edges are
more likely to be considered than their “long-term” counterparts
for trajectory predictions.
Socio-temporal dynamics:. We also study how the pair-wise
correlations change over time and space. To this end, we define
two events: agent i and agent j are said to be “approaching” each
other when the corresponding distance is decreasing: ||9%lt - x]t |2 <
||fcf -1 J%]t._l ||2, or otherwise they are “diverging” from each other
(1% = 2]l > [12¢
7

Fig. 5¢ shows that statistically, most edge values flip from 0 to 1
when two agents “approaching” each other, and vice-versa, most
values flip from 1 to 0 when two agents are walking away from each
other. Moreover, the symmetry and heavy tail distribution in Fig. 5d
suggest that there exists a single underlying localized perimeter
surrounding each agent, where when another agent enters or leaves
it, the corresponding edge flips its value accordingly.
Analysis of Learned STGs on ETH/UCY datasets. We also con-
duct the same analysis of the learned STGs on each scene of the
ETH/UCY datasets (Fig. 8A). The learned STGs on the ETH/UCY
datasets have similar characteristics to that on the SDD dataset.
Specifically, Fig. 8B reveals the likelihood of the existence of edges
of a value 1 over space. The distribution presented in Fig. 8C indi-
cates two facts:(1) the socio-temporal notion pair-wise relationship
between two agents can be captured through learning STGs; (2)
“Short-term” edges are more likely to be considered than their “long-
term” counterparts for trajectory predictions. Fig. 8D illustrates

1o Ajt._1||2). The scenario is exemplified in Fig.
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Table 3: Ablation studies on the ETH/UCY and SDD datasets. We report the ADE / FDE scores over 20 predictions.

ETH Hotel Univ. Zaral Zara2 AVG SDD
w/o social 0.79/1.12  0.61/0.74  0.53/0.85  0.69/0.92  0.62/1.07 | 0.65/0.94 | 14.71/21.07
w/o LP 0.62/1.07  0.49/0.55  0.45/0.69  0.42/0.61  0.47/0.66 | 0.49/0.72 | 12.93/17.42
Stationary-Gt 0.55/0.84  0.44/0.49  0.44/0.65 0.38/0.60  0.34/0.52 | 0.43/0.62 | 11.40/17.15
Short-term-G* 0.45/0.69  0.31/0.42  0.35/0.63  0.30/0.52  0.31/0.38 | 0.34/0.45 9.04/14.29
w/o G* 0.44/0.65  0.26/0.38  0.31/0.59  0.23/0.47  0.22/0.35 | 0.29/0.49 | 8.83/14.61
=0 0.32/0.60  0.24/0.33  0.25/0.51  0.21/0.38  0.18/0.27 | 0.24/0.42 8.28/12.90
STGFormer (Ours) 0.27/0.56 0.11/0.17 0.22/0.45 0.16/0.31 0.14/0.24 | 0.18/0.35 | 7.35/11.39
i (1 =0 0.10 Learning socio-temporal correlations over time: w/o G. To
.08 00.08 highlight the advantages of learning the socio-temporal dependen-
‘2’, 06 006 cies, we compared two models, one with G! and one without it. A
8 o4 A~ os design with a predefined w/o G! baseline is similar to a transformer
. 002 decoder [30]. Again, a significant contribution of our work is to
NSE EEEEEN o, allow this entity to be learnable. We conduct ablation studies to
30 60 %0 120 150 180 210 25 50 75 100 125150 175 show the benefit of learning data-driven STG over fixed ones for
() Distance (®) Time . L . :
trajectory predictions (Tab. 3). This suggests that understanding
%0 01 17120 4 0=>1 11120 socio-temporal correlations enables STGformer to generalize over
08 03 various datasets over a more stable distribution.
%‘0_6 g‘ 02 Long-term v.s. short-term correlations: Short-term-G!. To
§0.4 g verify that the information carried by non-trivial edges facilitates
o 0.1 trajectory prediction, we also intentionally mask off this informa-
6 ‘ : 0 Ls —eond tion in our ab‘l‘ation experiment. The result is reported in Tab. 3,
(©)  Approaching Diverging ) 90 60 -S(I)Dis?anczo 60 190 annotated as “w/o social”. It can be easily seen that if relevant

Figure 5: We compute the statistics of the learned edge values
and study the socio-temporal notion of the pair-wise agent
interactions these edges encode. (a) The sparse distribution
of learned non-trivial STG edge values over the distance be-
tween the two agents the edges connect. Edges with a learned
value of 1 mostly link two agents no more than of 120-pixel,
meaning the behaviors of most agents outside this range
are deemed less essential for trajectory predictions. (b) The
distribution of edges with a value 1 over time. “Short-term”
edges are more likely to be considered than their “long-term”
counterparts for trajectory predictions. (c) The flip of edge
from 0 to 1 is highly correlated with the event where two
agents “approaching” each other, and vice-versa, the event
that two agents “diverging"” from each other are captured by
the edge value flipping from 1 to 0. (d) Symmetry and spatial
localization suggest that most events occur when one agent
is entering or leaving another agent’s 30-pixel-perimeter.

that statistically, most edge values flip from 0 to 1 when two agents
“approaching” each other, and vice-versa, most values flip from 1 to
0 when two agents are walking away from each other. The symme-
try and heavy tail distribution in Fig. 8E suggest that there exists
a single underlying localized perimeter surrounding each agent,
where when another agent enters or leaves it, the corresponding
edge flips its value accordingly.

4.4 Ablation Study

We conducted the following ablation studies to examine the effec-
tiveness of the model design.
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information learned by our model is intentionally ignored, the per-
formance of our model drops, which means that the information
uniquely learned by our model can be used to improve prediction
accuracy.

Moreover, we divide all edges of G by the time duration they
span into “short-term” and “long-term”, respectively. Tab. 3 reports
the results if the samples only from the same group are used for pre-
diction. The results show that the deeper we look back into history
to consider potential correlations between past observations with
present ones, the better prediction we make, and reasonably our
performance gain becomes marginal as excessively old observations
tend to carry obsolete information.

Specifically, we adjust the duration of the “look-back” window
of G* from R™™ to R™" Such a design suggests connecting
an individual with his/her cause persons at only 1 step before,
respectively. Our approach drastically advances short-tem G by
improving from 9.04/14.29 to 7.35, 11.39 on SDD, and from 0.34/0.45
to 0.18,0.35 on ETH/UCY. The results suggest that the long-term
correlations provide valuable information for future predictions.
Time varying property: Stationary-G*. The performance of STG-
Former is considerably better than its counterpart design with a
learned-once-applied-to-all stationary-G* baseline, which assumes
that the system is time-invariant. Under the time-invariant assump-
tion, G' at the first step is learned and applied to analyze all subse-
quent observations. The results suggest that the system governing
human trajectories is time-varying.

Generating G': w/o LP (learned prior). We compare models with
and without LP baseline. More specifically, the model without LP
drops p\I,(Gt|GO:t_1) by setting G ~ N (0, 1). Tab. 3 illustrates the
advantage of STGFormer over the model without LP, indicating the
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ETH Hotel

Observation Ground Truth

Univ

MM’24, October 28 - November 1, 2024, Melbourne, Australia.
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Ours

Figure 6: Qualitative results on ETH/UCY datasets. Each column overlays predictions for several individual agents. For each
person, we show the path history (blue line), ground truth future (red line), and predictions from Expert [52] (yellow dashed

line) and ours STGFormer (cyan dashed line).

Figure 7: Socio-temporal dynamics: the flip of edge values from 0 to 1 and 1 to 0 indicate the occurrence of “approaching” and
“diverging", respectively. For example, the initial edge value between two agents at t = 6 is learned to be 0, indicating they are
uncorrelated. Afterwards, at t = 12, when they are “approaching" each other close enough, the edge value flips from 0 to 1. At
time ¢ = 18, when they “diverge" from each other far enough, the corresponding edge value flips from 1 back to 0.

Table 4: Ablation studies on the architectures of the ADE / FDE scores over 20 predictions on the ETH and UCY datasets. The

last row is our STGFormer results.

Gt x ETH Hotel Univ. Zaral Zara2 AVG SDD
LSTM GAT 0.55/0.76 0.49/0.64 0.50/0.65 0.38/0.54 0.42/0.57 0.47/0.63 | 12.71/19.84
LSTM Transformer 0.40/0.62 0.31/0.38 0.36/0.54 0.32/0.50 0.30/0.42 0.34/0.45 9.55/14.10

Transformer GAT 0.31/0.61 0.22/0.25 0.28/0.48  0.19/0.41 0.20/0.36 0.24/0.41 8.12/13.27
Transformer Transformer | 0.27/0.56 0.11/0.17 0.22/0.45 0.16/0.31 0.14/0.24 | 0.18/0.35 | 7.35/11.39

necessity of capturing the underlying temporal correlation of G*
over t upon learning from py (G*|G%~1).
STG sparsity term: { = 0. The sparsity term means ¢||G%7 ||o. We

favor a succinct socio-temporal interpretation for our observation.

Setting ¢ = 0 allows us to minimize the weight of edges encoding
unnecessary correlations. We conducted an ablation study to verify
this point that trains the model without (|| GT||o. Tab. 3 shows that
with the sparsity regularizer, the learner can generate better/more
succinct interpretations, which lead to more accurate predictions
by our design.
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Transformer Architecture. In order to further verify the effec-
tiveness of our architecture choices, we tested models with a dif-
ferent backbone, choosing LSTM [7] and GAT [38] as alternatives
in contrast to the transformer. To ensure a fair comparison, we
used a single LSTM layer with a hidden size of 256 to learn the
prior py (G*|G%¢~1) and posterior gg(G/|G%*~1, x%*). The trajec-
tory model, implemented with a Two-stacked GAT, is set to a size
of 512. Both GAT layers use eight attention heads.
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Figure 8: We compute the statistics of the learned edge values and study the socio-temporal notion of the pair-wise agent
interactions these edges encode over the ETH/UCY dataset. (A) The different scenario settings in ETH/UCY dataset. (B) The
sparse distribution of learned non-trivial STG edge values over the distance between the two agents the edges connect. Edges
with a learned value of 1 mostly link two agents no more than 200 pixels, meaning the behaviors of most agents outside this
range are deemed less essential for trajectory predictions. (C) The distribution of edges with a value of 1 over time. “Short-term”
edges are more likely to be considered than their “long-term” counterparts for trajectory predictions. (D) The flip of edge from
0 to 1 is highly correlated with the event where two agents “approaching” each other, and vice-versa. The event that two agents
“diverging" from each other is captured by the edge value flipping from 1 to 0. (E) Symmetry and spatial localization suggest
that most events occur when one agent enters or leaves another agent around a 60-pixel-perimeter.

5 CONCLUSION approaches. We believe that our STGFormer can paves the way
for future improvements. One promising direction is to extend our
framework to include context information, such as images, and
trajectories, to discover the correlations between human agents
and the environment in terms of socio-temporal interactions.

In this paper, we introduce and test a STGFormer for learning to
better foresee human trajectories. The STGFormer models the joint
distributions that are formulated in Eqn. 2. This formulation al-
lows us to grasp the socio-temporal graph structures underlying
representations of human trajectories. Experiment results demon-
strate that our model delivers better performance in the task of path
forecasting compared with other state-of-the-art trajectory-based
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