MIT
Libraries | D>pace@MIT

MIT Open Access Articles

Automatic Local Inverse Calculation for Change of Variables

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Rojas Collins, Elias. 2024. "Automatic Local Inverse Calculation for Change of
Variables.”

As Published: https://doi.org/10.1145/3689491.3689970

Publisher: ACM|Companion Proceedings of the 2024 ACM SIGPLAN International Conference on
Systems, Programming, Languages, and Applications: Software for Humanity

Persistent URL: https://hdl.handle.net/1721.1/157627

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of use: Creative Commons Attribution

I I I .
I I Massachusetts Institute of Technology

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/157627
https://creativecommons.org/licenses/by/4.0/

Automatic Local Inverse Calculation for Change of
Variables

Elias Rojas Collins
Massachusetts Institute of Technology
Cambridge, USA

Abstract

Inversion is a fundamental operation that arises frequently in
probabilistic inference and computer graphics. For example,
inversion is used to decrease variance and to enable differ-
entiation in variational inference (e.g., reparameterization
trick) and in differentiable rendering (e.g., to integrate over
object boundaries). Existing approaches to inversion limit
the class of functions inverted, for example, to affine func-
tions, or require a user-specified inverse. We study when
a local inverse—an inverse that is valid in a neighborhood
of a point—exists. We provide an algorithm to approximate
the local inverse and give the convergence rate of the solver.
We present LIN, a system that automatically computes the
local inverse of a function using a fixed-point solver. We im-
plement LIN in Python and use it to automatically compute
the local inverse of affine, polar, and hyperbolic changes of
variables arising in image stylization.

CCS Concepts: » Mathematics of computing — Solvers;
« Computing methodologies — Rendering.

Keywords: Inversion, Differentiable Programming, Differ-
entiable Rendering, Probabilistic Programming

ACM Reference Format:

Elias Rojas Collins. 2024. Automatic Local Inverse Calculation for
Change of Variables. In Companion Proceedings of the 2024 ACM SIG-
PLAN International Conference on Systems, Programming, Languages,
and Applications: Software for Humanity (SPLASH Companion °24),
October 20-25, 2024, Pasadena, CA, USA. ACM, New York, NY, USA,
3 pages. https://doi.org/10.1145/3689491.3689970

1 Introduction and Background

Inversion is a fundamental mathematical primitive critical
in solving problems arising in domains such as computer
graphics and probabilistic inference. For example, changes
of variables often require inversion and are used to reduce
variance and to enable differentiation in variational inference

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

SPLASH Companion °24, October 20-25, 2024, Pasadena, CA, USA
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1214-2/24/10
https://doi.org/10.1145/3689491.3689970

34

60 L] L] L] L] L] 6 L]
LX) 10
e © e o e e 5 e %o
LN)
ie e o o o @ a % © o 2
> N e o o o -
e o o o o o 3 ° o G° g
L) L] L] (] 10°
2o © Input ° , % . ..0
LIN inverse o f(x,y)e

1e - - - - L] 1 -
102 3 4 s e -0s 00 0s

o 2 a4 & 8
X w Iteration

(a) Inputs (black),
LIN inverse (orange).

(b) The lattice under
the mapping f.

(c) Log loss over
iterations

Figure 1. LIN local inverse matches input under hyperbolic
change of variables: w,z = f(x,y) = (log (\/%) \/x_y)

(e.g., reparameterization trick) [6, 7] and in differentiable
rendering (to integrate over object boundaries) 3, 11].

To meet this challenge, researchers have developed invert-
ible programming languages that given the forward execu-
tion of a program from a restricted grammar, can automati-
cally deduce an inverse [1, 3, 10, 14]. If for every input the
forward execution has a unique inverse then the function it
denotes has a global inverse.

A key gap in the existing systems is support for functions
with a local inverse—an inverse that need only be correct in
a neighborhood of a query point. Automated solvers fail to
(locally) invert these functions [13] or require handwritten
piecewise inverses [3, 11].

In this paper, we build a system, LIN, which solves the
problem of approximate, automatic inversion for functions
that have local inverses. LIN uses a fixed-point solver that
given y, produces a sequence (x,),en that approaches the
inverse x = f~!(y) near a given initialization point x,. The
solver satisfies useful theoretical properties such as being
correct in a neighborhood of the point and approaching the
exact inverse exponentially quickly.

2 Theory of Local Inversion

In this section, we present the theory and analysis that un-
derlies the local inversion algorithm used in LIN. We start by
defining differentiability and the local inverse of a function.
Definition 2.1 (Lee [9, Definition C.1]). A function f :
R™ — R™ is differentiable at a point t if there exists a linear
map Df(¢) : R* — R™ such that

lig W E+D = f(&) - Df() - Ol _

im =

x—0

0.
x| A

A function Df that satisfies the above property is the total
derivative of f.If n = m = 1 then the total derivative equals

https://orcid.org/0009-0003-3929-1386
https://doi.org/10.1145/3689491.3689970
https://doi.org/10.1145/3689491.3689970
https://creativecommons.org/licenses/by/4.0/

SPLASH Companion ’24, October 20-25, 2024, Pasadena, CA, USA

the usual derivative: Df(t) = Z—jxr(t). A function f is differen-
tiable if it is differentiable everywhere and is continuously
differentiable if the total derivative is continuous.
Definition 2.2. A function F : U — V is said to have a
local inverse near t if there exist connected (see Janich [5,
Pg. 14]) open sets Uy, V) such that t € Uy € U and F(t) €
Vo € Vand F|y, : Uy — Vj is a bijection with a continuously
differentiable inverse. A
The following theorem states when a local inverse exists.

Theorem 2.3 (Inverse Function Theorem Lee [9, Thm C.34]).
IfF : U — V is continuously differentiable and if the derivative
DF(t) is invertible at t, then F has a local inverse at t. «

If the determinant of the total derivative at a point is
nonzero, then the condition of Theorem 2.3 holds and thus a
local inverse exists at that point. We will now show how to
generate a local inverse using fixed points.

Definition 2.4. A fixed point of a function F : S — Sisa
point x* € S such that F(x*) = x*. A

3 Automatic Inversion in LIN

In this section, we present the algorithm for automatic in-
version in LIN and discuss the properties of the algorithm
including the region of existence of the local inverse and the
convergence rate.

Algorithm. Let f : R® — R" be a locally invertible func-
tion satisfying the conditions of Theorem 2.3. LIN estimates
the local inverse of f around a given input point ¢ in the do-
main by taking in a query point y in the co-domain and using
a fixed-point solver that approaches f~!(y) as the number
of iterations approaches infinity. The fixed-point iterator,
adapted from [4], is defined as:

xo=t and xp =2, = [DFO]7(fxn) —1). (1)
The total derivative of f is a matrix that depends on ¢, and its
inverse is the matrix inverse, which is easy to calculate. Since
t satisfies the condition of 2.3 the matrix inverse exists. The
inverse defined by the iterator above is correct in regions
around t and f(t) respectively, as provided by Theorem 2.3.
The following theorem shows that the fixed-point of the
iterator is the local inverse of f in a neighborhood near t.

Theorem 3.1 (Edwards [4, Pg. 166]). If f : S — S is such

that Df () is invertible, then at a pointy € S the inverse
f~1(y) is the fixed point of:

T(A) == [DFO]I™ (f (V) —y).)

It is known that the fixed point iteration method for in
version converges linearly.

Theorem 3.2 (Atkinson [2, Pg. 79]). Egq. I converges linearly
on Uy, meaning that the loss decays exponentially. «

4 Results

We develop a benchmark suite for coordinate changes, a step
in image stylization [3, Figure 8].

35

Elias Rojas Collins

6 14 . 10
° L]
s 12 e °
L) L] ° L]
10 . . @ 10
a ® o o 8
> NOB® @ e e e o ;
¢ ¢ & o o ° o
.
2.4 Input N e ® e o
LIN inverse o f(x,y)’
16— o e e & 02 - 107
i 2 3 4 5 3 2 4 3 8 2 L
X w Iteration

(b) The lattice under
the mapping f.

(c) Log loss over
iterations.

(a) Inputs (black),
LIN inverse (orange).

Figure 2. LINlocal inverse matches input under polar change

of variables: w,z = f(x,y) = (sz + y?, atan2(y, x)).

Table 1. Mean =+ standard deviation time (ms) per sample.

LIN Michel et al. [11]
Affine 1.20 +6.50 X 1072 | 1.43 X 1072 £ 9.00 x 10~ %
Polar 1.40 £1.50 X 1072 | 2.02Xx 1072 +£6.53 x 1073
Hyperbolic | 1.26 + 1.66 x 1071 | 2.11x 1072 + 5.28 x 1073

We evaluate LIN by calculating a local inverse for change
of variables from Cartesian coordinates to: (1) an affine trans-
formation of the coordinates, (2) polar coordinates, and (3)
hyperbolic coordinates as in [3, Figures 8d, 5, 8e].

Methodology. We implement LIN in PyTorch [12] using
the fixed-point inversion algorithm specified in Equation 1.
We run the benchmarks on a 14-inch MacBook Pro with an
M3 Pro processor and 18GB of memory. To evaluate per-
formance, we calculate the L? loss between the input and
inverse that LIN computes for each point in the lattice. To
select an initialization point for the fixed-point iteration we
sweep the lattice for a point such that LIN converges to an
inverse for all points on the lattice. We believe that future
work could use results such as in Lang [8, Pg. 362] to more
efficiently find a good initialization.

Results. In the affine case, f(x,y) = (x +y — 8,y), there
exists a global inverse and LIN has zero loss after a single
iteration. Local inverses always agree with global inverses
and overlapping local inverses as shown in Lee [9, Pg. 660].

Figure 2 shows the result of applying LIN to a polar co-

ordinate transformation, f(x,y) = (\/xz + y?, atan2(y, x)),

which has a global inverse. Figure 2c shows the loss over
several iterations. Figure 1 shows a Cartesian-to-hyperbolic

transformation, f(x,y) = (log (\/%), \/@), which lacks a

global inverse but has a local one. Figure 1c shows the loss
over several iterations.

Table 1 shows the mean and standard deviation of the
time (in milliseconds) to calculate a local inverse at each
of 36 lattice points (e.g., the points in Figures 1 and 2). We
time how long it takes LIN to execute 100 iterations of the
fixed-point solver. Michel et al. [11] requires hand-coded
piecewise inverses, requiring more user-effort, but providing
better performance as it directly evaluates the appropriate
piecewise inverse.

Automatic Local Inverse Calculation for Change of Variables

References
[1] Luke Anderson, Tzu-Mao Li, Jaakko Lehtinen, and Frédo Durand. 2017.

[2

3

[7

—

]

[

—

Aether: an embedded domain specific sampling language for Monte
Carlo rendering. Transactions on graphics (2017). https://doi.org/10.
1145/3072959.3073704

Kendall Atkinson. 1989. An Introduction to Numerical Analysis (2 ed.).
John Wiley & Sons.

Sai Bangaru, Jesse Michel, Kevin Mu, Gilbert Bernstein, Tzu-Mao Li,
and Jonathan Ragan-Kelley. 2021. Systematically Differentiating Para-
metric Discontinuities. Special Interest Group on Computer Graphics and
Interactive Techniques (2021). https://doi.org/10.1145/3450626.3459775
C. H. Edwards. 1994. Advanced Calculus of Several Variables. Dover
Publications.

Klaus. Janich. 1984. Topology. Springer-Verlag.

Durk P Kingma, Tim Salimans, and Max Welling. 2015. Variational
Dropout and the Local Reparameterization Trick. In Neural Information
Processing Systems.

Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational
Bayes. In International Conference on Learning Representations.

[8] S.Lang. 1993. Real and Functional Analysis (3rd ed.). Springer.
[9] John M Lee. 2013. Introduction to Smooth Manifolds (2 ed.). Springer.

36

[10]

[11]

[12]

[13]

[14]

SPLASH Companion 24, October 20-25, 2024, Pasadena, CA, USA

Kazutaka Matsuda and Meng Wang. 2020. Sparcl: a language for
partially-invertible computation. (2020). https://doi.org/10.1145/
3409000

Jesse Michel, Kevin Mu, Xuanda Yang, Sai Praveen Bangaru, Elias Rojas
Collins, Gilbert Bernstein, Jonathan Ragan-Kelley, Michael Carbin, and
Tzu-Mao Li. 2024. Distributions for Compositionally Differentiating
Parametric Discontinuities. Object-Oriented Programming, Systems,
Languages, and Applications (2024). https://doi.org/10.1145/3649843
Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zach
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: an
imperative style, high-performance deep learning library. In Neural
Information Processing Systems.

Chung-chieh Shan and Norman Ramsey. 2017. Exact Bayesian infer-
ence by symbolic disintegration. Principles of Programming Languages
(2017). https://doi.org/10.1145/3093333.3009852

Tetsuo Yokoyama, Holger Bock Axelsen, and Robert Gliick. 2008. Prin-
ciples of a reversible programming language. In Conference on Com-
puting Frontiers. https://doi.org/10.1145/1366230.1366239

Received 2024-07-09; accepted 2024-08-19

https://doi.org/10.1145/3072959.3073704
https://doi.org/10.1145/3072959.3073704
https://doi.org/10.1145/3450626.3459775
https://doi.org/10.1145/3409000
https://doi.org/10.1145/3409000
https://doi.org/10.1145/3649843
https://doi.org/10.1145/3093333.3009852
https://doi.org/10.1145/1366230.1366239

	Abstract
	1 Introduction and Background
	2 Theory of Local Inversion
	3 Automatic Inversion in LIN
	4 Results
	References

