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Abstract
Inversion is a fundamental operation that arises frequently in
probabilistic inference and computer graphics. For example,
inversion is used to decrease variance and to enable differ-
entiation in variational inference (e.g., reparameterization
trick) and in differentiable rendering (e.g., to integrate over
object boundaries). Existing approaches to inversion limit
the class of functions inverted, for example, to affine func-
tions, or require a user-specified inverse. We study when
a local inverse—an inverse that is valid in a neighborhood
of a point—exists. We provide an algorithm to approximate
the local inverse and give the convergence rate of the solver.
We present LIN, a system that automatically computes the
local inverse of a function using a fixed-point solver. We im-
plement LIN in Python and use it to automatically compute
the local inverse of affine, polar, and hyperbolic changes of
variables arising in image stylization.

CCS Concepts: • Mathematics of computing → Solvers;
• Computing methodologies → Rendering.

Keywords: Inversion, Differentiable Programming, Differ-
entiable Rendering, Probabilistic Programming
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1 Introduction and Background
Inversion is a fundamental mathematical primitive critical
in solving problems arising in domains such as computer
graphics and probabilistic inference. For example, changes
of variables often require inversion and are used to reduce
variance and to enable differentiation in variational inference
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Figure 1. LIN local inverse matches input under hyperbolic
change of variables:𝑤, 𝑧 = 𝑓 (𝑥,𝑦) =

(
log
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𝑥
𝑦

)
,
√
𝑥𝑦

)
.

(e.g., reparameterization trick) [6, 7] and in differentiable
rendering (to integrate over object boundaries) [3, 11].

To meet this challenge, researchers have developed invert-
ible programming languages that given the forward execu-
tion of a program from a restricted grammar, can automati-
cally deduce an inverse [1, 3, 10, 14]. If for every input the
forward execution has a unique inverse then the function it
denotes has a global inverse.

A key gap in the existing systems is support for functions
with a local inverse—an inverse that need only be correct in
a neighborhood of a query point. Automated solvers fail to
(locally) invert these functions [13] or require handwritten
piecewise inverses [3, 11].
In this paper, we build a system, LIN, which solves the

problem of approximate, automatic inversion for functions
that have local inverses. LIN uses a fixed-point solver that
given 𝑦, produces a sequence (𝑥𝑛)𝑛∈N that approaches the
inverse 𝑥 = 𝑓 −1 (𝑦) near a given initialization point 𝑥0. The
solver satisfies useful theoretical properties such as being
correct in a neighborhood of the point and approaching the
exact inverse exponentially quickly.

2 Theory of Local Inversion
In this section, we present the theory and analysis that un-
derlies the local inversion algorithm used in LIN. We start by
defining differentiability and the local inverse of a function.
Definition 2.1 (Lee [9, Definition C.1]). A function 𝑓 :
R𝑛 → R𝑚 is differentiable at a point 𝑡 if there exists a linear
map 𝐷𝑓 (𝑡) : R𝑛 → R𝑚 such that

lim
𝑥→0

∥ 𝑓 (𝑥 + 𝑡) − 𝑓 (𝑡) − 𝐷𝑓 (𝑡) · (𝑥)∥
∥𝑥 ∥ = 0.

△

A function 𝐷𝑓 that satisfies the above property is the total
derivative of 𝑓 . If 𝑛 =𝑚 = 1 then the total derivative equals

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

34

https://orcid.org/0009-0003-3929-1386
https://doi.org/10.1145/3689491.3689970
https://doi.org/10.1145/3689491.3689970
https://creativecommons.org/licenses/by/4.0/


SPLASH Companion ’24, October 20–25, 2024, Pasadena, CA, USA Elias Rojas Collins

the usual derivative: 𝐷𝑓 (𝑡) = 𝑑𝑓

𝑑𝑥
(𝑡). A function 𝑓 is differen-

tiable if it is differentiable everywhere and is continuously
differentiable if the total derivative is continuous.
Definition 2.2. A function 𝐹 : 𝑈 → 𝑉 is said to have a
local inverse near 𝑡 if there exist connected (see Janich [5,
Pg. 14]) open sets 𝑈0,𝑉0 such that 𝑡 ∈ 𝑈0 ⊆ 𝑈 and 𝐹 (𝑡) ∈
𝑉0 ⊆ 𝑉 and 𝐹 |𝑈0 : 𝑈0 → 𝑉0 is a bijection with a continuously
differentiable inverse. △

The following theorem states when a local inverse exists.

Theorem 2.3 (Inverse Function Theorem Lee [9, Thm C.34]).
If 𝐹 : 𝑈 → 𝑉 is continuously differentiable and if the derivative
𝐷𝐹 (𝑡) is invertible at 𝑡 , then 𝐹 has a local inverse at 𝑡 . «
If the determinant of the total derivative at a point is

nonzero, then the condition of Theorem 2.3 holds and thus a
local inverse exists at that point. We will now show how to
generate a local inverse using fixed points.
Definition 2.4. A fixed point of a function 𝐹 : 𝑆 → 𝑆 is a
point 𝑥∗ ∈ 𝑆 such that 𝐹 (𝑥∗) = 𝑥∗. △

3 Automatic Inversion in LIN
In this section, we present the algorithm for automatic in-
version in LIN and discuss the properties of the algorithm
including the region of existence of the local inverse and the
convergence rate.

Algorithm. Let 𝑓 : R𝑛 → R𝑛 be a locally invertible func-
tion satisfying the conditions of Theorem 2.3. LIN estimates
the local inverse of 𝑓 around a given input point 𝑡 in the do-
main by taking in a query point𝑦 in the co-domain and using
a fixed-point solver that approaches 𝑓 −1 (𝑦) as the number
of iterations approaches infinity. The fixed-point iterator,
adapted from [4], is defined as:

𝑥0 = 𝑡 and 𝑥𝑛+1 = 𝑥𝑛 − [𝐷𝑓 (𝑡)]−1 (𝑓 (𝑥𝑛) − 𝑦). (1)
The total derivative of 𝑓 is a matrix that depends on 𝑡 , and its
inverse is the matrix inverse, which is easy to calculate. Since
𝑡 satisfies the condition of 2.3 the matrix inverse exists. The
inverse defined by the iterator above is correct in regions
around 𝑡 and 𝑓 (𝑡) respectively, as provided by Theorem 2.3.
The following theorem shows that the fixed-point of the

iterator is the local inverse of 𝑓 in a neighborhood near 𝑡 .
Theorem 3.1 (Edwards [4, Pg. 166]). If 𝑓 : 𝑆 → 𝑆 is such
that 𝐷𝑓 (𝑡) is invertible, then at a point 𝑦 ∈ 𝑆 the inverse
𝑓 −1 (𝑦) is the fixed point of:

𝑇 (𝜆) := 𝜆 − [𝐷𝑓 (𝑡)]−1 (𝑓 (𝜆) − 𝑦) . (2)
«

It is known that the fixed point iteration method for in-
version converges linearly.
Theorem 3.2 (Atkinson [2, Pg. 79]). Eq. 1 converges linearly
on𝑈0, meaning that the loss decays exponentially. «

4 Results
We develop a benchmark suite for coordinate changes, a step
in image stylization [3, Figure 8].
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Figure 2. LIN local inversematches input under polar change
of variables:𝑤, 𝑧 = 𝑓 (𝑥,𝑦) =

(√︁
𝑥2 + 𝑦2, atan2(𝑦, 𝑥)

)
.

Table 1. Mean ± standard deviation time (ms) per sample.
LIN Michel et al. [11]

Affine 1.20 ± 6.50 × 10−2 1.43 × 10−2 ± 9.00 × 10−4

Polar 1.40 ± 1.50 × 10−2 2.02 × 10−2 ± 6.53 × 10−3

Hyperbolic 1.26 ± 1.66 × 10−1 2.11 × 10−2 ± 5.28 × 10−3

We evaluate LIN by calculating a local inverse for change
of variables from Cartesian coordinates to: (1) an affine trans-
formation of the coordinates, (2) polar coordinates, and (3)
hyperbolic coordinates as in [3, Figures 8d, 5, 8e].

Methodology. We implement LIN in PyTorch [12] using
the fixed-point inversion algorithm specified in Equation 1.
We run the benchmarks on a 14-inch MacBook Pro with an
M3 Pro processor and 18GB of memory. To evaluate per-
formance, we calculate the 𝐿2 loss between the input and
inverse that LIN computes for each point in the lattice. To
select an initialization point for the fixed-point iteration we
sweep the lattice for a point such that LIN converges to an
inverse for all points on the lattice. We believe that future
work could use results such as in Lang [8, Pg. 362] to more
efficiently find a good initialization.

Results. In the affine case, 𝑓 (𝑥,𝑦) = (𝑥 + 𝑦 − 8, 𝑦), there
exists a global inverse and LIN has zero loss after a single
iteration. Local inverses always agree with global inverses
and overlapping local inverses as shown in Lee [9, Pg. 660].
Figure 2 shows the result of applying LIN to a polar co-

ordinate transformation, 𝑓 (𝑥,𝑦) =

(√︁
𝑥2 + 𝑦2, atan2(𝑦, 𝑥)

)
,

which has a global inverse. Figure 2c shows the loss over
several iterations. Figure 1 shows a Cartesian-to-hyperbolic
transformation, 𝑓 (𝑥,𝑦) =

(
log

(√︃
𝑥
𝑦

)
,
√
𝑥𝑦

)
, which lacks a

global inverse but has a local one. Figure 1c shows the loss
over several iterations.
Table 1 shows the mean and standard deviation of the

time (in milliseconds) to calculate a local inverse at each
of 36 lattice points (e.g., the points in Figures 1 and 2). We
time how long it takes LIN to execute 100 iterations of the
fixed-point solver. Michel et al. [11] requires hand-coded
piecewise inverses, requiring more user-effort, but providing
better performance as it directly evaluates the appropriate
piecewise inverse.
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