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Abstract: The emerging field of molecular cavity polari-

tons has stimulated a surge of experimental and theoretical

activities and presents a unique opportunity to develop the

many-body simulation methodology. This paper presents a

numerical scheme for the extraction of key kinetic infor-

mation of lossy cavity polaritons based on the transfer ten-

sor method (TTM). Steady state, relaxation timescales, and

oscillatory phenomena can all be deduced directly from a

set of transfer tensors without the need for long-time simu-

lation. Moreover, we generalize TTM to disordered systems

by sampling dynamical maps and achieve fast convergence

to disordered-averaged dynamics using a small set of real-

izations. Together, these techniques provide a toolbox for

characterizing the interplay of cavity loss, disorder, and

cooperativity in polariton relaxation and allow us to predict

unusual dependences on the initial excitation state, pho-

ton decay rate, strength of disorder, and the type of cavity

models. Thus, using the example of cavity polaritons, we

have demonstrated significant potential in the use of the

TTM toward both the efficient computation of long-time

polariton dynamics and the extraction of crucial kinetic

information about polariton relaxation from a small set of

short-time trajectories.
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1 Introduction

Recent experiments of molecular systems in optical cavities

have brought much excitement in chemical sciences, mate-

rial engineering, and quantum physics and have inspired

many numerical simulations of the coherent light–matter

interactions in cavity systems [1], [2]. These studies often

push the boundary of computational capacities because of

the coherent nature ofmany-body interactions and the pres-

ence of various dissipative channels [3]–[16]. In this sense,

cavity systems present a unique opportunity to develop and

extend themany-body simulationmethodology. Specifically,

early studies have revealed the complex relaxation dynam-

ics of cavity polaritons but also opened questions for further

research: (i) the interplay of static disorder and various

dissipation channels; (ii) characterization of the relaxation

pattern and timescale; (iii) dependence on the initial excita-

tion state; and (iv) comparison of standard polariton mod-

els. In this paper, we aim to develop novel computational

techniques based on the transfer tensor method (TTM) to

address these challenging questions numerically.

First introduced in 2014, the TTM is a novel black-

box method for extrapolating long-time dynamics from

short-time trajectories for any dynamical system with a

time-translationally invariant correlation [17]. As shown in

Figure 1a, starting from dynamical maps computed via an

input–output analysis, one can construct transfer tensors

and obtain the complete information of a reduced quantum

system and can thus propagate its dynamics to arbitrar-

ily long times at an error rate that is independent of the

propagation time [18]–[20]. In the field of open quantum

dynamics, several methods have emerged recently to com-

pute the longtime dynamics or to predict the steady-state

and kinetic information [21]–[27]. These predictions can be

reliable if the calculations are converged, but the propaga-

tion to long times can be numerically expensive and can

potentially accumulate errors. In comparison, the TTM takes

advantage of short time trajectories that are computed with

high accuracy and predicts not only the steady state but also

relaxation rates. More importantly, the TTM is a black-box

Open Access. © 2024 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.

https://doi.org/10.1515/nanoph-2023-0831
mailto:jianshu@mit.edu
https://orcid.org/0000-0001-7616-7809
mailto:aswu@mit.edu
mailto:javier.cerrillo@upct.es
https://orcid.org/0000-0001-8372-9953


2576 — A. Wu et al.: Extracting kinetic information from short-time trajectories

(a)
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(c)

Figure 1: Flow charts of TTM and its generalizations: (a) the original TTM,

where {𝜌(tk )} represents a set of short-time density matrices in the
learning period, { (tk)} and { (tk )} are the corresponding dynamical
maps and transfer tensors, respectively, and {𝜌(tlong)} represents a set of
long-time density matrices predicted by TTM; (b) TTM-based kinetic

analysis, where the last step exploits the transfer tensor to extract kinetic

information such as the steady-state 𝜌ss, decay lifetime 𝜏 , resonance

frequency𝜔res, and its decay time 𝜏 res; (c) DA-TTM, where a disordered

ensemble of short-time density matrices is used to generate the

disorder-averaged dynamical maps and corresponding transfer tensors,

which then directly yield the disorder-averaged long-time dynamics or

kinetics.

technique, which can be applied to any dissipative environ-

ment, not limited to Gaussian bosonic baths, and can be

combined with any quantum or classical dynamics meth-

ods. In this sense, SMatPI [26], [27] also adopts the concept

of transfer tensors and can be regarded as the application

of the TTM to QUAPI.

While the TTM is a powerful tool for reconstruct-

ing non-Markovian dynamics from short-time trajectories,

novel technical developments are needed in its application

to cavity polaritons and othermany-body quantum systems.

Specifically, we will explore how to extract kinetic informa-

tion from TTM and how to generalize the TTM concept to

disordered systems. The layout of the paper is described as

follows:

In Section 2, we begin with a brief introduction to three

cavity Hamiltonians and review the basics of the TTM.

Specifically, we will introduce the Pauli–Fierz (PF) Hamil-

tonian, the Dicke Model, i.e., the coupling of N Two-Level

Systems (TLS) to a photonic cavity, and its rotating wave

approximation, the Tavis–Cummings (TC) model [28]. In

these model Hamiltonians, the reduced density matrix has

dimensions 2N by 2N , and each transfer tensor has dimen-

sions 4N by 4N : the computation thus grows exponentially

with the size of the system. To resolve this issue, we adopt

the numerical technique to use the full identity matrix of

the system as the initial condition to learn the short-time

quantum dynamics in a single learning trajectory.

While the transfer tensors contain all the dynamic

information, they have been used primarily as propagators.

In Section 3, we present our approach to directly extract

crucial kinetic information including the steady-state and

relaxation rate from the transfer tensors without propagat-

ing the density matrix. Further analysis suggests a numeri-

cally robust approach to identify oscillatorymodes and their

decay rates. Beyond rates, we can also evaluate high-order

moments using transfer tensors and this characterize the

deviation from the single exponential decay. Together, these

techniques provide a tool box for characterizing the polari-

ton relaxation profile and predict the dependences on the

initial state, system size, and photon decay rate.

Though the TTM is conceptualized for a given Hamil-

tonian, its generalization to disordered systems is of broad

interest but has not been explored. In Section 4, we explore

a novel application of the TTM to disordered systems by

incorporating the random distribution of system parame-

ters into the dynamical maps. In this way, the disorder-

averaged TTM (i.e., DA-TTM) is capable of predicting

the averaged relaxation behavior of the disordered sys-

tem without repeated density matrix propagation for an

extended simulation time. In fact, the DA-TTM can even

converge faster than directly averaging the density matri-

ces over the realizations, since it can extrapolate averaged

results from a relatively small sample size. We apply the

approach to predict the average relaxation behavior of dis-

ordered cavity polaritons and analyze its dependence on the

strength of disorder and on the symmetry of the initial state.

In Section 5, we compare the three standard cavity

models: the Pauli–Fierz (PF) Hamiltonian, the Dicke Model,

and the Tavis–Cummings (TC) model [28]. We show that,

in the weak coupling limit, all models converge to simi-

lar results, whereas their behavior diverges in the strong

coupling limit. We show that lifting the resonance between

cavity andatoms can restore the similarity betweenall three

models.

2 Cavity models and transfer tensor

method

2.1 Cavity polariton Hamiltonians

The Dicke model is widely used in quantum optics for

describing a variety of physical phenomena, such as super-

radiance [29]. The standard Dicke model describes the

dynamics of N TLSs coupled to a single-mode cavity [30]

with Hamiltonian

HD = ℏ𝜔ca
†a+ ℏ𝜔a

N∑
j=1

𝜎z
j
+ ℏg(a+ a†)

∑
j

𝜎x
j
, (1)
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where𝜔c is the frequency of the cavity,𝜔a is the frequency

of each of the identical TLS, and g is the coupling con-

stant between the cavity and the TLS. The operator a is

the annihilation operator of the photonic cavity and the

𝜎 j operator is the Pauli operator for the jth TLS. Note that

while the number of cavity levels is physically infinite, to

make calculations tractable,we truncate the cavity basis ton

levels, so that the annihilation operator a is simply the rank

n operator.

In the weak light–matter coupling regime, we often

adopt the Tavis–Cummings (TC) model, which applies the

rotating wave approximation (RWA) to the Dicke model

and omits the counter-rotating terms in the light–matter

interaction Hamiltonian [31]. This approximation is valid in

particular whenever 𝜔c = 𝜔a ≫ g. In this case, the Dicke

Hamiltonian reduces to:

HTC = ℏ𝜔ca
†a+ ℏ

N∑
j=1

(
𝜔a𝜎

z
j
+ ga𝜎+

j
+ ga†𝜎−

j

)
. (2)

In the strong light–matter coupling regime, we often

use a generalization of the Dicke Model, known as the

Pauli–Fierz (PF) Hamiltonian [32]

HPF = HD + ℏ
g2

𝜔c

(∑
j

𝜎x
j

)2

, (3)

where the term added to the Dicke Hamiltonian HD is a

dipole self-energy (DSE) that accounts for cavity-mediated

interactions between TLS of the form 𝜎x
j
𝜎x
k
.

It is worth noting that the transfer tensormethod below

is not affected by the choice of the cavity Hamiltonian and

can produce the dynamics of any model with identical com-

putational effort. To simplify the analysis and validation

of results below, we will present most of the numerical

calculations using the TC model and will compare the three

models in Section 5.

Beyond the coherent dynamics, we will consider the

effect of a lossy cavity by means of a master equation

�̇� f = − i

ℏ
[H, 𝜌 f ]+

𝜅

2

(
2a𝜌 f a

† − a†a𝜌 f − 𝜌 f a
†a
)
, (4)

where 𝜌 f is the density matrix of the full system composed

by the N TLS and the cavity and 𝜅 is the decay rate of the

cavity. We often seek to estimate the relaxation rates of

systems as a function of𝜅 , fixing𝜔c = 𝜔a = 0. As part of our

simulations, we also examine a variety of initial states: the

singly and multi-excited manifolds of N TLS. For example,

the singly excited initial state for 3 TLS may be represented

as |↑↓↓⟩, and the fully excited as |↑↑↑⟩ or |N∕2,N∕2⟩. Con-
cerning the initial state of the light, we restrict ourselves

throughout the vacuum state.

2.2 Transfer tensor method

The simulation of the full cavity photon and matter system

𝜌 f features an unfavorable scaling that can be partly miti-

gated if the description is reduced to the matter subsystem

alone. In general, the associated reduced density matrix 𝜌

will feature non-Markovian and strong coupling effects that

preclude the use of a simple time-localmaster equation. Fur-

ther, different models of light–matter interactions define

different non-Markovian features, which can character-

ize the light–matter entanglement. Here, we propose the

application of a general-purpose method to resolve this

issue.

First introduced in 2014, the transfer-tensor method

(TTM) provides a computational process for extrapolating

the complete dynamics of a quantum system from short-

time trajectories [17]. As shown in Figure 1a, transfer tensors

are extracted from the dynamical maps of the system k
associated with a uniform discretization of time tk = k𝛿t,

with 𝛿t the time step of the discretization. Dynamical maps

are defined by their action on the initial density matrix of

the system

𝜌(tk) = k𝜌(0),
that is, the kth dynamical map propagates the initial density

matrix to the kth density matrix according to the dynamics.

By definition, 0 is the identity superoperator acting on

system operators. With the dynamical maps, one can then

perform a linear transform to compute the transfer tensors

via:

k = k −
k−1∑
m=1

k−mm, (5)

with 1 = 1. Finally, the transfer tensors are used to

propagate the dynamics of the system, following the rela-

tion:

𝜌(tk) =
k−1∑
m=0

k−m𝜌(tm). (6)

As pointed out in Ref. [17], the success of this approach

relies on the time-translational invariance of the underlying

dynamics. This is guaranteed when (i) the total Hamiltonian

is time independent, (ii) the initial total state is a product

state, and (iii) the initial environment state is stationary. In

this paper, one will find that (i)–(iii) all hold for our study of

the cavity models. It has been shown that condition (ii) may

be relaxed [33].

Further, in the limit 𝛿t→ 0, the TTM can be directly

connected to the Nakajima–Zwanzig quantum master

equation, which allows for generic formulation of open

quantum processes [34], [35]:
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�̇�(t) = −i0𝜌(t)+
t

∫
0

(t − t′)𝜌(t′)dt′. (7)

In this sense, the transfer tensors are viewed as con-

taining both the Liouvillian, 0, and the memory kernel,

(t). That is, the first transfer tensor 1 encodes precisely the
Liouvillian via the relation 1 = (1− i0𝛿t). Similarly, the

other transfer tensors i for i ≥ 2 encode the convolutional

memory kernel via the simple relation k = (tk)𝛿t2. In
total, this can be summarized with the following relation:

k = (1− i0𝛿t)𝛿k,1 +(tk)𝛿t2. (8)

Although the above expression brings the TTM into

the standard quantum master equation formalism of open

quantum systems, the TTM is a self-contained conceptual

framework anda general computational strategy. In fact, the

3 conditions underlying the TTM are sufficient to deduce the

Nakajima–Zwanzig equation without using the projection

operator formalism.

Theoretically, the TTM has many applications, namely

as a dynamic propagator whose accuracy is not determined

by propagation time, but rather only by its learning time

[20], [22], [36]. Analysis has shown that TTM is especially

promising in scenarios where the propagation time is much

longer than the correlation time of the environment [37].

2.3 Demonstration of TTM

In this section, we demonstrate elementary computational

results from applying the TTM directly to the TC model,

i.e., the RWA of the Dicke Model. For this demonstration, as

well as future computations, we take advantage of QuTiP, a

python package for simulating quantum systems [38].

To apply the TTM, one must begin by computing the

requisite dynamical maps from short-time dynamics for

the N TLS. This may be done by considering the time-local

Liouvillian Eq. (4) acting on the density matrix 𝜌 f (t) of the

full system including the cavity

�̇� f (t) = −i f𝜌 f (t). (9)

In practice, we will need to restrict ourselves to a trun-

cation of the cavity to the lowest n Fock levels. For the

TC model, it is sufficient to consider n = N + 1. For other

models, the particular value of nwill depend on the strength

of the cavity-matter coupling and in practice needs to be

converged for each case.

The full density matrix 𝜌 f may be reduced to the den-

sity matrix of the N TLS 𝜌 by the action of an appropriate

projection superoperator 

𝜌 f (t) = TrC
{
𝜌 f (t)

}
⊗ 𝜌C = 𝜌(t)⊗ 𝜌C,

where TrC is the partial trace on the degrees of freedom of

the cavity and 𝜌C is the initial state of the cavity.

By replacing the initial condition for the solution of

Eq. (9) with the projected identity superoperator of the full

system  f  f = n20 ⊗ 𝜌C,

and propagating it to times tk ,  f (tk), the necessary

dynamical maps are simply

k = TrC
{ f (tk)

}
∕n2,

from which the transfer tensors may be derived as usual

(Eq. (5)).

To demonstrate the efficacy of this method, we apply

the TTM to a 4-TLS and 5-level cavity TC Model in Figure 2.

Unless otherwise stated, for this and subsequent calcula-

tions, we set the cavity and atom frequencies, 𝜔c and 𝜔a,

to be on resonance, and set the coupling constant, g, to

be 10𝜅∕
√
N , where N is the number of TLS. The only

decay channel allowed is via the cavity annihilation oper-

ator, with rate 𝜅. Throughout the manuscript, we take 𝜅

as a natural unit to define the inverse time and gauge the

light–matter coupling. This facilitates the identification of

coupling strength regimes. Additionally, we benchmark the

TTM results with the exact results as computed by direct

propagation of master Eq. (4). As shown in the figure, the

TTM is very effective at propagating the dynamics of the TC

model to times significantly longer than the learning time,

Figure 2: Simulation of the 4-TLS TC model with a 5-level cavity.

The system is parametrized g = 10𝜅∕2, where 𝜅 is the decay rate

of the cavity. Notice that the resonant TC model is simply

HTC = hg
(
𝜎+a+ 𝜎−a

†). Throughout the manuscript, 𝜅 or related

quantities are taken as the inverse unit of time. The dynamics are

computed for two different learning times, 𝜅t = 1.5 and 𝜅t = 3.5;

the latter is found sufficient to accurately capture the reduced dynamics

of the system until arbitrary time length.
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although the choice of learning timemust be reasonable for

the TTM to accurately capture the dynamics. In practice, the

connection between the transfer tensors and the memory

kernel indicates that the learning time must be of the order

of the correlation time of the bath.

3 Information extraction via

transfer tensors

As illustrated in Figure 1b, our first main result is to demon-

strate how to use the transfer tensors to directly predict key

kinetic information without propagation. There exist two

equivalent paths to demonstrate this:

1. direct exploration of the TTM propagation rule Eq. (6)

and the unilateral z transform of the transfer tensors

as defined by

 [z] =
K∑
k=1

z−kk,
with K the index of the last transfer tensor considered,

2. or the Laplace transform of the generator of the Naka-

jima–Zwanzig Eq. (7)

̃(s) ≡ −i0 + ̃(s),
where f̃ (s) = ∫ ∞

0
e−st f (t)dt denotes the Laplace trans-

form of the function f .

In the limit of an infinitesimal discretization and by

substituting z→ es𝛿t, the Laplace transform of the generator

is recovered from the transfer tensors

̃(s) = lim
𝛿t→0

 [
es𝛿t

]
.

which is equivalent to Eq. (8). We show in this section that

either perspective allows for the deduction of kinetic infor-

mation without requiring any propagation of the system.

Beyond this connection, we show in Section 3.3 that further

information can be extracted from  [z] as a result of the
finite time step 𝛿t. This information is not readily available

from ̃(s) alone.

3.1 Steady state

First, we demonstrate the ability to compute the final,

infinite-time state (i.e., steady state) of the nonequilibrium

dynamics directly from the transfer tensors. We establish

the approach first in the continuous Laplace space and then

in the discretized transfer tensor form and finally present

an application to lossy cavities.

3.1.1 Continuous Laplace transform

To begin, via the Laplace transformation of the quantum

master equation, the density matrix is solved formally as:

[
s− ̃(s)]�̃�(s) = 𝜌(0),

Then, the steady state can be directly computed via the

final value theorem

𝜌ss = lim
s→0

s�̃�(s),

where 𝜌(∞) = 𝜌ss. This formalism can be understood as the

extraction of the overlap between the null subspace of the

generator ̃(0) and the initial state 𝜌(0).

3.1.2 Discrete transfer tensors

An equivalent representation of the Laplace formalism is

provided by the unilateral z transform of the TTM propa-

gation in Eq. (6) as

𝜌[z] =  [z]𝜌[z]+ 𝜌(0),

where we used 0 = 0. The final value theorem takes the

form 𝜌ss = lim
z→1

(z− 1)𝜌[z], so

𝜌ss = lim
z→1

(z− 1)
(
1−  [z])−1𝜌(0).

This result is consistent with the fact that the steady

state density matrix must not be affected by propagation

with transfer tensors by definition

𝜌ss =
∑
k

k𝜌ss,

which implies (1−  [1])𝜌ss = 0. Therefore, 𝜌ss is an overlap

between the initial state and the null space of 1−∑
kk .

Alternatively, in the language of complex systems, it can

also be interpreted as a fixed point of the transformation

represented by the sum of all transfer tensors.

3.1.3 Application

As shown in Figure 3, we demonstrate the ability of the

method to predict the steady states of both the fully excited

and partially excited initial states of the TC model. Since

this method requires only a handful of matrix arithmetic

steps as opposed to fully simulating the system, it can effi-

ciently compute the long-time dynamics of the system with

only the short-time trajectories, while remaining agnostic

to the “true” dynamics of the system. The steady-state of a
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(a) (b)

(c) (d)

Figure 3: Steady states inferred via the simple matrix calculation

from Section 3.1. All diagrams are constructed for the TC Hamiltonian

HTC = ℏg
(
𝜎+a+ 𝜎−a

†) with g = 10𝜅. Depicted are steady state (red)

and initial dynamics (blue) for (a) fully excited N= 2 initial state, (b) singly

excited N = 2, (c) fully excited N = 4, and (d) triply excited N = 4.

Under the partially excited states, since the TC Hamiltonian preserves

symmetry, the system is prevented from fully decaying to the ground

state, instead relaxing to a state that remains partially excited.

lossy cavity depends on the symmetry of the initial state:

The fully excited initial state relaxes to the ground state

(i.e., ⟨𝜎z⟩ = −0.5), whereas the singly excited initial state or
partly excited initial state can remain partly trapped in an

excited state (i.e., ⟨𝜎z⟩ ≠ −0.5).

3.2 Relaxation rate and lifetime

Next, we extract the rate of convergence to the steady state

from the transfer tensors. Formally, the relaxation lifetime

𝜏 of a given observable ⟨ô⟩ is defined by the zeroth moment
of the time-dependent observable relative to its steady state

value, i.e.,:

𝜏 =

∞∫
0

⟨ô⟩(t)− ⟨ô⟩(∞)dt

⟨ô⟩(0)− ⟨ô⟩(∞)
. (10)

where ⟨ô⟩(∞) = ⟨ô⟩ss. Intuitively, this expression can be

understood by assuming that ⟨ô⟩(t) obeys a simple expo-

nential decay expression of the form ⟨ô⟩(t) = ⟨ô⟩(∞)+
[⟨ô⟩(0)− ⟨ô⟩(∞)]e−t∕𝜏 .

3.2.1 Relaxation matrix

In this section, we generalize the concept of relaxation rate

to that of the relaxation matrix

𝜏 =
∞

∫
0

Δ𝜌(t)dt,

where Δ𝜌(t) = 𝜌(t)− 𝜌ss is the deviation of the density

matrix from its steady state. For systems that reach the

steady state on a finite time-scale, this matrix is bounded.

By definition, the relaxation matrix is Hermitian and in

general not positive and depends on the initial condition of

the system.

The information contained in the relaxation matrix 𝜏

becomes especially intuitive when evaluated for the opera-

tor of interest ô. Specifically, we define

⟨𝜏⟩ô = Tr
{
ô𝜏

}
=

∞

∫
0

[⟨
ô
⟩
(t)−

⟨
ô
⟩
(∞)

]
dt,

which is directly related to the relaxation timescale 𝜏

(Eq. (10)) via normalization, i.e.,

𝜏 = ⟨𝜏⟩ô⟨
ô
⟩
(0)−

⟨
ô
⟩
(∞)

.

The relaxation matrix 𝜏 contains 2N real eigenvalues,

describing multiple relaxation timescales of the system. We

may normalize by the initial condition

𝜏′ =
[
Δ𝜌(0)

]−
𝜏, (11)

where the symbol − implies the pseudo inverse such that

just the operator minus its null space is inverted. The nor-

malized relaxation matrix 𝜏′ contains a number of nonzero

eigenvalues, which describe the effective lifetimes of the

different decaymodes in the system. In particular, one of the

eigenvalues correspond to the depletion timescale from the

initial state. There exist as many other nonzero eigenvalues

as the dimensionality of the null-space that the steady state

𝜌ss has overlap with. These eigenvalues correspond to the

timescales needed to reach the steady state. The explicit

calculation and spectral analysis of the relaxation matrix

will be left for a future study.

Based on TTM, we can obtain 𝜏 from direct analysis of

the transfer tensors, thus avoiding a lengthy and demand-

ing numerical propagation of the density matrix of a sys-

tem and the subsequent integration. Below, we will briefly
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describe the procedure in both the continuous and discrete

formalisms.

3.2.2 Continuous laplace transform

In analogy to the spectral method presented in Refs. [39],

[40], the eigenvalues of ̃(s) as a function of s describe all

possible decay (real part) and oscillatory (imaginary part)

behaviors of the system. Further, they contain all the non-

Markovian effects of the bath. Nevertheless, for a system of

N TLS, the analysis of 22N of these functions of s becomes

convoluted.

Alternatively, the relaxation matrix 𝜏 represents a

much more compact object that is directly related to the

Laplace transform of the generator by

𝜏 = lim
s→0

[
s+ ̃(s)]−[𝜌(0)− 𝜌(∞)],

where again the symbol − implies the pseudo inverse.

3.2.3 Discrete transfer tensors

Numerically, this calculation can be performed by means of

the z-transform of the transfer tensors

𝜏 ≃ lim
z→1

(
1−  [z])−[𝜌(0)− 𝜌(∞)]𝛿t,

and the limit of z→ 1 simply involves the sum of all transfer

tensors
∑

k Tk

𝜏 ≃
(
1−

∑
k

k
)−

[𝜌(0)− 𝜌(∞)]𝛿t.

The transfer tensors are computed based on a time step

𝛿t, and the relaxation matrix 𝜏 converges as 𝛿t→ 0.

3.2.4 Application

To demonstrate the effectiveness of this method, we con-

sider an initially fully excited N = 2 TC model with

light–matter coupling of g = 10𝜅∕
√
2 and compute the

relaxation timescale 𝜏 of the 𝜎z observable of either TLS.

Since each TLS has initial spin of 1∕2 and steady state spin of
−1∕2, the exponential decay fit takes the formof e−t∕𝜏 − 1∕2.
In Figure 4a, we plot this exponential decay fit and find that

ourmethod provides a good estimate of the decay rate of the

system purely from the transfer tensors.

We now proceed to analyze the relaxation time-

scale associated with the dynamics presented in Figure 3.

The operator associated with the relaxation measure-

ment ô is the projector into the fully excited state

(a)

(b)

Figure 4: Plot of the relaxation of an individual spin, ⟨𝜎z⟩, of the 2-TLS,
3-level cavity Tavis–Cummings model with H = ℏg

(
𝜎+a+ 𝜎−a

†),
g = 10𝜅0∕

√
2. (a) For the underdamped case (𝜅 = 𝜅0), the estimated

relaxation timescale 𝜏 accurately fits the overall dynamics with the

function et∕𝜏 − 1∕2 (green). (b) We consider three increasing values of 𝜅,
corresponding to the underdamped (𝜅 = 𝜅0), critically damped

(𝜅 = 15𝜅0), and overdamped
(
𝜅 = 103𝜅0

)
regimes, respectively.

||N∕2,N∕2⟩⟨N∕2,N∕2||. Figure 5 plots the inverse of relax-
ation timescale (i.e., the relaxation rate) as a function of

the cavity decay rate 𝜅 of the fully excited initial state||N∕2,N∕2⟩. Three different system sizes of N: 2, 3, and 4 are

considered. For sufficiently small 𝜅, the rate grows approxi-

mately linearly (see Figure 5a). The rate of growth increases

with N , and, for N = 2, it coincides with the prediction of

perturbation theory of 2𝜅∕3. For larger values of 𝜅, the rate
does not followa trend of proportionality (see Figure 5b). On

the contrary, large cavity decay rates suppress the transfer

of excitations from the atoms to the cavity and reduces the

overall effectiveness of dissipation, to the point where it

becomes inversely proportional to 𝜅. Thus, the relaxation

rate exhibits a turnover as a function of the cavity decay

rate. These correspond to three relaxation regimes illus-

trated in Figure 4b.

3.3 Oscillatory relaxation

In this section, we show that, beyond the steady state

and relaxation timescales, oscillatory information may be

extracted directly from the transfer tensors or the relax-

ation matrix 𝜏 . By analyzing their behavior as a function

of 𝛿t, it is possible to make a Fourier transform analysis
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(a)

(b)

Figure 5: Relaxation rate 𝜏−1 of the probability of the fully excited state

as a function of 𝜅 for N = 2, 3, and 4 for the fully excited initial state and

g = 10𝜅0∕
√
N. (a) For smaller values of 𝜅, the growth is linear. The linear

growth for N = 2 follows the perturbative scaling 2𝜅∕3. (b) For larger
values of 𝜅, the relaxation rate is upper bounded and eventually

becomes inversely proportional to 𝜅.

of the dynamics without actual propagation. We begin by

analyzing a case study with a prior knowledge of oscilla-

tory behavior in Section 3.3.1. We continue in Section 3.3.2

by analytically demonstrating the relationship between the

Fourier transform of the dynamics and the analysis of 𝜏 as

a function of 𝛿t. Finally, in Section 3.3.3, we show that an

enhanced analysis of oscillatory behavior can be achieved

by this method without prior knowledge of the dynamics.

3.3.1 A case study

The estimation of relaxation timescale 𝜏 can further be used

to detect oscillatory modes in the system dynamics. This

becomes especially apparent in the relaxation dynamics of

a single excitation initial state. In this case, we monitor the

operator ô = 𝜎z, the z Pauli operator (i.e., population differ-

ence), of the initially excited TLS. As shown in Figure 3b, its

dynamics (i.e., population evolution) is oscillatory around

the steady state value. Positive and negative parts of the

dynamics cancel each other, so the overall value of the inte-

gral 𝜏 becomes much smaller than what would be obtained

from the decaying envelope and thus does not constitute

an appropriate estimate of the decay rate (see Figure 6a).

This can be fixed by adjusting the time-step 𝛿t of extraction

of the transfer tensors. By tuning 𝛿t to the period of the

oscillations, a resonance effect takes place by which the

decaying envelope is reproduced and the true relaxation

timescale is captured (see Figure 6b).

In general, an estimate 𝜏 can be computed as a function

of 𝛿t. As 𝛿t coincides with the period of oscillations of the

system or its multiples, larger estimate 𝜏(𝛿t) is observed.

This is shown in Figure 7, where a resonance is observed

once 𝛿t coincides with a multiple of the period of the oscil-

lations in Figure 6a. An increase of 𝛿t involves an error of

(a)

(b)

Figure 6: Dynamics of the initially excited TLS ⟨𝜎z⟩(t) for N = 2 (blue).

Time is expressed in units of 𝜅−1. (a) The decay rate estimate 𝜏 in the

function [3 exp(−t∕𝜏)+ 1]∕4 (orange) misses the decay of the envelope.
(b) If the timestep 𝛿t is adjusted to match the oscillations observed

in the left (𝛿t =
√
2𝜋∕g), just the decaying envelope is observed by

an oversampling effect. The decay rate estimate 𝜏 now approximately

matches the decay of the envelope. Parameters g = 10𝜅∕
√
2.
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Figure 7: Estimate 𝜏 for 𝜎z as a function of 𝛿t for N = 2 (blue). Clear

resonances occur when the timestep 𝛿t hits the period of the oscillations

observed in Figure 6a, i.e., 𝛿t𝜅 = 𝜋∕5, and its multiples. As 𝛿t increases,
an error proportional to 𝛿t∕2 that is associated with the discretization of
the integral calculation becomes apparent. Parameters: g = 10𝜅∕

√
2.

discretization in the calculation of the time integral, which

is proportional to 𝛿t∕2 and can be easily subtracted.

3.3.2 Resonance analysis

The resonance effect as a function of 𝛿t is tightly connected

to the Fourier transform ofΔ
⟨
ô
⟩
(t) =

⟨
ô
⟩
(t)−

⟨
ô
⟩
(∞). Let

us explore this connection with an example of an arbitrary

observable ⟨ô⟩ featuring an oscillatory decay described by⟨
ô
⟩
(t) = cos(𝜔t)e−rt

[⟨
ô
⟩
(0)−

⟨
ô
⟩
(∞)

]
+
⟨
ô
⟩
(∞),

Using transfer tensors with timestep 𝛿t to estimate 𝜏 ,

we obtain

𝜏(𝛿t) =
∑
k

cos(𝜔k𝛿t)e−rk𝛿t𝛿t

= Re

{
𝛿t

e𝛿t(r+i𝜔) − 1

}
= 𝛿t

2

cos(𝜔𝛿t)− e−r𝛿t

cosh(r𝛿t)− cos(𝜔𝛿t)
,

which is a functionwith peaks atmultiples of the value 𝛿t =
2𝜋∕𝜔. Thus, the calculation of 𝜏(𝛿t) offers insight into the

Fourier transform of the dynamics.

The effect of the discretization introduced by the TTM

can be formally elucidated by means of a Dirac comb Ξ𝛿t =∑
k𝛿
(
t − k𝛿t

)
, so that

𝜏(𝛿t) = ∫ ΞdtΔ
⟨
ô
⟩
(t)dt

Δ
⟨
ô
⟩
(0)

.

By the properties of the Dirac comb under Fourier

transformation, we have

∫ ΞdtΔ
⟨
ô
⟩
(t)dt = 1

𝛿t

∑
k

[
Δ
⟨
ô
⟩](2𝜋k

𝛿t

)
,

where [
f
]
(𝜔) is the Fourier transform of f (t). Therefore,

the estimate 𝜏(𝛿t) provides a sampling of the Fourier trans-

formof the deviationΔ
⟨
ô
⟩
at the frequencies𝜔k = 2𝜋k∕𝛿t.

Every time one of these frequencies matches a peak of the

Fourier transform, it appears as a peak in 𝜏(𝛿t). In Figure 7,

a single peak in the Fourier transform [
𝛿
⟨
ô
⟩]
(𝜔) at the

value 𝜔 =
√
2g produces a repetition of the peak at values

𝛿t =
√
2𝜋k∕g.

The first peak may be extracted for several values of 𝜅

as shown in Figure 8a. The value of 𝜏 at the peak (corrected

by the error 𝛿t∕2) allows us to evaluate the change of the
relaxation rate as a function of 𝜅, which for the case N = 2

(a)

(b)

Figure 8: Analysis of the dependency of the relaxation timescale

as a function of the timestep. (a) Estimate 𝜏 for 𝜎z as a function of 𝛿t for

N = 2 and different values of 𝜅. As 𝜅 increases, the relaxation rate 𝜏−1 at

the peak increases too. Parameters: g = 10𝜅0∕
√
2. (b) Rate estimate 𝜏−1

as a function of 𝜅 for N = 2, showing a good agreement with the curve

𝜅∕4. Parameters: g = 10𝜅0∕
√
2.
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can be analytically proven to follow the linear dependence

of 𝜅∕4. This is reproduced in Figure 8b.

3.3.3 Multiple resonance

The proposed approach is also useful even when the system

is initialized in the fully excited state ||N∕2,N∕2⟩, whichdoes
not oscillate around the steady state but may exhibit an

oscillatory decay for small enough𝜅. Let us first evaluate the

probability of remaining in the initial state forN = 2, whose

dynamics may be analytically solved in the perturbative

limit and shown to oscillate at frequency
√
6g. By extracting

the estimate of 𝜏 as a function of 𝛿t, we show in Figure 9a

that two distinct resonances are detected, corresponding

precisely to𝜔1 =
√
6g and𝜔2 = 2𝜔1. By inspecting the time

(a)

(b)

Figure 9: Analysis of resonances of the relaxation timescale as a function

of the timestep for the probability of the fully excited state. (a) Estimate 𝜏

of the probability of the fully excited state as a function of 𝛿t for N = 2

(blue) and a fully excited initial state. Two types of resonances can be

recognized: one at odd multiples of 𝛿t𝜅 = 𝜋∕10
√
3 (vertical red dotted

line) and another one at multiples of 𝛿t𝜅 = 𝜋∕5
√
3 (vertical black

dash-dotted line). (b) Probability of the initial state as a function of time.

The period of the oscillations matches exactly 𝛿t𝜅 = 𝜋∕5
√
3, as shown

by the black plus sign. Half the period is indicated by red crosses.

Parameters: g = 10𝜅∕
√
2.

dependence of the system, Figure 9a, it becomes clear that

𝜔1 matches exactly the oscillation frequency of the dynam-

ics and hence maximizes the estimate 𝜏 . The double fre-

quency 𝜔2 matches half the period of oscillation, so both

the maxima and minima of the oscillations are sampled.

Although the corresponding estimate for 𝜏(𝛿t) cannot be

the optimal one, it still provides a higher value than other

choices of 𝛿t.

For the same initial state, the expected value of 𝜎z fea-

tures a more complicated behavior as shown in Figure 4a.

In particular, a beating is apparent between two close fre-

quencies. This pattern shows up in the form of additional

resonances in the estimate of the relaxation timescale 𝜏 ,

Figure 10a. Beyond the resonances already identified in

(a)

(b)

Figure 10: Analysis of resonances of the relaxation timescale

as a function of the timestep for the expectation value of Pauli z operator.

(a) Estimate 𝜏 for operator 𝜎z as a function of 𝛿t for N = 2 (blue)

and a fully excited initial state. Beyond the resonances already present

in Figure 9a (vertical gray dotted lines), two additional resonances

can be observed at 𝛿t𝜅 = 0.17𝜋∕
√
3 (vertical black dash-dotted line) and

at 𝛿t𝜅 = 0.18𝜋∕
√
3 (vertical red dash-dotted line). (b) Expected value

of operator 𝜎z as a function of time. The two extra resonances roughly

correspond to the beating of the dynamics: the first, destructive

resonance, corresponds to the half-period of the beating (black dots),

whereas the second resonance corresponds to the period of the beating

(red crosses). Parameters: g = 10𝜅∕
√
2.
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Figure 9a, two more resonances appear that correspond to

the beating signal in the dynamics, Figure 10b.

In conclusion, the relaxation timescale 𝜏 as a function

of the time step 𝛿t features as a versatile tool to extract rele-

vant oscillatory behavior of the dynamics of open quantum

systems.

3.4 Moments and Poisson indicator

It is known that the Laplace transform of a distribution

function is also the moment generating function of time; as

such,we can directly calculate all themoments of relaxation

via the same formalism. Namely, we have:

Mt(s) = 𝔼[est] = �̃�(−s). (12)

Thus, we can compute the first moment via:

M′
t
(s) = �̃�′(−s)

=
[
s+ ̃(−s)]−2[ + ̃′(−s)

]
𝜌(0).

By evaluating this expression in the limit where s

approaches 0, one obtains an estimate of 𝔼[t]. While mathe-

matically accurate, thismethod is numerically unstable, and

small variations in either learning time (i.e., the size of the

memory kernel) or computationmethod can lead to varying

results.

However, in order to look at decay dynamics, one must

compute the moments of the density matrix relative to the

steady state density matrix, i.e., ∫ ∞
0
[tn𝜌(t)− 𝜌(∞)]dt. From

the derivations in Section 3.2.2, we use the relaxationmatrix

𝜏 so that the first moment can be computed via:

M̂′
t
(s) =

[
s+ ̃(−s)]−2[ + ̃′(−s)

][
𝜌(0)− 𝜌(∞)

]
,

wherewe use the pseudoinverse. Similarly, we can compute

the second moment via:

M̂′′
t
(s) =

{
−2

[
s+ ̃(−s)]−3[ + ̃′(−s)

]2
+
[
s+ ̃(−s)]−2̃′′(−s)

}[
𝜌(0)− 𝜌(∞)

]
.

Given an operator ô of interest, we may project the

moment by ⟨𝜏2⟩ô = lim
s→0

Tr
{
ôM̂′

t
(s)

}
,

and ⟨𝜏3⟩ô = lim
s→0

Tr{ôM̂′′
t
(s)}.

With high order moments, we can then characterize

the deviation from the exponential decay using the Poisson

indicator. The detailed numerical calculation will be left for

a future study.

Since all terms are given entirely by the information

in the transfer tensors, we can evaluate this expression

for any given short-time simulation from which we can

extract transfer tensor information. Thus, given sufficient

learning time, this presents a method to tractably compute

moments of the dynamics of the system without requiring

a full simulation of the system, instead of requiring finite

matrix multiplications. With high order moments, we can

then characterize the deviation from the exponential decay

using the Poisson indicator. The detailed numerical calcula-

tion will be left for a future study

4 Disorder-averaged (DA) TTM

Disordered systems require extensive sampling of ini-

tial conditions in numerical simulations. For example, we

model disordered cavity systems by performing simulations

on random realizations of the parameters (e.g., 𝜅, g,𝜔c,𝜔a),

drawn from a given probability distribution. As illustrated

in Figure 1c, we generalize TTM to disordered systems to

uncover the disorder-averaged dynamics e.g., the effective

dynamics by averaging over the random distribution.

Specifically, we consider the TC model with Hamilto-

nian given by

HTC = ℏ𝜔ca
†a+ ℏ

N∑
j=1

(
𝜔 j𝜎

+
j
𝜎−
j
+ ga†𝜎−

j
+ ga𝜎+

j

)
. (13)

Note that here, as opposed to Eq. (2), each TLSmay have

its individual frequency 𝜔 j; therefore, it is not possible to

remove𝜔 j uniformly via the rotating wave approximation.

To introduce disorder into the system, we fix g = 10𝜅∕
√
N

(here, N = 2) and 𝜔c = 50𝜅, but draw 𝜔 j∕𝜅 ∈ U(40, 50).

Below, we use the TTM to extract the disorder-averaged

dynamics of the system.

To do so, we explore two techniques: (i) We average

the transfer tensors computed for each realization, over all

realizations, i.e.,

̄ k =
1

M

M∑
i=1

 i
k
,

where M is the number of samples, ̄ k is the kth transfer

tensor used for propagation of the average dynamics, and  i
k

is the kth transfer tensor computed from the ith realization.

(ii) We average the dynamical maps computed via each

individual realization, i.e.,

̄k =
1

M

M∑
i=1

 i
k
,

where ̄k is the average kth dynamical map used for com-

puting the transfer tensor, and  i
k
is the kth dynamical map

computed from the ith realization. Below, we compare the
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result of these two applications of the TTM to the disordered

averaged density matrices, which we take to represent the

average behavior of the TLS system.

Figure 11 summarizes the results of this comparison.

As shown in all three plots, averaging the dynamical

maps gives remarkably good agreement with the aver-

aged density matrices, whereas averaging the transfer ten-

sors exhibits noticeable deviations. In addition, the steady

state predicted from the transfer tensors computed via the

averaged dynamical maps recovers the true, fully decayed

steady state of the system, as expected. Thus, applying the

TTM to disordered systems via averaging the dynamical

maps computed from each realization of disorder allows

for successful reproduction of disorder-averaged behavior

for the system. This approach, named DA-TTM’, is phys-

ically justified, since averaging the dynamical map ̄k is

equivalent to averaging the density matrix of the system

at time tk over disorder, �̄�(tk), when applied to initial state

𝜌(0) common to all realizations. This is not the case for the

averaged transfer tensors ̄ k .

The three plots in Figure 11 are for different initial

conditions: (a) the fully excited state, (b) a singly excited

state, and (c) the coherent superposition state. In case (a),

the initial state and subsequent dynamics is highly symmet-

ric, thus the agreement is nearly perfect. Notably, in the

asymmetric initial condition of case (b), there are significant

fluctuations within the average of the 50 density matrices,

which can be interpreted as originating from the increased

variance in asymmetric initialization. In comparison, the

DA-TTM yields better convergence and thus allow us to

deduce the averaged behavior of the system using fewer

realizations.

Finally, we compute the largest eigenvalue of the nor-

malized relaxation matrix 𝜏′ Eq. (11) to extract the decay

rate of our systems as a function of the disorder. For the

TC model in the fully excited initial state with disorder

given by 𝜔 j ∈ 45𝜅 ± 𝛿, where 𝛿 is the disorder, we vary

𝛿 and compute the decay rates from the transfer tensors

extracted via averaging 50 realizations. The result of this

numerical experiment is shown in Figure 12, where the

decay rate is plotted as a function of the logarithm of the

disorder. For small disorders, the decay rate of the system

is slightly reduced, as one may expect – the introduction of

small disorder into the cavity frequency is only sufficient to

break symmetry. However, for higher levels of disorder, the

rate of decay decreases rapidly. Compared with our recent

analysis of disordered cavities in the thermodynamic limit

of the single excitation manifold [41], [42], the difference

may arise from the fully excited initial state adopted in this

calculation.

(a)

(b)

(c)

Figure 11: Comparison of simulated spins for various initial states

by averaging over 50 realizations. We want to reproduce the behavior

resulting from averaging the density matrices of each realization,

and two attempts to capture that behavior are given by averaging the

dynamical maps or the transfer tensors. All simulations have disorder

given by choosing𝜔 j∕𝜅 ∈ U(40, 50), for the 2-TLS 3-level cavity TC model

with H = ℏg(𝜎+a+ 𝜎−a†)+ ℏ𝜔a

∑N

j=1𝜎
x
j
+ ℏ𝜔ca

†a and g = 10𝜅∕
√
2,

𝜔c = 50𝜅. (a) Fully excited state. (b) Singly excited state. In this scenario,

the true dynamics of the system are markedly different from those

deduced via the disorder TTM, and this can be interpreted as the TTM

being unable to recover any coherent effects from asymmetric

initializations. (c) Coherent superposition initial state, i.e., all spins are

in the coherent superposition (|↑⟩+ |↓⟩)∕√2. Once again, averaging

the density matrices and transfer tensors give good agreement with both

each other and the symmetric Hamiltonian dynamics, just as in the fully

excited initial state. Tensors are computed with learning time 𝜅t = 4

and with 10× lower resolution than the density matrices, leading to the

figures not matching exactly in (c).

In short, we have shown that the DA-TTM is able to

successfully recover the average behavior of a disordered

system through the averaging of dynamical maps, which
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Figure 12: Results from simulating the decay rate as a function of

disorder for the 2-TLS Tavis–Cummings model in the fully excited initial

state with H = hg(𝜎+a+ 𝜎−a†)+ h𝜔a

∑N

j=1𝜎
x
j
+ h𝜔ca

†a and disorder

given by𝜔a ∈ U(45− 𝛿, 45+ 𝛿),𝜔c = 50, and g = 10√
2
. The decay rate

is plotted against log disorder for 𝛿 ∈ [0.001, 25]. As shown, for small

magnitudes of disorder, there is little impact on the decay rate,

but for larger disorders, the decay rate quickly decreases.

allow for the computation of transfer tensors that represent

the disorder-averaged dynamics. Additionally, applying our

technique for extracting the decay rate from the transfer

tensors shows that increasing levels of disorder suppress

the relaxation of the cavity system. Thus, the DA-TTM per-

forms remarkably well for predicting the average behavior

of disordered systems, especially for the fast convergence

to a single, smooth solution as well as for the deduction of

kinetic information about the underlying dynamics.

5 Comparison of cavity models

We now apply the tools presented in Section 3 to a com-

parison of the Dicke model (1), the TC model (2), and the

Pauli–Fierz (PF) model (3). In this section, we first explore

the resonant cavity regime, i.e.,𝜔a = 𝜔c = 𝜔. While we can

take 𝜔 = 0 in the rotating frame of the TC model, this is

not the case in the Dicke or PF models due to the counter-

rotating terms and, in addition for the PF model, the self

energy term.

In Figure 13a, we show the relaxation rate 𝜏−1 for oper-

ator𝜎z as a function of the cavity decay rate𝜅 for an initially

fully excited state. We consider N = 2 and two values of

𝜔. The turnover presented in Section 3 is reproduced in all

cases, so both the overdamped and the underdamped limits

are explored here.

Let us first discuss the case of 𝜔 = 100𝜅0. This corre-

sponds to the regime of a weak cavity-atom coupling 𝜔 >

g, since g = 10𝜅0∕
√
2. In this regime, the counter-rotating

terms in both the Dicke and PF models become negligible

(a)

(b)

Figure 13: Relaxation rate of 𝜎z as a function of cavity decay rate 𝜅 for

three models: TC (Eq. (2)) in blue, the Dicke model (Eq. (1)) in black, and

the PF model (Eq. (3)) in red. We consider an initially fully excited state

and g = 10𝜅0∕
√
2. (a) Resonant cavity regime𝜔a = 𝜔c . For the Dicke

and PF model, we consider two values of𝜔a as indicated in the legend.

(b) Nonresonant cavity regime with𝜔a = 10𝜅0 and𝜔c = 15𝜅0.

by virtue of the RWA. Their residual effect, as exposed by

the curve corresponding to the Dickemodel, is to reduce the

overall efficiency of the transfer of excitations from the TLSs

and into the cavity. This reduction becomes more critical

as the cavity dissipates faster, so the difference between TC

and Dicke/PFmodels becomes apparent only for sufficiently

large 𝜅 (i.e., the overdamped regime). The role of the self

energy term in the PF model is also negligible, but it has the

ability to partially restore the excitation transfer efficiency.

As shown, the relaxation rate of the PF model is slightly

larger than that of the Dicke model.

The case of 𝜔 = 10𝜅0 corresponds to the strong cou-

pling regimewhere𝜔 ≃ g. In this limit, neither the counter-

rotating terms nor the self-energy term are negligible and

they strongly affect the relaxation dynamics in the over-

damped limit. In the Dicke limit, a polariton forms between

the TLS and the cavity, such that the cavity is displaced from

its equilibrium position that is proportional to the spin state

of the TLS [43]. This new state relaxes more slowly toward
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the ground state. In the PF case, the effect of the self energy

term is that of shifting and mixing the total spin states of

the TLS. Resonance between the cavity and the TLS system

is lost, and relaxation rate becomes even further suppressed

than in the Dicke model case.

Polariton resonance can be restored in the PFmodel by

increasing the frequency of the cavity mode. This is shown

in Figure 13(b), where we keep 𝜔a = 10𝜅0, but increase

the cavity frequency to 𝜔c = 15𝜅0. The PF model increases

its relaxation efficiency to a level similar to that of the

Dicke model, while the TC model suffers a suppression of

its ability to dissipate energy due to the lack of resonance

between atoms and cavity. Their qualitative behavior in this

limit is very similar, which informs the interpretation that

the strong-coupling Dicke model must share traits with an

off-resonant TC model and a resonant PF polariton. Our

observation is consistent with the previous analysis of the

Pauli–Fierz model, which displays the change of refractive

index in the presence of matter and polarization fluctua-

tions [44]–[46].

Recent studies have explored the roles of the dipole self-

energy and the rotatingwave approximation in thesemodel

Hamiltonians [4], [47], [48]. Our calculation of the relaxation

rate complements these studies, which are mostly based on

eigen-solutions and perturbative analysis.

6 Conclusions

In summary, we have developed a novel approach to

directly extract kinetic information from the transfer ten-

sors without requiring long time propagation and apply the

approach to analyze the relaxation process of disordered

and lossy cavity polaritons. Technically, we have exploited

several aspects of the TTM:

1. The full identitymatrix is employed as the initial condi-

tion to learn the short-time dynamics in a single learn-

ing trajectory.

2. The null space of the sum of all transfer tensors minus

the identity determines the steady state of a given

propagation.

3. The transfer tensors can be transformed into a relax-

ation matrix, which contains information about decay

rates and oscillatory dynamics.

4. The TTM is also viable for extracting the average behav-

ior of disordered systems via sampling the dynamical

maps over realizations.

In particular, we have demonstrated that the informa-

tion contained in the transfer tensors combined with the

initial state of the system is sufficient to compute its

corresponding steady state and decay rates. We first applied

this technique to a cavity model for a variety of system

sizes and initial states, finding that the TTM can accurately

predict the long-term equilibrium regardless of the system

parameters. Then, we constructed the relaxation matrix

from the transfer tensors, which contains the information

about the system’s relaxation toward its steady state. The

projection of the relaxation matrix to a particular measure-

ment defines the relaxation timescale (i.e., the decay rate)

and its high ordermoments, and the tuning of the relaxation

timescale at variable time steps characterizes the oscillatory

behavior in the relaxation process.

Equally important is the successful generalization of

the TTM to disordered systems. Specifically, the DA-TTM

can accurately reproduce disorder-averaged phenomena

via averaging the dynamicalmaps over realizations of static

disorder, thus allowing us to examine the effects of disorder

on relaxation kinetics. Further, the DA-TTM can achieve

faster convergence than the direct average of the density

matrices, since it can extrapolate averaged results from a

relatively small sample size.

The application of these novel numerical techniques

to polariton relaxation in lossy cavities reveals the rich

interplay of disorder, dissipation, and cooperativity in

light–matter interactions. Specifically, we have character-

ized the complex dependence of relaxation kinetics on

the initial excitation state, system size, cavity decay rate,

strength of disorder, and the type of cavity models.

1. The steady state of cavity polaritons depends not only

on the equation of motion but also on the symmetry of

the initial excitation state: The symmetric fully excited

initial state relaxes to the ground state, whereas asym-

metric partly excited initial state will be trapped in an

intermediate state without complete relaxation to the

ground state.

2. For the Tavis–Cummings model, the relaxation rate is

linearly correlated with the cavity decay rate of the

system in the weak cavity loss limit, and the coefficient

of the linear dependence depends on the number of

TLSs and the initial excitation state. However, in the

strong cavity loss limit, the relaxation rate is inversely

proportional to the cavity decay rate and is independent

of the system size.

3. The nonmonotonic dependence on the photon decay

rate defines a turnover, which corresponds to the most

efficient relaxation. The turnover also signals a tran-

sition in the relaxation profile from the underdamped

oscillations to overdamped decay.

4. While most studies have been carried out for disor-

dered polaritons in the single excitation manifold, our
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DA-TTM explores the relaxation of the highly excited

initial state in a disordered cavity and reveals a strong

dependence on the initial state. In general, the relax-

ation rate slightly decreases in the weak disorder

regime, as disorder in the cavity frequency is only suffi-

cient to break symmetry, but drops rapidly in the strong

disorder regime.

5. A comparison of standard polariton models, including

the Pauli–Fierz (PF) Hamiltonian, the Dicke model, and

the Tavis–Cummings (TC) model, reveals a universal

turnover as a function of the photon decay rate. Though

reasonable agreement is achieved in the perturbative

and on-resonance regime, significant differences are

observed in the strong light–matter coupling regime,

which are partially lifted in the off-resonance case.

There are, however, multiple routes for significant further

progress. For one, the TTM has the potential to be combined

with any numerical methods for simulating realistic molec-

ular systems in cavities, such as ab initial modeling, mixed

quantum–classical dynamics, and nonadiabatic quantum

dynamics [3], [8]–[12], [14]. Additionally, while we have

shown the immediate application toward polariton relax-

ation, our toolbox can be applied generally to dissipative

quantum processes including quantum transport and quan-

tum thermodynamics, with or without couplings to cavity

photons.

In terms of methodology, the TTM can be further devel-

oped for more efficient analysis of cavity systems. First,

while the decay lifetime provides an estimator of the relax-

ation process of the system, it remains to be seen if the time-

dependent relaxationmatrix can be fully exploited as it con-

tains all the dynamic information. Secondly, by combining

symmetry reduction and information extraction from the

transfer tensors, we can produce significant computational

speed-up. Thirdly, one may consider alternative dimension-

ality reductions beyond taking advantage of symmetry: e.g.,

the contraction of the density matrices via an operator,

followed by TTM propagation, allowing for prediction of a

desirable property with significantly less computation.
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