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Abstract

With hydrogen conversion and storage technologies promising a revolution in the

energy industry if volumetric energy density is increased, the loading of hydrogen to high

concentrations in metal lattices has become of special interest. Here we use Projector

Augmented-wave density functional theory methods to search the Pd-Ti-H system for stable

instances of mixed tetrahedral-octahedral site occupation. We compute the energies of 42

hydrides constructed from seven metal sublattices: NisTi-prototype PdsTi, Cdl2-prototype

PdTi,, and FCC four-atom unit cells of Pd, PdsTi, PdTi, PdTis, and Ti. Our results suggest

that mixed octahedral-tetrahedral occupation is energetically unfavorable in most cases, but a

Li;Bi-prototype hydride may be stable within the PdixTixH3 system.
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Introduction
Palladium hydride (PdHx) is the prototypical metal-hydrogen phase; first observed in
the 1860s, PdH 1.« has since remained the most academically interesting of all metal hydrides.
The special interest in and intriguing properties of PdH1.x stem partially from the fact that it is
not a true hydride (for which hydrogen would be an anion), but instead a solid solution of
metallic hydrogen in palladium. Hydrogen atoms occupy octahedral sites in the palladium

FCC lattice (fig. 1a) up to a Pd:H ratio of 1:1, forming a rock-salt structure (fig. 2b).

Figure 1: (a) An octahedral, and (b) a tetrahedral site in an FCC unit cell. (c) An octahedral, and
(d) a tetrahedral site in an HCP unit cell. There are two tetrahedral sites and one octahedral site

per lattice point in both lattices.



Palladium is by no means the only metal which accepts hydrogen; indeed, nearly all

metals will form binary M-H compounds, although these are usually of an ionic character.

Titanium, for example, forms the semi-ionic hydride TiH>.x. Titanium hydride exhibits

several phase transitions as hydrogen loading is increased. For low hydrogen concentrations,

TiHa retains the HCP structure of pure titanium. As [H] increases a fluorite phase begins to

emerge (fig. 2d), with H occupying the tetrahedral sites of an FCC Ti lattice (fig 1b). Near

stoichiometry TiH> adopts a distorted, body-centered tetragonal structure, which is unstable

unless it remains under hydrogen atmosphere.

Besides the rock-salt and fluorite structures, other options for interstitial occupation

include zincblende, in which every other tetrahedral site is occupied, the Li3Bi prototype (also

formed by LaH3), in which all tetrahedral and octahedral sites are occupied, and the AgAsMg-

prototype, in which zincblende sites and octahedral sites are occupied. In a hexagonal sublattice,

hydrogen might occupy octahedral sites (NiAs), alternating tetrahedral sites (wurtzite), both

octahedral and wurtzite sites, tetrahedral sites, or both octahedral and tetrahedral sites. The last

three structures are unlikely to be stable, since nearest-neighbor hexagonal tetrahedral sites

share faces and therefore there would be little screening between hydrogen nuclei.

Given that PdH exhibits octahedral occupation of hydrogen, and TiH> tetrahedral

occupation, it is possible that mixed tetrahedral-octahedral occupation may occur within PdH

- TiH; alloys. The Li3Bi structure might become stable at high hydrogen pressure.



Alternately, some (Pd,Ti) lattice might accept H interstitially in an AgAsMg-prototype

configuration. This thesis will use density functional theory (DFT) methods to search for

stable instances of mixed occupation within the Pd-Ti-H ternary phase diagram.
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Figure 2: (a) The Pd-H binary phase diagram, reproduced from [1]. (b) The halite structure of
the a phase of PdH;... Hydrogen atoms occupy the octahedral interstitial sites within an FCC Pd
lattice. (c) The Ti-H binary phase diagram, reproduced from [2]. (d) The fluorite structure of the
& phase of TiH;... Hydrogen atoms occupy the tetrahedral interstices within an FCC Ti Lattice.



Methods
i. A brief overview of density functional theory

Density functional theory has emerged in the last 30 years as an immensely useful
tool for the prediction of molecular structure and properties. In general, DFT finds its use in
the treatment of many-body quantum systems. For problems in which DFT is relevant, the
system is a collection of electrons and nuclei - for example, the unit cell of a crystal, or a
molecule in a gas. A many-body wavefunction 3 then defines the position of each electron
and nucleus in space.

Most quantum chemistry methods begin by invoking the Born-Oppenheimer
approximation, which argues that the large difference in mass between an electron and a
nucleus gives the two particles drastically different time scales of motion, such that nuclear
kinetic energies can be neglected and nuclear positions can enter the Hamiltonian
parametrically. Using the Born-Oppenheimer approximation, the electrons in the system can
be treated as moving in a fixed potential field generated by the nuclei. The Schrodinger

equation of a system of N electrons is then rewritten as

—%ivlﬂ EN:Vext(nHiz U(rn)|¥ = EY &
i=1 i=1

i=1 j<i

where 7; is the position of the i electron. From left to right, the left-hand-side terms give
the total electron kinetic energy T, the electron energy from the nuclear potential field

Voxt(r) and the electron-electron interaction energy U,;(u, v). Solving this equation gives



an “adiabatic potential energy surface”, E(Rq, R,, ..., Ry), which is a function of the
locations of the M nuclei in the system. Finding the lowest-energy eigenstate ;s and
eigenvalue E;s of this equation and minimizing E;s with respect to nuclear positions gives
the (nearly) exact ground-state configuration of the N-electron, M-nucleus system.

In practice, such a direct approach is intractable except for trivially simple problems.
Each electron has three spatial degrees of freedom, giving 3N total degrees of freedom for the
electronic component of the system alone. For most molecules and solids of interest for DFT,
the Schrodinger equation is a many-body problem with several hundred to several thousand
dimensions. The solution to such an equation is far beyond the capabilities of any present
computer.

The utility of DFT lies in its ability to find approximate numerical solutions to such
many-body quantum systems efficiently. In other words, DFT can simulate the structure and
behavior of molecules and solids. Predictions from DFT can be used to inform physical
experiments, or to discern the cause of observed chemical phenomena. In both cases, the use
of DFT allows for a greater understanding of the system under observation with far fewer
experiments.

DFT hinges on a proof by P. Hohenberg and W. Kohn [3], given in 1964, that the
position of electrons as defined by a wavefunction ¥ has the same physical significance as

the density of the electron probability cloud, n(r) = XN, |;(r)|?, where ;(r) is the



wavefunction of the i™ electron. Importantly, the electron density is a function of only three
spatial coordinates rather than 3N; solving for an energy-minimizing electron density, then,
would seem a much more tractable problem than searching for a ground state electron
configuration. The first of the Hohenberg-Kohn theorems states that the ground-state energy
of a many-particle system is a unique functional of electron density. That is, given a set of N
interacting electrons in an external potential V,,.(r), there is a one-to-one correspondence
between E, and n(r). The second Hohenberg-Kohn theorem shows that we can construct
an energy functional E[n(r)] which can be minimized over n(r) to obtain the true ground-
state energy E, = E[ny(r)], with ny(r) the electron density of the ground state.

The Hohenberg-Kohn theorems prove that a many-particle quantum system can be
described uniquely by its electron probability density, and that the ground state of such a
system can be found by minimizing an energy functional with respect to this density.
However, these results say nothing about how to construct an energy functional and perform
useful calculations. For this we require the Kohn-Sham equations [4], a set of non-physical
equations which re-imagines the true electron density n(r) as the sum of density
contributions from N fictitious non-interacting electron wavefunctions ¢; within some
effective potential called the Kohn-Sham potential, Vs, such that

72
[% V2 + VKS(T)] ¢i(r) = €;9;(r). (2)

In general, neither the ¢;s nor the €;s above have any physical significance. However, the
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amplitude squared of the Slater determinant of the N lowest-energy solutions ¢; to this
Kohn-Sham equation gives n(r), and the sum of the N lowest ¢;’s gives E,. Comparing this
equation with eqn 1, we see that we’ve circumvented the many-body complications of this
problem, greatly simplifying the Hamiltonian, by wrapping all many-body effects into the
Kohn-Sham potential. The trade-off is that Vi is unknown, but fortunately it can be
approximated.
Kohn and Sham showed that Vs could be expanded to give

Ves) = Vere) + 5 [ 20 4 v 3)
where V,,.(r) is the nuclear potential field, 62—2 | % dr' is the Coulomb field created by
the electron density, and Vy(r) is the so-called “exchange-correlation potential.” Every
term in Vi is known besides Vy., which holds the effects of exchange (which gives rise to
the repulsive force of the Pauli exclusion principle) and correlation (the quantum effect by
which the state of one particle can affect the state of another). Most attempts to quantify Vi
begin with a local density approximation (LDA), which treats Vy.(r) as the corresponding
known potential of a uniform electron gas VXeC_g “In(r)], where n(r) is the electron density at
the point r:

Vyc(r) = Ve A(r) = Vi 7 [n(n)]. (4)
LDA

As one might expect, Vyx-“ is often a poor approximation to the true V.. The generalized

gradient approximation (GGA) takes a slightly more nuanced approach, incorporating the
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local gradient of electron density as a so called “enhancement factor”, Fy.[n(r), Vn(r)]:

VigA(r) = Vg 7% [n(1)] Fxc[n(r), Vn(r)]. ()
Here Fyc is some unspecified functional which depends somehow on both n(r) and its
gradient. The enhancement factor can differ based on the DFT algorithm in use, and different
Fx¢’s perform better in different systems.

With the Kohn-Sham equations in hand, an algorithmic approach to solving a
problem with DFT can be envisioned. The goal of a DFT calculation is to converge on a
ground-state electron density n(r) which solves the Kohn-Sham equations. From n(r), the
electronic configuration and energy of the system can be found. The skeleton of an algorithm,
as outlined in [5], is as follows:

1. Define a trial electron density n;.s(r) and use it to approximate Vg, using
some approximate Vy.. We obtain 1,4 (r) with a single-Slater-determinant “reference
wavefunction,” usually having the symmetry properties of the system. For solids, the Slater
determinant is formed from a basis set of plane waves.

2. Using Vks, find the N lowest-energy single-particle wavefunctions ¢; from the
Kohn-Sham equations.

3. Using n(r) = Y|¢;(r)|?, find the electron density ngg corresponding to the ¢);.

4. 1f ngs(r) = Ngese(r) to within the tolerances of the computation (that is, if e

is self-consistent), ngeq:(r) is the ground state electron density. If not, update n;.s using
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the results of the computation.

How exactly to go about updating n;.s; in step 4 is a problem for the writer of the

DFT algorithm, but the problem isn’t meaningfully different from that of other algorithms

which search for self-consistency.

ii. Atomic Simulation Environment (ASE)

Calculations for this thesis were performed through ASE [6], a free python-based

atomic simulation environment. ASE itself doesn’t perform DFT calculations; rather, it offers

a platform to configure atomic environments, and exports calculations to one of the several

“calculators” compatible with the platform.

ASE lets the user create an atomic environment through “Atoms” objects, which

define the atomic numbers and positions of a collection of atoms in a simulation. Properties

of each element (mass, radius, etc.) are stored within ASE’s “data module.” Atoms can be

placed within a unit cell using the “Cell” object, which defines the lengths and angles of the

simulated crystal’s lattice vectors. A unit cell can be varied and rescaled between

measurements to minimize energy with respect to lattice parameters. Once an input unit cell

is defined, ASE can use a “Calculator” object to find the energy of the system, which allows

the user to optimize structures and compare relative stability of phases. ASE can be used as a

platform for practically any quantum chemistry simulation, and is commonly used to
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calculate phase diagrams and band structures and to perform nudged elastic band and
molecular dynamics simulations.
iii. The Projector Augmented-Wave (PAW) method

The calculator used for simulations in this thesis was GPAW, which uses the
projector augmented-wave (PAW) method [7]. PAW is a generalized pseudopotential
approach which was created to circumvent the issues encountered by DFT in regions near
atomic nuclei. The contribution of core-shell electron wavefunctions near nuclei give the
Kohn-Sham potential sharp features which makes the convergence of DFT simulations
difficult. Since core-shell electrons are strongly localized, each nuclear potential can be
replaced with an effective “pseudopotential” that accounts for both the nucleus and core-shell
electrons, and solving the Kohn-Sham equations only for the valence electrons. Taking the
“frozen core” approximation, we can estimate an atom’s pseudopotential as system-
independent, such that it can be tabulated in advance for every element. However, the loss of
information near nuclei can reduce the accuracy of DFT calculations using pseudopotentials.

The PAW method formalizes the pseudopotential approach to smooth the
wavefunction without loss of core-electron information. It begins by imagining a linear
transformation operator T which takes the (not yet defined) pseudopotential wavefunction
|1j§> to the all-electron single-particle wavefunction i) that enters the Kohn-Sham

equation:
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[¥) =T [p). (6)
Once again, [i) is the slater determinant of the N single electron wavefunctions |¢;) which
appear as solutions to equation 2. T need only act near the nuclei, and in smooth regions

|1,17> can be set equal to |). We can then write T as

T=1+ZT“ %)

Where T¢ is localized on the a™ nucleus, and the sum runs over all M nuclei in the system.
We call the region in which T¢ acts the “augmentation sphere,” and we can expand the
pseudo-wavefunction |17ﬁ) in each sphere as a linear combination of orthogonal one-electron

pseudo-wavefunctions (also not yet defined):

N

79 = > aild”). (8

i=1

Since we made |${3) orthogonal and we made T linear, the coefficients c{* are guaranteed

to be the inner products of |lﬁ) with some set of “projection waves” |p{):
(pf|P3) = 6;j » cf = (pf|¥P?) 9

With some manipulation, we can use the above expressions to rewrite T¢ as

N
T =1+ ) (166) - 188)) ¢, (10)
i=1

and combining the i |(:5la> from each of the M augmentation spheres into one single-

electron wavefunction |¢)L>, we can write
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N
T= 1+ (190 —15)) (il (11)
i=1

What we’ve gained from this new picture of pseudopotentials is the ability to go back and
forth between rough “true” one-electron wavefunctions and smooth one-electron pseudo-
wavefunctions. We can now choose the pseudopotential by defining a set of projection waves
within the augmentation spheres, hence the name “projector augmented-wave”.

The GPAW calculator [8] uses the PAW method and assumes the frozen-core
approximation holds. The (piz| projection waves for each atomic number Z have been
tabulated in advance, making GPAW both accurate and efficient for a variety of systems.

iv. Algorithm

This paper compares the relative stability of various Pd-Ti-H phases to predict which
are physically realizable. We estimate stability by calculating the potential energy per atom of
a bulk phase, and we then compare the energy of phases with the same composition to find
the lowest-energy state.

We demonstrate our algorithm on a PdH FCC unit cell. To actually calculate the
stability of a phase using the GPAW calculator on ASE, we first import the “Atoms” object
and the “GPAW?” calculator, and specify that GPAW use a set of plane wave basis states to

build its Kohn-Sham one-electron wavefunctions.

from ase import Atoms

from gpaw import GPAW,PW
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GPAW calculates energy by integrating over reciprocal space, which it does by
discretizing reciprocal space into a 3D grid of evenly-spaced “k-points.” We set the number
of k-points before the calculation. In general the smallest number of k-points is chosen such
that the calculated energy is within 0.1eV of the energy with additional k-points. For these

calculations, we use k=6.

k =6

calc = GPAW(mode=PW(300),kpts=(k, k, k))

We then define the positions and atomic numbers of each atom in our unit cell,
assuming a lattice constant around 4. This information is stored in an “Atoms” object, along

with our calculator and our boundary conditions.

a =4
unitcell=[[a/2,a/2,0],[a/2,0,a/2],[9,a/2,a/2]]
xtal=Atoms( ‘PdH’, positions=[[0,0,0],[a/2,a/2,a/2]],

cell=unitcell, pbc=True, calculator=calc)

We can vary the lattice constant parametrically to minimize the energy with respect to ‘a’.

energy=[]

for i in range (5):
X=.9+.05%1
xtal.set_cell(unitcell*x, scale_atoms=True)
energy.append(xtal.get potential energy())
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Figure 3: The result of an example computation, of PdH energy as a function of lattice constant.
The five computed points (red) are fitted to a quadratic polynomial (black). The minimum of the

fit is taken to be the true lattice constant and ground-state energy.

The minimum energy is taken as the energy of the phase, and this energy can be
compared to that of other phases with the same composition to judge relative stability. To
directly compare stability between structures of different hydrogen concentration, we must
account for the free energy of gaseous H, which is a function of hydrogen partial pressure. In
general, as the partial pressure of H; increases absorption into a solid phase becomes more
favorable.

Experiments
Even with density functional theory, fully mapping the ternary Pd-Ti-H phase
diagram would be too computationally intensive. If the positions of titanium, palladium, and
hydrogen nuclei are taken as free variables, we would have to search over all possible unit

cells for any given composition to find the minimum-energy configuration. Instead, the
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approach taken here will be to investigate the hydrogen occupancy of a few candidate Pd-Ti
sublattices which are likely to be stable. Specifically, two categories of sublattices will be
examined: relevant stable structures in the Pd-Ti binary phase diagram, and FCC prototype
Pd-Ti sublattices. In each case, hydrogen will be placed at interstitial sites in the unit cell, and
ground-state energy will be calculated.

Relevant structures in the Pd-Ti binary phase diagram
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Figure 4: The Palladium-Titanium phase diagram, reproduced from [9]

Moving across the Pd, Ti phase diagram near room temperature, one encounters ten
phases: pure FCC palladium, pure HCP titanium, and eight intermediate compounds. The

structure of each of these phases is given in table 1, reproduced here from [10]. A reasonable
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place to begin the search for structures exhibiting mixed occupancy is to load each of the

crystals in this binary phase diagram with hydrogen and observe which interstitial sites are

preferentially occupied. The implicit assumption underlying this experiment is that hydrogen

will incorporate into the interstices of the Pd, Ti lattice without a phase change. We can see

immediately that this assumption is flawed from the Pd-Ti phase diagram, which has a phase

change from a hexagonal to a cubic unit cell as the composition of hydrogen is increased.

Nevertheless, it gives us a jumping-off point for an otherwise intractable problem.

Constraining our search to phases that share FCC’s octahedral and tetrahedral

interstitial geometries, three phases from table 1 distinguish themselves: The cubic y phase,

the hexagonal Pd;Ti phase, and the hexagonal PdTi: phase.

Phase | Composition (at% Ti) | Pearson symbol/ Prototype [Mlustration

(Pd) 0-15 cF4/Cu (FCC)

y 15-22.5 cP4/AuCus
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aTi 99-100 hP2/Mg (HCP)

Table 1: The room-temperature phases of the Pd-Ti phase diagram. Images are from [10]

1. The y phase

The y phase of the Pd-Ti system, Pds;Tii«x, has an AuCus prototype. Ti atoms

occupy some of the corners of an FCC unit cell, with Pd atoms occupying the face centers.

With Ti at every corner the unit cell would have a chemical formula Pd3Ti, although the

phase becomes thermodynamically unfavorable before this concentration. The unit cell of y-

Pd3Ti is shown in fig. 4, and the positions of the four atoms, four octahedral interstitial sites,

and eight tetrahedral interstitial sites are listed in appendix A. While finite computational

resources prevented an analysis of the off-stoichiometry Pd;Tiix phase, FCC Pd3Ti was

examined as one of the five “solid solution” structures.

2. PdsTi

The PdsTi phase on the Pd-Ti phase diagram adopts a NisTi prototype. This structure

has a 16-atom unit cell, which arrange themselves in a hexagonal configuration. Crystal energy

was tested with six different hydrogen interstitial occupations: With no hydrogen (Pd3Ti), with

octahedral sites or wurtzite sites occupied (Pd3TiHs), with both octahedral sites and wurtzite

sites, or with tetrahedral sites, occupied (Pds3TiHg), and with both octahedral sites and
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tetrahedral sites occupied (Pd;TiHi2). The positions of the 16 atoms, the 16 octahedral

interstitial sites, the 16 wurtzite sites, and the 32 tetrahedral interstitial sites of PdsTi are listed

in appendix A.

3. PdTi;

PdTis is another hexagonal phase on the Pd-Ti phase diagram. It has the prototype of

Cdly, such that Ti atoms form an HCP sublattice with Pd atoms occupying alternating layers

of octahedral sites. The other half of octahedral sites and all tetrahedral sites are available for

hydrogen atoms to fill. Crystal energy was tested with six different hydrogen interstitial

occupations: With no hydrogen (PdTiz), with octahedral site occupied (PdTi>H), with wurtzite

sites occupied (PdTi2H»), with both octahedral site and wurtzite sites (PdTioH3), with

tetrahedral sites (PdTi2Hs), and with both octahedral site and tetrahedral sites (PdTizHs). The

positions of the three metal atoms, one octahedral site, two wurtzite sites, and four tetrahedral

sites are listed in appendix A.

It is unlikely that hexagonal structures with mixed occupation or with full tetrahedral

occupation will be stable, due to the proximity and poor screening between occupied

interstitial sites. The likelihood of stability diminishes if hydrogen adopts an ionic character

in the lattice, as it should as the ratio of titanium to palladium is increased. Nevertheless, a

stable instance of such a structure cannot be ruled out completely and would be very

interesting if predicted, so these improbable phases are examined along with the more



23

common prototypes.

PP i L
el L
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Figure 5: (a) the PdsTi unit cell: 12 Pd atoms and 4 Ti atoms form an HCP structure. (b) with
octahedral sites occupied, (c) with wurtzite sites occupied, (d) with tetrahedral sites occupied. (e)
the PdTi; unit cell: Ti forms an HCP lattice with Pd occupying octahedral sites in alternating layers
(f) with other octahedral site occupied, (g) with wurtzite sites occupied, (h) with tetrahedral sites

occupied.

ii. FCC Pd-Ti Solid Solution measurements

When loaded with hydrogen, both PdH;.x and TiHz.x exhibit FCC sublattices; it is a
reasonable hypothesis that a mixed (Pd,Ti) phase may also show FCC structure under
hydrogen loading, especially since cubic phases are more conducive to interstitial occupation.
In this case, PdxTii-x would become a solid solution of Pd and Ti with an FCC structure when

loaded with hydrogen, and H would occupy some subset of the four octahedral sites and eight
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tetrahedral sites within each FCC cell. With this hypothesis in mind, we can imagine creating

random FCC matrices of PdxTiix at various compositions, loading each with hydrogen, and

observing the lowest-energy site occupancy in each case. The energy of each solid solution

phase can then be compared to that of the loaded binary phases, to see if these structures are

indeed physical.

Figure 6: (a-e) the five “solid solution” unit cells. (a) Pd, (b) PdsTi, (c) PdTi, (d) PdTis, (e) Ti.
(f-h) the three interstitial hydrogen configurations. (f) octahedral sites, (g) zincblende sites, (h)
tetrahedral sites. (i) an example cubic unit cell constructed from one of (a-e) and any

combination of (f-h).

Although the computational resources available for this thesis made such a study
unfeasible over a large supercell, instead our “solid solution” experiments compared the five
structures which can be created from a four-atom basis over the cubic unit cell shown in fig.
4: Pd, PdsTi, PdTi, PdTis, and Ti. One of these structures, Pds;Ti, is the on-stoichiometry

version of the y phase. For each of these structures, the energies of six interstitial
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occupations were compared: with no hydrogen (Ma), with octahedral or zincblende

occupation (M4Ha), with mixed octahedral-zincblende or tetrahedral occupation (M4Hs), and

with mixed octahedral-tetrahedral occupation (M4H12). The positions of the metal atoms and

interstitial sites are listed in appendix A.

iii. Phase Diagram

The 42 candidate palladium titanium hydride phases examined in this study (six

PdsTi phases, six PdTiz phases, and 30 solid solution phases) can be placed on a palladium-

titanium-hydrogen ternary phase diagram (fig. 7). Each point can be given an energy

coordinate corresponding to the energy of the phase. The convex hull of these 42 coordinates

will then form the ternary phase diagram compiled from these 42 phases, with stable phases

at the surface of the hull and unstable phases beneath the surface.

As a result of not including every possible phase in our ternary phase diagram, and

especially because of neglecting a pure hydrogen phase (the energy of pure hydrogen was

arbitrarily set to zero to produce the convex hull) a phase’s stability on the phase diagram

does not guarantee that it will be physically realizable. In particular, phases that bound the

edges of the diagram are guaranteed to touch the convex hull. However, phases identified as

stable are good candidates for further investigation with more a more rigorous computational

procedure.
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The ternary phase diagram produced here also is for an arbitrary pressure, and will
change as the partial pressure of H, changes. It is therefore also worthwhile to examine the
binary Pd-Ti phase diagrams formed by horizontal slices across the ternary diagram, which

captures the stability of phases at fixed hydrogen concentration.

O Pd,Ti
@ PdTi,
/\ Pd
A Pd.Ti .
\ Solid
A PdTi solution

dTi,
AT

Y

Figure 7: A Pd-Ti-H ternary phase diagram. 42 phases are present, with 26 unique compositions.

Results and Discussion
The energy of each of the 42 structures under study was minimized with respect to
lattice parameter. Five lattice constants were chosen near the predicted value and the energy
from each was fitted to a parabolic curve. These fits are reproduced in Appendix C.

i. PdTi:
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The results of the PdTi» calculations are summarized in fig. 8. We see an
approximately linear decrease in energy as hydrogen is added to the lattice (fig. 8a). The
linear component of this trend is an artifact of the GPAW calculation and is proportional to
the number of atoms in the unit cell. This is corrected for in fig. 8b, showing the co-
occupancy of octahedral and wurtzite sites to be especially stable. Full tetrahedral occupation,

on the other hand, tends to destabilize the lattice.
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Figure 8: PdTi, minimum energies. (a) Uncorrected from the GPAW calculation. A clear linear
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trend appears as a result of additional atoms in the unit cell. (b) With the linear trend removed.

Octahedral and wurtzite occupation stabilizes the phase, but tetrahedral occupation destabilizes it.

a)

—80 c
t (]
Q0
o
o3
-100 =T ©
S °
O o £
5 B g
?::3 -120; 5 Q2
w | o = o
g ; :
5 4 3
-140 £ ® <
o '% =
° o
| o
-160 " ‘
0 16 32 48
Hydrogen atoms per unit cell
b)
15/
2 10 +
~ © =
& S 33
o 5/ & g4
c = + g O
w °o o 8 o
8 o =% 2 g2 —
T <N
0 ST
bt vl
b T
S -5 o . ©=
©
@
=
-10 £
o
T
0 16 32 48

Hydrogen atoms per unit cell

Figure 9: Pd;Ti minimum energies. (a) uncorrected from the GPAW calculation. (b) With linear
trend removed. Octahedral occupation is more stable than wurtzite occupation, and tetrahedral
occupation is more stable than mixed octahedral-wurtzite occupation. Mixed octahedral-

tetrahedral occupation is very unstable.

ii. PdsTi
The results of the Pd3Ti computation are summarized in fig. 9. The range of corrected
energies in fig. 9b (~25 eV) is much larger than that of fig. 8b (~1eV), partially because the

Pd3Ti unit cell has 16 metal atoms whereas the PdTi> unit cell has only three. Even accounting



29

for the larger unit cell, from fig. 9a one can see that deviations from the expected linear trend

in energy are about five times more pronounced in Pd3Ti, suggesting that interstitial occupancy

has a much greater effect on the stability of the structure.

As in PdTia, full occupation of all tetrahedral and octahedral in PdsTi is quite unstable.

However, tetrahedral occupation alone isn’t as unstable as had been predicted, despite the

proximity and lack of screening between tetrahedral sites. It is likely that the lower

concentration of Ti atoms in Pd3;Ti makes the hydrogen in the structure less ionic, reducing the

hydrogen-hydrogen repulsion and making tetrahedral occupancy less unstable. Still, tetrahedral

occupancy in hexagonal structures is extremely rare, and this result requires further

investigation.

ii. FCC Pd-Ti Solid Solutions

The results of the solid solution computations are summarized in fig. 10. In each

graph, the energy of the unhydrided phase has been set to zero, and the linear trend in data

has been removed. As should be expected, the energy of hydrided Ti-rich phases is much

lower than that of hydrided Pd-rich phases, because the structure takes on an ionic character.

Contrary to experiment, fig. 10a predicts that PdH will form a zincblende structure

rather than rock salt. This implies that the difference in energy between the rock salt and

zincblende phases is smaller than the tolerance of our calculation. On the other hand, the

fluorite phase of TiH> is predicted successfully by a significant margin. Notably, in none of
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the cases is full tetrahedral-octahedral occupation the lowest energy phase, and in most it is

by far the least stable.
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Figure 10: Corrected solid solution minimum energies. (a) Pd, (b) PdsTi, (c) PdTi, (d) PdTis, (e)
Ti. As [Ti] increases, the high-H phases become more stable, likely due to an increasing ionic

character of the interstitial hydrogen.

Fig. 11 compares structures of equal hydrogen concentration for all five solid solution
sublattices. MH» seems to prefer a rock-salt structure over zincblende for every solid solution

except, strangely, pure Pd. MHy prefers a fluorite structure over an AgAsMg mixed-
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occupation structure for every solid solution, casting doubt on the likelihood of finding a

stable instance of mixed occupation experimentally.

a)

-30-‘ \I
E -35/
>
o0
g D Octahedra
w 40 ® Zincblende

—45!

Pd  Pd;Ti  PdTi  PdTi; Ti

b)

_40|

-45/|
3
= -50} "
\3_.0 o Octahedra+Zincblende
p B Tetrahedra
w =55}

_60.

-85 Pd  Pd;Ti  PdTi  PdTi; T

Figure 11: Uncorrected solid solution minimum energies. (a) MsHy structures. Zincblende sites
and octahedral sites have comparable stability in Pd, but octahedral sites are more likely to be
occupied than zincblende in PdTis, PdTi, PdTis, and Ti. (b) M4Hs structures. Tetrahedral

occupation is more stable than mixed octahedral-zincblende occupation in all five lattices.

iv. Phase Diagram
The computational results were compiled to form Pd-Ti binary phase diagrams (fig.
12) and a Pd-Ti-H ternary phase diagram (fig. 13). The convex hull of the uncorrected

energies of the phases was used to identify those which would be expressed. Of the
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hexagonal structures, only the unhydrided phase of Pd;Ti was found to be stable — none of the
five Pd;Ti hydrides and none of the PdTi> phases was close in energy to the convex hull.
Fig. 12 also shows that mixed octahedral-zincblende or octahedra-wurtzite occupation is less

energetically favorable than tetrahedral occupation in every instance.
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Figure 12: Pd-Ti binary phase diagrams at four different hydrogen concentrations. (a) PdiTi.
(b) Pd;TiH. (c) Pd1~Ti;Hz. (d) Pd1..Ti,Hs. The binary phase diagrams are slices of the ternary

Pd-Ti-H phase diagram, and their positions on this ternary phase diagram are shown in (e)
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Fig. 13 shows the ternary phase diagram formed by taking the convex hull of the

coordinates and energies of all 42 under study. This ternary phase diagram is necessarily

incomplete because it lacks a pure hydrogen phase, but it nonetheless can provide some

insight. As expected from the binary phase diagrams, none of the hydride hexagonal phases

appear. A few interesting phases do appear to be stable, however: fluorite-prototype PdH and

LisBi-prototypes TiHs, PdH3, and PdTisHiz. In fact, all five LizBi prototypes lie nearly

perfectly along the edge of the convex hull. Unfortunately, most or all of these phases are

likely artifacts of the incomplete ternary phase diagram, and the convex hull pinning on the

bounding region of the diagram. Nonetheless, these Li3Bi structures might be interesting to

examine in more detail.

H

90% O PdaTi

80% -©PdF—
70% A Pd
60% e i Solid
) A PdTi solution
o, 50% A PdTi,
S ATi

©
. 10%
o
% 0%
Pd /v ¢ [T TF TN T TF TS Ti

[s)
(S} S S (&) S
2 ) V2 L) ™ ') © A @ o) '\/o

Figure 13: The Pd-Ti-H ternary phase diagram.
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Conclusion

This study used density functional theory tools to search for stable instances of

mixed tetrahedral-octahedral interstitial occupation in hydrided Pd-Ti lattices. A comparison

of the energies of 42 metal hydride phases built from three types of Pd-Ti sublattice

suggested that cubic structures more readily accept interstitial hydrogen than hexagonal

structures, but that every structure prefers to fill all tetrahedral sites before beginning to fill

octahedral sites. The ternary phase diagram constructed from the 42 phases is biased towards

phases with high hydrogen loading, but nonetheless identifies Pdi.«TixH3 as one candidate

system to search for mixed octahedral-tetrahedral site occupation. The hexagonal Pd;TiHs

phase with full tetrahedral occupation was also found to be more stable than expected, though

not stable enough to appear on the phase diagram. Future work can examine TiH3 and

Pd;TiHg more rigorously, first from a computational standpoint and then experimentally, to

confirm or refute the stability of the phase.
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Appendix A: Atomic Positions and Unit Cells

. PdTiz
Lattice |al = [a/2,-sqrt(3)*a/2,0]
Vectors | a2 = [a/2, sqrt(3)*a/2,0]
a3 = [0,0,c] c=1.633*a , z=0.252

Metal Pd: [0,0,0]
atoms | Ti: [a/2,a/(sqrt(3)*2),c*z]
[a/2,-a/( sqrt(3)*2),-c*z]

Interstitial | Octahedra Waurtzite Tetrahedra
sites
[0,0,c/2] [a/2,a/(sqrt(3)*2),(3c- [a/2,a/(sqrt(3)*2),(3c-2cz)/4]
2cz)/4] [a/2,a/(sqrt(3)*2),-c*z/2]
[a/2,-a/(sqrt(3)*2),c*z/2] [a/2,-a/(sqrt(3)*2),c*z/2]
[a/2,-a/(sqrt(3)*2),(-3c+2cz)/4]

1l. PdsTi

Lattice al

[a/2,-sqrt(3)*a/2,0]
Vectors | a2 [a/2, sqrt(3)*a/2,0]
a3 [0,0,c] c=1.633*a , x4= -1/6

Pd: [a/4,-sqrt(3)*a/4,0]
[a/4,sqrt(3)*a/4,0]
[a/2,0,0]
[a/4,sqrt(3)*a/4,c/2]
[a/4,sqrt(3)*a/4,c/2]
[a/2,0,c/2]
[3*a*x4/2,sqrt(3)*x4*a/2,c/4]
Metal [-3*a*x4/2,sqrt(3)*x4*a/2,c/4]
atoms [0, -sqrt(3)*x4*a,c/4]
[-3*x4*a/2,-sqrt(3)*x4*a/2,3*c/4]
[3*x4*a/2,-sqrt(3)*x4*a/2,3*%c/4]
[0,sqrt(3)*x4*a,3*c/4]
Ti: [0,0,0]
[0,0,c/2]
[a/2,a/(2*sqrt(3)),c/4]
[a/2,-a/(2*sqrt(3)),3*c/4]
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Interstitial

sites

Octahedra Wurtzite Tetrahedra
[a/2,-(a/(2*sqrt(3))),c/8] [0,0,(11%¢)/16] [0,0,(11%¢)/16]
[2/2,-(a/(2*sqrt(3))),(3*c)/8] [0,0,(3*¢)/16] [0,0,(5%¢)/16]
[-((3*a*xd)/2),-(1/2)*sqrt(3)*a*xd, | [al4,-((sqrt(3)*a)yd),(11%c)/16] [0,0,(3*¢)/16]

o8]
[-((3*a*x4)/2),-(1/2)*sqrt(3)*a*x4
(3*c)/8]
[(3*a*x4)/2,-(1/2)*sqrt(3)*a*x4,
o/8]
[(3*a*x4)/2,-(1/2)*sqrt(3)*a*x4
(3%c)/8]
[0,sqrt(3)*a*x4.c/8]
[0,sqrt(3)*a*x4,(3%c)/8]
[/2,a/(2*sqrt(3)),(7*c)/8]
[a/2,/(2*sqrt(3)),(5%c)/8]
[(3*a*x4)/2,1/2*sqrt(3)*a*x4,
(7%c)/8]
[(3*a*x4)/2,1/2*sqrt(3)*a*x4,
(5%c)/8]
[-((3*a*x4)/2),1/2*sqrt(3)*a*x4,
(7%c)/8]
[-((3*a*x4)/2),1/2*sqrt(3)*a*x4,
(5%c)/8]
[0,-sqrt(3)*a*x4,(7*c)/8]

[0,-sqrt(3)*a*x4,(5*c)/8]

[a/4,-((sqrt(3)*a)/4),(3*¢)/16]
[a/4,(sqrt(3)*a)/4,(11%c)/16]
[a/4,(sqrt(3)*a)/4,(3*c)/16]
[/2,0,(11%c)/16]
[/2,0,(3%c)/16]
[a/2,-(a/(2*sqrt(3))).(15%c)/16]
[a/2,-(a/(2*sqrt(3))),(7*c)/16]
[(3*a*x4)12).,-

(1/2)*sqrt(3)*a*x4,(15%¢c)/16]

[-((3*a*x4)/2),-(1/2)*sqrt(3)*a*x4,

(T*c)/16]
[(3*a*x4)/2,-(1/2)*sqrt(3)*a*x4
(15%c)/16]
[(3*a*x4)/2,-(1/2)*sqrt(3)*a*x4
(T*c)/16]
[0,sqrt(3)*a*x4,(15%c)/16]

[0,sqrt(3)*a*x4,(7*c)/16]

[0,0,-((3*c)/16)]
[a/4,-((sqrt(3)*a)/4),(11%c)/16]
[a/4,-((sqrt(3)*a)/4),(5%c)/16]
[a/4,-((sqrt(3)*a)/4),(3*¢)/16]
[a/4,-((sqrt(3)*a)/4),-((3*c)/16)]
[a/4,(sqrt(3)*a)/4,(11%c)/16]
[a/4,(sqrt(3)*a)/4,(5*c)/16]
[a/4,(sqrt(3)*a)/4,(3*c)/16]
[a/4,(sqrt(3)*a)/4,-((3*c)/16)]
[a/2,0,(11%¢)/16]
[/2,0,(5%c)/16]
[/2,0,(3%c)/16]
[/2,0,-((3*¢)/16)]
[a/2,-(a/(2*sqrt(3))).(15%c)/16]
[a/2.,-(a/(2*sqrt(3))).(9*¢)/16]
[a/2,-(a/(2*sqrt(3))).(7*c)/16]
[a/2,-(a/(2*sqrt(3))),¢/16]
[-((3*a*x4)/2),-(1/2)*sqrt(3)*a*x4,
(15%c)/16]
[-((3*a*x4)/2),-(1/2)*sqrt(3)*a*x4,
(9%c)/16]
[-((3*a*x4)/2),-(1/2)*sqrt(3)*a*x4,
GORG
[-((3*a*x4)/2),-(1/2)*sqrt(3)*a*x4,
c/16]
[(3*a*x4)/2,-(1/2)*sqrt(3)*a*x4,
(15%c)/16]
[(3*a*x4)/2,-(1/2)*sqrt(3)*a*x4,
(9*c)/16]
[(3*a*x4)/2,-(1/2)*sqrt(3)*a*x4,
(7*c)/16]
[(3*a*x4)/2,-(1/2)*sqrt(3)*a*x4,

c/16]
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[0,sqrt(3)*a*x4,(15%¢c)/16]
[0,sqrt(3)*a*x4,(9*c)/16]

[0,5qrt(3)*a*x4,(7*¢c)/16]

[0,sqrt(3)*a*x4,c/16]

1ii. Solid Solution
Lattice |al = [a,0,0]
Vectors | a2 = [0,a,0]
a3 = [0,0,a]
Metal [0,0,0]
atoms [a/2,a/2,0]
[a/2,0,a/2]
[0,a/2,a/2]
Interstitial Octahedra Zincblende Tetrahedra
sites
[a/2,0,0] [a/4,a/4,a/4] [a/4,a/4,a/4]
[0,a/2,0] [a/4,-a/4,-a/4] [a/4,a/4,-a/4]
[0,0,a/2] [-a/4,a/4,-a/4] [a/4,-a/4,a/4]
[a/2,a/2,a/2] | [-a/4,-a/4,a/4] [a/4,-a/4,-a/4]
[-a/4,a/4,a/4]
[-a/4,a/4,-a/4]
[-a/4,-a/4,a/4]
[-a/4,-a/4,-a/4]
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Appendix B: ASE Code

1. PdTi

from ase import Atoms

from gpaw import GPAW, PW

k = 6 #num k-points

calc = GPAW(mode=PW(300),kpts=(k, k, k))

a=3
c=1.633*a

z=.252

unitcell=[[a/2,-1.73205*a/2,0],[a/2,1.73205*a/2,0],[0,0,c]]

pos=[[0,0,0],[a/2,a/(1.73205*2),c*z],[a/2,-a/(1.73205*2),-c*z]]

tetrahedra=Atoms('H4',[[a/2,a/(1.73205*2), (3*c-2*c*z)/4],[a/2,a/(1.73205%*2),-c*z/2],[a/2,-

a/(1.73205%2),c*z/2],[a/2,-a/(1.73205*%2), (-3*c+2*c*z)/4]],cell=unitcell,pbc=True)

wurtzite=Atoms('H2',[[a/2,a/(1.73205%2), (3*c-2*c*z)/4],[a/2,-

a/(1.73205*2),c*z/2]],cell=unitcell, pbc=True)

octahedra=Atoms('H',[[0,0,c/2]],cell=unitcell,pbc=True)

energies=[]
for i in range(6):
pdti2=Atoms('PdTi2"',positions=pos,cell=unitcell,pbc=True,calculator=calc)
if i in range(3):
pdti2.extend(octahedra)
if i in [0,3]:
pdti2.extend(wurtzite)
if i in [1,4]:

pdti2.extend(tetrahedra)

for j in range(5):
X=.9+.05%j

unitcellx=[[a*x/2,-1.73205*%a*x/2,0],[a*x/2,1.73205*%a*x/2,0],[0,0,c*x]]
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pdti2.set_cell(unitcellx, scale_atoms=True) #scale unit cell
energy=pdti2.get_potential_energy() #find energy
energies.append(energy) #write energy
energy=[]

#iH###### END OF FOR LOOP #iHt##H#H#

print(energies)

ii. Pd;Ti

from ase import Atoms

from gpaw import GPAW, PW

k = 6 #num k-points.

calc = GPAW(mode=PW(300),kpts=(k, k, k)) # output file

c=1.633*a

x4=-1/6

unitcell=[[a/2,-1*1.73205*a/2,0],[a/2,1.73205*%a/2,0],[0,0,c]]

tetrahedra=Atoms('H32"',positions=[[0,0, (11*c)/16],[@,0,(5*c)/16],[0,0,(3*c)/16],[0,0, -
1%((3*c)/16)],[a/4,-1%((1.73205%a)/4), (11*c)/16],[a/4,-1*((1.73205%a)/4), (5*c)/16],[a/4, -
1*((1.73205%a)/4),(3*c)/16],[a/4,-1*((1.73205*%a)/4), -
1*((3*c)/16)],[a/4,(1.73205*%a) /4, (11*c)/16],[a/4,(1.73205*%a) /4, (5*c)/16],[a/4,(1.73205*%a) /4, (3*c)/16],
[a/4,(1.73205%a)/4,-1%((3*c)/16)],[a/2,0, (11*c)/16],[a/2,0, (5%c)/16],[a/2,0, (3*c)/16],[a/2,0, -
1*((3*c)/16)]1,[a/2,-1*(a/(2*%1.73205)), (15*c)/16],[a/2,-1*(a/(2*1.73205) ), (9*c)/16],[a/2, -
1*(a/(2*1.73205)),(7*c)/16],[a/2,-1*(a/(2*¥1.73205)),c/16], [ -1*((3*a*x4)/2), -

1%(1/2)*1.73205*%a*x4, (15%c)/16], [ -1*((3*a*x4)/2),-1%¥(1/2)*1.73205*%a*x4, (9%c)/16],[-1*((3*a*x4)/2), -
1%(1/2)*1.73205*%a*x4, (7*c)/16], [ -1*¥((3*a*x4)/2),-1*(1/2)*1.73205%a*x4,c/16], [ (3*a*x4)/2, -
1%(1/2)*1.73205*%a*x4, (15%c)/16], [ (3*a*x4)/2,-1%(1/2)*1.73205*a*x4, (9*c)/16], [ (3*a*x4)/2, -
1*(1/2)*1.73205*a*x4, (7*c)/16],[(3*a*x4)/2, -

1%(1/2)*1.73205*%a*x4,c/16],[0,1.73205*a*x4, (15%c)/16],[0,1.73205*a*x4, (9*c)/16],[0,1.73205%a*x4, (7*c)/

16],[90,1.73205*%a*x4,c/16]],cell=unitcell, pbc=True)

wurtzite=Atoms('H16',positions=[[0,0,(11*c)/16],[0,0, (3*c)/16],[a/4,-((1.73205%a)/4),(11*c)/16],[a/4,-
((1.73205*a)/4),(3*c)/16],[a/4, (1.73205%a) /4, (11*c)/16],[a/4, (1.73205%a) /4, (3*c)/16],[a/2,0, (11*c)/16]
s[a/2,0,(3*c)/16],[a/2,-(a/(2*1.73205)), (15*c)/16],[a/2,-(a/(2*1.73205)), (7*c)/16], [ - ((3*a*x4)/2), -
(1/2)*1.73205%a*x4, (15*%c)/16], [-((3*a*x4)/2),-(1/2)*1.73205%a*x4, (7*c)/16], [ (3*a*x4)/2, -

(1/2)*1.73205*a*x4, (15%c)/16], [ (3*a*x4)/2, -
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(1/2)*1.73205*a*x4, (7*c)/16],[0,1.73205*a*x4, (15*c)/16],[0,1.73205*a*x4,(7*c)/16]],cell=unitcell, pbc=T

rue)

octahedra=Atoms('H16',positions=[[a/2,-(a/(2*1.73205)),c/8],[a/2,-(a/(2*1.73205)),(3*c)/8],[-
((3*a*x4)/2),-(1/2)*1.73205%a*x4,c/8], [-((3*a*x4)/2),-(1/2)*1.73205*a*x4, (3*c)/8], [ (3*a*x4)/2, -
(1/2)*1.73205*a*x4,c/8],[(3*a*x4)/2, -

(1/2)*1.73205*a*x4, (3*c)/8],[0,1.73205*a*x4,c/8],[0,1.73205*a*x4, (3*c)/8],[a/2,a/(2*1.73205), (7*c) /8],
[a/2,a/(2%1.73205), (5*%c)/8],[(3*a*x4)/2,1/2*1.73205*a*x4, (7*c)/8],[(3*a*x4)/2,1/2*1.73205*a*x4, (5*c)/8
1,[-((3*a*x4)/2),1/2*1.73205*a*x4, (7*c) /8], [ - ((3*a*x4)/2),1/2*1.73205*a*x4, (5*c) /8], [0, -

1.73205*a*x4,(7*c)/8],[0,-1.73205*a*x4, (5*%c)/8]],cell=unitcell, pbc=True)

energies=[]
for i in range(6):
pd3ti=Atoms('Ti4Pd12',positions=[[0,0,0],[0,0,c/2],[a/2,a/(2*1.73205),c/4],[a/2,-
a/(2*1.73205),3*c/4],[a/4,-1*1.73205*a/4,0],[a/4,1.73205*%a/4,0],[a/2,0,0],[a/4,-
1*1.73205%a/4,c/2],[a/4,1.73205%a/4,c/2],[a/2,08,c/2], [3*a*x4/2,1.73205*x4*a/2,c/4], [ -
3*a*x4/2,1.73205*x4*a/2,c/4],[0,-1*1.73205*x4*a,c/4],[-3*x4*a/2,-1*1.73205*x4*a/2,3*c/4],[3*x4*a/2, -
1*1.73205*x4*a/2,3*c/4],[0,1.73205*x4*a,3*c/4]],cell=unitcell,pbc=True,calculator=calc)
if i in range(3):
pd3ti.extend(octahedra)
if i in [0,3]:
pd3ti.extend(wurtzite)
if i in [1,4]:

pd3ti.extend(tetrahedra)

for j in range(5):

X=.9+.05%j
unitcellx=[[x*a/2,-1.73205*x*a/2,0],[x*a/2,1.73205%x*a/2,0],[0,0,c*x]]
pd3ti.set_cell(unitcellx, scale_atoms=True) #scale unit cell
energy=pd3ti.get_potential_energy() #find energy
energies.append(energy) #write energy
energy=[]

#i#### END OF FOR LOOP #it#i###

print(energies)

iil. Solid Solution

from ase import Atoms

from gpaw import GPAW, PW
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k = 6 #num k-points.

calc = GPAW(mode=PW(300),kpts=(k, k, k)) # output file

a=4

CUbe=[ [a)@:e]) [9,3,0], [B,e,a]]

tetrahedra=Atoms('H8',[[a/4,a/4,a/4],[a/4,a/4,-a/4],[a/4,-a/4,a/4],[a/4,-a/4,-a/4],[-a/4,a/4,a/4],][-

a/4,a/4,-a/4],[-a/4,-a/4,a/4],[-a/4,-a/4,-a/4]],cell=cube,pbc=True)

zincblende=Atoms('H4',[[a/4,a/4,a/4],[a/4,-a/4,-a/4],[-a/4,a/4,-a/4],[-a/4,-

a/4,a/4]],cell=cube,pbc=True)

octahedra=Atoms('H4',[[a/2,0,0],[0,a/2,0],[0,0,a/2],[a/2,a/2,a/2]],cell=cube,pbc=True)

struct=Atoms('Ti4',positions=[[0,0,0],[a/2,a/2,0],[a/2,0,a/2],[0,a/2,a/2]],cell=cube,pbc=True,calculat

or=calc)

energies=[]

for i in range(30): #compare the stability of 30 structures
#build struct
if i in range(15):

struct.extend(octahedra) #1/2 w octahedral sites filled

if i in range(®,5) or i in range(15,20): #1/3 w zincblende sites filled

struct.extend(zincblende)

if i in range(5,10) or i in range(20,25): #1/3 w tetrahedral sites filled

struct.extend(tetrahedra)

if i in [0,5,10,15,20,25]: # #1/5 with @ pd, 1/5 w 1 pd

struct.symbols[@]="Pd’

if i in [1,6,11,16,21,26]: #1/5 with 2 pd
struct.symbols[@]="Pd’

struct.symbols[1]="Pd'

if i in[2,7,12,17,22,27]: #1/5 with 3 pd

struct.symbols[@]="Pd'
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struct.symbols[1]="Pd’

struct.symbols[2]="Pd"'

if i in[3,8,13,18,23,28]: #1/5 with 4 pd
struct.symbols[@]="Pd"’
struct.symbols[1]="Pd"'
struct.symbols[2]="Pd'

struct.symbols[3]="Pd"'

for x in range(5):
y=.9+.05%x
cubey=[[a*y,0,0],[0,a*y,0],[0,0,a*y]]
struct.set_cell(cubey, scale_atoms=True) #scale unit cell
energy=struct.get_potential_energy() #find energy
energies.append(energy)

energy=[]

#reset for the next loop
atoms=4
struct=Atoms('Ti4',positions=[[0,0,0],[a/2,a/2,0],[a/2,0,a/2],[0,a/2,a/2]],cell=cube,pbc=True,calc
ulator=calc) #reset the skeleton structure for the next iteration

#iHHH##H#H END OF FOR LOOP ########

print (energies)
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Appendix C: Calculation Results
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