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This paper revisits the longstanding challenge of coordinating database systems with general-purpose OS
interfaces, such as POSIX, which often lack tailored support for DB requirements. Existing approaches to this
DB-OS co-design struggle with limited design space, security risks, and compatibility issues. To overcome these
hurdles, we propose a new co-design approach leveraging virtualization to elevate the privilege level of DB
processes. Our method enables database systems to fully exploit hardware capabilities via virtualization, while
minimizing the need for extensive modifications to the host OS kernel, thereby maintaining compatibility. We
demonstrate the effectiveness of our approach through two novel virtual memory mechanisms tailored for
database workloads: (1) an efficient snapshotting mechanism that captures memory snapshots at millisecond
intervals for in-memory databases and HTAP workloads, and (2) a streamlined in-kernel buffer pool design.
We introduce Libdbos, a lightweight guest kernel implementing these mechanisms. Our evaluations highlight
significant improvements in latency and efficiency compared to existing snapshotting and buffer pool designs,
underscoring the potential of the approach.

CCS Concepts: • Information systems → DBMS engine architectures; • Software and its engineering

→Memory management; Virtual machines.
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1 INTRODUCTION

Database systems often aim to tightly control hardware to optimize performance, as they typically
have better insights into the workloads than the operating system. However, with the performance
gap between CPUs andmodern I/O devices narrowing, database systems are increasingly dissatisfied
with the general-purpose interfaces provided by the OS. For instance, virtual memory snapshotting
has been employed in systems like Hyper [44] and Redis. Hyper originally utilized fork to isolate
OLAP queries from OLTP by running OLAP queries on a forked OLTP process. Nevertheless, Hyper
eventually transitioned to software-based MVCC due to the high overheads and lack of control over
the semantics of fork. Recent research [25] also highlighted that mmap (a POSIX API) and the Linux
page cache are unsuitable for building buffer pools for data caching because of their limited control
over page eviction and inherent performance issues when operating on fast storage devices. As a
result, modern high-performance OLTP systems often bypass mmap in favor of software-based page
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caching, forfeiting the advantages of hardware-assisted translation. In fact, interface mismatches
of this kind have been recognized for decades [36, 67].
Broadly speaking, there are two main approaches to co-designing a database system with

an OS. The first approach involves designing and maintaining custom OS kernels specifically
tailored for databases [72, 73]. However, this approach is generally unsustainable due to the high
maintenance overhead associated with supporting drivers for newly released hardware. Recent
work [50] explores the use of cloud-focused Unikernels – single-address-space kernels without
user-kernel privilege isolation—for co-designing OS and database systems in cloud environments.
The second approach is to extend an existing general-purpose OS, such as Linux, with specialized
interfaces for database systems. This approach is more sustainable as the OS abstracts devices and
micro-architectures. Currently, most co-designs focus on extending the Linux kernel by adding
new system calls/modules [58, 64, 76], specializing kernel subsystems [49], or incorporating user
logic into the kernel via modern Linux eBPF infrastructure [22–24, 34, 81]. Nevertheless, these
approaches still face at least one of three major limitations.

Problem #1: Limited Design Space. Traditional OS kernels such as Linux maintain privilege
separation between the DBMS, which runs in user space, and the OS, which runs in kernel space.
Hence, the DBMS must still cross the costly privilege boundary [82]. Moreover, eBPF only allows
verified user code to run in the kernel (e.g., Unbounded loop and floating-point instructions are not
allowed) with restricted programming model and APIs [5, 6, 13].
Problem #2: Security and Maintainability Concerns.Making ad-hoc changes to complex

kernels is hard, potentially enlarging the attack surface and introducing catastrophic security
vulnerabilities [1]. Such ad-hoc changes will also increase the maintenance burden, slow down the
evolution of the kernel itself, and complicate the integration of upstream Linux kernel updates.

Problem #3: Compatibility and Ecosystem Issues. While the Unikernel-based approach can
increase the co-design space by running DBMS in the single address space with the kernel, the
architecture implies that well-known tooling (e.g., monitoring and debugging [15, 32]) and rich
ecosystem around a mature multi-process OS (e.g., Linux) is no longer available.
Is it possible to fully harness the power of hardware for DBMS while minimizing security and

maintainability issues without abandoning the Linux ecosystem? This paper proposes a co-design
paradigm using a privileged DB process to address these limitations. In this paradigm, the DBMS
runs in the kernel space of a lightweight guest OS on top of a hypervisor, addressing the first two
challenges. First, the DBMS in kernel space has direct access to virtualized hardware resources (e.g.,
privilege levels, virtual memory, IOMMU, and interrupts) without system call overhead, enabling
abstractions that are infeasible in user space. Second, changes introduced by these abstractions
only affect the guest kernel, ensuring the stability of the host kernel. To address the third issue, we
utilize a specific hypervisor [17] that exports hardware-assisted virtualization (e.g., Intel VT-x) to
a Linux process, granting the process privileged status. This hypervisor, implemented as a Linux
kernel module, proxies system calls from the guest process to the host kernel, preserving process
abstraction and POSIX compatibility for DBMS. We refer to this paradigm as co-design with

privileged kernel bypass.
To demonstrate the potential of our approach, we present two novel virtual memory mechanisms

for database systems enabled by this co-design. First, we identify the bottleneck in the Linux fork
system call and introduce a snapshotting mechanism, Snappy, which can capture memory snapshots
almost instantaneously at millisecond-level frequencies—something impractical in the Linux virtual
memory subsystem due to its complexity and design constraints. In our co-design paradigm, this
becomes feasible by redesigning the virtual memory subsystem within the DB process, specifically
tailored for the DBMS, while still leveraging components of the host kernel. When Snappy was
evaluated on Redis for checkpointing, we observed orders-of-magnitude improvements in tail

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 64. Publication date: February 2025.



Practical DB-OS Co-Design with Privileged Kernel Bypass 64:3

query latency during ongoing checkpoint processes. Second, we propose Tabby, an in-kernel buffer
pool design that tightly integrates virtual memory hardware for page translation, maintaining
control over eviction without incurring the overhead of TLB shootdown or unscalable memory
allocation [25]. Tabby delivers state-of-the-art performance and efficiency in both in-memory and
out-of-memory workloads. To facilitate the execution of existing database systems in a virtualized
environment and to leverage these new mechanisms, we developed a minimal guest kernel called
Libdbos that implements these innovations.
This paper makes several key contributions. First, we are the first to present such a co-design

paradigm with privileged DB process, which allows database system designers to unlock new
possibilities without compromising the security or maintainability of the host OS kernel or aban-
doning the host OS ecosystem. Second, we present two unique DB-OS mechanisms enabled by this
co-design: a kernel-based buffer pool design and an instantaneous, high-frequency snapshotting
mechanism. Third, we develop Libdbos, a guest kernel that implements these new mechanisms that
can be used by existing database systems. Finally, we conduct extensive evaluations to demonstrate
the effectiveness of the proposed abstractions.

2 BACKGROUND ANDMOTIVATION

This section covers the necessary motivation for co-design and the background of virtualization.
Specifically, we use virtual memory to motivate the need for better co-design and explain why
existing co-design approaches are insufficient.

2.1 DB-OS Interface Mismatch

First, we will discuss several applications of virtual memory abstraction for database systems and
highlight the mismatch between VM interface and database and the benefits of DB-OS co-design.
Virtual Memory Snapshot. Memory snapshotting, such as the Unix fork, is a valuable OS

abstraction used in various database applications. For instance, Redis employs fork to snapshot
its in-memory database, which is then serialized to storage as checkpoints. Similarly, the HTAP
database system HyPer [44] uses fork to run OLAP queries on a snapshot of its in-memory OLTP
database, enabling workload isolation. These systems rely on the efficient implementation of fork,
typically achieved through the Copy-on-Write (CoW) technique on modern OSes. However, in
Linux, fork is synchronous and single-threaded, with latency that grows linearly with the memory
footprint of the forked process, as shown in Figure 1. Even for a moderate memory footprint (tens
of GBs), latency can be significantly high. To obtain a consistent memory snapshot, the application
must pause latency-sensitive threads involved in query and transaction processing, such as those
in Redis and HyPer, leading to substantial stalls and increased tail latency. Figure 3b illustrates how
the tail latency of Redis write queries rises sharply during checkpointing with fork. Additionally,
the high fork latency forces systems to take snapshots at intervals of seconds (HyPer) to minutes
(Redis). While this may suffice for checkpointing in Redis, it is problematic for HTAP databases
like HyPer, as the low snapshot frequency means some OLAP queries are executed on stale data.
A low-latency, high-frequency snapshot mechanism would allow a VM-snapshot-based HTAP
application to serve queries on much fresher data.

Intuitively, the majority of time in a CoW-based fork implementation should be spent copying
the page table. With a 64 GB memory footprint, the page table size is approximately 128 MB,
assuming 4 KB pages and 8-byte last-level page table entries (PTEs). Given our machine’s measured
sequential memory bandwidth of 8 GB/s with a single thread, this task should take only 16
milliseconds. However, as shown in Figure 1, it actually took about 500 milliseconds. To investigate
this discrepancy, we used perf to measure the cycle distribution of the benchmark program during
the fork system call. Surprisingly, 98% of the cycles were spent in the copy_pte_range kernel
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Fig. 1. Fork Latency varying Memory Footprint

1 Percent (cycles)
2 ...
3 17.95 mov (%rax),%rax
4 0.31 test $0x80,%ah
5 jne 4e9
6 24.03 2f8: lock incl 0x1c(%rdx)
7 0.09 mov (%rdx),%rax
8 test $0x80000000,%eax
9 1.49 je 316
10 ...
11 21.01 316: lock incl 0x18(%rdx)
12 ...
13 17.85 370: lock andb $0xfd,(%r12)

Fig. 2. CPU Cycle Distribution in copy_pte_range in Linux Kernel: most of the cycles are spent in
memory accesses to update reference counts

function. Figure 2 highlights the hot spots in the assembly code. Upon analyzing the source code,
we discovered that these hot spots correspond to memory accesses used to increment the reference
counts of physical pages pointed to by the PTEs. While copying the page table primarily involves
sequential memory access, the metadata for physical pages is organized by physical memory
addresses rather than virtual ones, resulting in random memory access. These reference counts,
essential for managing the lifecycle of physical pages, are critical for supporting key Linux VM
features such as shared memory, the page cache, swapping, and memory-mapped files. In contrast,
our proposed snapshot mechanism, which avoids reference counting, drastically reduces snapshot
latency in Redis, as shown in Figure 3.
MMAP-based Buffer Management. Some database systems use mmap-based APIs for file

system I/O and buffer management, exploiting virtual memory’s ability to address more memory
than the physical capacity. This approach relies on the OS (e.g., Linux kernel) to cache database
file pages. Compared to a traditional buffer pool, which manages a set of hot pages identified by
logical page IDs, the mmap-based approach eliminates a layer of indirection (e.g., software hash
tables) by utilizing virtual memory hardware, improving performance when the working set fits in
memory and the workload is read-only. However, as noted in recent research [25], mmap VM APIs
exposed by traditional OSes suffer from significant issues when data exceeds memory capacity
or when workloads are not read-only. These issues include performance bottlenecks from TLB
shootdowns and page allocation, as well as a lack of APIs for ARIES-style transactional safety.
vmcache [49] demonstrated that page eviction and I/O can be controlled in user space while still
leveraging virtual memory hardware for translation through clever use of mmap APIs. However,
without modifications to the kernel memory subsystem, vmcache remains constrained by the
Linux memory allocator and TLB shootdowns during high-speed virtual memory operations. As
shown in Figure 3a, on an out-of-memory YCSB-C workload, vmcache’s throughput per core is
significantly lower than our co-designed buffer pool, Tabby, as vmcache spends 70% of its cycles
on TLB shootdowns in the Linux kernel.
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Fig. 3. Benefits of DB-OS Co-design.

Specializing

Linux Kernel

User/Kernel

Bypass

Unikernel

on VM

Privileged

Kernel Bypass

Co-design Space Medium Medium Large Large
Compatibility for Legacy Code High Medium Medium High
Linux Ecosystem Connectivity High High Low High
Security Low High Medium Medium
Maintainability Low High High High

Table 1. Qualitative Comparison of DB-OS Co-design Approaches.

2.2 Why are Alternatives not Sufficient?

Next, we discuss existing solutions and explain why they do not sufficiently address the challenges
raised in the introduction, and summarize their strength and weaknesses in Table 1.
Specializing Linux Kernel. Most co-design follows this approach. For instance, the exmap

module in vmcache [49] specializes the Linux memory subsystem to enable efficient allocation
and batch TLB shootdowns. Anker [64] introduced a system call to bypass the limitations of mmap
for fine-grained memory snapshots. However, fundamental design principles of the Linux kernel
restrict the extent of possible modifications. For example, eliminating page reference counting is
practically impossible without a major redesign of the Linux virtual memory subsystem. Thus, the
co-design space is constrained by the legacy code and underlying assumptions of Linux. Moreover,
the complexity of the Linux virtual memory subsystem demands extensive familiarity with the
kernel to ensure that any modifications are both safe and functional.

Kernel Bypass. Another common approach to reducing OS overhead is bypassing the OS kernel
in database systems, by implementing performance-critical components (e.g., file systems and
network stacks) in user space and utilizing I/O libraries such as DPDK or SPDK. However, since
these I/O libraries run in user space, they cannot directly program interrupt hardware. As a result,
they rely on spin-polling to complete requests, which is inefficient under low load. Additionally,
user space cannot directly control virtual memory hardware, requiring the use of software-based
translation tables for buffer pools or complex pointer-swizzling techniques. This leads to suboptimal
performance and increased complexity for the database system. In summary, kernel bypass leaves
many performance and simplicity opportunities unexploited.

User Bypass. Recent work [24] has also explored moving frequently used, data-intensive compo-
nents (e.g., B-tree traversal and DB proxy) into kernel space by leveraging the eBPF infrastructure.
A key research challenge is that eBPF only supports user programs that are verifiably safe. For
instance, loops must be bounded, and programs are restricted to using a limited set of kernel data
structures for stateful operations. Additionally, the Linux kernel prohibits the use of floating-point
operations, which are essential for many database applications. As a result, existing database
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systems must be rewritten using a constrained programming model that functions within the Linux
kernel.

Co-design with Unikernel. Recent work [50] envisions running DBMS on a Unikernel atop a
virtual machine (VM) in the cloud. A Unikernel [45, 47, 54] is a minimal OS kernel designed to run a
single application in a single address space and privilege level. This minimalistic design is suited for
deployment on a VM, where the hypervisor manages isolation and deployment. A key consequence
of this architecture is that the application gains direct access to hardware and privileged instructions.
In this setup, the database operates at the same privilege level as the kernel, and system calls are
treated as ordinary functions handled directly by the guest kernel. However, Unikernel requires
the implementation of drivers for virtualized hardware and POSIX compatibility for databases
that depend on POSIX APIs. Moreover, the tooling and ecosystem surrounding Unikernel are still
underdeveloped.

2.3 Virtualization

Hardware Assisted Virtualization. Although the mismatch was identified decades ago and still
persists, virtualization has become central to modern data centers and cloud vendors, transforming
resource management and deployment. By dividing a physical machine into multiple virtual
machines, virtualization improves resource utilization, security isolation, and ease of deployment.
Initially, virtualization was seen as having high performance overhead compared to bare-metal.
However, hardware-assisted virtualization, like Intel VT-x and AMD-v, has largely closed this
gap, allowing virtual CPUs to run at native speed. Extended Page Tables (EPT) enhance memory
management by reducing costly hypervisor round-trips for page faults. IO-virtualization (e.g.,
SR-IOV) enables devices like network adapters or SSDs to bypass the host OS’s I/O stack, improving
performance. Studies [20, 30, 39, 55, 56, 66] show that virtualized environments impose minimal
overhead on both OLTP and OLAP workloads. Most cloud database offerings [16, 27, 71] are
now deployed in virtualized environments, demonstrating that virtualization introduces little
performance impact.
Privileged Process via Virtualization. Another novel way of leveraging virtualization is to

make a Linux process privileged, pioneered by Dune [17], which is a hypervisor running as a Linux
kernel module and safely exports the Intel VT-x virtualization support to a Linux process. Processes
in Dune mode have direct access to virtualized hardware such as MMU, page tables, interrupt, and
privileged instructions for manipulating them. Unlike Unikernel, Dune proxies system calls made
by the process to the host kernel. Therefore, full application compatibility and the Linux ecosystem
can be preserved. This is the key tool we leverage for our co-design.

3 PRIVILEGED KERNEL-BYPASS CO-DESIGN

In this section, we describe and analyze high-level paradigms for DB-OS co-design and show how the
proposed paradigm differs. Figure 4 contrasts the traditional co-design approach of specializing the
Linux kernel with the proposed privileged DB process approach. In traditional co-design (Figure 4a),
the database runs as a process in user space while the kernel is modified to support database-specific
functionalities. The database process is, therefore, restricted to a set of unprivileged instructions. It
interacts with the kernel through system calls to request privileged resources. As Table 1 shows,
specializing the kernel directly has significant security and maintainability issues, which may
explain why this approach has not gained widespread adoption.

Figure 4b illustrates privileged kernel-bypass co-design. In this method, the database still runs as
a Linux process. However, the database process can unidirectionally enter virtualization mode with
the help of a type of special hypervisor, Dune [17, 69], running as a module in the Linux kernel.
Dune exposes a process abstraction for the application rather than a virtual machine abstraction.
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Fig. 4. Comparison of Co-design Architectures.

However, in the environment, the database process obtains direct access to the virtualized hardware
provided by the hypervisor. This is facilitated by Libdbos, a small kernel built on top of libdune [17]
with enhancements and DB-OS co-designed techniques.

Libdbos inherits from libdune capabilities that allow DBMS developers to customize the logic of
various exception handlers (page fault/interrupt/trap), and manipulate page table and TLB cache.
Libdbos adds the ability to send inter-processor interrupts and specialize guest kernel memory
allocation. At the program’s start, developers may override the default handlers provided by Libdbos.
For example, by default, Libdbos proxy system calls from the DBMS to the host kernel as is. DBMS
developers may interpret system calls from the DBMS by registering a custom system-call entry
handler. Developers may also override the default page fault handler with DB-OS co-designed page
fault handling. This override capability is the key infrastructure for realizing Snappy (Section 4)
and Tabby (Section 5). Building upon these customizable capabilities, DBMS developers can also
use a more holistic approach to optimize performance through selective co-design between the
database and operating system, which we describe next.

3.1 Workflow of Selective Co-design

In this section, we describe the systematic workflow DBMS developers can follow to implement
selective co-design. The first step is identifying bottlenecks in the host kernel, such as the virtual
memory subsystem in Linux during snapshotting operations described in Section 2. Once these
bottlenecks are identified, the next step involves specializing specific functionality in Libdbos to
bypass the slow one in the host kernel while continuing to use other components of the host kernel.
For instance, Snappy (Section 4) creates a streamlined and simplified virtual memory subsystem
tailored for snapshotting in Libdbos, bypassing the Linux kernel’s snapshotting process but still
utilizing key virtual memory features like page cache, shared memory, and memory-mapped files.

Taking Advantages of Linux Kernel Advances. Previous research has also demonstrated that
the Linux storage stack, using modern I/O interfaces such as io_uring, can achieve impressive
scalability, reaching tens of millions of IOPS on NVMe SSD arrays [9, 40]. Leveraging this, DBMS
developers can reuse the Linux storage stack for I/O while optimizing performance-critical subsys-
tems. This selective integration is made possible by the privileged DB process, which allows for the
redirection of system calls to the host kernel. Consequently, we can harness Linux’s advanced I/O
capabilities without the overhead of developing a new I/O stack and drivers. Our kernel buffer pool,
Tabby (Section 5), reuses the Linux I/O path while bypassing the slow virtual memory manipulation.
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3.2 Practical Considerations

Security and Maintainability. While the privileged DB process still requires a hypervisor in
the host kernel and possibly introduces security vulnerabilities, we argue that the hypervisor is a
relatively thin and stable software layer with a much smaller attack surface than various specialized
host kernel subsystems for database applications. Therefore, it is much easier to maintain the
hypervisor module than a set of ad-hoc changes in the host kernel.
Deployment Options. There are several options for deploying privileged DB process. On

premise, users have control over physical hardware and can install the hypervisor for privileged
DB process. Another option is to leverage Bare-metal cloud instances, which are widely available
in all major cloud vendors [2–4] where users can install the hypervisor for maximum performance.
Finally, one can leverage Nested virtualization which is also supported by many cloud instances.
The hypervisor can operate in a virtualized environment with some performance overhead.

3.3 Comparison to Unikernel-based Co-design

Compared to Unikernel-based co-design, they have the same co-design space as both run the DBMS
in kernel space, and they have lower security guarantees than bypass mechanisms as DBMS runs in
the kernel space (though virtualized). However, Unikernel-based co-design presents a radical all-or-
nothing trade-off. Applications must entirely move to a different ecosystem and infrastructure to
obtain the benefits. For example, OSv, a relatively mature Unikernel project started 10-years ago, has
less than 10 contributors 1 over the last two years. In contrast, Linux had thousands of contributors
in the last release cycle. 2. Tooling such as Unix shell/utilities based on multi-process OS, which is
familiar to DBAs and is relied on by many DBMS features (backups, monitoring, troubleshooting),
is unavailable in Unikernel due to its single-process design principle. The proposed approach,
in this regard, does not move away from the Linux ecosystem. Hence, it provides a less radical
and on-demand approach toward DB-OS co-design. That is, you only specialize the subsystem
that is the bottleneck of the DBMS. We summarize the strengths and weaknesses of the discussed
co-designs in Table 1.

3.4 More Opportunities

While the paper presents only two examples of new abstractions, there is much more potential
than meets the eye. We next describe more opportunities enabled by our co-design paradigm:
Fast Memory-Rewiring for Query Processing and Indexing. Memory-rewiring [63], a

technique that remaps existing virtual memory mappings in user space, has been applied to query
processing [61, 62] and indexing [28, 60]. However, memory-rewiring heavily relies on mmap to
create mappings in Linux, which carries a fundamental cost of updating the reference count of
each physical page in the mapped region, as we showed in the analysis of Section 2.1. As we will
show later in Section 4, which described a snapshot-ting mechanism, its core technique can be
used for building a faster memory-rewiring as it does not use a per-page reference count in its
specialized virtual memory system. Hence, our co-design has the potential to make this technique
more practical.
Synergy with Existing Bypass Mechanisms There have been many recent efforts [22–24,

34, 81] in the research community to leverage bypass mechanisms around the networking and
storage stacks to accelerate data-intensive applications. DBMS designers can consider combining
privileged process and existing bypass efforts because privileged DB process can still issue system
calls, which are the interfaces for interacting with these bypass mechanisms. Privileged process

1https://github.com/cloudius-systems/osv/graphs/contributors?from=10%2F1%2F2022
2https://lwn.net/Articles/972605/
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allows easy specialization of CPU and virtual memory subsystems, which is hard to do with bypass
mechanisms due to security concerns of the Linux kernel. For example, on top of a DBMS running
in a privileged process with a specialized virtual memory subsystem, one may leverage eBPF-based
caching solutions [81] for simple reads on hot records, reducing the networking overhead.

Security Isolation for User-defined Logic in DBMS. Many DBMSs support extending func-
tionality through user-defined logic (e.g., stored procedure, UDF, loadable modules/extensions),
which typically run in the same address space (user-space) as the DBMS for performance and
interoperability. This introduces security challenges for shared DBMS (e.g., multi-tenant cloud DB)
that must guard against malicious user code for accessing confidential information. With DBMS
running as a privileged process, one can leverage virtual memory and privilege levels to confine
the execution of user-defined logic in user space while placing DBMS in the kernel space, achieving
memory isolation.
Lightweight Preemptive Threading. The DBMS running in a privileged DB process can

leverage interrupt hardware and system call interception to build a lightweight preemptive scheduler
with much lower overhead compared to the expensive scheduling of Linux kernel threads [18].
This is not possible in user-space threading libraries, as user-space cannot directly program the
interrupt hardware for preemption. This helps with increasing the concurrency of the DBMS to
saturate high-end I/O devices [40].

4 Snappy: HIGH-FREQUENCY INSTANTANEOUS VM SNAPSHOT

In this section, we show how to specialize a virtual memory subsystem that can create/destroy
snapshots orders of magnitude faster than Linux. As the analysis in Figure 2 has shown, most of
the CPU time is spent updating reference counts for every physical page. Therefore, one would
naturally ask if removing reference counting during snapshot creation is possible. In Linux, this
would be very hard as reference counting is a fundamental design technique leveraged by many
features of the VM system. However, the key insight we draw is that in a privileged process, we can
specialize in an extremely simple virtual memory subsystem, Snappy, just to serve the purposes of
database snapshot-ting. Next, we show a lightweight scheme of Snappy for creating, managing,
and destroying snapshots at high frequency without using reference count.

4.1 Epoch-based Snapshotting

In Linux fork, the reference count of each physical page is to keep track of the number of references
from PTEs in different page tables. Only until the last reference is dropped is it safe to return the
physical page to the system allocator. With the absence of reference counting, we need a way to
track these references for safe reclamation. First, we observe that in many database applications,
the snapshot is discarded after use. This is the case for Hyper and Redis. Therefore Snappy makes
a simplifying assumption: Snappy does not allow creating a snapshot from an existing snapshot.
Next, we show how to efficiently track the references in a batch fashion, inspired by epoch-based
reclamation [21, 33].
The pseudo-code of our algorithms is listed in Figure 5. We associate each snapshot page table

with an epoch number allocated from a monotonically increasing global timestamp when the
snapshot table is copied from the main page table used by the OLTP workers and loaded by a CPU
core in dbos_snappy_spawn. This epoch number establishes an invariant that any PTE copied
before the epoch number is assigned might be referenced. For each physical page X, we embed
another epoch number end_epoch, assigned by reading the global counter after the link (PTE)
from the main page table to X is removed.
Reclaiming Physical Pages. In our context, a physical page X can be reclaimed if it satisfies

(P1): there are no references to X from any page tables, including any cached PTEs in the TLB cache. P1
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is met when a) X has been un-linked from the main page table, and b) there is no active snapshot
whose epoch number is greater than or equal to X’s end_epoch. Equivalently, b) can be expressed
as X.end_epoch < min_epoch(active snapshots). When X is unlinked from the main page
table, we keep it in a global list (limbo_list) roughly ordered by epoch_end. Then, a background
worker periodically reclaims physical limbo pages that might have satisfied P1.

Synchronization. To guard against concurrency anomalies, we use a read-write latch to serialize
concurrent modifications to the main page table and snapshots and allow concurrent reads. For
example, duplicating the main page table requires taking the read latch, and modifying the snapshot
set requires upgrading the read latch to write latch. For writes to the last level page table entry, we
leverage compared-and-swap operations to reduce the need for a global exclusive latch. We defer
the optimization for finer-grained latch (e.g., page) to future work.

1 Epoch-based Snapshot Algorithms

2 E_global = 0 # global epoch
3 snapshots = {} # a set of snapshots in the system
4 limbo_list = [] # a list of physical pages to be reclaimed
5 def dbos_snappy_spawn(f: function): # Section 4.1
6 dbos_make_snapshot()
7 snapshot = snapshots.take()
8 snapshot.epoch = E_global.add_and_fetch(1)
9 snapshot.active = True
10 disable writes for snapshotted regions in main page table
11 run f on a CPU core with snapshot table
12

13 def dbos_snappy_make_snapshot(): # Section 4.1
14 snapshot_table = make a copy of main page table
15 disable writes for snapshotted address ranges
16 snapshot_table.active = False # not active at creation
17 snapshots.add(snapshot_table)
18

19 # Hanlders registered at program start
20 def dbos_snappy_page_fault_handler(pgtbl, vaddr): # Section 4.1
21 if write-protection fault and pgtbl is from snapshots:
22 newp = copy page at vaddr
23 update pgtbl at vaddr to point to new p
24 elif write-protection fault and pgtbl is main page table:
25 newp = copy page at vaddr
26 page_meta(newp).end_epoch = max_epoch(active snapshots)
27 limbo_list.add(newp)
28 modify active snapshots to point to newp at vaddr
29 make pte of pgtbl at vaddr writable # Section 4.4
30 tlb-shootdown on vaddr and synchronize main_pgtl changes to inactive snapshots # Section

4.2/4.4↩→
31

32 def dbos_snappy_syscall_handler(tf : Trapframe): # Section 4.3
33 if using snapshot and syscall uses user-space buffers:
34 Copy user-space buffers to/from staging buffer B
35 Proxy syscall to the hypervisor/host kernel

Fig. 5. Algorithms for Epoch-based Snapshot Management
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Fig. 6. Problems of Dune with Multiple Page Tables: When the child core makes a write system call that
passes a guest virtual address that intends to use mapping from Page Table 2 and EPT (GVA 0x8000→ HVA
0x5000→ HPA 0x2000), the kernel might erroneously use the translation of (HVA 0x8000→ HPA 0x3000).

4.2 Instantaneous Snapshot

While snapshot creation is significantly faster now as the random memory access has been drasti-
cally reduced, the copying page table is still on the critical path of the core creating the snapshot
using the main page table. We can completely mask this latency from the critical path by copying the
page table in advance asynchronously, making the snapshot appear instantaneous. To implement
this, Snappy maintains a configurable number of page table copies from the main page tables in
the background. PTEs of the snapshotted VM regions in the snapshot tables are disabled for writes
so that they can be readily loaded by CPU without doing further processing. When a snapshot is
requested, the user may retrieve one ready snapshot in the pre-copied set of snapshots. Notice we
also replaced the main page table with a snapshot so that we do not have to disable writes for virtual
pages in the main page table. To ensure that the snapshots are consistent, we synchronize any
modifications to the main page table to the inactive snapshot tables inside the page fault handler
as well as anywhere the main page table is updated. This way, the snapshot creation latency is
completely hidden from the critical path. Furthermore, we can leverage multiple copy threads to
keep enough inactive snapshots to serve a burst of snapshot requests.

4.3 Challenge: Supporting Multiple Page Tables

One unexpected challenge we faced when implementing such a VM system in a privileged process
is to support multiple page tables, which is not covered in the original paper [17]. One of the
fundamental design decisions in a privileged process is to preserve the ability to issue system calls
to the host operating system. Dune hypervisor needs to maintain the invariant that the same virtual
memory address mapping to the host physical memory with the mapping represented by the kernel
page table. As illustrated in Figure 6, Dune ensures that guest virtual address (GVA) 0x8000 from
Page Table 1 inside the privileged process maps to the same host physical address (GPA) 0x3000 to
which the kernel page table for the privileged process maps the same host virtual address (HVA)
0x8000. Note that the translation from GPA to HPA is accelerated with an extended page table
(EPT) by the hypervisor on most hardware. This ensures that system calls that read/write from/to
userspace memory work without modifications to the application.
However, this invariant might be violated when introducing another page table. For example,

shown in Figure 6, assume that the core working on the snapshot is loaded with Page Table 2 and
triggers a CoW fault at address GVA 0x8000. The fault handler allocates a new page at GPA 0x5000
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and installs a new mapping in Page Table 2 from GVA 0x8000 to GPA 0x5000. Later, access to GPA
0x5000 triggers an EPT page fault, creating a host physical page at HVA 0x2000 and mapping from
GPA 0x5000 to HPA 0x2000. When the core wants to write the content at GVA 0x8000 to storage, it
makes system call write, which takes in a user-space buffer. Since programs only deal with virtual
addresses, it passes GVA 0x8000 as the buf argument. The kernel then erroneously uses mapping
(0x8000→0x3000) from the kernel page table instead of using HPA 0x2000 for performing the I/O
operation, resulting in inconsistency. The problem is that the same GVA might point to different
GPA depending on the user page table used.

To address this problem without modifying the application, Libdbos intercepts every system call
that might access user-space memory made by the application. Libdbos internally keeps a staging
buffer B that bypasses the CoW mechanism. At intercepting such system call, Libdbos copies data
pointed by the user-space pointer to B and passes the address in the B down to the hypervisor for
performing real system call. Since B will not be copy-on-writed, it’s virtual to physical mapping is
the same across all user page tables. Similarly, Libdbos copies data back to the user space buffer
when the host kernel writes to user-space memory (e.g., read system call). This is a general solution
that guarantees application correctness with respect to system calls transparently at the cost of an
extra copy. We discuss possible optimizations in the next section.

4.4 Prioritized Copy-on-Write

In this section, we show how to avoid the extra copy for system calls due to supporting multiple page
tables in a privileged process. We can completely avoid copying to the staging buffer for latency-
sensitive threads. The idea is that when a core with a main page table triggers a write-protection
fault, instead of changing the PTE of the main table to point to a new physical page, we change the
PTE of the snapshots. A direct implication of this is that the TLB shootdown involving all the cores
with the main page table is eliminated. Instead, the faulting core sends a less costly TLB shootdown
to the core working on the snapshots. We call such an approach Prioritized-Copy-on-Write (PCoW),
and it favors the cores with the main page table. With PCoW, we can safely eliminate the extra
copy to/from the staging buffer when system calls come from such cores. This is because these
cores, upon a write-protection fault (shown in dbos_snappy_page_fault_handler function of
Figure 5), do not change their faulting PTE to point to a new guest physical page. Therefore, its
mapping always matches the host kernel page table. Such prioritization is beneficial because cores
with the main page table are more latency-sensitive than child cores. For example, in Redis and
Hyper, query and transaction processing happen on the main page table, directly impacting request
latency.

4.5 Discussion

Implementing these mechanisms in Linux is theoretically possible but would require significant
and invasive changes to its complex, security-critical memory subsystem, which consists of 101,000
lines of code3. For example, reference counting for physical pages is extensively used, with over
1,000 occurrences4, spanning more than 300 source files. Modifying such a fundamental design
principle would require a major overhaul of the Linux kernel. One attempt to reduce fork latency,
on-demand-fork [76], applied copy-on-write (CoW) to the page table itself. However, this proposal
faced resistance from kernel maintainers [52, 53] due to concerns about potential instability and
incompatibility. Another recent approach, async-fork [58], asynchronously copies page table in a
customized Linux kernel to accelerate fork. However, unlike our approach, which supports multiple
snapshots within a short time window, async-fork allows only one asynchronous copy and must

3Measured in the mm directory of Linux kernel v5.15.90
4Measured by counting the get_page/put_page invocations in the code base
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adhere to the reference-counting convention for physical pages, limiting its snapshot frequency
to once per second. In contrast, with our proposed co-design, implementing these mechanisms
becomes significantly easier because the Libdbos guest kernel is drastically simplified. It delegates
complex features—such as the page cache, shared memory, memory-mapped files, and swapping—to
the host kernel. This allows for greater design flexibility within the Libdbos kernel, free from the
constraints of maintaining compatibility and security with the host kernel.

5 Tabby: KERNEL BUFFER POOLWITHOUT TLB SHOOTDOWN

In this section, we shift gear to talk about TLB shootdown, the general mechanism required in
traditional OS kernel, which causes scalability problems for buffer pool design. Specifically, we
present an in-kernel buffer pool design, Tabby, that can fully utilize virtual memory hardware
without incurring TLB shootdown or high memory allocation overhead. This is uniquely enabled
by our co-design paradigm, which allows DB to access privileged instructions (TLB invalidation).

As Figure 7 shows, Tabby creates a virtual address range as large as the storage space. Initially,
all the virtual pages have no mappings to physical pages. The mappings are gradually built through
page faults, at which point physical pages are allocated and filled with data read from storage.
Tabby fully controls the page fault handling for I/Os during page fault by hooking into the virtual
memory subsystem of Libdbos. We next describe how Tabby eliminates TLB shootdown when
running in the kernel space.

5.1 Eliminating TLB-Shootdowns

In Linux, a TLB-shootdown is needed whenever a PTE is modified. For example, vmcache buffer
manager design [49] uses madvise system call to remove a physical page from the page table,
triggering an unscalable shootdown for every page eviction. This raises the question of whether
it would be possible to leave the PTE (e.g., Page 2 in Figure 7) unchanged on eviction. A direct
implication of this is that TLB shootdown is not needed. However, later access to the virtual
page might erroneously result in accessing the wrong physical page using the stale mapping. For
security reasons, Linux disallows this – actively clearing the PTEs and performing a TLB shootdown.
In our approach, we do not need to worry about such security problems as the database is the
only application and is isolated using virtualization. But we still have to reliably detect such stale
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1 Tabby Buffer Pool Algorithms

2 # vStorage : beginning virtual address for storage space
3 def dbos_tabby_pin_x(pid): # Pin page at pid exclusively
4 off = pid * PageSize
5 exp_addr = off + vStorage
6 while True:
7 PageHeader* h = vStorage + off
8 PageHeader oldh = *h
9 if oldh.vaddr != exp_addr: # possible stale mapping
10 dbos_tabby_page_fault_handler(exp_addr)
11 continue
12 if oldh.state == Unlocked and h->CAS(oldh, PageHeader(exp_addr, oldh.version,

Locked)):↩→
13 return vStorage + off
14

15 def dbos_tabby_unpin_x(pid):
16 PageHeader* h = vStorage + pid * PageSize
17 h->set_unlocked_bump_version()
18

19 def dbos_tabby_optimistc_read(pid, f):
20 off = pid * PageSize
21 exp_vaddr = off + vStorage
22 while True:
23 PageHeader* h = vStorage + off
24 PageHeader oldh = *h # get a snapshot of the header
25 if oldh.vaddr != exp_vaddr: # possible stale mapping
26 dbos_tabby_page_fault_handler(exp_vaddr)
27 continue
28 if oldh.state == Locked:
29 continue
30 f(vStorage + off) # Read optimistically
31 PageHeader oldh2 = *h # Read again for validation
32 if oldh.version == oldh2.version and exp_addr == oldh2.vaddr and oldh2.state !=

Locked: return↩→

Fig. 9. Algorithms for Tabby Buffer Pool

mapping and fix them lazily. A key observation is that buffer pool pages are accessed through a
well-defined pin/unpin API, which allows injecting explicit checks that detect stale mappings. To
this end, Tabby embeds an 8-byte page header on each page, as shown in Figure 8. We next show
how to use this small metadata to detect and fix stale mappings lazily without any TLB shootdowns.

Page Pinning. We maintain the following invariant: A page is only cached in at most one buffer
frame uniquely identified by the virtual address in the header. That is, for all the buffer frames
containing valid pages, the virtual addresses in the headers all differ. As depicted in Figure 9, every
pin operation first checks the virtual address of the page against the virtual address stored in the
header (Line 9). If they do not match, the mapping might be stale. Tabby handles this case as a page
fault. Note that line 8 might also trigger a page fault due to a non-present page. If the address check
passes, according to the invariant, the mapping is definitely not stale. Therefore, it proceeds to lock
the page exclusively on the state bits in the header using compare and swap operations (Line 12). If
the page is locked, it retries until the lock is acquired. Shared locking can be implemented similarly.
For brevity, we omit its description.

Page Fault Handling and Eviction. As depicted in Figure 10, the page fault handler first looks
up the PTE in the page table on the faulting address. Tabby serializes concurrent fault handling
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1 Tabby Page Fault Handling

2 def dbos_tabby_evict_if_needed():
3 if number of free pages above threshold: return
4 victims = pick unpinned and unlocked victims
5 for pid in victims:
6 PageHeader* h = vStorage + pid * PageSize
7 PageHeader oldh = *h
8 if oldh.state.dirty:
9 # note the page is written with lock bit on
10 lock page and write page to storage
11 if oldh.state != Locked and h->CAS(oldh, InvalidPageHeader):
12 free_page(vStorage + pid * PageSize)
13

14 # Page fault handler registered at program intialization
15 def dbos_tabby_page_fault_handler(addr):
16 pte = pgtbl_lookup(addr)
17 if pte->lock() == False: # One bit of PTE used for lokcing
18 return # retry
19 if pte->present == True: tlb_flush_one(addr)
20 PageHeader* h = addr
21 # Page is not present or the mapping might be stale
22 if pte.present == False or h->vaddr != addr:
23 dbos_tabby_evict_if_needed()
24 new_page = alloc_page()
25 read page from storage at off into new_page
26 *pte = MakePTE(PA(new_page), Write+Present+Locked)
27 # Page was locked when it was written to storage
28 h->set_unlocked_bump_version()
29 pte->unlock()
30 tlb_flush_one(addr) # local tlb flush

Fig. 10. Page Fault Handling in Tabby

on the same address by locking on an unused bit in the PTE. Note that it is entirely possible that
the page fault handler is called because of a stale TLB entry (Line 9/25 of Figure 9). For example,
suppose CPU core 1 has a stale TLB entry that maps Page 1 to the frame holding Page 3 instead.
The address check will find that the virtual address in the header does not match Page 1’s address
(due to the invariant), even if the page table actually indicates Page 1 correctly points to Frame 1.
This is possible due to previously cached stale TLB entries. Tabby handles this case by performing
a cheap local TLB flush on the faulting address and rechecking the address (Line 18/21). The TLB
flush ensures that access to the header (Line 21) uses the latest mapping in the page table.
After ensuring the mapping is truly stale or non-present, an I/O is needed to bring the page

into the buffer pool. To make space in the buffer pool, Tabby first performs necessary replacement
(dbos_tabby_evict_if_needed). The algorithm selects unpinned and unlocked victim pages
using a clock replacement strategy. It then locks the victim pages and writes the pages to storage.
Once the replacement is done, Tabby allocates a free buffer frame on which an I/O operation is
performed to read the page into memory (Lines 23-25). It then constructs a correct PTE. Note that
the page read into the memory has the lock bit set when it was written back to storage (Line 25).
Writing the page with the lock bit on is to maintain the invariant. Finally, the PTE is unlocked, and
a local TLB flush is performed to clear any stale TLB entries.

Optimistic Read. Similar to vmcache [49], Tabby supports optimistically reading a page without
writing to shared memory for better scalability. As shown in dbos_tabby_optimistc_read in
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Figure 9, an optimistic read performs a cheap address check (Line 25) similar to pinning a page.
Once the check passes, it performs the read if the page is not locked (Lines 28-29). Compared to
vmcache, Tabby needs to additionally verify that the address did not change during the read (31-32).

5.2 Physical Memory Allocation

Linux kernel, designed to support multi-processes, also pays performance overhead for security.
For example, when allocating a physical page for a non-present virtual page, the Linux kernel
zeroes out the content of the allocated physical page before use for security reasons, as the page
might have been used by other processes previously. Tabby, in contrast, can pre-allocate all the
physical buffer frames once and reuse them repeatedly within the database process. Therefore, the
allocator in Tabby does not require zeroing pages. To improve scalability, Tabby keeps free frames
in a thread-local free list. When the local free list is exhausted, it requests a batch of free frames
from a set of global lists, each protected by a latch.

5.3 Discussion

Tabby supports all the functionalities vmcache provides without the overhead of TLB shootdown
and memory allocator. One might be tempted to implement such a lazy strategy on top of Linux
in user-space. However, there are no Linux APIs for fixing the VM mapping without doing a
TLB shootdown. mremap comes close to such semantics. However, mremap still requires a TLB
shootdown on the old address. Hence, it merely shifts the TLB shootdown to a later time when
the evicted page is accessed again. To address the problems of vmcache, Leis et al. [49] proposed a
Linux kernel module called exmap that specializes the virtual memory subsystem in Linux kernel
to address the bottlenecks by batching TLB shootdowns. While exmap reduces the number of
TLB shootdowns, each shootdown still requires every CPU core to flush its local TLB, negatively
impacting the TLB efficiency of modern CPUs (see Section 7.4). With modern storage [9, 10],
network devices [12], and tiered memory [41, 59, 80] capable of hundreds of millions of IOPS, the
costs of TLB shootdowns remain significant, even with batching. In contrast, Tabby preserves
TLB efficiency by eliminating shootdowns. Beyond performance improvements, Tabby also has a
smaller impact on host kernel security compared to exmap.

6 Libdbos IMPLEMENTATION

6.1 Libdbos Guest Kernel

We leveraged the open-source libdune [17] to implement this co-design paradigm as Libdbos. We
made about 3000 lines of change. Besides basic guest OS utilities such as page table manipulation,
exception handling, and system call proxy inherited from libdune, we added a scalable physical
memory allocator with thread-local free lists and partitioned locks. We added support for sending
IPIs between vCPUs in the guest using posted interrupt, an Intel VT-d feature that allows a virtual
CPU to receive interrupt without hypervisor intervention. Based on this, we implemented a basic
TLB shootdown mechanism using IPI. When a vCPU intends to ask another vCPU to flush remote
TLBs, the vCPU registers a function call to be executed on the remote vCPU and then sends an
IPI to the target vCPU. In the guest kernel, we intercept every system call made by the DBMS by
setting MSR_LSTAR register (virtualized) to the address of a page storing system call entry code.
We leverage this entry point to perform custom system-call interposition.

6.2 Libdbos Hypervisor

We built the hypervisor for Libdbos on top of Dune [17] for the x86 architecture and made about
1250 lines of change. We added a few enhancements to the original hypervisor:
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HostHuge Pages. To reduce the overhead of two-dimensional TLBmiss overhead in a virtualized
environment, we leverage huge pages of the host to back the physical memory of the process. This
is common practice in modern hypervisor implementation [14].
Guest Huge Pages. Similarly, there is another layer of address translation inside the guest,

which adds TLB-miss overhead. Libdbos provides huge page support to reduce this layer of TLB
miss overhead. It intercepts mmap calls via its system call interposition capability and allocates huge
guest pages for mappings larger than 16MB. This reduces the page walk length on the guest page
table.

6.3 Snappy Implementation

We implemented the Snappy snapshot mechanism in approximately 1,200 lines of code within
Libdbos. When Snappy is initialized, we replace the default page fault handler in Libdbos kernel
with Snappy’s custom page fault handling, as described in Figure 5. A background copy worker is
created to maintain a set of (2 by default) ready snapshot page tables in the guest kernel. When a
snapshot is requested, the background worker starts copying the page table from the main page
table. To maintain synchronization during page table copying and updates, we utilize table-level
locks. To handle system calls correctly (Section 4.3), we override the default system call handler to
differentiate between system calls made by CPU cores using the main page table and those made
on snapshots. For the latter, before proxy-ing the system calls to the host kernel, we copy the user
buffers in the parameters of the system calls to and from a per-CPU staging buffer.

6.4 Tabby Implementation

We developed Tabby by adapting the vmcache code base5. When Tabby is initialized, we replace
the default page fault handler with Tabby’s custom page fault handling, as described in Figure 10.
We made about approximately 1,300 lines of modifications. We implemented a Clock replacement
for Tabby, where each worker sequentially scans the physical buffer frames to identify eviction
candidates. One bit of each page header is used to represent the reference bit required by the
Clock algorithm. Unlike vmcache, which maintains a hash table to track resident buffer frames for
eviction, Tabby stores buffer frames in a contiguous physical memory area backed by huge pages
from the host. Tabby maps this contiguous physical memory to a continuous virtual memory area,
allowing it to scan buffer frames without relying on additional data structures.

7 EXPERIMENTAL EVALUATION

In this section, we conduct extensive experiments to answer the following questions:
• What is the performance impact of elevated privilege levels?
• What are the latency benefits of Snappy compared to fork on an unmodified Linux kernel
and an optimized fork mechanism using a specialized Linux kernel?

• What are the performance/efficiency benefits of Tabby compared to the existing state-of-the-
art buffer pool designs?

7.1 Baselines and Experimental Setup

Snapshot Mechanism. We modified Redis (commit bb524473) to use the proposed snapshot
system instead of using fork system call. Specifically, the modified Redis runs as a privileged
process with the help of the hypervisor and Libdbos. It runs a background thread that operates
on a snapshot page table to persist data in memory to storage for BGSAVE 6 command. We then
compare it against running Redis on an unmodified Linux kernel (v6.6.1) and a modified Linux

5https://github.com/viktorleis/vmcache
6https://redis.io/docs/latest/commands/bgsave/
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kernel (v6.0.6) 7 which implements On-Demand-Fork [76]. On-Demand-Fork applies copy-on-write
to the page table itself so as to delay the page-table copy work as late as possible to remove the
latency spike at fork time. We did not compare against async-fork [58] as we could not obtain the
source code.
Buffer Management. We compare Tabby with the following systems: 1) vmcache, a state-

of-the-art buffer management approach that leverages virtual memory hardware for translation
using POSIX mmap APIs. For evaluation, we use vmcache at commit a8ed2b0. 2) LeanStore, a
buffer pool design that utilizes pointer-swizzling to eliminate the hash table lookup overhead for
memory-resident pages. We evaluate LeanStore at commit dd42514, configured with the Read
Uncommitted isolation level. 3)WiredTiger, a traditional buffer pool design that uses a software
hash table for page table lookups. We evaluate WiredTiger v2.6.1, configured with the lowest
isolation level, Snapshot Isolation.
Experimental Setup. All experiments are conducted on a server with two Intel(R) Xeon(R)

Gold 5320 CPU @ 2.20GHz with 104 cores and 755GB DRAM. The server is running Linux kernel

7https://github.com/rssys/on-demand-fork
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Size=1KB, Key Pattern=Parallel). We trigger a snapshot(BGSAVE command) during the benchmark.
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Fig. 16. Tail latency of 3M write queries against a 16GB Redis database varying read-write ratios

(Queue Depth=1000, Payload Size=1KB, Key Pattern=Gaussian) after snapshot.

6.6.1. We use a 3.84 TB NVMe SSD (Intel P5500 RI U.2). For buffer pool experiments, we configure
all systems to use direct IO and disable write-ahead logging and the Linux page cache for all
experiments.

7.2 Impact of Privilege Elevation

We begin by analyzing the performance impact of virtualization and privilege elevation on system
calls, with a focus on I/O operations such as pread and pwrite that are used by most DBMSes.
For comparison, we also measured the latency of an empty system call (gettid), representing the
worst-case scenario for a privileged DB process. The results, as shown in Figure 11, indicate that
virtualization imposes a fixed overhead of 1,536 CPU cycles, mainly used in exiting and entering
the virtualization boundary for proxy-ing system calls. For I/O system calls, the performance impact
is much less. For example for un-cached pread and pwrite system calls, the performance impact is
minimal as the storage medium latency dominates the overhead. In contrast, when data is cached in
the Linux page cache, the overhead rises to approximately 30% for pread and 24% for pwrite. These
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Fig. 17. Throughput/Core on out-of-memory workloads. (8GB Buffer Pool, 64 Threads). We derive

this metric by normalizing absolute throughput by the effective number of cores required to achieve

the absolute throughput.
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Fig. 18. Throughput of different buffer pool designs on in-memory workloads. (8GB Buffer Pool, 64

Threads)

findings demonstrate that the privileged DB process imposes reasonable performance overhead on
system calls, particularly those dominated by storage latency.
We also study whether running a storage engine in a privileged space (guest kernel space)

has a positive performance impact. We ran the LeanStore buffer pool in a privileged process and
compared it against vanilla LenaStore on Linux with YCSB-C workloads and 64 threads. The results
are shown in Figure 12. When data fits in memory, we did not observe a measurable throughput
difference. When the buffer pool can not cache all data, privileged LeanStore performs only 1%
worse than LeanStore running in the user space of Linux due to VM exit/entry. Hence, without
judiciously leveraging the hardware constructs available, running at a higher privilege level does
not translate to higher performance.

7.3 Snapshot Mechanism Evaluation

HTAP Micro-Benchmark. In this section, we evaluate the proposed snapshot mechanisms using
a set of micro-benchmarks that simulate HTAP workloads. We use multiple threads to randomly
write to a 4GB array to simulate concurrent OLTP workloads. For each snapshot taken, we run a
thread to sequentially scan the array to simulate a typical OLAP workload. Note that we enable
prioritized CoW (PCoW) discussed in Section 4.4.

Snapshot Latency. We first measure the latency of creating a snapshot (i.e., fork) by an OLTP
thread, varying the memory footprint. Illustrated in Figure 20a, our epoch-based snapshot improves
latency by up to 21× compared to Linux fork, thanks to removing reference counting. Note
that On-demand-fork has even lower snapshot latency as it defers copying the page table to the
future (see next paragraph for the cost). By adding asynchronous copying, denoted by Instant
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Epoch-Snapshot, we achieve similar or lower latency than On-demand-fork. Note that we assume
that the time interval between two snapshot requests is smaller than the time it takes to copy the
page table. We believe this assumption is reasonable as Epoch-Snapshot creates a 128GB memory
snapshot in 44ms with a single core, which can be further parallelized.

OLTP Latency. To understand the impact of snapshot and CoW on OLTP threads, we measure
the latency to resolve a CoW fault page fault. We show the results in Figure 14a and Figure 14b.
Generally, Epoch-Snapshot generally outperforms Linux and On-demand-fork as the number of
OLTP threads increases by up to 2.1×/2.3× for the average latency and 2.3×/7.3× for 99.9-percentile
latency. Thanks to the PCoW optimization, the number of processors that must participate in a TLB
shootdown is reduced compared to Linux. On-demand-fork has significantly higher tail latency
because deferred page table copying is carried out on CoW fault, causing 512 random memory
updates to reference counters. Interestingly, with 1 OLTP thread, Epoch-Snapshot has a 40% higher
page fault latency than Linux CoW. This is because Linux does not need to send TLB-shootdown
when a process has only one thread. Whereas, with PCoW, we still need to send a TLB shootdown
to the snapshot core because it is unaware of the change in its page table.
OLAP Throughput. For brevity, we omit results on OLAP throughput after snapshot as they

were similar on all baselines.
Redis Benchmark. Next, we evaluate the impact of snapshot mechanisms when applied to a
real-world in-memory database system, Redis. For performance metric, we focus on tail latency,
including maximum latency, as they are important metrics for in-memory caching/database for
user-facing services [19, 29, 38]. We enable all optimizations for Snappy.
Uniform Workload. We first run an experiment studying the write query latency after a

snapshot is taken while varying the database size. We use memtier_benchmark8 to generate
workload traffic. We issue a total of 3×106 queries to a pre-populated and pre-warmed Redis server
while keeping a query queue depth (i.e., number of outstanding queries) to around 1000. During
the benchmark, we trigger the snapshot by sending one BGSAVE command to Redis. We record
the latency of every query and plot the results in Figure 15. We can see that Snappy, compared
to unmodified Linux, significantly reduces latency across all the measured percentile points by as
much as 15× on maximum latency, achieving the lowest tail latency. Surprisingly, On-Demand-Fork
is only effective for the maximum latency (Figure 15d) and reduces the latency by 4×. For lower
percentiles, On-Demand-Fork is sometimes outperformed by an unmodified Linux Kernel. This is
because of its deferred page table copying overhead on CoW faults, resulting in higher latency for
these write queries. Snappy, on the other hand, performs page-table copying work in advance and
does not impose additional processing overhead on normal CoW faults.

Skewed Workload. Real-world workloads exhibit skewed patterns. Therefore, we configure the
memtier_benchmark tool to generate an access pattern that confirms Gaussian Distribution. We
pre-populate the Redis server to host 16×106 key-value pairs, each with 1 KB in size. The memory
footprint is about 16GB. We then issue 3×106 queries against Redis while varying the read-write
ratio in the workload. The results are shown in Figure 16. Linux and On-Demand-Fork tail latency
decreases as there are more reads in the workload, which results in fewer page faults overall. Snappy
has the lowest P99.9 latency curve, outperforming Linux and On-Demand-Fork by 2.6×/3.6×. On-
Demand-Fork performs worse than Linux on P99.9 latency for similar reasons explained in the
previous section. Both On-Demand-Fork and Snappy outperform Linux on maximum latency, as
the snapshot call impacts this metric the most.
To summarize, Snappy significantly reduces the tail query latency for in-memory DBMS that

leverage virtual memory for snapshot-ting compared to using fork.

8https://github.com/RedisLabs/memtier_benchmark
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7.4 Buffer Pool Evaluation

YCSB Benchmark. In this experiment, we use YCSB-C and YCSB-A as the main workloads to
evaluate buffer pool designs. We use a key-value pair consisting of an 8-byte key and 120 random
bytes of payload.We evaluated our designs mainly with Uniform and Zipfian [37] access distribution.
By default, we use a Zipfian skew factor of 0.9 where 80% of the accesses land on ∼10% of the keys.
We ran the workloads with 64 worker threads for a 1-minute warm-up after loading. We report
average throughput during the two minutes after warm-up. We configure vmcache and Tabby to
use all 64 threads for request processing and eviction. LeanStore uses a dedicated pool of threads
for eviction. We tuned and configured 8 Page Providers and 56 worker threads for LeanStore.
Out-of-Memory Workloads. For out-of-memory scenarios ( Figure 17), Tabby is much more

resource-efficient. To show this, we normalized the throughput of these systems by the number
of effective CPU cores required during the experiments. vmcache/LeanStore are 3.5×/2.5× worse
regarding throughput per core. vmcache spends about 70% of the CPU cycles in the kernel for
TLB-shootdown. For LeanStore, the pool of eviction threads constantly scans the buffer pool for
cleaning pages to keep enough free frames for worker threads. Similar patterns were observed for
skewed workloads. Compared to vmcache, Tabby removes the kernel overhead of manipulating
virtual memory. Compared to LeanStore, Tabby does not have dedicated eviction threads, as all the
evictions happen on the worker threads.
In-Memory Workloads. When data fits in memory, Tabby, vmcache perform similarly on

read-only workloads ( Figure 18a and Figure 18b) because they leverage hardware translation and
optimistic read. LeanStore comes next due to having fewer worker threads. WiredTiger suffers
from both contention and hash table lookup overhead. On write-heavy uniform workloads ( Fig-
ure 18c), we observe similar patterns. However, when the access pattern is skewed ( Figure 18d), all
systems experience write contention and drop throughput significantly, while LeanStore suffers
the most. The contention causes frequent system calls for suspending threads due to read-write
lock contention. Tabby and vmcache suffer the least because they leverage spinlock and rarely
enter the kernel.

In summary, Tabby achieves state-of-the-art performance when data fits in memory and is much
more resource-efficient on out-of-memory workloads than competitors.
Impact of TLB-shootdown on CPU Efficiency. Next, we examine the performance impact of
TLB shootdowns on CPU cache efficiency when the virtual memory (VM) subsystem is heavily
manipulated. We simulate scenarios in which some CPU cores operate entirely in memory where
accesses are skewed towards a small set of data records, while others heavily manipulate the
exmap VM subsystem to replace buffer frames due to buffer pool miss (e.g., large scans or vacuum
operations). The results, shown in Figure 19, demonstrate that TLB shootdowns can have up to a
2× impact on in-memory cores, even though these cores are independent of the I/O cores. This
impact arises from the cycles spent on every CPU trapping into the kernel interrupt handler for TLB
flushes, which leads to TLB cache misses on later instructions. However, this does not affect Tabby,
as there are no TLB shootdowns when manipulating page tables due to our tighter co-design.
TPC-CWorkload. We next evaluate the buffer pool systems using a more realistic workload - TPC-
C which is a write-heavy workload with complex access patterns, including range scans and deletes.
We configure a 16GB buffer pool for all the systems. We load 512 warehouses into the database
before the benchmark, which amounts to ∼100GB on storage. Similar to the YCSB benchmark
presented in the previous section, we use 64 threads to run the workload. We run the workload
for 2 minutes and report the average throughput over time. The results are shown in Figure 20.
Tabby, vmcache, and LeanStore are all able to saturate SSD, achieving similar throughput. They
outperform WiredTiger by about 7×. Efficiency-wise, shown in Figure 20b, Tabby stands out and
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consistently outperforms vmcache and LeanStore by about 2× in throughput per core. Compared
to WiredTiger, Tabby achieves 4.2× higher throughput per core.
Performance Drill-down. We next break down the impact of various techniques used in Tabby.
We start with vmcache running on Linux as the baseline and incrementally enable techniques. The
results are shown in Figure 21. Surprisingly, when running vmcache with elevated privilege level,
we observe 60% lower efficiency. This is due to the TLB-shootdown overhead being doubled because
Libdbos hypervisor needs to perform an additional TLB-shootdown operation per madvise system
call on the PTEs of the extended page table (EPT). When TLB-shootdown is eliminated with Tabby
algorithms, the efficiency increases by 753%, outperforming the baseline by 3.5×. Thread-local free
lists and no-zeroing optimizations add another 8% and 4% improvements. Hence, we can conclude
that the TLB-shootdown elimination is the most important optimization, and one needs to pay
attention to increased TLB-shootdown overheads when running as a privileged process.

8 RELATEDWORK

There is an extensive body of work in the area of DB-OS co-design and buffer management. In this
section, we discuss related works not covered in Section 2.
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DB-OS Co-Design. The DBOS project [65] focuses on building a cluster OS using scalable
distributed databases [43, 48, 68, 79], for better resource management, observability, serverless
application development [46], and debugging [51]. Currently, the DBOS project still runs DBMS in
the userspace of a Linux kernel. Our co-design approach allows the DBMS in the DBOS project more
control over the hardware. MxKernel [57] is a runtime system that advocates run-to-completion
execution rather than OS threads for database systems. COD [35] studies how to better integrate
DBMS with OS for better co-optimization regarding resource management. Our co-design approach
focuses more on practically empowering DBMS with more abstractions and privileged instructions.
Therefore, our work is complementary to these studies.

Bypass Mechanisms for I/O Path. Data copying between user space and kernel has imposed
significant CPU overhead on applications intended to fully exploit modern storage and network
devices [40, 75]. One way of addressing the CPU overhead is to leverage kernel bypassing libraries
such as DPDK and SPDK [74]. Therefore, many works [8, 11, 26, 42] focus on kernel bypass approach
to build efficient user-space I/O stacks. These libraries implement drivers for I/O devices in user
space and employ polling to process I/O requests at high speed, which wastes CPU cycles at idle time
[31]. Conversely, it is also possible to reduce the overhead of system calls and copying by bypassing
user space. A line of work exploits in-kernel computation (e.g., eBPF [7]) to offload user-space
work – such as DBMS caching, proxy, B-tree traversal – to kernel [23, 24, 77, 82]. While bypass
mechanisms improve I/O path efficiency, they cannot address the inefficiencies of security-sensitive
subsystems such as virtual memory, for which our co-design approach provides a solution. Note
that our co-design can also co-exist with all the bypass mechanisms.
Tiered Buffer Management. There is also a line of work [41, 59, 70, 78] that target multi-

tier memory buffer management with a secondary memory device (e.g., persistent memory or
CXL memory). Tabby’s technique of elimination of TLB shootdown is expected to be even more
important to these multi-tier buffer managers when virtual memory is used to replace traditional
hash table for addressing logical pages. This is because the bandwidth and IOPS of these devices
are higher than flash SSD which results in higher page turn-over rate between DRAM and the
2nd-level memory and stresses the virtual memory subsystem.

9 CONCLUSION

In conclusion, we present a novel DB-OS co-design paradigm leveraging privileged kernel bypass,
unlocking new abstractions that are only possible with privileged instructions while minimizing
the impact on security, maintainability, compatibility, and ecosystem. We presented two DB-OS
co-design mechanisms for data-intensive systems enabled by this paradigm, including an in-
kernel buffer pool design without TLB-shootdown overhead and a high-frequency instantaneous
snapshot mechanism for in-memory databases and HTAP workloads. Our proposed mechanisms
demonstrated significant performance/efficiency improvement and tail latency reduction.
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