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CHAPTER 1

INTRODUCTION

The need for evér nore sophisticated multi-target algorithms has in-
creased greatly in recent years, In military apélications, especially, the
need for these techniques is evident. Recently, there ﬁas been increased
interest in distributed trackingvsystems. in whigh the tracking problem is
-broken down into several smaller problems and distributed to trackers at
several different sites. Such problens, of course, preseﬁt more challenges

than the more traditionsl central processing tracking systems,

The basic problem in multi-target tracking is daﬁa association, If
there are several (perhaps an unknown number ot) targets in an area, weas-
urenents are received from gach of them. There exists an uncertainty 1in
the true origin of each m=asurement. Eésentiail&, any multi-target track-
ing procedure should partition the measurements into sets associated with

each target before the tracking of that target can be done.

Several important papers that have appeared in recent years come ;o
grips with this problem in a variety of ways. Bar-Shalom [3] gives an ex-
cellent survey of recent worlk in the field. The most important paper for
this work>i$ the one by Donaid Reid [81. Reid formulétes hypotheses of the
origin of measurements sequentially, aﬁd organizes them in tﬁe form of a
hypothesis trée. For each hypothesis constructed, a set of Kalman filters
is constructed to track ﬁhe targéts inplied by that hypothesis. The

strength of the hypothesis is then evaluated 3% comparing the actual meas-



urements with predicted values obtained from the state estimates of the
filters. A specific formula for this is developed by Reid, and incor—

porates false alarms and new targets.

Reid assumes in his work a central processing system - that is, a sys-
fem in which allbtracking computations‘are done at avsingle site. The goal
of this work is to apply Reid's ideas to a distributed processing system.
As we shall see, the data association and target tracking can be separated
quite naturally to fit in the mold of such a system. Our primary example
will be a two node passive system that receives bearings to targets as
measurements. The information signal is assumed to be acoustic in nature,
which .in combination with a desife to track fast moviﬁg targets improves

the problems of propagation delay.

Chapter 2 dévelpps the theoretical strﬁcture of the proposed trackiﬁg
élgorithm in greast detail. In Chapter 3, we discuss the concept of bis—
‘tributed Sensor Network (DSH), which motivates the choice of our primary
example. Chapters 4 and 5 develop the mathematical formulations necessary
for the implementaztion of the trackiﬁg algorithm. Finally, in Chapter 6,

we preséent some demonstrations of the performance of the algorithm.



CHAPTER 2

THE ALGORITH

In this chapter, we will model ths solution of a genebalized tracking
problem, and see how previous work in multi-target tracking fits into this

model,

2.1 SOME DEFIHITIONS

Consider a generalized tracking system T. Thes task of T is to deter-
mine the existence of and track certain objects located in a Specified en—
vironment E. The objects are called targets. The Systgm tracks a target
if it can estimate its positionvand:velodity at eny time while it is locat-
ed in E. A tracking‘syStem may also ‘determine’” acceleration and other
higher positional derivatives; however; for our purposes, position and
velocity will be sufficient. This informstion is collectively called the

target state.

To perform its task, the tracking system must obtain information from
the environment. Usually, this information is in a form termed signals.
For example, a radar system might use eleétromagnétic sinusoids, whereas in
sonar, the signals are acoustic. Any place within T that receives signals
is called a sensor. If the received signals originated in T and were re-

flected back, T is called an active systewm. If the signals originated in

the environment, T is a passive system. It may happen that the system re-

ceives both types of signals, in wnich case T is referred to as & mixed
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;Sygtem. Active systems generally obtain more information from the environ-
ment than passive systems; however, they are also more susceptible to
detection by ‘the targets themselves., A tracking sysStei can also be classi-

fied by the manner ‘in which it collects signals. Our attention will focus

on time-sampling systems, which sample signals from all directions at

‘specified instants of time.

w

Usually, the received signals in their original form are not very use-

ful for ‘tracking. A signal processor in T extracts data from the signals
which can be used in tracking. In this work, data obtained in 'this manner

from signals are termed measurements. Measurements may be scalar or vector

in nature. FOr*example,'a'mea5urement’from a radar system might consist of
three position codrdihates. A measurement from a passive system, on the
otherihand,'might‘Simply be a bearing.  In time-Sdmplingvsystems. a scan is
defined as ‘a set of measudrements obtained at the same time-sampling in- -
spant. In many systéms, a signal processér requires signals from several
" different 'senSdrS to produce a 'single measdrement. ilormally, this set of
'senSdfs is fixed andkis referred to céllebtively as a node. Since ourv at-
tenti&n is focused on'the‘tracking problem, we will not go into detail the
highly nontrivial ‘problem of signal processing. Hence, all of our work

Wwill refer to measurements and nodes at the lowest level.

2.2 - THE TRACKING PROBLEM

In general, the tracking system must be able to track several targets
simultaneously. ‘In multi-target tracking, there are really two problems

that must be solved. They are the data association prbblem and the track
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association problem., Logically, before a tracker can estimate the state of

a particular target, it must know which Measurements to use. Given a
time-sequenced set of scans, the tracker must partition the set of all
leasurements into & set of mUtually exclusive subsets. One subset may

correspond to an zssignment to no target at all. The measurements in this

set are called false alarms. The other subsets will correspond to hy-

pothesized targets. The process of forming these subsets is data

association, and each subset of measurements is celled a data track.
There will be many different ways to perform data association on a given

set. Each such configuration is called a data hypothesis,

We will asssume in our work that scans are to be processed sequential-
ly. This 1is reasonable, since in a real-tine system, it is usually desir-
able to incorporate new information as soon as possible. Therefore, at any
given time, the number of possible data hypotheses depends on the number of
a priori hypotheses and the number 6f messurements in  the present scan.
The sequential formation of hypotheses c¢an be organized conceptually

through the use of trees.

The structure of hypothesis trees 1is best illustrated thfough a
specifiic example. Assume z priori there zre no'da;a tracks. At time t=0,
the tracker receives two measurements. We make the simplifying assumptidn
that a particular target cannot be the source of more than one measurement
in a given scan, althouzh the more general case can still be displayed in
tree form. Thus, each measurement could be from a different }egitimate
target or a false alarm. This results in four different data hypothéses,

as shown in Fig. 2-1,



gt

ml and m2 are the two measuremeats. As con be scen, each corresponds
to a different level of  ‘9}1¢. tree. | The locations within the tree
@orrespbnding to thé assignment of measurements to a data track are called
ﬂgggg, (The qge;df this terns is unfortunate; however, it will algays be
clear from context yhether we are pa}king’about groups .of sensbrs or tree
§tru¢£ure:) A sequence of connected nodes is called a branqh of the tree,
Each'brahch of the tree corresponds to a different dzta hypothesis, as
shown. ‘Thus, hypothesis 1 assigns m1 to data track 1 and m2 to data track
2, while hypothesis 3 assigns m1 as a false alarm (represented by 0) and m2
to data track 2. IWe‘have made the convention of identifying a data track

by the measurement number of its first measurement.

AsSume now ﬁha; we have a second scan with two measurements (m3 and
mﬂ).l The nqmper of assignwent; of m3 and mid will depend on which priof hy-
pothesis is assggeq.‘ For instance, if hypothesis 1 is ussumed, the. pdssi-
ble assignments fc- each are data track 1, data track 2; a new data track,
.or a false alarm, with the condition that both cannot be assigned to the
same legitimate data track. If hypothesis 4 is assumed, the only possible
assignments are a new data track or a false alarnm. If we expand each
branch . in this manner, we obtuin Fig. 2-2, which represents the total
number of ways the measurements in the ;wo.scans canvbe associated, given
our assumbﬁions. It i# easy to see that the trée expands at an exp§nential

rate.

The above>procedure for the constrdction of the hypothesis tree is

known as a measurcment-oriented approach, bacause every possible data track

is listed for each measurement. A target-oriented approach would 1list
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every possible measuremenﬁ»fcr each'datavtrack. However, in takiné the
latter approach, it 1is conceptually diffichlt to decide when a new data
Atrack should be nypotlicsized, whereas'in the former case, new data traéks
appear naturally as a part 6f tree expansion. For this reason, we will use

the mesasurement-oriented approach.

If there are multiple nodes in the tracking system, we can perform the

data association in two ways. A central processing system would construct

one hypothesis tree, incorporating all measurements from every node in the

system, A distributed processing system would construct a tree for each
node or a subset of nodes. We cén ﬁhink of‘nes;ing‘the various trees in a
,distfibuted processing system in one another to produce an overall data as-
soéiation hypothesis trée that is equivalent to the tree constructed in &
¢entral processing system, whicnh contzins all possible datartracks thet can
be formed given the received measurements, With a diétributed structure,

we encounter the track association problein.

The track association problem can also be modeled &s a hypothesis

tree. Whereas data hypotheses associate measurements, track hypotheses‘as—

sociate the data tracks of different nodes. Given a track hypothesis and

the data tracks it is conditioned on, we finally can combine the data to

form sets of estimated target states. qr target tracké. (This aésumes, of
coufse; that 'thére are a sufficieht nuﬁber of data tfacks to make such an
estimation possible; i.e. the System musf be obszrvable). The production
of these target tracks is the desired goal of the tracking system,. Sihce
the tréck assqciation trees are eaéh conditioned on data hypotheses from

the various nodes of the system, we can nest the former into the overall-’
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dgta, association tree of the tracking system. The resulting strugture or-
ganizes, in & systematic way, all possible solutions of ‘the tracking prob-

lem.

The prospect of wading through such on imposing structure is, horrify-
ing, at best. In the next sections we will discuss ways of making\the'
mmmmﬂmau@ﬁm&.Mwem¢M®,oﬂcﬁw% produce suboptimal
resulﬁsjé in the sense that the correct solution may accidentally be dis-

carded. Howgver, they are quite necessary for any practical implementa-

tion.

2.3 - DATA HYPOTHESIS REDUCTION - TREE PRUNING

The use of Urees 35“q.problsmfsoivinsﬁtcchniuyc is well known. in  ar-
tificial intelligence. fhex are q;sd ?°_sxﬁﬁemeyiqallx\M94ek,5§g.a&gpfby—
step solution of very general problems. kis we have seen, they Qi%.ﬁa;ura;—
-1y 1into the +tracking problem, However, ;q\mo§tyagglicatigg§h there,i§,a
well}defipsd‘"gqal state", which will be reached eventually by one of the
. branches of the tree. In the ;gqqking.proplem,gthere is no "goal state";
the trees are open-ended. Since the trees expand exgonen;iallyn wel.mus;

impose constraints on tree growth in order to keep the problem manageable.

Methods used for this purpose are called tree pruning techniques.

There are two ways to limit tree pransioh;, The breadth of the tree
can Dbe limited by retaining no more taan aqspecified,mgﬁimym:ngmpgr of
branches each time the tree expands. This "pruning" of branches of the

tree may result in one branch of an older scan being singled out. This is
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illustrated in Fig. 2-3. In this case, the scan is said to be identified.
Scans will not alwa&s be idengifisd by breadth constraints. Therefore, we
must also limit the depth of a tree. ihen the‘number of scans in a tree
attains a certain maximun allowable number, one branch in the oldest scan
isksingled out and the others are pruned.{ This scan 1is thus forcibly iden-
tified. In limiting Lhe depth of a tree, reduandant nypotheses may appear
in the’tree, depending on the mechanism used. A set of redundant hy-
potheses in a depth limited tree aséign mzaasurenents in the same manner;
They may assign measurements to exactly the same targets ~(in which case
they are termed identical) or there may exist a 1-1 mapping of targets
between the hypotheses. A set of redundant hypotheses may be combined
under the assumptibn that any past differences which have been dropped off

of the tree are insignificant. This is called hypothesis merging. (A more

thorough treatment of the foregoing concepts may be found in [63.)

In order to apply the above methoqé, we must have some  means of
measuring the strength of the various hypotheses. In other words, we must
define a probability measure on the set of branches of the tree., The par-
ﬂicular definition and evaluation of a pfobability measure depends upon the
nature of the tracking system énd the types of measurements. One observa-
tion can be made here, however. For data association trees, a natﬁral de-
finition of probability is one tﬁat is monotonically related to thz "close-
ness" of a measurement to the predicted value of a data track. The closer
a measurement is to a particular prediction, the higher the' probability
that the measurement is aSsociated with the corresponding data track. This

use of predictors, and the fact that we are using sequential processing,
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suggests the use of Kalman filters. A detsiled application of this idea

appears in Chapter 4.

The definitibn of this "closeness probubilityﬂ le;ds to the conqept of
clustering. (See Fig 2-4). Suppose a ﬁhreshold is def'ined such that, dur-
ing tree éxpansion, any branch whosé probability lies below this threshold
is prunéd. ’We can think of drawing a "éate" arouna the preaictéd value of
each dsta track. The probability of a hypothesis below the threshold is
then equivalent to the present measurement falling outside the gate. By
considering‘only mezsurements inside the gate, we have effectively pruned
the ﬁree of hypotheses with probabilities below a certain level. Suppose
now that the gates of various data tracks do not overlap. The scan can
ihen be partitioned into a number of subscts, ecach subset containing the
méasurements falling inside the'gate of & differsnt dgta track. Becauss
the * possible data associations of each of those subsets are mutually ex—
clusive, we can break up the data assoégation LFeé into 2 number of small-
er, independent trees., This is an enormous simplification, for the sum of
all of the hypotheses in the smuller trees .Will be much less than the
number of hypotheses in the tree which spawned them. For fixed resources,
this amounts to an increase in the number of hypdtheses that can bé con-
sidered» Simultaneously. If some of the gates do overlap, we can form one
tree for the cluster of the corresponding data traéks. There 1is still a
" simplification in this case, although not as great. The concept of clus-

tering is important for our later work.
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2.4 ~ TRACK HYPOTHESIS REDUCTION - THE DELAYED W-SCAN ALGORITHY

The data association trees of différent.tracking systems are 'USQally
'quite similar in structure. The constfugtion of track association treeé
will vafy widely with the tracking system. In.some,cases, the track asso-
;iation trees are degenerate; and‘_target statg”eapimgtes_arg»a,triyiél;
consequence of data association. For instance, take the case of a sihgle4
node, single target tracker that uses_posiqign measurements. Initial tar-
get states can be estimated using only two measurements., In fact, the tar-
get state can be used in & Kalman filter to evaluaﬁe probabilities in the
tree. Th;s‘formulation is precisely thé "{-scan algorithm" developed by
Singer, Sea, énd Housewright [9]. The term "l-scan" refers to the fact
that the hypothesis tree is depth—limi;ed,tq N-sgans, and hypothgsis S nerg-
ing 1s done over the past N-scans. A generalizstion to thé: multi-target
case was presénéed by Reid (3. Here aéain,-targéc states are used for
.probability calculations. Reld uses c;ggteringvin his algérithm as weli as -
an N-scan approach. |

The generalization of these algorithams to a multi-node active system,
of course, requires' the correlation va state estimates from different
‘ nodes, and hence requires trees. -However, assuming that node egtimates are
independent of oneg another, and that noise ané targéh density are suffi;
ciently low, ambigbitics Wwill resolve themselve§vfairlj rapidly. The casé
is different‘.fér' paSsive systems, which-are inherently multi—node in na-
ture. Even if it is possible to estimate target sﬁaté from the méasuref"
ments df ansingie, passive node, the cévariance natrix of such an estimate
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is usually so large that estimate is virtually useless. Correlation
between data tracks of different nodes in the systein is thus necessary to

obtain good estimates.

Correlation of data tracks requires time, end so reduction of track
association trees is a rather drawn out process. It would ba desiréble to
do as few of these operations as possible. This is the motivation for the
following scheme, called the fdelayed'N-scan approach." Instead of con-
structing track association trees for each data association hypothési;
under consideration,,we delay the constructidn until data tracks are deter-
mined in an N-scan algorithm on the data association tree. In other words,
a measurement is not used in updating probabilities of track hypothéses un-
til the scan to which it belongs becomes identified in the data association
tree. This technique effectively separates the data association and track
association processes. Tihe resulting benefits are the saine as in ewmploying
clustering, since the track association trees vere originally nested in the
data association tree. The diszdvantage, of course, is that.the ihcdrpora—
tion of measurcmnents into state estimates is delayed by the H-scan algo-
rithm on the data association tree. It is the price paid for simplifica-
tion of the problen. Tﬁis procédure will be used in our application in

Chapter 3.

2.5 - OTHER WORK I} MULTLTARGET TRACKING

Before leaving this chapter, we should summarize previous work in mul-
titarget tracking and compare it to the approach teken here. An excellent

survey of multitarget tracking methods can be found in a paper by Bar-
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Shalom [3].

All of the work in the literqturg focuses primarily on Qeyeloping
techniQues to resolve the uncertainty in the origin of received measure-
%ents;,i.e,, the data association problem.  The applications of these tech-
'biQues 5gn§ra11y assume that target state estimates can be obtained direét—

ly from given sequences of measurements.

fhe approachas to the problem.can be classified as Bgyésian aﬁdv non-
Bayesian. Non-BéYesian gpproaches do not take into account a priori infor-
mation. The eariy work of Sittler [10] typifies this approach, In his al-
gorithu, data ‘association trees are fobmed in & similar manner as in our
algorithm, slthough this is not explicitly stated. Kalman filters estimat-
ing target states are initiatéd and updated directly by the given measure-
ments. The innqyations of the filter of esch branch are wused to sequen-
tially‘ cqmpute g likelihood function.l‘}arggp trécks vhose 1ikelihpods are
‘below a certain threshhold valuz are then rejected. A somewhat different
technique qevélbped by Morefield L7l minimiies the likelihqbd function by
trensforming the problem into an integer programming problenm. .This proe'
duces the most likely set of target tracks giQen @1l of the data, but is a

batch processing technique.

Two observations can be made. The first is that the state estimates
and cgvarianées are conditioned on the corresponding data hypotheses being
true. However, no probabiiity véluevis'ODtained for the daLé hypotheses
themselvés,  This is essentially due to thé phiiosobhy of the noneBaYesian

approach. Tne second observation is thsat, without a priori information, it
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is difficult to apply these slgorithms in a distributed processing system,

because .the data association and track assoclation are intertwined.

The Bayesian approzches to thé multitarget tracking problen attach to
each measurement a.ptObability of being correct, based on a priori infqrma—
tion. The resulting targeé stute estimates and covariances reflect the un-
certainty in the origin of the measuremehts.‘ In [1], Bar-Shalom and Tse
deal with the single targel case. Assuming a target stzte has éiready béen
initiated, a 'gate can be formed-around the estimated target state. For .
each measurement that falls within the gate, a probability of being cofrect
is computed based on how close the measurement is to the estimate. These
measurements, weighted by their probabilities, are then used to update the
estimate. The resulting filter is called the probabilistic data associa-
tion filter (PDAF). This approach is target oriented in nature. As such,
it is difficult to incorporazte initislization of target'tracks intovthe
scheme. The PDAF is extended to the multitarget case‘in_[2].‘ However,‘the
scheme for computing probabilitiés is very complicated. 1In addition, the
applicatibn of thessz ideas to a distributed processing system would in-
crease enorﬁously the amount of computation'required. Because of this, and

our desire to include track initistion, we have rejected this approach.

The work of Singer et. al. [Y] and Reid (8] has already ~been men-—
tioned. We have described the delayed H-scan algorithm as 2 generalization
of Reid. It is probably more accurate to characterize it as a combination
of ”the Bayesian and non-Bayesiun approzches. In the-sequel, we correlate
data tracks in the track association trees by computing a liklihood fuhc—

tion for each track nypothesis. The target state estimation is conditioned
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dn a pariicplar Qata hypothesis (orfhypothéseS) beiﬁg true. This is exact-
'fy thé nénfBayesian approach. Howevef, the data hypotheses upon which
éﬁese target tracks are conditionad are obtained by 4 "pre-processor” which
employs a Bayesian N-scean algorithm similar to Reid's. Thus, although the
‘target state ¢stimates do not reflect measurement origin uncertainty, they
‘3ye“based ~on hﬁpotheses that have been singled out in a Bayesian weeding

(A

process.

2.5 - SUMIARY

In this chapter, we have defined some basic terms and >00nstructed a
imodel for the séiution of the tra¢King ﬁroblem.‘ ﬂe have considered, in a
general setting,'some useful techniques for reﬁdering the model amnenable to
practical implementation, and we have szen hbu some previous vork in track-
ing fits into this model. In the next chéptér, we present an application

‘of these ideas to a specific tracking system.
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CHAPTER 3

DISTRIBUTED SENSOR NETWORKS -

The procedures developed in the last chapter zre quite general in na-
ture. In order to demonstrate their utility, we need to have a specific
application. In this chapter, we will describe a general tracking systen
called & Disbribp;ed Sensor Network.iiThis prackingbgystem will provide the

motivation for the example to which we shall apply our algorithm;

In ﬁringiple, the more information_a tracking system can obtzin from
the environhent. the bettér it will be able to track targets. Active sys-
tems are almost always used in situations where maximum target information
is the 6q1y critéria or has absolute priority. lost active systems, such
as radar, send 2 signal into the enviroqment and receive reflected versions
of those signals, along with clutter from the environment. Tnis operation
of reflection éllows an estimation of the time delay between transmission
and reéeption. Since the speed of propagation of the signal is assumed
Known, thié is equivalent to a range estimate.‘ Passive‘ systems, on the
other hand, do not have this informatioﬁ, and_hencevmpstbcontain more sen-

sors and nodes than active systems to obtain equivalent information.

In many cases, however, maximum target information 1is not the sole
criteria, - nor does it always have the highest priority. Active systems
have the property that potential targets in the environmeﬁt may be able to
detect thekradiated signals. In wmzny cases, especially in military appli-

cations, this detectability is & major drawback, and the design of passive
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systems' is desirable.

i

DSN (Distributed Sensor Hetwork) is 2 rescarch project of MIT Lincoln
Lavoratory. DSH is a multi-node surveillance systen designed to detect,
1ocate; track, and identify léw—flyins~@ircréf§3 Although in,§9§9?l prac-
tice the syszeﬁ may be a mixed one, with both activé'anﬁ passive sensors,
it tuEn§ out to be more frqitfulAtQ §tudx:a strictly pé§§ive §yéggm, since
the distributed brOCessina and control probleas of large active systems oc-
cur in much smaller passive systems. In éQQitiqn, in reference to detecta-
bility; it would be desirable for the system to be capable of carrying out
its functions uging-oﬁly passive sensors. Hence, we will view the D3N as

having a solely passive capability.

The new information input to the DSN are acoustic signals, Each node
of the DSN contains ﬁn array of_a9§u§§ic sen§9r§>(pr9§9?ly'hi§h gyaiity.mi—
crophones) . Each'sensor,éamplésvthe in@?ﬁing sigﬁals at é specified rate
.to'obtain a digital sample set. ’Afﬁﬁf Preéetérminc¢ intervals 9?,?%&?5 the
sampled signals ffqm all sensors arﬁ‘inpUt to the signal processing com-
ponent. of the node, Essentially, this component uses high resolution fre-

quency wavenumber analysis to detect phase differences in the signals,

thereby obtaining a direction. The output can be viewed as a éyrve plot-

ting received signal power vs azimuth. An exanple plot is shown in Figure

3-1.

These powgr—ézimuth curves, pronpeg at given instants of. pimé, are
the input data to the tracking system. To keep things simple for our

models to come, we will use only the azimuthal information. The power in-
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formation could be useful in resolving ambiguities; however, we shall not

consider this role.

We are thus assuming that each node of the D3N has available a set of
azinuths and varisnces of those azimuths al discrete instangs of time, The
trackins problem is to combine the a;;métnﬁ from the nodes to produce tar-
get tracks. Ve should keep in mindikuat,thg nodes are geographically
dispersed ahd that the velocity of signal propagation is comparable to the

speed of potential targets. In addition, the me

ferent nodes are not necessarily synchronous. However, for simplieity, we

shiall ignore this last observation,

In a large scale QSN,';Q is vaigyﬁ that a q?apribupgg‘ processing
scheme is much more desirable than a ¢¢ntra; processing one. First of all,
the large amounts of information dictate that itxbe.hanqiﬁg in piceces in
order to sort it out. Second, communideztion is generally much slower than
- computation, and so for time efficiency, the computational load  §h9uLd be
distributed véé mych,as}pgggiblg, .Commuﬂipati9g§v§l§gtra¢i§§@/pgwgr, which

is undesirable if detectability is an issue,

Thus, it Seem§<loéi¢§1 to do &s mgcb’qf &he-broceéﬁing at individual
nodes as bossibiee"rhere is not engéah information gathered by the node to
produce independently a relizble target ﬁrégk- However, it is possible for
the node to perform 'it§ data essociation independently of other nbdes.
This is why we Separated out data associztion and tfégkkﬁSSQCQQE}Onzin our
algoritham. It fits very naturally-inté the problem of distributing compu-

tational load in a tracking systen.
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To produce the actual target tracks, we can correlate data tracks of
pairs of nodes to produce target tracks.r Target tracks cun then be refined
at a higher level by comparing various two-node results. This scheme sets
up a hierarchy similar to multi-site radaf, with the exception that the set

of two-node target tracks are notialways independent.

' The two-node trackihg problem is wnat we intend to study. We will as-
sume that our tracking system consists of two nodes each independently re-
ceiving azimuth measurements. For simplicity, we will assume that ths en-
vironment is- two dimensional and that nodes and targets are dimensionless

points. All noise in the measurements is assumed to be Guassian and white.

With the specification of our example, ve are now ready to explore
mathematical details. The first order of business is to discuss a defini-
tion of probability for our nypotnesis trees. This is thz subject " of the

next chapter.
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CHAPTER 4

THE CALCULATION OF HYPOTHESIS PROBABILITIES

In order to apply our algorithm to the two-node system, we first need
to define a probability measure on both the data association trees éﬁd ths
track associatiofi trees. With this we can evaluate the strength of variocus

hypotheses and eliminate unlikely ones. In this chapter, wé develop a

theoretical basis for calculating the probabilities.

4.1 - DATA ASSOCIATION TREES

- We first consider the data:assbciation tEee at a single node. Sup-
pose, for the moment, ﬁhat ah estimate of the target State is availeble at
a measuremeﬁﬁ gihe t. We can then forﬁﬁa‘p#ediction of the incoming méa§:
urement based on this target state estihate. Intuitivéiy. we would expect
" that the closer the measurement is to the predicted valus, thé more likely
the measurement 1is associated with the target. As is well kqbﬁﬂ, wWe can
sequeqtiélly form target state estimates as data arrives ﬁﬁrough the usé of

Kalmen filters.

In a more general setting, we assume that the meéasuréments are the
'outbui of a linear system plus an additive noise term. As is well knoun,
we can formulate a state'eriable dgsdriptioﬁ of the system in mzny dif-
fereﬁt ways bj choosing different definitions §f the state variables of the
system. ' For the moment, let us assume We have settled on a particular de-

finition for the stute of the systen. We nay write the (lgpéar)_state
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equation and wmeasuremnent equation as

x(k+1)

FO)x(k) + G(K)u(k)

2(K) = HKIx(K) + v(Kk) | URP

x(k) is the state of the system at time k and z(k) is the measurement at
time k. We assume that Ww and v are independent Gaussian uvhite noise se-
quences with'
ELw(iow (k)] = a(k)

ELv(k) v (1)1 = R(K) | | (1.2
Define %(kil) to be the linear least squares estinates of x(k) given data
up tq time 1 énd-P(k:l) to be the covariance matrix of this estimate. We
can obtain X(kik) and P(kik) through‘the‘use of the discrete time Kalman

filter equations as follows:

R(kix) = R(kik=1) + K(OL2(k) - HIOZ(Kik=1)]
Rk+11x) = FIk)X(kik) | |
K(k) = POkIK=THE GO LHUOP (k=D () + RUTT
P(kIK) = [T - KGKHG)IP(kik=T) LI = KUOHUOT + KUORUIKT ()
P(ka11K) = FOOP(IKIET (K) + GUQMKIG (i)

(4.3)

Using these equations, we can sequentially update the state -estimate
as measurements arrive. One quantity that will be of interest to us is the
so-called innovations saquence

V, = z(k) - HO)R(kii=1)
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It can be shown (e.g. [11]) thatvvk is a Guassian wiite noi&é Séqusnee
giﬁe’n’ “our prévious assumptions with
. s
- EL Vk(/k 4 =

B, = HOOP(IK-1DH (k) + RCK) (.dy.

We are riow Feady to'derive our result concerhing the &al€ulation of

probabilities of hypotheses. Our deviation follcus ¢losely the work of”
Reid [8]. Al.thcugh Reid assumés that x(k) is thie Fetual target state, the

results are valid for our more gensral definition of x(K).

Let
Z(k) = {z (k) , m=1,2,...,M }
= . K
deénote the mezsurémerits. received at time k and
2% = 121, 2(2) ... 20K}

‘denote the cumulative set of measureménts through time k. Also, define
| T = {r i_,fl-1r2,.,u,lk} N
K

to be the cumulative set of Hypothiesés ijtf after time k, Eaéh T'i_

corresponds to s branch on thé hypothesis tree..

Now, define
K- park . 29
. , , i i
- that is; P:;iS"thé probability at time K of the branch I'? of”thg:hypothesis
o v ' ' LK ) s e e
. tree 'givéh'the data through time k (Z‘); In actuality, this' is equivalent
to the conditioned joint probability of the prior h-ypotﬁ'e~sisé".¢??§,’1’ and. the:
 data hypothesis for the cur?ént-meaéﬁ?emént set UNES Dbiﬁpiﬁ@.the»déﬁeﬁ;ﬁ
dence on past data for notational simpiicity, we can use Bayes! equation to

write the reldiiOHSHip

'




k = k-1 ' ' >_ l ] k-1 ' L Yk-;]
Pi = P(T g Wy Z(k)) = r'P(Z(k) i I'g .vh) X P(yh H I'g )
(4.5)
The term n,is z normalizing factor given by
_ . \ k-1 o k-1 k-1
n = E% P(Z(k) | I'g ,l,lh) X P(\lh i I'g ) X P(I’g )

If we can find expressions for the first two terms on the right hand side

of (4.5), we will have a recursive relationship for célculating probabili-

ties.

,‘The first term is the probability density function of the current set
of measurements Z(k) given the prior hypothesis 1'2—1. and the current data
hypothesis LI Assuming that each meésurement Em(k) in Z(k) is condition-
ally independent, we have

M

I K
Loy k=1 s k-1
PG T T ) = TLP(z G0 ET T )

m=1 8 b (4.6)

Suppose that ph assigns Eﬂ(k) as either a false alarm or a new data
track. In either case, there 1is no a priori information to determine
whether one set of possible measurements 1is more 1likely than another,

Hence, in these two cases, we will assume that it appears as a uniform dis-

- tribution

P(z
S o bk g
n g T[-
(4.7)
V is the volume (or area) of the part of the enviromnent covered by the

node.

If neither case above holds, then W, assigns zm(k) to cither a previ-
. i

ously established data track {confirmed track) or to a data track whose ex-



istenice is iuplied by T 5
tiated whet a néw data track is hypothesized in the coursé of expansion of

(tentative track). TeéRtative tracks aré ini-

the data association tree. A tentative Lrack becomes confivued if it still

 exists wheén the scan in which it is initisted is identified.

If & Kaliman filter is running oh the =z8sighed data tragk, we have

available & currént estimate X(kik)=® . Sihte this éstimate does hot

dépend on the cufrsht neasurément, we have
Pz G0 1T T = Plz (k)RR r'g; iy b .8
The last is theé conditional density function ©of the innovati

filter, which has a noriai distribution. Hence

with

¥ - H(k)Pik}k)hT(k) % Rik)

é*b(‘%VT§;1¢’ o . S wan

H(V,P) =

B
. bomyMipn P ; i A
where 1 is th8"dihBdsion of the inovation vector x.

~ The Second tebin oh the right hand side of (4§.5) is the pFot
the currsnt data associetion hypothesis u given the prior hy
y, has three itéis of information:
2) Humber = the nunber of neasirfenents uz85ociated with prior data
trééks (NDT(h));'?éiég alé%ﬁé‘(ﬁPT?h55 end hew data tracks (ﬁhxihi).
b) Configurution - the partition of thic set Z(k) into. thrée subsets
corresponiding to prior tabgets, False tergets, sna-ﬁéw,ta?geiég._
<) A§Sighﬁeﬁi'; the assighment of each measureinent h%éﬁﬁ;ﬁtéd with

prior data tracks to the specific sourcs.
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In addition, the prior hypothesis gives NTGT(g), the total number of
data tracks, confirmed and tentative, implied by that hypothesis. Thus if
NDTiuTGT' wh implicitly assumes that measurements were not received from

some of the prior data tracks.

1

To find the probability of the numbers N and NNT given I'Z_ . We

pr* Mpr @
make the following assumptions. First, the probability that a targeét will
generate a measurement which is actually received by the node is a constant

PD (called the probability of detection). In other words, the reception of

a measurement can be described in probabilistic terms as a Bernoulli trizl.
If we further assume that the detectability of each tzrget is independent
of the others, and that each target can only generate one measuremgnt in a
given scan, then we see that NDT is 3 Bernoulli process and its distribu-
tion is binomial.

Second, we assume that the number of false alarms follows a Poisson
distribution. Tnis 1is an asstption often made in tracking problens. Iﬁ
makes intuitive sense, because while the appearznce of false alarms is ran-
dom, 1inh many cases they have a constant average rate of appearance over
reasonably lengthy periods of time. We will also assume the number of new
targets follows a Poisson distribution. The assumption is much harder ﬁo
justify. 1In order to make it reasonable in actual practice, the average
rate of new target appearances must be adjusted much more often than the

rate for false alarms.

With these assumptions, we have
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P(HDT . NFT v P

x By (BeVE, (B Y ¢ 9 R DY
- NET FT’ Nﬂ? _Qg , ‘ | ; e il

where

o)
"

2 probablllty of detectlon

den51ty of false alarns

(1}

‘ @ET

density of EFQV1Q5§¥%9@Gﬁ »H? 

Pur

Eng¥2

llow, the total number of mea

= P : TR
e = Hpr e * Hir

The number. of ¢$f§érenh partitions of the M  measurements, given' the

numbers NDT' FI' dﬂd JvT is

A%@W%Wﬂq%ﬁ@ﬁ%%%@n%ﬁwﬂwlmﬂhtwﬁ%ﬁﬁ%ﬂ proba-
bility of Q‘speciﬂic éonfigufabiQnaiSv

P(Conflguratlon i NDr NFT qx)'z

Given the configurstion, the number of possible assignments of the Ny

measurenents to the lin.. prior data tracks is




Assuming that each such assignment is equally likely, we have

(Moo =N,
P(Assignment | Configuration) = __;EL_*QL__ (4.13)
NTGT!)

The joint conditionsl probability of ND”' NFT' ”NT‘ the configuration, and
1 . .

the assignment 1is the product of (4.11), (4.12), (4.13), and is also the

conditional probability of vh. Thus we get

N_..t N .} N ( )

Neora=H
, k=1, _ "FT' HT DT TGT™ DT
Plg, T .70 = T Py (1-P))
x Fyy (BeoVF,  (ByaV) (4.14)
Moo PETCH PN

If we now substitute (4.6), (4.7), (4.9) and (4.74) into (4.5) we obtain

N N 1 ! ‘ \ N
o1 Nyt Hyp ) PIDT(1_P )(”TGT ‘or?
i " n M! D D
i K N
x Fo (BoVIF, (V)
o PFTCa, Pt
i
DT .
x II N[Em(k)—H(k)2; , Bﬁ] “?’liﬁ"‘ P%—1
n=1 ‘ ‘ T Rl (4.15)

The measurements have been implicitly ordered in the above so that the
first NDT of them correspond to those assigned to prior data trécks by vh’
Substituting into (4.15), simplifying, and incorporating constants

in n, we finally get

: _— .
ok lPJDT(1_P )(NTGT Npp) Npp Hyp
i 90D D FT Pur
N '
DT ‘
X II N[gm(k)-ﬂ(k)jg , B;] P§—1
m=1 i (4.16)

Note that this is independcnt of V.
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; As mentioned by Reid, this equation is essily implemented in the

are QH}P@P%}SQ Q¥'$1:§D) ' Then, as gach branch is created gor a

§pec;fig n rement a5515nment we multlply the probablllty of tha prlor

is by either ﬁFT’ PHT' or P N[z (k) H(k) : §61($!TPD?:' depending

ent. The prQqu4l1t%¢§ can be n ali;gq after tree expan-

51on, altho gh ths 15 not strlctly necegsuly since only the relative pro-

babilities a

We can take the negative logarithm of (4.16) to obtain & recursive

likelihood equation which is additive rather than multiplicative, We can

write this recursion as follows:
R O I N O A % CNCIP 1 64 Ex eI SN R S R

1) To each prior hypothes;s ? ~]. add to its likeljihood

(5)1n(1 P )

2) As each me §urement is aSblgnnd We add [5 where

%vﬁn for false alarms

]
1
| =
; :
- ] s . Py ’
b= - lan for new data tracks
1
i T
:

1 10 e ’ ‘

for prior data tracks
- i Wy FRgE e AT R

We see, then, that we need to specify threc items of information in

order to use this definition on the Q%?@ association trees:
a) The stabe varizble repre9> itation (4.1)
b) The false alarm dens’Ly pF

¢) The new .arbet dLnslty p”T




We next consider track association trees,.

4.2 - TRACK ASSOCIATICON TREES

Track association trees behave somewhat differently than data associa-
tion ‘trees. Herc we hypothesize various combinations of data tracks from
different nodes to produce possible targét tracks. Assuming that eaqh such
combination produces a uniqﬁe target track, we see that these trees have
constant depth. Wnen a new data track aﬁpears. new nodes are created by
correlating the nesw track Qith existing tracks from other nodes; Thé pro-
cess is a breadth expansion, rather than depth because the new hypothesés
~are not conditioned on @he hypotheses already in eiistence. There is no
need to consider false alarms or new targets at this level; these have al-
ready been determined ét the data assqciation level. We thus need only a
method of distinguishing those cqmbinaticns of dats tracks that correspond
to real targets. Those that’do not correspond to real targets are termed

ghosts.

The problem in setting up a general definition of probability here is
that the probability of each node must be evalusted over a time interval.
This differs considerably from the nodes in data'association trees, whose
probzbilities are cvaluated at points in time., If new nodes are added to
an existing track association tree, then the probabilities of the néw nodes
will 'bé evaluéted over different time intervalsvthan the older ones. The

question then becomes onz of comparing these probasbilities.



tion

n nodes to form z track hypothesis. Define

,,,,, T

urement vector,

v

ting of the m

can model the problem as follows:

x(ke1) = AGKIX(K) + BOOM(K),
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the mezasurements at 4 will be more recent than those at B, Presumably,
node A will detect the terget first., If we attempt to correlate the new
data track with existing dats tracks at B, ws see that the correct correla-

tion will not be formed, since B has not yet detected the target.

With this in nmind, we present the following schene for the ' construc-
tion of track association trees. \hen a node initiates & new data track
-through its data associaltion process, a new track association tree is also .
created. We attempt to initialize correlztions with existing dsta tracks
from the other nodes‘for a given leugth of time. After this period, no
more attempts at initialization are made. In this manner, the correct
track hypothesis should be fqrmulated with the lsst node to detect ﬁhe tar-
get. In order to compare hypotheses on different track association‘trees,
we shall use time averaged valuss of likelihoods‘ computed in the manner

described above; i.e. we shall use L(k,8)/At, where At is the window \enathn.

The utility of the above metﬁod will, of course, depend on the track—‘
ing system. In some cases, it may turn out that diffefentiating between
ghosts and targets is virtually impossible. We then must either bring to
bear other informztion in the system to distinguish the resl targets, or we
must continue to track the ghosts as targets. These issues will appear in

our discussion in the next cheapter.
4.3 - SUMHARY

In this chapter, we nave presented a formulation for the calculation

of probabilities of hypotheses on the dzta association trees and the track

|
(V%)
0
!




association trees. Armed with this knowlcdge, we can now proceed with the
application of the algorithim to the two-noce system. The necessary

mathematics are developed in the next chapter.
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CHAPIER 5

STATE SPACE MODELD FOR THE TWQ iO2E SYSTEW

In order to apply the formulztion presentad in Chapter 4, we need to
develop state variabie representations to implement the necessary Kalman
filters. qu goal in this chapter is to develop. the appropriate state
space models for both the data association process and the track associa-
tion process. Although we wish to obtain filters that perform reasonably
well, we do not undertake a thorough examination of these state space
models. As a consequence, some important issues arc left unexplorgd. How-
ever, our main purpose is to demonstrate the'tracking algorithm developed
earlier; we do not propose to derive thc optioun tracking filters for the
specific trécking systein under consideretion. Hgnce, w2 content ourselves
with & less detailed, but adequate, analysié focused on the bdata associa-

tion aspect of the problem.

5.1 - STATE SPACE MODEL : THE DATA ASSOCIATION FILTER

-

The most natural way to define a state variable for this problem is
the target state as definad in chapter 2. It is easy to see how the meas-
urements are related to the target state. In Figure 5-1, 4 is the noise-

~less measurement (the acoustic azimuin) at time k. Because the speed of

sound is finite, this means that &6 corresponds to a target position at time

t sometime in the past. (This is celled the scoustic target position to

distinguish it from the truzs target position zt time k). The reiationship

TR




\  veloeity v

- a9~




between k and t is

lx<=’(,+h
c

(5.1)

where R is the range to the acoustic target position ( the acoustic range)

and c 1s the speed of -sound. liow, let ﬁ be the acoustic azimuth (at time
ko) when the acoustic target position is at the closest point of approach

(CPA). The time the target is actually at CPA is t Let Y be the angle

0
around CPA - that is the angle betuween the line to the apparent target po-

sition P and the line to the CPA. We see that

=5+ Y, AR AS (5.2)

Let us assume that the velocity v and the heading is constant. The dis-
ténce betueen P and CPA is '
d = vit-ty) o (5.5)
A negative distane implies the target is approaching CPA. Ve also have
| d = rtany o (5.4)

where r is the distznce to CPA. Thus

v(t—to) = rean/ : (5.5)
or, substituting for t and tO'
R . ry _ Ly
V(k - p - 0 + C) = rtany
tany + & - L(k-k ) + -
cr r 0 c

But R = rsec), and so

“tany +vlsec7 = Llk-k) +
- c r 0

ol<

Solving for Y, and substituting into (5.2), we finally obtain




) 2 -
Yy 2 4 10 s Lot y? «
(ke Ao) v 3 1 *”\LT +vr2(k'xo)-“f
\"

b = B+

1 =

rol

¢ (5.6)

The'QUaﬁtiﬁieSvko %.W%,.ahdﬁ pfbﬁiﬁejﬁu;l kngﬁiedge of the 'Eéﬁ@ét state:
Hence, we could choose these td bé the state variables for the system

model .

' There aré two wmajor difficulties in using e state model in this form.

First of all, it is difficult to obtain an estimate of [3 until past CPA.

Because the governing equation (5.6) is nonlinezr, wWe must resort to

linearized
or EKF). The quantity [ is crucial for an accurate 1inearization.  The
best Qag to obtain an ééﬁiﬁate of | is to set uﬁ 5 bank of E};ﬁé?%} dach

conditioned on a different valus of B. Based on gﬁé performante of - these
filters, we would then avbI§ $éﬁ% sort of deqiSithéﬁiﬂéfié'td selsect the
best filter. This has been done By-ﬁéﬁbert_tS]‘fbﬁ the casé of a single

target, no system noise, and an infinite signal propagation speed. In our
case, there will alréady be'§e0éfal Kelman filtérs rudning, and fééfééiﬁﬁ

cach of these with a bank of filters increasss the mémory and compui

enormously.

‘The second major difficulty in using the full tafget state in oUr

model is the resulting wezk observability of the systew. Theoretically, we

_can obtain information about every state varisble from any given méasure-

P e e T O S
ment . However, we get a relatively lerge amount of information ab
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Essentially, the ezimuth & gives one position coordinate in a two dimen-—
sional system. Ve would expzct, then, that we could not obtain'substanbial
reductions in the uncertainty of both positipn coordinates is shown clearly
in Figdre 5-2(a-d). x is defined as the position coordinate parallel to a
giVen:target's trajectory, and y to be position coordinate perbendicular tél
the trajectory. vy and ‘vy are the velocities in the x and y directions
respectively. Figures 5-2(a-d) display the square foot of the variances 6f
X, VY, Vx' and vy as @ function of time for a typical target trajectory.‘
The variances are the diagonal elements of the error covariance‘ matrix of
an EKF tracking x, vy, Vo and vy. The filter was always linearized about
the exact trajecﬁory. The measurement noise and the system noise in . this
filter were set to O (i.e., Q=R=0), and the initiel covariance was set to a
very large value. The filter thus starts off with essentially no a priori
information, and all reductions of the coyériance_;re solely due to the in-
coming measurements. The covariance matrix obtained is known as the
‘Cramer-Rao lower bound.v wnich implies th2t no tracking scheme cén attain
mean square errors less than those shown here. As can be seen, there is a
rapid reduction in the variance of vy while the target is still far from
CPA (which occurs at t=U45 seconds). The variance of vy stays relatively
high until the target épproaches CPA. Thus, in the region apprpaching CPA,
the full state tracker is at best weakly observable.' The large uncertainty
in at least one coordinate in this region could result in a poor lineariza-
" tion and filter divergence. Since we wish to perform data association in

this area, we must reject the full target state &s z model.
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We thus must define our state variables in another way. One method is
make & Taylor series approximation for &, i.e.,

B(k+T) = B(k) + Td' (k) +-5—b"(k)‘+ E—é"‘(k) cee (5.7)

Our problen is to deternine the appropriateinumber of terms to ?etain in
the expansion. A typical plot of the scoustic azimuth vs. time is shown 1in
Figure 5-3. Obviously, a linear approximation is not very good over the
entire range, so the term #'' should 2t least be retained. On the other
hand, retention of too many terms can lezd to a rather sluggish filter with
a relatively high average error covarisnce. In addition, computation and
. memory requirements increase with the number of state variables. There-
fdre, we restrict our attention to two possibilities: the tnree-state vec-
tor
(k)
x, (k) = [6'(k)
—H .
B'' (k)

and the four-state vector

(k)

8' (k)
8" (k)
16" (k)

Our systen model is

x(keT) = Fx(k) +\ G| wiid
9| wH

w(k) o - (5.8a)

where
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- 1.2
. 1 1 2f
0 1 T P x(k) = zg(k>
0 0 1
F = 1
12 143
1 T 2T 6T
1.2
0O 1 T 2T
0 0 1 T . x(k) = EB(k)
0 0 1

(5.8b)
Wie assume that w(k) is a scszlar, zero-mesn, white Guassian noise process
with variance Q. Moise is entered only through the highest deFivative for

simplicity. The measurement equation for ths Systes is

2(k) = Hx(k) + v(k) - (5.9a)

with ‘
[+ o o] LR = x 0 |
| o= (v 0o o0 o] v xR = xg (k) .(5"95‘)

v(k) is a scalar, zero -miean,white Guassiun noise prodess indepéndent of

w(k) with variance R.
The above model does have a serious drawback, however. Wheén the ratic

is large, corresponding to Swall range and high velocity, the actual

o 3l<

-curve approaches a step fﬁnction. and its derivatives approach singulari-
ty functions. The model is Very poor in these situations. In fact, the
filter will not react as fast as the changes in these derivatives, éﬁdv.itl

~may well lose the data track. Our solution to this difficully is to bypass
it, pointing out that it is easily detected from an  aziunuth history, and

hernce special mechanisms, which 4ill not be developed hereé, ¢an bé invoked




to deal with it. Thus, we will consider only target trajectories with rea-

sonably small valuess of %.

In order to properly choose a good model, we test =z nuiber of possible
values of Q in both the 3-state anu the 4-stéte filter over a range of typ-
ical trajectofies. The trajecories Qere pfoduced by‘vafying the velocity>
and the distance to CPL, the two controlling parameters. Figure 5-3 shous
the various combinatioﬁs thét ware usgd. For each hypothesized model, a
set of data from each target was produced by adding measurement noise of a
standard deviation of 3o to thefexact acoustic szimuths. The Kalmah‘filter‘
corresponding to fhe model was run separately on each data set, and an
average squared error (ase) between the true zcoustic azimuth and the
filtef estimate was computed for each track.. An_overall ase was computed

for each filter.

The résults of the above Monte Carlo simulwtion are shown ini Figure
5-4, It turned out ﬁhat filter runs from two of the trajectories produced
average squared errors that biased those computed from other trajectories.
The first table shows the results if thése ruas were retained. The second
run gives the computztions if ﬁhese runs are eliminated from considerapion;
As can be seen, the model with the minimun squéred error is different in
each table. The errors are close, however, indicating that there are
several models that will give necarly the same performance. We choose the
model indicated by the second table, because all of our cxample térget tra—-

jectories will have

=S |le

< .1. Thus, wa choose the three state filter with

Q=0.001 as our data association filter,
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One last iten tec consider is thz initialization procédure for tbe Kal-
man filter bassd on (5;6) and (5.9). Assuning the model is reasonably ob-
servable, the filter will be relatively insensitive to the ~initial state.
However, we can shggest & natural procedure. Far from CPA, the acoustic
azimith will change very slowly. Therefore, we initialiée'the first com-
ponent of the state to the first measurement received. The other com-
ponents, which are derivetives of the first, are s=t to 0. The initial er-
ror covariance can be chosen somewhat more arbitrarily, since error covari-
ance approaches a steady state value relatively quickly, with small yalues
of Q and R. For the model as determined above_(R:g.O,Q=0.001). it turns
out the covariance reaches»steedy~state after approximately n measurement

updates.

With the above systen model and initialization prbcedure,'we can con- |
strpct the Kalman filters neceséary to implement'the recursive probability
formula developed in the chapter 4. This, in turn, gives us an implementa-
tion for the data association trees. We now turn to the problem of con-

structing system models for use in the track association filters.

5.2 - STATE SPACE MODEL : TARGET TRACKING FILTER

Developing & systen modelythat produces a good filfer to estimate the
full target state frqm the dsta tfacks of the two nodes is a much more dif-
ficult task. Conceptually, we can track the target state in two ways. We
can tfack the acoustic position and velociﬁy, or we cﬁn track the true po-

sition and velocity. We shall investigate the former method first.

- 55 -



Y (meders)

>
R

- 56,..-

ste 5-5

X (meters)



Consider Figure 5-5. Assume that the target has a constant velocity
and constant heading. The node receivesv measurement ﬁ1, at time k1.
cdrresponding to a true térget position at time t1. The relationship
between k1 and t

1 is given by (5.1):

R1 is the range to the acoustic target position. At time k2, the node re-

ceives the measurement éz, and we have

R
2
k2 = t2 + p
Thus,
R2-R1 :
kz—k.l = t2-—t1 + S (5.10)

Even if we choose k2—k1, the sampling period, to be constant, the time
difference between consecutive acoustic positions is constantly changing in

a nonlinear fashion. Thus the system equation is nonlinear, -even though

the target trajectory is perfectly linear.

It turﬁs out tnat the equations of the EKF for this model are very
complicated. They tﬁrn oul to be very sensitive to linearization. We can
get an idea of this by reasoning as follows. Wnile the target is approach-
ing CPA (during " which, i£ is hoped, the target will be acquired), the

acoustic range decreases. According to (5.10), this means tﬁe tiﬁe differ-
ence between acoustic positions is greater than the time difference between
the corresponding measurements. MHow, since the system equation describes
the time evolution of the state, its nonlinearities will affect the tiwme
update equationsvof the EKF. One would expect, tnen, that the effects of

these nonlinearities would be worse than expected for a constant (known)



ﬁpdate period, at least whilé the turget is approuching CPA. indeédji it
turné out that:the filter is not only very sensitive to linegrization, but
that enhanced time differenée between acougtié positions causes the error
govariance matrix to shrink prematurely, reducing the influence of the

current measurements.

Another difficulty in this approach is in the incorporation of the
meésurement3~ into the filter. As discussed later, it turns out thaf the
best method for measurement update enters measurements from each node in—:
dependéntly into a single filter. At ény'given sampling timé, however, the
measﬁrément frqm one ﬁode will not correspond to the same acoustic position
as the measurement from thg other néde. We thus have the difficult task Of

- performing two time updates, corresponding to each pair of measurements.

4

Our second approach is to track the true target state. In this case,

the system model for a linear trajectory is also linear:

T 0 1T 0
01 ¢ T »
x(k+T) = 0 o 1 o |2k + Guli)
00 0 1) ~(5.11)

T 1is now exaétly equal to the sampling period. Because of this znd the
fact the equation is linear, we do not have the sensitivity in.the time up-

date as we did in the previous model.

We should point out that the derivation of ‘the current measurements
from the ecurrent target state does involve a degree of approximation, as

the actual signal received ut time k was produced by the target at time

R

k'g. In the csse of no process noise, (i.e., no target deviastions from a

(s



constant course), this is not z formal difficulty as the state yariables
contzin enough information to zllow a position to be extrapolated backwards
in time. Formel difficulties arise when tﬁe process noise is assumed (as
it 1ust be in this cese for practical reasons), out the approximation that
current measurements csn be derived from thé current state: is wminor com-
pared witi other approximations; e.g;. ignoring altitude, multipath signal

effects, ete.

We now turn to consideration of the measurement equation for the sys-—
tem (5.11). There are three ways to incorporate the measurements into the
filter. One way would be to combine the azimutns in some fashion to form
position measurements. This procedure is called crossfixing, and we’wouid
have a linear measurement equation. As discussad in the next section, how-
ever, the crossfixing is not zluays successful, and we could thus lose in-
‘formation for updaiing target state.estimates.

The other two mcthods use the given meesurenents from the nodes in-
dependently. The first method would identically initialize two filters,
and then run each filter on a different node's measurements. TheAestimates
of each filter could then be combined, taking into account the common ini-
tialization. The second méthod would be run one filter and incorporate
both measurenents. Theoretically, both approaches should produce
equivalent results. As pointed out in thc last section, however, we do not
obtain much of & decrezse in the variance of the position coordinate per-
pendicular td the trajectory. This implies that this coordinate 1is rela-
tively unobservable. e wil thus obtzin large errors in the estimation of

this component, which will in tura give poor linearization. Without a good



linearizations, the EKF becomes unstable. For these reasons, we Will use a
single tracking filter that incorporates meusurements from both nodes in-

dependently.

We now derive the measurement equation for the system (5.11). Con-

sider the Figure 5-6. U is the true target position with coordinates (x,
prYp

target azimuth and # is the acoustic azimuth from node S. MNode S has cabf—

¥) and P is the acoustic position with coordinates (x ). W is the true
dinates (xs,ys). Let t be the time difference between P and U. Then the
distance between these two points is vt, where v'is'the'QeIOéity'Of'the
target. In addition, t must also be the travel time of the signal from P
to S. Hence, the distance between thesé points isvct. The angle 8 is as
shown, and is easily seen to equal ®-u, where € is the heading\df“the ‘tar-
get. By the law of cosines we see that
(et)? = (vt)2ﬂ82—2VUPCOsa

where @ is the true target range. Solving for © we get

102 2 2 . 2.
Vo Al : .
¢ = Ovcosd+ \gp g - sin™ 9 (5.12)
e~y

Now, let vx be the velocity in the x direction, and vy be the velocity :in

the y direction. Tnzn we have

X=X
co=1 3
Y = tan =
y YS
(5.13)
-1 Vx
€ = tan T (5.14).
Yy

Since ©=yu-&, we can derive the following using trigonometric identities:



\q
P L"p., \/P)
¢ S
A e U (x”b)
t_%
S CXS > \/s)
'F:e)ure_ 5- é:
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cos® = ——3 : (5.16)
sing = —L—% | (5.16)

Substituting into (5.12) and simplifying, we get

i o .
—(xv*+yvy)+\39202-(XVY-¥VK)2 ’ o
t = . IR maa _ - (5.17)
c v

Since @ and v are functions of x, vy, Vo and vy, (5.17) gives t completely

in‘terms,of the true target state. We now have

xP‘= x—tvx
yP = y—tvy
and
X X-tv
6= tan”! £ = tan”] — V‘ (5.18)
YP y-¢ y
. Thus, our measurement equation is
! x(K) -2 (x)v. (i) o
z(k) = tan + w(k) - (5.19)

y () -t(kiv ()

where w is the noise term and t is given by (5.12).

Since this equation is nonlinear, we will have to use an EKF. For

this, we need the vector derivative

ds 06 dd b .dé,..v

di: a:(- -a; -()N—x -(;Tl; (5.20)

The equations for the above partial derivatives cen be derived by straight-

forward though tedious, calculus. The results are



36 yP+(—yv +XV )-gE
X Yy ax

ax (vl
“pTVp
- ) at
%9'= —xp+(—yvx+xvy)az
y x2+y2
p 7P
dt
~ty _+(=yv +Xv )3——
dd ) P X Yy v.x
avx x2+y2
P »P

' dt
9 ‘txP+(—ny+xvy)3v;‘ | ‘
XP*YP

where

2
xe +v_(yv_-xv )
ot _ 'x * R
x .

y(xv ~yvx)

- y Sy
. X + D + 4\xt
av 2 2
e v
Cx(yv_—xv )
y v —2 3 L ovt
at y D y
av 2 2
Ty ¢ -v
|
D=\Ni 22
Cec —(yvx—xvy)z ((v.22)

The equations for the EKF are of exactly the same form as (4.3), except that here
the measurement matrix is

_ a8
H(k) = P




The only thing left to specify here is the initialization ﬁ?déédhre.
lie will initialize the position and velocity of the filter at one point in
time. This will be done using the smoothed estimates of the azimuths and
Etheir derivatives at each node. Tne procedure involves crossfixing, which
is the topic of the nexﬁ section. A poor initialization can cause problems
in th'ways. If the filter is initialized when the target is far from CPA
of both nodes, thevtrajectory_will be unaffected by thé mezsuretients for a
relatively 1long period> of time. The érrors in'initialization will thus
grow with time. In addition, if the estimated target position 1is much
closer to one of the nodes than the true target position, the filter will
give greater weight to the measurements from that node than‘ it should.

These effects cascade, resulting in filter divergence.

With these points in mind, we.fgrmulate the following restrictions on
the initialization prpcedure. First of all, we use two azimuths to calcu-
late a position only if theif difference is greater than 60°. This enshres

‘that we do not initialize wher the scoustic position is too far away,
Second;iwe artificially adjust the initial‘heading so that it points toward
the midpoint of the line segment joining the two nodes. This ﬁelps keep
the initial position away ffom either node, This procédure, of" course,
works well only for trajectories that pass between the nodes. HoWevér,
this is not much of a limitation if we consider the two nodes as part of a
larger network. In such a system, it is recsonable to zssume that the in-
teresting targets will eventually pass betwéen soine pair of nhodes. 1In ad4

dition, a node pair may receive an initial state for a target that is being

tracked by other nodes. This brocedure; called target bandoff, is impor-

- Ol




tant in a system with & large number of nodes. In these systems, initiali-
zztion 1is required only if duta “racks cannot be associated with a priori
targets. This reduces the number of initislizations a node pair must per-

form.

5.3 - CROSSFIXING AtD NON-CLASSICAL GHOSTS

As mentioned in the last section, crossfixing is the procedure for ob-
taining pﬁsitionv measurements from the ‘azimuth measurements of the two
nodes. For time-delayed measureﬁents,vthe process is more: complex than
simple triangulation. Suppose that time target position is.further away -
from node A than node B. The signal will thus reach‘B‘ first. We cannot
obiéin a position wusing this measurement at B becuuse the corresponding
measurement at A has not yet arrived. On the other nand, if we wuse the
current measurement of A, the corFeSpondiﬁg"measurement of B is a past
measurenment. Thus, crossfixing cen only produce &acoustic positions
corresponding to measurements ffom'the node farthest aﬁay from the target.
Given the current measurement from one node, we can_divide the crossfixing
operation into two steps. The first step determines the measurement and
its time of recgption at the second node that corﬁesponds to the séme
acoustic position =as the given measurement. The second step is standard
triangulation. Since the first step is the real‘problem‘here. we will in-

vestigate it here. The derivation follows [u1.

Consider Figure 5-7. Suppose that we receive,'at time tB the azimuth
éB at node B. We wish to find the measurenent 8, received by node A at
. 2l

time tﬂl that corresponds to the same acoustic position as éB. Let
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&t = ty=t, . (5.23)
and define tP to be thes time at whicii the true target position was the same
as the desired acoustic position P. Then

St = (tB—tP)—(tA—tP) (5.24)

Now, tB—tP is the trével time of the signal between P.and B, while tA-tP is

the travel time of the signal between P and A. From the geometry of Figure

5-7, the following is evident:

L, ._h ____h
= — - =
A ‘ 31n6A coséA (5.25)
1 = h _ h '
= — - = ,
B 51ndB cosdB (5.26)
(Remember dB is a negative quantity in this figure). Also,
1
- = — 2
tA ty S (5.23)
t.-t, = iE (5.29)
B P c )
From (5.25) and (5.26) we get -
cosép
1,=1 —— (5.30)
3 A bln(éA—éB) . v
Substituting this into (5.27) and soiving'for lA' ve get
d cosdB
l, = ¥ (5.31)
A 51n(6A—6B)
Also,
d coss
1, = A
st =7
B A B : N
(5.32)

“Using (5.24), (5.23), (5.29), (5.31), and (5.32), we finally'get

cosd . - '
g . d. ¢ A coséB
. ¢

51n(bh468)
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(5.33)

Although we have used a restricted geometry here, the result is more gen-
eral, The equation is valid, of courss, only in the range where the meas-

urements 6& and éB intersect; nanely,

v w 3 w W
I. —E(.éB(E . dB<éA<E

' {4 w

I 5 <8<, 28 <2ms

L. <o <, Tog o<y

For dB = ig, the acoustic position is indeterminate.
Now, suppose that we have the past nistory of resceived measurements’ab
node A (i.e., the azimuth vs time curve for A) as in Figuré 5-§. Using
(5.32) we can ¢onvert the single observation 8, ¢t node B into a curve of

possible éA vs 8t and plot it on the szame sczle (Figure 5-9). This curve

is called the reflected observation curve. The intersection of these two
curves gives the desired measurément BA’éhd its reception time EA‘

ble. This occurs when the target trajéctory passes bétween the two nodes.

‘Figure 5-10 shows an exanple. At timé instants one second apart we have
taken the noiseless measuremedts at B, and obtain all possiblée acdustic po-
sitions aééumihé a full past history of noiseless aeasurements at A.  The
target velocity was 150 meters per second al a heading of 135 degrees from
north, and the distance between A and B is 5000 meters. In the figure, the
- real acoustic trajectory is obvious. The fulse positions form a track Lhat

flies from the perperidiculur bisector of the line segment joining A and B
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to node A. This behsvior is exhibited by all such false tracks, and they

occur only on the incoming path., - We call these tracks non-classical

ghosts, to distinguish them from the ghosts of Chapter 4.

A heurestic‘procedure can be developad which eliminates, for noiseless
measurements, most traces of ghost tracks.k Looking again at Figufe 5410,
we see that the ghost track is concave downward. (Ihe track begins at thé
bisector and heads toward A). Since the target heading is 135 degrees, the
acoustic azimuth increases with time. However, succeading positions along
the ghost track requires the acoustic azimuth to decrease with time. Thus,
the measurements of A that determine the ghost treck forms a sequence that
goes backwards in time. At each point in time, then.rafter crossfixing has
been completed, we eliminzte the past history at A thast occurs prior to the
earliest crossfix, then the rest of the grost treck will be eliminated. If
it is not, the ghost track remains. Fligure 5-11 shows the results for this

example. As can be seen, only part of the ghost track is aliminated.

We can eliminate the rest of the ghbst by observing that this portion
of the ghost track must correspond to the later crossfix, else it would
have been eliminated. We thus keep only the eariiest crossfixes, which
»cofrespénﬁvnto the real acoustic positions. The result, with a few minor
ad justments ﬁhat need not concern us hefe, are shown in Figure 5-12, Note
thaﬁ the procéaure makes oné eipected erfor -~ thne first point at which the

ghost is tne earliest crossfix.

In the noisy case, deghosting is somewhat more difficult, primarily

because crossfixing is not always successful, An important thing to notice
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in Figure 5-12 is the gap that dccufs in the region where the ‘ghosﬁ track
and the target track intersect. 1In this region, the reflected obsérvation
curve 1is élmost tangentiél to the azimuth time curve; the intersection
,points are close togethef. This is shown in Figure 5-13 . In cases like
these, it is very difficult to detect ths intersesction p&ints. This is why
the gap appears in Fig. 5.12; the curves were almost tangential and the '
crossfix failed. The situation is even worse whan the measurements are
noisy. The gaps can be many time—sampling periods long. 1In addition ;o
this, the noisy data can cause r;ndoh crosfiﬁing failures . anywhere . along_
the path. Because of this loss of information. we choose not to use posi-
tion measurements as updates to our filters. We will, however.( use

crossfixing in initialization.

5.4 — SUMMARY

In this chapter, we have developed state vuriable descriptions neces-
sary +for the construction of Kalmaﬁ filters for both the data aSsdciation
trees and track association trees. We also discussed ’the opefation of
crossfixing and non-classical ghosts. In chapter 6. we shall present sone

results for this implementation of our tracking slgorithm.
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CHAPTER &

RESULTS

In this chapter, we present demonstrations of the filters developed in
Chapter 5 &and their application to the tracking algorithm. It should be
pointed out that thes= examples only nighlight basic characteristics. In
order to =evaluate the strength of the filters, Monte Carlo simulations
should be conducted over a wide range of target scénarios, and performance
statistics must be defined and computed to facilitate the evaluation. Un-
fortunately, due to Uliine constraints, we- were unable 'to give a really
thdrough performance evaluation, We will, however, present some results

that illustrate the characteristics of the filters and the algorithm,

All of the demonstrations in this cliepter were done by computer simu-
lation. The simulations, as well as the algorithm itself, was written in

'the C language and rua on a PDP-11 computer.

In the firsb cxample, a Monte Carlo simulzation was rﬁn on the data as-
sociation filter to provide some information on its performance. The
parameters of the example trejectory are those of Target 1 in Table 6-1.
. The node A at which the data association is carried out is positioned at
the origin. A s=t of noiszless acoustic azimuths was generated for A, as-
suming a sampling period of one second. Only azimuths that corresponded to
anglés‘around CPA tnat were between —70o and 700 were retzined. From this
azimuthal set, 50 sets of noisy data ware generated by adding white Guas-

o

sian noise with a standard deviation of 3 The data association filter




WS run separately on each szt of data. For each point in time, an average.

‘mean square error was calculated over the 50 data sets. The results are
shown in Table 0-2. Clearly, the filter perfornunce is best far from CPA,
.mMhen the ezimuth-time curve is practically linecar. As the acoustic data

approaches the CPA angle, however} the azimuth derivatives are in flux, and

performance degrades. Still, the overall average squared error was reason—.;;

able, about half the variance of the measurement noise.

The next éxample is an excelleht deﬁonstration of the,capabilities of
the data association process in a two—target énvironmént. The trajectories
“are’ those of_Target 1 and Target 2 in,TaBle 5-1. Again, the‘reference nodé
‘A is at the origin. Figure 6-1 shows the exactiacoustycal data generated
by these trajectories. Note that the curves intersect twice, and that the
angles of intersection are somewhét small, Tnese regions are potential
trouble spots for the data associztion p}ocess in the presence of noise;

The node must be able to distinguish_the noisy data so that they can be

tracked. Otherwise, the target traCRing‘ﬁﬁécess will not be good. Figure

6-2 shows the noisy data after the data @ssociation, while Figure 6-3 plots

the filtered estimates. Although a_fewlméasﬁfements around'the :curve Cin-

tersections points are mixed up, the process manages to lock onto and track

v

separately the two'setslof data.

The next example demonstratesvthe target tracking filter;' A second
node B is placed at the point (5000.'0). - Noisy sets of data are getierated

for both A and B from the trajectory of Target 1. . The resulting target

track, .combining the two data tracks, is shown in Figure 6-4. Because of

Q

the restrictions imposed in Section”S-9f*th§tﬂtarge33-

éA“ﬁéil séidﬁg? tﬁe_




vtréjectory-béfore thevtfack was initielized. The plot is & bit misleading,
in that -thc points of the track do not lie in sequentizl order follﬁwing
thé true trajectory. This because tne estimate of the curfent target state
is updated bylcurrent measurements, whicn correspond to earlier stztes of
the target{ There always e*ists an uncertainty in the time of occurence of
tﬁe earlief‘siétes; hence, dné Qould expect consecutive estimates would not

necessarily fol1ow a sequentially follow the true trajectory.

'Ouf last example dembnstrates,bréck associaiioh with the data tracks
of fhe second examplé. Figure 5-5 shows the results.‘ The ghost tracks
(ife.._the incorrect track associations) turned out to be not much of a
problem, One ghost did not even initialize a tréck. The other ghost in
due course surpassed the speed of scund, and the algorithia automatically

rejected it.

The peculiar behavior of the'cragk'of Target 2 is easily explained in
‘terms of the initialization procedure outlined in chapter 5. The initial
trajectory was set to head towards the'point (2500,0). The track more or
less hzld  this direction until the target approaqhed CPA. Then the meas-
urements from both nodes began to have effect, and the track was subse-

quently pulled back around the zctual trajectory.

As we mentioned earlier, the examples only highlight the major cnarac-
teristics of the tracking glgorithm in the two-node system. We did provide
some statistics on the performance of the dasta association filter, pointing
out its weaknesses, &nd demonstrated its success in Fesolving long term am-

biguities. We also demonstreted the full target state filter and tne track

-7y -




association process. ’Houever. much wgrk still reizains pg_ggﬁggge_gq: order
to fully test tne tracking aiggr;thm. Heasurenents of P3F59593R9§:9ffPhe-
full state tracker need to be evaluated. 4diso, thglpeggggmancezgg the data
association filter as a function of the rave of false alarmns shduld bé'gn—

vestigated to provide a measure of robustness.

The application of these ideas to larger distributeci‘ffﬁle;works is ‘.“avl'.sq_
a furthér_area‘of research that must be investigated. This,ﬁogld pf6babiy'
require a theoretical structue thatﬂgémpined verious }écéiv §arg§t tféékg
into global tracks suitable for the users of the FT?Eki“? sx§§§m. Thévef—
fect of communicqbions, Problems H}ph,gangpyeripg pagggpsvgpq .Sarget Hane
doff-procedures are o;her_grgg; ?Q?} 5@}1Arpguir¢ cgrgfg; rggsgrgb, E}gq}f
ly, we mention the importance in testing the algoritim }9,?:5923 gg{ldf§y§f

tem to investigate its real utility.

What we»havé attempted here is to show that our t(@ggéng' algqfipbmi
‘does perform reasonably well in tracking nultiple targets and resolving am- .
biguities in data associations. It }s hoped that it will be a useful »&661 ,

for future investigation into distributed processing tracking systems.
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