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ABSTRACT

Multi-channel Blind System Identification (MBSI) is a technique for estimating both an unknown

input and unknown channel dynamics from simultaneous output measurements at different

channels through which the input signal propagates. It is a powerful tool particularly for the

identification and estimation of dynamical systems in which a sensor, for measuring the input, is
difficult to place. All of the existing MBSI algorithms, however, are not applicable to multi-channel

systems sharing common dynamics among the channels, since these algorithms, by nature, exploit
"differences" among the multiple channel dynamics. This requirement renders the MBSI algorithms

useless in systems that have both a lumped-parameter nature and a distributed nature; all channels in

a system of this type share poles dictated by the lumped-parameter dynamics.
To overcome this difficulty, this thesis investigates a new approach, Intermediate Input

Identification (IIID). This thesis proves that the distinct dynamics in each channel can be identified

up to a scalar factor even when common dynamics are present. Based on this discovery, the MBSI

problem is reformulated and an intermediate input is introduced, which integrates the original

system input and the common dynamics shared by all the channels. The two-step IIID approach is

developed to solve the problem: first, the distinct dynamics are identified from the outputs; second,
the common dynamics are identified from the intermediate input by exploiting the zero-input
response of the system. The identifiability conditions are thoroughly investigated. The sufficient and

necessary conditions and the relationship between the linear-complexity condition of the original
input and that of the intermediate input are derived in this thesis.

This thesis also develops a central hemodynamic monitoring scheme based on IIID. The
similarities between the structure of a digital wireless communication system and that of the

cardiovascular system are explained. The input, the common dynamics and the distinct dynamics in

the cardiovascular multi-channel system are derived based on the determinants of arterial blood

pressure. Analysis of the data from a cardiovascular simulator and animal experiments verify the

validity of this scheme. The positive results demonstrate that the IIID approach could open up the

possibility for noninvasive central hemodynamic monitoring, which could significantly reduce the

risks to which patients are exposed.
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Esther and Harold E. Edgerton Assistant Professor of Mechanical Engineering
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Chapter 1 Introduction

Central aortic pressure and flow tracings convey important information about the cardiovascular

status and the cardiac performance. Traditionally, aortic flow and pressure recordings have required

invasive catheterization, which may lead to bleeding, infection and sometimes thrombo-embolic

complications [1]. The challenge in central hemodynamic monitoring is that the central flow and

pressure, the input to the arterial system, are not easily measurable. The unavailability of the input is

also a common issue in many biomedical and biological systems.

1.1 Inverse Transfer Function

Recent studies [2] suggest that the central pressure can be estimated by mathematically transforming

peripheral pressure that is measured non-invasively. This method is referred as the inverse transfer

function method in this thesis. The objective of extracting central information from peripheral

noninvasive measurements is achieved by deriving a general model from the central to the peripheral

pressure. First, invasive central measurements and noninvasive peripheral measurements are taken

for a group of subjects. Second, the transfer function for each subject in the group is identified.

Finally, the average of all the transfer functions is used as the general model for predictions on other

subjects.

The inverse transfer function method, however, has two major disadvantages. First, an

invasive central measurement is still necessary to identify the individual transfer functions from the

central pressure (system input) to the peripheral pressure (system output). Second, an averaged

transfer function has to be used to predict the input from the output on other subjects. Since the

cardiovascular system is highly time varying and subject dependent, this general model has limited

applicability.

1.2 Blind System Identification

In this thesis, a new approach to monitor central aortic flow using the multi-channel blind system

identification (MBSI) technique is presented. MBSI is the technique that allows the estimation of

both unknown input and unknown channel dynamics from only channel outputs. I was inspired by
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the application of MBSI to wireless communication systems [3], where a broadcast signal is

transmitted through different paths and received simultaneously by multiple receivers, as illustrated

in Figure 1. Both the unknown channel dynamics and the unknown source signal are reconstructed

by exploring the correlation among the signals received at different locations.

Receiver M

Receiver 1

Broadcast Multiple Multiple
Signal Paths Receivers

Figure 1. Digital Wireless Communication System

It is noticed that the arterial system has a structure topologically similar to the wireless

communication system. As illustrated in Figure 2, the three major branches of the aorta, the

brachiocephalic trunk, the left common carotid artery and the left subclavian artery, disperse into

different parts of the body. In general, systemic circulation is modeled as a multi-channel system as

follows: the left ventricle is modeled as a flow source that is characterized by the cardiac output, the

common input to the system, different arterial branches are modeled as the different channels of the

system; noninvasive sensors, located at different branches of the systemic circulatory system, are the

outputs which are driven by the common input. Figure 3 depicts the schematic of such an arterial

multi-channel system. Central hemodynamics, i.e., the source, are transmitted through different

arterial paths and observed at multiple systemic locations, such as the carotid, the subclavian, the

femoral, etc. If multiple sensors are placed at different systemic locations, the MBSI technique can

be applied to estimate the arterial channel dynamics and the aortic flow. This new technique could

open up the possibility of noninvasive central hemodynamic monitoring, which could significantly

reduce the risks exposed to patients.

9



Left Common Carotid

Brachiocephalic
Trunk

Arch of Aorta

Ascending
Aorta

Left Subclavian

Descending
Aorta

Figure 2. Anatomy of the Systemic Circulatory System

o o

Noninvasive
C) Sensor 2

Subclavian

Figure 3. Schematic of an Arterial Multi-channel System

1.3 Thesis Scope and Organization

To apply MBSI theory, however, several conditions must be met. These conditions are not directly

satisfied when applying MBSI to central hemodynamic monitoring. This thesis presents an effective

solution to this problem. The rest of the thesis is organized in the following way:

Chapter 2 will review the existing MBSI algorithms, discuss the identifiable and non-

identifiable systems and raise the issue of common dynamics. Chapter 3 will introduce the new

formulation of the MBSI problem with common dynamics, develop the theorems for the

identification of the distinct dynamics and the common dynamics, and propose the intermediate

10



input identification approach to solve the MBSI problem with common dynamics. Numerical

examples will be provided to illustrate the theorems of distinct dynamics identification. Chapter 4

will focus on the application of the intermediate input identification approach to central aortic flow

monitoring. The concept of modeling the arterial hemodynamics as a multi-channel system will be

described first. The identification conditions of the arterial system will be analyzed. Numerical

simulations results using a cardiovascular simulator will be presented. Chapter 5 will provide

experimental results from animal studies. Chapter 6 will summarize the contributions of this thesis

and propose the directions for future research.
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Chapter 2 Multi-channel Blind

System Identification

MBSI is the technique that allows the estimation of both an unknown input and unknown channel

dynamics from multiple channel outputs. Figure 4 shows the schematic of a multi-channel system,

the key feature of which is that all the channels are driven by the same input. Therefore the inherent

correlation among the outputs can be explored to solve the problem.

Channel hl(n) output y,(n)

input u(n) Channel h2 (n) output y,(n)

outputy(n)Channel hM(n)

Figure 4. Schematic of a Multi-channel System

This chapter will start with a review of existing MBSI algorithms, which focuses on

deterministic approaches. The cross relation among the outputs and its different forms in different

types of systems, i.e.: all-zero systems, all-pole systems and pole-zero systems, will be introduced

first. The least-squares solution to the MBSI problem exploiting this relation will then be derived.

The formulations for different types of systems will then be generalized into one form, which will be

referred to in the rest of the thesis. Next, the identifiability conditions, namely the sufficient-output

condition, the input-linear-complexity condition and the distinct-channel condition, will be

discussed, both qualitatively and quantitatively. In particular, the sufficient and necessary

requirements on the input linear complexity will be derived for all-pole systems and pole-zero

systems. Finally, the problem of the existing algorithms in dealing with multi-channel systems when

common dynamics are present will be addressed.
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2.1 Review of Existing MBSI Algorithms

There are two types of MBSI algorithms. Stochastic algorithms exploit the statistical information of

the input, such as probability density function [3], cyclostationarity [4][5], etc. However, such a

statistical model may not always be available, or there may not be enough data samples to find a

reasonably accurate estimate. On the other hand, deterministic algorithms, which will be the focus of

this section, do not assume any statistical property of the input, but rather treat the input as a

deterministic signal. They explore the cross relation among the outputs that is inherent in multiple-

output systems. The content of this section is a summary of [3][6][7][8][9][10].

2.1.1 Problem Formulation

The multiple channels shown in Figure 4 are driven by the same unknown input, denoted by u(n),

and yield different outputs, denoted by y,(n), y2(n), ... , y,(n), where M denotes the number of

channels. Assuming that the channels are linear and time-invariant (LTI) and their impulse responses

are denoted by h,(n), h2(n), ... , h,(n), the system is described in time domain by the following model:I 1(n) = h,(n) *u(n)

y2 ( 2) = h()*( ) n (1
(1)

YM (n) =hM (n) * u(n)

where * denotes the linear convolution. The MBSI problem is stated as follows: Given the

observations of the channels' outputs yi(n), y2(n), ... , ym(n), determine the channels' dynamics h1(n),

h(n), .. , hM(n) and ultimately recover the input signal u(n).

Let U(z-1) and Y(z-), i = 1, 2, ... , M, denote the z-transform of the corresponding signal u(n)

and y(n), i = 1, 2, ... , M, respectively. The system model can then be written in frequency domain as:

Y(z-) H 1(z-1)* U(z-1)

Y2 (z-)= H 2 (z-) * U(z') (2)

YM (z-1)= HM(z-1)* U(z-1)

where H,(z-1), H 2(z1), ... ,HM(z') denote the transfer function of each channel. Let Ni(z-') and D,(z<'),

i = 1, 2, ... , M, denote the numerator and the denominator of each transfer function respectively.

The transfer functions then have the following general form:

13



Hi~z-1) Y(Z -1 Ni (z - bi,0 + bi,1z -1 +... +bi,,,, z~" ., j=12 . 3
H-(-) = -' ,z= 1, 2,...,M (3)

U(z -1) D, (z -') 1 + ai,lz~- 1+ ...-+ ai,ni Z~"nt

where n and nz are the number of poles and zeros in channel i respectively,

aj,1,...,a,, ,i= 1,2,..., M , are the coefficients of the polynomial Di(z-1), i = 1, 2, ... , M;

bj,0,...,b,, ,5i = 1,2,..., M, are the coefficients of the polynomial Ni(z 1), i = 1,2,... ,M.

2.1.2 Cross Relation Between Two Channel Outputs

Consider any two noise-free outputs of the multi-channel system, y(n) and y(n):

yi(n) =h,(n)*u(n)
yJ (n)=h, (n) *u(n)

The two outputs have the following cross relation since they are driven by the same input:

hi (n) * yj (n) = hi (n) *[hj (n) * u(n)]

=h (n) *[h.(n) * u(n)] (5)

=h,(n)* y (n)

This relation can be written in frequency domain as:

Hi (z) z Y(-)= Hi (z') *[H, (z-)* U(z')]

= H (z- *[H (z')* U(z 1)] (6)

= H (z1) * Y (z-1)

The cross relation in eq. (6) takes different forms for different types of systems.

a) A ll-zero Sstem

When all the poles of the channels are located at the origin, i.e.: Di(z') = 1 for i = 1, 2, ... , M, the

channel dynamics are described by a moving average (MA) model:

Hi (z 1) = N, (z -1) = bi,0 + bi,lz -1+... +bi,,z-"i , i= 1, 2, ...,IM (7)

The cross relation between the outputs of the all-zero system is:

N,(z-')Yj (z-)= N (z-')Y(z-) (8)

14



b) A ll-pde Systm

When all the zeros of the channels are located at the origin, i.e.: Ni(z') = 1 for i = 1, 2, ... , M, the

channel dynamics are described by an auto-regressive (AR) model:

1 1
H(z-) ,.M (9)

D;(z-1) ai,O +aj,jz-l +...+aj,,,,z-"

The cross relation between the outputs of the all-pole system is:

Yj(z -)D, (z = Y)(z-')Di(z-) (10)

c) Pde-zero Systeim

When both poles and zeros are present, the channel dynamics are described by an auto-regressive

moving average (ARMA) model:

Ni (z-) bi, o+b,1Z' +...+bm,,,Z~mi

Di(z') -aj,O+a1,z- +...+ajnz~"i L 2 (11)

The cross relation between the output of the pole-zero system is:

Yj (z -1)[Dj (z -1)Nj (z -1)] = Y (z -')[Di (z-')N j (z -1)] (2

2.1.3 Identification Exploiting the Cross Relation

The above cross relations show that each pair of outputs in the multi-channel system is related by

their channels' responses. Clearly, when there are adequate data samples of the outputs, the MBSI

problem is cast into an over-determined least-squares problem. Under certain conditions that will be

elaborated in section 2.2, the channel dynamics can be determined uniquely up to a scalar factor. In

the following formulation, N denotes the number of input samples; L denotes the maximum order

of all the channels, whose meaning in the all-zero, the all-pole and the pole-zero systems will be

given in each of the following sections; the input sequence is denoted by u(n), n = 1, ... , N; the

output sequences are denoted byy(n), i = 1, ... , M, n = L, ... , N.

a) A ll-zero System

An all-zero channel has a finite impulse response (FIR). In fact, eq. (7) suggests that:

15



b-1 ,n = 1, 2 ... Mi +1
hi(n)= 0 otherwise ',i=1,2,...,M (13)

The channel order is determined by the length of the impulse response, i.e.: nz+1. L is defined as the

maximum length of the impulse response of all the channels, i.e.: rmx(nj+1, i = 1, 2, ... , M). E q. (8)

is rearranged as a set of linear equations of hi(n) and h(n):

[Yi, -Y ][ h1 = 0 (14)

where hk -[hk(L), -, hk (1)]T,k =i, j, and

Yk-

_

yk (L) k (L +1) ---

yk (L +1) yk (L + 2) ---

k(N-L+1) yk(N-L+2) ---

yk (2 L -1)

Yk (2L)

j ,k=,)

yk(N)_

(15)

For each pair of outputs in the multi-channel system, we can write a set of linear equations

as eq. (14). Combining all of the permutations among M channels, we can write a larger set of linear

equations in terms of hl, h 2 , ... , hM:

Y-h=O (16)

where h -[h , ... hMT I]T and

Y2

Y 3

0

Y0
0

0

0

-Y 1

0

0

Y 3

Yu

0

-Y 1

0

-Y 2

0

0

0

0

0

0

0

Yu

0

0

0

-Y
0

-Y 2

- YM-1

(17)

h can be solved by the least-squares estimate within a scalar factor.
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b) A ll-pdeSstem

An all-pole channel has an infinite impulse response (IIR). The channel order in this case is

determined by the order of the polynomial Dj(z), i.e.: ni. L is defined as the maximum number of

poles of all the channel, i.e.: imx(n, i = 1, 2, ... , A). Eq. (10) is rearranged as a set of linear

equations:

(18)

where Dk = [ak,nlk , ''', ak,1]T,k = i, j, and Yk ,k = i, j is as defined in eq. (15).

Similarly, for multiple channels, combining all of the permutations among M channels results

in a set of linear equations in terms of D1 , D 2 , ... , DM:

Y-D=0 (19)

where D[D 1 T, ... , DM I and

Y1

Y1

0

Y1

0

0

0

-Y 2

0

0

Y2

Y2

Notice the difference in matrix Y for the all-zero system (eq. (17)) and the all-pole system (eq.

(20)).

c) Pde&zero System

A pole-zero channel also has an IIR The channel order in this case is determined by the number of

coefficients in the polynomial D(z-1)N(z-1), i.e.: the number of poles in channel i and the number of

zeros in channelj plus one. L is defined as rmx(n, + rr +1, n + nr +1, ixj).

17

0

-Y 3

0

-Y 3

0

0

0

0

YM
0

-YM

-- M

0

0

0

0

0

0

YM-1

(20)

D
[YI, -Y ]DI - 0



In this case, at least three channels are necessary to distinguish poles and zeros of each

channel. First, eq. (12) is rearranged as follows to solve for the roots of the polynomials

Di;(z- 1 )N J(z- 1) (i, j = 1,...,A, i j):

ED N -[YO, - Y j D N = 0 (21)

where D N and D 1N , are the vectors whose elements are the coefficients of the polynomials

Di(z-')N.(z~1) and D.(z~1)Ni(z-1) Then, consider the set of polynomials

D,(z')NJ(z 1 ), L= 1,...,M,i j, which may be considered as the outputs of a (M-1)-channel

FIR system driven by D,(z~) and having channel transfer function Nj (Z-), j= 1,...,M, i # j.

The schematic of this all-zero system is illustrated in Figure 5. The zero locations of each channel

can then be solved by formulating another MBSI problem for this all-zero system. The pole

locations can be solved in a similar manner by formulating an MBSI problem for the all-zero system

shown in Figure 6.

N,(z-') D,( N(z)

N2(z 1 ) D ')N,(t-)

D,(. ) ,,(z-

N (z')

NM(z') D (g N -'i

Figure 5. An All-zero System Formulated
to Solve the Zero Locations of a
Pole-Zero System

- , D1(z-') N(() ,z1

--- D 2(Z- ) N( )D( )

-- D ) N('D ,(z)

DM(z-1 N'D

Figure 6. An All-zero System Formulated
to Solve the Pole Locations of a
Pole-Zero System

This procedure is illustrated by the following example. Given a three-channel system whose

channel dynamics are described by the following transfer functions:

18
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Y(z-)
U(Z-1)

N(z-1) ,2,3

Di ( -)

All the polynomials in eq. (22) are co-prime. A two-step procedure is

dynamics in the system. Q{e} denotes the roots of a polynomial..

First step: three two-channel BSI

(22)

needed to identify the distinct

Q{D(z-')N2 (z')}
Q{D 2 (z- 1)N 1(z-')}

Y2 _ 1LD2 (z ')V 3 (z ')I

Y3 Q{D3(z-')N2(Z-1)}

y3

.Y1

Q{D 3 (z -1)N 1 (z ~1)

Q{Dl(z-')N3(z-1)}

Second step: two two-channel BSI

Q{D(z-')N2 (z-1)}
Q{D 1(z 1)N 3 (z-1)}

Q{D 1(z -')}

-> Q{N 2 (z -1

Q{N 3 (z- 1)}

Q{D 2 (z -')N1 (z _'

Q{D 3(z-')N1 (z-1

Q{N 1 (z -')}

>QD2(Z-1)}

2.1.4 General Form of the MBSI Problem

In summary, the general form of the blind system identification problem for any pair of channels in

the multi-channel system is:

[Yz, -Yj] W=0.
I I l

(23)

where Yj and YJ have been defined in eq. (15) and Wi and W have different forms for

different types of systems as defined in eq. (14), (18) and (21). This general form can be extended to

the case of multi-channel systems using eq. (16), (17) or (19), (20).

For simplicity, in the rest of the thesis, all the algorithms will be derived for a two-channel

system. The general form that will be used is:

Y(L ) =[Y 2(L),
IW2(L )

-Y (L)] =jzL; 0
1W2(L )_

(24)

The parameter L indicates the maximum order of the two channels. The matrices in eq. (24) have

the following dimensions:

Y(L): (N - 2L +2) x 2L

Y 1 (L ), Y 2 (L): (N -2L + 2)x L

W 1(L), W 2 (L):L x1

19
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2.2 Identifiability Conditions

A direct observation from the general form, eq. (24), is that the channels' dynamics can be identified

uniquely if and only if the dimension of the null space of the matrix Y(L ) is 1, i.e.: one and only

one column of the matrix Y(L) is a linear combination of the others. Qualitatively, given the

channels' order L, the MBSI problem can be solved only when the following identifiability

conditions [3] are met:

" The outputs must have enough samples.

" The input must be rich enough to excite all the modes in the system.

* All channels in the system must be distinct.

The first two conditions are general requirements for any system identification problem, e.g., the

standard input-output identification problem [12], while the distinct-channel condition is unique to

the MBSI problem. The quantitative descriptions of the three conditions are given in the following

sections.

2.2.1 Sufficient-output Condition

The MBSI algorithms estimate the channel dynamics by solving a set of over-determined linear

equations, thus requiring that the matrix Y(L) in eq. (24) have more rows than columns. As

mentioned earlier, the matrix Y(L) has a dimension of (N-2L +2)x2L. Therefore the number of

the output samples, N-L +1, has to satisfy

N - L +1 3L -1 (25)

If the number of output samples is less than 3L-1, then the linear equations in eq. (24) have more

variables than equations. Thus the problem becomes an underdetermined problem and more than

one solution exists.

2.2.2 Input-linear-complexity Condition

It is required that the input must be rich enough to excite all the modes in the channel dynamics.

The richness of a finite sequence, {u(n), n = 1, ... , N}, is measured by the number of modes in the

sequence, which is also referred to as the linear complexity. Quantitatively, the number of modes of

the finite sequence u(n), denoted byp, has the following property [6][11]:
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Lemma 1: Given a finite sequence u(n), n = 1, 2, ... , N. If there are p

modes in the sequence u(n), the pth.-order Hankel matrix U(p)

defined in the following has full column rank:

~ u(1) ... u(p)~

U(p)=:-. : (26)

_uN - p+1) ... u(N)_

The linear complexity of a finite sequence is analogous to the number of frequency

components in an infinite data sequence, which is measured by the persistence of excitation of the

signal:

Lemma 2 [12]: A quasi-stationary signal u(n) is persistently exciting

of order p if and only if the pxp Toeplitz matrix of the signal's

auto-correlation, R(p) defined in the following, has full rank:

Ru(O) Ru(1) ... Ru(p-1)~

Ru(1) Ru(0) ... Ru(p-2)
R(p) . . . . (27)

-Ru(p-1) Ru( p-2) .-- Ru (0)_

where

1 N
RU(i)=- E u(n - i)u(n), i ! 0 (28)

N n=i

The sufficient and necessary conditions on the input linear complexity are given by the

following theorem [6]:

Theorem 1: Assuming that there is no noise, when the channel order

L is known, the sufficient and necessary conditions for the

MBSI problem in eq. (24) are: Sufficient Condition: the MBSI

problem has a unique solution if p > 2L- 1; Necessary Condition-

the MBSI problem does not have a unique solution if p < L.
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In [6], Theorem 1 has been proved for the case of all-zero systems, which is summarized in

Appendix A. However, it has not been proved for the case of all-pole systems and pole-zero

systems because it is a general practice to assume FIR for digital communication systems. The proof

for the case of all-pole systems and pole-zero systems is derived in this thesis.

Proof:

(Naessity) The proof of the necessary condition for the all-pole system and the pole-zero system is

the same as for the all-zero system.

(Suyficier) As mentioned earlier, if we can prove that rank{ Y(L) }=2L-1 when p 2L-1, then eq.

(24) has a unique solution. We will first prove rank{ Y(L )} 2L-1. Then prove that the rank of

Y(L) cannot be less than 2L-1.

Each sample of the channel outputs, y(k), is the convolution of the input, u(n), with the

impulse response of the corresponding channel, hi(n), i.e.:

hl(Lh)

y (k)=[u(k-L+1), ---, u(k)t i ,=1,2 (29)

_i h(1)_

where Lb is the maximum length of the impulse responses in the two channels. Although namely an

all-pole system or a pole-zero system has an infinitely long impulse response, it can always be

approximated by a finite-length impulse response for a stable system, as long as Lh is sufficiently

large. Therefore, it is reasonable to assume Lb >>N.

When L is known, W and W2are vectors with dimension of L x1. The matrix Y(L ) can be

expressed as a multiplication of the input Hankel matrix U(L) and the impulse response matrix

H(L):

Y(L) = U(L) -H(L) (30)

where

u(L - Lh +1) - u(O) u(1) - u(2L -1)]

U(L ) - - 1(31)
Lu(N- L -L+2) .. u(N-2L+1) u(N-2L+2) --- u(N) _j

:{(N -2L + 2)x (Lh + L -1))

H(L) )=[H2 (L ), - H,(L )]: {(L b + L - 1) x 2L } (32)
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ho (L h)

ho(Lh -L +1) -ho(L b)
H:(L) {(L h + L -1)x L}, i=1,2 (33)

ho(1) -ho(L)

ho(1) _

p > 2L-1 implies that U(L) has a row rank of at least 2L-1. Also we know that rank{ H(L)}= 2L-

1. Since rank{ Y(L ) } rank{ U(L )} and rank{ Y(L )} rank{ H(L )}, the rank of Y(L) is at

most 2L-1.

Now prove that the rank of Y(L) cannot be less than 2L-1. Let ui denote the 1 h row of

U(L), h denote the ? column of H(L), y denote the ? column of Y(L). They satisfy the

following relation:

U1

yi = : i-, i=1, 2,...,2L (34)

_UN-L+1_

Assume that rank{ Y(L) }= 2L - 2. Without loss of generality, assume that y2L1 and yL are

dependent, i.e.:

[ :+ ](h -c1i -l...C--L 2 h 2-2)=0 (35)

UN-L +1_

(KL L 1 -kibl -...- k2L- 2h2 L 2 ) = 0 (36)

_UN-L +1 _

With L h >N >L, the first 2L-1 columns of U(L ) are linearly independent, so the first 2L-1

rows of U(L) are also linearly independent. Therefore, at least the first 2L-1 elements in the

column vector h2L - c1b -...- C2L- 2h2L- 2 and h2L -kibh -...- k2 -2 h2L-2 are zero, which implies that

the matrix that consists of first 2L-1 rows of H(L ) has a rank of 2L -2. However, due to the special

Hankel structure of the matrix H(L ), the first 2L -1 rows in H(L ) make a diagonal matrix, so they

are independent. Therefore the assumption that Y(L) has a rank of 2L-2 is not correct. Thus,
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Y(L ) has a rank of 2L-1; the dimension of the null space of the matrix Y(L ) is 1. Therefore, the

MBSI problem has a unique solution.

End of Proof

2.2.3 Distinct- channel Condition

The distinct-channel condition requires that the poles and the zeros in one channel should be

distinct from those in the other for a two-channel system to be identifiable. Otherwise, the

algorithm cannot distinguish if the common dynamics come from the input or from the dynamics of

the channels. For instance, if there is a common factor, H(z-), shared by the two channels, as in the

two-channel system shown in Figure 7. The outputs of the system follow:

Y 1(z 1) =[Ho(z 1 )H1 '(z-')Y(z') ()
Y2 (z )=[Ho(z-)H 2 '(z--)]U(z)

Rearranging eq. (37), we have:

Y(z-)= H1'(z-)[Ho(z-)U(z)] (38)

Y2(z-')= H 2 '(z-')[H(z-1)U(z-1)]

which are the same as the outputs of the two-channel system shown in Figure 8. The two systems

have exact the same outputs, but different channel dynamics and inputs. Given only the outputs, the

MBSI algorithms summarized in section 2.1 cannot distinguish system 7 from system 8. Therefore,

system 7 is treated as non-identifiable and system 8 is identifiable in the existing algorithms.

Chnnl)H Y1(nChannel H '(! )
--- Channel H,,(tI)H,'(t P

u)n)

Channel H0 (t')H 2 '( ) f Channel H2'(W)

Figure 7. A Two-channel System with Figure 8. Another Two-channel System
Common Dynamics without Common Dynamics,

but Having the Same Outputs
as the One in Figure 7
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2.3 Summary

From the above analysis, it is clear that existing MBSI algorithms can only deal with systems where

no common dynamics are shared by all the channels. This is because the nature of the cross relation

is to exploit the uniqueness of each channel. If there is a common factor in both channels, existing

algorithms cannot distinguish between the input and the common dynamics.

This requirement limits the scope of the application of the existing algorithm. For instance,

it renders the MBSI algorithms useless in systems that have both a lumped-parameter nature and a

distributed nature, such as the cardiovascular system; all channels in a system of this type shares

poles dictated by the lumped-parameter dynamics. To overcome this difficulty, this thesis

investigates a new approach to simultaneously obtain the system dynamics (both the distinct part

and common part of each channel dynamics) as well as the input from multiple outputs.
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Chapter 3 Intermediate Input

Identification Approach

MBSI is difficult when common dynamics are present in the multi-channel system because the

modes in the input as well as the common dynamics are common for all the channels. Given only

the outputs, the existing algorithms cannot distinguish between the input and the common

dynamics. This is a problem that has not been taclded by previous research, although it is very

common in practice, especially for the systems that have both a lumped-parameter nature and a

distributed nature, such as the cardiovascular system.

An intuitive way to solve this problem is to remove the common dynamics before applying

the cross relation algorithm [13]. If the common dynamics H(z-) in the system shown in Figure 7

can be identified from the outputs directly, then one can design an inverse filter to filter out the

effect of the common dynamics. This approach improves the distinct-channel condition by

removing the common dynamics in the channels. However, when the common dynamics are at low

frequencies, a high-pass-filter will have to be applied to the outputs to remove the common mode,

which tends to amplify the noises in the signals as well. Therefore, this approach has the

disadvantage of being prone to noise when the common dynamics are at low frequency. Meanwhile,

if there exist distinct dynamics in the same frequency range as the common dynamics, direct filtering

will change the distinct dynamics in all the channels.

This chapter presents a different approach named the Intermediate Input IDentification

(IIID) approach. First, the new formulation of the MBSI problem for systems with common

dynamics will be introduced and the IIID approach will be proposed. Second, a series of lemmas

and theorems will be derived to prove the existence and the uniqueness of the solution to the

identification of the distinct dynamics. Additionally, theorems will be derived to explain what

happens when the channel order is overestimated. Next, the method to identify the common

dynamics by exploring the zero-input-dynamics will be developed. Finally, numerical examples will

be given to illustrate the theorems.
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3.1 Introduction

3.1.1 Systems with Common Dynamics

The two-channel system shown in Figure 7 will be studied throughout this chapter. In this system,

H0(z') represents the transfer function of the common dynamics in both channels; H'(z1) and

H2'(z') represent the transfer functions of the distinct dynamics in the two channels respectively,

and H(z7) and H2(z') represent the overall transfer functions of the two channels respectively, i.e.:

Hi (z_')= HI'(z-1)HO(z-'), i = 1, 2 (39)

Let N,'(z1) and D,'(z-), i = 1, 2 denote the numerator and the denominator of H'(z') and H'(z1)

respectively. The transfer functions have the following general form:

, 1 Y.(z-') Ni '(z-') bi,o'+bi,1'z-i+...+ bj,. 'z-M
HVj(z-- , ,n =1,2 (40)

V(Z-1) Di'(Z-1) ~ai,O'+aZ,1'_Z- +...+aj~iZ

where n' and q' are the number of poles and zeros in the distinct dynamics of channel i respectively,

a1,0',ajj',...,agn ',i=1,2, are the coefficients of the polynomial Di'(z1), i = 1, 2;

bi,0 ',b, 1 ',..., bimi ', i = 1, 2, are the coefficients of the polynomial Ni' (z-), i = 1, 2. Let NO(z') and

DO(z 1) denote the numerator and the denominator of H(z1), the transfer function of the common

dynamics is:

H(z_1  V(z-1)_No(z-1)bo,o+bo,lz-l +...+bo,moz-"'(o
U(z-1) DO(z-1) a0,0 +aO,z- 1 +...+aO,Oz-"4

where nr and nr are the number of poles and zeros in the common dynamics of channel i

respectively a0 ,0 ,a0 ,1 ,...,a ,,0 , are the coefficients of the polynomial DO(z 1), bOO,bO1 ,...,bo,,, are

the coefficients of the polynomial NO(z1 ).

3.1.2 New MBSI Problem Formulation for Systems with Common

Dynamics

It is known that the outputs of a multi-channel system must be correlated in some way since both

channels are driven by the same input. This is also true for systems with common dynamics. In the

thesis investigation, it is found that when the cross relation algorithm is applied to the outputs of a
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system with common dynamics, under certain conditions, the result reveals the channel dynamics

that are distinct to each channel, e.g., H1'(z-1) and H2'(z'). In other words, the distinct dynamics can

be uniquely identified even when common dynamics are present. This discovery led to the

introduction of a new variable - the intermediate input and the new formulation of the MBSI

problem for systems with common dynamics.

Revisit the two-channel system shown in Figure 7. If the system is linear, the two-channel

system could be rearranged as the one in Figure 9. This is attributed to the interchangeability of

linear dynamics. The core idea of this new formulation is to treat the common dynamics as part of

the input. The intermediate variable z(n), whose z-transform is denoted by V(z 1), is treated as the

input to the new multi-channel system. As will be proven in section 3.2, the distinct dynamics in the

original system can be identified by solving the general form eq. (24). The dynamic equations of the

new multi-channel system in the frequency domain are:

Y (z-)= H (z- 1)U(z-1)

=Hg '(z- _)HO (z )]UJ(z -1) (2- (42)

=Hg '(z- _)[HO (z - )U(z~-1)

Hg'(z-)V(z-1),i = 1,2

-H H2'W)

Figure 9. New MBSI Problem Formulation When Common Dynamics are Present

3.2 Distinct Dynamics Identification

The formulation and the solution of the distinct dynamics identification problem will be given in

this section. The uniqueness of the solution will be proved for two scenarios: 1) when the exact

order of the distinct dynamics is known; 2) when the exact order of the distinct dynamics is

unknown, but an upper limit on the order is given. The sufficient and necessary conditions will be

derived in terms of the identifiability conditions. The sufficient-output condition is the same as
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before: output must be sufficiently long such that the least-squares problem is over-determined. The

distinct-channel condition is automatically satisfied in the new formulation because all common

factors have been extracted out. Therefore, the focus of the discussion is the input linear complexity.

The theorems and lemmas will be derived for the all-zero system. The proof could be

extended to the all-pole system and the pole-zeros system as shown in section 2.2.2 . In the

following derivation, L, and L2 denote the order of the distinct dynamics of the two channels

respectively, whose definition are as follows:

All-zero system: L 1 = m'+1, L 2 = m'+1

All-pole system: L 1 = nj'+1,L 2 =n2'+1

Pole-zero system: L, =ni'+m2 '+1+1,L2 =n 2 '+mr'+1

L denotes one plus the number of zeros in the common dynamics, i.e., L c = m0 +1; L d denotes

the maximum order of the distinct dynamics of the two channels, i.e., L d = max(L 1 ,L 2 ); K

denotes the number by which the order of the distinct dynamics is overestimated; Le denotes the

estimated maximum order of the distinct dynamics, i.e.: L e = L d + K.

3.2.1 Necessary Condition on Input Linear Complexity

The distinct dynamics could not be identified uniquely under the condition stated in the following

theorem.

Theorem 2: Assuming no noise, the MBSI problem with common

dynamics does not have a unique solution if v(n) has a linear

complexity of order less than Ld.

The proof of Theorem 2 follows the proof of the necessary condition in Theorem 1 given in

Appendix A.

3.2.2 Exact Order of Distinct Dynamics is Known

a) Pb&emFmbation

The output of each channel, y(n), is the convolution of the intermediate input, z(n), with the impulse

response of the distinct dynamics of the corresponding channel, h-'(n), i.e.:
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hi'(iL ()
... s(k)] ) ,i =1,52

_ hi'(1) _

Similarly, the intermediate input, '4n), can be written as the convolution of the original input, u(n),

with the impulse response of the common dynamics, h1(n):

ho (L c)
.-. u(k)- : ,i = 1,2

bho(1)
(44)

When Ld is known, W1 and W2 are vectors with dimension of Ld x. The matrix Y in eq.

(24) is formulated as follows:

Y(Ld) =[Y 2 (Ld), - YI(L d)]

=[V(Ld)-H 2 '(Ld),
=V(Ld)-[H 2 (Ld),

-V(Ld).H'(Ld)]

-H'(Ld)]

={U(Ld) -HO(Ld)} .[H 2 '(Ld), -H'(Ld)]

Yi(L d)s

yi(Ld)

yi(N-Ld +1)

.-. y (2Ld -1)

.-. yj(N)

-(N - 2 Ld +2)x Ld}, i= 1,2

:{( 2 Ld -1)xLd },i =, 2

())
V(L d)

z(N - 2L + +2)

... z(2L d -1)

--- (N)

:{(N -2L d +2)x (2L d -1)}
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where

(45)

Shi'(L d)

(46)

hi'(1) h(L d)

hi'(1)

(47)

(48)

yi(k) =[z(k -L d +1) (43)

s(k) =[u(k - Lc + +1)



ho (L c)

--- ho (L c)

Ho(Ld)3 --- : :{(2L L -2)x (2Ld -1)} (49)

ho (1) .--.

ho (1) _

~ u(2-Lc) ... u(2Ld-1)

U(Lg) -

d) u(N-2Ld-Lc+3) --- u(N) _(50)
:{(N-2Ld +2)x( 2 Ld +Lc-2)}

b) Sdiution

Recall that L d = max(L 1, L 2 ) - Without loss of generality, assume that L d L L 2 + AK.

Theorem 3 gives the unique solution to the distinct dynamics identification problem when the order

of the dynamics is known. Also given is the sufficient condition on the input linear complexity.

Theorem 3: Assuming that there is no noise and the input v(n) has a

linear complexity of order 2Ld - 1, when Ld is known, the only

solution to eq. (24) is W1 and W 2 whose elements are the

coefficients of the following polynomials:

W =(z a[H'(z-1) (51)

W2 (z 1 )= aH2'(z-')OA(z-')

where a is an arbitrary constant and 0&(z-1)=z -A.

Proofi

First, consider the case when L d = L 1 = L 2 , i.e., AK = 0 . Since the input z(n) has a linear

complexity of order 2L d - 1, the matrix V(L d) defined in eq. (48) has full column rank. Therefore,

dim{ E[Y(Ld )]}= dim{ [ {[H 2 '(Ld), -H'(Ld)]}} (52)
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where dim{*} denotes the dimension of a matrix * and L][.] denotes the null space of a matrix ..

Thus, the solution to eq. (24), W1 and W 2 , must be the solution to the following equation as well:

[H 2 '(L d), (53)

This implies that the following relation in the time domain holds:

H 2 '(z-')W 1(z') = H 1'(z-')W -(z-') (54)

where W(z 1), W2(z '), H1'(z-1) and H 2'(z-1) are (Ld - 1)-th order polynomials. It is obvious that eq.

(51) satisfies eq. (54), therefore it is a solution to the problem. This is also the only solution, as

proved in the following. From eq. (54), we have:

Q{H2'(Z-1)} c- Q{H 2 '(z-')W 1(z~1)

(55)- Q{H 1'(z-')W2(z-)}

=oi{H'(z- t Q{W c

According to the distinct- channel condition,

f){H 2 '(z')}r Q{H 1'(z- 1)}= (56)

Therefore, Q{H 2 '(z1 c Q{W 2 (z -1)}. But the orders of the two polynomials is the same, thus

Q{H 2 '(z-) - W -1)} (57)

W2(Z-1)= aH2 '(z -1) (58)

Similarly, we can prove

(59)

So W1 and W 2 given in eq. (58) and (59) are the unique solution to eq. (24) when AK = 0 .

Now consider the case when AK # 0. The relation described in eq. (53) still holds in this

case except that the matrix H 2 '(L d) is defined differently from the case when AK = 0:
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H 2 '(Ld) =

0

AK{:

0

'(L 2 )

2 +(1)
2L 2 +AK-1i

0

0

- h2
1(L 2 )

h2 '(1)

: 0

- 0

- h2 '(L 2 )

2'(1)

The cross relation in eq. (54) also holds:

H 2 "(z-')W(z-') = H 1'(z~')W 2 (z-') (61)

where W(z-1), W2(z-1), and H 1'(z') are defined as before and H 2"(z1 ) defined as an (Ld1)-th order

polynomial with coefficients specified by the following vector h2":

h2"= 0 -. h2 '(1)

-T

... h2'(L 2) (62)

Therefore, Q{H2'(Z 1)} includes L 2 roots coming from the channel dynamics and AK additional

roots at the origin. Similarly, eq. (61) requires

{W (z -)}I= Q{H,'(z
(63)

Q{W2(z-')}= f2{H 2 '(z-1))

In other words, the unique solution to eq. (24) when AK w 0 is:

W 1(z-1)= a1'(z-1)

End of Proof
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3.2.3 Order of Distinct Dynamics is Over-estimated

a) PwbnemFormlation

When Ld is unknown, an estimated upper limit of the maximum order L, is given. W and W 2 are

vectors with dimension of Le x1. The matrix Y in eq. (24) is formulated as follows:

Y(Le) =[Y 2 (Le), -Yi(Le)]

=[V(Le)- H 2 '(Le),

= V(L,)-[H 2 '(L,),

-V(Le)-H'(Le)]

- Hi'(Le)]
= {U(Le)- HQ (L e)} -[H 2 '(Le),

yi (L e)

yi(N-Le+1)

... yi(2Le -1)

y;(N)

:{(N -2Le+2)x Le}, i=1,2

.-. h2 '(L d)

h2'(Ld)

h2'(1)
h2'(1) h2'(L d)

h2(1)
K

z(K+1)

-2Le +K+2)

-- (2Le -1)

--- (N)

:{(2Le -K-1)x Le} , i = 1, 2

:{(N -2Le +2)x(2L - K-1)}
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-H1'(Le)]

(65)

Yi(L e)E-

H '(Le)

|h2'(Ld)

(66)

h2'(1)

(67)

V(Le) (68)



Ho(L) -

U(Le) -

~ho(L )

ho (1) .-. ho(L )

ho (1) .-- hO(L) (69)

L ho(1) 1
:{(2Le -K+Lc -2)x (2Le -K-1)}

u(K- Lc +2) ... u(2Le -1)

u(N-2Le+K-LC +3) u(N) (70)

:{(N-2Le+2)x(2Le -K+Lc -2)}

b) Scution

Similar to the case when Ld is known, assume that L d = L 1 = L 2 + AK. Lemma 3 gives a particular

solution to the distinct dynamics identification problem when the order is over-estimated byK

Lemma 3: Assuming no noise, when Ld is unknown and an

estimated upper limit of the maximum order Le is given, one

particular solution to eq. (24) is W and W 2 whose elements

are the coefficients of the following polynomials:

W1(z1) = a1'(z'-)0 1(z -1)

W2 (z-1) = aH2'(z -1)01(z -1)O (z -1)
(/1)

where a is an arbitrary constant, OAJ(zi) =z- and 01(z~')is a

polynomial of order K whose roots are at arbitrary locations.

Prooh:

A proof of the above lemma is trivial. Plugging W and W 2 given in eq. (71) into eq. (24) gives

zero.

End of Proof
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Lemma 4 tells the number of existing solutions for the over-estimation case, which is

determined by the dimension of the null space of the matrix Y(L e).

Lemma 4: Assuming no noise and the input v(n) has a linear

complexity of order 2Ld + K - 1, dim{D [ Y(L,) ]} = K+1.

Proof

From Lemma 5, we know that when the input z(n) has a linear complexity of order 2Ld + K - 1,

V(L,) has full column rank. Therefore,

dim{ L [Y(L)]} = dim{ E{[ H2 '(Le), - Hi'(Le)]}} (72)

From Theorem 3, we know that

dim{L[H2(Ld), - H1'(Ld)]} = 1 (73)

The null space of [H 2 '(Ld), - H'(L )]is spanned by the vector [h , h2' T T i-e-

h2 '(Ld) -hl'(L hl'(L d)
2 d)i)A

hl'(1)
h2'(1) ..- h2'(L d) - hl'(1) -- hl'(L d) - 0 (74).h2 (L)

h2 '(1) -hl'(1) h2 '(1)

Notice that hl'(1) and h2 '(1) cannot be zero at the same time (otherwise, the two channels share a

common root at the origin, which contradicts with the distinct-channel condition). Without loss of

generality, assume h2 '(1) 0. Therefore, the last column in matrix Y(L d) is a linear combination

of other columns.

Now add one column to H 2 '(L d) and consider the following matrix:

h2
1(Ld) -hl'(Ld)

h2'(1) )-h2d) -hl'(Ld) --- -hl'(L d)
H (Ld + 1,Lg) (75)

h2 '(Ld) -

h2'(1) h'(1)
h2'(1) 0
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It is obvious that the additional column is independent because h2 '(1) # 0. Thus,

dim{LI[H'(Ld +1,Ld)]}= dim{ D[H'(Ld,Ld)]}= 1 (76)

Similarly, adding more columns to H 2 '(L d) does not change the dimension of the null space of the

matrix, i.e.:

dim{ D[H'(Ld +K,Ld)]} = dim{ D[H'(Ld ,Ld)]} = 1 (77)

where

H'(Ld +K,Ld)=

h2 '(L d)

h2'(1) h2'(L d)

h2'(1)

-h1 '(L d)

h2 '(L d)

h2 '(1)

-h 1 '(1) -hl'(Ld)

-hl'(1)

0
:K

h2 '(L d)

h2'(1) 0L J

Now add one more column to H1'(L d) and consider the following matrix:

H'(Ld +K,Ld +1)=

[h2 '(L d) -hl'(Ld)

-h 1 '(1) --- -h1'(Ld)

h2 '(Ld)

h2'(1) --- h2 '(Ld)

h2'(1)
h2 '(1) h2 '(Ld)

-h

C

-hl'(Ld)

h1 (1)

(78)

(79)

Sh2'(1) 0 0 J
Recall that the last column in matrix Y(L d) is a linear combination of other columns. As a result,

the last column in H'(L d +K,L d +1) is a linear combination of other columns as well. From linear

algebra [14], we know that if b belongs to the column space of a matrix A, then

rank[A I b]= rank[A ] (80)

Therefore, rank{ H'(L d +K,L d +1)} = rank { H'(L d +K,L d) 1, ie.:

37



dim{D[H'(Ld +K,Ld +1)]}=dim{LI[H'(Ld +K,L)]}+1= 2 (81)

Similarly,

dim{ D[H'(Ld +K,Ld +2)]}= dim{ L[H'(Ld +K,Ld)]}+2= 3 (82)

dim{ D[H'(Ld +K,Ld +K)]}= dim{[] [H'(Ld +K,Ld)]}+K = K+1 (83)

Consequently,

dim{L [Y(L)]}= K+1 (84)

Therefore, when the input u(n) has a linear complexity of order 2Ld + L, + K - 2,

dim{ E[Y(Le)]}= K +1.

End of Proof

Theorem 4 gives the sufficient condition on the input linear complexity and proves that the

particular solution given in Lemma 3 is also the unique solution to the distinct dynamics

identification problem when the order of the dynamics is over-estimated.

Theorem 4: Assuming no noise and the input v(n) has a linear

complexity of order 2Ld + K - 1, when Ld is unknown and an

estimated upper limit of the maximum order Le is given, the

only solution to eq. (24) is the one that is of the form given in

eq. (71).

Proofi

From Lemma 3, the K roots of 01, which can be chosen at any arbitrary locations, together with the

scalar factor a, imply an (K+1)-dimension space W for the solution to eq. (24). There is a one-to-

one correspondence between the (K+1) parameters and the vectors in W. On the other hand, the

dimension of the null space of Y(L,) determines the number of solutions to eq. (24). From

Lemma 4, we know that the input z(n) has a linear complexity of order 2Ld + K - 1, dim{ L

[Y(Le))]} = K+1. Therefore the null space of Y(Le) must be W, thus W and W 2 given in

eq. (71) are the only solution to eq. (24) when the input z(n) has a linear complexity of order 2Ld +

K- 1.
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E nd of Proof

3.2.4 Relationship Between the Linear Complexity of u(n) and T(n)

In section 3.2.1 , 3.2.2 and 3.2.3 , necessary and sufficient conditions for the distinct dynamics

identification were derived in terms of the linear complexity condition of the intermediate input z(n).

Since this is a variable that we created, it does not necessarily have any physical meaning. It is desired

to translate the condition on '4n) to the linear complexity condition on a physical variable, such as

the original input u(n), which is the focus of this section.

a) A 11-zero System(MA mdld)

When the common dynamics are represented by an MA model,

HO(z _ = No(z)= b0 ,0 + b0,1z~ +... + bo,,z (85)
U(z 1

The difference equation describing the relation between the intermediate input '4n) and the original

input u(n) is:

bo,m 1
b0,0tk=uk-m)--u(k)f j (86)

The following lemma describes the relationship between the linear complexity of the original input

u(n) and that of the intermediate input z(n).

Lemma 5: For the common dynamics in the two-channel system

shown in Figure 9, if u(n) has a linear complexity of order p+mo,

then v(n) at least has a linear complexity of order p; if v(n) has a

linear complexity of order less than p, then u(n) has a linear

complexity of order less than p+mo.

Proof:

According to eq. (86), the input-output relation of the common dynamics gives:

V=U-HO (87)

where
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[ p(1)

t(- p +1)

[u(1-mo)U( -- m

N- p- mo +1)

... u(O)

--- u(N-p+1)

(88):(:(N-p+)xNp}
-- (N)_

u(1) ---

u(N-p+2) ...

u(p)~
:{(N-p+1)x(p+Rm)}

u(N )_

H00
bo0,

b0,0

:{(p+ nm)x p} (90)

If u(n) has a linear complexity of order p+ n%, U has full column rank according to Lemma

1. In addition, H0 has full column rank because of the band-diagonal structure. Let hb denote the z'

column of HO, and v, denote the ? column of V. They satisfy the following relation:

7. = U - izi=1, 2,..., p (91)

Assume that rank(V) = p-1, i.e.: there is at least one dependent column in V. Without loss of

generality, assume that v, is dependent, i.e.:

VP = civi+...+c,_1vP_1 (92)

Substituting eq. (91) into eq. (92):

U-hb = cjU -hb +...+cp_1U -hbp1 (93)

Rearranging eq. (93):

(94)

Since U has full column rank, its null space must be zero, i.e.:

(95)

This implies that there is at least one dependent column in H 0 , which contradicts the condition that

H0 has full column rank. Therefore, V must has full column rank, which implies that z(n) has a

linear complexity order p.
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U -(b, - c1h -... - cp-_h,) = 0

bp - cibi -..- lh-1 = 0



If s(n) has a linear complexity of order less than p, there exists at least one non-zero column

vector x, such that V x = 0. Right multiplying vector x to both sides of eq. (87) yields:

V .x = U.(Hox) = 0 (96)

Since H0 has full column rank, the column vector Hox # 0. Therefore, there exist at least

one non-zero vector y = H 0 x, such that U y = 0. Therefore, U does not have full column rank,

i.e., u(n) has a linear complexity of order less than p+ nm.

End of Proof

b) A ll-pde Sytem (A R nxl)

When the common dynamics are presented by an AR model,

HO(z-1)= V(z)
U(z-') Do(z-_)

1

a0,0 + a0 ,1z +...+ ao,nz-"o

The difference equation describing the relation between the intermediate input '4n) and the original

input u(n) is:

u(k) =[z(k - no)
ao,no

-z(k)f

_ 0,0I (98)

The following lemma describes the relationship between the linear complexity of the original input

u(n) and that of the intermediate input 4(n).

Lemma 6: For the common dynamics in the two-channel system

shown in Figure 9, if u(n) has a linear complexity of order p,

then v(n) has a linear complexity of at least order p and at most

order p+m.

Proofr

According to eq. (98), the input-output relation of the common dynamics gives:

U=V-HO (99)

where
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- u(p)1
:{(N- p+I)x p}

.-. u(N)j

(1- no)

I(N-p-no+

... S(0)

... s(N-p+1)

z(1) --- tp
:{(N - p+1)x (p+nno)}

s(N-p+2) - (N)_

H 0 -
a0,0

a0,0 _

:{(p+no) x p} (102)

If u(n) has a linear complexity of order p, U has full column rank according to Lemma 1. In

addition, H 0 has full column rank because of the band-diagonal structure. According to the

Sylvester inequality,

rank(V)+ rank(H 0)-(p +no) rank(U) rank(V)

p s rank(V) s p+no

(103)

(104)

Therefore, z(n) has a linear complexity of at least order p and at most order p+n0 .

c) Pole-zero System(A RMA modd)

When the common dynamics are presented by an ARMA model,

End of Proof.

_' =V(z'l)

U(z-)

No(z-))

Do (z-')

b0 ,0 + b0,1z- +...+ b,,,z~"

a0 ,0 + a0 ,1z +... + ao,nz-"o

The difference equation describing the relation between the intermediate input 4(n) and the original

input u(n) is:
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u(1)

_u(N -p+1)

(100)

(101)

i.e.:
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1,no b 0 ,1

[s(k - no) . () =[u(k - m) . u(k): (106)
a0,0 J [b 0,0 _

It is clear from Lemma 5 and Lemma 6, the AR part will not reduce the linear complexity of the

input. Therefore the relation between the linear complexity of u(n) and (n) is the same as the

relation for the all-zero system.

Lemma 7: For the common dynamics in the two-channel system

shown in Figure 9, if u(n) has a linear complexity of order p+mo,

then v(n) at least has a linear complexity of order p; if v(n) has a

linear complexity of order less than p, then u(n) has a linear

complexity of order less than p+no.

d) Surmnry

The relationship between the linear complexity of the original input u(n) and that of the intermediate

input z(n) for different models, described in Lemma 3, Lemma 4, and Lemma 5 respectively, are

summarized in the following inequalities:

MA Model: p,, - n 3 p,: p (107)

ARModel: ps puP p +no (108)

ARMA Model: pu- n : pv p, +no (109)

where p, and p, denotes the number of mode in u(n) and z(n) respectively.

3.2.5 Implementation of Channel Order Estimation

When the channel orders are overestimated, the solutions to eq. (24), W (z -1), W2 (z -1) given in eq.

(71), are polynomials with higher orders than H1 '(z- 1), H 2 '(z-1), as explained in section 3.2.3 . The

locations of the extraneous roots of W (z 1), W2 (z -1) have the following property: the two channels

have exactly the same extraneous roots, except that the one with the larger order has all of its

additional extraneous roots at the origin. In the noiseless case, the matrix Y(L,) defined in eq. (65)
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has K zero singular values. If there is additive noise, then Y(L,) is of full rank. However, for

reasonably large N, it can be shown [10] that the K+1 smallest eigenvalues are close to o-, which is

the square root of the noise power density. These singular values are usually called noise singular

values. Therefore, by checking how many smaller singular values of Y(L,) are close to one another,

we can detect K+1 or detect Ld since L, is known. More objective criteria such as MDL [12], AIC

[12], and other detection methods [15][16] can also be used to detect Ld.

The procedure for channel order estimation is the following:

* Overestimate the channel order as Le;

* Formulate the matrix Y(L,) from the signals observed;

* Calculate the singular values of Y(L, );

* Based on the knowledge of the noise level, estimate how many smaller singular

values are the noise singular value and detect the maximum channel order L d;

* Use the estimated Ld to formulate Y(Ld);

* Obtain the least-squares estimation of the distinct dynamics from the singular vector

corresponding to the smallest singular value of Y(Ld).

3.3 Common Dynamics Identification

Based on the above derivation, the distinct dynamics can be identified by solving eq. (24) when the

input has sufficient linear complexity and there are enough output samples. The intermediate input

z(n) can then be identified. To solve the common dynamics from z(n), we explore the zero-input

response of the system. Consider the common dynamics:

x(n+ 1) = Fx(n) + Gu(n) (110)
s(n) = Jx(n)

where x is the array of state variables, F, G, and J are matrices with proper dimensions. The

response of the system z(n) consists of two components: the zero-input response and the zero-state

response [13]. The zero-input response is the response due to the non-zero initial condition when

the input is zero. The zero-state response is the response due to the input when the initial condition

is zero. Letting V(z') and U(z') be the z-transform of the corresponding signals, they have the

relation:
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V (z-)=[Jz(zI - F)-1 ]x(O) +[J(zI - F)-'GIU(z-) (111)

where x(O) is the initial condition of the state variables. The two terms in eq. (111) correspond to

the zero-input response and the zero-state response respectively. If we require that the input be zero

for certain time, the second term disappears. Then the modes in the common dynamics can be

identified from z(n) given that they have been excited. Since the zero-input response does not

contain the information about the matrix G , i.e., the information about the zero locations, only the

pole locations can be obtained from the zero-input response.

If the common dynamics between u(n) and z(n) are described by the following ARMA

model:

mo no

s(n)= Z bo,k u(n -k) + I ao,k s(n -k) (112)
k=o k=1

the moving average coefficients, bOk, k = 1, ... , in, will disappear when u(n) is zero. Only the auto-

regressive coefficients, aok, k = 1, ... , n0, could be identified from the zero-input dynamics by

solving the following linear equations:

z(to) l s(to -1) ... z(to -no) ao,1

S(to +1) _ (to) .- (to -no +1) aO,2
S . (113)

,L(N) _j _(N - 1) -.-- z(N - no) ao,no

where u(n) = 0 for n =t,...,N.

3.4 Intermediate Input Identification Approach

Based on the discussion in section 3.2 and 3.3, the intermediate input identification approach is

developed to solve the MBSI problem when common dynamics are present in two steps. The first

step in the two-step procedure is to solve the distinct dynamics from the outputs. It has been proven

in section 3.2 that the distinct dynamics can be uniquely solved up to a scalar factor from the

outputs even when common dynamics are present. The second step is to identify the common

dynamics from the intermediate variable z(n) by exploiting the zero-input response. The key concept

in the HID approach is to treat the common dynamics as part of the input. We bundle the common

dynamics and the input together and treat the new intermediate variable 4(n) as the input to the new
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multi-channel system that has no common factor. It is named the intermediate input identification

approach since the intermediate variable, which is a filtered input with the common dynamics, plays

a pivotal role for dividing the blind identification problem into two executable steps.

The flow chart of the approach is shown in Figure 10. The procedure of the approach is the

following:

" Identify the distinct dynamics from the outputs y,, y2 using existing MBSI algorithms;

" Estimate the intermediate variable i(n) by deconvolving the estimated distinct

dynamics from the outputs;

" Identify the common dynamics from the intermediate input z(n);

4 Estimate the input u(n) by deconvolving the estimated dynamics from the outputs.

Distinct A Common
N Dynamics P Deconvolution -- Dynamics Deconvolution --

.Y2 ID h2' ID ALh2

Figure 10. Flow Chart of Intermediate Input ID Approach

In summary, the HID approach reformulates the MBSI problems with common dynamics

by treating the common dynamics as part of the input. It first solves the distinct dynamics of each

channel and identifies the intermediate variable. Then it solves the common dynamics by exploring

the zero-input response and ultimately recovers the input. Combining the requirements for the

distinct dynamics identification and the common dynamics identification, the system has to satisfy

the following conditions to be identifiable:

* The output must have enough samples available.

* The intermediate input z(n) must excite all the modes in the distinct dynamics.

* The original input u(n) must excite all the modes in the common dynamics.

* The input must be zero for a sufficiently long period.

* No common zeros are present.
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3.5 Numerical Simulations

A few numerical examples are given in this section to illustrate the theory developed in the previous

sections.

3.5.1 Relationship between Linear Complexity of u(n) and z(n)

This example is to illustrate the relationship between the linear complexity of the original input and

that of the intermediate input given in the inequalities (107), (108) and (109). Original input used in

this example is u(n) =[12 3 4 5 67 8 9 1 0 11 ]T. The modes in u(n) are characterized by the null space

of the matrix U(3):

1 2 3~

2 3 4
U(3)= (114)

-9 10 11

The polynomial characterizing the modes is 1-2z+z 2. The two modes in the original input u(n) are

thus z = 1 and z = 1.

a) Case 1: MA nndd ithaut Pdezero Canxelation

The common dynamics are described by the MA model Ho (z -1) = 1+ z -1. The zero of Ho (z -1) is

z = -1, which is different from the modes in u(n). The intermediate input generated by the common

dynamics is v(n)=[1, 3 ,5 , 7 ,9 ,11, 13,1 5 ,17,19,21]T. There are two modes in 4n), based on the

same calculation as defined in Lemma 1.

Linear Complexity: pu = 2, p, = 2.

b) Case 2: MA nmdd zth Pde-zero Canlation

The common dynamics are described by the MA model Ho(z-) = 1-z- 1 . The zero of Ho(z- 1) is

z = 1, which coincides with on of the modes in u(n). The intermediate input generated by the

common dynamics is v(n)=[1,1,1,1, 1,1,1,1, 1, 1, 1]T.There are two modes in s(n), based on the

same calculation as defined in Lemma 1.

Linear Complexity: pu = 2 , p, = 1.
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c) Cse 3: A R nvde

The common dynamics are described by the AR model HO (z1)= The pole of HO(z

z = 1. The intermediate input generated by the common dynamics is

v(n)=[1, 3 , 6 ,10,1 5 ,21,28,36,45,55,66]T. There are three modes in z(n), based on the same

calculation as defined in Lemma 1.

Linear Complexity: p, = 2, p, = 3.

qP Qse 4. A RMA nudd ithcut Pde-zero Gnilation

1+z~1
The common dynamics are described by the AR model HO (z-1)= -+ . The zero of

HO(z-') is z = -1 and the poles are z = -0.5±0.866i. The intermediate input generated by the

common dynamics is v(n)=[1,2, 2, 3, 4, 4,5,6,6,7,8]T. There are four modes in z(n), based on the

same calculation as defined in Lemma 1.

Linear Complexity: p, = 2, p, = 4.

e) Qse 5. A RMA ndd zth Pd&zero Gandlation

The common dynamics are described by the AR model Ho(zi)= - -2 . The zero of

HO(z 1) is z = 1 and the poles are z = -0.5±0.866i. The intermediate input generated by the

common dynamics is v(n) =[1, 0 ,0, 1,, 0,, 1,0,0, 1,]T. There are four modes in z(n), based on the

same calculation as defined in Lemma 1.

Linear Complexity: p, = 2, p,= 3.

) SWmnry

In summary, the zeros in the common dynamics will cancel out the modes in the original input

when they coincide with the modes in the original input, while the poles in the common dynamics

enrich the original input.
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3.5.2 Distinct Dynamics Identification

This example is to illustrate the theorems proven in section 3.2.2 and 3.2.3 . Case 1 and 2

demonstrate the example of an FIR system. Case 3 and 4 demonstrate the example of an IIR system.

a) Qse 1: FIR wth Knozn Channl Oner

The two-channel system used in Case 1 and Case 2 has finite impulse responses, which are given in

Table 1. The impulse responses of the distinct dynamics of the two channels are given in Table 2.

The impulse response of the common dynamics is h = [1, 0.5 ]T. The parameters in this example are

the following: L, = 5, L 2 = 3, AK = 2, K = 0 Ld = 5. Figure 11 depicts the zero locations of the two

channels, where 0 denotes the zeros of channel 1 and 0 denotes the zeros of channel 2. Notice

that there is one common zero shared by both channels. Figure 12 and Figure 13 depict the

estimated zero locations of the two channels, where V denotes the zeros of channel 1 and A denotes

the zeros of channel 2. Notice that all the distinct zeros of the two channels are identified uniquely.

In addition, there are two extraneous roots in the estimation of channel 2. This is attributed to the

order difference between the two channels. Figure 14 plots the singular values of Y(Ld) in

descending order. It is noted that when the maximum channel order is known, there is only one zero

singular value. Figure 15 plots the true (left) and the estimated (right) impulse responses of the

distinct dynamics of the two channels. The estimation perfectly recovers the true response except

the scalar factor, which is the same for both channels.

Table 1: Impulse Responses of the Two Channels for Case 1 and 2

Table 2: Impulse Responses of the Distinct Dynamics of the Two Channels for Case 1 and 2
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n 1 2 3 4 5 6

h1(n) 1 -0.5 0.5 -0.5 0.5 0.5

h2(n) 1 1.5 1.5 0.5 0 0

n 1 2 3 4 5

h1'(n) 1 -1 1 -1 1

h2'(n) 1 1 1 0 0
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b) Case 2: FIR wth Unk noun CU.ml Order

The same FIR two-channel system is used in this case except the channel order is overestimated by

3. The parameters in this example are the following: L, = 5, L 2 = 3, AK = 2, K = 3, L, = 8. Figure 16

and Figure 17 depict the estimated zero locations of the two channels. Notice that again all the

distinct zeros of the two channels are identified uniquely and there are two extraneous roots in the

estimation of channel 2 due to the order difference. In addition, there are three extraneous roots in

both channels. These are the roots due to overestimation. Their locations are irrelevant to the

dynamics of the system. Figure 18 compares the estimation of the two channels. Note that the three

extraneous roots are at the same locations. Figure 19 plots the singular values of Y(L,) in

descending order. In this case, there are three additional zero singular values due to order

overestimation. Based on the number of zero singular values and the extraneous roots, the channel

order can be updated and the matrix Y(L d) will be reformulated.
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Case 3: IR

Similar simulations were conducted on a three-channel system, where each channel has an IIR.

Table 3 shows the transfer functions and the pole and zero locations of the common dynamics and

distinct dynamics. Remember that a two-step procedure is needed to identify a system with IIRs, as

explained in section.2.1.3 . Figure 20 and Figure 21 depict the result of the first step when the

channel orders are known and unknown respectively, where 0 denotes the true roots and x denotes

the estimation. Notice that the distinct roots of each channel are identified accurately. No

information on the common dynamics is derived from distinct dynamics identification. When the
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channel orders are overestimated (by 4 in this case), all the extraneous roots are at the same

locations for both channels.

Table 3: Three-Channel System for Case 3 and 4
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Figure 20. Distinct Channel Dynamics Case 3: Estimated vs. Real Channel Roots When

Channel Orders are Known
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Transfer Function Poles Zeros

HO(z~) 1 0.8i

1+0.64.~2 -0.8i

H'(z-) 2 -2z-1 +z-2 -0.7-0.3i 0.5-0.5i

1+1.4.-1 +0.58-2 -0.7+0.3i 0.5+0.5i

H 2 '(z') 3 + 3z- 1 + 1.5z- 2  0.3-0.7i -0.5-0.5i

1- 0.6-I + 0.58.-2 0.3 +0.7i -0.5 +0.5i

H 3 '(z) 4 + 0.36z- 2  0.6i 0.3i

1+0.36.Z2 -0.6i -0.3i
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3.5.3 Summary

The distinct dynamics in the multi-channel system can be identified even when common dynamics

are present. The estimated roots are classified into three groups:

* Distinct roots of the two channels indicate the distinct dynamics of each channel;

" Roots at the origin in one channel indicate that channel has a lower order than the other

channel;

" Same roots in both channels indicate that the channel orders are overestimated; these

extraneous roots due to overestimation can be removed through singular value

decomposition.
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Chapter 4 Application to Central

Hemodynamic Monitoring

Chapter 3 developed the HID approach for the MBSI problem with common dynamics. This

chapter will focus on how it is applied to central hemodynamic monitoring. First, it is noted from a

review of the anatomy of systemic circulation that the arterial system has a structure that is

topologically similar to the wireless communication system introduced in Chapter 1. The idea of

modeling the arterial system as a multi-channel system will then be proposed. Second, physiology of

systemic circulation will be reviewed, with a concentration on the cardiac cycle and the determinants

of arterial blood pressure. These determinants will be classified into three groups, each of which will

be modeled as the input, the common dynamics and the distinct dynamics in the multi-channel

system. Next, the identifiability conditions for the arterial system will be discussed. In particular, the

zero-input condition and the input-linear-complexity condition will be examined. Finally, practical

implementation of channel order estimation will be presented.

4.1 Modeling the Arterial System as a Multi-channel System

4.1.1 Anatomy of Systemic Circulation

The circulatory system is composed of an arborizing series of multi-branched conduits arranged in

series and in parallel, as illustrated in Figure 22. All systemic arteries branch from the aorta, an elastic

vessel about one inch in diameter [18]. It begins at the left ventricle and contains a valve at its

origin, the aortic semilunar valve, which prevents backflow of blood into the left ventricle during the

ventricular diastole (relaxation). Figure 23 depicts the major divisions of the aorta: the ascending

aorta, arch of the aorta, thoracic aorta and abdominal aorta. Major branches of the arch of the aorta,

as depicted in Figure 24, are the brachiocephalic trunk (supplying the right upper limb and the right

side of the neck and the head), the left common carotid artery (supplying the left side of the neck

and the head) and the left subclavian artery (supplying the left upper limb). In the lower abdomen,

the abdominal aorta divides into the iliac arteries, which then pass into the legs where they are called
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femoral arteries. The femoral arteries and their branches supply the lower limbs. Figure 25 depicts

the major arteries in the upper and lower limbs.
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Figure 22. Systemic Arterial Tree [19]
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4.1.2 Arterial Multi-channel System

The arterial system has a tree-like structure, topologically similar to the wireless communication

system shown in Figure 1. Central hemodynamics are the source that is transmitted distally through

different arterial paths. As illustrated in Figure 26, if several sensors are placed at multiple systemic

locations, such as the carotid, the radial, the femoral, etc., the central hemodynamics can be

observed at multiple peripheral locations. In general, systemic circulation is modeled as a multi-

channel system as follows: the left ventricle is modeled as a flow source that is characterized by the

aortic flow, the common input to the system; different arterial branches are modeled as the different

57



channels of the system; multiple sensors, located at different branches of the systemic circulation,

are the outputs that are driven by the common input.

4.2 Physiology of Systemic Circulation

4.2.1 Cardiac Cycle

The cardiac events that occur from the beginning of one heartbeat to the beginning of the next are

called the cardiac cycle. The cycle consists of a period of cardiac contraction called systole, followed

by a period of relaxation called diastole, during which the heart fills with blood. Figure 27 shows the

relation between the heart's electrical signals (ECG) and mechanical events (contraction and

relaxation) and the consequent changes in central hemodynamics. A brief summary of the cardiac

cycle is provided here (refer to Figure 27 for the explanation of different phases). Details of the

cardiac cycle can be found in [18][22][23].

The onset of ventricular systole, which is comprised of two phases, coincides with the peak

(R) of the QRS complex on an ECG. During the period between the beginning of ventricular

contraction and the opening of the semilunar valves, ventricular volume remains constant, thus this

phase is called isovolumic contraction. When the left ventricular pressure rises above the aortic

pressure (Figure 27), the semilunar valves open and blood begins to pour out of the ventricles

(illustrated in Figure 28), which marks the start of the ventricular ejection phase. Near the end of

systole, left ventricular pressure falls below aortic pressure, and the forward flowing column of

blood in the proximal aorta decelerates and briefly moves retrograde, causing closure of the aortic

valve. Once the retrograde flow is resisted by a closed aortic valve, the proximal aortic pressure

starts to rise again and the blood in the proximal aorta is once again accellerated in an antegrade

direction. This phenomenon produces a bump called the dicrotic notch (i.e.: incisura) on the aortic

pressure wave (Figure 27). Ventricular diastole starts with an isovolumic relaxation, during which

both the semilunar and the atrioventricular (AV) valves are closed. Major ventricular filling occurs

just after the AV valves open (illustrated in Figure 29). Blood that has been flowing into the atria

while the ventricles were contracting now rushes into the ventricles. The first third of ventricular

filling time thus is known as the period of rapid ventricular filling. During the middle third, called

diastasis, a much smaller volume of blood flows into the ventricles. Atrial contraction, i.e., atrial

systole, occurs in the last third of the ventricular filling period, which follows the P wave in the ECG

and accounts for the small increase in ventricular volume (Figure 27).
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4.2.2 Determinants of Arterial Blood Pressure

The ejection of blood from the left ventricle during systole generates a pulse wave that can be

perceived as arterial blood pressure in peripheral vessels [24]. Arterial blood pressure measured in

different arteries is characterized by mean arterial pressure (the area under the arterial pressure curve

divided by the cardiac cycle duration), pulse pressure (the amplitude, i.e., the difference between

systolic and diastolic pressure) and pulse contour (the waveform). We will discuss the determinants

of mean arterial pressure and pulse pressure in this section. Changes in arterial pressure waveform as

the pulse wave propagates down the arteries will be discussed in section 4.2.3 . The material of both

sections is largely from [23].

The level of the mean arterial pressure depends on two factors: cardiac output and

peripheral resistance, as defined in the following equation [18]:

Mean Arterial Pressure- Cardiac Output Stroke Volume x Heart Rate (115)
Peripheral Resistance Peripheral Resistance

However, the rate, at which the mean arterial pressure changes, depends on the arterial

compliance. The larger the compliance, the slower the mean arterial pressure reaches its steady-state

level, as depicted in Figure 30.

The arterial pulse pressure is principally a function of stroke volume and arterial compliance.

The left graph in Figure 31 depicts the effect of a change in stroke volume on pulse pressure when

heart rate, peripheral resistance and arterial compliance remain the same. An increase in stroke

volume results in an increase in mean arterial pressure and an increase in pulse pressure. The right

graph in Figure 31 depicts the effect of a change in arterial compliance on pulse pressure when

cardiac output and peripheral resistance remain the same. An increase in arterial compliance results

in a decrease in pulse pressure.

The determining factors of mean arterial pressure and pulse pressure are summarized in

Figure 32. Cardiac output and peripheral resistance determine the average arterial pressure, while

stroke volume and arterial compliance determine the amplitude of the arterial pressure.
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4.2.3 Wave Propagation Along the Arterial Tree

As the pressure wave travels down the arterial tree, the arterial pressure contour becomes distorted.
This is demonstrated in Figure 33, which depicts blood pressure waveforms at the proximal aorta,
the femoral artery and the radial artery. There are four major changes in the arterial pulse contour as
the pressure wave travels distally. First, there is an increasing delay in the onset of the initial pressure
rise, which is attributed to the finite pulse wave velocity. In adults, for example, the aortic pulse
precedes the brachial artery pulse by about 0.05s [24]. Second, the peripheral pressure wave has a
larger pulse pressure (systolic pressure is usually higher and diastolic pressure lower [24) and has a
narrower systolic portion. Figure 34 depicts the arterial pressure curves recorded from various sites
in an anesthetized dog. Note that the systolic pressure wave at the knee was 39 mm~lg higher than
that in the aortic arch and the diastolic pressure was 7 mmHg lower. Third, the high-frequency
components of the pulse, such as the incisura, are damped out and soon disappear, largely caused by
the viscoelastic properties of the arterial walls. Finally, a hump may appear on the diastolic portion
of the pressure wave, in a point in the pressure wave near which the incisura initially appeared.
Several factors, including wave reflection, vascular tapering, and pressure-induced changes in
transmission velocity, contribute to the peaking of the arterial pressure wave.

S Sstole I'Diastole
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Proximal aorta
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Figure 33. Changes in the Pressure
Contour as the Pulse Wave
Travels Toward the Periphery
[22]
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Figure 34. Arterial Pressure Waveforms
Recorded at Various Sites along
the Arterial Tree in an
Anesthetized Dog [23]
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4.3 Common and Distinct Dynamics in Systemic Arterial

Hemodynamics

The arterial blood pressure waveform measured in the peripheral arteries arises from the interaction

between the arterial system and the heart, as illustrated in Figure 35. The characteristics of the heart

and the arterial system determine the shape of the arterial pressure waveform. As discussed in

section 4.2.2 and 4.2.3 , the major determinants of arterial blood pressure are cardiac output, arterial

compliance, peripheral resistance, viscoelasticity, and wave reflection. Cardiac output is a property of

the heart, and therefore is modeled as the input to the multi-channel system. Among the other four,

arterial compliance and peripheral resistance are common for pressure waves measured at different

sites of the arterial system. Viscoelasticity and wave reflection vary with the location of the

measurement, thus are different for pressure waves measured at different sites. Table 4 summarizes

the corresponding role of each determinant in the multi-channel system.

Arterial Branch Arterial Pressure at
1 Location 1

Arterial Branch Arterial Pressure at

Heart 2 Location 2

Arterial Branch Arterial Pressure at

p Locationp

Figure 35. Interaction between Heart and Arterial System

4.3.1 Common Dynamics

Figure 36 depicts how blood pressure changes as the pulse wave travels from the central aorta to the

right ventricle. The dashed line is the mean blood pressure. Notice that the mean arterial pressure is

almost preserved in the arteries. Therefore, the factors that determine the level of the mean arterial

pressure are common for any arterial branches. The common dynamics are thus attributed to the

arterial compliance and peripheral resistance, which determine the level of mean arterial pressure

and the rate that the mean arterial pressure changes. This models the lumped-parameter nature of
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the circulatory system. In fact, the average behavior of the arterial system as a whole can be modeled

as a compliance and resistance in parallel, i.e., Windkessel model [25]. The overall time constant of

the arterial system is determined by the product of the total arterial compliance and the total

peripheral resistance.

Table 4: Determinants of Arterial Blood Pressure

Determinants of Arterial Common Factors Distinct Factors
Blood Pressure (i.e.: Distinct

Input Common Dynamics Dynamics)

;,-4

Cardiac Output x

Arterial Compliance x

Peripheral Resistance x

U Wave Reflection x

Viscoelasticity x

140
Systolic blood
pressure

120

100

E 80

Diastolic blood
60 - pressure

40

20 -

0 Aorta Large and small arteries Arterioles Capillaries Venules Small and large veins Right ventricle

Figure 36. Blood Pressures at Various Locations along the Cardiovascular System [18]

4.3.2 Distinct Dynamics

Recall that Figure 33 and Figure 34 demonstrated the changes in the pressure waveforms at different

branches. This feature is attributed to the distinct dynamics of the multi-channel system, which are
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attributed to the distributed nature of the circulatory system. The pressure wave, generated by the

contraction of the heart, is propagated through the arterial tree. Due to the discontinuity of the

caliber or the distensibility in the arterial paths, the wave is reflected back and forth in the channels.

Since different paths have different wave propagation characteristics, the dynamics contributed by

the wave propagation are distinct for different channels.

4.3.3 Evidence

A 30-element distributed cardiovascular simulator [26][27] is used to study the common dynamics

and the distinct dynamics in the arterial system. The simulator generates flow, pressure, velocity, and

area signals at different locations of the systemic circulation. Aortic flow is the input to be estimated

(cardiac output is the integration of aortic flow over one minute). The branches that are of the

greatest interest are the carotid, the brachial, the radial, and the femoral because they can be easily

accessed for noninvasive measurements. Figure 37 and Figure 38 depict the simulated aortic blood

flow and pressure waveforms at the four previously mentioned locations over one cardiac cycle

respectively. Figure 39 plots the impulse responses from the aortic flow to peripheral pressure, i.e.,

carotid, brachial, femoral and radial pressure, estimated using the standard input-output system

identification technique [12]. Obviously the four channels have different initial oscillations, which

are dominated by fast-converging, high frequency modes. After the initial oscillations, all of the

impulse responses overlap onto the same 'long tail', which is dominated by a slow-converging, low

frequency mode. It is clear that all four channels share a common pole. The common dynamics are

at low-frequencies and converge slowly, while the distinct dynamics are at high-frequencies and

converge quickly.

Similar evidences were observed on the data collected in animal experiments (refer to

Chapter 5 for detailed description of the animal study). Figure 40 to Figure 43 plot the impulse

responses from the aortic flow to the radial pressure (dashed line) and the femoral pressure (solid

line) in four subjects. An interesting finding is that the slope of the tail is different for different

subjects. Figure 44 depicts the two impulse responses for two different subjects, which clearly shows

that the two subjects have different time constants for the common dynamics.
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4.4 Identifiability Conditions

4.4.1 Zero-Input Condition

The HID approach solves the common dynamics by exploiting the zero-input response of the

common dynamics, thus requiring the input to be zero for a sufficiently long period. This condition

is met for the arterial system due to the intermittent pumping action of the heart: the entire stroke

volume is discharged into the systemic circulation during systole, which usually occupies only about

one third of the cardiac cycle. Figure 45 illustrates the opening of the aortic semilunar valve during

systole and its closure during diastole, which results in the fact that there is no inflow to the systemic

circulation during diastole. Revisit Figure 37. The aortic flow, i.e., the input, is almost zero during

60% of a cardiac cycle.

From the discussion in section 4.3, the common dynamics in the systemic arterial

hemodynamics only include a common pole, the time constant of which is determined by the total

arterial compliance and the total peripheral resistance. The area method [28], which models the

arterial system as a Windkessel model, is utilized to estimate the time constant from the diastolic part

of the intermediate variable 4(n).
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Figure 45. Aortic Semilunar Valve during Systole and Diastole [23]

4.4.2 Input Linear Complexity

Since the aortic flow is almost a periodic signal, the number of modes in the signal, p, is at most T*F,

[12], where T is the period of one cardiac cycle (s) and F, is the sampling frequency (Hz). When non-

parametric system representation, i.e., finite impulse response, is adopted, it requires that the longest

impulse responses of the distinct dynamics of all channels are shorter than M/(M+1) of one cardiac

cycle. On the other hand, when parametric system representation, i.e., auto-regressive moving

average (ARMA) model, is adopted, the maximum number of parameters needed to characterize one

channel should be less than the number of samples in M/(M+1) of cardiac cycle. The number of

modes in the input will be higher when considering the beat-to-beat variation induced by respiration

and other factors [29]. Apparently, the input-linear-complexity condition is easier to meet when

parametric representation is adopted. Therefore, an ARMA model will be adopted in the

implementation.

4.5 Numerical Simulations

Numerical simulations were conducted to evaluate the performance of the proposed algorithm. In

all the simulations, three channels were used; the channels were modeled by the ARMA

representation; the signals were sampled at 100 Hz.

First, the HID approach was tested on a known three-channel system whose channel

dynamics simulate those of the radial, femoral and carotid channels in the cardiovascular simulator.
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The pole-zero locations of the three channels are shown (in o) in Figure 46. All the three channels

shared a common low-frequency slow-converging mode, which was located at 0.9937. The input

signal was the aortic flow generated by the cardiovascular simulator. The outputs were the pressure

tracings at the three channels, which are plotted in Figure 47. HID approach was implemented on

the three noise-free outputs. The system order was assumed known. The estimated pole-zero

locations of the distinct dynamics of each channel are plotted (in x) in Figure 46. The intermediate

variable was then estimated, from which the common pole was identified. Figure 48 shows the result

of the ultimate input estimation - estimated aortic flow compared with the true flow. Obviously,

there is a very good matching between the true and estimated flow when the system orders are

known and no noise is present.

Second, the HID approach was tested on the same system while the exact orders of the

system were unknown. An upper bound of the channel order was given and the COE algorithm was

implemented to estimate the channel order. Figure 49 - Figure 52 show the estimated aortic flow

compared with the true flow in four different cases: (a) when the channel order was under-

estimated, i.e., the upper bound was smaller than the true channel order, (b), (c), (d) when the

channel order was over-estimated by 2%, 4% and 6% respectively. When the channel order was

under-estimated, the COE algorithm could not improve the estimation. But when the channel order

was over-estimated, the COE algorithm could remove the extraneous roots and over-performed the

one without the COE algorithm.

Last, the HID approach was tested on the pressure signals generated by the cardiovascular

simulator. The output signals are plotted in Figure 53. The cardiovascular simulator is distributed

and nonlinear, thus the system order was unknown and the channel order estimation algorithm was

implemented to estimate the channel orders. Figure 54 shows the estimated aortic flow compared

with the true flow.
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Chapter 5 Animal Experiments

An animal model was explored for validation for the proposed algorithms.

5.1 Animal Preparation

Nine Yorkshire pigs of mass 25 - 35 kg were studied. Swine, a conventional model for

cardiovascular investigations, have an arterial tree approximating the human's. The arterial blood

pressure waveforms in swine are subject to comparable pressure wave reflections as humans', with

the wave reflections being a function of the size and geometry of the arterial tree and the mechanical

properties of the vessels.

Prior to experimentation, the animals fasted for 24 hours and were allowed access to water

ad libitum. The animals were sedated with intramuscular telazol and zylazine. After orotracheal

intubation, the animals were placed on a mechanical ventilator, breathing oxygen, and isoflurane as

needed to suppress spontaneous respiration. The swine were maintained at 98 to 101 degrees using

Gaymar heating pads and heated crystalloid fluid infusion at a maintenance rate. Via surgical cut-

down, a triple lumen central line was placed in the femoral vein, a pair of 7.5 French intravascular

introducers placed in the bilateral femoral arteries, and a 22 gauge angiocatheter placed in a distal

vessel in the foreleg. Hemostasis was achieved using electrocautery.

A midline sternotomy allowed access to the mediastinum keeping intact one or both pleura.

As a gold-standard measurement for cardiac output, a 14 mm Transonic A-series ultrasonic

flowprobe was placed around the proximal aorta with generous acoustic couplant. The Millar

catheter was advanced through one of the femoral artery introducers to a position in the descending

aorta, above the diaphragm. Suprapubic bladder cannulation allowed drainage of urine.

A range of hemodynamic states was studied using cardiovascular drug infusions. The

isoflurane tended to reduce total peripheral resistance (TPR), and neosynephrine, a vasoconstricting

agent, was infused and weaned to range the blood pressure from approximately 120 mnmHg to 60

mmHg. Dobutamine, a positive inotrope and weak vasodilator, was infused (with variable amounts

of neosynephrine) to raise the cardiac output to over 5 liters per minute. Esmolol, a beta-one

selective antagonist that causes reduced inotropy and chronotropy was infused (with variable

amounts of neosynephrine) to reduce cardiac output to less than 1.5 liters per minute. The subjects'
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cardiac outputs were lowered to fatal levels using either subsequent hemorrhage or else excess

esmolol.

5.2 Instrumentation and Data Acquisition

The following waveforms were collected continuously during the experiments: aortic flow, aortic

pressure, femoral pressure, radial pressure, ECG, pulse oximetry, and animal core temperature.

Pressure was measured in the central aorta, the left radial and the right femoral artery using Mikro-

Tip catheters SPG350 from Millar Instruments, Inc., which were calibrated in a small cup of water

heated to the pig's core temperature. Central aortic flow for comparison purposes was measurement

using a Transonic Ultrasonic Probe 14A198 from Transonic Systems Inc. A temperature probe

TSD202F from BIOPAC Systems Inc. placed in esophogus continually recorded the core body

temperature of the animals. Heart rate and oxygen saturation were monitored by the pulse oximeter

TSD123B from BIOPAC Systems, Inc. placed on the chin of the animal. Needle ECG electrodes

recorded the electrocardiogram of the animal.

The data pre-filtering, amplification and acquisition were done using the MP150 physiologic

data acquisition and analysis system from BIOPAC Systems, Inc. All the signals were sampled at 250

Hz.

5.3 Data Analysis

As discussed in section 3.4, the IIID approach requires the system to satisfy certain identifiability

conditions. The input linear complexity condition is one of the most critical requirements on the

system. Since ARMA models were used to represent the system, the number of parameters involved

in each channel, i.e., the number of poles and zeros, is less than 20. In the animal experiments, the

aortic flow measured on the pig is rich in modes due to the beat-to-beat variation naturally presented

in the signal; the Hankel matrix always reaches the highest rank as possible. Therefore the input is

rich enough to excite all the modes in the system. Another critical requirement is sufficient output

samples. Similarly, since parametric representations were adopted, less than one beat of outputs is

sufficient, which in turn eases the assumption of a linear, time-variant (LTI) system.

The three channels (aortic, femoral and radial) are modeled using the ARMA representation.

The results from one of the pigs are shown from Figure 55 and Figure 61. The three pressure signals

are plotted in Figure 55. The COE algorithm was implemented. Figure 56 plots the estimated
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intermediate variable. Figure 57 - Figure 59 show the estimated impulse response (solid line) of the

aortic, femoral, and radial channel respectively, compared to the estimated impulse responses using

standard input-output system identification (dashed line). The comparison of the estimated and the

measured aortic flow is shown in Figure 60. Figure 61 shows the linear regression of the two. Figure

62 - Figure 70 show three pressure signals, comparison of the estimated and the measured aortic

flow, and the linear regression of the estimation and measurement on another three pigs

respectively.

It is noticed from the above result that the IIID estimation of the aortic flow from three

pressure tracings captures major features on the measure aortic flow waveform. Some discrepancies

exist between the estimation and the measurement, such as the delay between the two. This is partly

due to the common delay shared by all the channels. The IIID approach cannot identify the

common delay presented in the system since they are common zeros. The delay, however, can be

removed using an ECG signal, which will serve as a reference to align the estimation to the real

dynamics. Another factor causing the discrepancy is the model limitation. For example, we modeled

the channel dynamics as a linear system, although the cardiovascular system is nonlinear. Also, we

used a lumped transfer function to describe the channel dynamics, though the real system is

distributed and has bi-directional interaction. However, even with these limitations, the IIID

approach is still able to capture the major dynamics in the system. Therefore these assumptions are

acceptable.

Currently implementation of the IIID approach has certain limitations. Since only two

peripheral pressure measurements were taken in the animal experiments, the central aortic pressure

was used as the third channel. Although it is acceptable for the purpose of proof-of-principle,

central aortic pressure is not easily available in practice. In practical applications, three peripheral

pressure measurements at different locations should be taken. The area method currently

implemented only uses the signal in the diastole, thus it is difficult to estimate the time constant

when the diastole of the cardiac cycle is very short, e.g., when the heart rate is very high. Another

system identification technique [30] developed at MIT is expected to solve this issue.

In summary, the positive results from the numerical simulations and initial animal studies

demonstrated that the IIID based central hemodynamic monitoring scheme might open the door to

noninvasive or minimally invasive cardiovascular monitoring.
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Chapter 6 Conclusions

6.1 Summary of Contributions

This thesis develops the HID approach for multi-channel blind system identification when common

dynamics are present and applies it to central hemodynamic monitoring.

* The MBSI research is thoroughly surveyed. The proof of the sufficient and necessary

conditions is extended for systems that have IIR. MBSI is difficult when common dynamics

are present in the multi-channel system because the modes in the input as well as the

common dynamics are common for all the channels. Given only the outputs, existing MBSI

algorithms cannot distinguish between the input and the common dynamics. This is a

problem that has not been taclded by previous research, although it is very common in
practice, especially for the systems that have both a lumped-parameter nature and a

distributed nature, such as the cardiovascular system.

" A new interpretation of the MBSI problem when common dynamics are proposed and the

HID approach is developed to solve the problem. HID approach treats the common factors

in the system, i.e., the input and the common dynamics in all channels, as the input to a new

multi-channel system, and therefore solves the distinct dynamics by identifying the new

multi-channel system. The zero-input response is then exploited to solve for the common

dynamics, which requires that the input to the system be zero for a sufficiently long period.

" The sufficient and necessary conditions for the distinct dynamics identification are derived.

A series of theorems describes the input-linear-complexity condition and gives the solution

to the distinct dynamics identification. In particular, the relationship between the linear-

complexity condition of the original input and that of the intermediate input is given; the

case when the channel orders are overestimated is investigated thoroughly.

" This thesis discovers the similarity between the structure of the digital wireless

communication system and that of the cardiovascular system and is the first to model the

systemic circulation as a multi-channel system and to propose the cardiovascular MBSI for

central hemodynamic monitoring. The input, the common dynamics and the distinct
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dynamics in the cardiovascular multi-channel system are explained based on the explanation

of the determinants of the arterial blood pressure.

' The proposed central hemodynamic monitoring technique is tested on a cardiovascular

simulator and on data taken from pigs. Results from the standard input-output system

identification on the data from the simulator or from the animal experiments verify the

explanation for the common dynamics and distinct dynamics. Results from the multi-

channel blind system identification verify that the HID approach could open up the

possibility of noninvasive central hemodynamic monitoring, which reduces the risks that

might be exposed to the patients.

6.2 Future Directions for Research

There are several potential areas of future research that could expand upon the work in this thesis.

First, additional animal studies with three peripheral pressure measurements would be

needed to further validate the utility of this method in central hemodynamic monitoring. The

current implementation of the HID approach estimates the aortic flow within a scalar factor.

Whether and how the scalar factor could be reserved for several runs of MBSI is critical when

continuous monitoring of aortic flow is demanded.

Second, according to [24], as the heart beats faster, the relaxation period (diastole) becomes

shorter and shorter whereas the duration of the contraction period (systole) shortens only slightly.

The area method currently implemented for common dynamics identification only uses the signal in

the diastole, thus it is difficult to estimate the time constant when the diastole of the cardiac cycle is

very short, e.g., when the heart rate is very high. It would be interesting to see how the HID

approach could be integrated with another method [30] developed at MIT for the estimation of the

time constant.

Third, the channel dynamics from the central aortic flow to the peripheral pressure are

expected to be different under different diseases. It is demonstrated in distinctive changes observed

in the pressure waveforms under different condition of the circulation. Figure 71 depicts the

pressure pulse contours in arteriosclerosis, aortic stenosis, patent ductus arteriosus and aortic

regurgitation. More interestingly, the pressure pulse contour could be different even when the aortic

flow does not change much. Figure 72 depicts the pressure waveforms generated in a normal subject

(upper left curve) and a hypertensive subject (upper right curve), even when both have the same
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ventricular ejection curve (lower curves) [31]. This suggests that the identification of the channel
dynamics could be of clinical value.
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Figure 71. Arterial Pressure Contour Changes in Different Diseases [22]

Fig 1.-Diagrammatic representation of ascending aortic flow wave
(lower waves) and pressure wave (upper waves) in subject with high
arterial compliance, at left, and in subject whose arterial compli-
ance is reduced by hypertension and arterial degeneration, at right.

Figure 72. Aortic Flow and Pressure in Normal and Hypertensive Subject [31]
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Appendix A. Proof of Theorem 1 for All-zero

Systems
Proof:

(Naossity) If p <L, it can be shown that the channels are not uniquely identifiable even if the

input u(n) is known. Since blind system identification does not have any knowledge of u(n), the

necessary condition of standard system identification should also be that of blind system

identification.

With the known input, the identification of the channel impulse responses can be found be

solving

y; (L~~ u(1) ..- u(L)~~hi(L)'

: = '-. : :(116)
y[(N)_ _u(N-L +1) u(N) _hj(1)_

Since p <L, the input Hankel matrix in eq. (116) is rank deficient. Clearly, eq. (116) does not

have a unique solution. Therefore, it requires L or more modes to achieve blind system

identification.

(Sukfiiency)

For a two-channel all-zero system, the channel outputs also satisfy eq.(30), except that L =

Lh in this case. Therefore eq. (31) - eq. (33) become:

u(1) --- u(2L- 1)
U(L) (-. 2L + 2) x (2L-1)} (117)

U(N-2L + 2) ... u(N)

H(L) =[H 2 (L), -H 1 (L)]:{(2L -1)x 2L} (118)

hi (L)

H (L ) i (1) -.-.- h(L) :{(2L -1) x L } 1)2

hi (1)
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p > 2L- 1 implies that U(L ) has full column rank. Therefore the null space of the matrix Y(L ) is

the same as the null space of the matrix H(L). Since H(L) has a column rank of 2L-1, the MBSI

problem has a unique solution.

End of Proof
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Appendix B. Nomenclature
General MBSI Formulation
u(n) Input to the multi-channel system

U(z 1 ) z-transform of u(n)

M Number of channels in the multi-channel system
y (n), i = 1,...,M Output of channel i

Y(z-1), =L,...M Xz-transform of y (n), I=1,...,M

h, (n), i =1,...,M Impulse response of channel i

H 1,M Transfer function of channel i, i.e., z-transform of h (n),i =1...,X

N (z-),ij= 1,...,M Numerator of the transfer function Hi (z -1),i = 1,...,M

mil = 1,...M Order of the polynomial N, (z-'),i=1,...,M

bi,kk = 0,...,m;,i = 1)...M Coefficients of the polynomial N, (z'-),i =1...,X

Di(z-1), i= 1,...,M Denominator of the transfer function Hi (z - 1),i = 1,...,M

nji=1,...AX Order of the polynomial Di(z-'),i 1,...,M

ai,k ,k = 0,...,n ,t = 1,...M Coefficients of the polynomial D,(z 1 ), i =1,...

L i=,. ..,M Length of the impulse response hi (n) if it has finite length
L h Approximated length of the impulse response h, (n) if it has infinite

length
L Maximum order of all the channels
N Number of input samples available
Yii= 1,.. .,M Output Hankel matrix of channel i

Y Output matrix of all M channels
hi= 1,...,M Impulse response vector of channel i

h Impulse response vector of all M channels
D i= 1,...,M Denominator vector of channel i

D Denominator vector of all M channels
Ng)i= 1,...,M Numerator vector of channel i

N Numerator vector of all M channels

W i =1,2 General vector of the MBSI problem

Wi(z-'),i=1,2 Polynomial with coefficients defined in W;, i =1,2

Y(L) General form of output Hankel matrix
Yi(L ),i = 1,2 General form of output Hankel matrix of channel i

H(L) General form of impulse response Hankel matrix
Hi (L ), i = 1,2 General form of impulse response Hankel matrix of channel i

U(L) General form of input Hankel matrix
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New MBSI Formulation when Common Dynamics are Present
hi'(n),i = 1,...,M Impulse response of the distinct dynamics of channel i

hj', i= 1,... ,M Impulse response vector of the distinct dynamics of channel i

H;'(z-1),I =1,...M XTransfer function of the distinct dynamics of channel i, i.e., z-
transform of hi'(n)

N;'(z -'), I= 1,...,M Numerator of the transfer function H '(z -1),i 1,...,M

Mi Order of the polynomial Ng '(z ),i = 1,...,M

bik',k = 0,...,M i =1,...M Coefficients of the polynomial Ni '(z 1 ),i =

D'(z-1),i = 1,...,M Denominator of the transfer function H, '(z-),i =

ni ',i = ... X Order of the polynomial D,'(z'),i = 1,...M

a,,k =,---,fi ,---M Coefficients of the polynomial Di'(z'),i =

ho (n) Impulse response of the common dynamics of all the channels

Ho (z -1) Transfer function of the distinct dynamics of all the channels, i.e., z-
transform of ho (n)

No (z 1) Numerator of the transfer function Ho(z- 1 )
mo Order of the polynomial No (z -1)

bo,k,k = O,...,m0  Coefficients of the polynomial No (z -1)

Do (z -1) Denominator of the transfer function Ho (z -1)

no Order of the polynomial Do (z -1)
ao,k ,k = 0,..., 0  Coefficients of the polynomial Do (z -1)

s(n) Intermediate input to the multi-channel system

V(z-1) z-transform of z(n)
L C Order of the common dynamics

L d Maximum order of the distinct dynamics of all the channels

AK Difference between the orders of the distinct dynamics of the two
channels

Le Estimated maximum order of the distinct dynamics of all the
channels

K Number by that the maximum order of the distinct dynamics is
overestimated

Yi (L a), i = 1,2 Output Hankel matrix of channel i when exact order of the channel
is known

Y(L d) Output matrix of all channels when exact order of the channel is
known

H'(Ld),i =1,2 Impulse response Hankel matrix of the distinct dynamics of channel
i when exact order of the channel is known

V(L d) Intermediate input Hankel matrix when exact order of the channel is
known
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Ho(Ld) Impulse response Hankel matrix of the common dynamics when
exact order of the channel is known

U(L d) Input Hankel matrix when exact order of the channel is known

Yj(Le),i = 1,2 Output Hankel matrix of channel i when channel order is
overestimated

Y(Le) Output matrix of all channels when channel order is overestimated

H 1.'(L e)' i=1,2 Impulse response Hankel matrix of the distinct dynamics of channel
i when channel order is overestimated

V(Le) Intermediate input Hankel matrix when channel order is
overestimated

HO(Le) Impulse response Hankel matrix of the common dynamics when
channel order is overestimated

U(Le) Input Hankel matrix when channel order is overestimated

a An arbitrary constant

OK(Z-1) Polynomial of order AKwhose roots are at the origin

01 (z -1) Polynomial of order K whose roots are at arbitrary locations

02 (z -1) polynomial of order K whose roots are at arbitrary locations

Q10} Roots of a polynomial

0 {.} Null space of a matrix

P Number of modes in a finite sequence

pU Number of modes in u(n)

PV Number of modes in z(n)

U(p) p?'-order Hankel matrix of sequence u(n)

Ru(n) auto-correlation of the sequence u(n)

R(p) p?'-order Toeplitz matrix of the auto-correlation of the sequence
u(n)



Appendix C. Cardiovascular Simulator
The signals used in the numerical simulation in this thesis are generated by a 30-element distributed

cardiovascular simulator, which was originally developed by Dr. E. T. Ozawa [26], and was further

refined by Karen E. Bottom and Xinshu Xiao [27] at MIT. This simulator is based upon a numerical

solution of the one-dimensional equations of motion in a geometrically accurate branching network

of the arterial system, including energy losses at bifurcations, a ventricular model incorporating

specified time-dependent wall compliances and unidirectional valves, and lumped-parameter venous

and pulmonary circulatory systems. Also incorporated are damping mechanisms related to the phase

dependence of the wall shear during periodic flows and the viscoelastic behavior of the arterial walls.

The simulator is capable of reproducing flow, pressure, velocity, and area signals at different

locations of the systemic circulation. Figure 73 shows the schematic of the model. Dashed elements

represent those that are reflected by symmetry and are not explicitly computed.
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Figure 73. Schematic of the Distributed Arterial Model
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Appendix D. Protocol Approval from MIT
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

COfMMTTEE ON ANIMAL CARE
BLDG. 16-408

CAMBRIDGE, MA 02139
tel. 617 253-9436/fax 617 258-8257

NOTICE OF COMMITTEE RJEVIEW

Date: November 5, 2001
Proposal #: 01-055
Proposal Title: Multi-channel Blind System Identification for Noninvasive Cardiovascular Monitoring
Principal Investigator: Harry Asada/Andrew Reisner Department: MEC
Funding Agency: Harvard/MiT Center for Integration of Medicine and Innovative Technology (CIMIT)
Grant #: pending
L_New Proposal - Three-year Renewal Annual Renewal

.,Addendum __ Teaching Proposal ___Expedited Review

The above-named proposal was reviewed at the November 1. 2001 meeting of the Committee on Animal Care.
This is to inform you of the following:

x.Approval*

_Approval with the provisions
listed below.

Approval limited to __ days,
pending receipt of the additional
information requested below.

_Approval deferred pending
receipt of information

requested below.

Disapproved for the
reasons described below.

The following provisions and/or suggestions have been made by the CAC:

Reasons for disapproval:

*Projects involving the use of biohazardous material (radioisotopes, infectious agents, carcinogens, as
examples) require separate approval by the Radiation Protection Office, Industrial Hygiene Office/
Environmental Medical Service, or the Biosafety Office. The Committee on Animal Care approval is
contingent on the approval of these separate MIT committees. Animal work should not commence until all
approvals have been received by the Principal Investigator.

This institution has an Animal Welfare Assurance on file with the Office for Laboratory Animal
Welfare. The Assurance number is A-3125-01.

Action described in this notice applies for 12 months from the date of approval or the time indicated and
is based on the assumption that no substantive changes in experimental procedures dealing with animals used
will occur during the period unless approval for the revised procedure(s) is obtained from the Committee on
Animal Care.

hair, tAC Assoc. Dir, Office of Sponsored
Programs/Grants Management
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