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CHAPTER I

VACUUMI ELECTROSTATIC ENGINEERING

This report describes an investigation of the electrical

engineering possibilities of machines depending on electrostatic

forces and principles and utilizing high vacuum as the essential

insulating medium. This combination of electrostatic devices and

vacuum insulation makes possible, it is believed, a new type of power

system - capable of all the functions of modern power systems, but

possessing unusual ultimate advantages in power capacity, overall

efficiency, distance of transmission, reliability, and economy.*

The various elements of such a complete vacuum electrostatic power

system are discussed in succeeding chapters of this report. The

basic characteristics of vacuum insulation and of electrostatic power

machinery which, in combination, open up this new and tremendously

important field in power engineering are disiussed immediately below.

A. HIGH VACUUM INSULTION

High vacuum is believed to be the ultimate insulating medium

for high-power and high-voltage electrical-engineering applications.

This belief in the ultimate superiority of high-vacuum insulation is

based on the following fundamental considerations:

* The conception of a vacuum-electrostatic power system, its
possibilities and practical means of realization were briefly de-
scribed in a "Report on Present and Proposed Research" presented to
President K. T. Compton of M.I.T. on Sarch 20, 1931, by R. J. Van
de Graaff, then at Princeton. A paper entitled, "Electrical Engi-
neering Possibilities of Electrostatics with Vacuum Insulation" was
presented by invitation before the annual meeting of the British

Association at Leicester on September 12, 1933, by R. J. Van de Graaff.
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(1) By far the highest voltage gradients (electrostatic

forces) between metallic electrodes can be maintained in high vacuum.

In a sufficiently high vacuum the voltage gradients that can be main-

tained depend principally on the nature and preparation of the elec-

trode surfaces. Haydenl reports a maximum gradient at the cathode

surface of 1.3 x 106 volts per centimeter between outgassed molybdenum

spheres. Piersol 2 claims a cathode gradient of 5.4 x 106 volts per

centimeter between molybdenum plates outgassed at 1400 degrees C.

R. J. Van de Graaff, in an experiment performed at Princeton in 1931

obtained indications of a cathode gradient of 5.5 x 106 volts per

centimeter between small metallic spheres, the cathode sphere being

covered with a thin film of pyrex. Experiments performed during this

investigation using sphere gaps made of 1/2" polished steel balls,

unoutgassed, indicated that cathode gradients of the order of 1 x 106

can be consistently obtained under these conditions. A more detailed

account of these gradient studies is contained in Chapter VI.

While the possibility of attaining in vacuum voltage gra-

dients at the negative electrode as high as those indicated above has

3
not generally been known to the art, the fact that voltage gradients

of tens of millions of volts could be maintained at the positive elec-

trode has been generally recognized. Advantage can be taken of these gra-

dient differences, particularly when extremely high voltages are involved,

by so geometrically disposing the cathode surface relative to the anode

surface that the field is distributed (weak) over the cathode surface

1. Hayden, Jour. A.I.E.E., 41, p. 854, 1922.
2. Piersol, Report of British A.A.S., p. 359, 1924.
3. (Particularly in the coated-cathode and the unoutgassed elec-

trode cases.)



and concentrated (strong) over the anode surface. A practical applica-

1
tion of this conception is a vacuum transmission line consisting of

a relatively small rod serving as the positive conductor or anode,

which runs axially through a cylindrical shell serving as the return

conductor, the space between the two being evacuated.

The electrostatic force acting on electrodes varies as the

square of the voltage gradient at their surface. The rapidity with

which the magnitudes of these forces increase with gradient is illus-

trated by the following example: The electrostatic force between two

parallel plates 10 ins. square (neglecting edge effects) due to a

voltage gradient of 300 volts per centimeter is about 0.00006 lb.;

for a voltage gradient of 30,000 volts per centimeter (which is about

the limit for electrodes in air) the force is a little over one-half

pound; for a gradient of 3,000,000 it would be over 5,700 lbs. These

tremendous forces, which can be produced only in vacuum, are herein

claimed and shown to offer possibilities of extreme mportance in the

field of electrostatic power machinery and engineering.

The insulation of extremely high voltages can be best

accomplished in high vacuum. Voltages of almost a million volts have

already been insulated in vacuum under disadvantageous conditions and

there is sound theoretical reason for the belief that many millions

of volts can be safely and practicably insulated in vacuum.2 In air

it is impracticable to insulate steady voltages greater than 10 million,

1. First suggested by R. J. Van de Graaff and investigated as
part of this research.

2. One phase of the activities of Dr. R. J. Van de Graaff is
directed toward the realization of a d-c. generator in vacuum for
nuclear experiments capable of developing voltages measured in tens
of millions.
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a sphere 15 ft. in diameter and suitably insulated from ground being

required to hold such a voltage.*

(2) A vacuum offers no resistance to moving parts. This

property of a vacuum is advantageous in two distinct ways: (a) It

eliminates completely the energy loss (windage or its equivalent due

to viscosity) inevitably accompanying the operation of dynamic machin-

ery in all other media. (b) It permits the making and breaking of

electrical connections by actual physical contact or separation of elec-

trodes without any accompanying decomposition of the surrounding insulat-

ing media (as would be the case in general with material insulation such

as oil, etc.) and without any physical apposition to such movement.

(3) A high vacuum can, by simple and easily controlled means,

be rendered an excellent unidirectional conductor of electricity, and

can from this condition at will be restored to its former highly in-

sulating state; an important feature of this unique property is that

these transitions can be accomplished with only a minute expenditure

of controlling energy, in less than a millionth of a second, and with-

out changing necessarily the potential between the two terminating

electrodes. This conception has important practical applications, as

is illustrated by the various direct- and alternating-current switches

described in Chapter:L: of this report.

high
(4) An insulatingAvacuum cannot of itself support space

charge unless the charge is artificially introduced, as for example,

by thermionic emission.

* These are the rated voltage and physical dimensions of the
Van de Graaff high-voltage generator at Round Hill, ass.

_I _ _ _ _ ___ _ _ _ _ _



(5) A high vacuum has no dielectric hysteresis loss.

(6) A high vacuum of itself has no surface or voltume leakage.

(7) An important property of high vacuum as an insulating

medium is its ability to pervade, in a very complete sense and with

absolute homogeneity, the interelectrode space. This ability eliminates

the costs, difficulties, and imperfections accompanying the forming or

impregnating operations required with material insulators.

(8) Vacuum insulation is self-healing.

(9) Vacuuin is unaffected by temperature changes. This consider-

ation eliminates the important operating temperature limitations of

material insulators.

(10) Vacuum is incapable of transmitting sound. This quality

has important advantages in the reduction of the noise accompanying the

operation of power machinery.

(11) Vacuum suffers no change or deterioration of insulating

properties with time. Such deterioration is commonly experienced in

varying degrees by material insulators such as paper, rubber, fiber,

oil, etc.

(12) Vacuum is incombustible and acts as an effective preven*

tive of combustion. It reduces fire hazard, whereas the use of hydrogen,

paper, rubber, oil, etc. increases this hazard.

(13) Vacuum insulation would in practice to a large extent

eliminate all danger to human life commonly accompanying the presence

of high-voltage power. This comparative safety is the result of the

necessity of enclosing all high-voltage parts in a vacuum-tight con-

tainer which would be of metal and at earth potential and hence would

completely shield all external objects both from voltage and from



accidental aros.

(14) Vacuum is transparent. This property enables the close

observation of the mechanical motion and general state of the material

objects contained therein, removing to a large extent the obscurities

caused by other insulation processes such as immersion in oil, or the

shielding or binding with relatively opaque insulating materials. It

further permits the use of light or of devices depending on the trans-

mission of light, for the control of mechanisms or machines operating

in the vacuum or for the transmission of intelligence between it and

the external region.

(15) Vacuum insulation to a large degree eliminates the neces-

sity and therefore the cost of material insulators. A recently-con-

structed three-phase, 250,000-volt, 8000-ampere oil circuit breaker re-

quires 66,000 gallons, or over 230 tons, of costly high-grade insulating

oil.

(16) Vacuum is without weight. The importance of this lies

in the elimination of the necessity and expense of supporting the

weight of material insulation, whether in storage, operating position,

or shipment.

(17) Vacuum insulation permits, without sacrifice in reli-

ability, a very close and rapid practical realization of its optimuft

theoretical possibilities in machine design. In contrast to this, the

use of material insulators must be accompanied by large factors of

safety and much experimentation to take care of the obscurities and

uncertainties caused by space charge, leakage, variability from sample

to sample, deterioration, etc.
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It is evident that these advantageous and often unique

properties of high vacuum as a voltage insulating medium render it

far superior to any material insulator now known to the electrical

art. High vacuum, being in practical effect the absence of all matter,

is free from the inevitable limitations and imperfections of material

substances. These considerations form in part the basis of our belief

that high vacuum is the ultimate insulating medium and, as such, will

characterize and extend in an unprecedented way the electrical engi-

neering of the future.

The practical realization of the unusual electrical insu-

lating properties of high vacuum is attended by certain special prob-

lems, some of which will now be briefly discussed.

(1) Vacuum is incapable of supporting the physical structure

which it insulates. Hence, in general, material insulators must be

used in vacuum to perform this function. The relative amount of this

material insulation, however, is small and can usually by proper design

be located in regions of low electric stress. In this way full and

effective use of the properties of vacuum insulation can still be made.

It is moreover possible to produce for the special purpose of support-

ing high-potential bodies in vacuum, material insulators many times more

compact than the equivalent insulators now available for use in other

media. These and other aspects of the problem of material insulation in

vacuua are discussed in detail in Chapter VI.

(2) The electrical insulating properties of high vacuum are

dependent upon the surface conditions and the characteristics of the

electrodes therein. Discriminating choice of electrode material and
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the proper electrode design and treatment are essential to the practical

realization of the vacuum insulation characteristics disclosed above.

It will be seen in Chapter VI irhere this problem is more fully discussed,

that in the limit it is still the imperfections of the material electrodes

that fix the insulating properties of high vacuum.

(3) "Nature abhors a vacuum." This unphilosophical doctrine,

maintained by philosophers for 2000 years, grew out of the ancient rec-

ognition of the difficulty of producing and maintaining even a poorly

evacuated condition. The problem of producing and maintaining in a

reliable engineering manner, within a large metal tank, an evacuated

condition many million times improved over that suggested above, and

yet so intimately linked with the outside world that power and control

can easily be transmitted between them, is correspondingly greater. By

contributing to contemporary vacuum technique certain new ideas whiich

make for engineering usefulness and reliability, the way toward a prac-

tical solution of this problem has been disclosed and experimentally

demonstrated during this investigation. This work on vacuum technique

is described more fully in Chapter V.

B. VACUUMd ELECTROSTATIC VERSUS ELECTROMAGNETIC MACHINERY

It is believed that machines operating on electrostatic prin-

ciples utilize more advantageously the unique insulating properties of

high vacuum than electromagnetic machines. Vacuum electrostatic machines

for energy conversion and transformation purposes have therefore been sub-

jected to considerable analysis and development during this investigation.

In general, devices based on electrostatic forces and principles have

certain fundamental and important advantages over devices depending on
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electromagnetic forces and principles. Among these are the following:

(1) The maintenance of appreciable electromagnetic fields

and forces requires the continuous movement of large quantities of

electricity and therefore continuous porer loss, whereas for the main-

tenance of electrostatic fields and forces only the presence and not

the motion of electricity is required. Hence electrostatic forces can

be maintained with no power loss. In electrostatic machines the power

loss due to charging current takes place only during the charging inter-

vals and may be made small by the use of high voltages; in electromag-

netic machines the power loss for the same current density takes place

continuously and cannot be avoided by increase of operating voltage.

These considerations indicate that electrostatic processes are inher-

ently more efficient than corresponding electromagnetic processes.

(2) The maintenance of an electrostatic force is, in its

nature, a direct and primary manifestation, while the maintenance of

an electromagnetic force (force on a conductor carrying a current in

a transverse magnetic field) is by nature a complex and secondary mani-

festation; these facts are reflected in that electrostatic machines can

in general be made simple as well as efficient, while electromagnetic

machines remain relatively more complex and inefficient. By electro-

magnetic machines are meant all energy-converting or transforming

devices involving as a predominant characteristic the interaction of

magnetic fields. By electrostatic machines are meant all energy-

converting or transforming devices involving the use of electric forces

as the predominant characteristic without the necessary use of magnetic

forces.
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(3) Electromagnetic machines require per unit power fairly

definite volumes of heavy material such as iron and copper, since

these materials have practical limitations in the flux density and

current density, respectively, to which they can be subjected. These

limitations of the materials essential to electromagnetic machinery

put on this class of apparatus a weight and size per unit power restrio- '

tion. This restriction is not present in vacuum electrostatic machinery

since in general the electric force between electrodes is independent of

the volume of the electrode and of the material below the surface. This

fact, coupled with the high energy concentrations of which high vacuum

as dielectric is capable, leads to the conclusion that as far as ultimate

limitations are concerned, electrostatic machines have the advantage of

lightness and compactness over electromagnetic machines.

The above basic considerations indicate that, in their ultimate

forms, vacuum electrostatic power machinery will exhibit advantages over

electromagnetic machinery in greater efficiency, simplicity, lightness,

and compactness. The following practical considerations should also be

cited:

(a) In addition to the higher efficiency inherent in the elec-

trostatic processes themselves, the absence of dielectric loss (except

for the small amount associated with the material insulators supporting

the electrodes), the complete absence of magnetic loss, the large re-

duction of the charging current heat loss (through the use of the high

voltages possible in vacuum and because of the low-resistance construc-

tion which characterizes the proposed electrostatic power machinery),

and the complete elimination of windage loss, - all these result in a
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total power loss for electrostatic machines which is many times less

than the loss in equivalent electromagnetic machines.

(b) The all-metal construction of the electrodes of the

electrostatic power machinery proposed herein, and the generally neces-

sary use in vacuum of material insulation which is non-organic, removes

to a large extent from vacuum electrostatic machines the temperature

rise limitation which is common to all electromagnetic machines. This

freedom from a narrowly-restricted permissible temperature rise, to-

gether with the low losses inherent in high-voltage vacuum electro-

static processes, makes possible for the first time electrical machinery

whose power capacity is limited by its electrical and mechanical ability

to develop power, and not by its ability to dissipate the energy loss in-

volved in the process.

C. ELECTRICAL ENGINEERING APPLICATIONS OF VACUULI ELECTROSTATICS

The major portion of this research was devoted to the prac-

tical application of vacuum electrostatics to electrical power engi-

neering. This phase of the research proceeded along several paths;

it involved the development and analysis of new types of electrostatic

power machinery, the development and study of the other elements of a

complete power-transmission system such as d-c. power transmission and

switching, the study of practical details of design, estimates of costs,

and comparison with existing power systems. It involved also the ex-

perimental study of model power electrostatic machines, the development

of engineering vacuum technique, and the test of vacuum and material

insulation strength.
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This york is described in the following chapters and

has shown the Iracticability of the following applications of

vacuum electrostatics to electrical power engineering:

(1) Machines operating on electrostatic principles and in

high vacuum can be developed to perform all those energy-conversion

functions now regularly performed by high-power electromagnetic or

electronic machinery such as motors, generators, transformers, con-

verters, rectifiers, inverters, etc.

(2) Machines operating on electrostatic principles and in

high vacuum can be developed for the direct generation and direct con-

version of high-voltage direct-current power - a function not as yet

practicable by present electromagnetic or electronic devices.

(3) Such large-power electrostatic machines operating in

high vacuum can be developed for a range of voltages of the order of

50,000 to several millions of volts.

(4) Such vacuum electrostatic machines would have power

losses many times less than those of corresponding rotating eleotro-

magnetic machines; these losses would be of the order of one per cent.

(5) Such machines would be capable of more power per unit

weight or per unit size than is now developed by modern electromagnetic

machinery.

(6) Such electrostatic machinery would be essentially a

simple variable condenser or combinations of such variable condensers

with suitable switching and circuit arrangements.

(7) Both rotor and stator of such machines might be of metal,

though not limited to metal or conducting material. For machines with

metallic rotor and stator, the amount of required insulation material,
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other than the high vacuui itself, would be made relatively small

and located away from the active electric fields.

(8) The probable best type of high-power electrostatic

machine would be of the interleaving parallel plate type or variations

of this type.

(9) Transmission lines can be developed to transmit prac-

tically unlimited amounts of d-c. power over practically unlimited

distances at voltages of the order of millions of volts and at ex-

tremely high efficiencies. The essential feature of such a trans-

mission line is a central positive conductor running axially through a

highly-evacuated metal tube constituting the cathode or return conduc-

tor. It is recognized also that for intermediate voltages of the order

of one million volts, d-c. power cables of the conventional type may

be used as the transmitting link of the electrostatic power system.

(10) High vacuum electronic switches can be developed cap-

able of conducting, with high efficiency, the currents involved in

such high-voltage direct-current high-power systems, and capable of

interrupting these currents and withstanding the full line voltage.

Electronic switches can be developed to perform the commutating func-

tions in high-voltage vacuum electrostatic power machinery.

(11) Such a high-voltage vacuum transmission line might ter-

minate in suitable high-voltage vacuum electrostatic machinery and

thus, with this terminal equipment and with the electronic switches

and auxiliaries, constitute a complete power system capable of all the

functions of modern power transmission systems, but transmitting direct-

current power at voltages of a million or more volts and with an over-all



14

efficiency for substantially unlimited distances (through generation,

transmission, and conversion), departing from 100 per cent by an amount

of the order of 4 per cent.

(12) Such a vacuum electrostatic power system is capable of

rapid realization and, in its ultimate form, besides offering great

advantages over present electromagnetic systems in power capacity, effi-

ciency, and range of transmission, is inherently capable of great re-

liability and lower cost.
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CHAPTER II

VACUUM ELECTROSTATIC MACHINE ANALYSIS

Various types of vacuum electrostatic machinery - alternating-

current generators and motors, direct-current generators and motors,

etc. - were developed and analyzed during this investigation. In

this chapter the more important of these are described, their opera-

ting principles and characteristics disclosed, and many of the func-

tional and design problems and their solutions indicated. This chapter

covers only vacuum-electrostatic-machinery analysis and does not cover

problems of vacuum technique or vacuum and material insulation charac-

teristics, which are discussed later. All of the machines herein de-

scribed are believed to be capable of practical application in a high-

voltage power system exceeding in power capacity, efficiency, and

range of transmission, any electric power system now existent.

A. A ERNAT G-CURRENT SYNCIRONOUS

ELECTROSTATIC MACHIhE - TYPE 1 

The machine is essentially a variable condenser which may be

of the parallel-plate interleaving type, as shown in Fig. 1. For

operation as a motor a suitable source of high-voltage a-c. power is

impressed across rotor and stator. In practice, one of these members,

preferably the rotor, may be grounded.

1. Principle of Operation

The general equetion for the current flowing at any instant

in a condenser circuit whose capacitance and impressed voltage vary

-. -- c ---

* First described by Dr. R.I J. Van de Graaff.



with time is

= e dC (1)

The power input to the circuit at any instant is found by multiplying

Equation (1) by e:

p = ie = Ce +e 2 dC (2)

The first term in the right-hand nmber of Equation (2) does

not involve any transformation of electrical to mechanical power. It

represents the power transfer between the outer circuit and the electro-

static field due to change in voltage.

The second term contains within it the transformation from

electrical to mechanical power. The mechanical power is equal to one-

half the value of the second term, that is,

`e 2 dC
p d (3)

and represents the rate at which work must be done on or by the system

at voltage e to cause its capacitance to change at the rate dC/dt.

The remaining half represents the rate at which the stored electro-

static energy in the system at voltage e is changing due to the capac-

itance variation dC/dt. If dC/dt is positive, then electrical energy

is being absorbed by the circuit and mechanical energy is being de-

livered. If dC/dt is negative, then mechanical energy is being absorbed

and electrical energy delivered.

Equations (1), (2), and (3), or their equivalents, are the

basis of studies of electrostatic machines. From Equation (2) it is

seen that for an alternating-current electrostatic machine consisting
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of a simple variable condenser upon which a periodic voltage e is

impressed, to develop power as a motor, dC/dt must be positive when

e is large, and negative when e is small. Such a motor will run at a

synchronous speed given by

n = 120 f revolutions per minute (4)

where f is the frequency of the impressed voltage in cycles per second

and p is the number of poles or the number of cycles of capacitance

variation per revolution. Such a motor will adjust itself to increasing

loads by- changing its "power angle" in a manner analogous to that of the

well-known electromagnetic synchronous motor. hen the maximum power

angle is reached, further increase in load causes the motor to pull out

of step.

For such a machine to develop power as a generator, dC/dt must

be negative when e is large, and positive when e is small. For a given

periodic voltage e, the synchronous speed is again given by Equation (4)

and the electric power delivered to the line is again a function of the

power angle.

The time rate of capacitance variation of these electrostatic

machines at constant synchronous speed may be a rectangular wave of double

frequency (relative to the line voltage frequency), or a sinusoidal wave

of double frequency, or any periodic curve having as an essential com-

ponent a sinusoid of double frequency.

2. Capacitance Variation and Power

The purpose of this analysis is to determine the kind of ca-

pacitance variation which will produce maximum power capacity in an

electrostatic synchronous machine with given size of disks.



18

Let e = E sn(t+ ) (5)

and

C C- Clcos Oct-C2 cos 2t .*..*. - Cncos nt (6)

This is the Fourier series expression for the most general kind of ca-

pacitance time-variation. Then

d = C sin tat+2C 2 sin 2at+ ...... +nCne sin nt (7)

From Equations (3), (5), and (6) the average power is
2n

Pa = 4x sin2 (t+ 49) Cl sin at0+2C2 sin at+ ..... +nC sin not dt
0

-cos2t sin t
E=n 4 -2 ) O sin ~t+2C2 sin 2~ + +nCnm sin natdt (7a,

All the terms except the second in the bracket of Equation (7a) drop out.

Hence

P = sin 2 . (8)
a 4

It is evident from this that, with sinusoidally-varying voltage, only

the double-frequency sinusoidal component of the total capacitance time-

variation (or of the time rate of capacitance change) contributes to the

power.

Two different time rates of capacitance change will now be ex-

amined. The first will be a double-frequency rate of capacitance change

of rectangular wave shape, and the second a double-frequency rate of

capacitance change of sinusoidal wave shape.

The Fourier series for the time rate of capacitance change of

rectangular wave shape and unit amplitude, illustrated in Fig. 3, is:
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dC 4 o
- 2 cos 6t + 0 10 t + . ) (9)

It is only the first term of this series, as has been proved above, that

contributes to the power. If the maximum change of capacitance in a

machine with uniform capacitance variation and given size of disk be Cm

then the amplitude of the corresponding rectangular-waved rate of change

of capacitance is

Amplitude 2m (10)

and the equation of the power-producing fundamental of this is by (9):

dO 8m
E - 7; Cmsin 2t (11)

It is shown in Appendix A that if disks of this same given size

were shaped so as to secure a sinusoidal rate of change of capacitance,

the maximum change of capacitance would be only 2/n Cm. The time rate

of change of capacitance in this case is therefore

Evidently then since allc oos t (12)

Evidently then, since all other conditions are the same, the ratio of

power developed by a machine with disks shaped for a sinusoidal time rate

6f change of capacitance to that developed by one of the same-sized disks,

but designed for a rectangular time rate of change, is given by

Eq. (1) '= 78.5 per cent (13)

3. Power when Rate of Capacitance
Variation is a' Re'ctangular ave

The rate of capacitance variation is a rectangular wave when

the rotor and stator poles are sector-shaped, that is, when the capaci-



20

tance varies uniformly with angle. Referring to Fig. 1, the maximum

capacitance change between rotor and stator in vacuum during a cycle is

closely given by:

-12 rr2
C = 0.0884 1012 ( i 2 farads (14)

2d
where

s is the number of rotor disks
d is the separation rotor to stator in centimeters

The time rate of change of capacitance is given by

= dC 2pC 2np 0.0884 10-12 (r-r)2s 
dt 60 60 2d second (15)

From Equation (3), for an impressed voltage given by e = E sin t, the

instantaneous mechanical power developed by the machine is

+ E2 dC 2
P = -2 dt 8in ca (16)

The power, as shown in Fig. 2, is pulsating. There are successive in-

tervals of motor and generator action during the cycle, the relative

amounts of motor and generator power depending on the phase angle -

the angle in electrical degrees between zero voltage and minimum capaci-

tance. The average mechanical power is found by integrating over one-

half cycle:

E2 dC 1 +. t
Pa 2 t I jsin t d(ct) sin2ot d(wt)+ in2t d(t) (17)

2 2
E dC sin 28

7- W

= 14.7 10 nps (r r)E 2 sin 2 watts (18)

= .7.6 . (r-r 2)E sin 2 watts (19)



4. Power with Sinusoidal Rate
of Capacitance Variation

The rate of capacitance variation is sinusoidal when the

capacitance variation itself (considering the minimnnm capacitance as

zero) is of the form

C = Cmsi2t Cm (20)

The line voltage is again taken as

e E sin(t+ G) (5)

and the current from Equation (1) is

i C2 [s(t+ 4)- oos(wt+ )cos 2t C sin(ot+49)sin 2 tj (21)

The instantaneous powe is

*p = ei = 2Cm [in(t+ e)cos(t+ )-sin(t+ o9)cos(,wt+ e)cos 2t

+2sin 2(t+ ) sin 2t (22)

The average power is

CE2 2 W C 22rOL dtr - n sin2 it sin2

2 ~

m sin 2 (23)

Motor action is developed by this machine for power angles of 6 - 0 to n/4.

Generator action is developed for 49 = to -n/4.

The power developed by this machine in terms of its physical

dimensions is
E2 sin 2 2npn K 0.0884 x 10 12n(r 2 -r2 )2s

P = 1 2

a 8 120. 2d

-15 2 2 21.815 x 10 E pns(rl-r 2)k sin 20
'- watts (24)

d
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218 x 10 l 1E2fs(rl-r2)k sin 28
:If, n- . . ........- ...

- (25)d

where

K =-

n = revolutions per minute

p = number of poles

s = number of rotor disks

f = frequency cycles per second

5. Effect of Parasite Capacitance
on Current and Power Factor

In the foregoing analysis it was seen that the constant

minimum capacitance C, upon which the varying capacitance was con-

sidered superimposed, had no. effect on the average power. The effect

of this minimum capacitance between rotor and stator on the line current

and power factor will now be examined. The capacitance expression is

more accurately given by

0 = Cm(sin 2at+) (26)

where C is the maximum change of capacitance and Cm is t he minimum

capacitance. Taking

e = sin(ezt+ ) (5)

the current, from Equation (1), is given by

i = Cm(sin2 wt+2X)0E cos(ct+)+E sin(wt+ e)Cmsin 2t

which reduces to

i = - ECm[A sin(mt-+ 3/4 cos(3ot+G)] (27)

where

3 2 2 2gAc+ 2 cos2 + ( + )sin29 (28)

and

= tanl (3/4 + )cos8 (29)
(1/4 + )sine
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The power factor is the cosine of the angle between the fundamental

components of voltage and current, or

P.F oos (90-V+ ) (30)

Fig. 4 shows the effect of the minimum capacitance C on

current and power factor for all values of and two values of A. It

is seen that increase in greatly increases the current and greatly

reduces the power factor. For single-phase machines of this type the

power factor is still only 0.454 even when 2. is zero, a condition not

attainable in practice. It must be remembered, however, that in the

high-voltage machines contemplated by this research, power-factor con-

siderations are not nearly so important as in the present electromagnetic

machines.

6. Third-Harmonic Current

More important is the relatively large third-harmonic current

which exists, as shown in Equation (27). The third-harmonic current is

independent of both power angle and minimum capacitance. When =- 0,

the third harmonic is always somewhat larger than the fundamental, except

at no-load, when they are equal. For other values of it is only the

additional reactive component of the fundamental which makes it overshadow

the third harmonic. It must be noted that, while many harmonics are

present in machines with uniform capacitance variation, it is only the

third harmonic which still remains when the machine is designed so that

the rate of capacitance variation is sinusoidal. Since, as will be dis-

closed, even this third harmonic can be eliminated in three-phase machines,

it is evident that the sinusoidal rate of capacitance variation offers

advantages over the rectangular and other types.
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7. Polyphase Synchronous Electro-
static Machines, Type 1

While the synchronous electrostatic machines described above

were single-phase, it is recognized that polyphase machines operating

on the same principles may be made of such single-phase units properly

displaced in phase relative to one another. Some of the possible circuit

connections for two-phase and three-phase machines are shown in Fig. 5.

The power formulas developed for the single-phase machine now give the

power per phase for the polyphase machine, all the terms in these formulas

becoming phase quantities. It is evident, without further analysis, that

polyphase operation results in a far more uniform torque characteristic

than single-phase operation.

It has been shown that one of the inherent characteristics of

the single-phase machine operating on sinusoidal voltage are the prominent

current harmonics which accompany the fundamental. It has also been

shown that by shaping the rotor or the stator plates so as to make the

rate of capacitance variation sinusoidal, all but the third-harmonic

current can be eliminated. In a three-phase machine fed by or feeding

into a three-phase transformer with the neutral connected, the third

harmonics in each phase flow out through the neutral. A tertiary delta

winding on the transformer will supply this third harmonic, so that no

third-harmonic current due to the electrostatic machine appears in the

external circuit beyond the transformer. A circuit embodying this idea

is shown in Fig. 6.

It is not possible to balance out the third-harmonic currents

for all loads in a polyphase machine by displacing the rotors relative

to one another, and keeping the stators in phase, nor is this believed

to be a practical method of reducing them.
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B. ALTERNATING-CURRENT ELECTROSTATIC
MCHINES - TYPE II

These machines* consist essentially of two sets of stator

members between which a direct-current excitation voltage is maintained,

and two sets of rotor mnmbers whose capacitance with the stator members

varies periodically, preferably so that dc/dt at constant speed is a

sinusoidal function. A four-pole machine of this type is shown in

Fig. 7. From its schematic diagram given in Fig. 8 the machine is

seen to constitute a capacitance bridge, the four capaoitances in the

arms of the bridge varying periodically in a given manner, the excita-

tion voltage being applied across two opposite points of the bridge

and the alternating-current line being connected by slip rings to the

other two oppositely-located points.

For motor action an alternating-current voltage is impressed

via the slip rings across the rotor members, the frequency of this

voltage and the number of rotor poles determining the synchronous

speed according to Equation (4). For generator action the machine is

driven at synchronous speed and the alternating-current power taken

from the slip rings. The voltage and power of this machine as a gen-

erator, and its power as a motor, can be controlled by regulating the

direct-current excitation voltage.

Polyphase machines of this type have been devised. A schematic

diagram for one of the several connections for a three-phase machine

is shown in Fig. 9.

1. Machine Analysis with Resistance Loading

For a machine designed for a sinusoidal rate of capacitance

variation, when the rotor is in the axis of reference (as in Fig. 7,

* A single-phase generator of this type for use in air is described
in '"lektrostatische Maschinen," by W. Petersen, 1907.

_____ __ __ _ ____ ___ __ __ _I __
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A over a, B over b), the capacitance relationships, neglecting the

parasitic minimum capacitance C, are given by:

C COS 2 cat
a-A 2

CbA = C sin' t

(31)

Cb-B 2 C cos 2

2 Wt
CaB C sin 2 t

where C is the maximum capacitance change between any stator and any

rotor group. The angular velocity of the current or the voltage be-

tween slip rings is given by

CO n = 2 n f (32)

in which n is the revolutions per minute, 2 the number of rotor poles,

and f the corresponding synchronous frequency.

The current which flowrs between the slip rings through resist-

ance R is given by

i = il+ i 2

where

i1 Ca.A ~ + C a-Ai1 Ca-A d dt 2 ) dt a-

= C cos2 t d et fe-V d 2 t
2 dt 2 d-

i2 = CA-b t -2 )+ (C-b)

= C sin2 -d + ( C sin 2
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Hence

i=C (cos 2 tt + 2 ct) de VC d 2 t )i ° 2- + - 2sn 2 i

C de VC 
2 t 2 

and

CR de VCR .
e=2 =+ - 2 s t

The solution of this differential equation is of the form

e = K cos(t-)

(33)

(34)

(35)

The arbitrary constants are evaluated by putting Equation (35) and its

time derivative into Equation (34) and solving for the boundary cases

when (cat-) = 0, and when t = O. Equation (35) then becomes

e = - cos(wt-4) where = tan- 1 2

.. . c(2)2
(36)

Hence

V

R 1+ (w 2

V2

p = ei 

R+R ( -cm)

cos (t-~) (37)

(38)

(39)C 2
2(C R o +4)

and the power factor is unity.

The above analysis is for generator action. If voltage e is

replaced by -e, which signifies an impressed voltage, or motor action,

8 e
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the same analysis and resultant relations hold except for the 180-degree

change of phase between voltage and current.

2. Maximum Average Power

The relationship between R, C, and X which results in maximum
4

power from a machine of given size is found by writing

RP O (40)
RbR~ ~?

where P is given by 0. It is found that the average power is maximum

when

2
R C (41)

Substitution of Equation. (41) in Equations (39) and (36) gives, for

maximum average power and corresponding alternating-current voltage,

V2Ct
Pmax 8 (42-a)

In terms of the physical constants of the actual machine this beoomes

0.578 x 1015 nps(r2 -r 2 )V2
P (42-b)max d (42-b)

V

e max cos(t-) (43)

'he effective alternating-current voltage in this case of maximum power

is

Eef Vs (44)eff
Pmax

3. No-Load

The no-load condition of the machine is described by

C de VCw (46)
a-WEV+ T Sin t o (45)
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'lhe current between the slip rings is zero (corresponding to an infinite

R) and the alternating-current voltage across them is again of the form

given by Equation (35). On evaluating the arbitrary constants, this

becomes

eh4 V 08 MYt (46)

4. Voltage Regulation

The voltage regulation in this case of unity power factor is

41.5 per cent from no-load to maxim load.

The current if in the stator circuit at no-load, assuming con-

stant inducing voltage V, is

i il- 2 - CV sin 2t (47)1 2 n 2

5. Short Circuit

At short circuit e 0 and short-circuit current between slip

rings is given by

i i -i V d 2 Cc t V d 2 t V C s in t (48)
1 2 T2 dt 2 2dt T_ 2

The current if in the stator inducing circuit for constant V is

if = il +i V EC Cos - V d C in t =0 (49)

6. Machine Analysis with Resistance
and Inductive Loading

In this case, the external circuit connected to the slip ring

has a resistance R and an inductance L. With this exception Fig. 7 still

applies, and the equation for the current through the external circuit

is still

i = C de VC±2 + V sin cit (33)2 dt 2- 
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and

di C d2e VC0 2

dt; = :7 + 2 os T

The voltage e across the external circuit is given by

di IC d2e LCVe RC de RVC(1eRj +L +-- 2 o t7 + - -wt+ sin (51)
dt 2 at 2 2 dt 2

The solution of this differential equation is again of the form

e = cos(tI-.) (35)

Evaluating the arbitrary constants by the same method as before gives

EP _ (R2CoL2O 3)L ( 5(52)
V4.2+(R2Cw,+2L o+L2Cw')

and

'=tan~1 2X- 23 (53)
R C+2L +L C

It is seen that Equation (35) with its constants defined by Equations (52)

and (53) reduces to Equation (36) when L = 0.

Since the alternating ourrent of the machine, if the voltage

across the external circuit is known, is governed by the constants of

the external circuit, we have

i : - cos(Wt-~- ) (54)
r R2+&2 t

where K and ~ are given by Equations (52) and (53), respectively, and

cos = R 22 power factor. (55)
l~~~~~~~c-~21.~~~~~~~~~~ ·ia



31

7. Effect of the Parasite Capacitances, Co.

The effect of the undesirable, though inevitable, constant

minimum capacitances C, on which the varying capacitances C are super-

imposed, will now be considered. Equations (31) nowv become

Ca-A = C(cos2 + )

& A -2-(se)

(56)

Cb B = C(os2 + A)
b-BA

Ca B = C(cos2 + A)

where C is the minimum capacitance and C the maximum capacitance change

between any stator and any rotor group.

The analysis now proceeds as before, the simpler case of a pure

resistance R in the external circuit being treated. The voltage across

the slip rings is found to be

Ve ' - cos(at-4) (57)
(1+2x) 2+ (2)

and
v2

R [1+2Ax2+ (q (58)

where

. t-an-l, 2 (59)
ch( 1+22)

P 2 (60)
a 2R [(1+2A2+(% ) 2]-~ ~ c
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The condition for maximum average power, a p/R = 0, is realized when

R 2 (61)
Cw(1+2X)

The ratio of the maximum average power of a given machine to its maximum

average power, if no parasitic capacitances were present, is

Pm(C+Co) 1
..... = . . . . . (62)

Pm 1+21

It is seen that the effect of the parasitic capacitances Co is to reduce

the alternating current, voltage, and power, of this type of synchronous

electrostatic machine.

8. Polyphase Synchronous Electro-
Static Machines, Type 2

Polyphase machines of this type have been devised. A schematic

diagram for one of the several connections for a three-phase machine is

shown in Fig. 9. The above analyses of single-phase machines apply to

each phase of the polyphase machines. Polyphase operation results in a

uniform torque characteristic. This type of machine, whether single or

polyphase, is further characterized by the absence of current harmonics.

C. DIRECT-CURRENT ELECTROSTATIC GENERATOR - TYPE III

This machine was devised during the course of this investiga-

tion. A multipolar generator of this type is illustrated in Fig. 10

and schematically in Fig. 11. The interleaving rotor and stator members

are of metal and so arranged that with rotation of the rotor the capaci-

* By R. J. Van de Graaff, August 15, 1933.

__ _____ __
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tance between them varies cyclically between a minimum value Co and a

maximum value Cm. The rotor is insulated from ground and maintained

at a voltage V relative to ground by an auxiliary means to be described.

The stator is connected to the junction of two electronic valves which

are connected in series across the line. To generate negative electric

power, the rotor-inducing voltage V must be positive and the valves must

be connected as shown in Fig. 11. To generate positive electric power,

V must be negative and the valves reversed.

1. Theory of Operation

Referring to Fig. 11, C is the capacitance between rotor and
N

stator in any position, C and Cm are the minimrum and maximum values of

C, C is the lumped capacitance of the external power system, C8 is the

capacitance of the stator relative to ground, Cvl and Cv2 are the capaci-

tances of valves 1 and 2 to ground, V and E are the inducing voltage on

the rotor and the output line voltage, respectively, both expressed rela-

tive to ground and both assumed at first to be constant.

The cycle for the generation of negative electric power is as

follows: When C becomes equal to Cm , Valve 2 ceases to be conducting.

At this point the stator is at ground potential, full line voltage E

exists across Valve 1, and full inducing voltage V exists across Cm .

The electric charge stored between rotor and stator is therefore

On Cl V (63)

As the rotor turns, the capacitance C diminishes. Since neither valve

is now conducting, the voltage across C increases, the stator becoming

more and more negative relative to ground. The stator attains line

potential E when
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CmV-(Cs+Cv2)E
C1 EV (64)E+V

At this point (assuming, for simplicity, zero drop across the valves

when conducting) Valve 1 becomes conducting. Further movement of the

rotor till C = C causes charge to leave the stator and flow onto the

line. Valve 2 is now withstanding full line voltage E. The charge left

in the generator system when C = C is

= - Co(E+V)+(Cs+cv2)E (65)

As the capacitance now increases, due to the isolation of the charge QO,

the potential of the stator approaches ground potential. The stator

reaches ground potential and Valve 2 becomes conducting when

Qo Co(E+V) (C8+cV2)E
02 - = V + V '*· (66)

Charge continues to flow into the stator from ground until C = Cm when

the cycle repeats.

The net amount of electricity transferred during a cycle is

Q = -mQo = CmV-Co(E+V)+(Cs+Cv2)E] coulombs (67)

The number of cycles per. second is given by

f np (68)

The power output of this machine is therefore

p = Co(E+v)+(Cs+Cv2)EJ (69)
V -. J

In terms of the physical dimensions of the machine, the power output is

Pa - 4.63 x 0o-15 s(rl-r)v watts (70)
d
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where

Co(E+V)+(Cs +Cv2)E
k = i .... . (71)

CmV

n = revolutions per minute
s number of rotor plates
d = separation between rotor and stator in centimeters
r l and r2 = radii of rotor in centimeters

A practical idea of the value of k is obtained as follows:

Assuming C - 0.31 Cm, C+C2 = 0.25 Co , E = V, then k - 0.775.

2. Effect of Variation of Inducing Potential V1

It is evident that the rotor is capacitively coupled to ground,

and that the value of this capacitance, due to motion of the rotor, varies

/between Cr+Cm and Cr+C o . If the rotor is initially charged to voltage V

when its capacitance to ground is Cr+Cm, then the potential of the rotor,

when C Co , is

V' - r+m V (72)
Cr+Co

Since, in general, large fluctuations in the rotor potential are unde-

sirable, it is seen that Cr should be large relative to Cm. If Cr is

10 Cm , then in any practical machine the voltage V would undergo a max-

imum increase of about 10 per cent. The maximum voltage between stator

and rotor occurs when C Co and is equal to

E E + V (72)max Cr+Co

The effect of this increase in inducing voltage is also to reduce the

power output, since the charge left in the system, when C Co , is

* Assuming C- oo and Cs - Cv e 0.

_ _ _ ____ _____
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Qo CO(E+V )+(CS+C.7)E (73)

:t must be noted that the rotor performs simply an inducing

function and that, once charged, it requires electrical energy only to

replace the leakage across its insulators.

3. The Reduction of the Undesirable
Effect of Varying Inducing Voltage

A simple means may be used to reduce the undesirable effect

of variation in the inducing potential V. This is done by displacing

one-half of the stator plates 90 degrees relative to the others. Separate

electronic valves must now be used for each set of stators. By this

means the total capacitance between rotor and stator remains constant

for all positions of the rotor.

The inducing voltage V depends, once the system has been

charged, on the total capacitance rotor to ground. This does not be-

come constant by the above artifice since the connections of the stator

change during the cycle. Fig. 12 illustrates the circuit connections

for the simple machine during the cycle. Fig. 12-a describes the interval

from C = Cm to C = C1 during which the stator changes from ground to line

potential. Fig. 12-b describes the connection from C = C 1 to C = C o.

This is the discharging interval. Fig. 12-a again describes the interval

from C = C to C = C2, during wlich the stator changes from line to ground

potential. Fig. 12-c describes the charging interval from C = C2 to C = C-

Fig. 13 shows the variation of total rotor capacitance to ground

during a cycle for the constant rotor-stator capacitance machine with a

doubly-displaced stator. The curve is drawn using the practical assump-

tions that Cvl, Cv2 , and C are closely zero capacitances, is a rela-

tively infinite capacitance, and E = V.



It is evident that in a machine in which the stator and rotor

plates have been staggered once in the manner described, so as to secure

constant rotor-to-stator capacitance, the rotor-to-ground capacitance

variation is one-half what it was before. By still further staggering

the stato, further reduction of the inducing system voltage variation

can be effected.

4. Output Current and Voltage Characteristic

The generator with the two 90-degree-displaced sets of stators

evidently has two current-conduction intervals during each cycle. This

results in a more uniform output-current characteristic. By the use of

four sets of stators, displaced successively 45 degrees along the cycle

and with four sets of electronic valves, the current input to the line

would be nearly constant for the case where V = E. Actually, by proper

design, such a uniform current characteristic can be very closely realized.

The high frequency of the current pulses, brought about by the high speed

of rotation and the large number of poles which characterize these electro-

static generators, coupled with the high capacitance of the output circuit,

is effective in preventing large voltage ripples.

5. Power Control

The power output of this generator for any given line voltage

can be regulated by controlling the rotor inducing voltage V o . This

rotor voltage may be maintained by a low-power electrostatic generator

of the collector type operating in the same vacuum. Other means have

also been devised. The potential V may be controlled, for example, by

changing the resistance of a high-resistance leak.



D. DIRECT-CURRENT ELECTROSTAIC
GENERATOR - TYPE IV

This generator was devised during this investigation. It is

illustrated in Fig. 14 as a two-pole generator, for simplicity. Since

the power of a machine of given dimensions is proportional to the number

of poles, it is desirable for high power concentration to employ many

poles. The generator consists of two sets of stator plates, a and b at

line potential and at ground potential, respectively, and two sets of

rotor plates, A and B insulated from ground and each other for full

line voltage.

1. Cycle of Operation

The cycle of operation is as follows: In Position 1-1, rotor

sectors A and B are at the same potential because of symmetry, this

potential being one-half of the line potential. At this position an

electrical connection is made between A and B which is maintained until

Position 2-2. During this interval charges are induced on the rotor

sectors which are isolated when the connection A to B is broken at

Position 2-2. No net motor action is developed over this interval,

since equal amounts of motor and generator action are developed. As

the rotor continues to turn, an optimum position is reached where the

potential of A becomes the same as that of b, and the potential of B

the same as that of a. At this optimum position connections between A

and b and between B and a are established. These connections are main-

tainled until the rotor is in Position 3-3 where A is completely within

the Faraday cage formed by b, and B completely within the Faraday cage a.

At this position A is neutral and at the same potential as bs likewise

B is neutral and at the same potential as a, and the discharge circuits
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I

are opened. Sectors A and B now move .to the position of symmetry 1-1

where the cycle starts anew.

2. Power Capacity of Direct-Current
Electrostatic Generator - Type IV

The maximum charge isolated on the rotor sectors during the

charging interval from Position 1-1 to 2-2 is CmE/2 or

-12 ( 2)2 0.0884 x 1012 R(rI-r )2s E
2d 2 (74)2d 2

where Cm is the maximum capacitance rotor to stator in farads, E is the

line voltage, r and r2 are the outer and inner radii of the metal rotor

in centimeters, and d is the separation between rotor and stator in

centimeters The capacitance Cm is here taken as one-half that which

would be obtained if the physical arrangement of the rotor and stator

were as shown in Fig. 14. In any actual machine the rotor sectors A

and rotor sectors B would be in two separate sections along the shaft.

This permits one-piece rotor construction with resultant high mechanical

strength, but reduces the total capacitance for a given number of rotor

disks by a factor of two. This construction is illustrated in Fig. 15

and applies to many of the direct-current machines discussed herein.

The number of cycles per second is given by

= np (75)

The maximum average power developed by the generator is therefore

Pm= 0.58 10 1 5 np (r -r2)E2 watts (76)

It is noted that the ratio of the maximum average power of a given-sized
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generator of Type IV to that of Type III, both operating on the same

line voltage E, is

PIV E
PI 8KV where EK 1. (77)

PIII 8KV

The maximum voltage between rotor and stator in the Type IV generator,

however, is E, whereas this masimum voltage in Type III is E+V. If the

insulation limitation on these generators is a voltage limitation, it is

clear that the Type IV generator can operate safely at a line voltage

which is E+V/E times that of the safe operating voltage of Generator III.

The ratio of the maximum average power of a given-sized gen-

erator of Type IV to that of Type III, when both are subjected to the

same maximum electric stress between rotor and stator, is

PIV 1
PIV 2K 1where K < 1. (78)

PIII 2

3. Method of Making and Breaking Connections

During the first part of the cycle A and B are electrically

connected. This connection is always made at the same point in the

cycle and at a time of zero voltage difference and zero current flow.

Hence such a connection could easily be made mechanically by a conmmta-

ting mechanism such as is described on p. 72. This connection is broken

in Position 2-2. The mechanical design is such that at this position

there is again a short period of small or zero capacitance change. The

connection is broken at the beginning of this interval, the current and

voltage being zero when the contacts separate, and remaining so for a

short period thereafter. The schematic diagram for this commutator is

shown in Fig. 14. It is evident that this commnutation is under ideal
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conditions. By inserting an electronic switch in series with this

inter-rotor connection, the necessity for close timing of the commutator

contacts is eliminated, the switch automatically performing this function.

By controlling the grid ofthis switch the amount of charge isolated on

the rotors can be controlled. This offers a means of controlling the

power developed by this generator and will be discussed below.

The discharge of the rotor sectors into the line sectors begins

(for highest efficiency) when the rotors attain exactly their respective

line potentials. Mechanical commutation, illustrated in Fig. 14, is

used to accomplish this. hile under any given conditions the optimum

position for this commutation is always at the same point in the cycle,

under varying load conditions this optimum position varies, coming later

in the cycle for lighter loads. Accordingly the mechanical commutator

is arranged so that the proper circuit connections are established at

the earliest possible point in the cycle at which the optimum condition

can occur, and an electronic valve is inserted in series with these

connections so that actual transfer of charge cannot take place until

the optimum conditions obtain. This results in high efficiency of

charge transfer under all conditions, and relieves the mechanical com-

mutation from all precise timing requirements.

The type of electronic valve proposed for use with these

machines is described in Chapter VIII. This method of simultaneous

mechanical commutation and electronic commutation is applicable to and

intended for all of the machines described herein.

4. Power Control

The power developed by the line-excited generator, Type IV,

may be controlled in several ways. This discussion will be based on the
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existence of a constant line voltage EB.

(a) By opening the connection between rotors A and B at some

position between 1-1 and 2-2, the amount of charge isolated on them is

less than the maximum amount. This may be accomplished automatically

by a grid-controlled electronic switch, as suggested above. The grids

of these switches may, for example, be actuated by changes in the line

voltage in such a way as to keep the line voltage constant. The use of

the electronic valves in the output circuit, as suggested above and as

shown in Fig. 14, permits the flow of the charge into the line under

optimum conditions for all loads. In this way the power output of the

generator may be either manually or automatically regulated for efficient

operation over the entire range.

(b) Again, it is possible to regulate the power output of the

machine by dividing it into several independent sections and providing

manual or automatic means for large-stepped variations of power by

tripping out the desired number of sections, the remainder operating at

maximum power output. The sections may be cut out by simply failing to

connect rotor sectors A and B during the inducing period. Simple electro-

static and electromagnetic schemes for accomplishing this have been de-

vised. This method has the advantage that the commutation positions in

the active cycles are constant. By providing the last section to be

tripped out similarly with further subdivisions, it is evident that the

power gradations can be made very small. This last section might also

be arranged to provide variable power by the electronic method suggested

under (a).

(c) The power output of this machine can also be regulated

by controlling the speed of the prime mover. This method has the advan-
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tage that the optimum commutating positions are not displaced with load.

It has its limitations in the high energy of the moving system and the

consequent time delay involved in changing load. The freedom of the

electrostatic system from the constant-speed requirement, however, makes

this method valuable for certain applications.

The general ideas involved in these power-control methods are

applicable to each of the various types of machines described herein.

E. DIRECT-CURRENT ELECTROSTATIC
GENEIRATOR - TYPE V

This generator was devised during this investigation. It is

of the separately-excited classification and is illustrated diagrammati-

cally in Fig. 16. It consists essentially of two sets of metallic stator

sectors, Sectors a being maintained at an inducing voltage +V above the

positive line voltage E, and Sectors b being maintained V volts negative

relative to the negative line, which may be taken as at ground potential.

The two sets of metallic rotor sectors, A and B, are insulated from each

other and ground for full line voltage. In any practical machine these

rotor sets would be displaced from each other along the shaft to secure

maximum mechanical strength of the rotating parts. Such a practical con-

struction is illustrated in Fig. 17.

1. Cycle of Operation

Referring to Fig. 16, the cycle of operation is as follows:

When the metallic rotors A and B are within the Faraday cages formed by

the stator sectors a and b, respectively, Sector A is electrically con-

nected to the positive line, and B to the negative line or ground. For

maximum power these electrical connections between rotors and lines are
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opened in Position 1-1 where the capacitances CA_ a and CB- b are maximum.

This results in the isolation of negative charge of amount CA- V on

Rotor A, and of CB-bV on Rotor B. With further movement of the rotor

these capacitances diminish, the potential of A approaching ground

potential, and that of B approaching the positive-line potential. It

is evident that, as Rotor Sector A with its isolated negative charge

moves into the negatively-charged Faraday cage formed by b, the poten-

tial of A tends to become even more negative than b. Likewise, B tends

to become even more positive than a. There is, therefore, a certain

intermediate point in the movement of the rotor from Position 1-1 where

A attains ground potential and B attains the positive-line potential.

At this optimum position A is electrically connected to ground, and B

to the line. Electronic valves in series with mechanical commutators,

as illustrated in Fig. 16, may be used to assure these connections at

the optimum point. Movement of A into b, and of B into a, now causes

the isolated charges to flow into the system and further charges to be

induced on the rotors. The electrical connections between rotors and

lines are maintained (for maximum power) until A is fully within b, and

B within a. This is again Position 1-1, and the cycle repeats.

2. Power Capacity

The maximum charge isolated on the rotor sectors of a practical

generator during a cycle is

0.278 x 10l 12 (rl-r2)sV
Q CmV = 1 (79)

d

The number of cycles per second is given by

np
6-07j (80)
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The maximum average power developed is

4.63 x 10'1 5 nps(r-r2 )VE
PM 1 2 (81)m d

The maximum voltage between rotor and stator is E+V.

3. The Inducing Voltages, V

The inducing stators a and b are connected capacitively to

their respective lines and charged to the potential +V and -V relative

to them. No power is required to maintain these charges except to re-

place the leakage loss to the lines. Unless the capacitances of the

stator sectors to their respective lines is very large, the voltages V

will vary during the cycle, due to the movement of the rotor. Any large

variation of this kind is undesirable since, for a given amount of de-

veloped power,it increases the voltage-insulation requirement in a

manner similar to that discussed in the case of the Type III generator.

This variation may be very considerably reduced by dividing the machine

into two machines, the stators being in the same relative position for

both of them, but the rotors displaced by 90 degrees. Division into

four machines, and the relative displacement of the rotors by 45 degrees,

offers still further advantages. It is evident that another important

effect of such a multiple displacement of rotors is that the output

current can be made quite uniform.

The inducing voltages V may be maintained by means of low-

power electrostatic generators of the types disclosed herein.

4. Power Control

The current output of this generator can be regulated by con-
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trolling the inducing potentials, V. This could be done by means of

automatically- or manually-controlled leaks which, acting against the

inducing generators, would establish the inducing potentials relative

to the lines at any desired value. The current can also be controlled

by the methods suggested in paragraphs a, b, and c of Item 4, Generator

Type IV.

F. DIRECT-CURRENT ELECTROSTATIC
GENERATOR -TYPE' VI ...

This generator is of the line-excited type and is illustrated

diagrammatically in Fig. 18. It consists essentially of two sets of

metallic stators, sectors a and b, which are connected to the positive

and negative lines, respectively, and two sets of metallic rotors A and

B, which are electrically insulated from the shaft and each other. It

is intended, though not necessary, that each "set" be multipolar. In

any practical machine it is expected that all the rotor sectors perform-

ing the function of Sectors A will be constructed as a balanced metallic

unit - similarly for those performing the function of B - and that these

two rotor units will be mounted separately along the shaft and insulated

from the shaft and each other for full line voltage. This construction,

illustrated in Fig. 25, results in maximum mechanical and electrical

strength. The general idea ofsecuring balanced unit rotor construction

is applicable to all the machines herein described, though the machines

are not limited to this construction.

1. Cycle of Operation

In Position 1-1 rotor sectors A and B are in a symmetrical

position relative to the stator sectors a and b and are hence at the

* Developed by R. J. Van de Graaff during and prior to September, 1929.

_ __ _�II __ ___ _ __ _��_ _ __ ___ _
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same intermediate potential, namely, one-half the line voltage E. At

this position the rotor sectors are electrically connected together by

some means such as the commxator indicated in Fig. 18. In the interval

from Position 1-1 to 2-2 motor action is developed between A and a, and

between B and b. This motor force is at all times in this interval pro-

E2 dCportional to where C is the capacitance between A and a, or B

and b. When the rotor plates are fully interleaved with the stator and

at a time of no current flow, Position 3-3, the electrical connection

between A and B is broken. This isolates the charges which have been

induced on sectors A and B. Further movement now carries these isolated

charges toward those stator sectors charged with electricity of the same

kind. At the optimum position, when the rotor sectors attain the poten-

tial of the line sectors, the isolated rotor charges are allowed to start

flowing to the lines, the charge on A flovring to b, and the charge on B

flowing to a. This transfer of charge may be accomplished under optimum

conditions by careful timing of mechanical commutation, or by the series

combination of mechanical and electronic valve commutation which has al-

ready been described. When the transfer of charge has been completed,

that is, when the rotor sectors A and B are completely within the Faraday

cages b and a, respectively, the discharge circuits are opened. Further

movement of the now neutral rotor sectors carries them out of the Faraday

cages and to the position of symmetry 1-I; the cycle then repeats.

2. Power Capacity

The maximum charge isolated on the rotor sectors of a practical

generator of this type during one cycle is

CmE 0.0694 x 10 (r2-r2)sE

(82)
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The number of cycles per second is

120 (83)

The maximum average power developed is

,-15 2 2- 2
0.289 x 10 1 5 x nps(rl-r2)E

Pm watt s (84)d

The maximum voltage between rotor and stator is the line voltage E.

It is seen that the maximum average power developed by a Type VI

generator of given physical size is one-half that of a Type IV generator.

The interval of motor action during the generator cycle which character-

izes the Type VI generator is not present in the Type IV generator. Both

types, under given conditions, are subject to the same maximum electric

stress.

3. Power Control

The methods of power or current control described for the

Type IV generator apply to the Type VI generator. The general schemes

for effecting the electrical connections apply to both types.

G. DIRECT-CURRENT ELECTROSTATIC
MOTOR - TYPE VII .

This direct-current electrostatic motor was developed during

this investigation. A simplified diagram of this machine is given in

Fig. 19, This machine differs from all the other machines described

herein, in that the general principle of transferring charge from one

capacitive system to another only when they are at closely the same

potential is not observed. This results in a definite amount of energy

loss in the operation of this machine as a generator. A quantitative

discussion of this characteristic is made below.
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1. Cycle o Operation

Since, as will become evident, Rotor Sector B goes independ-

ently through a similar cycle as Rotor Sector A, the cycle of operation

will be described for Sector A alone.

The cycle may be considered to start when Rotor Sector A is

about to leave the Faraday cage formed by Stator Sector a. Contact be-

tween A and a still exists from the previous cycle. Sector A then moves

to some position such as that shown in Fig. 19. At this position con-

tact between A and a is broken, a charge Q equal to CE being isolated

on Rotor Sector A where C is the capacitance at that instant between

A and b, and E is the line voltage. Further movement causes CA-b to

increase for either or both of the following reasons:

(a) Because of increase in the effective overlapping areas

of sectors A and b.

(b) Because of a decrease in the separation between A and b

produced, for example, by increasing thickness of stator plates with

angle, or of rotor plates with angle, or both. These methods are de-

scribed in further detail in Item B of Chapter III. The design may be

such that the maximum capacitance CA-b is attained ust when A is about

to leave the Faraday cage formed by b. At this position the voltage

between A and b has decreased to the value EC/C m . Rotor Sector A is

discharged into the stator sector b at this point by contact or by other

means. The cycle is now complete.

2. Power Capacity

The charge isolated on the rotor of a practical form of motor

of this type during one cycle is
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.278 x 10 1 2 KsE(rl-r 2)

AQ= coulombs (85)
d

where K is the ratio of the effective area of the rotor overlapping

the inducing stator sector at the end of the charging period, to the

total rotor area.

The voltage at the time of discharge of the rotor into the

stator sector is

V Ed (86)

'where d is equivalent separation between rotor and stator in the

position of maximum capacitance. The frequency of the motor is given by

%f np (87)
60

The average power developed by the motor is

4.63 x 11'15 nsp(r2 r2)E
ad x 2 dj |watts (88)

The percent of energy loss relative to the motor output is given by

100 K d
Percent loss d (89)

KK2 d

If K = 0.4 and d'/d = 0.1, then the percentage of energy loss is 4.2 per cent.

3. Power Control

The amount of power developed by this motor can be regulated

by controlling the position at which the connections between the stator

sectors and the departing rotor sectors are broken. This may be done by

means of a mechanical commutator or by means of a grid-controlled elec-

tronic valve. Definite mechanisms for controlling these switching de-
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characteristics, have been devised.

H. DIRECT-CURRENT ELECTROSTATIC
MOTOR - TYPE VIII

This motor differs from the Type VII motor in the introduction

of an artifice to eliminate the energy loss involved in the power cycle

of that machine. A diagrammatic sketch of this improved electrostatic

motor is given in Fig. 20.

1. Cycle of Operation

It is seen from Fig. 20 that Stator Sector a is maintained

positive relative to Line a, and Sector b relative to Line b, by an

inducing potential of V volts. This inducing potential V is such that

the charged rotor sectors A and B can attain line potential and there-,

fore, at the end of each motor interval, can be connected to the lines

at the time of no voltage difference. This permits the transfer of

charges between rotor and lines under optimum conditions. For example,

when Sector A, carrying its isolated positive charge, approaches the

negative inducing Sector b, the capacitance CAb increases and the volt-

age between them diminishes. The design is such that this voltage differ-

ence (at the position of maximum capacitance CAb, and if the charge

were to remain isolated on A) would become equal to or less than the

inducing voltage V. Hence there must exist a point where the potential

of the rotor sector A and Line b are the same. At this optimum point

connection between A and Line b is established. This connection is

maintained until A has not only released its positive charge to the

line, but has also emerged from the sectors b sufficiently to have

* Suggested by R. J. Van de Graaff.
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acquired a negative charge of the desired amount by induction from

Stator Sector a. Connection between A and Line b is then broken. The

cycle now repeats. Evidently this arrangement has eliminated the power

loss associated with sudden condenser discharges. A similar cycle,

with charges of the opposite sign, is independently undergone at the

same time by B and a. The current and torque characteristic can be

made quite uniform by staggering the rotors in phase position relative

to one another, keeping the stators in the same position. Each separate

set of rotors must then have a separate commutating system.

2. Power Capacity

The charge isolated on the rotor of this machine during one

cycle is given by

.278 x 10i'2 rsV(r2 -r )
d= (90)
d

where r is again the ratio of the capacitance at the end of the charging

interval to the maximum capacitance rotor to stator.

The average power developed by this motor is

-. ,5 2 2 2
4.63 x 10 15 nrsp(rl-_r 2 )E2

P =d 2 -watts (91)

The maximum voltage between rotor and stator is E+V. For

high efficiency this voltage must be at least equal to E(l+r). If

r = 1, it is seen that the power concentration and the required insula-

tion strength are precisely the same as in the Type V generator described

below.
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I. DIRECT-CURRENT EECTROSTATIC
MOTOR - TYPE IX

This direct-current electrostatic motor was developed during

this investigation. It consists essentially of two sets of metallic

stator members which are connected to the two lines of the power supply,

and two sets of metallic rotor members which interleave with the stator

and are insulated from the stators and from each other for full line

voltage. A diagrammatic sketch is given in Fig. 21.

1. Cycle of Operation

When the rotor is in the position of symmetry 1-1, Stator

Sector A is connected to the negative line and Stator B to the positive

line. This may, for example, be accomplished by a commutator, as illus-

trated. Full voltage thus exists between A and a, and between B and b,

and motor action is developed as the rotor moves clockwise. In Position

2-2, when the capacitances CA-a and CBb have reached one-half their

ultimate maximum capacitances, the lines are disconnected from the rotor

sectors and the charges on them isolated. As the rotor moves from

Position 2-2 to 3-3, these capacitances increase from C/2 to C and hence

the voltage between A and a, and between B and b, diminishes from E to

E/2, At Position 3-3 the voltage between rotor sectors A and B is there-

fore zero and there is no current when they are electrically connected

in this position. The interval from Position I-1 to 3-3 is characterized

by motor action. As the rotor now continues to advance toward Position 4-4,

the capacitances CAa and CB_b diminish, the voltages across them remain-

ing at E/2. At Position 4-4, where these capacitances are two times their

minimum values, rotor sectors A and B are disconnected. This isolates

the charges on the rotor sectors so that at the position of minimum
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the rotor sectors will have attained the voltages of the lines t o which

they are about to be connected. The interval from 3-3 to 5-5 is charac-

terized by generator action. This power cycle is illustrated in Fig. 22.

2. Power Capacity

The maximum charge which is transferred during each cycle is

( mE C-oE (92)

and the voltage through which this charge falls is one-half the line

voltage, or E/2.

The frequency of this process is given by

fflP (93)60

The maximum average power developed by this motor is, there-

fore,

p = p(m _ COE E watts
a 60 2 0

In terms of the physical constants of a practical machine of this type

this is

.578 x 10'15 Knps(r-2r2)E2

Pa d watts (95)

where

C -2C

Cm

The maximum voltage between the rotor and stator is the line

voltage E.

For the same maximum electric stress and physical size, the
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ratio of the power developed by the Type IX to the Type VIII motor is

given by

PIX K
- 2 where K < 1 (96)

PVIII 2

3. Power Control

The power developed by this motor may be controlled by regu-

lating the time in the power cycle at which the rotors are disconnected

from the lines. This can be accomplished by mechanical commutators or

by means of' grid-controlled switches in the rotor-to-line circuits. These

grid-controlled switches could be provided with automatic features to

maintain constant speed at all loads, for example.

Again, the motor may be divided into sections, and one of these

still further into sections, each of these sections serving as a separate

motor. Adjustment to load could be accomplished by cutting in or out

the requisite number of sections, the active sections always operating

under the condition for maximum power. This is a general method, appli-

cable to all the machines discussed herein, and has been described vrith

reference to generators on p. 42. The sections could be cut out by

various simple means; for example, by failing to make the rotor-to-line

connection or by failing to interconnect the rotors.

J. DIRECT-CURRENT ELECTROSTAIC
MOTOR- TYPE X

This electrostatic motor was developed during this investiga-

tion. It departs from the Type IX motor in that no interval of generator

action exists during the power cycle. This results in higher power con-

centration, This motor is diagrammatically illustrated in Fig. 24.



1. Power Cycle

When the rotor is in Position 1-1, Rotor Sector A is elec-

trically connected to the negative-power line, and Rotor Sector B to

the positive line. As will be shown, sectors A and B in this position

are as neutral bodies inside a Faraday cage, and hence there is no current

at the moment this connection is made. ith clockwise rotation a motor

force proportional to E2 d/dS is developed, where C is the capacitance

between A and a, or between B and b. For maximum power (at high efficiency)

the rotor sectors are disconnected from the line when Position 2-2, corre-

sponding to one-half the maximum of CA-a or CB-b, is reached. This dis-

connection can be effected by actual separation of contacts o by means

of a grid-controlled vacuum switch. Motor action of diminishing magni-

tude now continues until Position 3-3 is reached, corresponding to the

maximum values of C_ a and CB-b. At this position rotor sectors A and

B attain the same potential, E/2, and are electrically connected. Rota-

tion continues to Position 4-4, where the capacitances are again at one-

half their maximum values, and the connection between A and B is broken.

The net charge thus isolated on each of the rotors is evidently zero.

Further rotation brings these rotor sectors into Position 5-5, which is

identical with starting position 1-1. Here, since they are in a neutral

condition, they acquire the potential of the Faraday cages in which they

are located. This completes the cycle.

2. Power Capacity

The maximum charge isolated on the rotors of a practical motor

of this type is
-12 2 2

0.139 x 10 (rl-r2)sE
= ..... 2 Acoulombs (97)

d
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The number of power cycles per second is given by

f = (98)

The maximum average power developed by the motor is

0.578 x 10 15 nps(r2-r2)E 2

p 2 watts (99)

The maximum voltage between rotor and stator is the line

voltage E.

The ratio of the maximum power, per unit size and for the

same maximum electric stress, developed by the Type X motor, to that

developed by the Type VIII motor is

PX 1
PV 1 2 (100)

PVIII 2

3. Power Control

The power developed by this machine may again be controlled

by any of the aforementioned methods.

(a) By controlling the position at which the rotor sectors are

disconnected from the line. It is then desirable to introduce a one-way

electronic valve in series with the circuit which connects the two rotors

so that the charge will commence to flow between them under the optimum

condition, i.e., when zero potential difference exists, for all load

conditions.

(b) By sectionalizing the motor and cutting in and out sections,

manually or automatically, as required.
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K. GENERAL REARKS

Fig. 23 sums up briefly the essential characteristics of the

vacuum electrostatic power machines discussed herein. Several other

types of machines have been devised which are not here included.

In general, in vacuum electrostatic machines the roles played

by the rotor sectors and the stator sectors may be changed without

change in operating principle. The particular arrangements used in

describing these machines were chosen for simplicity, but practical

machines are not necessarily limited to these.

Vacuum electrostatic power machines exhibit two interesting

and important departures (in addition to those already cited) in opera-

ting characteristics from those of electromagnetic power machines. They

possess no inherent damping action to suppress machine oscillation, as,

for example, the eddy currents in the electromagnetic case. They possess

no equivalent of the counter e.m.f. of electromagnetic motors to limit

the speed. Both of these characteristics introduce problems special to

electrostatic machines.
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CHAPTER III

GENERAL CONSIDERATIONS IN THE DESIGN OF

VACUUM ELECTROSTATIC MACHINERY

This chapter is devoted to an analysis of practical aspects

of the vacuum electrostatic machinery described in the previous chapter.

A. SOLID METALLIC ROTOR MErMERS

In the simplified explanations and diagrammatic sketches of

the vacuum eleotrostatio machines described herein, the interleaving

rotor members have in general been made up of several metallic sectors

in the same plane but performing different functions and hence insulated

from each other. In an actual machine such non-integral rotor construc-

tion, though often resulting in higher power conbntrtion, would involve

serious mechanical difficulties. It is an important idea that all elec-

trostatic machines can be designed so that the sectors in each separate

rotor member perform at the same time the same function and therefore

exist always at the same potential relative to one another. Hence each

rotor member with its plurality of poles can be made as a metallic unit

with consequent great increase in mechanical strength and simplicity.

The rotor members which perform different functions are displaced along

the shaft and properly insulated from it and each other. The necessary

connections between rotor members performing different functions during

the cycle may be made through slip rings or some equivalent arrangement.

Each group of rotor members performing simultaneously the same function

may be assembled as a unit and insulated from the shaft, or mounted solidly

on an insulated section of the shaft. Some of these ideas are illustrated

in Figs. 15, 17, and 25.
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B. METHODS OF SECURING CAPACITANCE VARIATION

The electrostatic machines described herein are, as has been

stated, essentially variable condensers or combinations of such simple

variable condensers. Various methods for securing capacitance varia-

tion suitable for electrostatic power machinery are outlined below.

These methods may be used either separately or in combination.

(1) Flat parallel-plate interleaving rotor and stator members.

a. Segmentedlcireular plates illustrated in Fig. 26(a).
b. Segmented non-circular plates illustrated in

Fig. 26(b).

(2) Flat interleaving rotor and stator members with
progressively-varying separation.

a. Stator plates whose thickness varies with angle,
Fig. 26(o).

b. Rotor plates whose thickness varies with angle.

(3) Corrugated interleaving rotor and stator members as in
Fig. 27.

(4) Cylindrical interleaving variable condensers as in Fig.
26(d).

These methods of securing capacitance variation between rotor

and stator are general. The illustrative sketches are intended only to

bring out the ideas involved and not the particular form by which these

ideas can be realized.

C. UNBALANCED ELECTROSTATIC FORCES AND RESONANCE

It is evident that when the rotor is symetrically interleaved

with the stator the axial electrostatic forces acting on the interleaving

rotor and stator members (except the two outer stator members) are ex-

actly outbalanoed. Any displacement of the rotor from axial symmetry
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with the stator results in an axial force tending to bend both rotor

and stator poles. If d is the separation between rotor and stator

surfaces when symmetrically disposed, and x the displacement of the

rotor from this symmetrical position, then the ratio of the unbalanced

axial force acting on the displaced rotor to the force acting on one

face of the rotor when centrally located is

R - 4d x
(d. 2 where x<d (101)

When x 0.23d this ratio is unity. The importance of proper symmetrical

disposition of the rotors between the stators, is thus shown. The two

end stator plates must be designed to withstand the full unbalanced axial

force developed on the inner faces.

During the operation of vacuum electrostatic machinery slight

unsymmetry between rotor and stator results in periodic electrostatic

force tending to deflect the rotor and stator blades. The frequency of

these periodic forces is given by

f L np a(102)
60

and at certain speeds will be closely equal to, or a multiple of, the

natural frequency of the pole structure. When this resonance situation

obtains, the pole structures will tend to vibrate with relatively large

amplitudes. This would result in further unsymmetry and hence still

greater unbalanced electrostatic forces, and lead conceivably to either

electrical or mechanical failure or both.

In the design of electrostatic machines the rotor and stator

structures must have sufficient rigidity to overcome the effects of
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slight unsymmetry, and the choice of operating speed and number of

poles must be so related to the natural pole frequency that resonance

is avoided. The natural frequency of the poles in a large machine

will necessarily be low compared with the forced vibration, and the

possibility of resonance due to harmonic frequencies must be carefully

considered. In the tapered construction the cantilever beam constitut-

ing the poles is thickest at the fixed end - an arrangement capable of

high rigidity. The construction suggested in Fig. 27 is also evidently

highly desirable from this point of view.

D. COIMUTATION

The problem of establishing the necessary electrical connec-

tions between the rotor and stator members of direct-ourrent-vacuum

electrostaticpower machines can be met in a number of ways. Some of

these will be treated briefly in the following discussion.

1. Mechanical Commutation

It has been emphasized in the machine theory that in all cases

the necessary electrical connections during a power cycle can be estab-

lished at intervals when zero voltage exists between the approaching com-

mutator sections. It has also been brought out that the necessary elec-

trical disconnections can always be effected at times of zero-current flow.

Both for electrical connections and disconnections it is desirable that

the voltage between the approaching or departing commutator contacts be

less than the breakdown voltage at any instant. This idea is illustrated

in Fig. 28(a). It is desirable that the ontactors have large areas of

contact, that they are not subject to sliding friction, and that the com-
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mutator timing elements are readily accessible. A commutator arrange-

ment which realizes these requirements is illustrated in Fig. 28. The

control disk which actuates the ontabtor revolves synchronously with

the power machine. It is located in the atmosphere, the link movements

being transmitted mechanically into the vacuum chamber through a vacuum-

tight seal. The followers on the control disk are readily accessible

and are designed for fidelity of operation and long life. The contactors

themselves are of material chosen for the high insulation strength re-

sulting from their surface properties. The spring and stop arrangement,

and the spring tension and mass of the system are designed to produce

great rapidity in connection and separation of the contactors and to

avoid excessive mechanical forces.

2. Mechanical and Electronic Commutation

in Direct-Current Machines

While for any fixed load condition the optimum agl. of commu-

tation remains constant, variation of output voltage or current will in

general change the location in the cycle at which the optimum conditions

for commutation are realized. In the types IV and VI generators, how-

ever, the optimum commutation angle is the same for all conditions,

provided the power is controlled by the methods described in Chapter II,

D, 4(b) and 4(c). For these generators, therefore, the problem of mech-

anical commutation is relatively simple. For the types III and IV gen-

erators a combination of mechanical commutator with an electronic valve

arrangement in series may be used to enforce the transference of charge

under the optimum conditions. This applies also to the various direct-

current motors whose theory has been disclosed. In general these valves
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perform the functions of kenotrons. For positive power control these

valves may be used as switches in the manner suggested in Chapter II.

The theory of such switches and valves is discussed in Chapter VIII.

E. POWER CONCENTRATION

The relative power concentrations of the various direct-current

and alternating-current vacuum electrostatic machines were discussed in

Chapter II. The following calculation enables a comparison of the power

concentration of vacuum electrostatic power machines and of modern elec-

tromagnetic power machines. In this calculation it is assumed that

ultimately vacuum electrostatic machines can withstand operating voltages

of 1,000,000 volts and operating gradients of 2,000,000 volts per centi-

meter.

The formula for the maximum power developed by the Type III

separately-exzited generator is

2 2
4.63 x 10-1 5 Knps(rl-r2 )VE

d watts (70)

The following design constants are chosen for the purposes of

this illustration.

n revolutions per minute - 4000

p - number of rotor poles a 16

s number of rotor disks = 50

rl and r2 external and internal rotor
radii in centimeters - 90 and 30

d separation between rotor and
stator in centimeters = 0.5

V - rotor inducing voltage - 500,.000

E rotor line voltage - 500,000
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X I c°(E+V)+(Cs+Cvz2)E 0.8

CmV

The maximrm power of which this machine is capable under

the above conditions is approximately 42,000 kw. The physical size

of such a generator would be approximately a cylinder 8 ft. in diameter

and 12 ft. long.

What further increases in voltage and voltage gradient insu-

lation strength in vacuum result from technical advances in the art,

will be reflected in increased compactness over that suggested above.

While exact comparisons of the relative compactness of vacuum electro-

static and electromagnetic power machines must necessarily await the

determination of the practical insulation limitations of high vacuum,

it seems reasonable at the present time to predict that vacuum electro-

static machines are ultimately capable of greater compactness, light-

ness and lower cost than is now realized in modern electromagnetic

machines .
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CHAPTER IV

EXPERIENTAL STUDY OF VACUUM

ELECTROSTATIC POWER MACHINES

It became apparent some time after this research was begun

that while considerable theoretical evidence of the possibilities and

importance of vacuum electrostatics was already built up, there existed

no supporting experimental evidence of any kind. Accordingly an experi-

mental program was undertaken to establish as far as possible the cor-

rectness and the practicality of the power applications of vacuum elec-

trostatics. This chapter deals with the experimental work on vacuum

electrostatic machines performed during this research.

1. Study of Voltage Gradients at Electrode Surfaces

In the chapter on machine theory it was made evident that the

power developed by a given machine is proportional to the highest oper-

ating voltage gradient between the faces of the rotor and stator plates.

The voltage gradient between the approaching edges of the interleaving

stator and rotor plates may be considerably higher than the maximum

operating gradient, and hence plays an important part in preventing the

effective utilization of the full gradient insulating strength of elec-

trodes in vacuum. Since electrostatic machines of large power capacity.

require the interleaved-plate type of construction, the problem of pro-

perly shaping the edges of the plates is of fundamental importance, and

an auxiliary study of this was undertaken.

The configuration of the edges of the plates of an electro-

static machine is too difficult to be handled readily by analytical
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methods. Graphical flux plotting is too liable to error to be very

useful in showing the effect of small changes in the shape of the

edges. The desire for an accurate and flexible experimental arrange-

ment led to the rejection of standard methods of gradient determination

and the development of a new null method which is described in Appendix B.

The gradient distribution along the edge and sides of a typical

plate in an interleaving arrangement of plots for various separations

between the approaching rotor and stator edges was experimentally ;deter-

mined. Fig. 29 gives the family of curves for ircular-edged plates,

showing the variation of the gradient distribution around the contour as

the rotor and stator plates move from a separated position to a well-

interleaved position. If the separation between the parallel surfaces

of the interleaved plate is taken as unity, the thickness of the plates

was 0.635, and the range of movement was from +7 (separated) to -14

(interleaved). It is seen that *ith.-the ircular-edged plates the

voltage gradient at the most unfavorable position is not localized but

quite uniform over the edge. This indicates that the circular contour

is very nearly the optimum contour for the plate edges. Since the voltage

gradient at a metallic surface is a function of its curvature, another

study was made and a second family of curves obtained for interleaving

rotor and stator plates with circular bulbous edges. These results are

given in Fig. 30. It is seen that the increased curvature has reduced

the gradient at the tips, but that this effect has been compensated at

the sides of the bulge by the reduced separation when the rotor and

stator bulges are passing each other.
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Some of the significant data from these curves are tabulated

below for convenience

Ratio of plate thickness to plate separation - 0.635

Ratio of diameter of circular bulge to
plate separation - 0.873

Ratio of maximum edge gradient to the face grad-
ient for the circular-edged plates = 1.79
for the bulbous-edged plates - 1.77

Ratio of maximum tip gradient to the face grad-
ient for the circular-edged plates ! 1.69
for the bulbous-edged plates - 1.59

The fact that the ratio of the maximum gradient at the edges

to the gradient between the parallel faces of the interleaved plates

was closely the same for both the circular-edged and the bulbous-edged

plates indicates that at this particular ratio of plate thickness to

plate separation, namely, 0.635, both contours show equal advantage.

For ratios of plate thickness to separation which are greater than

0.635 the circular-edged plate is decidedly the most advantageous; for

ratios less than 0.635 the bulbous-edged plate becomes most favorable.

These tendencies are made more readily apparent by considering the

extreme ases of thick plates and relatively negligible spacing, and

then large spacing with extremely thin plates.

2. Test of Synchronous Vacuum

Electrostatic Machine -Type I

A small electrostatic machine for operation in high vacuum as

a synchronous motor or generator, Type I, was built and tested during

this investigation. This machine is shown in Figs. 33 and 34 on the

end plate of the experimental vacuum tank, with the tank rolled away.
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The plates were made of 1/4 " sheet aluminum with circular

edges. The separation rotor to stator was one centimeter, the outer

diameter of the rotor was 13 1/2" and the inner diameter 1 3/4". The

stator poles were sector-shaped and the rotor poles so shaped that,

neglecting end effects, the rate of capacitance variation between rotor

and stator was sinusoidal.

The rotor was maintained at ground potential and the stator

insulated from ground by six 4-inch Isolantite stand-off insulators.

The high-voltage alternating-current power lead was brought into the

tank through the pyrex-pipe bushing from a bank of three 22,000-volt

potential and primary-regulator transformers connected as shown in

Fig. 31. The two-pole design and the 60-cycle power frequency fixed

the synchronous speed of the machine at 3600 r.p.m.

A separate driving mechanism for bringing the electrostatic

machine up to synchronous speed as a motor, or for driving it as a

generator, was provided. The auxiliary driving motor was mounted out-

side the tank and its power carried into the vacuum tank by means of

a vacuum-sealed shaft. An arrangement was made, using two of the

vacuum-tight controls on the tank whereby the driving mechanism could

be uncoupled from the electrostatic machine while in operation, leaving

it entirely free in vacuum, subject only to the friction of its ball

bearings.

A neon bulb, connected to the alternating-current supply,

was mounted inside the tank for the purpose of indicating, by its strob-

oscopic action, when synchronous speed was attained. A small 60-cycle

Edgerton stroboscope was mounted just outside the lead-glass window in

the face plate for the purpose of illuminating a graduated power-angle
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disk connected to the rotor within.

A small prony brake consisting of a baked asbestos band

passing over the electrostatic motor shaft and tightened by springs

at each end operated by two control shafts was also provided. The

springs carried scales which could be oeerved through the window so

that the spring tension during load runs could be accurately deter-

mined and recorded.

The machine was later equipped with a mechanical damper for

the purpose of damping out its power-angle oscillations, an interesting

characteristic of electrostatic power machinery being the complete ab-

sence of such damping action as is so advantageously furnished by

eddy-currents in electromagnetic machinery.

The vacuum system was as described in Chapter V and as shown

in Figs. 33 and 34, and was producing regularly an operating vacuum of

about 10 mi. Hg.or better. The pumping system consisted of a 55-liter-

per-second mercury diffusion pump backed by a Cenco Hypervac. A metal

C02 condensation trap in series with the mercury pump and tank, and a

re-entrant liquid-air trap took care of the condensable vapors.

The vacuum electrostatic machine described above operated

successfully as a synchronous motor for the first time on August 9,

1933, delivering useful power to the outside of the tank for over an

hour. It is believed that this is the first successful vacuum elec-

trostatic power machine. During subsequent tests it was also run as

a high-voltage alternatig-current generator delivering useful power

back to the line.

The maximum power developed by this machine as a motor with

an applied peak voltage, as measured between sphere gaps, of 73 kilo-
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volts, was 55 watts. Its maximum power output as a high-voltage

alternating-current generator was closely the same. The theoretical

maximum power of this machine operating on sinusoidal impressed voltage

of 73 kilovolts peak is only 39 watts. The theoretical maximum power

operating on a rectangular wave\ of voltage of the same maximum amplitude

is 78 watts. It was definitely known that the wave-shape of the impressed

voltage was not sinusoidal but quite rectangular due to the impedance of

the transformers coupled with the strong third harmonics in the magnetiz-

ing circuits and in the load. The experimentally-determined value for

the maximum power output of the machine, therefore, checks very well with

the theoretically-approximated value.

The variation of power output with power angle was experiment-

ally determined for both generator and motor operation. The power-versus-

power-angle curve for a peak-voltage value of 73 kilovolts is given in

Fig. 32. The maximum theoretical power angle is + 45 degrees. Although

this maximum power angle was observed during test, the presence of small

oscillations in the region of pull-out prevented any accurate determina-

tions of power or power angles beyond 35 degrees. The observed power-

angle variation agreed with the theory given in Chapter II.

A retardation test was made to determine the power loss due

to friction of the bearings. This loss was found to be less than 0.3

watt at 3600 r.p.m. The windage loss and the I2R loss due to charging

currents may be taken as zero. The loss through the volume of the

insulators supporting the stator is again zero, the volume resistance

stator to ground being of the order of 1013 ohms. The surface leakage

along the insulators, which in a better design could be made zero, is

estimated to have been (for considerable intervals) of the order of



one microampere. The efficiency of the vacuum electrostatic motor

at full load was therefore somewhat better than 99 per cent. It

is evident that in larger machines of this type higher efficiencies

can be realized.

The purpose of this experimental study of a vacuum electro-

static power machine was to establish experimentally the correctness

of theory of such machines, to illustrate their remarkable simplicity

as contrasted with electromagnetic machines, and to develop and demon-

strate the means whereby the necessary operating conditions for such

machines can be reliably and effectively produced. It was not intended,

nor would it be warranted at this time, to carry out intensive and re-

fined tests to exhaust the peculiarities of this particular machine,

nor was the machine designed to compete in power concentration with

the present highly-developed electromagnetic machines.

This experimental machine study succeeded in all it set out

to do. The synchronous vacuum electrostatic machine was operated as

both a motor and a generator, exhibited characteristics of reliability

and ruggedness in continuous-load runs, developed fully the amount of

power for which it was designed, at an efficiency better than 99 per cent.

Its construction was characterized by remarkable simplicity and mechan-

ical ruggedness, the only rotating part was constructed entirely of metal

and maintained at ground potential, the stator and rotor assemblies were

made essentially of suitably-shaped flat metal sectors. The methods of

producing the necessary vacuum conditions, of controlling the machine

operation, of making measurements and observations resulted in a high

degree of flexibility, speed, and reliability. On one occasion the

vacuum tank was exhausted from atmospheric pressure to a pressure less
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-5
than 3 x 10 mmi. Hg. and the motor brought up to speed and syn-

chronized in 45 minutes. The tests made on the machine check, within

the precision of the experiment, the machine theory developed in the

theoretical analysis. The measured power output of the machine, re-

garded in the light of the higher voltage gradients and voltages which

it has already been experimentally established can be insulated in vacu-

um, indicates that power concentration comparable with that of modern

alternating-ourrent machines could be realized at once in a new design

of the same physical dimensions. Such further advances in vacuum in-

sulation as can confidently be anticipated as the result of vacuum-

insulation research should carry the power concentration of vacuum

electrostatic power machines far beyond that of modern electromagnetic

machines .
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CHAPTER V

ENGINEERING VACUUM TECHITIQUE

The production and maintenance of vacuums of the order of

10 mm. of mercury in large metal tanks has been accomplished only

during the last few years. Since the development of the Gaede dif-

fusion pump in 1915 small-volumed glass systems have been evacuated

to pressures as low as 10 8 mm. It was well understood, however, that

such low pressures could be attained and maintained only with great

difficulty, that the system must be small and well outgassed, that it

was fragile,. quite unreliable, and that it was hampered by an extreme

lack of flexibility in the manipulation of the internal apparatus.

High-vacuum systems in the past have been characterized by the frag-

ility and consequent unreliability of their physical structure, by

their small volumes and' lack of easy control, and by the general diffi-

culty of evacuation and maintenance.

It was further generally believed that high vacua could not

beproduced in metal tanks because of the tremendous amount of ad-

sorbed and absorbed gases in metals, that the fabrication of vacuum-

tight metal chambers offered special difficulties, and that the rugged-

ness of metallic construction offered no advantages in flexibility of

control and.adjustment of internal apparatus or in the transmission of

mechanical power through the wall of the chamber, and had the further

difficulty of opaqueness.

The first relatively-large-volumed metallic vacuum tank

which disproved all of these objections and which pointed the way to



a new era in vacuum technique was constructed by Van de Graaff at

Princeton in 1931. The tank was 18 inches in diameter and 5 ft.

long, of brass, and mounted on a trestle arrangement so that it could

be rolled away from or against a brass end-plate which sealed its

open end. The vacuum-tight joint between end-plate and the flange of

the cylinder was made by pressing against two concentric rubber rings,

the space between which was evacuated to form a guard ring.

A mercury diffusion pump of conventional design having a

pumping speed at the tank of 55 liters per second and backed by an

oil pump was used for evacuation. A liquid-air trap in the tank

itself was used to remove the condensable vapors. This metallic

vacuum system was completed in the fall of 1931 and a measured pressure

-7
of 5 x 10 mm. obtained. The tank was later brought to M.I.T. where

it was further improved and developed and used for the research described

herein.

In itsfinal form* this tank had eight 5/16" shafts passing

into it for purposes of control and adjustment of apparatus within

the tank, one 3/8" shaft for the transmission of mechanical power

through the tank wall at 2,000 r.p.m., about twelve low-voltage

electrical and electrometer leads, one 200,000-volt bushing, two

windows for observation, one re-entrant liquid-air trap, a vacuum-

tight valve between the tank and the pumping portion of the system so

that the pumping system could remain in operation while the tank was

open to atmosphere, an ionization gauge and a fore-vacuum thermocouple

gauge in each of these two portions of the system, and an arrangement

August, 1933.
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whereby the tank could be rolled away from its end-plate to expose

the internal apparatus. On a regular experimental schedule this tank

hasi been rolled up tight against its face plate and pumped down to a

pressure of 3 x 10- 5 mm. in less than three-quarters of an hour. Pic-

turets of the improved tank are given in Figs. 33 and 34.

An important innovation in vacuum technique suggested by

Van de Graaff is the use of a positive-pressure grease-graphite seal

to render vacuum-tight a shaft passing through the wall of the vacuum

chamber for the purposes of control and the transmission of power.

For small shafts for rotation by hand the simple arrangement shown in

Fig. 35 suffices as a vacuum-tight seal. Fig. 37 shows the essential

elements of an experimental shaft which was continuously rotated at

2000 r.p.m. without any evidence of leakage at a pressure of 5 x 10 5 mmn.,

as recorded by an ionization gauge in the tank. The sealing medium is

one of low vapor pressure andschosen for its inability to transmit

shear. This medium fills a region between the wall of the tank and the

shaft and is maintained (by means of a weighted plunger, for example)

at a pressure greater than that urging the air to leak in toward the

vacuum. This positive-pressure feature and the intimate and homogene-

ous nature of the barrier make leakage theoretically impossible; ex-

perimentally - within the limits of the detection apparatus - this

conclusion has been varified. The sealing medium may be of grease

or oil, for example. A mixture of grease and graphite was used in

the small experimental seals, the grease serving as the sealing medium

and the graphite preventing the grease from flowing. For the revolving

-shaft illustrated in Fig. 37 two opposing screw threads were turned on

the shaft, which, for a particular direction of rotation, had the effect
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of scouring such grease as attempted to creep along the shaft back

to the region of the seal. This method was found effective, since

no grease-graphite appeared either at the atmospheric or the vacuum

end of the seal after several hours of rotation.

This method of sealing power shafts into a vacuum tank is

capable of handling the amounts of power associated with the large

electric-power machines contemplated in this research. It is character-

ized by its extreme simplicity and effectiveness and the high efficiency

of the transmission. For large shafts and high speed the use of oil is

recommended, the oil being circulated in a closed system under pressure

by methods illustrated in Fig. 37. The use of several seals in cascade,

the use of a fore-vacuum ring at the atmospheric end of the shaft to

remove the bulk of the pressure difference, and various other similar

devices may be desirable to increase the reliability of large-shaft

seals. It is believed that the experimental work on vacuum-tight shaft

seals performed during this research has fully established the practic-

ality of this method for meeting the problem of transmitting the large

amounts of mechanical power in the proposed vacuum electrostatic power

machines .

One of the greatest obstacles in previous high-vacuum tech-

nique has been the difficulty of locating leaks. The microscopic size

of fault sufficient to ruin the high-vacuum possibilities of a system

is well known; in the past, the location of leaks in a vacuum system of

any complexity has often held up research for days, weeks, months, and

even years. Any technique which will enable the certain and rapid loca-

tion and correction of faults in a high-vacuum system is of prime impor-
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tance. It has been a specific aim in this research to develop such

methods and thereby establish high-vacuum technique on a sound, reli-

able engineering basis.

It is recognized that the main source of leaks in a metallic

system will be at the various joints and connections rather than in

the unbroken surface of the racuum enclosure. Accordingly the policy

of enclosing all such joints with guarding chambers which can be quick-

ly evacuated to fore-vacuum pressure by means of a small oil pump, has

been generally followed. The suspicion of a leak in any joint so pro-

vided with a guard ring can'be verified by evacuating the guard ring

with a fore-pump. This would have the effect of reducing the rate of

any leakage by a factor of at least one thousand, and the consequent

improvement or lack of improvement in the vacuum condition within the

chamber, as indicated by an ionization gauge, would establish almost at

,once the correctness of the suspicion. In the experimental tank men-

tioned above, guard rings have been used around electrical leads into

the tank, around all removable connections such as the joint between

metallic pump case and metallic condensation trap, housing between con-

densation trap housing and metallic end-plate, between end-plate and

flange of vacuum tank cylinder, between the rings of vacuum-tight valve

seats, and between glass to metal flanges. Means were also provided

for quickly establishing a fore-vacuum over vacuum shaft seals, over

windows in tank wall, and over unbroken areas of the tank surface. By

painting the metallic surface of the tank with a heavycoat of insulat-

ing paint such as Glyptol, not only were any small leaks closed up, but

it also became possible to test the general metallic surface for leaks

with a standard induction leak tester. The entire system could be sys-
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tematically checked for leaks with high probability of success witkiin

ai hour. While the new metallic vacuum systems now contemplated will

embody these features in still higher degree, the experimental vacuum

system which was used in this research is believed to have attained a

degree of reliability and flexibility never approached by any other

system, and has shown the way to thd the practicability of sound engi-

neering vacuum technique.

The experimental work on metallic vacuum systems has indicated

-6 -7
that vacuums between 10 mn. and 10 mm. of mercury can be obtained in

large systems with proportionate pumping speeds when the metallic sur-

faces are clean and bright though unoutgassed. Certain metals such as

stainless steel and nickel are expected to show advantages over others

for such systems since it is evident that, with the eliminating of

organic materials, the limitation in degree of vacuum is caused by the

rate of gas given off by the metal parts.

It is well known that metals can be outgassed by heating in

vacuum, by positive-ion bombardment, and by serving as the electrodes

in ati electric discharge. These methods are expected to lead to fur-

ther improvement in the degree of vacuum which can be set up in a

metal system.

A method of outgassing by heating, which shows great possib-

ilities, will be now described. The vacuum tank contains within and

insulated from it a second thin-walled shell of stainless steel or

nickel, etc. This shell is itself vacuum-tight and is evacuated by a

separate pumping system. The region between the liner and the tank is

evacuated to a pressure of about 10' 6 mm. by the usual means. In
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practice the whole system is first pumped down together. An electric

current is then passed through the liner which heats it to as high a

temperature as feasible. This results in the rapid outgassing of the

metal liner and all it contains, the products being carried off by

the pumping system. By this means the adsorbed and absorbed gases in

the internal tank system can be rapidly removed and an equilibrium

pressure established which is much lower than that between this liner

and the unoutgassQd main tank itself. This method has the advantage

of simplicity and effectiveness and should lower the pressure ratios

by at least a factor of ten.

The limit to which the pressures can be reduced by this means

is fixed by the amount of metal surface looking into the inner vacuum

system which cannot be outgassed. It is evident that the pump and

trap surfaces which are part of the inner vacuum shell are necessarily

in equilibrium with the gases being pumped. Accordingly, the pressure

in the inner system is that equilibrium pressure maintained largely by

the unoutgassed pump system surfaces. No system, whether glass or

metal, has ever been produced in which every area of the enclosure was

fully outgassed.

The use of a metallic molecular pump of novel design in

place of a diffusion pump to evacuate the inner vacuum shell removes

this limitation. Such a pump requires no trap and may itself be oper-

ated at high temperature so that the entire area looking into the inner

high-vacuum shell can be thoroughly outgassed. This arrangement is

illustrated in Fig. 38. With the development of such pumps it can be

shown by calculations based on the known rate of gas emission of out-

* Suggested by R. J. Van de Graaff,

_ _
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gassed metals, the pumping speed, and the tank volume, that pressures

as low as or lower than 10'9 mm. Hg. can be maintained in large metal

tanks.
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ClI PTER VI

VACUUIM AND MATERALL INSULATION1

The technical and economic practicability of the application

of vacuum electrostatics to the electric-power field depends in large

degree on the practical realization of the unusual insulating qualities

of high vacuum. hat experimental information is available on vacuum

insulation for high voltages has in general appeared as secondary results

of experiments directed primarily toward other ends. It is only very

recently that an intensive, scientific investigation of this field has

1
been inaugurated.

Some experimental work in vacuum at low voltages (below

30,000) has demonstrated that cathode gradients as high as 5.5 x 106

volts per centimeter can be supported at the cathode electrode. It

is well established that anode gradients many times this value can be

readily maintained. Recent experimental work on high-voltage X-ray

tubes has indicated that voltages as high as 650,000 volts can be

reliably maintained with a cathode gradient of about 100,000 volts per

centimeter. While this information confirms the belief in the efficacy

of vacuum insulation for high voltages and high gradients, it cannot be

1. A doctor's research tending to establish definitely the factors
and limitations of high-voltage vacuum insulation is now being carried
on by Mr. H. W. Anderson at the Massachusetts Institute of Technology.

2. See Chapter I.

3. A test of unoutgassed highly-polished steel electrodes indicated
that a voltage of about 200,000 with a cathode gradient of 750,000 could
be insulated in a vacuum of about 5 x 10 - 6 mm. Hg. This test was not
carried to higher voltages.

4. Crane and Lauritsen, Review of Scientific Instruments, Vol. 4,
No. 3, p. 118, March, 1933.
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construed in any sense to define its practical voltage and gradient

insulating limitations. On the contrary, in view of the lack of

controlled conditions, the imperfections of the vacuum, the random

choice of electrode material for anode and cathode, and (what is

highly important) the inadequate attention to the surface treatment

of the electrodes, (some or all of these difficulties characterized

all of the previous high-voltage-vacuum insulation experiments) it can

be most assuredly stated that the real insulating possibilities of high

vacuum are still to be established.

A mechanism of breakdown in high vacuum suggested by L. C.

Van Atta, R. J. Van de Graaff, and H. A. Barton accounts for the

onset and maintenance of discharge between electrodes in vacuum as

due to ionization at the electrode surfaces caused by impacts of ions,

electrons, and photons. This theory supposes that an electron imping-

ing on the anode produces, on the average A positive ions and B photons

which reach the aathode, and that a positive ion impinging on the

cathode liberates C electrons, and a photon liberates D electrons

which reach the anode. The condition for a discharge is given by

AC + BD) 1.

ItNis quite evident that the cathode coefficients C and D depend on

the work function and surface condition of the cathode electrode, and

that proper choice of cathode material, and polishing, outgassing, or

otherwise altering the superimposed surface condition produced by ad-

sorbed gases, projections, and other surface debris, will reduce to a

very considerable extent their value. Similarly, the anode material

and surface treatment will affect very considerably the anode coeffi-
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1
cient A and B. The use of insulating films on the cathode surface

and of positive grids over the anode surface, as well as other similar

artifices, will have a pronounced effect on the breakdown coefficient

and will warrant careful investigation. It is unlikely that the anode

and cathode coefficients will, in general, be affected in exactly the

same way; and particularly, it is highly improbable that the best combin-

ation of electrode material and treatment could be obtained by a fortu-

itous choice without a careful, controlled, quantitative, scientific

study. It is believed that such an investigation may, as an end

result, lead to the reliable insulation in vacuum of voltages of one

or more millions of volts at cathode gradients of the order of several

millions of volts per centimeter. Such vacuum insulation properties,

applied to the power field as herein disclosed, would produce power

machines much more compact and economical than the most modern electro-

magnetic machines, besides introducing features of high voltage and

efficiency which are now unattainable.

Material Insulator for Use in High Vacuum

The development of material insulators for use in high vacuum

as high-voltage electrode supports, vacuum-tight diaphragms, etc. and

characterized by high voltage and gradient breakdown strength is a

second insulating problem of major importance. The problem of securing

the necessary compactness in an insulator is complicated by the necessity

for good mechanical characteristics and by the limited choice of insulat-

ing material which, from an outgassing point of view, is suitable for

1. Physical Review, 43, p. 158, February, 1933.

_ _ __ __



105

use in vacuum.

The problem of volume breakdown through the insulator offers

no particular difficulty. Van de Graaff has suggested the use of many

thin laminae of insulating material, such as pyrex, quartz, porcelain,

etc., each coated on one side with a thin conducting film, the arrange-

ment then stacked up and fused together to form a solid insulator with

a controlled gradient. The volume breakdown strength per unit length

would then be closely the sum of the strength of each lamina therein.

Since 0.025 cm. of pyrex will withstand a voltage of 80,000, a built-up

insulator made of such laminae would have a volume breakdown of over

three million volts per centimeter.

The chief limitation in material insulators for use in vacuum

is due to surface leakage and breakdown. A method of overcoming this

surface breakdown limitation is illustrated in Fig. 39. The highly-

corrugated surface results in a surface leakage path many times the

length of the insulator.

In a recent test made during this investigation of one ele-

ment of a corrugated Isolantite insulator a voltage of 130,000 was

withstood by an axial insulator length of 0.68 m. with a leakage less

than 0.2 m.a. The length of the insulator leakage path (following

along the surface of the corrugation) was 2 cm. The same section of

insulator sparked-over at 16,000 volts in air. This test, together

with the further ideas presented below definitely establishes the

practicability of material insulators of remarkable compactness for

use in vacuum.

The insulator is, however, still externally exposed to the
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high-voltage parts and therefore liable to electron or positive-ion

bombardment which may precipitate breakdown, or to localization of

electric stress which may result in an emission from its surface with

similar effect. These difficulties may be overcome by providing over

each corrugation a well-outgassed metal ring so arranged (see Fig. 40)

that the insulator, as viewed from the exterior, is a well-outgassed

metal unit. The insulating material is thereby shielded from high-speed

ion bombardment and, more important, the high-voltage insulator problem

has been reduced to a low-voltage insulator problem. This is evident,

since any length of insulator leakage path is subjected only to the

voltage difference between the two outgassed metallic rings, and has no

way of determining the potential at which these two rings exist. This

method indicates, then, how a high-voltage insulator may be built up f

separate low-voltage elements, each element (regardless of its position)

retaining in a complete sense, its electrical individuality. Thus an

insulator as in Fig. 40, composed of 20 sections each withstanding

only 50,000 volts, would have a total insulator voltage strength of

1,000,000 volts. Furthermore, each section may again be subdivided,

as in Fig. 41, so that the 50,000 volts is again broken up with sub-

sequent decrease in the cumulative electric-stress demands upon the

insulating material.

It is suggested that such an insulator be built up of stacks

of disk-shaped porcelain, a thin conducting film (of Roman gold or

other material) painted on the surface to form the conducting areas,

and the assembly fired and fused into a unit. Since the loading of

such an insulator can by proper design be made purely compressive,
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it is evident that good mechanical characteristics for this sort of

loading can be obtained. It is also possible that such an insulator

could be made of a solid core of material such as textalite, treated

against outgassing by coating with or baking on a vacuum-tight sub-

stance, and over which are stacked annular rings performing the func-

tion and provided with the metallic edges and divisions as the corruga-

tions mentioned above.

It is clear, since the above description has indicated how

a high-voltage insulator for vacuum can be designed so as to involve

essentially only a low-voltage insulation problem, solutions for which

are already understood, that not only can material insulation be built

for a million volts or more in vacuum, but they can quite certainly be

designed with a concentration of insulating strength many times greater

than any material insulator now known. It is further evident that the

units of a built-up insulator of this type can be studied separately

and intensively, and that the performance of the assembly can then be

accurately predicted on the basis of the unit study. A thorough

investigation of the surface characteristics of insulating materials,

combined with a study of the ideas and methods discussed above, is

essential to theattainment of ompact material insulators to supple-

ment vacuum in the insulation of vacuum electrostatic power apparatus.



108

1-- - -

7 4'/// 6'/t or .- '-

1/"t0 x, GI ;',YT / , -
C

r/tiY //f ao C

,;w rl 'sIf 114

I -~~~~-

-5--- ---- --- -"- r

S/1PLE £ SU ATOI FO~ U5£ /N

SELuRN/A6 /. a /'/VbY~ BAE AKh'O/ty
JTE'TH Bd g TyHE WF/ - aOF ;,..
/Y5e (4rYN6 LZA/,y 5EPAQRTED 8Y
COa 04U/Ne I IA YE?5.

I/Xu1/8 -4'

M7ETL9 IC 3ZfR'CE

FO/' 65L I YAR
A.r B1L, r /P t
E-IEMeNT 5 'S ,4

P"rFA'rb92 P//?C8L'rjvE6f /r i4
A'BLIcL/bO PO-'- AS'/YOL4dP6 PoFI7,1

AIY,4U AI2FRY74O &65-'PAF

FdMr' -H'WXF Z'/VOZ 796f
/s/l9r77'/,Y PROB E-
8Er-'fEE/Y EENTWr.

/' U'r OF AN oVor6,s'-
,R~'Z "r Yr" ,4c O/H G
On 7re4Lwxroe'/ 1OR dow
7IF /N5UT1,Ov S#IAIQJ
Ir ayo- e ,ew/c ldlyt-

7-M'0R 4/ oF A/6T
, TOI964 /S&tA9rtOs

,ro 19 OW YdOZ7r9G
/f''OfJ6 . -

>6T/ 4E 42
Z-gf> O/ o/'y' OF CXT'/, 2 01/&7OA 6' /-L, - //,X514/ kZ/9XY

.S,/-'-,G->L F C '/L/- ,Y 7A,9'S./55/-.OA L/YE.
,fS.7t2 .,A 7YE 4'SSMi- tlP T

' /5 Ok- 7-,t O4'1f 7
_

voiE G~DIE'- / aWd /Y tf ' 
7-,, .//

/S "o ~iM1R**?
, -~ "r

\-//e2,6e 0Vi0 rZ/YE

\ 6 ,RO/EYf
. ''I J

Y/C--
. -I

', t?'I
-r.45 r,1?

iO,o1019 ,Yv -j

--

4/pE 39

, . ., - - - - .

.,c~~~~~~~~~~W~J" A~~A~r~

/YL 7-11-1:0 15 iT111-



109

CHAPTER VII

VACUUM TRANSMISSION LINE

The unique insulating properties of high vacuum which makes

possible for the first time the generation of high-voltage, direct-

current power in large blocks, also makes possible the efficient and

economical transmission of this power over long distances. The essen-

tial features of such a vacuum-insulated transmission line* are dis-

cussed in detail below.

The high-voltage vacuum-insulated transmission line consists

essentially of a positive conductor running axially along a highly-

evacuated metallic tube constituting the return conductor. It is an

important feature of this proposed transmission line that the central

conductor be positive, since this geometrical arrangement, as has been

pointed out, takes advantage of the high-voltage gradients which can

be supported at the anode surface and results in a much reduced gradient

stress at the cathode surface. Assuming that the maximum gradient which

can be supported at the cathode is 100,000 volts per centimeter, while

the anode gradient may be of the order of tens of millions, Fig. 42

illustrates the maximum voltages which can be safely insulated by a

vacuum transmission line of given dimensions when the central conductor

is positive and when it is negative.

The proposed vacuum transmission line would be capable of trans-

mitting direct-current power at voltages of the order of a million or

more, in substantially unlimited amounts, over distances many times

* First suggested by R. J. Van de Graaff.
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greater than even the longest of modern alternating-current power

systems, and with a relative energy loss many times less. It is

estimated, as will be described below, that the initial investment

and operating cost of a high-power vacuum transmission line are less

than for modern power transmission lines, and that it is inherently

capable of far greater reliability.

A proposed construction for a 1,000,000-volt, 500,000-kw.

transmission line is illustrated in Fig. 43. The total energy loss per

hundred miles in a double-circuit line of this rating and construction

is estimated at about 0.2 per cent.

The concentric high-vacuum, fore-vacuum, and protective-seal

construction shown in Fig. 43 is suggested for maximum reliability,

simplicity,and economy. The fore-vacuum and high-vacuum tubes are

made integral by means of supporting webs, thus forming an eoeedingly

strong and light unit capable of resisting the atmospheric pressure as

well as other mechanical loads. \The fore-vacuum serves the dual purpose

of reducing (by a factor of about one million) the effect of any faults

in the inner high-vacuum shell, and of providing a fore-vacuum line of

high conductivity to serve as the backing for the relatively-closely-

spaced high-vacuum diffusion pumps. This makes possible the location

of mechanical fore-pumps at intervals along the transmission line from

5 to 20 miles apart. The vacuum-tight outer seal eliminates the effects

of any but extremely large faults in the fore-vacuum shell. This seal

could be a grease-graphite layer maintained at a positive pressure

greater than atmospheric, or a layer of some other homogeneous and

viscous substance, or conceivably a layer of very gummy rubber. The
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high vacuum of the transmission line is thus protected by the vacuum-

tight inner metallic shell, which in turn is protected by the fore-

vacuum which is confined in a second metallic vacuum-tight shell,

which in turn is protected by a positive-pressure, vacuum-tight seal.

It is believed that this construction is capable of a high degree of

reliability.

The method of supporting the central high-voltage positive

conductor is illustrated in Fig. 44. The insulators are of the con-

trolled-gradient type described in Chapter VI and are mounted in groups

of three, set in a transverse plane at 120 degrees relative to each other.

Any force tending to move the central conductor from its position to

symmetry can result only in a purely compressive strain in the insulators.

The central conductor is allowed axial movement by the loose construc-

tion of the metal collar in which the pin insulators terminate. The

separation between points of support of the central conductor will vary

from 10 to 20 ft., depending on the mechanical strength of the conductor,

the diameter of the high-vacuum shell, and the operating voltage. The

design must be such that the rate of development of mechanical forces

tending to resist displacement of- the central conductor from its posi-

tion of symmetry, is greater than the rate of development of unbalanced

electrostatic forces tending to increase such displacement. This con-

sideration will generally result in a central conductor of cross-

sectional area several times that required to conduct efficiently the

rated current of the line, and hence results in a line which in this

respect has an extremely large overload current and power capacity.

The method of isolating sections of the vacuum transmission
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line, from a vacuum point of view, is illustrated in Fig. 45. The

vacuum-tight insulating diaphragm is designed to withstand full atmos-

pheric pressure on either side and is again of the controlled-gradient

type. The two adjacent sections of the high-vacuum line are connected

by a by-pass which can be opened or closed by a manually- or automatically-

operated valve. The two adjacent sections of the fore-vacuum line are

separated by a vacuum-tight metallic web and again connected by a valve-

controlled by-pass. This division of the vacuum transmission line into

sections which can be readily isolated greatly limits the spread of

difficulties due to vacuum faults, and facilitates the repair of the

faulty part. The seotionalizing of the vacuum system is thus recom-

mended for increased reliability.

The evacuated condition of the transmission line is maintained

by a system of high-vacuum diffusion pumps and fore-vacuum mechanical

pumps. In a well-outgassed system the diffusion pumps may be as much

as 500 to 1000 ft. apart. A section of the transmission line showing

the high-vacuum diffusion pumps is shown in Fig. 46. Two pumps are con-

nected in series for high reliability, the second being backed by con-

nection to the fore-vacuum line. These pumps are characterized by

their simplicity, reliability, and low cost of operation. They utilize

a low-vapor-pressure oil as the pumping medium and are air-cooled. The

design of the heater element results in a new economy of operation; in

a pump of this type tested at Princeton a pumping speed of 50 liters

per second was realized with a power expenditure of about 50 watts.

The series arrangement of pumps is used to prevent free access of the

fore- to the high-vacuum lines should one pump fail. It also results
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in a higher pumping speed and an increased pumping-pressure ratio

under normal conditions. A manually- or automatically-operated ut-

off valve is provided between the diffusion pumps and the high-vacuum

line. An automatically-recording high-vacuum gauge is provided at each

diffusion-pump installation.

The pumping speed of the annular-ringed-section fore-vacuum

line is made such that the mechanical pumps required to maintain the

necessary evacuated condition therein may be locatedakmuch as 20 miles

apart. With a well-outgassed fore-vacuum system and a fore-vacuum

pressure between 10 2 to 101 nmi. Hg. this presents no special diffi-

culties. Large fore-vacuum pumps of conventional design would be in-

stalled at these pumping stations.

It is estimated that the total power per hundred miles re-

quired to maintain the necessary evacuated condition within the trans-

mission line of Fig. 43 would be about 0.1 per cent of the power rating

of the line. Thus it is apparent that only a negligible amount of ener-

gy is required for meeting the pumping requirements of a vacuum-power

transmission line.
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CHAPTER VIII

ELECTRONIC SWITCHES

This chapter describes a new type of switch for use in high-

voltage, direct-current power systems and capable of interrupting cur-

rents of the order of 1000 amperes and of withstanding back voltages

of the order of 1,000,000 volts.

This switch performs its function by permitting or interrupt-

ing electron flow in vacuum between two terminals of the high-voltage

line. It consists essentially of an electron-emitting surface, a

control grid, an accelerating grid and a plaie. A proposed arrange-

ment of these elements is shown in Fig. 47.

The functions of these elements are as follows: During con-

duction the control grid is maintained slightly negative and serves to

focus the eleoctrons from the emitter in many thin streams directed

toward the centers of the corresponding number of holes in the grid

structure. The accelerating grid is maintained positive and serves to

accelerate these eleotron- streams toward the plate. The design is such

that these electrons reach the plate with just sufficient energy to

cause them to be absorbed, the net voltage between emitter and plate

being preferably of the order of a few volts, though not limited to

small voltages.

To open the circuit the control grid is made negative by an

amount comparable with the accelerating voltage. This prevents electrons

from passing beyond the control grid and hence reduces the etter-to-plate

current to zero. The accelerating voltage may, or may not, be allowed to



remain on the accelerating grid. For long-period interruptions it

would probably be desirable to reduce the accelerating grid potential

to that of the emitter. When the switch is insulating, full line

voltage minus the accelerating grid potential exists between the accel-

erating grid and plate. The spacing of these elements must be such that

these voltages can be safely withstood in vacuum.

The practicability of the above arrangement is illustrated by

the following analysis: The accelerating voltage required to overcome

the space charge due to a current density of 0.125 ampere per square

centimeter between accelerating grid and plate for a separation (calcu-

lated between thin parallel planes) of 5.86 cm. is 15,000 volts. This

spacing is of the order of magnitude sufficient to adequately insulate

1,000,000 volts in high vacuum with sufficient margin to take care of

the physical dimensions of the grid. This same accelerating voltage

also overcomes the space-charge effects of this current density and of

the control grid in the region between the emitter and the accelerating

grid. In a proper design the plate current should be equal to the cur-

rent passing beyond the control grid, since otherwise accelerating grid

currents and losses would result. Various mechanisms for preserving

this saturation feature for all values of current, by changing either

the accelerating-grid or the control-grid voltage, can be devised.

In the above calculation, the plate potential relative to the

grid potential was zero. By slightly increasing the accelerating-grid

potential, or by reducing the spacing grid-to-plate, the electrons can

be caused to reach the plate with sufficient energy to cause them to

be absorbed. Low emitter-to-plate voltage means low losses. It is
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desirable that this voltage be small, however, not only to realize

small plate losses, but also to prevent secondary emission from the

plate by the impinging electrons. Such secondary emission could be

greatly reduced, should this be necessary, by providing an additional

grid closely adjacent to the plate and maintained at a small positive

voltage relative to it.

The control grid is so designed as to focus the electrons

from the emitter into any thin streams so directed that they will pass

through the grid. By this focusing mechanism the accelerating-grid

current can be greatly reduced under saturation conditions. The oorre-

sponding grid loss is therefore similarly reduced. This results in

simplification of design, since the necessity of designing the grid to

dissipate large grid losses in heat is reduced. A suggested focusing

mechanism is shown in Fig. 48. The focusing action of the control grid

could be designed in such a way that the electron streams foous in the

plane of the accelerating grid. The divergence of the electron streams,

which then follows in the interval from accelerating grid-to-plate,

reduces the space-charge effect of the focusing. The fact that the

electron velocity is greatest near the accelerating grid, where the

streams are of greatest density, is also advantageous from the space-

charge point of view. Nevertheless, considerable allowance must be

made in the design for the heightened space-charge effect of many focused

electron streams.

The control grid also serves the important function of stopping

the flow of electrons when the switch is to be insulating. This may be

done by spilling suddenly a large negative charge on this grid, thereby
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setting up a space-charge barrier sufficient to overcome the effect of

the accelerating grid and plate potential. This switching action is

capable of extreme rapidity, the time required depending only on the

time constant of the control circuit. The close proximity of the con-

trol grid to the emitter enables this to be done with moderate negative

control voltage. The line voltage itself is insulated between aooelerat-

ing grid and plate. The relatively-low voltages required by the control

grid simplifies the problem of automatic switch control. The condenser

which spills the charge onto the control grid may be actuated by abnormal

line conditions, using mechanisms (some of which have been devised) not

difficult to work up for any specified situation.

The use of concentric cylindrical construction of the elements

offers important advantages in the outbalancing of electrostatic forces

and in the reduction of space-charge effects due to a given current den-

sity at the emitting surface. The control and accelerating grids and

the plate also serve to reflect heat back to the emitter and thus to

reduce emitter heat loss. It is understood that the end construction

of these concentric cylinders would be such that the electrons must pass

through the grids.

An effective cylindrical emitting surface, 1 ft. in diameter

and 3 ft. long, with an acoelerating-gri4doltage of 15,000 and a grid-

to-plate spacing (between planes) of about 6 cm., would conduct 1,000

amperes. The emitter-to-plate loss could be made small - of the order

of 10 kw. With an accelerating-grid current equal to 0.5 per cent of

the total current, this grid loss would be 75 kw. The energy required

to produce the necessary electron emission from the thoriated tungsten
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emitting surface is of the order of 10 kw. The temperature of the

grids and plates must be maintained below that of appreciable elec-

tron emission due to both thermal emission and the Schottky effect.

With tungsten surfaces this consideration allows an operating tempera-

ture of about 1100 degrees K. Additional heat-radiating surfaces, or

the introduction of a circulating cooling medium, or the conduction of

heat through an insulator, are means by which the grid loss can be dis-

sipated. The spacing between accelerating grid and plate is such that

1,000,000 volts should be safely withstood between them. The power

capacity of the switch is 1,000,000 kilowatts and the energy loss is of

the orddr of 001 per cent.

It is recognized that the caloulations above are for a switch

of unprecedented power capacity and insulation strength, and that the

problem is simpler for lower power and voltage ratings.' It is also

recognized that the compactness o high current density suggested by

the above calculations is of the order of which such a switching device

is ultimately capable. Even with a more imediately attainable compact-

ness, one-tenth or less than that suggested above, this switch would

still be far more practical and advantageous by comparison than the

present highly-developed high-power and voltage alternating-current

switches. A current density of 0.0125 ampere per square centimeter

would require an accelerating voltage of 6600 volts with a grid-to-plate

spacing of 10 centimeters (calculated between thin parallel planes for

uniforml current density.) Such a lowered current density could be more

effectively focused: for a given total current the losses are reduced

because of both the lower grid voltage and current, and the loss radiat-



ing surfaces increased by a factor of ten. It may prove desirable to

reduce the insulation requirements on a given switch by operating two

switches in cascade. This arrangement is seen to be stable, the

voltage drop across each so adjusting itself relative to the other that

their currents are the same.

It is evident from the theory of this switch that current can

be conducted by it in only one direction. The use of two such switches -

one connected in the reverse sense from the other - across the gap in the

high-voltage line would permit two-way conduction. Such a double arrange-

ment of switching elements would also be capable of serving as an alter-

nating-current switch.

Switches of the type described above may be used to accomplish

the commutation functions in the direct-current machines described in

Chapter II. The particular circuit connections involved in this elec-

tronic commutation tave in general been indicated. Where not only the

normal one-way valve action of these electronic switches ia desired,

but also the positive control afforded by the control grid for the inter-

ruption of current at any time, it may prove desirable in many machinery

applications to provide a pilot commutator which supplies the proper

voltage to the control grid. Thus, by means of a low-voltage, low-

power commutator, the current, voltage, and power output of a large

power machine may be closely regulated..

In certain switching applications where small currents are

required it may be desirable to dispense with an accelerating grid, the

current density being kept sufficiently low so as not to require an un-

due emitter-to-plate voltage. Such a switch is illustrated in Fig. 50,
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which shows a small substation switch for controlling small blocks

of power removed from a large high-, direct-voltage power line.

In the above switches the power for the heating element of

the emitter may be conveniently and efficiently supplied at the necessary

high potential by a vacuum-insulated transformer such as is shown in Fig.

51. The primary and core are maintained at ground potential; the second-

ary is attached to the high-voltage part and vacuum-insulated for full

voltage from the primary and core. The closed magnetic circuit makes

for high efficiency and low reactance drop. This idea of vacuum-insulated

transformers was developed during this investigation; some of its possi-

bilities for high-voltage, large power transformers have been examined.
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CHAPTER IX

VACUUM ELECTROSTATIC POVER SYSTEMI

This investigation of high vacuum as an insulating medium

and of its application to the problems of electric power engineering,

has shown the technical and ecoilomic feasibility of a new type of

power system, capable of all the functions of modern power systems, but

possessing advantages in power capacity, range of transmission, effi-

ciency, and simplicity not even remotely approached by the power systems

of today.

The new system contemplates the generation in vacuum by elec-

trostatic machines of large amounts of electric power at hitherto un-

attainable direct voltages of the order of a million, the transmission

of this power at these high voltages over a vacuum-insulated transmission

line, and the conversion of this power at the receiving end back to mech-

anical form by vacuum electrostatic motors operating directly on full

line voltage. The motors may drive the load directly, or they may drive

electrostatic alternating- or direct-current generators, or they may

drive alternators of the conventional type, thus delivering power to

existing local distribution systems without any alteration of these sys-

tems.

A conservative comparison of the proposed direct-, high-

voltage power system with the conventional system of today brings to

light many outstanding points of difference in favor of the new system.

The vacuum electrostatic generators and motors contemplated

for this power system and described herein are inherently high-voltage

I

i

i

I

I
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machines characterized by unusually high efficiencies, and in their

ultimate form capable of much higher power concentration than modern

electromagnetic power machines.

By the use of hitherto unattainable direct-current voltages

of a million or more, the transmission losses are reduced to a small

fraction of present-day values. This consideration, together with the

absence of stability problems in direct-current systems, results in the

removal of the distance limitation from electrical power transmission

and makes possible a new era in the utilization of electrical power.

It should become possible, for example, to deliver power to centers of

consumption remotely situated with respect to potential power sources

such as coal mines or water falls. Furthermore, it appears that the

system will lend itself to the tapping off of small blocks of power at

less cost than in prevailing systems, thus making feasible the supply

of small communities and areas which could now be served only at pro-

hibitive rates.

It has been impractical until recently to increase beyond

220,000 the operating voltages of modern high-power transmission lines.

While increase in operating voltage to 275,000 has recently been pro-

posed,* it is evident that alternating-current systems are not inherent-

ly high-voltage systems, and a definite economic and technical saturation

effect would seem to render impossible the future attainment of the oper-

ating voltages contemplated for the vacuum electrostatic power system.

As far as can be seen in terms of present rates of power con-

sumption, the power-transmitting capacity of the proposed system is limited

* Boulder Dam Power Project.

_ I _ _ ____ I
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only by the power available at the source and by the load demand.

Present power systems are limited by the factors already mentioned,

as well as by the problem of system stability inherent in alternating-

current power systems.

The proposed high-, direct-voltage power system is believed to

be inherently capable of greater reliability than present systems for

reasons set forth below.

The proposed system shows advantages in simplicity and econ-

omy over present systems. Involving, as it does, but a single high-

voltage conductor surrounded by a grounded return with its terminal

apparatus directly connected to the line, it is evidently far simpler

and far more compact than present systems. The concentric conductor

arrangement of the new system, which may be carried on or below the

surface of a narrow strip of ground, is preferable to the cumbrous over-

head system with its necessarily extensive right of way. The new type

of line can be carried with perfect safety beside railroads or highways,

thus making unnecessary a new right-of-way with the usual expense of

land takings and land damages. Furthermore, it can be carried directly

into urban areas.

A consideration of the above factors would indicate that such

a system would not only offer unparalleled advantages in capacity and

distance of power transmission, but would require far less plant invest-

ment and would be inherently capable of far greater economy of operation

and reliability than equivalent systems of today. Fig. 52 illustrates

pictorially some of the differences between the proposed and the present

power systems.



The following comparative analysis of the proposed and present

power systems covers in a more complete and quantitative way the power

capacity, transmission distance, cost, and inherent reliability of the

two systems. It contains the results of an investigation intended to

bring out the relative merits of the two systems as applied to the

recently-proposed St. Lawrence power project.

I. Power Capacity

There seems to be no theoretical or practical maximum power re-

striction for the vacuum electrostatic power system other than the

limited power available at any one site and the economic demand for

power

The direct-voltage vacuum transmission line is inherently a

high-power line and, without multiplication of circuits, appears to be

capable of transmitting power of the order of millions of kilowatts with

high efficiency.

Present electromagnetic power systems are restricted in the

power they can handle by the fundamental problem of power stability,

and by their inability, beyond a certain point, to meet increasing power

requirements by increasing the operating voltage.

2. Transmission Distance

The vacuum electrostatic power system should be capable of

transmitting practically unlimited amounts of power over substantially

any terrestrial distance or area. To illustrate, calculations have been

made for such a system operating at 5,000,000 volts and transmitting

1,000,000 kw. halfway around the world. A careful study has been made
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showing the practicability of vacuum transmission lines operating at

1,000,000 volts and transmitting 1,000,000 k. a distance of 1000 miles

with an energy loss of two and one-half per cent.

Present electromagnetic power systems are seriously limited in

the transmission of large amounts of power over long distances by the

necessity of maintaining a condition of stability between the sending and

receiving ends of the transmission line, and by the necessary increase

of energy loss with transmission distance. Although no such line exists

at present, it is technically possible, by using the highest transmission

voltage thus far developed, and with synchronous capacitance on the- line

at intervals, to transmit about 400,000 kr. over a double-circuit line

for a distance of about 400 miles. While it is theoretically possible

to extend such systems still further, the increased difficulty and ex-

pense of maintaining them free from interruptions, their low over-all

efficiency, and the high capital investment would render such extended

systems impractical.

3. Efficiency

The energy loss in vacuum electrostatic power machinery for

large power generation and conversion purposes has been estimated to

be about one per cent of the power rating of the machines. The energy

loss in transmitting 1,000,000 kw. through a 1,000,000-volt, double-

circuit vacuum transmission line a distance of 100 miles has been cal-

culated as less than 0.25 per cent.

The energy loss in modern high-voltage generators of large

capacity is about 4 per cent. The energy loss in the associated trans-
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formers to couple such generators to the transmission line adds another

0.5 per cent. The energy loss in the transmission line itself may be

as much as 15 per cent of the power transmitted for the limited trans-

mission distances of present practice. The line loss for 100 miles is

usually from 4 per cent to 10 per cent, depending on the total trans-

mission distance. Further losses are introduced by the auxiliary appar-

atus necessary to insure stability such as synchronous condensers, regu-

lators, reactors, etc.

4. Cost

The estimated cost of a 100,000-kw., 1,000,000-volt vacuum

electrostatic generator is about the same as, or less than, that of a

100,000-kfv., 13,800-volt electromagnetic generator without step-up

transformers.

The estimated cost by the St. Lawrence Power Survey Committee*

of a 300-mile transmission line from the St. Lawrence to New York City

of 1,000,000 h.p. capacity of $75,000,000. The estimated cost of a

double-circuit, 1,000,000-volt vacuum transmission line for the same

project, capable of even greater power capacity and far greater effi-

ciency, is $20,000,000.

Vacuum electrostatic power systems would introduce other econ-

omies due to the elimination of devices essential to electromagnetic power

systems such as transformers, synchronous condensers, voltage regulators,

reactors, etc.

5. Reliability

It is believed that vacuum electrostatic power systems are

* Report of St. Lawrence Power Survey Committee.

_ __
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ultimately capable of far greater reliability than present electro-

magnetic power systems. The various factors affecting the reliability

of these systems will be discussed briefly point by point.

(a) Stability

An inherent characteristic of all alternating-current power

systems is the tendency of small disturbances, normal switching opera-

tions, faults on the line, and the like, to cause oscillations and lack

of synchronism between the sending and receiving ends of the transmission

linevwith resultant service interruptions. The margin of stability de-

creases with increase in power transmitted or in transmission distance.

In modern power systems this margin is somewhat extended by operating

precariously in a region of unstable equilibrium, using synchronous con-

densers, high-speed exciters, quick-aoting circuit breakers, and other

special equipment tending both to stiffen the system against disturbances

and to reduce the duration of the disturbances. The system stability is

the greatest difficulty in present systems in maintaining continuity of

service.

Vacuum electrostatic power systems, being direct-current power

systems, would have no such major stability problem.

(b) Lightning

Present overhead power systems are subject to direct strokes

and to induced lightning potentials which precipitate faults between

lines, flashover to ground, etc., and thus cause circuit interruptions.

Vacuum electrostatic power lines and equipment, being com-

pletely enclosed in a grounded metallic container, are not subject to

lightning.
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(c) Wind, Snow, Sleet, Mechanical Failure

Overhead power lines must be capable of withstanding enormous

variable loads such as wind, snow, and sleet. Mechanical failure due

to these causes is still a serious cause of circuit interruptions.

The high voltage conductor of vacuum transmission lines would

not be exposed to the elements in the same way, and hence would not be

subjected to this form of failure.

(d) Corona

Corona is the cause of energy loss on high-voltage transmission

lines. At high altitudes it occurs at lower voltages. It is the factor

which limits the maximum voltage at which power can be transmitted in air.

To transmit power through air at 500,000 volts to ground without undue

corona would require hollow conductors about 5 in. in diameter. Loss of

reliability due to the increased weight of the conductor, increased wind

and snow loads, as well as stability considerations such as the increased

reactance due to the large conductor spacing renders such voltages imprac-

tical. In power machinery corona causes deterioration of insulating

material and subsequent loss of insulation strength.

Vacuum transmission lines would have no corona loss nor corona

phenomena.

(e) Interconnections

Interconnections in alternating-current power systems are effec-

tive in increasing the reliability and flexibility of the component parts.

The problem of stability becomes extremely complex in such interconnected

systems. It is recognized that the stabilizing effect of one part of the

system upon an interconnected portion electrically remote may be small



135

and even negligible.

There is every reason to believe that interconnections in

direct-current power systems will be effective in increasing the reli-

ability of the component parts, however remote. The increase in reli-

ability may be accurately predicted.

(f) Insulation Strength

High-voltage power lines in air must be adequately insulated

from ground and each other by insulator strings supported on steel

towers. These strings are subject to electrical deterioration due to

dust, birds, mechanical failure, etc.

In direct-current vacuum transmission lines one conductor

must be insulated from the enclosing evacuated metallic shell. The

voltage gradients involved can be precisely calculated and the line

designed for the required insulation strength. Methods have been devised

which, with further development, are expected to insure high vacuum with

extreme reliability.

(g) Relay Protection

The need for elaborate relay protection for three-phase power

systems to protect generators, exciters, regulators, transformers, buses,

lines, etc., and the resultant increased possibility of faulty relay

operation has in itself proved an important cause of circuit interrup-

tions in present power systems.

On the other hand, it appears that the protective equipment in

the proposed vacuum electrostatic systems would be much more simple and

hence capable in itself of greater reliability.
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(h) Tie-overs

The number of tie-overs along double- or triple-circuit trans-

mission lines is few because of the expensive overhead work, switch gear,

and circuit breakers required.

The number of tie-overs along vacuum transmission lines in

parallel may be frequent because of the simplicity of the apparatus

involved. This results in greatly improved reliability.

6. Flexibility

In present alternating-current systems it is uneconomical to

tap small amounts of power from high-voltage transmission lines for

distribution purposes because of the expensive step-down and switching

apparatus required. In high-voltage electrostatic power systems it

seems economically and technically possible to tap off relatively small

amounts of power from the line at frequent intervals.

High-voltage lternating-current power lines must be confined

to open country, and the power must be transformed to reduced voltage

before it can be brought to densely-populated areas. Vacuum transmission

lines operating at millions of volts may, if necessary, pass directly

through any densely-populated area. It is feasible, for example, to

carry a vacuum transmission line operating at a million volts or more,

directly down the length of Manhattan in New York City.

The power capacity of alternating-current power systems cannot

be sensibly increased after installation without increasing both the

capacity of the terminal apparatus and the power capacity of the trans-

mission line in the same ratio. The power capacity of vacuum electro-

static power systems can, after installation, be increased very consider-
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ably by increasing the capacity' of the terminal apparatus without

changes in the transmission line, since high-voltage vacuum trans-

mission lines have inherently extremely high power capacity, generally

greatly in excess of the terminal apparatus.

7. S Epliait

Modern alternating-current power systems have become extremely

elaborate and complex in an effort to provide for the many contingencies

which may arise to cause circuit interruptions, and also because of the

complexities inherent in electromagnetic machinery. The component appar-

atus itself is usually heavy and bulky, subject to deterioration, and

necessarily designed with large factors of safety.

Vacuum electrostatic power systems are characterized by sim-

plicity due to the relative ease and directness with which high-voltage,

direct-current power can be generated and converted by electrostatic

apparatus, and due to the, simplicities inherent in direct-current power

systems. Vacuum electrostatic machinery is further characterized by

relative lightness and compactness due to the fundamental nature of

electrostatic forces and effects and to the elimination of irrelevant

matter .

8. SBfety

Modern high-voltage systems are a source of danger to human

life by accidental shook and by 'flashover.

High-voltage vacuum electrostatic power systems are relatively

safe, since all high-voltage parts are completely enclosed in a grounded

metallic case, the system appearing as a neutral body when viewed from

the exterior.
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9. Interferenoe

Alternating-current power systems cause serious telephone,

telegraph, and radio signal interference which is often difficult and

expensive to overcome. High-voltage power transmission lines with

their attendant large right of way offer a physical interference with

the development of the surrounding areas.

Vacuum electrostatic direct-current power systems are free

from these difficulties.
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APPENDIX A

EFFECTIVENESS OF AREA UTILIZATION

WHEN CAPACITANCE VARIATION IS SINUSOIDAL

This analysis is for the !

tiveness of plate-area utilization 

angle between the rotor and stator

sinusoidal over what it is when the

Referring to Fig. 54, for

dA- rl-(r2+X)
2 - K 

purpose of determining the effec-

rhen the capacitance variation with

of an electrostatic machine is

variation is uniform.

the sinusoidal variation we have

As Kf sin d $- 2K

o

when

2 ,2
dA rl-r2 = K- i. -'K

A = rr 2S 2

The area of the sector

been taken is

2 2
.Au = r2

2

from which this sinusoidally-varying area has

1T

1o
d$.(rlr 2)

The ratio of the effectiveness of area utilization in the case of

sinusoidal and of uniform capacitance variation is therefore:

As 2

Au T

and

and
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APPENDIX B

A NEfW NULL METHOD OF DETERMINING VOLTAGE

GRADIENWT DISTRIBUTION ALONG ELECTRODE SURFACES

This experimental method of voltage gradient determination

at electrode surfaces grew out of the necessity for a convenient and

accurate means of studying the voltage gradient distribution along the

edges of the approaching rotor and stator plates of electrostatic power

machinery. The complexity of the geometrical configuration eliminated

the possibility of an easy analytical attack, and the necessity for

accuracy, flexibility of electrode arrangement, and rapidity of meas-

urement led away from the standard engineering methods and toward the

more refined and direct methods of physics.

As is well known, the charge fixed on an increment of surface

is proportional to the voltage gradient at that point. By measuring

successively the charges fixed on a series of insulated probe areas

along the electrode surface, the voltage gradient distribution along

that surface can be determined. The charge stored on a probe wase

measuredby spilling it, simultaneously with a charge of the opposite

sign from a small condenser charged with a known voltage, into a

lindemann electrometer, the known charge being altered by a potentiometer

arrangement until no resultant kick of the needle indicated both charges

were equal. The proper balancing voltage for any one probe can usually

be obtained within six trials, each taking but a few seconds. For an

electrode surface with twenty probes the gradient distribution can be



taken in as many minutes; and when, as in this case, the variation

of gradient distribution with electrode separation is desired, a

whole family of distribution curves may be obtained in a morning's work.

The actual experimental set-up and results will now be briefly described.

It was desired to measure the gradient distribution along the

edges of approaching condenser plates of the interleaving type with a

view to determining the edge contour which would result in the lowest

ratio of maximum edge gradient to the normal gradient between parallel

faces of interleaved plates. For this purpose an enlarged section of

three stator and two rotor plates was constructed of wood with removable

round plate edges, the surfaces being covered with tin foil. The arrange-

ment was such that the rotor and stator could easily be moved into each

other so as to interleave; with more difficulty the plate separation

could be charged. A flexible celluloid sheet conformable by tension

to the plate-edge contour covered a portion of the middle stator plate.

This sheet was covered with tin foil on the outside, and had eighteen

small insulated tin-foil probes of equal area, these probes extending

from the tip of the rounded edge to a point well along the parallel side

of the -plate. Contact with any one probe could be effected by a switch

within the hollow middle plate, the switch simultaneously short circuit-

ing all remaining probes to the plate itself. The contacted probe was

thus connected by means of a well-shielded lead to a Lindemann electro-

meter, as shown in Fig. 53. The experimental procedure was as follows:

The electrometer grounding key was opened and the operating key suddenly

depressed. This released nearly simultaneously both the charge which

had been fixed on the probe and the charge which had been stored in the
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fixed condenser. These charges mixed, the net amount charging the

electrometer. The voltage V on the fixed condenser was then adjusted

until no electrometer kick indicated the charges were equal.

The flexible celluloid strip was 0.01 in. thick and held

the arrangement of probes and conducting coating (both of 0.0007-in.

tin foil) fastened to it with eresin. One end of each probe strip

was passed through a slit in the celluloid, where it was attached to a

flexible enamelled wire connecting to the switch. The arrangement of

probes could be calibrated both for relative values of voltage gradient

fo
(taking into account the differences in probe area) and/absolute values

of voltage gradient if the area of one probe is accurately known. This

can be done by unloosing the celluloid strip from the contour edge and

holding it plane and parallel to a plane electrode a known distance away

with the known positive voltage impressed on it. With this method of

calibration it was estimated that the over-all accuracy of the voltage

gradient determination was within two per cent.

The results of the voltage-gradient distribution studies for

two different edge contours (the circular edge and the circular-bulbous

edge) are shown in Figs. 29 and 30. It is seen for the particular ratio

of plate thickness to separation of the experiment that the ratio of the

highest gradient to the parallel-plate gradient is 1.7 in both cases.

This indicates that this particular plate-thickness-to-separation ratio

is close to that critical value below which the bulbous edge is the more

desirable, and above which the simple circular edge becomes more desir-

able. A study of the curves indicates that more complex contours than

those studied would not be compensated by material improvement in the

voltage-gradient ratio.
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The general advantages of the above experimental method of

gradient-distribution studies may be summarized as follows:

1. A rapid and convenient method of measuring voltage-gradient

distribution along complex electrode surfaces.

2. A method particularly adapted for complete studies involving

a family of distribution curves showing the effect of variation of elec-

trode separation, etc.

3. A method showing a higher degree of sensitivity than previous

standard methods.

4. A null method characterized by high accuracy and ease of

calibration.
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