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ABSTRACT

For a typical satellite constellation design problem, sometimes there are two conflicting

goals. On one hand one wishes to provide continuous coverage of a particular area. On

the other hand one would like to use the minimum number of satellites as possible. For

coverage locations nearer the equator, these requirements are easily fulfilled by using a

satellite in a geostationary orbit. However, coverage of higher latitude locales is not as

effective with geostationary satellites because the viewing angle from the ground to the

satellite will be closer to the horizon, which increases the likelihood of loss of signal due

to some ground obstacle. Instead, a constellation consisting of satellites in eccentric

orbits at high inclination angles, sometimes referred to as Molniya type orbits, can

circumvent this problem and provide continuous coverage with very few satellites.

Elliptic-inclined constellations have been flown since the 1960s, chiefly by the

governments of the former Soviet Union and the current Russian Federation. Not until

the year 2000 has such a constellation been flown commercially. With the involvement of

a commercial entity in flying constellations of this type, there has been some interest in

reducing system costs by applying electric propulsion to spacecraft operating in these

types of orbits. However, using electric propulsion for station keeping on elliptic-

inclined constellations is not yet well characterized. For example, to maintain continuous

coverage of a particular area can require these types of constellations to have a repeat

ground track, thus greatly enhancing the effects of tesseral harmonics. Additionally,
these orbits typically have a high apogee altitude, which increases the effect of

perturbations due to third body point mass effects. Overall it is possible to see station

keeping AV budgets much greater than one would typically see for a geostationary

satellite. While there is some data on station keeping of an elliptical-inclined orbit using

high thrust systems, very little of this appears to have entered the public domain.

Furthermore, there seems to be no data for using electric propulsion to station keep

elliptic-inclined constellations. Thus, the primary goal of this thesis is to remedy this gap

in our knowledge. A generic and easy-to-use software tool based on Lyapunov feedback

control and implemented in the Goddard Trajectory Determination System. This tool is

used to determine station keeping AV budgets of two different elliptic constellations:

John Draim's Teardrop orbit constellation and the Sirius Satellite Radio constellation.

Thesis Supervisor: Dr. Paul J. Cefola, Research Affiliate, MIT
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1.0 Introduction

1.1 Elliptic Constellations

For a typical satellite constellation design, there are two sometimes conflicting goals:

One wishes to provide continuous coverage of a specific location, and one would like to

use the minimum number of satellites as possible. The number of satellites in a

constellation is strongly correlated to constellation cost. For coverage locations nearer

the equator, these requirements are easily fulfilled by using a satellite in a geostationary

orbit. However, coverage of higher latitude locales is not as effective with geostationary

satellites because the elevation angle from the ground to the satellite will be closer to the

horizon, which increases the likelihood of loss of signal due to some ground obstacle.

In order to increase the elevation angle, a satellite must be flown at an inclined orbit

instead of the equatorial geostationary orbit. If one were to just incline the satellite's

orbit, it would spend equal time in the northern and southern hemisphere. In order to

increase dwell time over any particular location on the rotating Earth, the orbit must be

made elliptical as a satellite spends more time at apogee than at perigee. Accordingly, it

is no coincidence that one of the words that we use to refer to elliptical-inclined orbits is

Russian: Molniya. The scientists and engineers of the former Soviet Union were the first

to think about using elliptical-inclined satellite orbits, as much of the country is located in

medium and high latitude regions that are difficult to cover with geostationary satellites.

Since 1964, the former Soviet Union and the Russian Federation have flown over 150 of

these satellites.

Launched on April 2 3 rd, 1965, the first of the Molniya satellites was lofted into an orbit

with a semi-major axis of 26610 km, an eccentricity of about 0.74, an inclination of 65',

with the apogee centered over Soviet territory. The initial American reaction to the

launch was that the Soviets had experienced a launch failure1 . This launch came the

same year that the Early Bird (Intelsat 1) was launched into geosynchronous orbit. One

could speculate that the attention of the American analysts was fixated solely on the
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recently launched geosynchronous satellite, and that they were initially blind to the

possibility of other useful orbits. Additional satellites were soon to follow, starting with a

second launch of a Molniya satellite on the 14 th of October of the same year. Since then,

over 100 payloads 2 have been lofted into eccentric-inclined orbits by Russia, the latest of

which was the launch of Molniya 3-53 in 20033. To a much lesser extent, eccentric orbit

payloads were also launched by the United States and other countries. These payloads

were launched for the purpose of communications, ground observation, as well as a few

science platforms4 .

A more recent development is that these types of orbits are starting to be used by

commercial entities in the civilian marketplace. In the last decade two elliptical-inclined

constellations had been planned, the Ellipso constellation and Sirius Satellite Radio's

(SSR) constellation. Of these, only Sirius' has actually launched. For various non-

technical reasons the Ellipso concept failed to pan out5 .

Another relatively new development has been the use of low thrust, high-Isp electric

propulsion on satellites as station keeping thrusters. Only as recently as 1997 has the first

geosynchronous satellite employed a Boeing XIPS ion thruster to handle north-south

station keeping6 . The main benefit from using electric propulsion is to reduce the fuel

mass fraction, and hence the overall system mass of the satellite. Thus, the main impetus

for adoption of electric propulsion technology for station keeping has been from the

commercial sector. Lower system mass means decreased launch costs since a smaller

booster can be chosen. Conversely, one may wish to use the same sized launch vehicle

but just increase the number of transponders on-board.

Sooner rather than later these two trends will converge and someone will want to fly a

satellite on an elliptical-inclined orbit and use electric propulsion for station keeping.

Currently, there appears to be a dearth of such information on how to do this and what to

expect in terms of a typical AV budget. The goal of this thesis is help remedy this

situation. This can be accomplished by providing a method to easily determine how to

station keep a satellite in any elliptical orbit with a low-thrust. This includes determining
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thruster pointing, station keep event duration, maintenance of ground track, and total AV

budget.

In order to accomplish this, two things are needed: An accurate model of Earth's

perturbative environment and a control method to figure out which direction to point the

thruster when the satellite drifts off station.

There are a few accurate models of the force environment for Earth-orbiting satellites.

Of these, the Goddard Trajectory Determination System (GTDS) was chosen for this

because its ephemeris propagator is well-proven, it could be obtained for free, and the

source code was readily modifiable. Determining a control method, however, is a much

more difficult task.

1.2 The Low Thrust Control Problem

Problem Types

Simply put, the low thrust control problem is to determine where to point the satellite's

thrust vector to get the satellite from state A to state B. The optimal problem is just

accomplishing this while also minimizing some performance index.

When one only considers the two-body problem, there are eight types of low-thrust

control problems based on three yes/no questions:

1) Is the problem going to take many orbits around the central body to converge? In

other words, what is the ratio of the acceleration of the spacecraft due to thrusting

and that of the central body? If the ratio is small, then the problem is of the

multiple revolution type.

2) Is the change in the spacecraft state going to be large? For example, when a

spacecraft undergoes a station keeping event, it does not change its orbital
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elements by very much. But, when it uses electric propulsion for interplanetary

trajectories its orbital elements will change significantly.

3) Are you trying to rendezvous with anything? In the equinoctial and Keplerian

element formulations there are "slow" elements and "fast" elements. The true

anomaly would be an example of a fast-element, but the semi-major axis or

eccentricity would be a slow-element. If the desired final state of the spacecraft

does not include the fast element then this is strictly a slow-element problem.

As one would expect, there are different control methods that can solve the different

types of problems.

Solution Methods

After reading the literature that is available and discussing the low-thrust control problem

with experienced individuals in industry7 , one can get a sense that there are three

categories of control techniques: variational methods, direct methods, and heuristic

techniques. The words indirect and variational can be used interchangeably. An indirect

solution technique implies some optimality that is obtained with applying variational

calculus. Direct methods, on the other hand, are not usually optimal but merely solve the

boundary value problem.

Within these categories there are a large number of individual control methods to choose

from. There are also some optimal analytical methods available simple cases (Edelbaum,

Sackett, Malchow8; Konstantinov), but in general there are no analytical methods to solve

the general problem. The following table is an incomplete list of numerical control

methods. Most of this information comes from a survey of control techniques done by

John T. Betts in 19979.

Table 1: List of Solution Methods to Low Thrust BVP

Control Method Name Category

Direct Shooting Direct

9



Indirect Shooting Variational

Multiple Shooting Direct/Variational

Indirect Transcription Variational

Direct Transcription Direct

Genetic Algorithms Heuristic

Lyapunov Feedback Control* Direct

Simulated Annealing* Heuristic

*Not discussed in Betts paper

Betts goes into quite some detail as to the formulation of each control method, their

advantages and disadvantages, as well as previous well-known implementations of each

method. The scope of this thesis is not to brief the reader regarding each and every

control method that exists, but more to explain the final choice of control method.

With the exception perhaps of direct shooting, the shooting and transcription methods are

not simple to implement, but will usually solve the more difficult boundary value

problems-these are the problems that require only one or two revolutions, a large

change in elements, and the final state is a function of time (rendezvous). For extremely

difficult problems that may have discontinuous constraints, genetic algorithms 0 may be

the most appropriate choice.

Applications and Selection of Control Method

Current application of electric propulsion (EP) appears to be divided between two

categories: It is used for station keeping on GEO satellites, and it is occasionally used for

primary propulsion on space probes, most notably NASA's NEAR spacecraft and the

ESA's SMART-1. SMART-I used a small (64mN) Hall thruster to implement a many-

revolution spiral from low Earth orbit to lunar orbit, whereas NEAR flew to its

rendezvous in less than two orbits around the sun. Both spacecraft conducted a large

10



element change transfer where the thruster was on constantly. In NEAR's case its

NSTAR ion thruster was active for over 15,000 hours.

Station keeping GEO satellites, on the other hand, is a different problem. Station keeping

operations are typically conducted once every two weeks and can last for a few hours at a

time. They are small element change transfers completed in only one or two revolutions.

The control problem that we wish to solve, namely that of station keeping a satellite in an

elliptical orbit, is most similar to this type of problem.

Thankfully, the station keeping boundary value problem is much simpler to solve because

the underlying assumptions of the control problem is that the satellite starts near an

already converged state with respect to the fast variable. Thus, one can use a much

simpler technique than either one of the transcription or shooting methods to solve this

problem.

After weighing the pros and cons of each type of solution method, a technique using

Lyapunov feedback seemed very direct and easy to apply to the station keeping problem.

Lyapunov feedback control is a full state feedback control law where thrust direction is

determined from current state information. This method seems particularly well suited

for problems that are either multi-revolution or small-element change, but not for

problems where the target state is time dependent.

This station keeping analysis technique will be applied to a few different elliptical

constellations, including the Sirius Satellite Radio constellation and John Draim's

"Teardrop" orbit constellation.

1.4 Thesis Overview

The organization of this document is fairly simple. First, one is introduced to the

mathematical underpinnings and assumptions that are used in the analysis of station

keeping elliptical-inclined constellations. This includes such topics as coordinate system
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definitions, Lyapunov stability, the derivation of the variation of parameter method for

determine the orbital element rates.

Afterwards, the actual algorithm to be implemented is developed, as well as supporting

algorithms. This includes a numerical function minimization technique as well as an

expansion of the Lyapunov control theory into a workable controller. This is in turn is

followed by some discussion of the implementation of the Lyapunov control code into

the Goddard Trajectory Determination System (GTDS), as well as the efforts that were

required to utilize the GTDS code (compiler issues, etc.).

The low thrust control technique that was discussed in the previous sections is then

executed on a GEO satellite test case, and the results are compared to analytically

predicted values of station keeping such a satellite. After the algorithm is validated, it is

then applied to the Sirius Satellite Radio constellation and John Draim's Teardrop orbit

constellation. The resulting station keeping AV requirements are then discussed along

with some barriers to practical implementation of low-thrust propulsion on elliptical-

inclined constellations. The major points of the thesis are then recapped in the

conclusion section, followed by some discussion of the future work to better understand

and optimize the Lyapunov feedback control technique in this application.
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2.0 Math/Theory

2.1 Coordinate Systems

J2000 & B1950 Inertial Frames

Every coordinate system is defined by a fundamental plane and a fundamental direction.

The J2000 coordinate system is an inertial frame defined by the plane of Earth's rotation

around the sun (the ecliptic), and the direction is defined by the intersection of Earth's

equatorial plane and the ecliptic plane. Since the ecliptic plane will vary, as well as

Earth's equatorial rotation, the coordinate system is defined at a certain time (epoch)".

The epoch for J2000 is defined on January 1"t, 2000 at 11:58:55.816 Greenwich Meridian

Time (GMT, or sometimes UTC), or January 1't, 2000, 12:00:0.0 Terrestrial Time (TT).

The difference between TT and GMT being an offset of 64.184 seconds".

It should be noted that the program inputs to the Goddard Trajectory Determination

System (GTDS) can be done in both J2000 and B1950. However, all program inputs in

this thesis are stated in the B 1950 coordinate system. Thus, a specification of a satellite's

initial Keplerian elements are actually in B1950. This does not affect the accuracy of our

results, since all calculations are calculated in the same B 1950 reference frame.

RSW Satellite Fixed Non-Inertial Coordinates

The RSW coordinate system is defined in Vallado" . It is a satellite fixed coordinate

system, where the R direction is the vector from Earth's center of mass to the satellite, the

W direction is the direction of the angular momentum vector (R x V), and the S axis

points in the direction of (but not necessarily parallel to) the velocity vector and is

perpendicular to the R direction.
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2.2 Orbital Elements

Keplerian Elements

The standard set of osculating Keplerian elements are used to describe a satellite's orbital

state. The following table lists each element, its symbol, and its definition. All elements

except for true anomaly are referred to as "slow elements". In an ideal 2-body problem

these elements will not vary at all. But, real world orbits typically undergo disturbing

perturbations that will cause these elements to vary slowly with respect to the true

anomaly, hence they are called slow elements. Likewise, the true anomaly is sometimes

called the "fast element" or "fast variable".

Table 2: The Keplerian Elements

Element Symbol Definition

Semi-Major Axis a Distance along of the long axis from center of ellipse to

the end (apoapsis/peripapsis)

Eccentricity e Ratio of distance from center of ellipse to focus and

semi-major axis.

Inclination i Angle between z-axis of coordinate system and angular

velocity momentum vector of orbit

Right Ascension of Q Angle from primary direction (x direction) of coordinate

the Ascending system to the ascending side of the line of nodes in the

Node coordinate system primary plane.

Argument of C0 Angle from line of nodes to perigee in orbit plane in

Perigee direction of orbital motion.

True Anomaly V Angle from perigee to satellite in orbit plane in direction

of orbital motion.
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The following diagram shows the definition of the Keplerian orbital elements.

True
Anomaly

z
Inclination

Angular
Momentum

Semi-Major
Axis

Figure 1: Definition of Keplerian Elements

Keplerian elements have some drawbacks due to the existence of singularities for orbits

that are in the primary plane of the coordinate system (sometimes referred to as equatorial

orbits) or that are circular. In the equatorial case, the right ascension of the ascending

node becomes undefined. In the circular case, the argument of perigee and true anomaly

are undefined. It is interesting to note that a geostationary satellite is affected by both of

these singularities as it is both equatorial and circular.

Equinoctial Elements

Equinoctial elements are formulated to deal with the deficiencies of the Keplerian

element set. Namely, equinoctial elements do not suffer from most of the singularities

present in Keplerian elements. The only case where these elements are undefined is
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when an orbit is completely retrograde (i = 180). There are ways of compensating for

this case, so it should also be noted that this is by no means the only way to represent an

orbit state in a nonsingular fashion. For example, the orbit state can be formulated in

terms of quaternions".

The equinoctial elements used in this thesis are composed of the Keplerian elements in

the following arrangement.

Eq. 1

a =a

h =esin(w + Q)

k =ecos(w + 9)

p = tan(')sin(Q)

q = tan(j)cos(Q)

L =v +w+ Q

The last element, L, is sometimes called "true longitude". It is also the fast variable.

While the true longitude is the element that will be used as the fast variable in the rate

equations throughout this document, the derivation of the Gaussian rate equations in the

following section assumes the mean longitude is used as the fast variable. The following

equation gives the definition of the mean longitude.

AM =M+o+Q

2.3 Gaussian Rate Equations

Variation of Parameters

The general variation of parameters method applied to the two body problem seeks to

take the general equations of motion and allow the inclusion of perturbations in the
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previously static system. The end goal is to come up with a set of first order differential

equations that describe the time rate of change of the orbital elements as a function of the

perturbing (i.e. forces that are not due to the primary "two-body" force) acceleration:

=Z f(Q,t)
dt

It should be noted that each orbital element x is independent, which allows us to make

some assumptions when taking the derivative of f(,t) with respect to time. Also, the

derivation utilizes the mean longitude

First, we can express the satellite state (position and velocity) as a function of the orbital

elements and time.

Eq. 2

= T(X 1,X2,X 3,X 4 ,X 5 ,X 6,0 = 'Q,0

v = T(X1,X 2 ,X3,X 4,X 5,X 6 ,0 = '(,0

In the unperturbed equations of motion, all the orbital elements are constant, so the

velocity can be expressed as follows:

Eq. 3

dr d(,t)

dt at

However, in the perturbed system the orbital elements are function of time, which leads

to this expression for the satellite velocity:
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Eq. 4

dT 89(,t) + 6 (Qt) d_ i

dt dt j 8Xi dt

Additionally, we can impose the following constraint to solve the original equations of

motion:

Eq. 5

8T(,t) dX 0
8 Xi dt

The above constraint is not the only constraint that allows us to solve the original

equations of motion, but it is the only constraint that allows both position and velocity to
15

be related to these perturbed elements through the formulas of elliptic motion.

Differentiating again yields an expression for the acceleration.

Eq. 6

-. 2 (,t) 6 d oi(2,t) dXi
at = dXi dt

This equation can then be substituted into the two-body equations of motion give us a

useful result. The following is the equation of motion for an unperturbed two body

problem.

Eq. 7

jI + 't) = 0
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But for a perturbed system, we use this equation of motion.

Eq. 8

p?(,t) -
(x t)13 

=perturbation

Combining equation Eq. 6 with Eq. 8:

Eq. 9

2 +(t) I o (Xt) dXi pJ(%t)
3 ~)aperturbation

at i= dXI- dt |(,)

This equation is a combination of the original unperturbed equations of motion and other

terms, and the original unperturbed equations of motion evaluate to zero.

Eq. 10

I = aperturbation

However, the element rates in this form are not too useful as they are and require some

more development. One possible way of developing these equations is the Gaussian

variation of parameters formulation.

Gaussian Variation of Parameters

Gaussian variation of parameters starts by taking the product of Eq. 5 and Eq. 10 with

the derivative of the orbital elements with respect to position and velocity, respectively.
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6

i.1Q8Xi dtx

6 X 15q dXi X
i.1 dXi dt

6

A x:d_ ~ perturbation

These two equations are then added to each other.

__ (r dXj 9 d~ _

i=1 dX, dX) dt

The term within the parentheses just evaluates to the Kronecker delta function.

Eq. 11

6 d
i= idx OF perturbation

The resulting partial derivatives of the orbital elements with respect to velocity yield the

Gaussian variation of parameter equations.

The derivations of these equations (Eq. 12 through Eq. 16) is difficult and lengthy. One

way of accomplishing this is to take the derivative of the Keplerian elements with respect

to velocity (right hand side Eq. 11) explicitly in the desired coordinate frame. Typically

the most useful frame is the non-inertial RSW coordinate frame. This yields the

Gaussian rate equations in Keplerian elements. These rates can then be formulated in

equinoctial elements by differentiating Eq. 1 with respect to time, and then substituting

the Keplerian element rates. After much algebraic manipulation, one has the desired

results: Gaussian rate equations in terms of accelerations in the RSW coordinate

16system'
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Eq. 12

= 2  a ([k sin L - hcos L]FR + [1+ kcos L+ h sin L]Fs)

Eq. 13

dh a - + [h+sinL(2+kcosL+hsinL) k(qsinL - pcos L)

dt 1-h2 -R + 1+kcosL+hsinL fs + 1+kcosL+hsinLlFw

Eq. 14

dk k+cosL(2+kcosL+hsinL) h(qsinL - pcosL)
d22sin L]FR 1+kcosL+hsinL Fs+ 1+kcosL+hsinL Fw

Eq. 15

dp =1 a (I-h-2 1k2 kp s+ q2)sinL Fw
dt 2 M I [+ kcosL +h sinLjI

Eq. 16

dq = I -h2k2 )(1+P2+q2)cosL Fw
dt 2 y 1+ kcosL +hsinL
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These rate equations are effective except for the case where the inclination is 180 degrees

or the orbit is parabolic (e = 1). The disturbing acceleration (F) is in RSW coordinates

which were defined earlier. The utility of these equations will be seen in the formulation

of the Lyapunov feedback control algorithm.

2.4 Lyapunov Functions & Stability

Lyapunov feedback control presents a relatively easy and direct method for controlling

nonlinear systems. It is easy because it requires no calculation of co-states, and if the

proper selection of Lyapunov function has been accomplished, convergence is

guaranteed, regardless of starting conditions or ending conditions' 7 . The main difficulty

of this method is determining an appropriate Lyapunov function for the system one

wishes to control. There is no direct method to generate a Lyapunov function for an

arbitrary nonlinear system. Sometimes, though, energy is a good place to start.

A Lyapunov function itself is a scalar function that generally measures the state of

convergence of any particular nonlinear or linear system. A Lyapunov function also has

some very important properties that will be useful for developing a control law.

Let us introduce the Lyapunov function.

Given the system:

x=f(i,t)

c E D

If there exists a function V(i) that is continuous in the first derivatives (C,) in D, and it

has the following properties

Eq. 17
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V(0)=0

Eq. 18

V(i)>0 for i OED

then that function may be called a Lyapunovfunction. What this means is that if one has

a function of the state variables i that is always positive except for when the state

variables are zero, then that function is a Lyapunov function.

Additionally, if

Eq. 19

VV(i) - f(i,t) 0

and this condition hold true for all of . in the domain D, then one has Lyapunov

stability-i will not leave D if it started in D'8 . If the left hand side of Eq. 19 is always

less than zero then the system state will asymptotically approach zero. That is why the

zero state is sometimes called "the attractor".

The utility of the Lyapunov function will be discussed in the next section.

2.5 Lyapunov Feedback Control

Nowhere during the description of the Lyapunov function is a control input mentioned.

However, if one can find a Lyapunov function for a given system where the function is

minimized at the target state, i.e.

V(t -it = 0

then it is possible to construct a feedback control system based on that function. The
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goal of this controller is to drive the Lyapunov function to zero, since zero is formulated

to be the target state of the system.

The utility of all this is that even if the natural dynamics of the system may not have

Lyapunov stability, it is possible to enforce Lyapunov stability by active control of the

system. Thus, the goal is to make the left hand side of Eq. 19 as negative as possible by

actively controlling the system. The more negative it is, the quicker it will converge to

the target state.
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3.0 Algorithms

3.1 Q-Law Lyapunov Feedback Control

The name "Q-law" comes from the formulation by Petropoulos19 of a Lyapunov function

to control a satellite's orbital elements with low thrust propulsion. The Lyapunov

function he chose to use was called "Q", hence "Q-law". Here "G" is used instead of

"Q" since there is an equinoctial element also labeled "Q". Please note that the

Lyapunov controller is only for control of the slow orbital elements. Control of fast

variables such as mean anomaly or mean longitude is possible with the addition of

another control loop2 0 , as will be seen below.

The following Lyapunov function is introduced:

Eq. 20

G(t)= Wv, Xit)-Xi
.1Maxj, c(t)

W, =Control weight

Xc= Current slow element

XT= Desired slow element

Max f = Absolute maximum time rate of change of element over current orbit
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X =a=a

X =h=esin(wo+Q)

Xc =k=ecos(wo+Q)
C

X= p = tan(j) sin(Q)
C

X= q tan(j)cos(Q)

Please also note that this function is not globally convergent, only locally convergent.

Specifically, it is unstable for large changes in inclination. Since it is easier to make

changes in inclination if the semi-major axis is greater, the control law will cause the

semi-major axis to increase without bounds. This restriction is okay since we are

interested in small element change transfers (orbit maintenance). A globally convergent

function is given by Petropoulos2 1 . This function results in more complex partial

derivatives of the Lyapunov function but does not have problems converging for large

element change transfers.

Differentiating G and using the chain rule results in the following expression.

Eq. 21

dG dG .2Wi (Xi -Xi)dt , 8 x (t) =I 1, Zt
dt =Xi i Max [k{(t)1

Assuming the spacecraft orbital state is controlled via low-thrust propulsion (the

acceleration is a perturbation), then the element rates ;f(t) can be expressed using the

Gaussian variation of parameters.
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Eq. 22

a, a2 0
, 2  0 FR = IT-sinocosf

NC(t,#p) k1 k2  Fs = cosocosp

0 0 p FW J Fw = Tsin

0 0 q

Eq. 22 is just Eq. 12 through Eq. 16 represented in matrix form. Since we will referring

the matrix given by Eq. 22 a number of times, it will be represented in a more compact

form:

Eq. 23

tC ,#)=[DX(t)]N(# 43)

[5 x1] [5x3] [3xl]

F = acceleration vector in RSW coordinate system

R radial unit vector

W unit angular momentum vector

S=WxR

T = thrust

ms/c = spacecraft mass

C [0,2,r] = Yaw Angle, # E- =Pitch Angle

The matrix [DX(t)] is a function of time simply because the fast variable L is a function

of time, and the slow elements are assumed to vary only slightly. This assumption can be

made because our perturbing acceleration is small.
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Defining the partial derivative matrix [DG] with respect to the Lyapunov function:

Eq. 24

d= Y C(t)=[DG] c(t)
dt = axWXi

[DG] =
rx1

8G dG dG aG]
8X2

8Xs 8X4
8X5

[1x5]

Combining Eq. 24 with Eq. 23:

Eq. 25

dG
--- = [DG][DX ]P( p,P)
dt

Again, the purpose of all this is to minimize (make the most negative) the above equation

at any given instant of time by varying the pitch and yaw angles.

3.2 Minimizing Q-law Function

Calculating matrix [DG] and matrix [DX] and multiplying by the acceleration vector

yields the following equation:

Eq. 26
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dG = [kG1(t)sin 0cosf + kG2 (t)cOSOCOS + kG3 (t)sinl]
dt

Eq. 26 is just a reformulation of Eq. 25, but it allows us to see that at any given point of

time there is a function that relates the Lyapunov function rate to the pitch and yaw

angles with just 3 constants. It should now be possible to find the most negative

Lyapunov rate by just taking the gradient of Eq. 26 with respect to * and P and setting it

equal to zero. This will yield two equations and two unknowns.

Eq. 27

dG I 9 e d dG
V -- = - , l -- (00

(dt o dp dt

Both are solvable and yield trigonometric solutions (multiple values of 4 and P) of the

inflection points of the Lyapunov rate function. Each inflection point will be a possible

solution. The equations are differentiated again to find the second derivative of the

original equations. Each possible solution is tested to find a solution that minimizes Eq.

26-i.e. both second derivatives are positive at the solution values. This solution is the

direction to point the spacecraft's thrusters to drive the Lyapunov function to zero.

Keep in mind these angles are in the RSW coordinate system and need to be transformed

into the inertial frame.

3.3 Maximizing Gaussian Rates

The maximum element rates (as seen in the original definition of the G function) have

been neatly rolled up into [DG], but they still must be accounted for. Discussion of the

merits of using the maximum element rates in the Lyapunov function can be found in the

work of Petropoulos. In a nutshell, it normalizes the control weights and allows large

element change transfers to be more optimal.
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In general, each element rate due to thrusters has this form:

Eq. 28

jC = T [cl(L)sinocos#+ c2(L)cosocos#+ c3(L)sin P]

The "c" coefficients come from rate equations given previously in Eq. 22. For example,

the semi-major axis would have the following coefficients:

c,= a2
c 2=a2

c 3 =0

By varying the thruster pointing angles $ and P, Eq. 28 makes a three-dimensional

ellipsoid with the principle radii having lengths proportional to the value of the c

coefficients. Therefore, the maximum element rate should simply be the coefficient with

the greatest absolute value. The problem now becomes finding the extrema of the

coefficients as a function of L, the fast variable.

The maximum rates for the elements a, p, and q can be solved for analytically by simply

taking the derivative with respect to L of the functions, and setting that equal to zero. The

functions for h and k, on the other hand, appear to not have any analytical solutions to the

maximization problem. Instead, we use a numerical method called the golden section

method, to find the extrema of the h and k rates. The golden section method will be

discussed in the following section. Meanwhile, the resulting maximum element rates

that are determined analytically are given below.

Calculation of Maximum Rate of Semi-Major Axis
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Eq. 29

k
(a(L)) - tan(L) = --

h
(a2(L)) m tan(L)= -

if h = 0 and k = 0 then L = 0 (or pick any L)

a max = max{ailja2|}

Calculation of Maximum Rates of p & q

Eq. 30

(p(L)) -+ cos(L) = -k

(4(L)) -+ sin(L) = -h

Note that the inverting the trigonometric functions will produce two values for L on the

domain from 0 to 2n. Each value of L must be tested for.

Method for Finding Maximum Rates of h & k

The golden search method returns the minimum value of a function within a certain

bounds. Thus, bounding the minima is very important to this search method, and it helps

to know a little bit about the function before one attempts to minimize it. We know that

the rate equations (Eq. 13 and Eq. 14) are periodic in nature so the search algorithm
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should be initially bounded between 0 and 27c. The algorithm will then converge to a

minimum. However, there will sometimes be a second minimum that is located 180'

around from the first, and that must also be found. Then, each minimum will be

compared in magnitude, and the one with the highest value is then the maximum element

rate. The procedure below outlines how to find the maximum of element "h". This

procedure is identical for finding element "k".

The first possible maximum for both h and k are proportional to either the sine of cosine

of L multiplied by the constant in front. Between 0 and 27t, the maximum of sine or

cosine will just be unity.

Eq. 31

14a = ±(1-h2 -k2)

Dealing with the second and third coefficients from Eq. 13 and Eq. 14 requires the use

of a numerical search method. Since the golden search method searches for minimums,

the search operates on the negative absolute value of the rate equations. The search

method will converge on one of the two minimums if there is one, otherwise it stops

when the it exceeds the maximum allowable iterations.

[(h2) Lmin = golden(-142(L)) L
"m I" L E [0,2xT)

[(A3)max I"Lmin] = golden(- 3(L)I)

The search is then run centered 1800 around from the first minimum.

[()2 Lmi = golden(-h 2(L)I) - + 3+

[(k 3) ,Lmin =golden(-+3 (L)) 2 2

32



Hmax = max ,I2maxi h 431max1 '(4 }3 max2

3.4 Golden Section Minimization Algorithm

The golden section search method is a commonly used numerical tool for finding local

minima. Assuming the minimum is bounded between two points on the domain of the

function, then the algorithm will converge.

The algorithm works by evaluating the values of the boundary points and two sample

points located between the two boundary points. The two interior points are compared,

and the higher value sample point becomes the new bound on that side.

E1im aew

Elirniiate X8
YO

Y

X0 XIXO14

Figure 2: Golden Search Initial Step, Step 1
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Pick new point.

Yie > Y 0a ?

X, Xr

Yout

XI

Figure 3: Golden Search Method, Step 2

If the minimum is located between the original boundary points, then the boundary points

will be seen to move downhill towards to minimum. When the distance between the

boundary points come within a certain tolerance, the algorithm has converged.

3.5 Fast Variable Control with Classical Controller

Introduction

The Q-law Lyapunov feedback control does a very good job controlling the slow orbital

elements, but the current formulation does not allow for control of the fast variable.

While an orbit's slow elements will determine the shape of the ground track that the

satellite makes on Earth's surface, the fast variable will determine a satellite's position

along the ground track. Ground tracks are the locus of points formed by the points on the
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Earth directly below a satellite as it travels through its orbit23 . Repeat ground tracks are

orbits which retrace their ground track over a certain time interval2 4 . For example, if a

satellite has a period of about 8 hours, the ratio of its period to Earth's rotational period is

3:1. In other words, every three orbits the satellite will be over the same spot on Earth.

For repeat ground track orbits, the satellite's position on the ground track at a given point

in time is probably more important than maintaining the ground track shape. Therefore,

we will need to implement another control loop to control the fast variable, L.

Control of a satellite's position along the ground track is simple. If the satellite's period

is perturbed to be shorter than its original ideal period, the whole ground track will be

observed to drift eastwards. The satellite takes longer to complete its orbit, thus the Earth

will have rotated more (to the east) in the meantime. If the orbit's period is perturbed to

greater than the initial ideal period, then the ground track will drift westwards. Control of

the satellite's period is accomplished by controlling its semi-major axis. The end result

of this is that there is now an outer loop formed around the original Lyapunov controller.

The outer loop feeds in values of target semi-major axis for the Lyapunov controller to

control towards. The following block diagram shows the arrangement of control loops.

Ground Track Lyapunov Prop. System
Angle Controller Controller Orbital Dynamic

Figure 4: Control System Block Diagram

Ground track east/west location is also determined by the slow element Q. This makes

sense because changing the orbit's line of nodes will determine the east/west placement
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of the ground track. Due to Earth's oblateness (sometimes called J2 from the coefficient

in the Lagrange planetary equations), the line of nodes will be observed to drift at a

constant rate. This can be greater than 100 per day25 for satellites in low Earth orbit.

Thus, the fast variable controller should take into account Q.

Fast Variable Formulation

First, a new formulation of the fast variable is introduced: the ground track angle (k).

This angle is most easily described as the east/west placement of the ground track on

Earth's surface. An orbit's slow elements will determine the shape of the ground track in

the inertial frame, but the ground track angle will determine where the ground track is in

relation to an object that is static in Earth's rotating frame.

The goal of this controller is to hold X at constant while Q drifts freely due to J2 effects.

Constant k means the satellite's ground track always crosses Earth's equator at the same

places. If the satellite starts on station without error, then keeping the ground track angle

at its original value at t = 0 will maintain the repeat ground track.

The ground track angle is defined as the following:

Eq. 32

(t)=Q(t)+ fidt
0

Eq. 33

.72x 2.7 kM,

PEarth Earth

kmut = Desired ratio of satellite period to Earth's rotation period
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PEarth =Sidereal rotational period of Earth (86,164.09 seconds)

= Angular drift rate due to satellite period error

a = Semi-major axis

y = Gravitational parameter

Control of the ground track angle can be implemented by varying the semi-major axis to

control VYp.

Q Drift Compensation

Unfortunately, the Lyapunov controller will still attempt to correct for the growing error

in Q. Therefore, we must allow for Q "to slide" by varying the target equinoctial

elements. In the equinoctial element set we are using, every element except the semi-

major axis depends on Q. Determining what these target elements will be is simply

accomplished via the definition of the equinoctial element set.

Eq. 34

XI= e sin(o+ Q(t))

X3 = ecos(o + Q(t))

X4 = tan(') sin(Q(t))

X5 = tan(')cos(Q(t))

If each of the target Keplerian elements is held constant but Q is allowed to drift, the last

four target elements can be calculated. This leaves only the determination of the target

semi-major axis to control 4'.

Classical Control of Fast Variable
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The dynamics of the ground track angle are such that in the absence of perturbations and

with a constant value of Q it will act much like an object in free space-an object on

motion will tend to stay in motion. Thus, if one perturbs the semi-major axis slightly, the

ground track angle will drift at a constant rate. In control terminology, this means the

plant function has a single a pole at zero. Since this is a type one system, steady state

error would be zero in the absence disturbances with just a proportional controller 26.

However, there is a constant disturbance since Q drifts at a more or less constant rate, so

steady state error would not be zero. To compensate for this, one may implement a

proportional-integral controller2 7 (PI). Additionally, a Q drift compensation term is

included since we can have a priori knowledge of the Q drift rate via Lagrange's

planetary equations. This avoids large initial overshoot due to the integral term "windup"

in the face of the Q drift disturbance.

The following equations shows the form of the PI controller:

Eq. 35

u(t,)= KE(t,) +K, fE(t)dt
0

The PI controller is applied to ground track angle control:

Eq. 36

X = K,,,rror + K, Aerrordt - estimate
0

The following control gains were determined by trial and error. They appear to yield

satisfactory results, although better gains and better control methods probably do exist.
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K1 =0.5 - (Twai)~-

K, 0.1 -_ (Twi - 2

T,it is the time in between station keeping events (7 days) in seconds.

Also, it was noticed that less AV was consumed if before each thrust event the target

semi-major axis is held constant and held that way for the duration of the bum, as

opposed to allowing the fast variable controller to modify the value of the target semi-

major axis while thrusting.

3.6 Practical Considerations of Lyapunov and Fast Variable Controller

Gain Selection of Lyapunov Function

One of the benefits of the Q-law controller is that gain selection (control weights) is very

easy. In fact, just setting all control weights to unity will result in satisfactory results for

transfers in which one does not care about the fast variable. For transfers where one does

care about controlling a fast variable, it is necessary to set the control gain for the semi-

major axis considerably higher than the other gains. Setting the semi-major axis gain to

ten, while letting the rest of the gains be unity seems to work. Increasing the semi-major

axis gain beyond ten only increases AV consumption without significant accuracy

improvements of the ground track angle. Setting it below ten results in unsatisfactory

control of the ground track angle.

Petropoulos has done some work with regards to gain optimization. Optimization was

carried out using a genetic algorithm for one particular large-element change transfer.

Results indicated some propellant savings are to be had by optimization 2 8.
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Noise Filter

It is also sometimes advantageous to employ a low-pass filter on the current semi-major

axis (xc) state as tesseral effects can induce noise that retards controller performance.

For certain elliptical orbits, a swing of more than twenty kilometers of semi-major axis is

seen due to tesseral effects. For small element change transfers, this short-period

variation of semi-major axis can cause the controller to prematurely trip the convergence

threshold, as well as incur higher AV costs than station keeping with the low pass filter.

This is probably due to the controller working to "fix" the suddenly higher semi-major

axis error, thus neglecting the other orbital elements.

The time constant of the low-pass filter used was roughly an hour, or 3600 seconds.

Small Element Change without Low-Pass Filter
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Figure 5: Variation of Lyapunov Function Without Low-Pass Filter
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Small Element Change with Low-Pass Filter

140

120

100

80

4- 60

20

401

20 25 30 35 40 45 50 55 60 65

Time (hours)

Figure 6: Variation of Lyapunov Function with Low-Pass Filter

These plots were generated using the first satellite in the Teardrop constellation that is

defined later in this document.

Defining the Converged State

Another important consideration is when to turn off the thruster. The Lyapunov function

given by Eq. 20 converges with the square root of the burn time. The consequence of this

is that there are diminishing returns for leaving the thruster on longer. After a certain

point, one must ask how many decimals places of accuracy are actually needed?

Conveniently enough, there is an easy way to specify a cutoff threshold because the units

of the square root of G(t) is seconds.
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[G(t)] =[s]

Cutoff threshold can then be specified in units of time. However, one should not confuse

this Lyapunov time remaining with actual time it will take to converge since the

Lyapunov time is based on maximum element rates and control gains. If one were to

increase each of the control gains, then the Lyapunov time would increase accordingly,

but convergence rate would remain the same. Also, if one were to raise the control

weights but let the cutoff threshold remain the same, then the time from start to cutoff

will increase. Accordingly, longer thruster operation will raise AV costs. What matters

the most is the ratio of initial G(t) to the cutoff G(t). One cannot a priori predict what the

initial value of G(t) will be, so some judgment must be exercised in selection of cutoff

threshold values.
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4.0 Implementation in GTDS

4.1 Introduction

The Goddard Trajectory Determination System (GTDS) is a continuously evolving

astrodynamics code written in Fortran, the core of which has been used since the early

1970s. Several previous master's students at MIT have also added various modules to

GTDS. While the built-in user interface is primitive (text file inputs) by modem

standards, it is possible to access GTDS with a graphical user interface 2 9 . GTDS has

been a widely used as a propagator baseline in the astrodynamics community since its

inception. Using freely available the "sloccount" Linux utility, it was determined that the

GTDS source code contains roughly 140,000 lines of code (not including comments).

Incidentally, sloccount also estimated that GTDS would cost $5,000,000 to develop,
30

requiring 2.2 years time by 18 programmers

The version of the GTDS orbit determination program used in this research represents the

integration of the VAX/VMS version and the Unix/PC version. Both of these been under

development since the early 1990s. GTDS supports orbit propagation, orbit

determination, differential correction, and more. For our purposes, GTDS is extremely

useful because it models the perturbative environment in which an Earth-orbiting satellite

moves. GTDS accurately models the disturbances due to geopotential harmonics, solid

Earth tides, third-body effects, atmospheric drag, solar radiation pressure other radiative

forces. Without GTDS we could not accurately determine station keeping delta-V

requirements of the elliptical satellite constellations. For these reasons, the Lyapunov

feedback control method outlined above was coded in Fortran and added to the ephemeris

propagator GTDS.

4.2 Porting to GNU Fortran

Development for this project started from the GTDS capability that had been enhanced

by Rick Lyon31 . For developments previous to 2004, see Rick Lyon's thesis, appendix B.
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Since then, a number of things have happened. First, the VAX version of GTDS with

50x50 geopotential model32 and J2000 integration coordinates 33 was merged with the

Unix version of GTDS through the labors of Zachary Folcik at MIT. This updated and

merged version of GTDS could be compiled on a machine running Linux and an x86 chip

architecture. However, portions of the GTDS source were originally programmed in non-

standard Fortran extensions. This caused difficulties in compiling the GTDS source code

using the freely available GNU Fortran compiler, as it does not support Fortran

extensions. Alternative proprietary compilers, such as the Intel Fortran compiler were

not considered due to budget constraints. An added benefit to compatibility with the

GNU compiler is that it makes GTDS easy to parallelize in a cost effective manner for

cluster processing with paradigms such as MPI.

In order to port the GTDS source code to the GNU compiler, the whole GTDS source

code had to be swept clean of offending syntax. This task took approximately 3 months

to complete successfully. The following changes were the most commonly encountered:

1) Use of DATA syntax to store values to INTEGER*8. Traditional Fortran only

allows DATA to write to variables of type REAL*8. This issue was solved using

EQUIVALENCE statement to link a REAL*8 and INTEGER*8 variable. The

DATA command then stored to information to the REAL*8, which was linked to

the original variable name that is an INTEGER* 8.

2) The module included by a previous Master's student, Rick Lyon, had started

GTDS on to a path of modernization by using object oriented structures with

RECORD statements. However, the GNU compiler does not recognize these,

thus the object oriented variables had to be changed to regular variables.

3) Several arrays with DATA statements had shorthand forms for storing successive

rows of the same number.

There were numerous other cases, some more tricky than others to solve. Testing of the

integrated GTDS program versus the benchmark cases defined by Metzinger is ongoing,

but the new Linux version of GTDS has passed some basic benchmarks and appears to
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run well on 64 bit systems.

Happily, others have already found the Linux version of GTDS to be very useful. Most

notably this version was modified and parallelized at the Maui Supercomputing cluster.

The work was done by Dr. Matt Wilkins to reduce spacecraft ephemeris data to improve

atmospheric density models34

4.3 Lyapunov Control Code

After being ported to GNU Fortran, the Lyapunov feedback control technique had to be

developed. Prototyping was accomplished in Matlab but had to eventually be coded into

Fortran. The Fortran code can be found in appendix A, and is a direct implementation of

the equations outlined previously.

The following figure is a function tree of the new GTDS low thrust Lyapunov control

code.
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Figure 7: Function Call Tree of Low Thrust Control Code

Out of the entire function tree listed above, only the "accel" subroutine was original to

the previous versions of GTDS. However, in order to code an interface to the new

Lyapunov control functions, a few other original source files had to be modified as well

as one additional new subroutine. The original subroutines that were touched include

"setorb", "setog1 ", "setdaf'. The new subroutine that was added is called "eplyapopt",

and is called by setog1 to initialize global variables used by new Lyapunov routine.

The program execution is relatively simple. The Lyapunov control code initializes its

variables when GTDS reads the EPCNTRL keywords. The code keeps track of the time

since the last thrust event ended. If that time exceeds a certain input value, the thruster is

turned on (pointing determined by Q-law control algorithm in equinoctial elements) until

the square root of the Lyapunov function reaches the specified threshold, whereby the

thruster shuts off. This process carries on until GTDS finishes execution by reaching the
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propagation end time. Currently no output reports are generated by the Lyapunov control

code, but instead an ad-hoc output was generated by writing key variables (like orbit

state) to external files, after which they were processed and plotted using the freely

available and open source Octave mathematical software.

4.4 Program Inputs (Keywords)

GTDS is executed using a text input file of rigid formatting. Each input file is made up

of keywords in the leftmost column, followed by three columns for integer inputs, and

then three columns for floating point inputs. The behavior of the execution, initial

satellite state, and so on are all controlled by this file. The following table shows a

typical set of keywords that would be used to propagate a spacecraft's ephemeris.

Table 3: Typical GTDS Ephemeris Propagation Input Card

CONTROL EPHEM SIRIUS 1

EPOCH 1020301.0 0.0

ELEMENTI 1 2 42164 0.2684 63.4

ELEMENT2 165.0 270.0 345.0

OUTPUT 1 2 1 1020316.0 0.0 86400

ORBTYPE 2 1 1 5

OGOPT

POTFIELD 1 6

OUTOPT 1 1020301200000. 1020301600000. 86400

END

FIN

This particular input file would propagate the ephemeris for one of Sirius Satellite

Radio's satellites. Propagation would run from March 1st, 2002, to March 16 th, 2002. The

integrator is GTDS' fixed time step Cowell integrator with a time step of 5 seconds. No

thrust options are turned on. The default setting for GTDS has drag effects and solar

radiation effects turned off. That is okay for the Sirius case because drag is nonexistent
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and solar radiation pressure has a much smaller effect on the Sirius satellite than the lunar

and solar point masses. Thus, this input file would yield fairly accurate propagation.

For detailed documentation with regards to the controlling keywords, syntax, and much

more, it is recommended that one obtain a copy of the GTDS user guide. There is also a

GTDS math specification that details all of the algorithms used in GTDS. At the writing

of this thesis, the math specification was available in PDF format from the orbits website

(orbits.mit.edu), but the GTDS user manuals are only available in paper format.

Nevertheless, this does not rule out the existence of electronic versions.

4.5 New Keywords

In order to input control parameters to the Lyapunov control algorithm, it was required to

create new control keywords. The following table shows all three new keywords. All

three keywords must be present in order for the control algorithm to work.

Table 4: New GTDS Keywords for Low Thrust Control

Keyword INTEGER INTEGER INTEGER REAL REAL REAL

EPCNTRL1 Weight 1 Weight 2 Weight 3 Target Target Target

KepElm 1 KepElm 2 KepElm 3

EPCNTRL2 Weight 4 Weight 5 Repeat Target Target Kmult

groundtrack KepElm 4 KepElm 5

EPCNTRL3 NULL NULL NULL Accelmag Lyap Cutoff Wait interval

(km/sA2) (seconds) (days)

The description of the new keywords can be found in the following table.

Table 5: Explanation of New GTDS Keywords

Input Definition

Weight 1-5 Control weights defined in Eq. 20
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Target Keplerian

Element 1-5

Target elements in Keplerian form. These are XT defined in

Eq. 20. These are converted to equinoctial elements before

program execution.

Repeat Groundtrack Specifies if there is of control the groundtrack angle, defined

in Eq. 32. The integer "0" is for no, "1" for yes, "2" for

repeat groundtrack for equatorial case. This disables line of

nodes tracking, but still tracks the time phase component of

Eq. 32.

Kmuit Specifies the ratio of satellite's orbital period vs. Earth's

sidereal rotational period. This number should be a ratio of

two integers, and is defined in Eq. 33.

Acceleration magnitude Sets the constant acceleration magnitude experienced by the

spacecraft due to the low-thrust thruster. Units are in km/s 2.

Lyapunov cutoff time Sets the threshold that determines when the thrust event has

finished.

Station keeping wait Spacing between start of station keeping events, in days.

interval Thus, a 7 day wait interval means the spacecraft will have

station keeping operations every week.

These keywords are inserted after the OGOPT keyword.
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5.0 Results

5.1 Procedure

The ultimate goal is to develop realistic station keeping budgets using low thrust

propulsion in the GTDS perturbation model for two elliptic-inclined constellations: Sirius

Satellite Radio's constellation and John Draim's proposed "Teardrop" orbit constellation.

The general procedure is outlined by the following diagram:

Station Keep Reach Cut-off Wait 7 days
Burn Threshold

Figure 8: Station Keeping Simulation Program Flow

The spacecraft starts on-station at the beginning of the simulation. Every 7 days

afterwards the Lyapunov control module is turned and the spacecraft undergoes a station

keeping event. The orbital environment that the spacecraft is in is such that there will

always be disturbances in the system that tend to move the spacecraft away from its

desired state. Thus the purpose of the station keeping event is to compensate for this drift

by moving the spacecraft to its desired state using the spacecraft's thrusters. This is

exactly what this simulation models.

The following list explains the assumptions made in this simulation.

e When thrusting, the spacecraft undergoes a constant acceleration magnitude of 5

x 10~ m/s2, or 50 mN / 1000kg. This was thought to be a reasonable acceleration

as a 2.5 kW ion thruster (NSTAR) can provide 92mN of thrust, and a GEO

satellite can have up to 8 electric thrusters.
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- The most important perturbation sources in the GTDS ephemeris propagator

were turned on. This includes perturbations from the 50 x 50 geopotential model

and third body point mass effects.

e During a maneuver, the thruster is on even when spacecraft is in shadow.

* Station keeping events occur once every 7 days.

* Station keeping events last until G(t) < 4 hours .

e Control weights set to [10, 1, 1, 1, 1] unless otherwise noted. This allows for

higher tolerances in control of the fast variable.

e All simulation runs in GTDS start execution March 1st, 2002.

- GTDS will sometimes exhibit bizarre behavior when the mean anomaly at epoch

is set to 0* or 1800. When a satellite's orbit state demands being input at one of

these values, it is instead incremented by one degree.

- A fixed step-sized Cowell integrator with a time step of 5 seconds was used for

all simulation runs.

* All satellites were controlled to within ±1.25* of ground track angle

The duration of each simulation run will depend on that satellites particular orbit and its

major perturbation sources, as will be discussed below.

Elliptical-Inclined Orbit Perturbative Environment

Both the Sirius Satellite Radio constellation and John Draim's "teardrop" constellations

are repeat ground track orbits with high altitude apogees. These factors will play a

dominant role in the perturbative environment of the satellites:

1) A repeat ground track orbit can (but will not always) experience much higher

station keeping costs due to tesseral resonance, as opposed to an orbit that does

not have a repeat ground track.

2) Tesseral resonance is entirely dependent on a satellite's ground track. Therefore,

satellites within the same constellation that share a ground track will see very
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similar perturbations from this source.

3) In general, a repeat ground track orbits' tesseral perturbations may increase in

magnitude as a satellite's altitude drops.

4) An orbit with a high apogee altitude will experience larger drifts in inclination

due to the lunar and solar point mass effects.

5) Perturbations from the lunar and solar point masses will vary only with the angle

between the satellite's orbital plane and the ecliptic plane or the Earth-Moon

plane. Since an orbit will be observed to precess at some approximately constant

rate, the orientation of the orbital plane with respect to the Earth-Moon and Earth-

Sun planes will vary with time. Therefore, the disturbances due to the lunar and

solar point masses will vary with this precession period.

Points 4 and 5 are especially important to the discussion for choosing the duration of the

simulation runs, as one would want an accurate picture of what to expect in terms of AV

expenditure for a 15 year mission. For example, running a simulation for just one year

(simulation time) may not yield accurate results for the average AV costs for the entire

mission if the orbit was found to precess once every 3 years due to the variation of the

lunar and solar point mass effects.

These facts will play a critical role in the following discussion of the two constellation's

station keeping costs. The effects of these perturbations will be discussed in more detail

in the following sections.

5.2 Verification and Testing

Before applying the Lyapunov code to the station keeping problem, it was first tested to

see if it could complete a large element transfer. Setting the satellite thrust acceleration

to a very high value would allow one to see the rapid evolution of the transfer orbit. The

following plots show the convergence of the algorithm when transferring from a 300

kilometer altitude, equatorial, circular low Earth orbit to one of the Teardrop orbits

(defined later). For our application, this is just to verify qualitatively that the algorithm is
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in fact working (Figure 9 and Figure 10).

Convergence of 300km LEO to Teardrop Transfer
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Figure 9: Convergence of Lyapunov Function for Large Element Change Transfer
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Spiral fmm 300km LEO to Teardrop Orbit, Acceleration = lcm/s^2
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Figure 10: Evolution of Transfer Orbit from LEO to Teardrop

To verify quantitatively that the Lyapunov feedback control algorithm yields results

consistent with well known real case , a geostationary Earth orbit (GEO) orbit is put

through the simulation, with Q being held at zero for purposes of ground track control.

Two sets of control gains were used, one set where each gain is equal, and the other set

for fine control over the semi-major axis. Satellite longitude was approximately 204*

east of the Greenwich meridian.

The bulk of station keeping budget for GEO satellites is spent on north-south station

keeping. These perturbations are due to the Sun and Moon torquing the orbit, causing a

shift in the orbit's inclination. The AV expenditure due to this is more or less calculable

analytically. For a high thrust orbit correction, 51.4 m/s must be spent annually3 5 to

counter this drift.
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In terms of AV expenditure, low-thrust systems are always more inefficient. It can be

shown analytically with a simple calculation of the spacecraft's moment arm on the orbit

that correcting for the north-south drift with an electric thruster operating continuously

has an efficiency that is 63.6% (2 / n) a high-thrust system 3 6 that would just normally fire

at the nodes. Annual AV expenditure for a low-thrust system is then calculated:

51.4 x = 80.7 m/s/yr
2

For comparison a geostationary satellite (a = 42164 kin, e = 0, i = 0) is run through the

Lyapunov feedback control algorithm in GTDS. The results are given below.

Table 6: Station Keeping a GEO Satellite

Gains Low Thrust AV

[1,1,1,1,1] 78.2 m/s

[10,1,1,1,1] 92.3 m/s

Results seem to be comparable with the analytically predicted values. Increase of the

semi-major axis control gain has a definite effect on the required AV. As discussed

earlier, this is due to the ratio of the initial value of G(t) as compared to the cutoff

threshold. Higher gains means that for the same thruster cutoff value of G(t) one will get

a higher ratio between starting and ending values of G(t). This means the thruster will be

on longer using the higher gain as compared to the lower gain case.

The semi-major axis was controlled to just a few kilometers of error, eccentricity was

controlled to 2 decimal places, and all angular values such as inclination were controlled

to at least 0.1 degrees.
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5.3 Sirius Satellite Radio

Constellation Description

First launched in the year 2000, Sirius Satellite Radio's (SSR) constellation is an

eccentric-inclined constellation with an orbital period of 24 hours. The satellites' orbits

are such that at any given time one satellite is visible at elevation angle of at least 600

when over the continental United States. For convenience the constellation's orbital

elements are given below.

Table 7: Sirius Constellation Orbital Elements

Designation a (km) E i (deg) £ (deg) co (deg) M (deg)

@Epoch

Sirius 1 42164 0.2684 63.4 285 270 225

Sirius 2 42164 0.2684 63.4 165 270 345

Sirius 3 42164 0.2684 63.4 45 270 105

The Sirius constellation uses a high-thrust bipropellant propulsion system for orbit

maintenance. The following table lists the estimated AV expenditures for each satellite in

the constellation 7 using the high-thrust system.

Table 8: Sirius Constellation Annual High-Thrust AV Requirements

Designation Annual High-Thrust A V

Sirius 1 55 m/s

Sirius 2 80 m/s

Sirius 3 35 m/s

Due to lunar and solar mass effects, and the high altitude at which this constellation

operates, a wide variation in the station keeping AV is expected. Each satellite is on the
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same ground track so variation of AV is due almost entirely to the positioning of each

satellite's orbital plane.

As mentioned earlier, an extremely important factor in perturbations from the sun and

moon is the drift of the orbital plane (drift of Q) as it causes the third body perturbations

to vary. For this particular constellation, the drift rate is not large-only 4.20 a year.

Thus, the precession cycle has a period of about 86 years. With this in mind, a year long

simulation to determine average annual low-thrust AV requirements should yield results

comparable with a 15 year long simulation. It should be noted that it took roughly 3

minutes of processor time to simulate a year in simulation time.

Table 9: Sirius Constellation Low-Thrust AV Requirements, Computed in GTDS

Designation Annual Low-Thrust A V

Sirius 1 111 m/s

Sirius 2 137 m/s

Sirius 3 91 m/s

While the Sirius 2 annual AV expenditure at first glance appear to be extremely high, we

will see later that low-thrust electric propulsion will still yield large mass savings.

The following plot shows the Lyapunov function G(t) for the first month of Sirius 1

station keeping. One can clearly see cutoff happening at G(t) = 4 hours.
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Station Keeping Sirius 1
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Figure 11: Convergence of Station Keeping in Perturbative Environment
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Station Keeping Sirius 1: Semi-Major Axis
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Figure 12: Station Keeping Sirius 1, Variation of a in First Month

Viewing the variation of the semi-major axis while Sirius 1 is on station, one can see

outer loop controller varying the target semi-major axis to control the ground track angle.

Also, one can clearly see the variation of the semi-major axis due to tesseral effects.
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Station Keeping Sirius I: Eccentricity
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Figure 13: Station Keeping Sirius 1, Variation of e in First Month
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Station Keeping Sirius 1: Inclination
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Station Keeping Sirius 1: RAAN
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Figure 15: Station Keeping Sirius 1, Variation of A in First Month

The controller is operating successfully by allowing Q to drift freely while still

controlling the other orbital elements.

62

0)

4->

-C

0)

35



Station Keeping Sirius 1: Argument of Perigee
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Station Keeping Sirius 1: Ground Track Angle
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Figure 17: Station Keeping Sirius 1, Variation of Ground Track Angle (X)

The ground track is controlled to within 0.8 degrees in the first month. Variation of

ground track angle has never been observed to exceed more than 1.25 degrees in either

direction. This translates into the satellite never being later or earlier than 5 minutes from

expected passage overhead when the observer is on the ground. Tighter control can be

achieved by decreasing time between station keeping events and lowering the Lyapunov

cutoff threshold, but station keeping AV expenditure will increase.
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5.4 Teardrop Constellation

The Teardrop Constellation38 was invented by John Draim39 around the year 2000 as an

efficient method for providing continuous coverage at various locations at medium to

high latitudes at 3 different locations spaced 1200 apart in longitude. It is called a

teardrop orbit because the overlap of the constellation ground tracks creates a teardrop-

shaped region (see Figure 18) of continuous coverage. A teardrop constellation has the

following characteristics:

- The constellation consists of 6 satellites in highly eccentric and inclined orbits.

- Each satellite has an orbital period of approximately 8 hours.

- There are two ground tracks, a left-leaning and a right-leaning ground track, and

each ground track has 3 satellites. Teardrop 1,2, and 3 are left leaning, and

teardrop 4, 5, and 6 are right leaning.

e At any given time at least one satellite is in the teardrop-shaped ground track

region, thus providing continuous coverage in that region.
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Figure 18: Basic 6-Satellite Teardrop Array. Left-Leaning Satellites at Apogees;

Right-Leaning Satellites at Perigee

The orbital elements that provide this ground track are given below.

Table 10: Teardrop Constellation Orbital Elements

Designation a (km) e i (deg) 9 (deg) w (deg) M (deg)

@Epoch

Teardrop 1 20261 0.6458 63.41 138.5 232 181

Teardrop 2 20261 0.6458 63.41 18.5 232 181

Teardrop 3 20261 0.6458 63.41 258.5 232 181

Teardrop 4 20261 0.6458 63.41 100.2 308 1

Teardrop 5 20261 0.6458 63.41 340.2 308 1

Teardrop 6 20261 0.6458 63.41 220.2 308 1

The teardrop orbits were found to have Q drift at a constant rate of approximately 850 a

year. Every 4.23 years a teardrop satellite will precess completely, thus perturbations due
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to lunar and solar point masses will vary periodically in the time it takes for the each

satellite to precess one revolution. For a 15 year service life, three complete precessions

would be observed. Because of this, no satellite will have significantly more or

significantly less AV costs due to the third-body perturbations-it will all more or less

average, unlike the Sirius constellation. However, it is still possible that we will see

definite differences between the right-leaning and left-leaning ground tracks.

To confirm this, two sets of simulations were run. One simulation was the one-year

duration simulation, and the other was run for 4 years and 3 months (March 1s', 2002 -

June 1st 2006).

Table 11: Teardrop Constellation Low-Thrust AV Requirements, Computed in

GTDS (one year duration simulation)

Designation Annual A V Cost

Teardrop 1 131 m/s

Teardrop 2 161 m/s

Teardrop 3 118 m/s

Teardrop 4 95 m/s

Teardrop 5 58 m/s

Teardrop 6 96 m/s

Table 12: Teardrop Constellation Low-Thrust AV Requirements, Computed in

GTDS (4.25 years duration simulation)

Designation Annual A V Cost

Teardrop 1 137 m/s

Teardrop 2 136 m/s

Teardrop 3 136 m/s

Teardrop 4 82 m/s

Teardrop 5 80 m/s
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Teardrop 6 83 m/s

The data tends to support the notion that teardrop orbit AV expenditure experiences

variations with a period of approximately 4.25 years. For a 15 year mission, average

annual AV expenditure should be very close to the values reported by Table 8. The left

leaning ground track results appear to be very close to Sirius' worst case.

5.5 Discussion and Application

Mass Savings

Now that the low thrust control algorithm has been successfully applied to the Sirius and

Teardrop constellations, the usefulness of the results should be examined.

As can be seen with the Sirius case and the geostationary case, low thrust AV

expenditures for station keeping will be higher than the high thrust case. While a worst

case AV of 137 m/s/yr might seem excessively high, using a high-Isp system like a

Boeing XIPS 25cm ion thruster40 (Isp = 3500s, results obtained via the rocket equation)

yields a propellant mass fraction of less than 6% for a 15 year mission. The Sirius high-

thrust worst case (80 m/s/yr) yields approximately 31% propellant mass fraction if of one

assumes a bipropellant system with an Isp of 325 seconds. Thus, there are significant

performance advantages to using low thrust propulsion on these constellations.

Actual propellant mass fractions will almost certainly be larger than the approximate

calculations given above. In addition to station keeping, there must be AV available for

disposal, a certain number of orbital slot changes, and possibly transfers from the launch

vehicle's final orbit to the operational orbit*.

Practical Implementation
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From a payload integration standpoint, though, implementation of an actual low-thrust

system is trickier than this analysis might suggest. Electric propulsion thrusters on GEO

satellites are typically located on the anti-nadir side of the satellite4 2 . This is because the

anti-nadir side is relatively unused "real estate" in which one can add new items to a

standard spacecraft bus, like a thruster. Furthermore, these thrusters are typically

gimbaled, but only slightly to compensate for center of mass uncertainty. The analysis

put forth by this thesis makes no restriction on the thrust direction-one may always use

the most optimal direction. Since a spacecraft's attitude profile is restricted during

operation, it may be impossible to point the thruster in the most optimal direction without

compromising pointing requirements.

For example, the Sirius Satellite Radio uses a concept called "Yaw Steering" to keep the

satellite's solar arrays pointed at the sun for most of the year. This is best described as

having one of the satellite's axes pointing nadir, but the satellite rotates about the nadir

axis (yaw rotation) while pivoting its solar arrays to keep them pointed directly at the

sun4 3 . This attitude profile absolutely cannot be changed, thus any fixed thrusters would

be constrained by this attitude profile. The result of this would to be to increase

propellant requirements of the station keeping system. Proposing payload integration

solutions, however, is beyond the scope of this thesis.
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6.0 Conclusion

Lyapunov feedback control presents a simple and direct method available to determine

thruster pointing directions. The extension of Petropoulos' work into equinoctial

elements allows for robust control as the equinoctial element set does not suffer from the

singularities that the Keplerian element set does. Implementation of this Lyapunov

feedback control method in the Goddard Trajectory Determination System allows for

determination of realistic station keeping AV requirements for satellites using low-thrust

propulsion systems. Since the Lyapunov feedback controller only controls the slow

orbital elements, the addition of a simple PI controller to control the fast variable proved

adequate for keeping the satellite's ground track within desired tolerances.

The capability of Lyapunov feedback control system was verified by comparing the

simulation results of a geostationary satellite to a well known and verifiable benchmark.

Specifically, based on an analytic method it can be shown that using a continuous low-

thrust propulsion system to maintain a geostationary orbit requires approximately 81 m/s

of AV annually. The expenditure of AV in the GTDS simulation required 78 m/s of AV

annually, which is close enough to the predicted value to confirm the simulation's

accuracy.

This station keeping algorithm was then applied to two elliptical orbit constellation

concepts: Sirius Satellite Radio's constellation and John Draim's "teardrop" constellation.

It was found that for both constellations the worst-case average annual AV expenditure

was approximately 137 m/s. While this at first appears to be a very high annual AV

requirement when compared to a typical geostationary satellite station keeping budget,

using a high Isp propulsion system will still yield a very small propellant mass fraction.
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7.0 Future Work

There are a number of points that should be addressed by future work to alleviate some

uncertainties in this analysis method.

Optimization of AV

First and foremost, in the work of Petropoulos there is some discussion of "effectivity".

What this boils down to is that some sections of an orbit are more optimal to burn at than

others-i.e. for a given impulse a greater reduction of the Lyapunov function G(t) is seen.

If a satellite experiences the same perturbations, then the optimal points of firing will

tend to be the same, too. Thus, it makes sense to only turn the thrusters on in the most

effective places. This is what Petropoulos discusses for large element change transfers.

Searching for these effective zones for large element change transfers is fairly

straightforward: Determine the derivative of G(t) over one orbit (as if you were to fire the

thruster) and find the sections of the orbit where this has the greatest magnitude. The

overall change in G(t) over one orbit of continuous thrusting will not significantly change

the location of the most effective thrusting zones. In contrast, small element change

transfers are completed in a revolution or two of continuous thrusting. Thus, after some

thruster firing at the initial most effective zone will have changed, and the zone that used

to be the most effective can quickly become the worst. As one can see, some further

study will be required to determine a way to optimize these firings.

Implementation of DSST

From an algorithmic efficiency standpoint, the current implementation in GTDS is not

very efficient at all. This is mostly due to the fact the integration of the equations of

motion is accomplished via fixed-step Cowell integration. Optimal efficiency could be

attained by averaging the equations of motions and applying Draper Semi-analytic

Satellite Theory (DSST). From a large element change perspective, DSST could be
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applied while thrusting since the thrust profile will not vary much from orbit to orbit. For

small element change transfers application of DSST while thrusting seems to be of

dubious value since thrusting only occurs for a short period of time, and each orbit will

have a different thrust profile. Application of DSST while the spacecraft is not thrusting

will of course speed up the simulation, although GTDS would have to be coded to switch

integration methods when thrusting occurs. As an added benefit, the use of average

elements will alleviate the need for a low pass filter to reduce the influence short periodic

effects.

Extension of Low-Thrust Code Functionality

In the current effort, a very simplistic thrust model was developed. Namely, thrust was

modeled as a constant acceleration. In the future one may wish to implement features

such as variable thrust, variable Isp, propellant mass tracking, and so on. Additionally,

there will undoubtedly be a desire to use these models beyond the ephemeris propagator

module in GTDS, such as orbit determination and differential correction.
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Appendix A: Source Code

EPCNTRL

SUBROUTINE EPCNTRL(ACTH,POS,VEL,TIME)
C ************************************************************************
C
C EPCNTRL is a lyapunov feedback control system that controls the slow

C equinoctial elements. This function relies upon the following

C new subroutines:
C
C epintegrator.for Trapezoidal rule integration
C eplambdacntrl.for Groundtrack angle controller (a fast variable)

C eplyapdir.for Analytical determination of optimal thrust direction
C eplyapopt.for Sets initial values of common variables in lowthrust.cmn

C epmaxrates.for Determines maximum element rates based on current elements

C eprate.for Determines current element rates

C epscheduler.for Handles scheduling of station keeping events

C eptgtelems.for Changes target elements set to deal with repeat ground track

C epxhrate2.for Max element rate, minimized numerically

C epxhrate3.for Max element rate, minimized numerically
C epxkrate2.for Max element rate, minimized numerically

C epxkrate3.for Max element rate, minimized numerically

C epelem.for Determination of geodetic longitude for repeat groundtrack control (copy of elem.for)

C
C
C Please see paper AAS 05-282 by Benjamin Joseph and Paul Cefola for

C more information on how this algorithm works.

IMPLICIT NONE

INCLUDE 'lowthrst.cmn'

REAL*8 ACTH(3)
REAL*8 POS(3),POSMAG
REAL*8 VEL(3),VELMAG
REAL*8 ACC(3)
REAL*8 EQNELM(6)
REAL*8 TIME

REAL*8 DPFRC
REAL*8 XMU,SINL,COSL
REAL*8 RATES(5,3)
INTEGER*8 INFRC
INTEGER*4 RETRO,I,J
REAL*8 QPART(5),KS(3)
REAL*8 MAXRATES(5),DIR(3)
REAL*8 R(3),S(3),W(3),V(3)
REAL*8 ACCELMAG,ACCELMAG2,INSHADOW
REAL*8 REGULARA
REAL*8 TACC(3)
INTEGER INITDONE,WILLFIRE,FSUNLT
REAL*8 DV,LAMBDA,LOWPASSA
COMMON/FRC / DPFRC(1300) ,INFRC(50)
COMMON /TRUELONG/ SINL,COSL
COMMON /EPSWITCH/INITDONE
EQUIVALENCE (DPFRC(2),XMU)
EQUIVALENCE (FSUNLT,DPFRC(1269))

ACCELMAG = EPACCELMAG

C DETERMINE CONDITIONS THAT MAY NOT ALLOW US TO FIRE
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C CHECK FOR SUNLIGHT, currently doesn't do anything
CALL CSHAD(FSUNLT)
IF (FSUNLT .EQ. 0 .AND. EPSEP .EQ. 1) THEN

INSHADOW = I
ELSE

INSHADOW = 0
ENDIF

C CHECK IF IT IS THE SCHEDULED TIME TO FIRE

CALL EPSCHEDULER(TIME,WILLFIRE)

RETRO = I
IF (INITDONE .EQ. 1) THEN

C RETRIEVE EQUINOCTIAL ELEMENTS
CALL EQUIN (EQNELM,RETRO,POS,VEL,XMU,.FALSE.)

C CONDITION TARGET ELEMENTS BASED ON CONTROL TYPE
CALL EPTGTELEMS(POS,VEL,TIME,LAMBDA)

C IF WE'RE WORRIED ABOUT GROUND TRACK CONTROL, PUT SEMI-MAJ THROUGH LOWPASS
REGULARA = EQNELM(1)
IF (EPREPEATGRNDTRK .EQ. 1) THEN

EQNELM(I) = EPLOWPASSA
ENDIF

C DETERMINE MAXIMUM ELEMENT RATES OVER THE CURRENT ORBIT
CALL EPMAXRATES(MAXRATES,EQNELM,XMU)

C DETERMINE THE CURRENT RATES
CALL EPRATE(RATES,EQNELM,COSL,SINL,XMU)

C CALCULATE THE LYAPUNOV FUNCTION PARTIALS WITH RESPECT TO TARGET ELEMENTS
DO 1=1,5

QPART(I) =2*EPWEIGHT(I)/(MAXRATES(I)**2)*(EQNELM(I)-EPELMT(I))
END DO

C FORMULATE THE K's (COEFFICIENTS FOR THRUST DIRECTION DETERMINATION)
DO J=1,3

KS(J)= 0
DO 1=1,5

KS(J) = KS(J) + QPART(I)*RATES(I,J)
END DO

END DO

C DETERMINE THRUST DIRECTION THAT MINIMIZES LYAPUNOV FUNCTION RATES
CALL EPLYAPDIR(KS,DIR)

C CALCULATE ACCELERATION MAGNITUDE AND TRACK FUEL
C (Sir Not Appearing in this Function)

C EVALUATE LYAPUNOV FUNCTION
EQNELM(1)= REGULARA
QQ= 0
DO 1=1,5

QQ = QQ + EPWEIGHT(I)*((EQNELM(I)-EPELMT(I))/MAXRATES(I))**2
END DO
QQ = QQ/ACCELMAG/ACCELMAG

C RUN IT THROUGH A LOW PASS FILTER

C YDOT = (QQ-QQQ)*(3e-4)

C CALL EPINTEGRATOR(TIME,YDOT,4,QQQ)

C QQ=QQQ

C ROTATE THRUST INTO CORRECT COORDINATES

POSMAG = SQRT(POS(l)**2+POS(2)**2+POS(3)**2)
VELMAG = SQRT(VEL(1)**2+VEL(2)**2+VEL(3)**2)
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R(I) = POS(1)/POSMAG
R(2) = POS(2)/POSMAG
R(3) = POS(3)/POSMAG
V(1) =VEL(I)/VELMAG
V(2) = VEL(2)/VELMAG
V(3) = VEL(3)/VELMAG
CALL VCROSS(R,V,W)
CALL VCROSS(W,R,S)
S(1)= S(1)
S(2)= S(2)
S(3)= S(3)

C Shadow call doesn't appear to be working -BEJ
C IF ((INSHADOW .EQ. 0) .AND. (WILLFIRE .EQ. 1)) THEN

IF (WILLFIRE .EQ. 1) THEN
ACCELMAG2 = ACCELMAG

ELSE
ACCELMAG2= 0

ENDIF

TACC(l) = ACCELMAG2*(R(l)*DIR(l)+S()*DIR(2)+W(1)*DIR(3))
TACC(2) = ACCELMAG2*(R(2)*DIR()+S(2)*DIR(2)+W(2)*DIR(3))
TACC(3) = ACCELMAG2*(R(3)*DIR(l)+S(3)*DIR(2)+W(3)*DIR(3))

ACTH(I) = ACTH(1) + TACC(l)
ACTH(2) = ACTH(2) + TACC(2)
ACTH(3) = ACTH(3) + TACC(3)

C Track Delta-V
CALL EPINTEGRATOR(TIME,ACCELMAG2,2,DV)

C record thrust directions

IF (WILLFIRE .EQ. 1) THEN
WRITE(l 16,*) TIME,TACC(1),TACC(2),TACC(3)
WRITE(1 17,*) POS(l),POS(2),POS(3)

ENDIF

IF (TIME .GT. EPTIMEMULT*600) THEN
EPTIMEMULT = EPTIMEMULT + I

C WRITE(I 15,*) TIME,EPACCELMAG,EPLYAPCUTOFF,EPTIMEWAIT
WRITE( 115,*) TIME,QQ,DV,LAMBDA,EPREPEATGRNDTRK

ENDIF

END IF

RETURN

END

EPINTEGRATOR

SUBROUTINE EPINTEGRA TOR(XNEW,YNEW,J,CURRENTSUM)
IMPLICIT NONE

INCLUDE 'lowthrst.cmn'

C This function uses a not-so-accurate trapezoidal integration method
C of the incoming data to compute the integral at XNEW. Can handle 10
C different states.

INTEGER J
REAL*8 XNEW,YNEW,DX,CURRENTSUM

C CHECK FOR FIRST INIT
IF (EPINTCOUNT(J) .EQ. 0) THEN

EPLASTX(J) = XNEW
EPLASTY(J) = YNEW
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ENDIF
EPINTCOUNT(J) = EPINTCOU7NT(J) + 1
DX = XNEW - EPLASTX(J)
EPSUM(J) = EPSUM(J) + (YNEW+EPLASTY(J))/2*DX
CURRENTSUM = EPSUM(J)
EPLASTY(J) = YNEW
EPLASTX(J) = XNEW

RETURN
END

EPLAMBDA CNTRL

SUBROUTINE EPLA MBDA CNTRL(LAMBDA,TIME,RAAN,A)
IMPLICIT NONE

C A very simple controller that takes d(lambda)/dt and sets it equal to a drift

C rate that will take it to zero by the time the next burn happens. This should work

C if the ratio between the time between bums ans the bum duration is large.

C But yes, there will be steady state error.
INCLUDE 'lowthrst.cmn'

REAL*8 LAMBDA,A,RAAN
REAL*8 RAANDRIFTRATE,LAMBDADRIFTRATE,L
REAL*8 PSIDOTT
REAL*8 XMU,TWOPI,SIDEREALDAY,DPFRC
INTEGER*8 INFRC
REAL*8 ACUBED,TIME
REAL*8 ONETHIRD
REAL*8 ERROR,INTERROR
REAL*8 KI,KD,KP,KALL
DATA TWOPI /6.2831 85307 17958 65/
DATA SIDEREALDAY /86164.09/

COMMON/FRC / DPFRC(1300),INFRC(50)
EQUIVALENCE (DPFRC(2),XMU)

IF (EPBEENCALLED .EQ. 0) THEN

C ESTIMATE DRIFT OVER LAST INTERVAL
KALL =

C KD = KALL/2
KI = KALL*EPWAIT**(-2)/15

C KI=0
KP = KALL*EPWAIT**(-1)/2
KD =0

PSIDOTT = 0

C STEADY STATE
IF (EPREPEATGRNDTRK .EQ. 1) THEN

RAANDRIFTRATE = (RAAN - EPLASTRAAN2)/(TIME-EPLASTTIME)
PSIDOTT = -RAANDRIFTRATE

ENDIF

ERROR = EPLAMBDATGT - LAMBDA

C PROPORTIONAL
PSIDOTT = PSIDOTT + KP*ERROR

C INTEGRAL
CALL EPINTEGRATOR(TIME,ERROR,3,INTERROR)

PSIDOTT = PSIDOTT + KI*INTERROR
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C DERIVATIVE
LAMBDADRIFTRATE = (LAMBDA - EPLASTLAMBDA)/(TIME-EPLA STTIME)

PSIDOTT = PSIDOTT + KD*LAMBDADRIFTRATE

ACUBED=((I -PSIDOTT*SIDEREALDAY/TWOPI)*SIDEREALDAY/
* TWOPI/EPKMULT)**2*XMU

ONETHIRD = 1
ONETHIRD = ONETHIRD / 3
EPLASTRAAN2 = RAAN
EPLASTLAMBDA = LAMBDA
EPLASTTIME = TIME

EPBEENCALLED = 1

A = ACUBED**ONETHIRD

ENDIF

RETURN

END

EPLYAPDIR

SUBROUTINE EPLYAPDIR(KS,DIR)
IMPLICIT NONE

C FUNCTION dQ/dT = [KS(1),KS(2),KS(3)]* [SIN(PHI)COS(BETA);
C COS(PHI)COS(BETA);
C SIN(BETA)];
C FINDS PHI AND BETA THAT MINIMIZES dQ/dT
C IN A VERY NON-ELEGANT FASHION

REAL*8 KS(3)
REAL*8 DIR(3)
REAL*8 PHIMAG,SINPHI,COSPHI
REAL*8 BETAMAG,SINBETA,COSBETA,A1,A2
REAL*8 PHIS(4,2),BETAS(4,2)

INTEGER IJ
PHIMAG = SQRT(KS(1)**2+KS(2)**2)
IF (PHIMAG .LT. I E-8) THEN

SINPHI = 0
COSPHI = 0

ELSE
SINPHI=KS(1)/PHIMAG
COSPHI=KS(2)/PHIMAG

ENDIF
BETAMAG = SQRT(PHIMAG**2+KS(3)**2)
SINBETA = KS(3)/BETAMAG
COSBETA = PHIMAG/BETAMAG

C CHECK SECOND DERIVATIVES TO MAKE SURE IT IS IN FACT A MINIMIZER

PHIS(I,1) = SINPHI
PHIS(1,2)= COSPHI
PHIS(2,1) = -SINPHI
PHIS(2,2) = -COSPHI
PHIS(3,1)= SINPHI
PHIS(3,2) = -COSPHI
PHIS(4,1)= -SINPHI
PHIS(4,2) = COSPHI

BETAS(1,1)= SINBETA
BETAS(1,2)= COSBETA
BETAS(2,1)= -SINBETA
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BETAS(2,2)= -COSBETA
BETAS(3,1)= SINBETA
BETAS(3,2)= -COSBETA
BETAS(4,1)= -SINBETA
BETAS(4,2)= COSBETA

DO J= 1,2
DO 1=1,4

AI=-KS(1)*PHIS(J,1)*BETAS(I,2)-KS(2)*PHIS(J,2)*BETAS(I,2)
A2=-KS(1)*PHIS(J,1)*BETAS(I,2)-KS(2)*PHIS(J,2)*BETAS(I,2)

- -KS(3)*BETAS(I,1)
IF ((Al .GT. 0) .AND. (A2 .GT. 0)) THEN

SINPHI = PHIS(J,l)
COSPHI = PHIS(J,2)
SINBETA = BETAS(I,1)
COSBETA = BETAS(I,2)

END IF
END DO

END DO
DIR(1) = SINPHI*COSBETA
DIR(2) = COSPHI*COSBETA
DIR(3) = SINBETA
RETURN
END

EPLYAPOPT

SUBROUTINE EPLYAPOPT()
IMPLICIT NONE

C THIS FUNCTION TAKES CARE OF SORTING OUT THE CONTROL INPUTS FROM

C THE EPCNTRLI AND EPCNTRL2 INPUT CARDS, AS WELL AS SOME COMMON

C BLOCK VARIABLES INITIAL VALUES

INCLUDE 'lowthrst.cmn'

REAL*8 SIDEREALDAY
INTEGER I

DATA SIDEREALDAY /86164.09/
EPWILLFIRE=O

C EPSCHEDNUM = 1
EPSCHEDNUM = 0

QQ = 0
EPLAMBDATGT = KEPELMT(4)
EPTIMEMULT =0
EPLASTLAMBDA = EPLAMBDATGT
EPLASTTIME =60
EPBEENCALLED = 0
EPLASTRAAN = EPLASTLAMBDA
EPLASTRAAN2= EPLASTLAMBDA
EPRAANMULT =0
EPTRIPPED = 0
EPLASTPOS3 = 0
EPFIRSTGLON = 0

IF (EPTIMEWAIT .LE. 0) THEN
EPWAIT = 7 * SIDEREALDAY

ELSE
EPWAIT = EPTIMEWAIT

ENDIF

C NO GIMMICKS
IF (EPCTRLTYPE .EQ. 0) THEN

EPSEP = 0
EPREPEATGRNDTRK = 0
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ENDIF

C REPEAT GROUNDTRACK, SHUTOFF IN ECLIPSE, STATIONKEEP EVERY WEEK
IF (EPCTRLTYPE. EQ. 1) THEN

EPSEP = I
EPREPEATGRNDTRK = I

ENDIF

C PLANAR REPEAT GROUNDTRACK
IF (EPCTRLTYPE .EQ. 2) THEN

EPSEP = I
EPREPEATGRNDTRK = 2
EPLAMBDATGT = 0

ENDIF

DO 1=1,10
EPINTCOUNT(I)= 0
EPSUM(I) = 0

ENDDO
C FOR LOWPASS FILTER FOR SEMI-MAJ. AXIS

EPSUM(4) = KEPELMT(I)
RETURN
END

EPMAXRA TES

SUBROUTINE EPMAXRA TES(RATES,EQNELM,XMU2)
IMPLICIT NONE

C Function calculates max velocity rates for equinoctial elements
C from a true longitude of zero to 2*PI using a nonlinear iterative
C method. WHICH ONE?

REAL*8 RATES(5),EQNELM(6)
REAL*8 A,XH,XK,P,Q,PP,PQ,NP,XMU
REAL*8 COSL,SINL,TWOPI
REAL*8 ARATE,ARATEI,ARATE2,PRATE,PRATE2,QRATE,QRATE2
REAL*8 XHRATE,XHRATE2,XKRATEXKRATE2,XHRATE3,XKRATE3
REAL*8 PS,OE,PR,AX,BX,CX,TOL,XMIN,XMIN2
REAL*8 EPXHRATE2,EPXKRATE2,EPXHRATE3,EPXKRATE3
REAL*8 XMU2,ALMAG

EXTERNAL EPXHRATE2,EPXKRATE2,EPXHRATE3,EPXKRATE3

DATA TWOPI /6.2831 85307 17958 65/
DATA TOL /0.0001/
COMMON /MINX/A,XH,XK,P,Q,XMU
XMU = XMU2
A = EQNELM(1)
XH = EQNELM(2)
XK = EQNELM(3)
P = EQNELM(4)
Q = EQNELM(5)

C A,P,Q RATES CAN BE SOLVED FOR ANALYTICALLY

C FIND MAX OF A RATE

PP = 2*SQRT(A**3/XMU/(l-XK**2-XH**2))

ALMAG = (XH**2+XK**2)
IF (ALMAG .GT. 0) THEN

ALMAG = SQRT(ALMAG)
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SINL = -XK/ALMAG
COSL = XH/ALMAG

ARATEl = PP*ABS(XK*SINL-XH*COSL)

SINL = -XH/ALMAG
COSL = XK/ALMAG
ARATE2 = PP*(1+ABS(XK*COSL-XH*SINL))

IF (ARATEI .GT. ARATE2) THEN
ARATE = ARATEI

ELSE
ARATE = ARATE2

ENDIF
ELSE

ARATE = PP
ENDIF

C FIND MAX OF P RATE
COSL = -XK
SINL = SQRT(1-COSL**2)
PR = XK*COSL+XH*SINL
NP = SQRT((A/XMU)*(1-XK**2-XH**2))

OE = (1+PR)
PQ = (1+Q**2+P**2)

PRATE = ABS(O.5*NP/OE*PQ*SINL)

SINL = -SINL
PR = XK*COSL+XH*SINL
NP = SQRT((A/XMU)*(1 -XK**2-XH**2))
OE = (1+PR)
PQ = (1+Q**2+P**2)

PRATE2 = ABS(O.5*NP/OE*PQ*SINL)

IF (PRATE2 .GT. PRATE) THEN
PRATE = PRATE2

ENDIF

C FIND MAX OF Q RATE
SINL = -XH
COSL = SQRT(I-SINL**2)
PR = XK*COSL+XH*SINL
NP = SQRT((A/XMU)*(1-XK**2-XH**2))
OE = (1+PR)
PQ = (I+Q**2+P**2)

QRATE = ABS(O.5*NP/OE*PQ*COSL)

COSL = -COSL
PR = XK*COSL+XH*SINL
NP = SQRT((A/XMU)*(1-XK**2-XH**2))
OE = (I+PR)
PQ = (1+Q**2+P**2)

QRATE2 = ABS(O.5*NP/OE*PQ*COSL)

IF (QRATE2 .GT. QRATE) THEN
QRATE = QRATE2

ENDIF

C FIND MAX OF XH RATE

AX = 0
BX = 3
CX = TWOPI;

CALL GLDEN(AX,BX,CX,EPXHRATE2,TOL,XMIN)
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XHRATE2 = -EPXHRATE2(XMIN);
AX = XMIN + 0.25*TWOPI
BX = XMIN + 0.5*TWOPI
CX = XMIN + 0.75*TWOPI
CALL GLDEN(AX,BX,CX,EPXHRATE2,TOLXMIN2)
XHRATE = -EPXHRATE2(XMIN2)
IF (XHRATE .GT. XHRATE2) THEN

XHRATE2= XHRATE
END IF

CALL GLDEN(AX,BX,CX,EPXHRATE3,TOLXMIN)

XHRATE3 = -EPXHRATE3(XMIN);
AX = XMIN + 0.25*TWOPI
BX = XMIN + 0.5*TWOPI
CX = XMIN + 0.75*TWOPI
CALL GLDEN(AX,BX,CX,EPXHRATE3,TOL,XMIN2)
XHRATE = -EPXHRATE3(XMIN2)
IF (XHRATE .GT. XHRATE3) THEN

XHRATE3 = XHRATE
END IF

IF (XHRATE2 .GT. XHRATE3) THEN
XHRATE = XHRATE2

ELSE
XHRATE = XHRATE3

ENDIF
IF (XHRATE .LT. NP) THEN

XHRATE = NP
ENDIF

C FIND MAX OF XK RATE
AX = 0
BX = 3
CX = TWOPI

CALL GLDEN(AX,BX,CX,EPXKRATE2,TOLXMIN)
XKRATE2 = -EPXKRATE2(XMIN)
AX = XM[N + 0.25*TWOPI
BX = XMIN + 0.5*TWOPI
CX = XMIN + 0.75*TWOPI

CALL GLDEN(AX,BX,CX,EPXKRATE2,TOLXMIN2)
XKRATE = -EPXKRATE2(XMIN2)

IF (XKRATE .GT. XKRATE2) THEN
XKRATE2 = XKRATE

END IF

CALL GLDEN(AX,BX,CX,EPXKRATE3,TOLXMIN)
XKRATE3 = -EPXKRATE3(XMIN)
AX = XMIN + 0.25*TWOPI
BX = XMIN + 0.5*TWOPI
CX = XMIN + 0.75*TWOPI

CALL GLDEN(AX,BX,CX,EPXKRATE3,TOLXMIN2)
XKRATE = -EPXKRATE3(XMIN2)

IF (XKRATE .GT. XKRATE3) THEN
XKRATE3 = XKRATE

END IF

IF (XKRATE2 .GT. XKRATE3) THEN
XKRATE = XKRATE2

ELSE
XKRATE = XKRATE3

ENDIF
IF (XKRATE .LT. NP) THEN

XKRATE = NP

81



ENDIF

RATES(1) = ARATE
RATES(2) = XHRATE
RATES(3) = XKRATE
RATES(4)= PRATE
RATES(5) = QRATE
RETURN
END

EPRA TE

SUBROUTINE EPRATE(RATES,EQNELM,COSL,SINL,XMU)
REAL*8 A,XH,XK,P,QXMU,COSL,SINL
REAL*8 PR,NP,PP,OE,PQ,QP
REAL*8 RATES(5,3),EQNELM(6)

A = EQNELM(I)
XH = EQNELM(2)
XK = EQNELM(3)
P = EQNELM(4)
Q = EQNELM(5)

C CALCULATE ELEMENT RATE MATRIX

PR = XK*COSL+XH*SINL
NP = SQRT((A/XMU)*(1-XK**2-XH**2))
PP = 2*SQRT(A**3/XMU/(I-XK**2-XH**2))
OE = (I+PR)
PQ = (I+Q**2+P**2)
QP = (Q*SINL-P*COSL)

RATES(1,1)= PP*(XK*SINL-XH*COSL)
RATES(1,2) = PP*OE
RATES(1,3)= 0

RATES(3,1)= NP*SINL
RATES(3,2) = NP*(XK+COSL*(2+PR))/OE
RATES(3,3)= NP*QP*XH/OE

RATES(2,I) = -NP*COSL
RATES(2,2) = NP*(XH+SINL*(2 + PR))/OE
RATES(2,3) = NP*QP*XK/OE

RATES(4,1)= 0
RATES(4,2) = 0
RATES(4,3) = 0.5*NP/OE*PQ*SINL

RATES(5,1)= 0
RATES(5,2) = 0
RATES(5,3) = 0.5*NP/OE*PQ*COSL

RETURN
END

EPSCHEDULER

SUBROUTINE EPSCHEDULER(TIME,WILLFIRE)
IMPLICIT NONE

INCLUDE 'lowthrst.cmn'
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REAL*8 TIME
INTEGER WILLFIRE

C WAIT AND SEE IF IT IS TIME TO DO A STATION KEEPING EVENT
IF (TIME .GT. EPSCHEDNUM*EPWAIT+86400) THEN

EPWILLFIRE = I
EPSCHEDNUM = EPSCHEDNUM +1
EPQSTORE = QQ

C RESET LAMBDA CONTROLLER
EPBEENCALLED =0

ENDIF

IF (SQRT(QQ) .LT. EPLYAPCUTOFF) THEN
EPTRIPPED = EPTRIPPED + I
IF (EPTRIPPED .GT. 30) THEN

EPWILLFIRE =0
EPTRIPPED = 0

ENDIF
ENDIF

WILLFIRE = EPWILLFIRE

RETURN
END

EPTGTELEMS

SUBROUTINE EPTGTELEMS(POS,VEL,TIME,LAMBDA)
IMPLICIT NONE

INCLUDE 'lowthrst.cmn'

REAL*8 POS(3),VEL(3),TIME
REAL*8 N(3),NMAG,H(3),HMAG
REAL*8 RAAN,TWOPI,SIDEREALDAY,PI
REAL*8 PSIDOT,PSI,LAMBDA,AXMU
REAL*8 DPFRC,CJ2NEG(2),AB(1 1)
INTEGER*8 INFRC
REAL*8 RMAG,VVMU,AINV,ATGT,YDOT
REAL*8 GLAT,GLON
REAL*8 SATPERIOD
REAL*8 RSATPS
INTEGER*8 ISATPS,ONE
INTEGER*8 IBDY(9)

REAL*8 CLASSE(6),ORBEL(20)
REAL*8 ELEMS(6),SPHCOR(6)

DATA TWOPI /6.2831853071795865/
DATA PI /3.1415926535897932/
DATA SIDEREALDAY /86164.09/

COMMON/FRC / DPFRC(1300),INFRC(50)
COMMON /SATPOS/ RSATPS(100) ,ISATPS (6)
EQUIVALENCE (DPFRC(2),XMU)
EQUIVALENCE (DPFRC(859),CJ2NEG(1))
EQUIVALENCE (DPFRC(24), AB(l))

CALL VCROSS(POS,VEL,H)
NMAG = SQRT(H(1)**2+H(2)**2)
IF (EPREPEATGRNDTRK .EQ. 1) THEN

IF (NMAG .GT. 1E-6) THEN
C CALCULATE CURRENT RAAN

N(1) = -H(2) / NMAG
N(2) = H(1) / NMAG
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RAAN = ACOS(N(l))
IF (N(2) .LT. 0) THEN

RAAN = TWOPI-RAAN
ENDIF
RAAN = RAAN + TWOPI*EPRAANMULT

C KEEP RAAN CONTINUOUS
IF ((RAAN - EPLASTRAAN) .GT. PI) THEN

EPRAANMULT = EPRAANMULT - I
RAAN = RAAN - TWOPI

ELSE
IF ((RAAN - EPLASTRAAN) .LT. -PI) THEN

EPRAANMULT = EPRAANMULT + I
RAAN = RAAN + TWOPI

ENDIF
ENDIF

KEPELMT(4) = RAAN

CALL EQNKEP(EPELMT,1,KEPELMT,.FALSE.)

C CALCULATE CURRENT SEMI-MAJ. AXIS
RMAG=SQRT(POS(1)*POS(1)+ POS(2)*POS(2)+POS(3)*POS(3))
VVMU=(VEL(1)*VEL(1)+VEL(2)*VEL(2)+VEL(3)*VEL(3))/XMU
AINV = 2.D0 / RMAG - VVMU

IF (AINV .NE. O.DO) THEN
A = 1.DO / AINV

ELSE
A = 0.D0

ENDIF
C PUT SEMI-MAJOR AXIS THROUGH LOWPASS FILTER

YDOT = (A - EPLOWPASSA)*(le-4)

CALL EPINTEGRATOR(TIME,YDOT,4,EPLOWPASSA)

C TRACK GROUNDTRACK ANGLE

SATPERIOD=TWOPI*SQRT(A**3/XMU)
PSIDOT=TWOPI/SIDEREALDAY*(1-EPKMULT*SATPERIOD/SIDEREALDAY)

CALL EPINTEGRATOR(TIME,PSIDOT,1,PSI)
LAMBDA = RAAN + PSI

C DETERMINE GEODETIC LONGITUDE OF ASCENDING NODE
IF (EPLASTPOS3*POS(3) .LT. 0) THEN

CALL EPELEM(TIME,POS,VEL,XMU,AB(l),CJ2NEG(l),1,CLASSE,ORBEL)
GLON = ORBEL(13)
GLAT= ORBEL(12)

IF (EPFIRSTGLON .EQ. 0) THEN
EPFIRSTGLON = I
EPGLONREF = GLON

ELSE
C APPLY CORRECTION TO GROUNDTRACK ANGLE TRACKER IF IT'S THE CORRECT GLON

C (within 5 degrees)
IF (ABS(GLON-EPGLONREF) < 5*PI/180) THEN

EPSUM(l) = GLON - EPGLONREF + EPLAMBDATGT - RAAN
ENDIF

ENDIF

ENDIF
EPLASTPOS3 = POS(3)

C CALL CONTROLLER
CALL EPLAMBDACNTRL(LAMBDA,TIME,RAAN,ATGT)
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EPELMT(1) = ATGT

EPLASTRAAN = RAAN

ENDIF
ENDIF

IF (EPREPEATGRNDTRK .EQ. 2) THEN
RAAN = 0

C CALCULATE CURRENT SEMI-MAJ. AXIS
RMAG=SQRT(POS(1)*POS(1)+ POS(2)*POS(2)+POS(3)*POS(3))
VVMU=(VEL(1)*VEL(1)+VEL(2)*VEL(2)+VEL(3)*VEL(3))/XMU
AINV = 2.DO / RMAG - VVMU

IF (AINV .NE. O.DO) THEN
A = 1.DO / AINV

ELSE
A = 0.DO

ENDIF

C TRACK GROUNDTRACK ANGLE

SATPERIOD=TWOPI*SQRT(A**3/XMU)
PSIDOT=TWOPI/SIDEREALDAY*(1-EPKMULT*SATPERIOD/SIDEREALDAY)

CALL EPINTEGRATOR(TIME,PSIDOT,I,PSI)
LAMBDA = RAAN + PSI

CALL EPLAMBDACNTRL(LAMBDA,TIME,RAAN,ATGT)
EPELMT(1) = ATGT

ENDIF
RETURN
END

EPXHRA TE2

FUNCTION EPXHIRA TE2(L)
IMPLICIT NONE
REAL*8 SINL,COSL,XH,XK,P,Q,L,OE,PR,PS,NP,EPXHRATE2
REAL*8 XMU,QP,A
COMMON /MINX/A,XH,XK,P,Q,XMU

COSL = COS(L)
SINL = SIN(L)

PR = XK*COSL+XH*SINL
NP = SQRT((A/XMU)*(1 -XK**2-XH**2))
OE = (1+PR)
QP = (Q*SINL-P*COSL)

EPXHRATE2=-NP*ABS(((XH+SINL*(2+PR))/OE))
END

EPXHRA TE3
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FUNCTION EPXHRATE3(L)
IMPLICIT NONE
REAL*8 SINL,COSL,XH,XK,P,Q,L,OE,PR,PS,NP,EPXHRATE3
REAL*8 XMU,QP,A
COMMON /MINX/A,XH,XK,P,Q,XMU

COSL = COS(L)
SINL = SIN(L)

PR = XK*COSL+XH*SINL
NP = SQRT((A/XMU)*(1-XK**2-XH**2))
OE = (1+PR)
QP = (Q*SINL-P*COSL)

EPXHRATE3=-NP*ABS((QP*XK/OE)**2)
END

EPXKRA TE2

FUNCTION EPXKRATE2(L)
IMPLICIT NONE
REAL*8 SINL,COSL,XH,XK,P,Q,L,OE,PR,PS,NP,EPXKRATE2
REAL*8 XMU,QP,A
COMMON /MINX/A,XH,XK,P,Q,XMU

COSL = COS(L)
SINL = SIN(L)

PR = XK*COSL+XH*SINL
NP = SQRT((A/XMU)*(l-XK**2-XH**2))
OE = (1+PR)
QP = (Q*SINL-P*COSL)

EPXKRATE2=-NP*ABS(((XK+COSL*(2+PR))/OE))
END

EPXKRA TE3

FUNCTION EPXKRATE3(L)
IMPLICIT NONE
REAL*8 SINL,COSL,XH,XK,P,Q,L,OE,PR,PS,NP,EPXKRATE3
REAL*8 XMU,QP,A
COMMON /MINX/A,XH,XK,P,Q,XMU

COSL = COS(L)
SINL = SIN(L)

PR = XK*COSL+XH*SINL
NP = SQRT((A/XMU)*(1 -XK**2-XH**2))
OE = (I+PR)
QP = (Q*SINL-P*COSL)

EPXKRATE3=-NP*ABS((QP*XH/OE)**2)
END
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