
Using FoxNet for TCP/IP Networking in ML/OS

by

Alexander Vladimirov

Submitted to the Department of Electrical Engineering and Computer
Science

in Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 21, 1998

@ Copyright 1998 Alexander Vladimirov. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and distribute
publicly paper and electronic copies of this thesis document in whole or in

part and to grant others the right to do so.

/

Author
-2,~

91 I, , -

Department of Electrical Engineering and Computer Science
_ May 21, 1998

Certified by
Olin Shivers

Research Scientist
T esis,$upervisor

Accepted by_
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

JUL 141998
LIBRARIES

Eng

Using FoxNet for TCP/IP Networking in ML/OS

By

Alexander Vladimirov

Submitted to the Department of Electrical Engineering and Computer Science

May 21, 1998

In Partial Fulfillment of the Requirements for the Degree of Master of Engineering in
Electrical Engineering and Computer Science.

Abstract
FoxNet is a highly modular TCP/IP stack and networking framework written in Standard ML (SML), an
advanced high-level language with static type checking, polymorphic types, type inference, higher-order
first-class functions, and an advanced module system. MLJOS is an operating system being developed in
the Express project by extending the SML/NJ implementation of SML to run on bare hardware. MU/OS

also employs the Flux OS Toolkit, a set of self-contained C libraries that implement operating system
services. My experience was that SML's advanced features worked as advertised: the module system,

garbage collection, static typing, first-class functions and the other features were of tremendous utility in
the task of porting FoxNet over to MUGOS. However, SML has some serious shortcomings. SMUNJ is

crippled by an outdated, inadequate development environment. Further, while FoxNet has many
advantages over traditional TCP/IP implementations, it is too complex, the code is poorly documented, and

the papers that describe FoxNet are outdated. OS Kit, on the other hand, although implemented in C, a
language inferior to SML, is a well built, easy to use system. The lesson is that advanced languages

features, while certainly important, are not sufficient to implement an elegant, robust, easy to understand
system. They must be complemented by a good programming environment, solid system design, and

thorough documentation.

Thesis Supervisor: Olin Shivers
Title: Research Scientist

Acknowledgments

This research would not have been possible without the help and support of many people.

First and foremost, I would like to thank Olin Shivers, my research supervisor, for
his guidance, advice, and support. His ideas, technical assistance, extensive knowledge,
and hacking have helped me tremendously in this work.

Albert Lin has been there since the beginning of the Express project and it was
mostly his effort that made the first version of ML/OS happen. His knowledge and help
with the internals of ML/OS has allowed me to make a lot of progress in my work.

Peter Szilagyi, also with the Express project, has been very helpful in all aspects
of my work. He was always willing to answer the most difficult questions about
anything, be that SML, UNIX, or general language design philosophy.

Kenneth Cline and Herb Derby of the Fox project at CMU have been very
valuable in helping me to understand and debug FoxNet.

Peter Lee helped to arrange my visit to CMU. This visit allowed me to work
closely with people of the Fox project and make a lot of progress in my work.

Lorenz Huelsbergen of Bell Labs (Lucent Technologies) has been very helpful in
providing technical assistance for SML/NJ.

Roland McGrath at University of Utah has been very helpful and eager to answer
any questions regarding OS Kit and UNIX in general.

Jay Lepreau at University of Utah was extremely helpful by providing me with a
private release of OS Kit before it was made available to the general public.

DARPA provided some funding for this research.

I would like to thank Sonya Rikhtverchik for her love, support, and patience with
me during this research. Without her I would not have the strength to finish this work.

I would like to thank Eytan Adar for listening to my complaints, joining me for
snack breaks, and giving me advice, technical and otherwise.

I would like to thank Ami and Ilana (recently Katz) for being a never-ending
source of fun and providing an alternative view on anything and everything.

I would like to thank my parents, Leonid and Stella Vladimirov, for their love,
support, guidance, and for taking me out of a true hell on earth-the former Soviet
Union.

Finally, I would like to thank my brother Gene, and my entire family. Without
their love and constant support none of this work would be possible.

1 INTRODUCTION .. 5

2 BA CK G RO U ND .. 7

2.1 STANDARD ML 7
2.2 STANDARD ML OF NEW JERSEY 10
2.3 ML/OS 11
2.4 FLUX OS TOOLKIT... 12
2.5 FO XN ET ... 13
2.6 RELATED WORK 14

3 IMPLEMENTATION ... 16

3.1 SML/NJ'S INTERFACE TO THE SYSTEM.................................. 16
3.2 FOXNET'S INTERFACE TO THE NETWORK HARDWARE 18

3.3 OS KIT'S INTERFACE TO THE NETWORK HARDWARE 20
3.4 USING OS KIT'S ETHERNET INTERFACE FOR FOXNET.. 20

4 EVA LUA TIO N .. 22

4.1 SML AS A SYSTEMS PROGRAMMING LANGUAGE ... 23
4.1.1 Positive aspects of SML .. 23
4.1.2 Negative aspects of SML 25

4.2 SML/NJ AS A PROGRAMMING ENVIRONMENT............................ 27
4.2.1 Positive aspects of the programming environment .. 28
4.2.2 Negative aspects of the programming environment.......................... 29

4.3 INTERACTIONS BETWEEN UNIQUE FEATURES OF SML AND THE PROGRAMMING ENVIRONMENT..... 31
4.3.1 Type inference 31
4.3.2M odule system 33

4.4 FOXNET AS A GENERAL FRAMEWORK FOR NETWORK STACKS .. 34
4.4.1 Positive aspects of FoxNet 34
4.4.2 Negative aspects of FoxN et 35

4.5 FLUX OS TOOLKIT .. 38

5 CO N CLU SION .. 39

5.1 FUTURE DIRECTIONS ... 40

6 REFEREN CES .. 42

1 Introduction

In the last ten years there has been a lot of advancement in the design and implementation

of advanced programming languages, compilers, and operating systems. The purpose of

this project is to explore the interactions between these systems, and the feasibility of

implementing operating systems in advanced programming languages. In particular, this

document will describe the things which I have learned during the adaptation of FoxNet,

a TCP/IP stack written in Standard ML (SML), for ML/OS, an operating system based

around SML. This work was done as a part of the Express project at the MIT Artificial

Intelligence Laboratory.

The porting of FoxNet to ML/OS served a number of purposes. It gave TCP/IP

networking to ML/OS, so that ML/OS can provide the traditional networking services

expected of modern operating systems. The porting process allowed me to evaluate the

advantages and disadvantages of SML as a language for systems programming. It also

allowed me to evaluate SML of New Jersey (SML/NJ) as an implementation of SML and

a development environment. It also allowed me to evaluate OS Kit's interface to the

networking hardware. Finally, the porting process allowed me to evaluate the design and

implementation of FoxNet.

The Background section explains origins, purposes, and organization of the

individual components used for this project: SML, SML/NJ, ML/OS, FoxNet, and Flux

OS Toolkit (OS Kit). It also discusses previous and related work.

The Implementation section discusses the details of porting FoxNet to ML/OS. It

explains how FoxNet interfaces to networking hardware in its native UNIX environment,

and how that interface is changed to use OS Kit's network drivers.

The Evaluation section presents the results and observations made during the

porting process. It discusses the positive and negative aspects of:

* SML as a language for systems and large project development

* SML/NJ as an SML implementation and a development environment

* Interactions between advanced features of SML and the development

environment provided by SML/NJ

* FoxNet's design and implementation

* Flux OS Toolkit's network interface

This sections also presents suggestions for improvements for all of these systems.

The Conclusion summarizes the main results learned during the porting of

FoxNet. It also suggests improvements for all the parts involved and outlines directions

for further research.

2 Background

Adapting FoxNet for ML/OS involved working with a number of sophisticated

systems. Most of these systems were evolving over the course of the project, both

internally, and at the interface level.

2.1 Standard ML
Standard ML (SML) was first defined in 1990[4], and subsequently updated and

re-defined in 1997[13]. It is an advanced, high-level language that has a number of

features which make it a good candidate for a large software project. The language is

strongly typed. Not only does this impose a lot of structure on the program design

paradigm, it also eliminates a large class of implementation errors. Type checking is

done at compile time, therefore types add very little overhead at run-time. Unlike many

other strongly typed languages, such as CLU [14], or Modula 3[15], SML programmers

do not have to specify the type of every new variable. SML uses a type-inference

algorithm to deduce the types for most expressions. In addition, SML's type system

supports parametric polymorphism. This minimizes the amount of code that needs to be

written. For example, the same length function can be used to find out the length of

any list, regardless of what type the elements of the list are.

First-class, higher-order functions are also a part of SML. Functions can be

passed as arguments to other functions, they can be returned as results, and they can be

created at run-time. This gives SML programs ability to package up a computation and

pass it to a client who may then invoke it. For example, a connect call in a network stack

can create a send function and return it to user code.

One feature of SML that makes it particularly attractive for implementing large

projects is its advanced module system. This system is comprised of three constructs:

structures, signatures, and functors. A structure is SML's term for a module of code. It

provides a way to group a set of related name-value pairs. These items can be data

values, functional values, types, and other structures. An SML signature is the type of a

structure. It contains type information about all the items declared in a structure. A

functor is a structure that is parameterized over other structures. The body of the functor

defines a structure in terms of its parameters, which are specified by a signature.

Applying a functor to actual structures instantiates it and produces a new structure.

SML's module system can be used to both control the complexity and guarantee

some correctness properties of a complex software system. Anyone who has ever worked

on a large system knows that one of the biggest problems with a large system is its

inherent complexity. There are engineering principles that can help to control the

complexity. One of them is modularity. Any well-designed complex system must be

organized into separate modules, with well-defined, narrow interfaces. SML signatures

can be used to define the interfaces between the modules. Structures can be used to

implement specific modules. Functors can be used to implement generic modules, which

can be specified by applying them to specific structures. A hierarchical design paradigm,

which also helps to control complexity, can be used since structures can include other

structures. When these modules are integrated, at compile time, the compiler checks

whether they match the signatures that they're supposed to match. This check guarantees

that in some ways the modules really do implement the interfaces they advertise.

This advanced module structure should in theory provide a novel solution to a

common problem that plagues some modern micro-kernel operating systems, such as

Mach [16] [17]. These operating systems achieve modularity and fault isolation by

running all the operating system services as separate user-level processes. These services

then use the kernel to communicate with each other. Since each service is a separate

process, its bugs and crashes are completely isolated from any other service. Moreover,

different modules that implement the same service can be used in the operating system,

even at the same time. For example, two different file system services can be running at

the same time. One can be optimized for large files and another one for frequent access.

If either one of these file systems crashes, it will not take down anything else in the

operating system.

Unfortunately this type of system architecture suffers from a serious performance

problem. Even the simplest requests for operating system services require many context

switches. For example, suppose a text editing process wants to read a line from a file on

disk. It sends a request to the kernel, asking it to pass the "read" request to the file

system process. At this point the text editing process is suspended and the kernel is

invoked. The kernel determines that the request is meant for the file system, and sends it

to the appropriate process. Now the kernel is suspended, and the file system is invoked.

The file system finds the correct line on disk and reads it into a private memory buffer.

Then it sends the buffer to the kernel. Now the file system is suspended, and the kernel is

invoked. The kernel copies the buffer from the file system's memory space into the text

editor's memory space, and returns to the text editor. Now the kernel is suspended.

Thus, a simple request to read a line of text from disk results in four context switches. A

context switch is an expensive operation on most modern processors, since it requires

flushing of the caches, branch predictors, translation look-aside buffers, and page tables.

This problem, however, exists only because all the services are separated as

different processes during execution. Since these operating systems are implemented in

C or C++, their implementors have no other way to modularize the processes, since these

languages do not have good module support. Modularity can be provided by a different

method, however, and one that does not incur this prohibitive run-time cost. If all the

services can exist as separate modules at the source level, but then turned into one

monolithic kernel by the compiler, both modularity and good performance can be

achieved. In a type-safe, memory-safe language with well-defined semantics, the

resulting pieces of the system should not interfere with one another, even if they do exist

as one process, in one memory space at run-time. SML is just such a language, and its

module system extends the guarantees enforced by its type system and safe semantics to

the "programming in the large" level.

Another feature of SML that makes it a good choice for large projects is formally

defined semantics. The Definition of Standard ML gives complete semantics of the

languages. The meaning of every language construct can be unambiguously understood

from the definition. This guarantees a couple of desirable properties. First, programs

written in SML can be compiled using different SML compilers and are guaranteed to do

the same things. Second, the effects of any program can be determined formally using

the language definition and program text. This makes correctness proofs possible for

those applications where that is necessary. And finally, mathematically defined

semantics opens up a large area of research for theoreticians who can develop various

global optimizations based on high-level theoretical tools such as lambda calculus.

2.2 Standard ML of New Jersey
Standard ML of New Jersey (SML/NJ) is a compiler, a runtime system, and a set

of tools for SML. It is a joint development effort at AT&T Research, Bell Laboratories

(Lucent Technologies), Princeton University, and Yale University.

SML/NJ was chosen by the Express project for a number of reasons. It is one of

the most mature implementations of SML. Although the last official release was in 1993,

SML/NJ is constantly under development, and latest releases are always available. It is

distributed together with source code, which makes modifying it for our purposes

possible. The SML/NJ development team is readily available and was imperative in

helping us with initial stages of the project.

SML/NJ, combined with a standard set of UNIX tools comprises a full SML

development environment. The runtime system, written entirely in C, is responsible for

loading the SML heap image from disk, executing it, and maintaining all interactions

between the compiler and the underlying system. The runtime system is highly

dependent on the operating system and the architecture. The heap image contains

compiled code and SML data structures and is independent of the operating system.

SML/NJ also contains a number of development tools that are available as

additional packages. The Compilation Manager (CM) is a very useful tool for managing

large projects [18]. Much like the UNIX make utility, it can keep track of what source

files in a project have changed and need to be recompiled. It also keeps track of all the

dependencies and recompiles the files dependent on those that were changed. In

addition, CM provides visualization capabilities for large projects. It can produce module

dependency graphs that graphically illustrate all the dependencies between files in a large

project.

SML/NJ also contains a lexical analyzer generator, ML-Lex, a parser generator,

ML-Yacc, an extension for multi-threaded programming, CML, and a graphical user

interface, eXene.

In addition, an SML mode for Emacs, a popular extensible text editor, is readily

available. This mode allows the SML read-evaluate-print loop (REPL) to run in an

interactive window. The source code can be edited in another window, and there is a set

of commands to allow communications between the two windows. For example, it is

possible to type an SML expression into the text-editing window, then invoke a command

that will send the expression to the REPL window to be evaluated. Moreover, the source

code mode understands SML syntax and provides correct code indentations and keyword

coloring automatically.

2.3 ML/OS
ML/OS is a research operating system for the x86-personal computer (PC)

architecture from the Express project. It is based around, and implemented in SML. At

the heart of this operating system is SML/NJ. The system is being built by extending the

compiler and run-time system with services and features that make it into an operating

system. These features include:

* an ability to boot up and set up processor state

* memory management

* input/output (I/O) management

* persistent storage management

* networking

The goal behind ML/OS is to explore the interactions between advanced

programming languages, advanced compilers, and operating systems. It is not meant to

be a production or commercial-level system usable by anyone who is computer-literate.

It is supposed to prove or disprove different concepts being investigated by the Express

projects. Its development will give us an opportunity to evaluate all the claims for SML

proponents on a real system. It is our hope that it will provide a fun and productive

development environment, orders of magnitude better than what is available today.

There is a symbiotic relationship between the UNIX operating system and the C

programming language. C serves UNIX as the implementation language for the kernel,

as well as a language that provides the programming interface for UNIX services. UNIX

serves C by providing services that are tuned for the C runtime model, such as separate

address space, and text-based I/0. Along the same lines, the Express project is trying to

develop an operating system that will exist in a symbiotic relationship with SML.

Since an important goal of ML/OS is to be an advanced operating system of the

future, having a set of standard networking protocols is an important requirement.

Furthermore, ML/OS must provide a networking framework that is flexible enough to be

easily extended with new protocols that might become popular in the future. Moreover, it

must be a convenient environment for easily developing and researching new networking

protocols.

2.4 Flux OS Toolkit
The low-level operating system components, which are not the focus of the

Express project, are currently implemented using the Flux OS Toolkit (OS Kit),

developed at University of Utah [5]. OS Kit is a collection of libraries that are meant to

ease the job of operating system developers. Each library implements some traditional

operating system services, and exports clean interfaces for them.

A significant advantage that the OS Kit libraries have over traditional operating

system libraries is that they are self-contained. For example, the memory management

library makes very few assumptions about what kind of an environment it is being used

in. That way it can be used in almost any operating system, without requiring presence of

any other OS Kit libraries. This collection of self-contained libraries makes it very easy

for operating system writers to concentrate on those parts of the operating system that

they want to explore and improve.

ML/OS uses a number of libraries from OS Kit. It uses the kernel support library

to put the processor into the correct mode, set up various processor tables, such as the

Interrupt Descriptor Table.

ML/OS uses the memory management library to keep track of all the available

and used memory in the system. It also gives control over what type of memory gets

allocated. For example, some device drivers might require memory in the first 16

Megabytes of space. The memory management provides a facility for allocating this type

of memory. This library is particularly helpful, since the PC memory architecture is

complex and irregular.

ML/OS also uses the C library provided by the OS Kit. This library serves the

same purpose as the standard C library found in UNIX. Among others it includes I/O

functions, such as printf.

ML/OS also uses the device drivers library to interface to specific hardware

devices. Currently it only uses the Ethernet device drivers, but as ML/OS gets further

into its development it will use the drivers for permanent storage, graphics, sound and

other devices.

Another feature of OS Kit that is extremely helpful is serial-line remote

debugging capabilities. Since ML/OS is not an environment stable or complete enough

to host its own debugger, the only one usable debugging tool (besides print statements)

is a remote debugger. With remote debugging, gdb (or another compatible debugger) can

run on a machine with a stable environment. It communicates with ML/OS, running on

another machine, via a serial line. OS Kit provides this capability in its remote

debugging library.

2.5 FoxNet
Fortunately for the Express project, there already exists a TCP/IP stack written

almost entirely in SML. This stack is FoxNet from the Fox project at Carnegie Mellon

University [1] [10] [11]. FoxNet is a fully functional TCP/IP stack that works on DEC

Alphas running Digital UNIX. It works in addition to the standard TCP/IP stack that is a

part of Digital UNIX, and it interfaces to the networking hardware using the DEC packet

filter interface [6].

FoxNet is not just a traditional TCP/IP stack however. Besides the obvious

peculiarity of being implemented in SML - a high-level language not normally used for

implementing networking protocols - FoxNet promises a number of advantages.

FoxNet uses SML's module system to integrate separate protocol layers into a

monolithic stack. It defines a generic SML signature for all protocols. Any two or more

protocol structures that match the generic protocol signature can be composed to create a

protocol stack. The requirement that every layer must match the generic protocol

signature is checked by the compiler, and if satisfied, guarantees that the layers will be

able to communicate. Thus, FoxNet has the ability to mix and match various standard

protocols to create some standard networking stacks, such as TCP/IP, as well as some

specialized protocol stacks, such as TCP over Ethernet.

FoxNet's signature framework also results in an implementation that really

reflects the layered design model of a protocol stack. Usually each protocol layer in a

protocol stack is designed independently of any other layer. Once all the layers are

designed, the implementors do not keep this modular, layered structure. Instead, they

implement all the layers together, to form one monolithic protocol stack. This is usually

done for performance reasons, to minimize buffer copying between different layers in a

stack, as the packets travel up and down the stack. Such integrated implementation,

however, violates the basic principles of abstraction, modularity, and hierarchy in

software and systems engineering. FoxNet attempts to break this trend, by keeping the

layered model in the implementation. Every layer is implemented completely

independently of every other layer.

Being implemented in an advanced language, FoxNet should be easy to

understand and port to FreeBSD, our development environment, and ML/OS. In fact, the

creators of FoxNet conclude, "...most of the information needed to understand the

structure of our code can be obtained from a study of the signatures alone." [1]

FoxNet promises all these advantages without a significant sacrifice of network

performance as measured by throughput and latency [1]. All these things make FoxNet

an ideal candidate for networking in ML/OS.

2.6 Related Work
The project very closely related to this one is the Fox project at Carnegie Mellon

University [10]. Besides being the origin of FoxNet, the Fox project is also exploring the

feasibility and advantages of implementing large systems in SML. They have also

attempted to port SML/NJ on bare hardware. The same task was once undertakes at Bell

Labs without much success.

There are a number of existing projects that are attempting to write an operating

system in an advanced language. Numerous groups, including Javasoft at Sun

Microsystems are working on an operating system implemented fully in Java. The

Inferno operating system at Bell Labs is also a similar effort. It is being implemented in

the Limbo language. A group at EMC Corporation is using Eifel's interfaces to provide

robustness in some of the critical modules of their operating system. The Lisp Machine

had special-purpose hardware and operating system written entirely in Lisp.

Besides project Fox and FoxNet, there has been another attempt to implement

well-structured protocol stacks. This work was done by the x-kernel project [19]. In the

x-kernel project all the layers export the same set of functions with the same set of

arguments. As a result, arbitrary protocols can be combined to form a stack. Unlike

FoxNet, x-kernel does not have the advantage of being able to formally specify a protocol

signature. Upon combining protocols, the compiler cannot guarantee type safety of the

combination.

While there has certainly existed numerous efforts to evaluate various languages,

only Andrew Appel evaluated SML [20]. In his evaluation, however, he left the

programming environment available for SML programmers completely unexamined.

3 Implementation

In order to port FoxNet to ML/OS I chose to go through an intermediate step of

first porting it to FreeBSD-our development environment. Going to FreeBSD first

enabled me to learn those parts of the systems which I would be modifying and using,

while having all the development tools of a mature UNIX system. These parts are:

SML/NJ's interface to C functions and system functions, and FoxNet's interface to the

networking hardware. After the FreeBSD port was finished and FoxNet was running

under FreeBSD, I proceeded to learn OS Kit's interface to networking hardware. Then I

designed and wrote a layer of code that would on one side talk to the OS Kit's network

interface, and on the other side to FoxNet.

3.1 SML/NJ's interface to the system
An out-of-the-box SML/NJ provides access to the underlying operating system

through various SML libraries, such as the SML basis library. These libraries include a

lot of the popular system functions such as file input/output (I/O), sockets, system time,

and so on.

Although the libraries that are provided with a stock distribution of SML/NJ are

fairly complete, they are mostly the same for all operating systems on which SML/NJ

runs. As a result they include only that functionality which is present in most operating

systems. Unfortunately that leaves some thing out. To circumvent this limitation

SML/NJ provides a way for users to extend these libraries with arbitrary C functions.

The way that SML basic library functions are implemented internally is through C

code. For almost every SML system function available to the user, there is a C function

in the runtime that actually talks to the system. The way these functions are made

available to SML code works as follows. In the SML/NJ runtime source tree, there is a

directory that contains the sources for all the C functions callable from SML. A group of

related functions is put in a separate directory and is called an SML C library. A header

file inside each C library directory specifies the functions exported by the library. The

functions are specified using macros provided with SML/NJ that convert C function

signatures into SML function types. Macros are also provided to extract arguments

passed to the SML function. Inside the functions different macros can be used to convert

between C and SML values.

This mechanism is best illustrated with the following example. This piece of C

code implements a readbuf function that can be called from SML:

ml_valt ml PIO_readbuf (ml_state_t *msp, ml_val_t arg)
{

int fd = REC_SELINT(arg, 0);
char *start = REC_SELPTR(char, arg, 1) + REC_SELINT(arg, 3);
int nbytes = REC_SELINT(arg, 2);
int n;
n = read (fd, start, nbytes);
CHK_RETURN (msp, n)

The formal arguments specified in the C function signature are the same for all

the C functions callable from SML. They are: pointer to the structure that contains SML

runtime state, and the argument vector. Macros such as REC_SELINT are used to

extract the actual arguments from the argument vector. The CHKRETURN macro checks

that the result was not an error, and then converts it to SML integer value. This function

is exported in the header file by the following line:

CFUNC("readbuf', _ml_PIO_readbuf, "int * Word8Array.array * int -> int")

This line says that readbuf function will be available in SML, and its SML type

will be "int * Word8Array.array * int -> int." When it gets called the

ml_P_IO_readbuf C function will be called.

Once the runtime is compiled with the new functions, all the available C functions

can be invoked by calling a special SML function c_function. This function takes

the name of the library and the name of the C function in the library, and returns an SML

function that can now be called. Evaluating the following expression inside SML can use

the readbuf function:

val readbuf: int * Word8Array.arry * int -> int = c_function "posix-io" "readbuf';

The library name "posix-io" comes from the fact that the readbuf function is a part of the

posix-io library, contained in the posix-io directory. After this expression is evaluated

readbuf can be used just as any other SML function.

3.2 FoxNet's interface to the network hardware
As explained in section 2.3, FoxNet uses the SML module system to implement

protocol layers and combine them into a protocol stack. Every layer is implemented as a

functor. One of the functor's parameters is a structure that must match the generic

PROTOCOL signature and implements a lower layer of the stack. The result of the

functor application is a stack that now contains a new layer. For example, given a

structure that implements the Ethernet layer, an Arp functor can be applied to it. The

result of the application will be a structure that implements the Address Resolution

Protocol (ARP) layer, on top of the Ethernet layer [21]. Now this structure can be passed

as a parameter to the Ip functor. This application will produce a structure that

implements the Internet Protocol (IP) layer on top of the Arp/Ethernet stack [3]. Now the

Tcp functor can be applied to this structure. This application will create a structure that

implements the Transmission Control Protocol layer on top of the Ip/Arp/Ethernet stack

[2]. This structure will implement a more or less standard TCP/IP stack that can now be

used for reliable communications between any two hosts on the Internet.

To build such a stack, however, one needs the lowest layer protocol to start

building up the stack. In the above explanation I assumed that this layer-the Ethernet

layer-already existed in the environment. In reality this layer needed to be built and it

had to provide a way to send and receive raw packets from the Ethernet hardware. This

is the layer where all of the porting work took place. Only minor modifications had to be

made to layers above it.

In the original CMU FoxNet implementation for DEC Alphas running Digital

UNIX, FoxNet provides a protocol stack that co-exists with the standard TCP/IP stack

present in Digital UNIX. The way the stack gets to the raw Ethernet packets is through

the DEC packet filter interface [6]. The packet filter exports an interface that allows the

user to read all the incoming packets and send arbitrary packets to the network. It also

provides a filter language, which can be used to read only packet of certain types. For

example, the filter language can be used to filter out all packets except broadcast ARP

packets. FoxNet does not use the filter language, it simply uses the packet filter as a way

to receive all the incoming packets. Higher layers in FoxNet discard the packets that are

not meant for it, such as broadcast ARP packets querying another host.

FoxNet extends the stock SML/NJ runtime with a new C library, called "foxnet."

This library exports the following functions:

* open - this function opens the packet filter

* writev - this function writes a packet scattered around various buffers to the

network

* read - this blocking function reads the next packet from the network

* get_address - this function returns the hardware address of the Ethernet

card. This address is used in some of the TCP/IP layers, such as the ARP

layer.

In addition the poll function from the stock SML/NJ basis library is used to check if

new packets have arrived from the network. A device structure is implemented using

these functions. This structure matches the PROTOCOL signature, and so now it can be

passed into other functors to create protocol stacks as described above.

When FoxNet was ported to FreeBSD the foxnet library in the SML/NJ runtime

had be slightly changed. The reason for the change was that FreeBSD does not provide

the DEC packet filter interface. Instead FreeBSD provides Berkeley packet filter

interface [8] [9]. While there is nothing that is fundamentally different between the two

packet filters, there are some differences in the way you access them.

Other than differences in the names and arguments of functions that access the

packet filter, the most significant difference was in the read call. In the DEC packet

filter, the read call always returns just one packet without any extraneous data. The

SML code relies on this, and when it calls the packet filter read function from SML it

only expects one packet, without anything appended to it.

The FreeBSD packet filter, on the other hand, copies as many packets as there are

currently available in the kernel buffer into a user-supplied buffer. Moreover, a special

header is pre-pended to each packet. The header contains such information as the packet

length, the header length, and so on. FreeBSD also provides macros to parse the header

and locate the boundaries of each packet within the buffer. Thus, to make the Berkeley

packet filter work with FoxNet a layer of code was written to parse the buffer into

packets and put them into a special queue. Whenever FoxNet called read from SML

the queue was checked. If there was at least one packet there, it was returned to SML

code, otherwise a call to the packet filter was made to get more packets. One of these

packets was then returned to SML, while other ones were put on the queue.

3.3 OS Kit's interface to the network hardware
As mentioned in section 2.4, ML/OS uses OS Kit's driver library to interface to

the hardware devices. In particular I used the Ethernet drivers and the netio interface

to send and receive Ethernet packets. The interface provided for these purposes by the

OS Kit is fundamentally different from the packet filter.

OS Kit uses an object-oriented model for most of the interfaces. An OS Kit

netio object is an abstract packet consumer. It has only one method, push, which

accepts a packet. What the netio does with the packet depends on the specific netio

object. When an Ethernet device is open, a netio object exchange takes place. A

module that opens the devices passes in a netio object, which is then called by the

Ethernet driver whenever a packet arrives from the network. This object is effectively a

handler for the incoming packets. Since the packets arrive from the network

asynchronously, this handler will be called asynchronously. The open call also returns a

netio object that can now be used to send packets to the network.

Thus this interface is different from the packet filter interface in the way the

incoming packets are handled. With a packet filter, a synchronous read can be issued,

which will return the next packet. The actual packet queuing and buffering is done by the

operating system. With the OS Kit interface to the network card, the incoming packet

handler is called asynchronously, whenever a packet arrives from the network. In

addition, there is no way to simply poll the device to see if new packets have arrived.

3.4 Using OS Kit's Ethernet interface for FoxNet
Because the Ethernet interface provided by the OS Kit is different in nature to the

packet filter interface used by FoxNet, the SML/NJ runtime foxnet library had to be re-

written almost entirely to work with ML/OS. The new foxnet library had to talk to the

OS Kit's Ethernet interface on one side. To keep the SML FoxNet code the same, the

new foxnet library had to provide the same interface as before on the SML side.

To accomplish this task, a traditional producer-consumer model was used. The

foxnet library now incorporated a packet queue. The netio object that is passed to the

Ethernet interface during an open call does the following. When a packet arrives, and

this netio object gets called, it checks if the queue has not reached the maximum size.

If it hasn't, the packet is added to the queue. Otherwise the packet is simply dropped.

Whenever FoxNet calls read from within SML, if the queue is not empty, the oldest

packet is returned. If the queue is empty, the call will busy-wait for a packet to arrive.

Busy-waiting, however, never occurs, because FoxNet only calls read after calling

poll to make sure there is a packet. poll works by simply checking whether the

queue is non-empty.

The implementation of writev is fairly straightforward. First, all the buffers

passed into writev are copied into a single contiguous buffer. The resulting packet is

then send to the network by using the netio object returned by the Ethernet interface

during the open call. The implementation of get_address is also straightforward,

because OS Kit provides a call that does exactly the same thing-returns the hardware

address of the Ethernet card.

4 Evaluation

When large software systems, such as networking stacks, are designed and

implemented, one of the key design goals is usually to control the complexity of the

system. When this design goal is ignored, the resulting system is usually too complex to

keep under control even for the people who designed and built it. Such a system is

usually completely impenetrable for someone who was not involved with the design and

building of it. If he or she has to maintain this system, many months or even years are

needed to first learn and understand the system. Therefore, a system is usually

considered successful from the designer's point of view if it contains all the required

features and is easy to understand. Ease of understanding brings with it many other

desirable properties. These include robustness, straightforward implementation with

relatively few bugs, ease of debugging and maintenance, and extensibility.

Proponents of advanced programming languages, such as SML, argue that there

are many benefits in implementing large systems in these languages. One of the benefits

they always bring is that the inherent elegance of the language, coupled with careful

system design, will result in an elegant, easy-to-understand system. SML advocates,

specifically argue that SML's advanced module system based on signatures, structures,

and functors, together with static typing, type inference, and polymorphism can be used

to build a highly modular, and therefore easy-to-understand system.

What makes SML's module system especially useful is that the interfaces

between modules can be specified, and checked by the compiler. System implementors

do not have to rely on conventions that have to be observed at the interfaces. This

eliminates an important class of programming-in-the-large errors-errors that occur when

integrating modules together.

Another advantage claimed by SML's advocates is easy portability. Since

everything in the language has well-defined semantics, any program should have the

same meaning regardless of which platform it's being compiled and run on. Therefore

porting any system written in SML to another platform should theoretically be as simple

as re-compiling the system on that platform.

FoxNet is clearly a complex software system, because of the difficulty and the

scope of its goals, as explained above, and because of its sheer size, which is 40,000+

lines of SML code. Undertaking the porting FoxNet to ML/OS, has forced me to develop

a solid understanding of all the systems involved, both as the end-user and as a system

engineer. In the process of gaining that understanding I have made observations about

various aspects of all the systems. I have noted those aspects that made my job easier, as

well as those that made it harder.

4.1 SML as a systems programming language
As already mentioned before, SML is a very advanced language, with many

interesting features. Some of these features turned out to be very helpful, others not so

much. I also felt that some features were missing.

4.1.1 Positive aspects of SML

4.1.1.1 Garbage Collection
While certainly not a feature unique to SML, garbage collection is definitely the

most useful and welcome feature. Having worked with languages that require explicit

memory management, such as C and C++, I can truly appreciate the benefits of garbage

collection.

I can imagine what kind of a nightmare my job of porting FoxNet would have

been if I had to worry about allocating and freeing memory. Keeping a clear invariant for

which modules are responsible for freeing the memory passed to them is a task that is

difficult enough for the people building the system. It would have been impossible for

me, as someone who did not build the system, but was trying to port it.

It is unpleasant enough to chase down memory bugs in user-level programs. It

gets a lot worse, however, when you have to find memory bugs in the kernel. If a user-

level program references an invalid pointer, it gets a signal from the operating system and

usually dumps the memory state (core). This core can then be used to find the bug. In a

kernel, on the other hand, an invalid pointer reference does not dump core. It crashes the

kernel and reboots the machine.

4.1.1.2 Static typing and type checking
Most people think of type checking as simply a tool that eliminates a large class

of implementation errors. While that is certainly true, there is another benefit of types

that is often overlooked. Types impose a design paradigm, discipline, and structure onto

the programmer.

During the process of learning FoxNet I found the type information extremely

helpful. A lot of times by just knowing the type of a variable I was able to determine

what its purpose was. Also, the structure imposed by the type system is clearly seen in

FoxNet, and understanding the structure was very helpful in gaining insight into the

system. Moreover, type errors in my modification to FoxNet have been imperative for

pointing to sources of more serious errors.

These advantages of the type system are exactly those touted by the designers of

SML. It is clear that they have delivered on their promises here.

4.1.1.3 Module system
As has been mentioned a couple of times above, SML has a unique module

system. Structures can group name-value pairs together, signatures specify the types of

everything within a structure, and functors are structures parameterized over other

structures.

Because FoxNet uses the module system extensively, I had a lot of exposure to it

during the porting process. While there are some negative aspects of the module system,

which will be discussed below, for the most part it did what a module system is supposed

to do. I could understand a lot about a particular structure by studying the signature and

the code. On very few occasions did I have to look at the implementation of one module

while attempting to understand another. Thus, the module systems kept the separation

between modules reasonably well.

When I had to change the structure that implements the Ethernet device, the

compiler complained until my implementation matched the DEVICE signature. Once

that was done, very few bugs were left to work out. The signature framework ensured

that structures indeed implemented what they were supposed to. Here, again, SML

designers have clearly delivered on their promises.

4.1.1.4 Call-with-current-continuation
SML/NJ adds a few things to the SML language. One of the more peculiar things

it adds is a call-with-current-continuation (call/cc) function. This function captures the

current control state of the execution, and packages it up as a first-class value. This value

can be used later to resume the execution at the point where call/cc was invoked. Further

details on this powerful and sometimes confusing operation can be found in programming

language books [23].

FoxNet uses call/cc to implements a threading package. This package is

completely self-contained, which makes it robust and independent of the operating

system. I had to change only a small part of it in order to get it running in ML/OS.

4.1.2 Negative aspects of SML
While the positive aspects of SML were extremely helpful to me during the

porting process, SML is far from perfect. Some things could be improved on and some

things could be added.

4.1.2.1 Module system
Since my preferred style of programming is an object-oriented approach such as

that of CLU or Java, the SML module system took some getting used to. It is more

complex than the object system of CLU. A more powerful system can be easily misused

and even abused. A powerful tool can be a dangerous weapon in the hands of unskilled

people. There is a reason that industrial-strength power sanders are not available to the

general public. In the hands of an average person such a power sander can do more harm

than good. I believe in the design philosophy advocated by MIT's software engineering

classes, which states that things should be kept as simple as possible and there should be

very little opportunity for potential misuse.

The thing that I like the most about the module system of a language such as CLU

is the simplicity of the interface it dictates. In CLU, a module is a CLU cluster, and it has

a CLU type. This type simply specifies all the function that the cluster provides- the

cluster's methods.

An SML structure, on the other hand, does not have a single type that specifies it.

The specification of a structure is an SML signature. An SML signature, however, can be

much more complex than a CLU type. In addition to functions, a signature can contain

specifications for data members, other SML structures, and types. This generality allows

the programmer to make a signature amazingly complex.

SML's structure should theoretically provide a way to group related items

together. It does not, however, restrict the programmer from putting unrelated items

together. It is not even clear if enforcing the item-relatedness in a structure is at all

possible at the language level. If the structure construct is used as intended, the resulting

system is modular and modules are easy to understand. If the construct is misused,

however, the resulting system can be a bunch of huge modules which by themselves do

not make a whole lot of sense.

Murphy's law states that if there is a way to misuse some feature of a system,

sooner or later somebody will misuse it. SML's module system is a feature that can be

easily misused, with a lot of potential for harm. I believe that if one has to choose

between power and safety, safety is most often the right choice.

4.1.2.2 Lack of access to low-level programming in SML
FoxNet sends and receives raw Ethernet packets using a C library at the lowest

level. That library is where most of the porting work actually happened. The reason this

is done in C code is quite simple: there is no way to do that in SML.

Whenever a part of the system must operate on machine level, SML programmer

is forced to leave SML and drop into C. Obviously none of the benefits of SML are

relevant when you are programming in C. SML advocates commend to the public the

portability of SML. Recall that most of the porting work was done in C, changing the

foxnet library for SML/NJ runtime. Very little was changed in SML. If there were no

need to drop into C, SML would be 100% portable. I would have to do very little work

to port FoxNet first to FreeBSD, and then to ML/OS. The need to drop into C sometimes

makes SML code not 100% portable.

I think there are some reasonable ways to improve the situation. One thing that

SML creators are working on already is the ability to manipulate C data structures from

within SML. Having this ability could make it possible to implement such low-level

things as device drivers almost entirely in SML. Little pieces of C code would be

necessary to actually map data structures to physical device registers for example.

Although that could be done in SML as well by employing constructs that would put

certain data structures into specified memory locations.

Modula 3 has a solution for this problem [15]. Modula 3's modules can be

declared as safe or unsafe. Those declared safe cannot do anything that violates the

semantics of the language, such as converting an integer into a pointer. With modules

that are declared unsafe, however, all bets are off. Unsafe modules can exploit

"loophole" constructs in the language that are designed to enable low-level manipulation

of the machine. Device driver code can be written by putting it into an unsafe module.

The fact that Modula 3 has support for low-level programming while SML does

not can be explained by the history of both languages. Designers of Modula 3 came from

a systems background. Therefore they carefully designed into the language features to

enable low-level systems programming. SML comes from the theorem-proving

community-which may explain its lack of these features.

4.2 SMUNJ as a programming environment
SML as a programming language does not exist in a vacuum. There is no way to

work with pure SML. A real SML implementation and programming environment must

be used. As mentioned above, SML/NJ under FreeBSD comprises our SML

programming environment. While some tools in the environment were helpful, as a

whole the environment is inadequate. Some essential tools are missing, and others do not

scale to projects the size of FoxNet.

4.2.1 Positive aspects of the programming environment

4.2.1.1 SML mode for Emacs
Most of my interactions with SML code were from within Emacs. The SML

mode for Emacs provides a number of simple but surprisingly helpful features. In the

text-editing mode Emacs presents different parts of the code in different color. For

example, SML keywords are yellow, comments are green, strings are blue, and types are

red. This colorization serves as the first line of defense against syntax errors. For

example, if a keyword is misspelled, it will not be interpreted as such by Emacs, and

presented in a color other than yellow. Since I am used to seeing all the keyword in

yellow, this would immediately alert me, and I would correct the mistake before even

attempting to compile the code.

Features of the interactive mode were also extremely helpful. If an SMLINJ

REPL is run from within a UNIX shell, there is no way to do things as simple as

repeating your previous command. So if you have typed in a long expression, but made a

syntax error, you will have to type the whole expression all over again. Emacs on the

other hand stores a buffer of all the previous commands entered into the REPL. Any one

of them can be recalled, edited, and re-evaluated. In addition, expressions can be typed

into a text-editing buffer, where colorization is applied. Then an Emacs command can be

invoked to send the expression to the REPL buffer for evaluation.

4.2.1.2 Compilation Manager
The compilation manager (CM) that comes standard with SML/NJ was extremely

helpful during the porting effort. CM's ability to recompile only those parts of the

system that changed saved me many hours.

Before I started using CM, all of FoxNet had to be recompiled after the smallest

code change. This recompilation took around 40 minutes, which was completely

unacceptable. When I started to use CM, an average re-compilation took about 5

minutes.

4.2.2 Negative aspects of the programming environment
While Emacs and CM are helpful, the general state of the SML/NJ programming

environment leaves a lot to be desired. It is missing some fundamental tools that have

existed in other environment for many years. After working with SML/NJ for over a

year, I have developed a firm belief that it can never gain widespread acceptance unless

the environment is significantly improved. There is hope for SML as a language,

however. Recently a commercial implementation of SML, Harlequin MLWorks, has

been released. It is reported that this package provides a full and productive,

commercial-level development environment.

4.2.2.1 Lack of a debugger
Anybody who has been involved in building, debugging, or maintaining a large

system knows the benefits of a good debugger. Without it the only way to see where

things go wrong is to insert output statements everywhere in the program. Obviously that

is far from the best way of doing things. It has been my experience that debugging

FoxNet without a debugger was very similar to driving a car with no brakes or doors,

with a windshield painted black, during rush-hour traffic in Boston. Once a bug occurs,

there is no way to stop the system and examine its state. There is no way to see how a

variable gets updated while the code is running, other than to insert print statements

whenever the variable is mentioned. FoxNet is a sophisticated system with concurrency;

many things are happening at the same time. It is hard to reason about it without being

able to see what it is actually doing at run-time.

It is true that the type system of SML is great for catching errors. It does not,

however, catch all of them. After the program compiles successfully, there is no support

for debugging. In fact, during the porting, I found it much easier to debug those parts of

the system written in C, because I could use gdb. This is a very unfortunate state of

things, especially since some earlier versions of SML/NJ included a very sophisticated

debugger [22].

4.2.2.2 Where's the source?
It is a common situation to be reading through code and encounter a call to a

function that does not appear in the file being examined. Most programming

environment provide an easy way to find the definition of the function. In some

environments all it takes is a double-click of a mouse on the function name.

With SML/NJ there is no easy way to do that. The only tool available for that is

an ugly combination of find and grep UNIX commands that searches through all the

source files for the name of the function. This method of searching has a number of

disadvantages. First, it'll not only turn up the definition of the function, it will also turn

up all the calls to the function. For a popular function, that can produce a list of matches

almost as big as the entire source. Obviously that list would not be very useful. Another

disadvantage is that all files have to be searched. When these files reside on a remote file

system that has to be accessed over the network, this search can take a very long time.

Thus, a tool that would index all the function definitions and provide an easy way to

search for any one of them would be extremely helpful. A simple tool such as etags

would not do the job because the module system complicates things further, as will be

explained later.

4.2.2.3 Lack of a call-graph tool
Sometimes one wants to do just the opposite of the scenario described above. If a

function definition is being examined and the meaning is not clear, sometimes it helps to

see how the function is being used. Moreover, in a higher-order language sometimes it is

necessary to see all the invocations of one function, to find all the sources of a different

one. Suppose function bar is a higher-order function that takes some arguments, and

returns a new function foo. To see all the definitions of foo, I need to find all the

invocations of bar.

Most programming environments provide a way to find all instances where a

particular function is being called. In SML/NJ, however, you are stuck with grep and

find, with the same problems as above.

4.2.2.4 CM's visualization tool does not scale

To be fair to SML/NJ, CM does come with a tool that can provide a graph

illustrating all the dependencies in a project. They say that a picture is worth a thousand

words, and I believe that definitely applies to the module-dependency diagram (MDD)

which CM produced for FoxNet (figure 1).

It is possible that for some simple projects CM produces MDDs that convey

useful information. It is obvious, however, that this tool does not scale to a project the

size of FoxNet.

One way I see to improve this tool is to provide control over the level of detail.

For example, one could start by looking at the major groups of files that represent

somewhat self-contained modules. A single node can represent such a group of files.

After the highest-level structure is clear, one can then zoom into the details of any

particular group of files.

4.3 Interactions between unique features of SML and
the programming environment

The shortcomings of the SML/NJ development environment described above

would apply to almost any language. There are some features of SML, however, that are

unique. To be fully useful, these features require some tools that, if present, would also

be unique to SML. Without these tools, I found that these SML features create a lot of

problems.

4.3.1 Type inference

One of the most spoken-about features of SML is type inference. Opponents of

type systems often argue that type information present in strongly typed languages such

as CLU and Java makes programs too wordy for understanding. Type inference seems to

offer a perfect answer for these people-you get all the benefits of strong typing, but your

program is not full of type specifications.

Personally, I have never found type information in programs to be an unnecessary

annoyance. In fact, I have always found types absolutely essential for my understanding

of code. I think that code without types is too terse for understanding. Unfortunately,

., ~~L -. ,[. •

-7 2A .,

-IL IC I _P
S -, , , ,.4,, -.'- . --:.., .,. ." ,? ., -,,,, .''

, , , .,

..-_ .,-. .- .:--: - i- . = C ' - :,
-- .
1

-
-~C~~- T~c~c ~ .aI,

Figure 1: FoxNet Module-Dependency Diagram. Nodes represent files, labels show file names, and edges represent dependencies.

32

poorly documented SML code has very little type information in it. Moreover, unless the

code in question is a short, self-contained expression, there is no way to make SML/NJ

evaluate it and report the types that it inferred.

I have found this inability to get the types of expressions extremely hindering

during the porting process. There has been a number of times when I would stare at an

expression for a long time without realizing what it means simply because I did not know

its type.

This problem should be fairly easy to fix. The compiler infers the types of all the

variables in all of the code. It can then dump this information in some indexed, textual

form. A tool, such as Emacs can then parse this information, so that when asked, it could

provide the inferred type of any variable. Why this functionality was not put into

SML/NJ is beyond me.

4.3.2 Module system
Another unique feature of SML that requires a special tool to be truly useful is the

module system. I have found two separate aspects of the module system that would

benefit considerably from special tools.

When specifying signatures in SML, it is possible to include other signatures in

the specification. For example, this signature specification actually comes from FoxNet:

Signature ETH_NUMBER =
sig
include KEY
val new: Word48.word -> T
val convert: T -> Word48.word

end

Besides specifying new and convert it also includes the KEY signature. To

fully understand what the ETH_NUMBER signature means, I have to understand the

KEY signature. To understand the KEY signature, I have to find its definition. SML/NJ

does not provide an easy way of doing that. The KEY signature might include some

other signature, and so on. To find the definition of these signatures, once again I am

stuck with find and grep, and all the disadvantages explained above.

A similar problem exists with functor definitions. Functors are structures

parameterized over other structures. A functor application results in a structure with a

specific signature. This signature can be specified by the programmer and checked by

the compiler. It can also be left unspecified and the compiler will deduce a signature of

the structure that the functor implements. In this case the only way to learn the meaning

of the functor is to read the code.

Even when the signature of the functor is specified, it does not contain all of the

semantic information. A signature gives me 3 kinds of semantics:

* Whatever is expressed in the types.

* Whatever I can informally infer from the names of the exported identifiers.

* Whatever the programmer might have put in the comments-if I am lucky.

All this information is frequently not enough to understand the functor fully,

especially if the signatures are poorly documented. The only way to learn it is to see the

code that implements it. In the current programming environment there is no tool to do

that besides find and grep.

4.4 FoxNet as a general framework for network stacks
As already explained above the designers of FoxNet did not simply set out to

build a regular TCP/IP stack. Among other things, they promised that FoxNet is a

framework that is elegant and easy to understand, where most of the understanding can

be gained by studying the signatures alone. This claim has never been verified since I am

the first person to use FoxNet outside of the Fox project at CMU.

4.4.1 Positive aspects of FoxNet
During the process of porting FoxNet to ML/OS I had the chance to evaluate the

validity of the FoxNet developers' claims. Having some familiarity with standard UNIX

protocol stacks, I did find that in terms of modularity of design, FoxNet is superior.

The modularity promised by FoxNet developers is very well manifested. Having

to change the device layer required very little understanding of any other parts of the

system. Moreover, once the device layer was working, all the other layers began to work,

requiring only very small modifications.

4.4.2 Negative aspects of FoxNet
Although an improvement over standard network stacks, FoxNet is far from being

perfect. During the porting process I visited CMU to work with some of the people

responsible for FoxNet. At one point during my visit I got a very insightful answer to a

very difficult question that from Herb Derby. I was very impressed because Herb was

not involved with FoxNet from day one. I asked how he was able to gain such a deep

understanding of the system. He said, "I've been staring at this code for 2 years now."

I think there is something wrong with FoxNet if it requires 2 years for a very

competent developer to understand it. A full TCP/IP stack can be implemented in C in a

couple of months. Something is wrong if a TCP/IP stack written in an advanced

language require 2 years of learning to be understood.

4.4.2.1 The FoxNet papers are outdated
The way FoxNet is described in the original publication, it seems very clean-cut

and simple [1]. Their definition of the generic PROTOCOL signature is fairly

straightforward. Unfortunately FoxNet has changed significantly since that time. The

PROTOCOL signature looks almost nothing like it did in the original FoxNet paper.

This is the signature as it appears in the FoxNet paper:

signature PROTOCOL =
sig

eqtype address
eqtype address_pattern
eqtype connection
type incoming_message
type outgoing_message

val initialize: unit -> int
val finalize: unit -> int

val active_open: address * (incoming_message -> unit) -> connection
val passive_open: address_pattern * (incoming_message -> unit)

-> (connection * address)
val close: connection -> unit
val abort: connection -> unit
val send: connection -> outgoing_message -> unit

type control

type info
val control: control -> unit
val query: unit -> info

exception Initialization_Failed of string
exception Protocol_Not_Initialized of string
exception Invalid_Connection of connection * address option * string
exception Bad_Address of address * string
exception Open_Failed of address * string
exception Packet_size of int

end

This signature is elegant and fairly straightforward. A connection is opened

actively by calling active_open with the address of the host and the handler for

incoming packets. Connections from addresses that match a certain pattern can be

accepted by calling passiveopen with the address pattern and a handler for

incoming messages. Packets are sent using send and connection is closed using close.

This is the PROTOCOL signature as it actually appears in the code:
signature PROTOCOL =
sig

structure Setup: KEY
structure Address: KEY
structure Pattern: KEY
structure Connection_Key: KEY
structure Incoming: EXTERNAL
structure Outgoing: EXTERNAL
structure Status: PRINTABLE
structure Count: COUNT
structure X: PROTOCOL_EXCEPTIONS

exception Already_Open of Connection_Key.T
type connection_extension
type listen_extension
type session_extension

datatype connection = C of { send: Outgoing.T -> unit,
abort: unit -> unit,
extension: connection_extension

datatype listen = L of {stop: unit -> unit, extension: listen_extension}
datatype handler = H of Connection_Key.T

-> {connection_handler: connection -> unit,
data_handler: connection * Incoming.T -> unit,

status_handler: connection * Status.T -> unit }

datatype session = S of {connect: Address.T * handler -> unit,
listen: Pattern.T * handler * Count.T -> listen,
extension: session_extension}

val session: Setup.T * (session -> 'a) -> 'a

end

Obviously this signatures has very little in common with the original one. There

are three data types, connection, handler, and session, which are somehow used

to start a connection. One cannot initiate a network connection by just calling

active_open anymore.

4.4.2.2 Lack of documentation
It is my firm belief that all software should be fully documented. In all the

Software Engineering classes I have taken at MIT I was taught that code should read like

a document. Apparently FoxNet developers do not share this point of view, as there are

very few comments in the code. Even in places where comments exist, they are hard to

understand and not very useful. This lack of useful comments, in addition to all the

problems with the SML/NJ development environment, made learning FoxNet a very

long, painful, and humbling process.

4.4.2.3 Signatures do not substitute for documentation
One of the claims made by FoxNet developers is that most of their code can be

understood by studying the signatures alone. There is certainly some truth in that

statement, but it's not entirely accurate. First, even reading the signatures is not as easy

as it sounds, for reasons outlined in section 4.3.2. Putting that aside and assuming that

after some time all the definitions of relevant signatures are found and read, very limited

understanding is achieved.

What FoxNet people are trying to do here is substitute signatures for

documentation. Unfortunately that does not really work well. Recall that signatures only

contain type information. That makes reliance on signatures alone equivalent to reliance

on the type information to gain most of the understanding about the system. Types

simply do not contain this much information. In my opinion type information is

absolutely necessary, but by no mean sufficient to gain full understanding of the system.

4.5 Flux OS Toolkit
As explained before ML/OS uses OS Kit extensively. It was absolutely essential

for implementing the device layer of FoxNet. My experience with OS Kit has been only

a pleasant one. (Although it did take a long time to get the Flux project to send us a

release). All the interfaces were clearly documented and well designed. The entire OS

Kit compiled out of the box, with no modification necessary. The network driver

interfaced worked exactly as explained in the documentation, with no glitches or

surprises.

OS Kit's clean interfaces and flawless functionality and ease of use are somewhat

of a surprise. OS Kit is implemented in C and assembly. Neither one of these languages

provides tools for building modular systems with narrow and clean interfaces. The

people behind OS Kit achieve this modularity by carefully designing conventions for

interfaces and carefully designing the system as a whole. More importantly, though, OS

Kit comes with documentation which clearly explains all the interfaces, and design

rationale behind them. Moreover, the code itself is commented thoroughly, and provides

plenty of examples of how to use various components.

The ease with which OS Kit was integrated with ML/OS and the amount of effort

it took to port FoxNet goes to illustrate an important idea. Language tools for

modularity, such as strong typing, and SML's module system, are neither necessary, nor

sufficient for building robust, elegant systems. Careful design, conventions, and

thorough documentation can compensate for the deficiencies of the language. The

opposite is also true.

5 Conclusion

During my work of adapting FoxNet to ML/OS I worked with five complicated

systems. I had to understand most of SML, parts of SML/NJ internals, most of FoxNet,

most of ML/OS, and parts of Flux OS Toolkit. To make things more complicated, all

these were moving targets. I started working with SML/NJ version 109.16 and the

finished with version 109.30. FoxNet tracked the SML/NJ versions in small jumps over

every few versions. OS Kit also went through at least three different versions.

The process of understanding FoxNet was the hardest, but it gave me an

opportunity to evaluate those things about all the systems involved which made it hard, as

well as those things which made it easy. I have also thought about features that, if

present, would have made the process easier.

SML as a language could benefit from a simpler module system. Having an

ability to write low-level code in SML would also improve it. It would eliminate the

need to drop into C code, and make SML more portable.

SML/NJ as a development environment could benefit from a number of tools:

* A source-level debugger

* A tool to find a specific function definition in a large body of code

* A tool to find all instances of a function application in a large body of code

* An improved visualization tool for module-dependency diagrams

* A tool that will report the inferred type of a variable

* A tool to find a specific signature definition in a large body of code

* A tool to find all instances of a functor application in a large body of code

Adding these tools to SML/NJ would make it into a much more pleasant and productive

development environment.

FoxNet has grown from an elegant system described by its authors into a huge

and complicated behemoth. It could benefit from thorough documentation, which would

make it easier to understand and use.

The most important thing that I have learned during this work is that the

implementation language is not the silver bullet. The modularity and abstraction tools

present in SML, such as strong typing, higher-order functions, and advanced module

system only go so far to build an elegant, modular system. It is true that SML's module

system can enforce modularity by checking the interfaces. That does not, however, help

to modularize systems where the module interfaces are not sufficiently narrow. Neither

does it guarantee full understanding of the interfaces if no documentation is present. If

the system is well designed and well built, however, the module system can go a long

way to help the designers and implementors stick to their design. It can enforce the

interfaces and raise warning signs when they are not implemented.

5.1 Future directions
Having a working TCP/IP stack in ML/OS creates a number of opportunities for

further work. It is an ideal application for another idea under development in the Express

project. This idea is addition of data-flow analysis to the SML/NJ compiler to enable it

to optimize across computational transducers [7].

A computation transducer is a structure similar to a traditional electrical

transducer. It simply receives some input from whatever structures happen to be

upstream. It then processes the input in some way, and sends the results downstream. A

good example of computational transducers at work is a simple UNIX text processing

command line such as: gunzip I spell I sort I uniq I 1pr. This

command line first uses gunzip to decompress text from a file, with a gunzip being

the first transducer whose input comes from a file, and whose output goes to the spell

transducer. The spell program checks the spelling of the text and sends the output to

the sort transducer, which sorts the uncompressed and spell-checked text. Next, the

uniq transducer removes duplicate lines from the text and finally sends it to the lpr

transducer which converts the text to a format understood by the printer, and sends it to

the printer.

A network protocol stack, such as TCP/IP can also be viewed as a transducer

pipeline. In this pipeline, every layer is a transducer. This is easy to see since every

layer gets a packet of input from the layer upstream, processes the packet according to the

protocol, and then sends the packet downstream.

Unfortunately, FoxNet's current implementation structure does not easily follow

this transducer pipeline model. To make FoxNet follow this model more closely it must

be re-implemented in such a way that every layer is a functional co-routine. Then, if

data-flow analysis optimizations are added to the SML/NJ compiler, it is likely that the

compiler will be able to optimize across these co-routines, resulting in a tightly integrated

protocol stack. This will theoretically provide the best of both worlds: every layer in

FoxNet will be implemented separately, as designed. Yet, the resulting stack will be

tightly integrated and will not suffer from the performance loses which are present in the

current FoxNet implementation.

Having a TCP/IP stack also creates an opportunity for experimenting with various

operating system services that use networks. These include web servers, network file

servers, and so on.

6 References

[1]. Edoardo Biagioni, Robert Harper, Peter Lee, Brian G. Milnes. Signature for a
Network Protocol Stack: A Systems Application of Standard ML. In 1994 ACM
conference on Lisp and Functional Programming, Orlando, FGV, June 27-29 1994.

[2] Postel, J. (ed.), Transmition Control Protocol - DARPA Internet Program Protocol
Specification, RFC 793, USC/Information Sciences Institute, September 1981.

[3] Postel, J. (ed.), Internet Protocol - DARPA Internet Program Protocol Specification,
RFC 791, USC/Information Sciences Institute, September 1981.

[4] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. The
MIT Press, 1990.

[5] Bryan Ford, Keven Van Maren, Jay Lepreau, Stephen Clawson, Bart Robinson, and
Jeff Turner. The Flux OS Toolkit: Reusable Components for OS Implementation.
Department of Computer Science, University of Utah, 1997

[6] Packetfilter - Ethernet packet filter. DEC/OSF1 manual page.

[7] Olin Shivers. Control-Flow Analysis of Higher-Order Languages. Ph.D. dissertation,
Carnegie Mellon University, May 1991.

[8] Steven McCanne and Van Jacobson. The BSD Packet Filter: A New Architecture for
User-level Packet Capture. USENIX conference, San Diego, CA, January 25-29, 1993.

[9] BPF - Berkeley Packet Filter. FreeBSD manual page.

[10]. Eric Cooper, Robert Harper, and Peter Lee. The Fox Project: Advanced
Development of Systems Software. School of Computer Science, Carnegie Mellon
University, 1991.

[11] Edoardo S. Biagioni. A Structured TCP in Standard ML. School of Computer
Science, Carnegie Mellon University, July 1994.

[12] L.C. Paulson. MLfor the Working Programmer. Cambridge University Press,
1991.

[13] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of
Standard ML. The MIT Press, 1997.

[14] Barbara Liskov, Alan Snyder, Russell R. Atkinson, Craig Schaffert: Abstraction
Mechanisms in CLU. In ACM Conference on Language Design for Reliable
Software, March 28-30, 1977.

[15] Samuel P. Harbison. Modula-3. Prentice Hall 1992.

[16] Richard Rashid, Daniel Julin, Douglas Orr, Richard Sanzi, Robert Baron, Alessandro
Forin, David Golub, Michael Jones. Mach: A System Software kernel. In the 34th
Computer Society International Conference, February 1989.

[17] Richard Rashid, Robert Baron, Alessandro Forin, David Golub, Michael Jones,
Daniel Julin, Douglas Orr, Richard Sanzi. Mach: A Foundation for Open Systems. In the
Second Workshop on Workstation Operating Systems, September 1989.

[18] Matthias Blume. A Compilation Manager for SML/NJ. Department of Computer
Science, Princeton University, February, 1996.

[19] Sean W. O'Malley and Larry L. Peterson. A dynamic network architecture. ACM
Transactions on Computer Systems, 10(2), May 1992.

[20] Andrew W. Appel. A Critique of Standard ML. Princeton University, November,
1992.

[21] David C. Plummer. An Ethernet Address Resolution Protocol. RFC 826, November,
1982.

[22] Andrew Tolmach, Andrew Appel. A Debugger for Standard ML. Proceedings of
the 1990 ACM conference on Lisp and Functional Programming, Nice France, June
1990.

[23] George Springer and Daniel P Friedman. Scheme and the Art of Programming.
McGraw-Hill Book company, December 1990.

