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ABSTRACT

The S&P 500 represents a diverse pool of securities in addition to Large Caps. A range of

audiences are interested in the S&P 500 forecasts including investors, speculators, economists,

government and researchers. The primary objective is to attempt to provide an accurate 3 month

and 12 month forecast using the recent credit crisis data, specifically during the time range of

10/2008 - 09/2009. Several methods were used for prediction fit including: Linear Regression,

Time Series Models: Autoregressive Integrated Moving Averages (ARIMA), Double

Exponential Smoothing, Neural Networks, GARCH, and Bootstrapping Simulations.

The criteria to evaluate forecasts were the following metrics for the evaluation range: Root Mean

Square Error (RMSE), Absolute Error (MAE), Akaike information criterion (AIC) and Schwartz

Bayesian criterion (SBC). But most importantly, the primary forecasting measure includes MAE

and Mean Absolute Percentage Error (MAPE), which uses the forecasted value and the actual

S&P 500 level as input parameters.

S&P 500 empirical results indicate that the Hybrid Linear Regression outperformed all other

models for 3 month forecasts with the explanatory variables: GDP, credit default rates, and VIX

volatility conditioned on credit crisis data ranges, but performed poorly during speculation

periods such as the Tech Bubble. The Average of Averages Bootstrapping Simulation had the

most consistent historical forecasts forl2 month levels, and by using log returns from the Great

Depression, Tech Bubble, and Oil Crisis the simulation indicates an expected value -2%, valid

up to 12 months. ARIMA and Double Exponential smoothing models underperformed in



comparison. ARIMA model does not adjust well in the "beginning" of a downward/upward

pattern, and should be used when a clear trend is shown. However, the Double Exponential

Smoothing is a good model if a steep incline/decline is expected. ARMAX + ARCH/EGARCH

performed below average and is best used for volatility forecasts instead of mean returns. Lastly,

Neural Network residual models indicate mixed results, but on average outperformed traditional

time series models (ARIMA/Double Exponential Smoothing).

Additional research includes forecasting the S&P 500 with other nontraditional time series

methods such as VARFIMA (vector autoregressive fractionally integrated moving averages) and

ARFIMA models. Other Neural Network techniques include Higher Order Neural Networks

(HONN), Psi Sigma network (PSN), and a Recurrent Neural Network (RNN) for additional

forecasting comparisons.

Thesis Advisor:
Roy E. Welsch
Professor of Statistics and Management Science and Engineering Systems
MIT Sloan School of Management
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1 INTRODUCTION AND MOTIVATION

"All models are wrong, some are useful. "

George E. P. Box, British Statistician

1.1 PROBLEM STATEMENT

This thesis explores different methodologies used to forecast the S&P 500 Index during

recessionary periods, potential factors and indicators that indicate possible recessions, and bull

periods. Forecasting the S&P 500 Index has been of interest since its inception to several

stakeholders within and outside of the financial domain. From an investor's perspective the

Standard & Poor's 500 Index is one of the most influential indices in the world, several passive

investment funds hold billions of dollars that track this index. From an economist's view, the

index is a broad indicator of the U.S. economy, in some instances a global economic indicator as

well. Forecasting the S&P 500 level is an important analysis tool for investors. Forecasting the

index allows traders and portfolio managers to hedge their portfolio for the future or to consider

longing or shorting U.S. Equity. For economists the S&P 500 Index forecasts help determine the

next step for fiscal or monetary policy. For example, if index forecasts indicate a pessimistic 12

month level or return, then cutting interest rates or lowering banking reserves is a consideration.

Finally, forecasting the S&P 500 is of interest to quantitative researchers and econometricians to

understand the factors that drive the value of the future markets. Specifically, the objective of

this thesis is to attempt forecasting the S&P 500 level in a 3 month and 12 month period using

Linear Regression, Exponential Smoothing, ARIMA, GARCH, Neural Network, and

Bootstrapping Simulation models. Long range data forecasting (blue) will be defined as

prediction fit with data ranges of 10 years or greater with a forecast of 12 months. Short range

data forecasting (red) is with a prediction fit range of 7 years or less, and forecasting of 1 to 3

months ahead. Moreover, the context of these forecasts will be to determine a 3 and 12 month

forecast during the volatile months of the credit crisis (10/2008 to 09/2009). In addition to a

specific period forecast, this thesis will advocate and recommend the best performing forecasting

time series and statistical methodologies.



1.2 S&P 500 OVERVIEW

On March 4, 1957 the S&P 500 came into existence. Standard & Poor's issued many similar

indices prior to the S&P 500 as early as 1926, but few indices have claimed the tracking success

or the fame of the index with the exception of the Dow Jones which is an older index established

in 1896. The S&P 500 Index holds constituents that are primarily U.S. based, in fact in the

original S&P 500 this accounted for 90% of the index'. Today it has shrunk to 75%, which

indicates that the index is moving towards an international list. Surprisingly, there are no

restrictions against foreign stocks to include in the index. Therefore, a growing exposure to have

more foreign based securities in the index is to be seen in the future. The common myth is that

the S&P 500 represents the 500 largest companies in the United States. In reality, the S&P 500

is chosen by a select committee (think of a private club) that uses the criteria of "market size,

liquidity, and group representation". The majority of the S&P 500 constituents are Large Cap,

however the minimum capitalization needed to get into the index is $3 billion. Moreover, there

are certainly at least 20 companies included in the S&P 500 that are small and mid capitalization

in nature. The constituents are chosen from these major industry categories: Energy, Materials,

Industrials, Consumer Discretionary, Consumer Staples, Health Care, Financials, Information

Technology, Telecommunications Services, and Utilities". In addition, there are over 100

subgroups within these industries that determine the criteria.



2 ARIMA, EXPONENTIAL SMOOTHING, AND LINEAR TIME SERIES

FORECASTING METHODOLOGY

Time series forecasting is an important area which uses past observations to describe an

underlying relationship. The most frequently used model during the research is the

Autoregressive Integrated Moving Average (ARIMA) model. The following equation denotes a

linear relationship of past observation values (autoregressive terms) and random errors (moving

averages). p is the number of autoregressive terms [AR(p)] and q as the number of moving

average terms [MA(q)]. p and q are referred as integers and are considered orders of the model.

0 is the parameter estimation of the autoregressive terms and 0 is the estimation for the random

errors.

2.1 The Autoregressive Integrated Moving Average (ARIMA) Model"'

Yt 8O0 + 2lYt-I + 02)'t-2 +" + kpYt-p

+ Et - 01t-1 - 0 2 ,t- 2 -.. - Oqt-q,

The popular Box Jenkins methodologyv is a three step stage to assist in accurate model building:

Identification - First step is to identify a time series to be stationary. Inducing

transformations and differencing for the time series achieve stationarity. v Second step is

to determine the number of AR (p) and MA (q) by matching the theoretical

autocorrelation patterns with the empirical ones. The following graphical example of the

theoretical and empirical matching for an ARIMA (2, 1, 3) Model (2 AR, 1 differencing,

3 Moving Average) for the S&P 500 monthly data range of 1990 to 2008.
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* Estimation - Estimation of parameters (0 , 0) using nonlinear optimization techniques.

Models are compared where the smallest values of Akaike information criterion (AIC)

and Schwartz Bayesian criterion (SBC) and parsimonious models are preferred.

* Diagnostic Checking - Examining for goodness of fit. Standard practice is to plot

residuals and check for outliers as well as using the Q-statistic and Box-Pierce statistic to

test for autocorrelations of the residuals.

For empirical results purposes ARIMA modeling will be used for 3 and 12 month forecasts.

2.2 Double (Brown) Exponential Smoothing Modelvi

This equation is quoted directly from the SAS User Guide version 8.

The model equation for Double Exponential Smoothing is:



The smoothing equations are:

L, = aYj + (1 - a)L_ 1

T, = a(LI - LI-1) + (1 - a)TII

This method may be equivalently described in terms of two successive applications of simple

exponential smoothing:

S~] - crYg, + (1 - a)-e2

52] = ill+ (I - o)s [

where St I' are the smoothed values of Y, and St[21 are the smoothed values of S,[']. The prediction

equation then takes the form:

Y,(k) = (2 + cak/(1 - a))SS - (1 + cak/(1 - <a))Sl

The ARIMA model equivalency to Double Exponential Smoothing is the ARIMA (0, 2, 2)

model:

(1 - B) 2 Y, = (1- B)E



9=1-a

The Double (Brown) Exponential Smoothing Model will be used for 3 and 12 month forecasts.

2.3 Damped-Trend Linear Exponential Smoothing Model (SAS VS, Section 11)

This equation is quoted directly from the SAS User Guide version 8.

The model equation for damped-trend linear exponential smoothing is:

The= smoothing equations are:

The smoothing equations are:

Lt = crYj + (1 - a)(L- 1 + OTI- 1)

T, = 7(L, - L 1- 1 ) + (1 - 7)qST_

The k-step prediction equation is:

k

i--1

The ARIMA model equivalency to damped-trend linear exponential smoothing is the ARIMA

(1, 1, 2) model:



(1 - #B)(1 - B)Yj = (1 - 1B - 92B')e

-1 1 + 0 - a - ayq

02 = (a - 1)0

Damped-Trend Linear Exponential Smoothing Model will be used for 3 and 12 month forecasts.

2.4 Log Linear Trend Modelvii

x, = bo + bI I + 8r

The log linear trend is similar to the regression model; the key difference is that the explanatory

variable uses 't' as a time period, and the natural log is taken on the left side of the equation: (In

Xt).

The Log Linear Trend Model is used for 3 and 12 month forecasts.

2.5 Log Random Walk w/ Drift Model""

The random walk model is equivalent to a pure integrated ARIMA (0, 1, 0), taking the difference

of its past observation. The drift is equivalent to the constant p, so every observation is

influenced by this constant. The Log Random Walk w/ Drift Model will be used for 3 and 12

month forecasts.



3 FORECASTING CRITERIA AND DATASOURCE

3.1 Criteria and Evaluation of Statistical Fit and Forecasting

To evaluate the goodness of fit for the evaluation range/hold-out sample (10/2007 - 9/2008) the

Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage

Error (MAPE), AIC, SBC, and Adjusted R-Square are used as metrics. Specifically, the criteria

used are to choose a model that has the lowest RMSE, and MAE. Secondary criteria include a

low AIC, SBC score. The adjusted R-Square is for reference, and is not actively used in any

criterion. The evaluation of statistical fit is a guideline in determining potential forecasting

models. However, since a majority of the models perform within a similar range, i.e. RMSE is

between 50-65, and the fact these statistics are calculated solely within the evaluation range and

not the forecasting range, a supplemental measure is needed. These metrics will be shown in the

statistical fit table. The metrics above (RMSE, AIC, SBC, etc.) can be calculated for every

method presented in this thesis. However, the focus of the thesis is evaluating forecasting

metrics.

The metric to evaluate the forecasting errors will be the Mean Absolute Error (MAE), this metric

calculation will be separate from the one calculated on the evaluation range. The MAE will take

the forecasted value and the actual value (not in the SAS datasets, but located in another source)

as input parameters. This calculated measure will be shown on the forecasting tables.

MAE= -1 f, - yi - -Z Ici
1 1 Ix

In addition the Mean Absolute Percentage Error will be evaluating available forecasting periods,

which calculates the absolute value of the actual observation minus the forecasted value divided

by the actual observation. This result is then divided by the number of observations, which

represents the average percentage error.

1 At - Ft
MAPE = -

't= 1 iFi~



3.2 Datasource and Statistical Tools

The source of the monthly S&P 500 return and index data can be found at the Wharton Research

Data Services (WRDS) using The Center for Research in Security Prices (CRSP) data set.

However, monthly data only extends to the end of December 2007. Therefore, the 2008 data

was sourced directly from the official Standard & Poor's website in the index data section. SAS

version 9.1 was used as the statistical tool to calculate the statistical fit and parameter estimations

for the ARIMA, Double Exponential Smoothing, and other Linear Models. Moreover, EVIEWS

version 6.0 was used to determine the best ARIMA model in the Box-Jenkins identification stage

(determination of the order number of AR and MA).

The Hybrid Linear Regression model used Bloomberg Professional to gather monthly level

pricing data on the VIX, GDP, and Corporate Default rates which ranged from 1/1990 to 1/2008.

EVIEWS was also used for parameter estimation and statistics of fit for the Hybrid Linear

Regression model.

Lastly, the Neural Network models used SAS Enterprise Miner 4.3, for weighting and parameter

estimation. MATLAB R2008b was used to perform Bootstrapping Simulations and to estimate

parameters and mean/volatility forecasts for ARCH/GARCH models.

4 ARIMA, EXPONENTIAL SMOOTHING, AND LINEAR APPROACH

AND EMPIRICAL RESULTS

The approach was to take different time ranges of the S&P 500 monthly index data to forecast a

3 month and 12 periods ahead of the recent credit crisis (forecasts beginning on October 2008).

Prediction fit vary from 12/1925 to 09/2007. The concept was to try different models defined in

the methodology section with different monthly ranges. Each data set was optimized with the

appropriate model. The prediction fit range is generally organized into five categories:



* Entire dataset, with a holdout sample of 8 to 12 months (1925 to 2007). This was done to

capture all historical economic boom and recession data.

* 30 Year dataset with a holdout sample of 12 months (1975 to 2007). This was to include

the Oil Crisis in 1973 and 1974, the '92 and '93 recession, and the Tech Bubble in 2000-2003.

* 17 Year dataset with a holdout sample of 8 to 12 months (1990 to 2007). This was to

include the '92 and '93 recession, and the Tech Bubble data.

* 7 Year dataset with a holdout sample of 12 months (2000 to 2007). This was to include

data of the Tech Bubble.

* 1 and 2 year dataset, no holdout sample. This data is to observe specifically the recent

events of the credit crisis.

The ARIMA (2, 1, 3) model is the base model which is used in multiple data set categories, the

17 and 30 year data sets. The model was determined using the Box Jenkins approach mentioned

earlier. Other models such as the Damped and Double Exponential Smoothing are used in

multiple data set categories as well. See the fit statistics table for a comprehensive overview of

the type of model and period range.

4.1 The Credit Crisis Forecasting Results with ARIMA and Exponential Smoothing

For the models highlighted in blue in table 1, ARIMA(2,1,3), Log Damped Exponential

Smoothing models showed strong metrics for 12 month forecasting with a 12 month evaluation

range. The Log Linear Trend had the lowest RMSE and MAE, but also had the shortest fit of

data of 1 year and no hold-out sample. The primary idea with the short range models (in red)

was to fit a model that put a lot of weight on the recent credit crisis observations. The range of

the forecast is a specific 3 month and 12 month forecast: 10/2008 - 12/2008, 10/2008 - 09/2009.

These dates were chosen given that the latest data at this time only extends to 12/2008.

Furthermore, only 3 month metrics can be calculated at this time. Validating the 12 month

forecasting will be addressed in the Tech Bubble forecasting section.



So does the models that fit well in the evaluation range typically forecast well? Not necessarily.

The forecasting table 2 displays the results. The Log Linear Model, which initially seemed to be

a good short run forecast, had the second worst MAE ranking (The Log Random Walk w/Drift

had the worst). The Log Double (Brown) Exponential Smoothing, 7 year dataset had the lowest

forecasting MAE, but in the evaluation range ranked in the middle (Parameter estimation can be

found in the appendix). The Double Brown Exponential Model outperformed the other models,

because of the factoring of the strong non-linear differences that was present in the past

observations and errors in the index. Since, the credit crisis during the months of Oct - Dec of

2008 saw unprecedented drops in the level, the Double Brown Exponential Model adjusts by

predicting a steeper descent. However, even though the MAE is lower the Brown model still

displayed a MAE of 205, meaning that each forecasting month differed by 205 points per

observation on average. At the end of December, the 95% confidence interval for the Brown

model was between 949 and 1265, with the actual of 903.06 (see figure 3). Clearly, the fall in

the index was beyond a 2 sigma event and this leads to a discovery of the limitation of all the

linear and exponential smoothing models: the point estimates are poor predictors of

unprecedented events.

For the 12 month forecasting the ARIMA(2,3,1) model or the equally weighted forecasting

combination ARIMA(2,3,1) and Log Damped Exponential Smoothing is recommended

(Parameter estimation can be found in the appendix). Since the full 12 month of forecasting data

is not yet available for the credit crisis, the validation of these models will be shown in the 12

month Tech Bubble prediction section. Furthermore, after analysis a key insight can be revealed

about these models: the S&P 500 level is potentially undervalued when considering long term

data. In figure 4, shows a 12 month level combination prediction of 961 and a 95% confidence

interval of 481 to 1442. December 2008 shows a value of 903.25. The S&P 500 Index may very

well continue to fall, and the 12 month prediction may be inaccurate. However, the long range

models are using several decades of data as input, and through historical observation, the current

level has declined to the level of October 2002, which was the bottom of the Tech Bubble. The

S&P 500 has a history of adjusting towards the long run mean. Figure 5 shows the long run S&P

500 monthly returns mean of .58%, and generally shows negative returns being offset by positive



runs having properties of a normal distribution. Furthermore, the monthly mean represents the

S&P 500 price returns and does not include dividend yields. Figure 6 shows the S&P 500 returns

during the Credit Crisis, the short run mean is -1.99%. If the assumption of long run mean

converge holds true, then the S&P 500 level will be higher to reflect positive returns that offsets

the recent negatively skewed data. See appendix for detailed distribution data.

Table 1 - Fit Statistics Overview for All S&P 500 Datasets, Credit Crisis Evaluation Range

(10/2007-09/2008)

Fit Eval RMSE MAE MAPE AIC SBC AdjR-

Range Range Square

Log Damped
Exponential 12/1925 - 10/2007 -

Smoothing 09/2007 9/2008 63.578 49.24 3.727 105.65 107.11 0.528

ARIMA(2,1,3)
+ Log
Damped Exp.
Forecast 12/1925 - 10/2007 -

Combo 09/2007 9/2008 69.589 50.07 3.785 103.63 104.6 0.576

Log Random
Walk W/ 1/1975 - 10/2007 -

Drift 09/2007 9/2008 69.247 52.94 4.02 103.7 104.19 0.542

Log Damped
Exponential 01/1970- 10/2007 -

Smoothing 01/1985 9/2008 63.404 48.73 3.691 105.59 107.04 0.531

ARIMA 01/1990- 02/2007-

(2,1,3) 01/2007 09/2008 63.85 50.89 3.844 109.756 112.18 .388

Linear 1/1990 to 10/2007 -

Regression 9/2007 9/2008 55.397 39.75 3.053 -3.906 -3.844 0.995

Log Double
(Brown)
Exponential 1/2000 - 10/2007 -

Smoothing 9/2007 9/2008 65.911 58.05 4.323 102.52 103 0.585

Log Random
Walk W/
Drift
Log Linear
Trend

10/2006 -
9/2008
10/2007
9/2008

10/2006 -
9/2008 51.577 42.45 3.07 191.27 192.45 0.691

10/2007
9/2008



Table 2 - S&P 500 Index 3 Month and 12 Month Forecast: 10/2008 - 12/2008, 10/2008 -

09/2009

Actual Actual Actual

968.8 896.24 903.25

Predict Predict 3 Mon 3 Mon
Eval Predict 12 Mon

Fit Range onth MMonth Forecast Forecast
Range Month 2 Forecast

1 3 Error MAE

Log Damped 12/1925 10/2007
Exponential - -9/2008
Smoothing 09/2007 1162 1158 1154 706 235 1134

ARIMA(2,1,3)
+ Log 12/1925 10/2007
Damped Exp. -
Forecast 09/2007
Combo 1156 1136 1115 639 213 961

Log Random 1/1975- 10/2007
Walk W/ 09/2007 -9/2008
Drift 1175 1184 1193 784 261 1278

Log Damped 01/1970 10/2007
Exponential -- 9/2008
Smoothing 01/1985 1162 1159 1157 710 237 1153

12/1925 10/2007
ARIMA -9/2008
(2,1,3) 09/2007 1160 1157 1147 696 232 1017

Log Double
(Brown) 1/2000- 10/2007

Exponential 9/2007 -9/2008

Smoothing 1160 1128 1096 616 205 850

Log Random 10/2006 10/2006
Walk W/Walk W/ -9/2008 -9/2008
Drift 1150 1141 1133 656 219 1069

Log Linear 10/2007 10/2007

Trend -9/2008 -9/2008 1193 1170 1147 742 247 961



Figure 3 - Log Double (Brown) Exponential Smoothing, Seven Year Data Set (2000 - 2007)
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Figure 4- Combined Forecast ARIMA(2,1,3) + Log Damped Trend Exponential, Entire Data Set (1925 - 2008)
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Figure 5 - S&P 500 Monthly Returns Long Run Mean (No Dividend Yield)
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Figure 6 - S&P 500 Returns Credit Crisis Mean, Long Run Mean Convergence
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4.2 Tech Bubble (2000-2003) Prediction, Validating the 12 Month Forecasting Models

The Credit Crisis has been hailed as unprecedented in its time, but according to the index history,

the decrease in levels has not proven to be more severe than previous recessions' (The Great

Depression of 1929-1932, The Oil Crisis of 1973-1974). The Tech Bubble time range was

chosen because it shows similar level patterns of the boom and bust (1998-2002) vs. the rise and

fall of the mortgage market (2005-2008). Again, the current levels of the credit crisis is close to

the bottom of the Tech Bubble (793 vs. 876) and similar peak levels (1518 vs. 1558), all within a

3 to 4 year period. Therefore modeling for the Tech Bubble seemed appropriate considering the

similar patterns.

Historically, the Tech Bubble or "Dot-Com Bubble" is an event of rapidly increasing stock

prices due to speculative valuation. John Cassidy illustrated the example of this era with the IPO

of Priceline.com. After three weeks of Priceline' s IPO, the stock reached $150 at which this

"tiny" company was worth more than the entire Airline Industry. After the crash, Priceline.com

was trading at less than $2 a share, which would not have covered the cost of two Boeing 747sxi

Many entrepreneurs relied on venture capitalists and IPOs of stocks to pay their expenses. With

low interest rates (1995 to 1998) and lower capital requirements than a traditional brick and

mortar businesses, entrepreneurs attracted the investment capital needed to fund several startups.

The dot com business model relied on the network effect or "get big fast" to collect market share

first with the hopes to be profitable in the future (Cassidy 2003). Many investors naively

expected the higher valuation to match future returns of the tech companies. The burst of the

bubble occurred on March 10, 2000 and was attributed to several reasons:

* To balance the speculative rise, the Federal Reserve increased interest rates six times over

the period of1999 to 2000.

* Microsoft was declared a monopoly in the federal court ruling of The United States vs.

Microsoft.

* The NASDAQ peaked at 5048.62 which were more than double the previous year.

* After the posting of poor year end earning announcements in 1999 and 2000, investors

realized that tech stocks were overvalued.



* Decreased IT budget spending after the Y2K system overlay.

Lastly, the S&P 500 Index aggregates companies of market capitalization. With tech companies

representing inflated market capitalization, the S&P 500 had increased exposure to the tech

sector, thus posting increased declines. In fact the S&P 500 peaked at 1527 on March 24, 2000.

And by the end of December 2002, the S&P 500 fell to 875, a decline of 55.7% from its peak.

The primary purpose of the Tech Bubble model is to validate the Log ARIMA (2, 1, 3) model

and the Log Double Exponential Smoothing model for an accurate 12 month forecast. The 2

SAS datasets used was within 12/1925 to 12/2000 (12 month forecast starting on 1/2001) and

12/1925 to 3/2001 (12 month forecast starting on 4/2001). Each model performed differently

between these two datasets. Looking at the forecasting results shown in table 7, the Log Double

Exponential Smoothing had the lowest MAE of 48.99 and the best 12 month average fit for the

1/2002 forecast, but the ARIMA model performed poorly with a MAE of 159.49. At the end of

the data set the last 6 observations had a subtle decline in movement (2 observations that

decreased the level from 81 to 100). ARIMA model does not adjust well in the "beginning" of a

downward/upward pattern, and should be used when a clear trend is shown. However, the

Double Exponential Smoothing is a good model if a steep decline is expected. In the second

dataset which is 3 months later from the first (forecast starting on 4/2001), the exact opposite

effect is observed. This dataset shows that the Log ARIMA (2, 1, 3) model outperforms the

Double Exponential Smoothing model. This is because the Double Exponential Smoothing

predicts an exponential increasing or decreasing value. The results show a large discrepancy to

undervalue the prediction and had a sizable MAE of 205. The Log ARIMA model performed

better due to a clear downward pattern in the past 5 observation lags, which led to having the

best 12 month point forecast (but not the best overall MAE) between the 2 data sets. See Figure

8 for the graphical fit. To summarize, if a steep decline or rise in the index is expected with only

1 or 2 observations showing subtle hints of decline, and then the Double Exponential Smoothing

Model will outperform linear models. However, if there is an established trend at the end of the

dataset (4 -5 observations showing a clear trend), then the ARIMA (2, 1, 3) model may perform

and forecast better.



Table 7 - 12 Month Forecast, Predicting the Tech Bubble

Start
Jan
2001
(Actual) 1366 1240 1160 1249 1256 1224 1211 1134 1041 1060 1139 1148

Start
April
2001
(Actual) 1249 1256 1224 1211 1134 1041 1060 1139 1148 1130 1107 1147

12 Mon 12 Mon
Fit Eval Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo

Forecast Forecast Mo 5
Range Range 1 2 3 4 6 7 8 9 10 11 12

Error MAE

Log Double 12/1925 01/2000

(Brown) - -

[Start Jan] 12/1999 12/2000 587.9 48.99167 1288 1260 1234 1210 1189 1171 1156 1144 1135 1130 1129 1132

Log 12/1925 01/2000
ARIMA
(2,1,3) 12/1999 12/2000
[StartJan] 1914 159.4983 1319 1331 1333 1329 1333 1338 1339 1340 1343 1346 1348 1350

Log Double 12/1992 01/2000
(Brown) [7
year prev 12/1999 12/2000
data] 608.9 50.74167 1299 1275 1251 1229 1207 1186 1166 1147 1129 1112 1096 1082

Log
ARIMA 12/1925 04/2000
(2,1,3) - -
[Start 03/2000 03/2001
April] 676.8 56.39833 1142 1158 1169 1157 1153 1161 1162 1157 1157 1161 1159

Log Double 12/1925 04/2000
(Brown)
[Start[Start 03/2000 03/2001
April] 2569 214.1083 1129 1084 1043 1004 968.4 936 907 881 858 838.1 821.6 808.4



Figure 8 - Good Forecast: Log ARIMA (2,1,3), Entire Data Set (1925 - 2001)
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5 LINEAR REGRESSION METHODOLOGY AND EMPIRICAL

RESULTS

5.1 Linear Regression Methodology

Linear Regression Modelxmii

1z =3 0 + 31X'2i + +32 2 + - + -+pX, , i = 1 .. n

The linear regression is fundamentally different from ARIMA. Instead of having past

observations and errors define the underlying relationship, the response variable Yi is a factor of

X (i) number of explanatory variables. The linear regression model uses an ordinary least

squares (OLS) method for 0 parameter estimation. The baseline linear regression model will be

used for long range data forecasts.

Multivariate Representation

In matrix from the multivariate linear regression can be represented as follows:

Y = X3+c

1 X "'" Xnp

Where X represents a matrix of repressors, Y is a column vector that represents the dependent

variables and E:1...,n represents the unobserved vector errors. Bo... Pn can be represented as

the parameter estimates for matrix X, but if there are any linear dependency within columns of X

then creating parameter estimates with Po... On is problematic, therefore choosing explanatory

variables that reveal additional insight versus overlapping information is key for an accurate

prediction model. Lastly, Po... On can be estimated via the least squares method and the solving

of normal equations:



(T = XTX)XTy

I refer you to Montgomery (2008) for a full derivation of the least square normal equation

estimate.

5.2 The Baseline Linear Regression Model

The number of explanatory variables used for the linear regression model was kept to a

minimum. The chosen factors are GDP expressed in billions of chained 2000 dollars, CAY

(consumption, asset wealth, and labor income), and Default Spread using the Lehman Brothers

Investment Grade Spread Index w/ Option Adjusted Spread (IG OAS), and finally a AR(1) term,

which has a relationship with past errors. The consumption-wealth ratio is from Lettau and

Ludvigson (2001, 2004) and is calculated as CAY = c - 0.2985a - 0.597y, where c is real per-

capita consumption of nondurables and services, a is financial wealth, and y is labor income, all

measured in natural logarithms.xiv Statistically it showed a very good fit. This model shows

promise as a fair value model, evaluating the current S&P 500 level to determine relatively if the

price is fair, under, or overpriced. However, as a forecasting model there are several challenges.

Each explanatory variable will need to have 3 to 12 month forecast projections. Since the CAY

data is not updated frequently this poses challenges to this model, and we will not explore any

further in using the baseline linear regression model for 12 month forecasting. However, each

explanatory variable would use either a projection from a reputed analyst or another black box

forecasting method like ARIMA to project, which may or may not provide an accurate forecast.

This next section will attempt to introduce a hybrid linear regression with an ARIMA and

Exponential smoothing forecasting model.

5.3 Linear Regression Hybrid Model with ARIMA or Double Exponential Smoothing

Forecasts

In this hybrid model a revisitation of the explanatory variables was warranted. Lettau and

Ludvigson implied that the CAY data point are cointegrated and thus lead to important predictive

components for future returns. xv After a second evaluation, CAY is a difficult measure to

forecast effectively with a black box statistical method. Moreover, the forecasted the values that

were constant and slightly above 0 in the context of mean returns. Instead of using CAY, the
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VIX indicator is a more appropriate substitute for the CAY. VIX is a ticker symbol used in the

Chicago Board Options Exchange Volatility Index. The VIX is often a measure of the implied

volatility of the S&P 500 Index options. This volatility measure is more specific to the S&P 500

and in the past has proved to be a good indicator for forecasting. However, there have been

concerns about the VIX's ability to predict market decline. Kearns and Tsang state the VIX

failed to predict the October 2008 17 percent drop, but also noted that the VIX in the past has

only failed five times in its 18 year history to predict the S&P 500 volatility within a 10%

marginxvi Bill Luby describes the VIX as an annualized volatility measure, and can use a

simplistic Gaussian distribution to predict monthly pricing by converting the annualized

measure to monthly and using the confidence intervals of a logarithmic or Gaussian distribution

as a heuristic estimate."" Nonetheless, this thesis will test the viability of using black box

models to forecast potential volatility measures. For the hybrid approach, the ARIMA (2, 1, 3)

will be used to forecast VIX volatility. The IG OAS and GDP level will remain unchained from

the baseline regression. The table below shows the forecasting model chosen for each

explanatory variable and the respective forecasted values. The appendix contains the parameter

estimates to these forecasts.

Table 9 - Forecasted Results of Explanatory Variables

Double
Forecasting Exponential
Model ARIMA(2,1,3) ARIMA(2,1,3) Smoothing
Date VIX IG OAS GDP LVL

10/30/2008 36.73 355.75 11707
11/30/2008 33.903 349.47 11702
12/30/2008 32.27 349.74 11697

1/30/2009 31.4891 354.24 11692
2/30/2009 31.2881 353.64 11687
3/30/2009 31.4558 350.45 11682
4/30/2009 31.8466 351.17 11677
5/30/2009 32.34 353.4 11672
6/30/2009 32.86 352.68 11667
7/30/2009 33.37 351.14 11662

8/30/2009 33.38 351.8 11657
9/30/2009 34.23 352.85 11652



5.4 Linear Regression Hybrid Models and Credit Crisis Empirical Results

Overall, two linear regressions were estimated with the Hybrid model, one with a dependent

variable of S&P 500 Index returns (SPINDX Return), and the other using the first differences of

the S&P 500 Index D(SPINDX). The SPINDX Return uses a static forecast, which essentially

will perform parameter estimation based upon the explanatory variable data in addition to the

forecasted ARIMA/Exponential Smoothing data referenced in the previous section. The first

differences model: D (SPINDX) uses a dynamic forecasting model. The equation below

represents the initialization of the dynamic forecast model for the first observation.

ye = c(1)+ c(2)x + c(3)z + c(4)y s  1,

where c represents the beta coefficients and xs and zs represent explanatory variables within the

X matrix. And Ys- 1 represents the actual value of the lagged endogenous variable:

D(SPINDX), in the period prior to the start of the forecast sample.

YS+k = c(i)+ c(2)S + c(3)ZS+ k+ c(4)y 5+ k-1

Subsequent observations uses the equation above, the key difference is that the variable Ys +k-1

uses the predicted value Y_hat in the period prior instead of the actual endogenous variable to

perform its forecast.

Overall, the hybrid linear regression models provide superior short term forecasts with both

regressions outperforming all stand alone models which include the ARIMA and Double

Exponential Smoothing models, and the damped exponential combination. The D(SPINDX) had

an impressive 3 month short term forecast with only a 20 Mean Absolute Error per month. The

SPINDX returns model had the second lowest MAE with 153 per month. Although the

D(SPINDX) predicted the 3 month volatility with close precision, it is unlikely that its 12 month

forecast of 439, will be accurate unless persistent increase of volatility will continue in 2009. In

addition, this estimate has a highly variable 95% confidence interval between 0 and 1647. With



a stabilization of volatility the SPINDX Return model will be a better 12 month forecast, which

accounts for the actual endogenous values versus a predicted one. However, both linear

regressions indicate declining 12 month forecasts, which a possible scenario is given the

assumption of increasing volatility and corporate defaults. Lastly, there are issues with

heteroskedasticity with the assumption of constant variance violated in the classical linear

regression model (Asteriou and Hall 2007). After performing a series of ARCH (10) and White

test the null hypothesis of homoskedasticity is rejected. The consequences may include

underestimation of the SPINDX return model, thus leading to an underweighted forecast. The

GARCH models detailed in the next section will adjust for this issue and bring a different

forecasting perspective.

Table 10 - Linear Regression Comparison to Credit Crisis Forecasted Results

Actual Actual Actual
968.75 896.24 903.25

Predict Predict Predict 3 Mon 3 Mon
Fit Eval 12 MonMonth Month Month Forecast Forecast

1 2 3 Error MAE

ARIMA(2,1,3)
+ Log 12/1925 10/2007
Damped Exp. -
Forecast 09/2007 9/2008

Combo 1156 1136 1115 639 213 961

01/1990 02/2008

ARIMA - -

(2,1,3) 01/2008 09/2008 1156 1153 1141 682 227 1027

Log Double 1/2000 10/2007
(Brown)
Exponential 9/2007 9/2008
Smoothing 1160 1128 1096 616 205 850

Baseline 01/1990 02/2008
Linear
Regression 01/2008 09/2008 1167 1160 1130 689 230 N/A



Hybrid Linear
Regression
Y=(SPINDX
RET)

01/1990

01/2008

02/2008

09/2008
1118 1075 1035 460 153 733

Hybrid Linear 01/1990 02/2008

Regression
Y=D(SPINDX) 01/2008 09/2008 973 924 877 59 1 _l__ 20 439

Figure 11 combines the actual values and the two hybrid linear regression model forecasts

converted into level amounts into a single graph.

Figure 11 - Forecasted D(SPINDX), SPINDX Returns with S&P 500 Actuals
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6 ARCH/GARCH TIME SERIES FORECASTING METHODOLOGY

Linear regression models that use the least squares model assume that the variance is constant at

any given point time, that is the expected value of all the squared error teams is constant. The

assumption of constant variance is called homoskedasticity. Financial time series data often do

not follow this assumption. The S&P 500 Index and returns can be extremely volatile during

recessionary and growth periods. With careful inspection, the S&P 500 and many other financial

equities display increasing variances during certain periods. This increasing variance, also called

heteroskedasticity is quite problematic causing standard errors and confidence intervals

estimated by the ordinary least squares regression to be too narrow in precision.xviii The

coefficients of the OLS are preserved and are unbiased, but this false precision typically leads to

erroneous conclusions. There are different methodologies to correct for heteroskedasticity.

Douglas Montgomery suggests that if the changes in the variance at certain time intervals are

known then a weighed least squares regression can be employed.xix Although, these particular

time intervals are often not known, and there is value in knowing when and why variance

increases. ARCH (Autoregressive Conditional Heteroskedasticity) and GARCH (Generalized

Autoregressive Conditional Heteroskedasticity) models the variance of each error term and

corrects the deficiencies of heteroskedasticity for least squares. Moreover, these models deal

with the issue of "volatility clustering", when the amplitude of the time series level varies over

time. For example, the NASDAQ Index has shown in figure 12, wide amplitude of returns. This

suggests that certain NASDAQ returns are riskier/less riskier than others. ARCH/GARCH

models are methods to deal with volatility clustering and to provide a measure of volatility.

Figure 12 - NASDAQ Daily Returns (Engle 2001)
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Forecasting and modeling for variance is extremely useful in option pricing and value at risk

calculations. This thesis will not concentrate deeply on these subjects, but focus on the

conditional mean prediction and forecasting of the ARCH/GARCH models. However, the

forecast of these variances will still be very useful for in calculating the confidence intervals and

forecasted standard errors.

6.1 Conditional Mean Equation: ARMAX(R,M,Nx)

The following equation below is considered the conditional mean, where yt is considered the

returns and ct = ctzt , where zt are i.i.d random variables with mean 0 and variance 1, independent

of past realizations of stj and (2t. This conditional mean model is also known as the ARMAX(R,

M, Nx) which stands for Autoregressive moving average model with exogenous inputs model. R

indicates the order of the autoregressive terms, M specifies the order of the moving average

terms for the innovations, and Nx represents the number of exogenous or time series and

explanatory factors that is to be included in the conditional mean.

R M Nx

i= 1 j= 1 k =1

6.2 The Conditional Variance Equation: GARCH(1,1)

This thesis will employ several conditional variance methods: The GARCH (P, Q) model

invented by Bollerslev (1986), which is essentially an extension of the ARCH model proposed

by Engle (1982). ht is defined as the variance, and the weights are (1 - a - 3, 3, a), and the long

run variance is calculated as aI( 1-a -p). This works if all the weights are positive and a + 0 <

1.

h,= + a - i) + ph, = + ah + Ph,.

This equation is an example of a GARCH (1, 1). P indicates the order of past (t - P) squared

return residuals and Q is the order of (t - Q) past variances.
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6.3 The Conditional Variance Equation: Exponential GARCH

The Exponential GARCH also known as EGARCH was introduced by Nelson (1991):

log cr2 = c +W ± 3kg(Zt-k) + k: logc0r
k=l k=1

Where g(Z,) = OZ, + X( I Z, I - E( I Z, I )), o; is the conditional variance and o, j3, a, 0 and X are

coefficients, and Z is a standard normal variable.xx ARCH/GARCH models have a symmetric

effect on the errors for the conditional variance, i.e. a positive error has the same effect as a

negative error of the same magnitude.xx ' The EGARCH model adjusts for asymmetry by using

function g(Z,). When 0 < Z, < oo, g(Zt) is linear in Z, with slope (0 + X); when -oo < Z < 0, g(Z,) is

linear with slope (0 - X). This allows for the conditional variance to respond asymmetrically to

the rises and falls of the process.

6.4 The Conditional Variance Equation: Glosten-Jagannathan-Runkle GARCH

Lastly, the Glosten-Jagannathan-Runkle GARCH (GJR-GARCH) model by Glosten,

Jagannathan and Runkle (1993) will be used, which is another way to model asymmetry.

o9 K 4 4 6 027-i ct f 2' 4 c 2
t_: EL : + .. Et_.t-h

Where E = t tzt, z, is i.i.d and I,_ 1 = 0 if Et- 1 0, and I,- 1 = 1 if Et-1 < 0

7 GARCH EMPIRICAL RESULTS

The GARCH approach will also forecast a 3 month and 12 periods ahead of the recent credit

crisis (forecasts beginning on October 2008 and December 2008). This is to provide a baseline

period to every method tested. The GARCH approach uses the methodology stated in the

previous section. Instead of using different time ranges, 2 different orders were tested for each

GARCH, E-GARCH, and GJR GARCH models. The results indicate that the GARCH (1, 1)
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model was the most significant. Furthermore the credit crisis forecasting was tested with the

order P=1, Q=1, with both a mean constant and without for each model. The first step of

analysis was to check for correlation of the return series, by looking at the ACF (autocorrelation)

and PACF (partial autocorrelation). The monthly returns did not exhibit any serial correlation.

However, when the returns were squared, a slowly decaying pattern was revealed. The variance

suffers from heteroskedasticity and is outside of the standard error. This can be validated with

the ARCH and Q-test. Both results showed that a high order of lags was significant and thus the

null hypothesis of no heteroskedasticity is rejected.

Figure 13 - ACF of the Squared Returns

Because a high order of the ARCH (q) test was found in several lags over 10, the selection of a

GARCH (1, 1) model becomes appropriate which acts as a parsimonious alternative to an infinite

ARCH (q) process. After the order has been identified, the fitting of the models and parameter

estimation was performed. MATLAB performed all of the estimations. These estimates are in

the appendix section. Figure 14 displays a GARCH plot of the innovations (errors), a sigma plot
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derived from the conditional variance equations, and the S&P 500 returns. Notice the high

volatility that occurred during the Great Depression with monthly returns as high as 40% and as

low as 40%. The credit crisis has often been compared to have volatility "near" depression

levels. But close examination show that the credit crisis monthly returns (near the end of the

standard deviation/return graph) is not nearly as volatile as the Depression era. However, the

graph data ends at September 3 0 th 2008, and in October, -18% returns were posted increasing the

volatility. Also, if we graphed daily volatility, we would see much more activity.

Figure 14 - A GARCH plot of the Innovations, Conditional STD Dev, S&P 500 Returns

dated 12/1925 to 09/2008.



After the models have been fitted and forecasted, a plot of the squared standardized innovations

was created. A standardized innovation plot is composed of each error at a given time and

divided by its respective standard deviation derived from the GARCH conditional variance

equation. The plot below shows that the GARCH (1, 1) model indeed adjusted for

heteroskedasticity.

Figure 15 - ACF of the Squared Standardized Innovations



7.1 GARCH Forecasting Results of the Credit Crisis

Table 16 shows the GARCH forecasting results, similar to the ARIMA and Exponential

smoothing results. GARCH models do not predict well for the short term forecast, but show

promise as a long term model (see the next section on the Black Monday modeling). However,

the GARCH model did adjust for signals of increased volatility. The EGARCH(1,1) has the best

3 month forecast with the lowest MAE of 229. Overall, the forecasts between all three models

were fairly close to one another. The EGARCH(1,1) model shows an optimistic 12 month

forecast of 1095.

The GARCH models depend on previous volatility to adjust their forecasts. When the 3 month

data of September, October, and December 2008 were included in the dataset, the forecasts

changed dramatically. 12 month forecasts ending in December 2009 are substantially bearish

showing the index price to be at 779 for the EGARCH model. Also note that these models were

not fitted with a constant in the mean. So the ARMA terms have a downward pressure on the

forecasted returns and price index.

When a constant was included in the model testing, the results were positive and the parameter

estimation was significant as well. See the appendix for these estimations. The mean

incorporates a positive drift that is inherited from the long run mean of the data set. Whether or

not the constant model is a good forecasting fit is undetermined with the credit crisis data, but

forecast well in the Black Monday scenarios. The next section will validate and back test these

GARCH models with the Black Monday stock market crash to further evaluate the forecasting

results.



Table 16 - GARCH Model of Credit Crisis, S&P 500 Index 3 Month and 12 Month

Forecast

Actual Actual Actual

968.75 896.24 903.25

3 Mon 3 Mon
Predicted Predicted Predicted Forecast Forecast 12 Mon

Fit Range Month 1 Month 2 Month 3 Error MAE Forecast

ARMAX(1,1,0) + 12/1925 -
GARCH(1,1) 09/2008 1159.68 1153.58 1147.98 693.00 231.00 1114.57

ARMAX(1,1,0) 12/1925 -
+EGARCH(1,1) 09/2008 1158.62 1151.28 1144.30 685.96 228.65 195.00

ARMAX(1,1,0) 12/1925-
+GJR(1,1) 09/2008 1159.26 1152.59 1146.32 689.92 229.97 1104.00

ARMAX(1,1,0) + 12/1925-
GARCH(1,1) 12/2008 891.89 881.68 872.51 N/A N/A 821.52

ARMAX(1,,0) 12/1925 -
+EGARCH(1,1) 12/2008 888.17 874.21 861.25 N/A N/A 778.72

ARMAX(1,1,0) 12/1925-

+GJR(1,1) 12/2008 890.12 878.07 867.00 N/A N/A 799.33

C+
ARMAX(1,1,0) + 12/1925 -
GARCH(1,1) 12/2008 908.62 914.56 920.08 N/A N/A 973.41

C +ARMAX(1,1,0) 12/1925-
+EGARCH(1,1) 12/2008 908.47 913.63 918.81 N/A N/A 966.79

C+
ARMAX(1,1,0) 12/1925 -
+GJR(1,1) 12/2008 908.15 913.62 918.66 N/A N/A 967.43

1 - F~



The following graph shows the 3 month difference between the actual and the EGARCH

forecast. The magnitude of the monthly returns volatility during September and the previous

months was not high enough to capture October's -18% drop. The 12 month point estimate is

1095 with a 95 % lower confidence interval of 977 and an upper confidence interval of 1207.

Figure 17 - GARCH Model of Credit Crisis, S&P 500 Index 3 Month and 12 Month
Forecast
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7.2 Modeling Black Monday and Backtesting GARCH Models

Historically, Black Monday has been one of the single largest daily drops in history which

occurred on October 19, 1987.xx" The Dow Jones Index had the largest drop of 22.6%, and the

S&P 500 fell by 20.4%. This steep drop attributed to further decline and the S&P 500 posted a

24.53% decline at the end of the month. In November 5, 1987, President Ronald Regan issued

an executive order to examine the events surrounding Black Monday in order to understand what

happened, why it happened, and how to prevent such an event from occurring in the future. The

report indicated that selling pressure during October 14 to 16 was the cause of 2 major eventsx"':

* Disappointing poor merchandise trade figures, which put pressure on the dollar in

currency markets and upward pressure on long term interest rates.

* Filing of anti-takeover tax legislation, which caused risk arbitrageurs to sell stocks of

takeover candidates resulting in a downward ripple effect throughout the market.

Moreover, the reactive selling primarily involved a small group of participants, portfolio insurers

and a few mutual fund groups. The portfolio insurers typically used computerized insurance

models that calculated sales in excess of 20 percent in response to a 10 percent decline in the

market (Brady 1988). For one particular insurance client the models indicated that 70% of the

portfolio's remaining equity should be sold by the close of Friday (October 16 th). Overall,

insurers had $60 to $90 Billion of equity assets that were under administration during the market

break. Insurers sold $530 million on Wednesday, $965 Million on Thursday, and $2.1 billion on

Friday primarily in the futures market. Mutual Funds faced customer redemptions, and by

Friday, customer redemptions at these funds exceeded fund sales by $750 million. On Black

Monday alone, total equity sales for the day totaled $19.1 billion in the equity sales and $19.8

billion in futures sales. In the midst of the frenzy selling amongst the handful of participants,

there were little buyers. Index arbitrageurs pulled away from purchasing discounted futures

when the overwhelming selling created a complete disconnect in pricing information between

futures and equity markets. This disconnect created a freefall in markets, allowing historical

discounts and substantial downward price movements in both stock and futures markets. For



more detailed and historical information on Black Monday, please refer to "Report of The

Presidential Task Force of Market Mechanisms" (Brady 1988).

Epistemologist and author Dr. Nassim Nicholas Taleb considers this drop a "black swan" event,

which is a large impactful event that is rare and in many instances improbable, and an event that

is taken completely by surprise. Similar to the credit crisis, this event happened on a six sigma

(if not greater) scale. Black Monday spurred a recession afterwards and dampened the S&P 500

price. After the crash, the index did not recover until May of 1989, almost 2 years later. Dr.

Taleb's black swan theory does hold some truth in attempting to use statistical models to fit data

prior to the October 19t h to predict the actual crash date and month. From a short term

perspective, it was extremely difficult to account for the crash with the GARCH models. No

previous time data could give a volatility magnitude high enough for the GARCH models to

come within a significant interval (5-10%) of the return and level drop. However, forecasting a

12 month and longer term estimates has shown more success. The model that provided the best

point estimate was the ARMAX (1, 1, 0) no constant for the conditional mean and EGARCH (1,

1) for the variance. This model did not have the lowest MAE, but it had a 12 month point

estimate residual of .4, which was very close to the actual. When a constant was used for the

conditional mean, the GARCH (1, 1) provided the lowest MAE, and served overall as the best

fitted model. Note that all the GARCH models did not account for the accelerated levels shown

in between months 2-9. These months account for the highest residual error, and the crash

October readjusted the price level to the forecast, with monthly residuals less than 10. Overall,

GARCH models are best used to model heteroskedasticity, but the conditional mean forecasting

is most effective in 12 month or greater forecasts around steep recessionary and growth periods.

GARCH simulation methods were also used, but overall the estimates converged to be very close

to the minimum mean square error forecast used for our models. See the appendix for the

GARCH model estimates.



Table 18 - Predicting Black Monday, 12 Month Forecast

Start
Jan
1987
(Actual) 274.1 284.2 291.7 288.4 290.1 304.0 318.7 329.8 1 321.8 251.8 230.3 247.1

12 Mon 12 Mon

Fit Range Forecast Forecast Mo 1 Mo 2 Mo 3 Mo 4 Mo 5 Mo 6 Mo 7 Mo 8 Mo 9 Mo 10 Mo 11 Mo 12

Error MAE

12/1925

ARMAX(1,1,0) -
+ GARCH(1,1) 12/1986 531.4 44.3 242.6 243.0 243.4 243.7 244.0 244.2 244.4 244.6 244.8 245.0 245.1 245.2

12/1925
ARMAX(1,1,0)
+EGARCH(1,1) 12/1986 523.9 43.7 242.8 243.3 243.8 244.3 244.7 245.1 245.4 245.7 246.0 246.2 246.5 246.7

12/1925
ARMAX(1,1,0)

+GJR(,l) 12/1986 529.4 44.1 242.7 243.1 243.5 243.8 244.2 244.4 244.7 244.9 245.1 245.3 245.5 245.6

C + 12/1925

ARMAX(1,1,0) -
+GARCH(1,1) 12/1986 499.4 41.6 244.5 245.5 247.6 248.8 250.7 252.1 253.9 255.4 257.2 258.8 260.6 262.2

12/1925

ARMAX(1,1,0) 12/1986
+EGARCH(I1,1) 506.3 42.2 243.2 244.6 246.1 247.5 249.0 250.4 251.9 253.4 254.9 256.4 257.9 259.4

C + 12/1925

ARMAX(1,1,0) -

+GJR(I,1) 12/1986 501.6 41.8 244.3 245.1 247.0 247.9 249.7 250.8 252.5 253.7 255.3 256.6 258.2 259.5

- I r I



Figure 19- GARCH Forecast of Black Monday, 12/1985 - 12/1987

The GARCH models provided an acceptable 12 month point estimate largely due to mean

reversion. However, it did not perform well for short term and interim months, missing the

accelerated peaks. The constant model adjusted for a better short term forecast, but not by a

wide margin compared to the non-constant model.
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8 NEURAL NETWORK FORECASTING AND HYBRID

METHODOLOGY

8.1 What is a Neural Network?

A Neural Network is a computational method that mimics how the human brain processes

information and data. Hamid and Iqbal cite that the network imitates the structure and operations

of a 3 or N dimensional lattice of networks among brain cells, referred to as nodes or neurons. xxiv

There have been variations of Neural Network architectures proposed, but every network has the

following characteristics:

* A network is composed of certain number of layers indicating which input variables to be

processed. Take for example, that a typical Neural Network would have at least three

layers: an input layer, a hidden layer, and an output layer.

* Within a layer, there can be 1 to many nodes or neurons within a layer. Each neuron is

responsible for learning the relationship between input and output nodes. Also, each

node is considered a variable.

* Each neuron has connections between neurons, often forming a many to many

relationship between nodes in a downstream layer. For example if an input layer has 3

nodes, and if the hidden layer has 3 nodes as well, then 3! connections are created.

* A network or layers can have a transfer function which seeks to determine the

relationship between the input and output data.

Think of a layer as an aggregation of nodes. The first layer is the input layer which is where the

input data is defined and processed. Each neuron or node can be considered to have an input

variable. You can also look at the input neurons as explanatory variables in a regression. The

hidden layer can be considered as a constructed set of variables (Montgomery 2008). This

process explores patterns and correlations to make generalizations that will influence the output.

This layered architecture is typically called a feed-forward multi-layered network, also known as

backpropagation. Figure 20 is an example of this architecture.



Figure 20 - A 3x3x1 Feed-Forward Back Propogation Neural Network

Image Source "Using neural networks for forecasting volatility of the S&P 500 Index Future Prices", S.Hamid, Z. Ibqal

Backward
Error
Flow

Hi ldden

Forward A
Activation

Flow

) Hidden layer

Input layerInput

Input I Input 2 Input 3

The neurons can either be fully connected or partially connected. Figure 20 shows an example

of a fully connected 3x3x1 network. All nodes in the input layer are connected to all hidden

neurons, and all hidden neurons are connected to the output. Each connection has an initial

weight, which are generated by small random initial seed values. These weights are "trained"

during subsequent runs to create the optimal value. Moreover, algorithm of the backpropagation

(a.k.a. generalized delta rule) provides the "learning rule" through which the network changes its

connection weights during training until the optimized value is found. Training is synonymous

to parameter estimation, and the usual approach is to estimate the parameters by minimizing the

residual sum of squares taken over all responses and all observations. This procedure is a

nonlinear least squares problem, and there are several algorithms to do this. I refer you to Tang

and Fishwick, they give more detail in the backpropagation algorithm as an example.xxv



The transfer function, a.k.a. activation function is responsible for transforming the product of the

input and weights into an output. Input data (11, 12, .., In) are multiplied by the weights (wI, W2,..

., Wn) associated with the connection of the weights. Then this product is used as an input to the

transfer function, which in turn converts the sum into an interval between 1 and -1 or 1 and 0.

This process is recursively repeated until the next node becomes the output layer. At the last

output node this transfer function output becomes the predicted response. Figure 21 is an

example of the product and transformation flow.

Figure 21 - The Transfer Function in relation to input variables

Image Source "Using neural networks for forecasting volatility of the S&P 500 Index Future Prices", S.Hamid, Z. Ibqal
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The typical transformation function for the hidden layer is the logistic function:

1
g(x) = I + exp(-x)

Other functions can be chosen such as Gaussian, Hyperbolic tangent, cosine, and sine transfer

are all valid options. In the case of a single hidden layer feedforward network that is used for

time series forecasting the relationship between the output (yt) and the inputs (yt-1, yt-2... yt-p) can be

represented with the equation below. Where aj (j = 0,1,2,...,q) and flij (i = 0,1,2,...,p; j =

1,2,...,q) are the connection weights, (p) is the number of input nodes and (q) is the number of

hidden nodes.
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The Neural Network model does have limitations. Deciding the number of layers and nodes is

still a trial and error process. Unlike the ARIMA process which uses the Box-Jenkins approach

in determining the appropriate model, Neural Networks is an immature technology and lacks

formal theory in model determination. Moreover, there is no analytical formula to determine the

best networking model. The actual number of layers and nodes will depend on the complex

problem being solved. This implies that users will need to be sophisticated to choose the

appropriate network architecture and input variable selection. Perhaps, the largest issue with

Neural Network is overfitting. Take for example, if too many nodes and layers are chosen, the

prediction will resemble a near perfect fit to the response, making the prediction ineffective.

Overfitting can be addressed by stopping the parameter estimation process before convergence,

reducing unknown parameters, and using cross validation to determine the number of iterations

to use (Montgomery 2008). Lastly, Neural Networks are a closed architecture, and debugging

and decomposing the output is not possible.

8.2 Hybrid ARIMA/Exponential Smoothing Models with Neural Network Residual

Modeling

The hybrid approach will adopt Peter Zhang's method of combining ARIMA Time Series

forecasting with Neural Networks. Zhang asserts that ARIMA models do not handle complex

nonlinear problems adequately. In addition, Artificial Neural Nets (ANN) do not consistently fit

linear problems well, yielding mixed results. He cites an example of ANN outperforming linear

regressions when outliers and multicollinearity exists in the data, but there are dependencies on

sample size and noise level [Zhang (iii)]. An approach is recommended to combine both ARIMA

and Neural networks, where ARIMA models will capture the linear autocorrelations of a time

series and Neural Networks will fit the nonlinear aspects. Mathematically, it can simply be

represented as the following:



Yt = Lt + Nt,

Where Lt denotes the linear component and Nt denotes the nonlinear component. The
combination of the model will work as follows:

* Model and fit the data with the ARIMA model first.

* The residuals from the ARIMA model represent the nonlinear relationship.

et = yt - Lt,

Where et denotes the residual at time t from the ARIMA model.

* Take the residuals and model the ANN with n input nodes.

et = f(et-l, et-2,..., et-,n) + t,

Wheref is a nonlinear function determined by the ANN and Et is the random error. Note that
iff is not appropriate, then the error may not necessarily be random.

* The combined forecast of the ARIMA and ANN prediction will simply be:

Yt =L +N t.

Zhang does not really clarify on how to determine the number of input nodes for the ANN

residual modeling. As a rule of thumb, from the empirical research, the number of residual lags

should equal to the forecast horizon. For example, forecasting a 12 period horizon should have

12 residual lags with each lagged time series being (t - 1, t - 2, t - 3, ... ) used as an input. Note

that this heuristic rule isn't strict and is an initial state to start the model. Also, the results from

the ANN can be used as predictions of the error terms for the ARIMA model. Overall the hybrid

model aims to capture the unique characteristics of both linear and nonlinear components

through ARIMA and ANN respectively to produce a better time series forecast.

Lastly, in the next section we will apply this hybrid method to the Exponential Smoothing

models, replacing the linear ARIMA component with the Double Exponential Smoothing. The

intuition comes from the fact that the exponential smoothing models outperformed the ARIMA

model during the 3 month forecast in the steep price drop resulting from the credit crisis. The
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anticipation is that the exponential smoothing model combined with the ANN residual modeling

will yield a superior forecast than the exponential smoothing model by itself, even with the

possibility that it may capture some of the nonlinear characteristics of the time series.

9 NEURAL NETWORK FORECASTING AND HYBRID EMPIRICAL

RESULTS

Forecasting the credit crisis using Artificial Neural Networks is fundamentally different from the

other methods used in the previous sections. Similar to a regression, all input variables have to

be defined for all time periods. Also, forecasting multi period steps ahead without any input data

for that given time is often a constant value and is an ineffective forecast. In Figure 22, an

architectural process and component map lays out the high level model components and

processes that realized the hybrid methodology discussed in the previous section. Input and

Output interfaces are represented with this symbol: N. For example, ARIMA residuals are

an output from the ARIMA component, and an input to the Neural Network and ARMA

component. The boxes within the components (inside the dotted line) reflect primary internal

processes used to produce a statistical output. Since, the Neural Network provides marginal

forecasting without the forecasting data, the ARMA model was used to provide a forecast for the

ARIMA residuals. This straight forward model forecasted 12 month periods within the range of

(10/2008 - 09/2009). These forecasted residuals in addition to the ARIMA residuals served as

the input for the Neural Network model. The predicted and forecasted ARIMA output is denoted

by ARIMA_HAT, and the Neural Network predicted and forecasted residuals are denoted by

NN_HAT. Finally, in following Zhang's methodology the final prediction result is

ARIMA_HAT + NN_HAT. As a validation of the prediction, ARIMA_HAT (t) + NN_HAT (t)

+ NN_Residuals (t) = S&P500 (t). Overall, the fit was good with insignificant differences

between the actual and the predicted values.

I _ _ _



Figure 22 - The process and component architecture of the Hybrid ARIMA and Neural

Network Forecast
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9.1 Neural Network and Hybrid Forecasting Results of the Credit Crisis

Several Neural Network models were used to forecast the credit crisis. As a baseline of

comparison the ARIMA (2,1,3) and the Log Double Exponential Smoothing model results from

the previous empirical time series section was included. The 3 (input) x 7 (hidden) x 1 (output)

Neural Network model is a pure S&P 500 time series fit. Moreover, it used all the observations

from the fit range from the S&P 500 and used the forecasted values from the ARIMA (2, 1, 3)

model as the input. This Neural Network model did not incorporate residual lags in the input

layer and is also considered as a baseline comparison to the other Neural Network models. The

baseline Neural Network model (3x7x1) overall underperformed against all other models.

Different data sample partitions were used: one partition contained 100% training data, another

partition contained 70% training, 15% validation, and 15% test data sample which also

underperformed. Overall, the best performing model was the ARIMA + Neural Nets Residual

(7x7x I). This model had the best 3 month forecast with a MAE of 147.87, which outperformed

all the other baseline models. The 12 month point estimate is 1017.54 with a 95% confidence

interval between 1147 and 886.54. The third best model was the Log Double Brown Exp + NN

Residuals (12x3x1). This model had a 3 month MAE of 163.45, which was surprising in this

case. Typically, through the previous the Log Double Brown performs better in the short run

forecast than the ARIMA. However, the Neural Network residuals used to model this did not

have the same negative magnitude as the ARIMA + NN model. As a standalone model the

Double Exponential Smoothing model will outperform in a short term forecast, but the empirical

results show that as a hybrid Neural Network model the ARIMA + NN model outperforms. In

addition, the exponential smoothing + NN model has a 12 month forecast of 803.81. This

forecast could potentially be underpriced due to the exponential behavior of the model, with the

assumption of a positive outlook and return for the S&P 500 on 09/2009. To adjust for this view,

a combination forecast can be used between ARIMA+NN and Double Exponential Smoothing +

NN with equal weighting on the forecasts (.5). This combination forecast will give a weighted

forecast of 910.68, which is essentially the mean between the two models. One final observation

is that the ARIMA (2, 1, 3) model from the previous empirical study of the Tech Bubble

revealed to have the best 12 month point estimate. However, the hybrid forecast gives another



point estimate to consider when evaluating forecasting estimates. The appendix will have the

ARIMA parameter estimations and as well as the ARIMA+NN weighting estimates. The next

section will validate these models in the 73 to 74 Oil Crises.

Table 23 - Neural Network Residual Credit Crisis Forecast

Actual Actual Actual

968.75 896.24 903.25

Predict Predict Predict 3 Mon 3 Mon
Fit Eval 12 Mon

Month Month Month Forecast Forecast
Range Range 1 2 3 Error MAE Forecast

1 2 3 Error MAE

12/1925 10/2007

ARIMA (2,1,3) 09/2007 9/2008 1160.00 1157.00 1147.00 695.76 231.92 1017.00

1/2000 10/2007
Log Double (Brown) -
Exponential Smoothing 9/2007 9/2008 1160.00 1128.00 1096.00 615.76 205.25 849.51

12/1925 12/1925

ARIMA + NN (7x7x1) - -

Residuals 09/2008 09/2008 1037.25 1079.40 1095.21 443.62 147.87 1017.54

(3x7x1) NN 100% 12/1925 12/1925

Training +
ARIMA(2,1,3) Forecast 09/2008 09/2008 1148.65 1183.61 1149.04 713.06 237.69 999.37

(3x7x1) NN, 70% 12/1925 12/1925

Training + - -

ARIMA(2,1,3) Forecast 09/2008 09/2008 1164.38 1173.48 1165.53 735.15 245.05 1038.10

(12x3x1) Log Double 12/1925 12/1925
Brown Exp + NN - -

Residuals 09/2008 09/2008 1139.20 1101.55 1017.85 490.36 163.45 803.81

Combined Forecast Log 12/1925 12/1925
Double Exp (12x3x1) + -

ARIMA (7x7x1) 09/2008 09/2008 1088.22 1090.48 1056.53 466.99 155.66 910.68

9.2 Modeling the 73-74 Oil Crisis using Neural Network Models

As a brief introduction to the oil crisis, Arab members of the OPEC (Organization of Petroleum

Exporting Countries) placed an oil embargo on the United States in response to their decision to
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resupply the Israeli military during the Yom Kippur War.xx"'i The act of this embargo and the

changing of nature of oil contracts caused an upward spiral in oil prices that had a global

influence. The prices first doubled and then later quadrupled, leading to increased costs

worldwide (U.S. Department of State 1974). The United States, facing growing oil consumption

and increased reliance on imported oil was a prime factor in the dramatic price inflation. The oil

crises eventually spurred the 1973-1974 stock market crash, which will be modeled with the

S&P 500 Index. This market crash is often regarded as the first event since the Great Depression

to have a persistent recessionary effect.xxv" From January 1973 to December 1974 the Dow

Jones Index had lost over 45% of its value, which is similar to the credit crisis which lost the

same amount within a much shorter time frame (3-5 months). Forecasting the S&P 500 Index

during the Oil Crisis was an interesting exercise. The model parameters were first estimated

starting at 1925 (baseline ARIMA and Exponential Smoothing data sets), but 20 year data sets

starting in 11/1954 proved to be a better statistical fit. The double exponential smoothing model

overall yielded excellent results that were very close to the 12 month actual value (See table 24).

Unfortunately, using a Double Exponential + Residual model made the forecast worse with a

MAE of 8.09 versus 5.03. The best performing model was the (3x7x) Neural Network +

Double Exponential Forecast model. Combining the forecast and using Neural Networks to

reweight and refine the smoothing estimate proved to be a better prediction model with the

lowest MAE of 4.34. The hybrid ARIMA + NN residual and related models underperformed for

the 12 month forecast. However, the ARIMA model which had the highest MAPE still

outperformed the lowest MAPE of all the models compared to the 3 month forecast previously in

table 23. Furthermore, the Oil Crisis highest 12 month MAPE outperformed: 15.72% versus

16.25% of the lowest 3 month MAPE of the credit crisis. Also note that the ARIMA + NN

residual model outperformed the standalone ARIMA model. In conclusion, the hybrid NN

residual models yielded mixed forecast results, but overall Neural Network models provide

acceptable forecasting results and should not be overlooked. See appendix for parameter

estimates.



Table 24 - Predicting the 1973 Oil Crisis with Neural Networks Model, 12 Month Forecast

Start
Dec
1973
(Actual) 97.55 96.57 96.22 93.98 90.31 87.28 79.31 72.15 63.54 73.9 69.97

12 Mon 12 Mon
Fit Mo Mo Mo

Forecast Forecast Mo 1 Mo 2 Mo 3 Mo4 Mo5 Mo6 Mo7 Mo8 Mo 9
Range Error MAE 10 11 12

Error MAE

12/1925

ARIMA (2,1,3) 11/1973 138.07 11.51 95.26 95.78 95.29 94.33 93.76 94.03 94.82 95.40 95.30 94.67 94.11 94.09

Log Double
12/1925

(Brown)
Exponential 11/1973
Smoothing 59.42 4.95 96.04 93.16 90.27 87.38 84.50 81.61 78.73 75.84 72.95 70.07 67.18 64.29

11/1954

ARIMA (2,1,3) 11/1973 135.97 11.33 95.43 96.07 95.31 93.99 93.33 93.81 94.87 95.52 95.24 94.40 93.79 93.92

Log Double
11/1954

(Brown)
Exponential 11/1973

Smoothing 60.37 5.03 96.00 93.10 90.19 87.28 84.38 81.47 78.57 75.66 72.75 69.85 66.94 64.03

11/1954

ARIMA + NN
(7x7x1) Residuals 11/1973 127.98 10.66 90.68 91.93 90.28 90.35 89.24 90.56 91.50 92.36 91.56 91.42 89.82 90.74

(3x7x1) NN 100% 11/1954

Training + Double -

Forecast 11/1973 52.08 I  .34 95.47 92.28 92.78 90.04 87.01 83.89 80.41 75.71 76.53 72.00 68.67 65.60

(12x3x1) Log 11/1954

Double Brown Exp -
+ NN Residuals 11/1973 97.13 8.09 111.66 78.74 102.39 77.98 92.94 79.13 83.56 70.48 75.40 67.68 69.28 61.01



The graph shows an overall good fit for most of the models. During the prediction months

(12/73 - 11/74) a divergence is seen with the ARIMA (2, 1, 3) models. Moreover, the Double

Exponential smoothing + NN residual prediction becomes more volatile. SPINDX NN + Double

Forecast outperform all other prediction models, showing a slight improvement over the

standalone Double Exponential Smoothing model. See appendix for parameter estimates.

Figure 25 - Oil Crisis, Prediction Time series 11/1972 - 11/1974
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10 BOOTSTRAPING SIMULATION FORECASTING METHODOLOGY

10.1 Bootstrapping Simulation Methodology

Bootstrapping simulation is a nonparametric method that differs from other methodologies used

in the previous sections. To generate a series of random movements, bootstrapping uses real

asset returns from historical data. Paul Wilmott (2007) introduces a technique to bootstrap

financial time seriesxxv'

* Determine N assets with X periods of data. To illustrate a simple example we choose

N=3 securities: Google, Microsoft, and Yahoo and X=13 periods of monthly data

ranging from 12/31/2007 to 12/31/2008.

DATE GOOG MSFT YHOO

31-Dec-08 307.65 19.44 12.2

28-Nov-08 292.96 20.22 11.51

31-Oct-08 359.36 22.33 12.82

30-Sep-08 400.52 26.69 17.3

29-Aug-08 463.29 27.29 19.38

31-Jul-08 473.75 25.72 19.89

30-Jun-08 526.42 27.51 20.66

30-May-08 585.8 28.32 26.76

30-Apr-08 574.29 28.52 27.41

31-Mar-08 440.47 28.38 28.93

29-Feb-08 471.18 27.2 27.78

31-Jan-08 564.3 32.6 19.18

31-Dec-07 691.48 35.6 23.26

Convert the X daily data into M returns (In Xt /In Xt-1). The table below shows the

conversion of the price levels to M=12 returns.

GOOG GOOGRET MSFT MSFT RET YHOO YHOO RET
31-Dec-08 307.65 0.049 19.44 -0.039 12.2 0.058

28-Nov-08 292.96 -0.204 20.22 -0.099 11.51 -0.108

31-Oct-08 359.36 -0.108 22.33 -0.178 12.82 -0.300

30-Sep-08 400.52 -0.146 26.69 -0.022 17.3 -0.114

29-Aug-08 463.29 -0.022 27.29 0.059 19.38 -0.026

31-Jul-08 473.75 -0.105 25.72 -0.067 19.89 -0.038

30-Jun-08 526.42 -0.107 27.51 -0.029 20.66 -0.259

DATE



30-Apr-08 574.29 0.265 28.52 0.005 27.41 -0.054

31-Mar-08 440.47 -0.067 28.38 0.042 28.93 0.041

29-Feb-08 471.18 -0.180 27.2 -0.181 27.78 0.370

31-Jan-08 564.3 -0.203 32.6 -0.088 19.18 -0.193

31-Dec-07 691.48 35.6 23.26

Assign an index for each M return. The index will refer to the cross section period of all

N returns. In the example below an M x N (excluding index) matrix is constructed.

Note that in index 1 refers to a row vector of cross section returns of Google, Microsoft,

and Yahoo. This will maintain the correlation of returns between the assets for that

specific index.

INDEX GOOG_RET MSFT_RET YHOORET

1 0.049 -0.039 0.058

2 -0.204 -0.099 -0.108

3 -0.108 -0.178 -0.300

4 -0.146 -0.022 -0.114

5 -0.022 0.059 -0.026

6 -0.105 -0.067 -0.038

7 -0.107 -0.029 -0.259

8 0.020 -0.007 -0.024

9 0.265 0.005 -0.054

10 -0.067 0.042 0.041

11 -0.180 -0.181 0.370

12 -0.203 -0.088 -0.193

Determine how many P periods to forecast/simulate forward, then draw a random number

U from a uniformly distribution from 1 to M (total number of return periods) for each

forecasting period. Map U to the index, and use the index number to reference the cross

section return for N assets for each forecasting period. Following our example we

determine that P=6 number of forecast periods. Next we randomly draw U for each

period, which can range from 1 to 12. In this case the result is recorded in the Random

Index row. The cross sectional returns referenced to that index is realized by that period

column. For example, in period 2 the random index drawn was 6, this index references

-0.00730-May-08 585.8 0.020 28.32 26.76 -0.024 1



the cross sectional returns of -. 105, -.067, -.038 for Google, Microsoft, and Yahoo

respectively.

6 Month Forecast

Random Index
GOOG

MSFT
YHOO

Period 1 Period 2 Period 3 Period 4 Period 5 Period 6

1 6 7 2 10 1

0.049 -0.105 -0.107 -0.204 -0.067 0.049

-0.039 -0.067 -0.029 -0.099 0.042 -0.039

0.058 -0.038 -0.259 -0.108 0.041 0.058

Repeat N Times, and save each result. In this example, if I assume that my portfolio is an

equally weighted average of Google, Microsoft, and Yahoo, then I can take a simple

arithmetic average for each trial. After 3 trials, I forecasted an Average of Averages

return of 1% in period 1, -3.1% in period 2, -4.1% in period3, etc. Note that the Average

of Averages is not part of Wilmott's original method, and it is introduced in the

conditional bootstrapping method in the next section. This example is simplistic, a large

number of trials (10,000+) and historical data (36+) are normally observed.

GOOG
MSFT
YHOO

Average Trial #1

GOOG

MSFT
YHOO
Average Trial #2

GOOG

MSFT

YHOO

Average Trial #3

Average of
Averages

Trial 1

Period 1 Period 2 Period 3 Period 4 Period 5 Period 6

0.049 -0.105 -0.107 -0.204 -0.067 0.049

-0.039 -0.067 -0.029 -0.099 0.042 -0.039

0.058 -0.038 -0.259 -0.108 0.041 0.058

0.023 -0.070 -0.132 -0.137 0.005 0.023

Trial 2

-0.180 -0.146 -0.067 -0.146 -0.022 -0.204

-0.181 -0.022 0.042 -0.022 0.059 -0.099

0.370 -0.114 0.041 -0.114 -0.026 -0.108

0.003 -0.094 0.005 -0.094 0.004 -0.137

Trial 3

-0.180 0.265 -0.180 0.049 -0.180 -0.107

-0.181 0.005 -0.181 -0.039 -0.181 -0.029

0.370 -0.054 0.370 0.058 0.370 -0.259

0.003 0.072 0.003 0.023 0.003 -0.132

0.010 -0.031 -0.041 -0.069 0.004 -0.082



10.2 Conditional Bootstrapping Simulation Methodology

To adjust for simulations in recessionary periods for the S&P 500, the following modification to

Wilmott's bootstrapping is proposed:

* Determine a fixed time period of N time series that exhibit similar correlation structures

or similar trend patterns. For example, S&P 500 36 month return snapshots of the Great

Depression and the Credit Crisis. Moreover, this is equivalent to taking a conditional

time range snapshot of the S&P 500, and classifying it as an "asset".

* Take the average or median of the N cross section return at the end of each simulation

loop. In addition, you can take the Average of Averages by storing the mean of each

period from the NxP matrix, and calculating the Average of all Averages after all

iterations are complete. Please see the empirical results section for an example.

Closed form methods like the linear regression often violate the normality assumption for

financial time series resulting in inaccurate estimation. Alternatively, bootstrapping makes no

assumptions about the distribution and can accurately account for the joint distribution of several

time series involved. Another advantage is that bootstrapping incorporates cross section

correlations between chosen financial time series. Lastly, to implement the bootstrapping

technique is fairly easy. One disadvantage is that the historical returns drawn may not accurately

reflect the current economic environment. However, by using a conditional data set this

disadvantage is less warranted. For example, modeling recessionary periods using time series

from historical recessionary periods like the Great Depression will provide more accurate

forecasts compared to using a random selection from the entire data set. This modified method

assumes that a decision maker has a prior belief of the economy (bull versus bear), so the results

would be inaccurate if the prior is incorrect, otherwise more accurate than unconditional

simulation.



11 CONDITIONAL BOOTSTRAPING SIMULATION EMPIRICAL

RESULTS

The approach was to simulate with different recessionary time periods in the S&P 500.

Choosing the length of monthly periods and the appropriate time series is essential. As a

guideline the recessionary period tables provided by the National Bureau of Economic Research

was used as an initial evaluation.

Table 26 - U.S. Recessionary Periods

Peak month Year Trough month Year
November 1948 October 1949

July 1953 May 1954

August 1957 April 1958

April 1960 February 1961

December 1969 November 1970

November 1973 March 1975

January 1980 July 1980

July 1981 November 1982

July 1990 March 1991

March 2001 November 2001

After evaluating each period, not every recessionary event had influence on the S&P 500. The

analysis showed that the following time series was best suited for recessionary simulation:

Table 27 - Selected Empirical Recessionary Time Series

Event Period Range Length
The Great 36
Depression 07/1929 - 06/1932 Months

36

The Oil Crisis 10/1972 - 09/1975 Months
36

Tech Bubble 01/2001 - 12/2002 Months



Other time series was chosen such as the recession in 1948 and 1957, but the economic recession

seemed to have small impact on the S&P 500 returns, thus those time series were not used. The

36 month period range was chosen, because that was average length an economy to recover from

a downturn. The Great Depression duration was above the mean, and the Tech Bubble and Oil

Crisis was equivalent to the mean. Also, the data was constructed so that the first 3 observations

would be prior to a "crash" return. This approach was adopted so that it could be comparable to

the time series period length in the previous empirical sections. Notice that the cross section

correlations co-moved together on the 4 th and 5th observations.

Table 28 - First five cross section returns

Great Tech
Index # Depression Oil Crisis Bubble

1 0.045619 0.009317 -0.050904
2 0.097992 0.045617 -0.020108
3 -0.04888 0.011828 0.09672
4 -0.199271 -0.017111 -0.030796
5 -0.133747 -0.03749 -0.021915

Using this simulation approach assumes that the analyst or decision maker has a prior belief that

the S&P 500 will be entering a bear market. Moreover, this approach is not appropriate if such a

prior does not exist. In this scenario, using a random sample over a large sample of the recent

observations is a better approach. To validate whether these time series co-moved together, the

time series was tested for cointegration (Johansen), as an alternative to correlation testing:

Table 29 - Johansen Conintegration Test of Great Depression, Oil Crisis, Tech Bubble

Sample (adjusted): 3 36

Included observations: 34 after adjustments

Trend assumption: Linear deterministic trend

Series: DEP OIL TB

Lags interval (in first differences): 1 to 1



Unrestricted Cointegration Rank Test (Trace)

Hypothesized Trace 0.05

No. of CE(s) Eigenvalue Statistic Critical Value Prob.**

None * 0.646648 68.83888 29.79707 0.0000

At most 1 * 0.503452 33.46897 15.49471 0.0000

At most 2 * 0.247463 9.666380 3.841466 0.0019

Trace test indicates 3 cointegrating eqn(s) at the 0.05 level

* denotes rejection of the hypothesis at the 0.05 level

**MacKinnon-Haug-Michelis (1999) p-values

This test indicated that all time series involved were cointegrated, and that these time series are

an appropriate choice for recessionary simulation.

11.1 Empirical Results of the Credit Crisis Bootstraping Simulation

The time series was used to simulate the Credit Crisis, the objective of this thesis. In addition,

the simulation is evaluated in the following statistics:

* Averages of Averages - The average of all 3 time series for each random sample, and a

final average taken of all the aggregated averages at the end of the simulation.

* Median of Medians - The median of all 3 time series for each random sample, and a final

median taken of all the aggregated medians at the end of the simulation.

* Mean of 3 Time Series - At the end of 100,000 simulations the mean of the last random

sample is taken.

* Median of 3 Time Series - At the end of 100,000 simulations the median of the last

random sample is taken.



Random Draw - At the end of 100,000 simulations a random 12 period cross section

period is selected.

Table 30 - Table of Empirical Results of the Credit Crisis Bootstraping Simulation

Actual Actual Actual
968.75 896.24 903.25

Predict Predict Predict 3 Mon 3 Mon 12 Mon
Month Month Month Forecast Forecast Forecast

1 2 3 Error MAE

Average of Averages 1142.35 1118.82 1095.81 588.74 196.25 908.50

Median of Medians 1147.31 1128.58 1110.28 617.93 205.98 957.84

Mean of 3 Time Series 1099.27 1033.98 952.21 317.22 105.74 734.36

Median of 3 Time Series 1133.79 1015.67 999.98 381.19 127.06 903.70

Random Draw #1 1155.97 1199.13 1225.19 812.05 270.68 630.74

Random Draw #2 1209.91 1046.32 918.69 406.68 135.56 962.74

Overall, the simulation results forecasted better results than other time series methods. The

Double Exponential Smoothing for the Credit Crisis had the best MAE of 205. Compare that

result to the mean of 3 time series which provided the best 3 month simulation of 105.74.

However, there is uncertainty whether the mean of 3 time series will provide an accurate 12

month forecast, due to the fact that the statistic is derived only through a single average of 3 time

series for a random draw. As a preference of long term forecasting, the Average of Averages

will most likely be a better indicator, since it takes into account a longer simulation history data.

In fact, the simulation returns showed that after an averaging of over 1,000,000 samples, the

results show that each recessionary period can expect on average a -2.08% return during a

recessionary period with a 95% lower confidence interval of -14.54% and upper confidence

interval of 9.67%. The next section on recessionary analysis will compare the previous time

series methods to bootstrapping, in order to evaluate the 12 month period forecasting accuracy.

See the appendix for attached simulation implementation written in MATLAB.



Figure 31 - Simuation of Credit Crisis 12 Month Forecasted S&P 500 Returns
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Figure 32 - Simulation of Credit Crisis, 12 Month Forecasted S&P 500 Level
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12 COMPARISON OF COMBINED METHODOLOGIES DURING

RECESSION/DEPRESSION PERIODS

The section will evaluate the best performing empirical models in its category. The "best

performing " criteria to select the models in each category that had the lowest MAE in 3 month

and 12 month forecasting errors. The following "best performing" models were identified:

* Log ARIMA

* Log Double (Brown) Exponential Smoothing

* Hybrid Linear Regression, Y=D(SPINDX)

* ARMAX(1,1,0) Mean + EGARCH(1,1) Volatility

* (3x7x 1) Neural Network, with 100% Training, using a 12 month Double Exponential

Forecast

* ARIMA Forecast + (7x7x 1) Neural Network Residuals

* Average of Averages Bootstrapping Simulation

* Mean of 3 Time Series Bootstrapping Simulation

Previously, the analysis only involved evaluating models under different major event scenarios

within its own category or method. For example, GARCH 12 month forecasts were evaluated

under Black Monday. A baseline of comparison is needed to evaluate all the models under the

same time series and metrics. This section on comparison analysis evaluates which model is

most effective during recessions. Specifically, each of the models/simulation above will forecast

12 month periods for the Great Depression and the Tech Bubble, and will summarize which

models were most effective in 3 month and 12 month forecasts.



12.1 Tech Bubble Empirical Results of Best Performing Models

The Tech Bubble era was chosen, for a couple of reasons. The first was that the time period had

available VIX data so that the Linear Regression model could be compared. Secondly, the Tech

Bubble fell within the 36 month recession period, which would allow the use of simulations.

Previous time periods such as Black Monday in the 1980's wasn't selected due to the

recessionary period was too short. Third, the Tech Bubble was a speculative period primarily

concentrated in the technology sector and was different from other recessions. Overall, the Log

Double Exponential Smoothing model outperformed all other forecasting models in the 3 month

and 12 month benchmark. With a 12 month MAPE of 3.77%, and a MAE error of 44. In

addition, the Double Exponential Smoothing had the most accurate 12 month point estimate of

1132. The (3x7x1) Neural Network Model had the second best 12 month results with a MAPE

of 4.29% and a MAE of 51. Another model that performed well was the Average of Averages

bootstrapping simulation, which had the second best 3 month forecast with a MAPE of 4.80%,

and the third best 12 month forecast with a MAPE of 4.43%. The most surprising result was the

linear regression, which had the worst 3 month forecast, and the bottom 3 rd 12month forecast

with a MAPE of 8.90%, 13.04% respectively. The analysis showed that the regression had

consistently produced level values higher than the actual. This is due to the fact that the Tech

Bubble had small influence on the explanatory values.

Table 33 - Linear Regression Forecasted Explanatory Values

Log Double
Forecasting Exponential

Model Smoothing ARIMA(2,1,3) ARIMA(2,1,2)
Date VIX IG OAS GDP LVL

2001M01 24.8696 201.8488 9906
2001M02 25.0635 194.5873 9920

2001M03 25.268 188.4603 9932

2001M04 25.4842 185.8845 9941
2001M05 25.7132 186.2597 9949
2001M06 25.9561 187.8497 9955
2001M07 26.2141 189.2339 9960



2001M09 26.7804 189.7783 9968

2001M10 27.0913 189.4309 9971

2001M11 27.4227 189.1186 9973

2001M12 27.7761 188.9766 9975

Notice that the forecasted explanatory values during these months did not fluctuate greatly.

However, the VIX did increase in volatility and the corporate default rates (IG_OAS) actually

fell during the Tech Crisis instead of rise, which in turn produced a lower forecasted result in the

regression model. The same issue is seen with the GDP, where levels forecasted are increasing

instead of decreasing. This analysis draws a particular insight that not all recessions and sharp

market declines are equated with higher default rates and lower GDP. The linear regression

model performed well for the first 3 months of the Credit Crisis for those circumstances, but

failed to appropriately model the tech speculation bubble. Another surprising result was the

EGARCH model that had the worst 12 month forecast, and the second worst 3 month forecast

with a MAPE of 15.30%, 8.68%, respectively. This is due to insignificant parameter estimations

in the ARMAX portion. A constant is not defined for this model, and since the historical

observations had no recent decline, the model assumes a positive drift. This model estimation

performs poorly during recessionary periods. Moreover, this positive drift issue is exactly the

same with the Log ARIMA model, which also performed poorly. Lastly, the ARIMA+ NN

Residual model indicated that the NN residual did improve the forecast slightly and

outperformed the Log ARIMA model in comparison. Compare the 12 month ARIMA+ NN

MAPE of 12.92% versus Log ARIMA 13.14%.

2001M08 26.4884 189.8396 9965



Table 34 - 3 and 12 Month Forecast Comparison Table, Tech Bubble

Start
Jan 2001
(Actual) 1366 1240 1160 1148

3 Mon 12 Mon 12 Mon 12 Mon

Fit Forecast 3 Mon 3 Mon Forecast Forecast Forecast

Range Error MAE MAPE Error MAE MAPE Mo 1 Mo 2 Mo 3 Mo 12

12/1925

Log ARIMA (2,1,3) 12/2000 311 104 8.56% 1787 149 13.14% 1319 1331 1333 1350

12/1925

Log Double (Brown) 12/2000 172 57 4.57% 531 44 3.77% 1288 1260 1234 1132

Hybrid Linear
Regression 1/1990 -

Y=D(SPINDX) 1.2/2000 318 106 8.90% 1776 148 13.04% 1360 1357 1355 1322

12/1925
ARMAX(1,1,0) -
+EGARCH(1,1) 12/2000 314 105 8.68% 2080 173 15.30% 1327 1334 1341 1405

(3x7x1) NN 100% 12/1925
Training + Double -
Forecast 12/2000 249 83 6.70% 607 51 4.29% 1312 1355 1239 1119

12/1925

ARIMA + NN (7x7x1) -
Residuals 12/2000 289 96 7.98% 1754 146 12.92% 1331 1328 1326 1350

Average of Averages
Simulation N/A 180 60 4.80% 629 52 4.43% 1293 1266 1240 1028

Mean of 3 Time
Series Simulation N/A 256 85 7.02% 990 82 6.98% 1332 1344 1278 969

- -



Figure 35 - Tech Bubble, 12 Month Forecast Comparison Graph
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12.2 Great Depression Empirical Results of Best Performing Models

The Great Depression was chosen due to its historical impact to the stock market and to the S&P

500. It is a historical model that can be considered on the magnitude and persistence of negative

returns. For example, in October 1929, the Great Crash occurred within a span of 3 days, which

is also known as "Black Thursday, Black Monday, and Black Tuesday"xxix, which caused the

S&P 500 to fall by 19.92% in that month. This steep decline started a movement in sporadic

monthly negative returns extending up until February of 1933. No recessionary event can

compare to this event with the exception of the Credit Crisis. Therefore, the Great Depression is

an appropriate time era to compare our results with the Credit Crisis forecasts. Overall, the

Average of Averages bootstrapping simulation outperformed all models for the 3 month period

with a MAPE of 10.67%. In addition, the Average of Averages had the best 12 month point

estimate. The EGARCH model which had the worst Tech Bubble results had the best overall 12

month forecast with a MAPE of 12.50%, and a MAE of 2.72. EGARCH also had the second

best 3 month forecast with a MAPE of 10.84%. EGARCH outperformed due to similar reasons

stated previously. EGARCH and ARIMA models perform better when there are more recent

observations that include negative returns, and significant parameter estimation. The time range

in periods were arranged purposely to test differences in time periods ending with and without

negative returns prior to forecasting. To no surprise the Log ARIMA (2, 1, 1) had the third best

12 and 3 month forecast with a MAPE of 13.25%, 13.03% respectively. Also, consistent with

our previous evaluation, the Log Double Brown had the worst 3 and 12 month forecast with a

MAPE of 52.27%, 29.05% respectively. Again, this is due to the last 3 observations ended with

negative returns prior to forecasting, resulting in an extreme forecast. The neural network

models ranked average in comparison, but the ARIMA + NN residual had the worst 3 month

forecast in comparison with the ARIMA(2,1,1), and tied for the 12 month model with a MAPE

of 13.23%, 13.25% respectively. This is an indication that the NN residuals did not provide

much value to the ARIMA (2, 1, 1) forecast, and overall produces mixed results. There are in

previous cases the NN residuals improved the forecast, but in this scenario it underperformed. In

addition, the 3 out of 4 events (Credit Crisis, Tech Bubble, Oil Crisis, Great Depression) tested,

modeling the residuals with NN indicate to improve the ARIMA forecast.



Table 36 - Great Depression, 3 and 12 Month Forecast Comparison Table

Start
Dec 1929
(Actual) 21.45 22.79 23.28 16.57

3 Mon 12 Mon 12 Mon 12 Mon

Fit Forecast 3 Mon 3 Mon Forecast Forecast Forecast

Range Error MAE MAPE Error MAE MAPE Mo 1 Mo 2 Mo 3 Mo 12

12/1925

Log ARIMA (2,1,1) 11/1929 8.89 2.96 13.03% 35.37 2.95 13.25% 19.84 19.46 19.32 19.24

12/1925

Log Double (Brown) 11/1929 19.86 6.62 29.05% 132.20 11.02 52.27% 18.19 15.78 13.69 3.80

Hybrid Linear 12/1925
Regression
Y=D(SPINDX) 11/1929 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

12/1925
ARMAX(1,1,0) -
+EGARCH(1,1) 11/1.929 7.41 2.47 10.84% 32.69 2.72 12.50% 20.23 19.99 19.90 19.85

(3x7x1) NN 100%
Training + 12/1925
ARIMA(2,1,1)
Forecast 11/1929 9.04 3.01 13.24% 35.57 2.96 13.33% 19.84 19.48 19.16 19.29

12/1925
ARIMA + NN (7x7x1) -
Residuals 11/1929 9.02 3.01 13.23% 35.41 2.95 13.25% 19.70 19.44 19.36 19.21

Average of Averages
Simulation N/A 7.31 244 10,67% 34.97 2.91 12.64% 20.49 20.07 19.65 16.30

Mean of 3 Time
Series Simulation N/A 9.13 3.04 13.38% 52.08 4.34 19.80% 19.68 19.99 18.72 14.14



Figure 37 - Great Depression, 12 Month Forecast Comparison Graph
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13 SUMMARY OF MODEL PERFORMANCE

To summarize the data, the MAPE was aggregated for each major event, and arithmetic average

was taken for all the 3 months MAPE. The results indicate that the Hybrid Linear Regression

model was the best short term forecasting model. Note that the linear regression only accounted

for two historical periods (Credit Crisis and the Tech Bubble) due to data constraints of the VIX,

which its earliest data started in 01/1990. The mean simulation model was ranked second, but

could very well be a more consistent performing model than the regression. The Double

Exponential Smoothing model was ranked last with the indication that this model can be

extreme, varying from getting very accurate results to inaccurate. Another interesting

observation is that the Neural Networking residual model on average outperforms the standalone

ARIMA time series model, which shows promise for using Neural Networks as a forecasting

method.

Table 38 - Performance Summary For 3 Month Forecast Models

3
3 Month 3 Month

Month 3
MAPE MAPE 3 Month

MAPE MonthTech Great MAPE Avg
Credit Rank

Bubble Depression
Crisis

Hybrid Linear Regression
Y=D(SPINDX) 2.15% 8.90% N/A 5.52% 1
Mean of 3 Time Series
Simulation 11.42% 7.02% 13.38% 10.61% 2

Average of Averages Simulation 21.36% 4.80% 10.67% 12.28% 3

ARIMA + NN (7x7x1) Residuals 16.25% 7.98% 13.23% 12.49% 4

ARMAX(1,1,0) +EGARCH(1,1) 24.91% 8.68% 10.84% 14.81% 5

(3x7x1) NN 100% Training +
ARIMA(2,1,3) Forecast 25.95% 6.70% 13.24% 15.30% 6

ARIMA (2,1,3) 25.27% 8.56% 13.03% 15.62% 7

Double (Brown) Exponential
Smoothing 22.31% 4.57% 29.05% 18.64% 8



For the 12 month performance summary, the same approach was taken where the 12 month

MAPE of all the major events were aggregated, and a final arithmetic average was taken. The

ranking indicated that the Average of Averages simulation ranked first. The "2%" rule of thumb

indicates to have some predictive results over a longer range. The mean of 3 time series

simulation ranked 6 th, indicating that it is best to be considered for 3 month forecasts. Also, the

mean of 3 time series has a tendency to forecast extreme negative returns and does not forecast

well for 12 months. ARMAX + EGARCH have also shown to be ranked 2 nd to last due to the

"constant" inaccuracy of hit and miss, and the Double Exponential Model placed last due to the

extreme results. Lastly, the Neural Network models have generally performed well over their

standalone ARIMA/Double Exponential counterparts with the NN (SPINDX) + ARIMA forecast

ranking second.

Table 39 - Performance Summary for 12 Month Forecast Models

12 12 Month
Month 12 Month

MAPE 12 Month
MAPE MAPE

Great Rank
Tech Avg.
Bubble DepressionBubble

Average of Averages Simulation 4.43% 12.64% 8.54% 1

(3x7x1) NN 100% Training +
ARIMA(2,1,3) Forecast 4.29% 13.33% 8.81% 2

Hybrid Linear Regression
Y=D(SPINDX) 13.04% N/A 13.04% 3
ARIMA + NN (7x7x1) Residuals 12.92% 13.25% 13.09% 4

ARIMA (2,1,3) 13.14% 13.25% 13.19% 5
Mean of 3 Time Series
Simulation 6.98% 19.80% 13.39% 6
ARMAX(1,1,0) + EGARCH(1,1) 15.30% 12.50% 13.90% 7

Double (Brown) Exponential
Smoothing 3.77% 52.27% 28.02% 8



The overall summary takes the arithmetic average of the 3 month MAPE average and the 12

month MAPE average. This approach indicates that the Hybrid Linear Regression is ranked first

originally. However, since the linear regression had only one category to evaluate, a N/A

ranking was applied. Instead, the Average of Averages simulation was ranked first and

consistently outperformed most models on 3 month and 12 month forecasts. It is also easy to

implement, assumes no distribution of the data and is a dependable and powerful method for

forecasting.

Table 40 - Overall Performance Summary, Weighted 3 and 12 Months

3
Month 12 Month Weighted Weighted
MAPE MAPE Avg Avg Rank
Avg

Hybrid Linear Regression
Y=D(SPINDX) 5.52% 13.04% 9.28% 1

Average of Averages Simulation 12.28% 8.54% 10.41% 2
Mean of 3 Time Series
Simulation 10.61% 13.39% 12.00% 3

(3x7x1) NN 100% Training +
ARIMA(2,1,3) Forecast 15.30% 8.81% 12.05% 4

ARIMA + NN (7x7x1) Residuals 12.49% 13.09% 12.79% 5

ARMAX(1,1,0) +EGARCH(1,1) 14.81% 13.90% 14.36% 6

ARIMA (2,1,3) 15.62% 13.19% 14.41% 7

Double (Brown) Exponential
Smoothing 18.64% 28.02% 23.33% 8



14 CONCLUSIONS

Overall, forecasting the S&P 500 with accurate point estimates can be difficult. Models that

were shown to have a good fit in the evaluation range may not necessarily perform well in actual

forecasts due to overfitting. However, certain models are more effective than others depending

on the time range or on the trend. The Log Double Brown exponential smoothing is a good short

range (3 months) and long range (12 months) forecasting model to use if you have a prior belief

that a step recession or boom is in the early stages. However, the Double Exponential

Smoothing model can produce extreme forecasts, so this method is best modeled prior to a large

reduction in returns. The ARIMA (2, 1, 3) model and the Damped Exponential models are

possible long range forecasting models if a clear trend is shown, or variation within 2 sigma is

expected. These 12 month forecasting models were validated using the Tech Bubble data,

because of the similarities in trends and data patterns. The EGARCH models are best used for

forecasting volatility, and indicated below average performance results in comparison. In

addition EGARCH models have similarities to the ARIMA model in misforecasting steep

declines and increases in level. However, EGARCH and ARIMA models provide good 12

month forecasts when there are more recent observations that include correlated and subsequent

negative/positive returns. Neural networks performed average in comparison to the other

methods, but combination and residual Neural Networking models on outperformed results of

traditional ARIMA and Double Exponential Smoothing models on average. Neural network

research shows potential for improved forecasting accuracy in the future. Bootstrapping

Simulation is the favored method to forecast the S&P 500 during recessionary periods due to its

consistent MAPE performance in 3 and 12 month forecast range. In conclusion, the S&P 500

index is considered undervalued if the assumptions of long run mean convergence holds true.

Reflecting upon the last table below, the 3 month forecasts of the Hybrid Linear regression show

an excellent forecast with a low 3 month MAPE of 2.15%. Since actual data is not available for

09/2009, the Average of Averages simulation, the favored method, forecasts a 12 month point

estimate of 909 with a 95% lower confidence interval of 802 and upper confidence interval of

1021.



Table 41 - Summary of 3 and 12 Month Level Forecasts of the Credit Crisis 10/2008 -

09/2009

3 Mon 3 Mon Lower Upper
Predict Predict Predict 3 Mon 12 Mon

Forecast Forecast 95% 95%
Mon 1 Mon 2 Mon 3 MAPE Forecast

Error MAD CI Cl

Actual Actual Actual

968.75 896.24 903.25

Hybrid Linear
Regression
Y=D(SPINDX) 973 924 877 58 19 2.15% 439 0 1647

Mean of 3 Time
Series Simulation 1099 1034 952 317 106 13.69% 734 661 842

ARMAX(1,1,0)
+EGARCH(1,1) 1159 1151 1144 686 229 24.91% 1095 977 1207

Log Double
(Brown)
Exponential
Smoothing 1160 1128 1096 616 205 22.31% 850 491 1470

Average of
Averages

Simulation 1142 1119 1096 589 196 21.36% 909 802 1021

ARIMA (2,1,3) 1160 1157 1147 696 232 24.25% 1017 886 1157

(3x7x1) NN 100%
Training +
ARIMA(2,1,3)
Forecast 1149 1184 1149 713 238 25.95% 1018 887 1158

ARIMA + NN
(7x7x1) Residuals 1037 1079 1095 444 148 16.25% 1017 886 1157



15 FURTHER RESEARCH

In addition to validating long term models through the tech boom, there are other unprecedented

events that can be used for back testing such as the first (1914-1918) and second world wars

(1939-1945), the recession in the 1957-1958, 1960-1961, and prior to the oil crisis in 1969-1970.

The models used in this thesis have been constrained to time series and simulation methods.

Although introductory research in Neural Networks has been conducted, further research is

needed to better understand the use of Neural Networks. This research has shown that Neural

Networks hold forecasting potential and on average Neural Network models outperformed time

series models. However, mixed results can occur and at times they do not outperform the

ARIMA or Exponential model when combined. There is also potential in using VARFIMA

(vector autoregressive fractionally integrated moving averages) and ARFIMA models to model

long term memory. A challenge with using VARFIMA and ARFIMA models is that high

frequency data is usually needed, and a strong data pattern may be required to yield effective

results. One VARFIMA approach is to produce forecasts and level pricing by capturing both

short term correlation structures and long-range dependence characteristics and feedback

relationships between series. xxx Moreover, Ravishanker (2009) offers an approach to determine

maximum likelihood estimation of parameters from vector ARFIMA models with Gaussian

errors by using multivariate preconditioned conjugate gradient (MPCG) algorithm. Comparing

VARFIMA with existing methods and the accuracy of VARFIMA producing 3 and 12 month

forecasts is an avenue of new research. Lastly, another area of research is researching different

Neural Network techniques such as Higher Order Neural Networks (HONN), Psi Sigma network

(PSN), and a Recurrent Neural Network (RNN) for additional forecasting comparisons. Dunis et

al demonstrate that these Neural Network techniques outperform the following traditional

models: ARMA model, moving average convergence divergence technical model (MACD), and

logistic regression model (LOGIT).xxx Dunis's research compared these methods under the

context of trading simulations of the EUR/USD Exchange rates. Researching and comparing

these Neural Network methods against traditional methods for 12 month forecasts for the S&P

500 is an application of interest.



16 APPENDIX

16.1 Parameter Estimates of Preferred 12 Month Forecast: Combined Forecast

ARIMA(2,1,3) + Log Damped Trend Exponential, Entire Data Set (1925 - 2008)

Parameter Estimates

SPINDX

Forecast combination 1: (Combination of 2 models)

Model Parameter £Etimate Sd. Errr I T Prob>ITI

RRIlMA(,l,3) NOINT 
0.50000

Log Damped Trend Exponential 
Smoothing 0.50000

Combined Model VarIance 
0.00306

Parameter Estimates

SPINDX

ARIMA(Z,1,3) NOINT

Model Parameter Est inate Std. Error T Prob> ITi

Moving Average, Lag 1 1.56100 0.1464 10.6606 <.0001

Moving Average, Lag Z 
-0.53854 0.17Z2 -3.1Z65 0.0167

Moving Average, Lag 3 
-0.07952 0.0433 -1.8353 0.1091

Autoregressive, Lag 1 1.51686 0.1450 10.4607 <.0001

Autoregressive, Lag E -0.54658 0.1416 -3.859E 0.006Z

Model Uariance (sigma squared) 
343.95079

Parameter Estinates

SPINDX

Log Damped Trend Exponential 
Smoothing

Model Parameter Est iemte I Std. ErrorI T I Prob>ITI

LEVEL Smoothing Weight

TREND Smoothing Weight

DAMPING SMoothing Weight

Residual Variance (sigma squared)

Smoothed Level

Smoothed Trend

0.99900
0.027 1
0.90578
0.00306
7.330886
0. 0022

0.0275
0.0206
0.0865

36.3026
1.3150
10.L7455

<.0001
0.2210
<.0001



16.2 Parameter Estimates of Preferred 3 Month Forecast: Log Double (Brown)

Exponential Smoothing, 7 Year Data Set (2000 - 2007)
Paraneter Estimates

SPINDX

Log Double (Brown) Exponential Smoothing

Model Parameter Estimate Std. Error T IProb>ITI

LEVEL/TREND Smoothing Weight 0.43961 0.0305 P1.400 (<.0001

Residual Variance (sigma squared) 0.00184

Smoothed Level 7.311 .

Snoothed Trend 0.0078 .

16.3 Parameter Estimates of 12 Month Forecast, Tech Bubble: ARIMA (2, 1, 3), Entire

Data Set (1925 - 2001)
Parameter Estimates

SPINDX

Log ARIMA(,1,3) NOINT

Model Parameter Estimate Std. Error T Prob>ITI I

Hoving Average, Lag 1 -0.31753 0.163 -2.1701 0.0666

Moving Average, Lag Z -0.64814 0.1394 -4.6497 0.0023

Moving Average, Lag 3 0.06029 0.060 1.3108 0.2313

Autoregressive, Lag 1 -0.22981 0.1439 -1.5974 0.1542

Autoregressive, Lag 2 -0.60951 0.1340 -4.5476 0.0026

Model Variance (sigma squared) 0.0031 ..



16.4 Box Plot and Distribution of S&P 500 Data, Entire Data Set (1925-2008)
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16.5 Normality Plot of S&P 500 Data, Entire Data Set (1925-2008)
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16.6 Box Plot and Distribution of S&P 500 Data, Credit Crisis Data Set (01/2007- 12/2008)
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16.7 Parameter Estimation, Linear Regression, VIX Data point, ARIMA(2,1,3)

Parameter Estimates

VIX: VIX

ARIMA(2,1,3) NOINT

Hodel Parameter

Moving Average, Lag 1

Moving Average, Lag 2

Moving Average, Lag 3

Autoregressive, Lag 1

Autoregressive, Lag 2

Model Variance (sigma squared)

I Estimate I Std. Errori

1.78200
-0.75903
-0.06499
1.54618

-0.61630
12.40973

0.1H32z
0.2L426
0.1080
0.1280
0.1278

T Prob>ITI I
12.4458
-3.1284

-0.5970
12.0792
-4L.8227

<.0001
0.0020
0.5511
<.0001
<.0001

Fit Range: JAN1990 to SEP2008

16.8 Parameter Estimation, Linear Regression, IG OAS Data point, ARIMA(2,1,3)

Parameter Estimates

IGOGAS: IG_OAS

ARIMA(2,1,3) NOINT

I Estimate I Std. Error I

Moving Average, Lag 1 
-0.17084

Moving Average, Lag 2 
-0.83083

Moving Average, Lag 3 
-0.31492

Autoregressive, Lag 1 
-0.09030

Autoregressive, Lag 2 
-0.72022

Model Variance (sigma squared) 
1P2.6208

0.0997
0.0631
0.0760
0.0876
0.0809

-1
-13

-4
-1
-8

T Prob>TI
.7130 0.0881

.1692 (.0001

.1LI2 (.0001

.0312 0.3036

.8987 <.0001

Fit Range: JAN1990 to SEP2008

Model Parameter
;;;; - ;;;; I



16.9 Parameter Estimation, Linear Regression, GDP Level Data point, Double

Exponential Smoothing

Parameter Estimates
GDP_LUL: GDP_LUL

Double (Brown) Exponential Smoothing

Model Parameter Estimate Std. Error T Prob>TI

LEVEL/TREND Smoothing Weight 0.99900 0.0237 4E.1547 <.0001

Residual Variance (sigma squared)

Smoothed Level
Snoothed Trend

128.95E99
11 71

-5.00000

Fit Range: IMAR1990 to SEP008

16.10 Parameter Estimation, SPINDX Return Linear Regression, Credit Crisis

Dependent Variable: SPINDX_RET

Method: Least Squares

Date: 02/07/09 Time: 00:01

Sample (adjusted): 2005M04 2008M09

Included observations: 42 after adjustments

Coefficient Std. Error t-Statistic Prob.

C 0.026321 0.009250 2.845503 0.0070

HOMEDEF 4.10E-07 2.13E-07 1.926538 0.0613

IG_OAS -0.000383 9.80E-05 -3.908391 0.0004

R-squared 0.333917 Mean dependent var -0.000289

Adjusted R-squared 0.299759 S.D. dependent var 0.032075

S.E. of regression 0.026840 Akaike info criterion -4.329071

Sum squared resid 0.028096 Schwarz criterion -4.204952

Log likelihood 93.91049 Hannan-Quinn criter. -4.283576

F-statistic 9.775621 Durbin-Watson stat 1.914902

Prob(F-statistic) 0.000362

1



16.11 Parameter Estimation, D(SPINDX) Linear Regression, Credit Crisis

Dependent Variable: D(SPINDX)

Method: Least Squares
Date: 02/07/09 Time: 00:07

Sample (adjusted): 1990M03 2008M09

Included observations: 223 after adjustments

Coefficient Std. Error t-Statistic Prob.

VIX -0.834168 0.460197 -1.812633 0.0713

GDPLVL 0.004651 0.000897 5.186794 0.0000

IGOAS -0.215100 0.067178 -3.201952 0.0016

R-squared

Adjusted R-squared

S.E. of regression

Sum squared resid

Log likelihood

Durbin-Watson stat

0.109340

0.101243

39.06499

335736.2

-1132.259

2.063864

Mean dependent var

S.D. dependent var
Akaike info criterion
Schwarz criterion
Hannan-Quinn criter.

16.12 Parameter Estimation, Credit Crisis Data, ARMAX(2,3,0) + EGARCH(1,1)

Mean: AR~PI X(1,1,0); Variance: EGARCH(1,1)

Conditional Probability Distribution:
Number of Model Parameters Estimated:

Gaussian
6

Parameter

AR(1)
MA (1)

K

GARCH (1)
ARCH (1)

Leverage (1)

Value

0.94178
-0.88899
-0.18814
0 .96726
0.22529

-0.10197

Standard
Error

0.03749 6
0.050912
0.040946

0 .0069873
0 .024525
0.022123

T
Statistic

25.1170
-17.4614

-4.5948
133.4316

9.1862
-4.6093

3.742018

41.20658

10.18169

10.22753

10.20020



16.13 Parameter Estimation, Credit Crisis Data, Constant + ARMAX(2,3,0) + GARCH(1,1)
Model

Mean: ARI L (1,1,0) ; Variance: GARCH(1,1)

Conditional Probability Distribution: Gaussian
Number of Model Parameters Estimated: 6

Parameter Value
Standard

Error Statistic

C 0.011491
AR(1)
MA (1)

-0.83974
0.87152

K 5.5752e-005
GARCH (1)

ARCH (1)

0.85585
0.13405

0.0025628
0.12099

0.11143
1.6939e-005
0.01388
0.0170483

16.14 Parameter Estimation, Black Monday Data, ARMAX(2,3,0) + EGARCH(1,1)

Mean: AR1 AX1,1,0) ; Variance: EGARCH(1,1)

Conditional Probability Distribution: Gaussian

Number of Model Parameters Estimated: 6

Parameter

AR (1)

Value

0.90579
-0.84897

K -0.17056

GARCH (1) 0.96991

ARCH (1)
Leverage (1)

0.21039
-0.10819

Standard
Error

0.063172
0.080959

0.046044

0.0080176

0.024848

0.02565

Statistic

14.3384
-10.4864

-3.7043

120.9721

8.4673
-4.2178

4.4838
-6.9404

214
3 .2914

61.6590
7.8634



16.15 Parameter Estimation, Black Monday Data, Constant + ARMAX(2,3,0) +
GARCH(1,1) Model

Mean: APRMAX (1, 1, 0) ; Variance: GARCH (1,1)

Conditional Probability Distribution: Gaussian

Number of Model Parameters Estimated: 6

Parameter Value

Standard

Error Statistic

C 0.011797
AR(1) -0.81706
MA(1) 0.84814

K 6.898e-005

GARCH (1)

ARCH (1)

0.85412
0.1274

0.0031436
0.18744

0.1754

2.0583e-005

0.01575

0.018214

3.7525
-4.3590
4.8354

3.3512

54.2300



16.16 ARIMA(2,1,3) Neural Network Residual Fit Statistics, and Weighting Estimation,

Credit Crisis

Fit Statistic

1

2

3

4

5

6

7

8
9

10
11

12

13

14
15

16

17
18
19

I Training I

[ TARGET=ERROR]

Average Error

Average Squared Error

Sum of Squared Errors

RootAverage Squared Error

Root Final Prediction Error

Root Mean Squared Error

Error Function

Mean Squared Error

Maximum Absolute Error

Final Prediction Error

Divisor for ASE

Model Degrees of Freedom

Degrees of Freedom for Error

Total Degrees of Freedom

Sum of Frequencies

Sum Case Weights * Frequencies

Akaike's Information Criterion

Schwarz's Baysian Criterion

237.32218868
237.32218868
238508.79963
15.405264966

16.41962421
15.920525241
238508.79963
253.46312394
128.48703954
269.6040592

1005
64

941
1005
1005
1005

5624.7657572
5939.1812977



From To Weighti

1 ERROR1 H 1 -0.568339481

2 ERROR2 H1I -0.813869681

3 ERROR3 H11 1.1231864768

4 ERROR4 H 11 -1.49964644

5 ERRORS HII 0.7982100526

6 ERRORS H11 0.1886645684

7 ERROR7 H11 -1.165239711

8 ERROR1 H12 0.0529356329

9 ERROR2 Hf12 -0.111725463

10 ERROR3 H12 0.4100516329

11 ERROR4 H12 -1.56075493

12 ERRORS H12 0.1105915503:

13 ERRORS H12 0.4308771758

14 ERROR7 H12 1.4506655996

15 ERROR1 H13 -0.355260731

16 ERROR2 H13 0.2789253631

17 ERROR3 H13 0.2775489495

18 ERROR4 H13 -1.001263813

19 ERRORS H13 0.8412174359

20 ERRORS H13 -0.09472083

21 ERROR7 H13 -0.192825135

22 ERROR1 H14 1.0715936615

23 ERROR2 H14 0.5417945492

24 ERROR3 H14 -1.100098257

25 ERROR4 H14 1.3184865278

26 ERROR5 H14 1.6765060752

27 ERROR6 H14 -0.79608386

28 ERROR7 H14 -1.959002734

I



29 ERROR1 H15 -0.599294236

30 ERROR2 H15 -0.821964239

31 ERROR3 H15 1.1440428323

32 ERROR4 H15 -1.534245712

33 ERRORS H15 0.8156417968

34 ERROR6 H15 0.1894496044

35 ERROR7 H15 -1.17556977

36 ERROR H16 -0.572121654

37 ERROR2 H16 -0.249605909

38 ERROR3 H16 0.0808344677

39 ERROR4 H16 0.498707449

40 ERRORS -0.321091195

41 ERROR6 H16 -0.431459559

42 ERROR7 H16 0.2300927811

43 ERROR1 H17 -0.499794872

44 ERROR2 H17 0.5395390222

45 ERROR3 H17 -0.430869589

46 ERROR4 H17 -0.579171337

47 ERRORS H17 1.2915406385

48 ERROR6 H17 0.6226783505

49 ERROR7 H17 -0.402987594

50 BIAS H11 -1.569678657

51 BIAS H12 -1.805767057

52 BIAS H13 0.660205842

53 BIAS H14 -0.471388933

54 BIAS H15 -2.502587373

55 BIAS H16 0.3031878657

56 BIAS H17 0.1971611848

57 H11 ERROR 0.3610953982

58 H12 ERROR -0.07612045

59 H13 ERROR 0.7316271669

60 H14 ERROR -8.536855E-7

61 H15 ERROR -0.724542904

62 H16 ERROR -0.06496634

63 H17 ERROR -0.066264445

64 BIAS ERROR -0.944353753



16.17 SPINDX Neural Network + Double Exponential Smoothing Fit Statistics, Oil Crisis

I FitStatistic Training
[ TARGET=SPINDX]
Average Error
Average Squared Error
Sum of Squared Errors
RootAverage Squared Error
Root Final Prediction Error
Root Mean Squared Error
Error Function
Mean Squared Error
Maximum Absolute Error
Final Prediction Error
Divisor for ASE
Model Degrees of Freedom
Degrees of Freedom for Error

Total Degrees of Freedom
Sum of Frequencies
Sum Case Weights * Frequencies

Akaike's Information Criterion

Schwarz's Baysian Criterion

1

2
3
4

5
6
7

1

12-
13

14

16
17
18
19

16.18 Parameter Estimates, Double Exponential Smoothing, Oil Crisis

Parameter EstiMates
SPINDX: SPINDX

Double (Brown) Exponential Smoothing

Iodel Parameter
LEVEL/TREND Smoothing Weight
Residual Variance (sigma squared)

Smoothed Level
Smoothed Trend

J Estimate I Std. Error
0.51636
4.39889

101.63378

-2.886L5

0.013Z

Fit Range: IDEC1925 to NOV1973 1

26.292295419

26.292295419
6336.443196

5.1276013319
5.9604246989
5.5596293946
6336.443196

30.909479005
41.407149622
35.526662591

241
36

205
241

241

241

859.89550309
985.34819269

T I Prob>Ti I1
38.9872 <.0001

--



16.19 MATLAB Implementation of Bootstraping Simulation, Mean of Time Series

load recession;

%define total number of iterations

iter = 100000;

%Generate random number from 1-36, for a vector of 12

col = 3;
horizon_ret = zeros(col,12);
avg = zeros(col*iter,12);

row_counter = 0;

col_counter = 0;

for i=l:iter
u = unidrnd(36,12,1);

for j=1:12

horizon_ret(:,j) = [D(u(j)); O(u(j)); TB(u(j))];

row_counter = row_counter + 1;
end
col_counter = col_counter + col;

if(i==l)
avg(l:col,:) = horizon_ret;

else
avg(col_counter-col+l:col_counter,:) = horizon_ret;

end

end

final_avg = mean(avg)

I
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