
42-Volt PowerNet System Management

Using Multiplexed Remote Switching
by

James Russell Geraci

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degrees of

Master of Engineering

and
Bachelor of Science in Electrical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1999 L cN I
@ James Russell Geraci, MCMXCIX. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly paper and electronic

copies of this thesis document in whole or in part, and to grant others the right to do so.

A .

Author.
Department of Electrical Engineering and Computer Science

May 21, 1999

Certified by L

/

Certified by

Accepted

Dr. Tom Keim
Research Scientist
Thesis Supervisor

-'I /L

hy

Chairman, Departmen

[ENO

John G. Kassakian
Professor

Thesis Supervisor

Kj Arthur C. Smith
Committee on Graduate Students

El

MASSACHUSETTS INSTITUTEI .J 1-Q A 1."C-%
itouti u LnjLyjuijLPu'=

JUL row
1 &jj u L=M%.zWU

I IRPAPIC:-Q

42-Volt PowerNet System Management
Using Multiplexed Remote Switching

by
James Russell Geraci

Submitted to the Department of Electrical Engineering and Computer Science
on May 21, 1999, in partial fulfillment of the

requirements for the degrees of
Master of Engineering

and

Bachelor of Science in Electrical Engineering

Abstract

The main objective of this thesis is to explore techniques for using multiplexed remote switching
in a 42/14 volt dual voltage automotive environment to perform bus energy management and
other useful system functions. Achieving this objective involved first constructing a 42v/14v dual
voltage automotive test facility. Then, designing and evaluating candidate algorithms for bus energy
management in a dual-voltage electrical system using that test facility. The energy management
algorithms explored in this thesis were designed to minimize the cost and equipment needed to
implement the algorithms. This will allow future work to perform cost vs. performance gain
analysis.

Thesis Supervisor: Dr. Tom Keim
Title: Research Scientist

Thesis Supervisor: John G. Kassakian
Title: Professor

-2-

Acknowledgments

I would like to thank Professor John Kassakian and Dr. Tom Jahns for originally entrusting me
with this project. I would also like to thank Dr. Tom Keim for his insight and help with this
project. I would like to thank my parents and brothers and sisters for their support. I would also
like to thank Li Yu for her support and help with some of the most physically demanding parts of
the project. Finally, I would like to thank Ed Lovelace and Dan Santos for their work in obtaining
a drive motor for my project.

-3-

Contents

1 Introduction 10

1.0.1 Project Overview . 10

2 Energy Management Algorithms 12

2.1 Present Energy Management System . 12

2.2 42V/14V Energy Management System . 13

2.2.1 Bus Voltage Regulation . 14

2.2.2 Sophisticated Battery Model . 14

2.2.3 Artificial Intelligence . 17

2.2.4 Tested Energy Management Algorithms . 18

2.2.4.1 42v/14v Bus Regulation Algorithm 18

2.2.4.2 Sophisticated Battery Model Algorithm 19

3 MIT Breadboard Facility 21

3.1 Power Delivery Systems . 21

3.1.1 The Breadboard Power Cabling . 22

3.1.2 Breadboard Batteries . 22

3.1.3 The Breadboard Alternator . 23

3.1.4 The Breadboard DC/DC Converter . 24

3.2 Power Dissipating Systems . 25

3.2.1 Fixed Resistance Loads . 26

3.2.2 Speed Dependent Loads . 26

3.3 Control System s . 27

-4-

Contents

3.3.1 PC Master Control System . 27

3.3.1.1 LabView File Input . 28

3.3.1.2 CAN Bus I/O . 30

3.3.1.3 Electromechanical Valve I/O . 31

3.3.1.4 Alternator Speed Control I/O . 31

3.3.1.5 User Interface Related Activities . 31

3.3.1.6 LabView File Output . 32

3.3.2 The CAN bus and the C167CR . 32

3.3.2.1 The CAN Bus . 36

3.3.3 Load Nodes . 36

3.3.4 Energy Management Node . 37

3.3.5 Serial to CAN Router Node . 39

3.3.6 Data Collection Module . 41

3.3.7 PC Input Files . 42

4 Test Procedure 46

4.1 Design an Energy Management Algorithm . 46

4.1.1 Selecting a Drivecycles . 46

4.1.2 Loadcycles . 47

4.2 Test Procedure . 48

5 Results and Conclusion 49

A Complete Sophisticated Energy Management Algorithm 51

B Breadboard Code 56

B.1 Organization . 56

B.2 14V Bus CAN Node I . 56

-5--

B.3 14V Bus CAN Node 2

B.4 14V Bus CAN Node 3

B.5 42V Bus CAN Node 1

B.6 42V Bus CAN Node 2

B.7 42V Bus CAN Node 3

B.8 CAN Router

B.9 Data Acquisition Node

B.10 DC/DC Converter Node

B.11 Saber to Breadboard Converter Code .

B.12 Breadboard Loads

Contents

58

59

60

61

62

63

64

64

65

65

-6

.

.

.

.

.

.

.

.

.

.

1.1 Dual Voltage Architecture with Communications Bus

Typical Voltage-time Discharge Curves of Lead Acid Cells

Battery State of Charge Partitioning used for this Thesis

Decision chart based on state of charge

Regulation Curve for DC/DC converter

40v alternator Current vs. RPM Characteristic

Diagram of MIT Breadboard Facility

40V Bosch Alternator Wiring Diagram

Digital Input of the MIT Breadboard DC/DC Converter .

Circuit Diagram of BTS660P Smart Switch Board

Circuit Diagram of BTS550P Smart Switch Board

A few lines from a breadboard input file

LabView 'G' code that parses breadboard input files . . .

. 13

. 14

. 16

. 18

. 19

. 22

. 23

. 25

. 27

. 28

. 28

. 30

3.8 C167CR Startup Code .

3.9 Memory Map of Phytec KitCON-167 used in Breadboard Facility .

3.10 Assembly Code that allows External Memory Bus Accesses

3.11 Loop Code for C167CR .

3.12 CAN Message Object Regsiters and Memory Locations

3.13 Format of Serial Message .

3.14 Precision Absolute Value Circuit with Direction SubCircuit

3.15 The LabView Breadboard Interface

34

34

35

35

37

40

42

44

-7-

List of Figures

10

2.1

2.2

2.3

2.4

2.5

3.1

3.2

3.3

3.4

3.5

3.6

3.7

List of Figures

3.16 The major communicating subsystems . 45

5.1 Battery Voltages vs Time . 49

A.1 Decisions made when 12v Battery is in the "Dangerous Overcharge" Region 51

A.2 Decisions made when 12v Battery is in the "Acceptable Overcharge" Region 52

A.3 Decisions made when 12v Battery is in the "Ideal Operation" Region 53

A.4 Decisions made when 12v Battery is in the "Acceptable Undercharge" Region 54

A.5 Decisions made when 12v Battery is in the "Dire Undercharge" Region 55

-8-

List of Tables

3.1 PacTorq Motor to SC756 Motor Driver Wiring Connections 24

3.2 Fixed Resistance Breadboard Loads . 29

3.3 14v Bus CAN M essages . 38

3.4 42v Bus CAN M essages . 43

4.1 Variables Used in Car Velocity to Alternator Conversion 47

-9-

Chapter 1

Introduction

1.0.1 Project Overview

The objective of this thesis project was to explore techniques for using multiplexed remote switch-

ing in a dual-voltage system to perform bus energy management and other useful system functions.

"Multiplexed remote switching" is a term used to describe the ability of an in-car computer net-

work to control the state of various loads within the automobile. Such a system would require a

data network, several microcontrollers, and switches whose state can be controlled by the micro-

controllers. Because of the ever increasing amout of wiring in automobiles, the next generation

automobile electrical system will have such a remote switching network installed. Figure 1.1 shows

the main parts one possible topology for the next generation automotive electrical system. It is a

42/14 volt unidirectional DC/DC converter based automotive electrical system.

Figure 1.1: Dual Voltage Architecture with Communications Bus

In this dual voltage environment there are two voltage busses, a 42 volt and a 14 volt bus.

Loads are attached to each bus and their on/off state is controlled by a microcontroller controlled

switch. An example of a 42 volt load would be a front windshield heater. A 14 volt bus load might

be the dome light that turns on when the car doors are opened. A complete list of loads used for

this thesis can be found in Table 3.2.1.

- 10 -

V Bus
La

Regulator DC/DC Load

- Load CAN Comunications Node
P71 Smart Switch
-Power Bus

!PC
CAN Commuications Bus

There are three sources of electrical power in the system of Figure 1.1. The first is the alternator

and the others are the batteries. When the gasoline engine is running, it turns the alternator which

converts the mechanical power of the engine into the electrical power used to supply the electrical

system of the car. The batteries have different functions depending on if the car is running (key-on)

or not(key-off). When the car is running, the two batteries perform a load leveling function. They

provide power to their respective busses when the total demand for power on a bus exceeds the

amount that is being provided to that bus by the alternator. When the car is off, each battery

has a different function. The 42 volt battery's function is to start the car. The 14 volt battery's

function is to ensure that the key-off loads have power during the entire time the car is off. The

DC/DC converter acts as a regulated valve controlling power flow between the two busses.

If size, weight, and money were not an issue, the alternator should be sized so that it would be

able to provide enough power so that there would be no possible combination of loads which could

drain the batteries. Because of physical and economic limitations, however, such an alternator is

not obtainable. Furthermore, such an alternator might not be the most desirable alternative. Due

to the start and stop nature of automobile driving, there are times when the car batteries are being

drained and times when they are being charged. The important thing is that the change in state

of charge of each battery over the complete drive cycle is zero or positive. If it were possible to

intelligently control the flow of charge between the two batteries so that no net charge is lost by

either battery over a given drive cycle, it would be possible to size the alternator so that it would

not have to provide enough power to keep both batteries fully charged at all times. This method

of intelligently controlling the flow of energy throughout the automobile is called active energy

management. Such an energy management system would allow the use of a smaller alternator and

therefore reduce the weight and cost of the automobile.

It is highly likely that the next generation of automobile electrical system will include a multi-

plexed remote switching network. If it does include such a network, then the system will have the

necessary communications and control elements to perform not only the communications necessary

for an energy management algorithm to work but also to perform the computations necessary to

make intelligent decisions based on the state of the automobile's electrical system. It is the purpose

of this research to use a multiplexed remote switching network to investigate the performance of a

number of energy management algorithms.

- 11 -

Chapter 1 Introduction

Chapter 2

Energy Management Algorithms

Energy management involves the estimation of energy consumption, proper sizing of equipment

to meet this estimate, and proper operation of the equipment [1]. Energy management algorithms

are a way to control the flow of energy throughout an automobile's electrical system. All energy

management algorithms take in information about the system's state in order to try to determine

the state of charge of the batteries. State of charge is a term often used to refer to the amount of

work that the battery can do given an instantaneous set of environmental parameters1 . In addition,
each algorithm can be customized to not only take into account information about the state of the

system but also take into account safety information and preferences which might be of most benefit

to the vehicle operator. For example, in the case of the energy management algorithms developed

for this thesis, a strong preference was given to the operator being able to start his car. The system

then combines the physical information and the preference information and uses that information

to appropriately modify the state of the system's energy sources and sinks.

2.1 Present Energy Management System

Energy management algorithms are not new to the automobile industry. Today's automobile

employs a simple yet effective energy management algorithm. It uses a voltage sensor that has a

temperature compensated output voltage to measure the battery's voltage and uses this informa-

tion to control the excitation of the alternator field winding, and thus the amount of power that

the alternator will deliver to the system. This energy management algorithm uses curve A from

Figure 2.1 as it's battery model [2].

Curve A in Figure 2.1 is a graph of battery cell voltage versus time for a battery which is slowly

being drained at a constant current. Because batteries are rated in amp-hours, if the total charge

leaving a battery is measured and the initial state of the battery is known, the state of charge

Not all algorithms actually calculate a state of charge. Most take action based on physical indicators necessary
to compute the state of charge, but do not actually compute the state of charge itself

- 12 -

Chapter 2 Energy Management Algorithms

4 6 7

Figure 2.1: Typical

I ours

Voltage-time Discharge Curves of Lead Acid Cells

of the battery can be computed. By using this graph, a relationship between the voltage of the

battery and the battery's state of charge can be made. The present system of observing the bus

voltage and then modifying the alternator excitation accordingly is simply trying to use the voltage

information to make a guess at how much charge has been removed from the battery during a drive

cycle. This algorithm does not compute a number for the state of charge, but simply reacts to the

voltage which is an indicator of the state of charge of the battery.

2.2 42V/14V Energy Management System

The 42V/14V electrical system will also employ an energy management algorithm; however, the

fact that there are now two batteries makes the control of the system more complex and the possible

benefits of having a good energy management algorithm greater. This thesis three main levels of

sophistication for an energy management algorithm.

1. Bus Voltage Regulation

2. Sophisticated Battery Model

3. Artificial Intelligence

- 13 -

Chapter 2 Energy Management Algorithms

2.2.1 Bus Voltage Regulation

Bus voltage regulation is the 42V/14V extension of the present day energy management al-

gorithm. It employs a temperature compensated voltage sensor on the outputs of the DC/DC

converter and the 42V alternator to measure the voltage on each bus and then uses curve A in

Figure 2.1 to infer the state of charge of each battery. It has the advantage that it can be easily

implemented and can be expected to maintain battery charge for both batteries about as well as

today's highly satisfactory system.

2.2.2 Sophisticated Battery Model

The second level of sophistication employs a more sophisticated battery model than the bus

voltage regulation level. This level employs state of charge explicitly rather than implicitly through

bus voltage. By reasoning about battery state of charge directly, it becomes possible to make more

intelligent decisions about how to control the states of the energy sources and sinks on the network

and thus develop an energy management algorithm. One way to use state of charge information to

help develop an energy management algorithm is to first break each battery's state of charge into

a number of different regions and then make decisions based on which region each battery is in at

any given time. An example of how a battery's state of charge might be decomposed into different

regions is shown in Figure 2.2.

Regions of State of Charge

me-gion I

Rdngion 2

Naegion 3

xt nd

Figure 2.2: Battery State of Charge Partitioning used for this Thesis

- 14 -

3Da!nqg- rom =

Accept dSLe

mr&te

Uarde rCharge

unide rcharge

Chapter 2 Energy Management Algorithms

Figure 2.2 shows the battery state of charge broken into 5 different regions. The exact place

in the state of charge continuum where each of the regions starts and stops have not yet been

standardized; however, for the purpose of this thesis, the following divisions were created:

" Region 1: Dangerous Overcharge -+ 115% < SOC

" Region 2: Acceptable Overcharge -+ 105% < SOC < 115%

" Region 3: Ideal Operation -+ 90% < SOC < 105%

" Region 4: Moderate Undercharge -+ 50% < SOC < 90%

" Region 5: Dire Undercharge -+ SOC < 50%

Figure 2.3 shows the 5x5 decision matrix which graphically displays the 25 different possible

regions into which the states of charge of both batteries may fall. The numbers on each edge

correspond to the state of charge regions in Figure 2.3.

A few examples of possible decisions based solely on the state of charge of the batteries are

written in the boxes in Figure 2.3. If both batteries are in a dangerous state of overcharge, then

the algorithm would turn off the DC/DC converter, decrease the alternator field winding excitation

(possibly turning it off), and turn on select high power loads on both the 42v bus and the 14v

bus. These actions would immediately cut off power flow into the 12v battery, so it would begin to

discharge. It would also allow the 36v battery to begin discharging as rapidly as possible. This kind

of situation would not occur in the voltage regulation energy management system unless something

had gone wrong with the voltage regulators, so actions taken during this mode of operation can be

seen as a sort of a safety device.

Another situation the system might get in is if both batteries are in a dire state of undercharge.

This situation might occur if, over a period of time, both batteries are drained and not returned

to a full state of charge after each drive cycle. In such a situation there might be the possibility of

recharging one of the batteries. This is where the engineer must make a decision as to what action

would best serve the customer. The system could either be designed to let the DC/DC converter

try to regulate the 14v bus and thus hopefully save the 12v battery, or it could be designed to shut

the DC/DC converter off and hopefully save the 36v battery.

- 15 -

Energy Management AlgorithmsChapter 2

Chapter 2 Energy Management Algorithms

-1

C

H

2

-3

4

5

I.
3 5V
2

Battery
3 4

SOC
5

Figure 2.3: Decision chart based on state of charge

If, in addition to the state of charge information, the current on each battery were known, then

even more informed decisions could be made. For example, if both batteries were in a region of

acceptable undercharge, but the 12v battery was draining, while the 36v battery was being charged,

the system could be designed so that the DC/DC converter would pass more current to the 12v

battery without causing the 36v battery to drain. This would keep the 36v battery in an acceptable

region of charge and it would either minimize the rate at which the 12v battery discharged, thus

extending the life of the 12v battery, or it might allow the 12v battery to begin charging. It might

even be possible for both batteries to charge. For example, if the 36v battery were charging at a

- 16 -

DCJDtC DC/DC DC/DC
OFF OFF CFE?

Alternator.
Down

Alternator a DC/DC
Down Action Down

Alternato r

DC/DC DC/DC Full an

Fu11 ON Full ON

CFP

Chapter 2 Energy Management Algorithms

rate of 6 amps, and the 12v battery were discharging at a rate of 5 amps, it might be possible to

control the DC/DC converter so that the 36v battery would charge at a rate of 3 amps and the

12v battery would charge at a rate of 4 amps.

The benefit of the sophisticated battery model energy management algorithm, over the simple

voltage regulation algorithm, is that the designer of the electrical system has more flexibility to

dictate how the system responds to different loading states. Because this algorithm can limit the

amount of current delivered by the DC/DC converter, it is possible to charge the 12v battery at a

rate that is less than the converter's maximum current delivery capability. With reduced output,

the current drawn from the 42V bus by the converter is reduced. This current can instead go

to the 36V battery thus reducing its rate of discharge and possibly even allowing it to charge.

Therefore, the situation could exist where both batteries are charging, albiet very slowly, instead of

in the voltage regulation case where only one battery is charging rapidly and the other is draining

because it is feeding the charging battery.

2.2.3 Artificial Intelligence

The decisions made by the energy management algorithm become the most helpful when the

system is aware of the physical environment around the car and can possibly learn the operator's

driving habits. Such a system might be aware of the date, the time of day, and the outside

temperature. It could be made aware of the weather forecast by having it automatically dial into

the weather service each night so it could adjust how it behaves for the following day. It could also

be plugged into a GPS system. If it then knew its starting point and its finish it could calculate

the amount of time that it would be driving and possibly the type of driving (in city or country)

that it would be doing. This information could have a significant impact on the way that energy

is managed in the system. Take again, for example, the situation where both batteries are in an

acceptable state of undercharge and the 12v battery is discharging and the 42v battery is charging.

If, the car knew that it was going to be doing a short drive and that the 12v battery wasn't

discharging too rapidly, it might choose to decrease the output of the DC/DC converter so that

the 12v battery drained a little more rapidly, but the 36v battery would charge more rapidly and

might possibly move into a region of ideal operation.

Finally, the decision on how to control the DC/DC converter would change once again if the car

were able to learn the driver's driving habits. If, for example, it were Friday at 6PM and the car

knew that the driver always went to his cabin for the weekend, and that the driver just let his

- 17 -

Energy Management AlgorithmsChapter 2

car sit over the weekend, the car would want to try to maximize the charge on the 12v battery by

increasing the output of the DC/DC converter so that it would be able to power all of its key-off

loads for the weekend.

2.2.4 Tested Energy Management Algorithms

For the purpose of this thesis both the 42v/14v bus regulation algorithm and a sophisticated

battery model algorithm were tested. Information about the load cycles, drive cycles, and physical

test facilities used to test these energy management algorithms can be found in Chapter 4. The

sophisticated battery model algorithm was limited to controlling only the state of the DC/DC

converter.

2.2.4.1 42v/14v Bus Regulation Algorithm

The 42v/14v bus regulation algorithm which was tested simply used the voltage regulators on

the DC/DC converter and the alternator to control the flow of power throughout the system.

Figure 2.4 shows the regulation characteristic of the DC/DC converter. This curve means that the

DC/DC converter will try to deliver it's maximum current of 68 amps anytime the voltage on the

12v battery drops below 13.8 volts. Figure 2.5 shows the alternator's regulation characteristic. The

alternator is set to regulate its output to 40 volts, and it can deliver up to 90 amps in order to

maintain a 40 volt output voltage.

Current

Imax

limited-

0,0 13.8v 14.2v Voltage

Figure 2.4: Regulation Curve for DC/DC converter

- 18 -

Chapter 2 Energy Management Algorithms

Energy Management Algorithms

1044r

/

4.0

Iw 2MC 3COG 4O IW afi 7600 *N 9000 1 0000 11i1'a Izab Do I4

I

Figure 2.5: 40v alternator Current vs. RPM Characteristic

2.2.4.2 Sophisticated Battery Model Algorithm

The sophisticated battery model algorithm which was designed was based on a coulomb counting

algorithm. The amount of current coming out of each of the batteries was measured about once

every second and its integral was computed. This value was then used to compute the percent state

of charge according to Formula 2.1.

State of Charge - (Initial Amp - hours) - (Amp - hours used) (2.1)
(Initial Amp - hours)

- 19 -

Chapter 2

Once the state of charge for each battery was calculated 2 , the system's present operating region

in Figure 2.3 was determined. From there, current information was used to make a final decision

about the state of the DC/DC converter. A complete enumeration of all possible decisions can be

found in Appendix A

Long-term inaccuracies in the discrete approximation of the total change in charge of a battery

will result in the true state of charge diverging over time from the state of charge calculated the

present test facilities data collection equipment. Even if it were possible to count every coulomb

entering and leaving the battery, the calculated state of charge and the true state of charge would

diverge due to internal self-discharge mechanisms. Over a long period of time, any control algorithm

that computes battery state of charge soley on equation 2.1 would need to be supplemented by

additional information sensitive to actual state of charge, for example, voltage and temperature.

For the purpose of this thesis, however, the rate of divergence between calculated and actual state

of charge should be slow enough to permit meaningful observations.

2State of charge will be used to mean percent state of charge from now on.

- 20 -

Chapter 2 Energy Management Algorithms

Chapter 3

MIT Breadboard Facility

In order to validate the energy management algorithms that were discussed in Chapter 2, it was

necessary to construct physical test facilities on which those tests should be conducted. The facility

that was to be constructed had to be an easily controllable and modifiable electrical equivalant of

the 42V/14V unidirectional DC/DC converter architecture from Figure 1.1. the facility can be

broken down 3 major parts.

1. Power Delivery Systems: Section 3.1

The Breadboard Power Cabling: Section 3.1.1

The Breadboard Batteries: Section 3.1.2

The Breadboard Alternator and Support Hardware: Section 3.1.3

The Breadboard DC/DC Converter: Section 3.1.4

2. Power Dissipating Systems: Section 3.2

Fixed Resistance Loads: Section 3.2.1

Speed Dependent Loads: Section 3.2.2

3. Control Systems: Section 3.3

PC Master Control System: Section 3.3.1

The C167CR: Section 3.3.2

The CAN Bus: Section 3.3.2.1

Data Collection System: Section 3.3.6

Software to generate PC input files: Section 3.3.7

3.1 Power Delivery Systems

The breadboard power delivery system is made up of all sources of power and the physical cabling

necessary to deliver that power to the systems loads. This includes the batteries, the alternator

- 21 -

and its support equipment, the DC/DC converter and the cables necessary to deliver power to the

loads.

3.1.1 The Breadboard Power Cabling

A diagram of the power cabling for the MIT breadboard facility can be seen in Figure 3.1.

42v Ground Bus

42v Power BusO

Fuses D ta
Collect

3 6v
Battery

12v

Battery

DC/DC
Converter 14v Power Bus

Figure 3.1: Diagram of MIT Breadboard Facility

Each power and ground bus was implemented by an aluminum rail. The two power busses are

located on opposite sides of the breadboard facility. Leads from loads can be screwed to each of

the rails. There are two separate ground rails. These represent different local grounds that might

occur in an automobile. They are connected togther by a pair of 4 AWG cable. This pair of cable

performs the same function as that of a chasis in an automobile.

3.1.2 Breadboard Batteries

The 36V battery was made up of 3 AC Delco Professional Freedom Car and Truck 58-5YR

batteries connected in series. They have a reserve capacity1 of 70 minutes. The 12V battery was

'Reserve Capacity [3] is the ability of the battery to maintain a cell voltage of 1.75V or greater at a discharge rate

of 25 amps.

- 22 -

MIT Breadboard FacilityChapter 3

an AC Delco Professional Freedom Car and Truck 65-7YR battery. It has a reserve capacity of 160

minutes.

3.1.3 The Breadboard Alternator

The alternator used to provide power to the network was a 40V Bosch alternator that was given

to the MIT Constorium for Advanced Automotive Electrical And Electronic Equipment by Paul

Nicastri of Ford. The alternator can supply 50 amps at idle and 90 amps at higher rpm. Thus the

alternator can supply a maximum of 2000 watts at idle and 3600 watts at higher rpm. Its output

current vs. rpm characteristic can be seen in Figure 2.5. The appropriate wiring diagram for the

alternator can be seen in Figure 3.2.

40V

40V
Loads

12V Battery

Figure 3.2: 40V Bosch Alternator Wiring Diagram

In a conventional automobile, the alternator is spun by the car's engine. It is geared at a ratio of

approximately 3 alternator rotations for every one engine rotation. The situation is the same with

the breadboard facility. The alternator was controlled by an 18hp 13.4kW Pacific Scientific PacTorq

Brushless P.M. Servomotor. The servomotor and the alternator were geared so that one rotation of

the servomotor produces about 3 rotations of the alternator. The speed of the motor was controlled

by a Pacific Scientific 756 ServoController. The appropriate wiring of the 756 ServoController to

- 23 -

MIT Breadboard FacilityChapter 3

B+
St

D+

Alternator

Casing to
Ground

MIT Breadboard Facility

the PacTorq servomotor can be seen in Table 3.1. The controller is controlled through its serial

port, and for testing purposes , it is being software limited by its control program, 'PacTorq.bas' 2,

to spinning the PacTorq motor to 3500rpm. If this limit is exceeded, the motor stops all motion

and cannot move again until it is reprogrammed.

Power Connections

PacTorq Motor Connection Label SC756 Drive Connection Label

T1 T
T2 R
T3 S

Resolver Connections

Pactorq Motor Connection Number SC756 Drive J51 Connection Number

1 4

2 3
3 2

4 1
NONE 5

5 6
6 7
7 NONE
8 8
9 9
10 NONE

Table 3.1: PacTorq Motor to SC756 Motor Driver Wiring Connections

3.1.4 The Breadboard DC/DC Converter

The breadboard's DC/DC converter is a unidirectional converter that is capable of delivering up

to 68 amps to the 14v bus. It's regulation characteristic can be seen in Figure 2.4. The DC/DC

converter can be controlled to deliver an amount of current less than its instantaneous maximum

deliverable power. An example of this can be seen in Figure 2.4. In Figure 2.4 the converter can

supply Imax but it can also supply any amount of current less than Imax like Ilimited for example.

The converter, however, cannot be controlled to deliver an amount of current greater than its

regulation characteristic will allow. For example, if the 14V bus were at 14.OV (it is regulated to

14.2v) then the maximum amount of current that the converter could deliver is 34 amps. It cannot

- 24 -

2 'PacTorq.bas' can be found in Appendix B

Chapter 3

Chapter 3 MIT Breadboard Facilitu

be controlled in any way to deliver more than 34 amps, but it can be controlled to deliver any
amount of current less than 34 amps.

The current limit of the DC/DC converter can be set by changing the value that appears on its
8-bit input seen in Figure 3.3.

Figure 3.3: Digital Input of the MIT Breadboard DC/DC Converter

Each input pin of the AD558 A/D converter has a pull up resistor. The pin can be brought to
logical low by first connecting an open drain configured transistor to the resistor and then activating
that transistor. The converter is at maximum current when all of the pins are high, and it is at
zero current when all the pins are low. Pin DBO on the AD558 is the LSB. The on/off state of the
converter is controlled by a separate pin. The converter will turn on when this pin is connected to
ground.

3.2 Power Dissipating Systems

By the year 2005 some automobiles will have an average electrical load of over 2500 watts [4].
The electrical loads for the breadboard were selected in order to allow loading in excess of 2500
watts. The loads that were selected for the breadboard facility can dissipate a total of about 4100

- 25 -

Chapter 3 MIT Breadboard Facility

MIT Breadboard Facility

watts. This is well above the maximum alternator output of 3600 watts at high alternator rpm.

Therefore, because the batteries must be used, an energy management algorithm is relevant.

In the case of the breadboard facility, loads can be broken down into two different categories. The

first type of load is a fixed resistance load, and the second type of load is a speed-dependent load.

For the MIT breadboard facility 11 different fixed resistance loads were selected and implemented

as CAN enabled smart switch controlled loads. The electromechanical valve system was the only

speed-dependent load enabled on the breadboard. It is discussed in Section 3.2.2.

3.2.1 Fixed Resistance Loads

The loads that were selected as fixed resistance loads are shown in Table 3.2.1. The resistors

were held in aluminum mounts and power flow to the resistors was controlled by a microcontroller

controller power MOSFET. The Siemen's BTS550P was used to switch on and off loads on the

14V bus, and the Siemen's BTS660P was used to control loads on the 40V bus. Each MOSFET

provides as an output on one of its pins a current that is proportional to the amount of current

flowing through its channel. The MOSFETs were mounted to custom designed boards. Also

mounted to each board was a LM317 voltage regulator that was used to provide power to the CAN

microcontroller that was controlling the state of the MOSFET via instructions it was receiving over

the CAN bus3 A circuit diagram for the BTS660P's board can be seen in Figure 3.4, and a circuit

diagram for the BTS550P's board can be seen in Figure 3.5.

3.2.2 Speed Dependent Loads

The electromechanical valve system was the only speed-dependent load enabled on the bread-

board. It was implemented using a Hewlett Packard 6050A 180OWatt Programmable Load that was

configured to draw a current proportional to the speed of the alternator. The amount of current it

demanded was varied with alternator speed according to Equation 3.1. It has a minimum demand

of 9 amps at idle (alternator speed of 1800 rpm) and a maximum of 45 amps at higher speeds

(alternator speed of 6000 rpm or more). The HP 6050A received control commands over a GPIB

bus.

3See Section 3.3.2 for a detailed description of the CAN bus.

- 26 -

Chapter 3

Chapter 3 MIT Breadboard Facility

40V

1

3.7kQ BTS660P

5. 4kQ-

sense To
-C Load
IN

1. 5kQ

100 --

V
out

V
ref u 5600

4.6k
-

psupply

Figure 3.4: Circuit Diagram of BTS660P Smart Switch Board

(3.1)Idemanded = Motorrpm - 6.425
3 5 0

3.3 Control Systems

3.3.1 PC Master Control System

Because the breadboard facility cannot be driven, a method of simulating driving had to be

created. This virtual driver was implemented using LabView 5.0. The virtual driver was coded in

LabView's multithreaded 'G' graphical programming language and run on a 200 MHz Pentium PC

running Windows95. Figure 3.15 shows the final PC interface for the facility. The virtual driver

had to be able to turn on and off fixed resistance loads, control the amount of current drawn by the

DC/DC converter, control the speed of the alternator, and collect information about the state of the

system. A subprogram was written to control each of these functions, and these subprograms were

combined toghter in the file "testcircuit2.vi." The major subprograms4 are shown in Figure 3.16.

The current drawn by the DC/DC converter is controlled by 'EMValve.vi.' The speed of the

alternator is controlled by 'PACSCIBYTE.vi', Information going to and received from the CAN

bus is controlled by 'SerialController.vi.' Information is sent through the CAN bus to the PC, so

4Programs and subprograms are called 'VIs' in LabView

- 27 -

Chapter 3 MIT Breadboard Facility

MIT Breadboard Facility

14V

330kQ BTS550P

l2kQ

VTo
sense T

C - (I Load
IN

1.OkQ

1000 -

V
out

Vref 560O

3.3k

Vsupply

- 0

Figure 3.5: Circuit Diagram of BTS550P Smart Switch Board

the CAN bus is the means of collection of information about the state of the system.

3.3.1.1 LabView File Input

The virtual driver itself is implemented in 'fileinputtest2.vi'. Fileinputtest2.vi reads in a specially

formatted file into a gian 2D array and then converts the information in the 2D array into informa-

tion that in the appropriate 'vi' can use to create electrical events on the breadboard facility. This

file is generated by a custom Java program that is described in Section 3.3.7. A few lines from one

of these files can be seen in Figure 3.3.1.1.

!54 ?822 ^42+14.0 #A003000005000000000000000000080A //

!55 ?1239 ^42+25.0 #AO030000090000000000000000000COA //

!56 ?1645 ^42+35.0 #A003000005000000000000000000080A //

!57 #AO030000090000000000000000000COA //

Figure 3.6: A few lines from a breadboard input file

Fileinputtest2.vi parses each line of the breadboard input file into a number of different tokens.

The information portion of each token is written to a global variable that has been designated as a

holder of that token's information. This global variable is, in turn, read by the appropriate subvi.

For example, take the line from Figure 3.3.1.1 that starts with "!54". This line would be broken

into 4 different tokens. The first token starts with a '!'. This tells the file input subprogram that

- 28 -

Chapter 3

Chapter 3 MIT Breadboard Facility

Breadboard Loads

14V Bus Loads

Load Name Saber Name Wattage Current Resistance
Power Door Locks sdr-locks 88 6.0 2.4

Seat and Door Module sdr-seat-adjust 13 1 15
Turn Lights sdr-turn 111 7.9 1.8

ABS sdr-abstc 324 23 0.6
Brake Loads sdr-brakes 146 10.5 1.3

42V Bus Loads

Rear Seat Heater sdr-rear-seatlhtrs 180 4.29 9.78
Air Pump sdr-emissions 480 11.4 3.7

Heated Windshield sdr-windshield 700 16.7 2.5

Table 3.2: Fixed Resistance Breadboard Loads

the following information is the time offset, in seconds, since the start of the test. It is written

to the global variable "Time Counter Global." The next token, '?', tells fileinputtest2.vi that this

information is the new speed, in rpm, of the PacSci Servomotor. Information following a '?' is

written to global variable "RUNSPEED." The alternator rotates at 3 times the value in this global

variable. The third token "42+" tells fileinputtest2.vi that this information is the new amount

of current to be demanded by the programmable load. It amount of current to be demanded is

written to global variable "E&M valve current demand." In this case the amount of current to be

demaded is 14 amps. The fourth token, "#" indicates that the following data is a CAN message.

It is written to global variable "CAN write buffer." The final token, "//" tells fileinputtest2.vi that

this is the end of the line and that it should proceed to the start of the next line. It is important

to note that not all lines will have all tokens, and, therefore, the length of the lines in the input

file may vary. The line starting with "!57" only contains 3 tokens compared with the 5 of the line

starting with "!54". This helps greatly reduce the size of the breadboard input file and this in

turn greatly improves the performance of the entire system because it allows better use of the host

PC's processing power. The LabView code that reads in the breadboard input file and parses it

can be seen in Figure 3.7. The code consists of two large while loops and several inner condition

statements. Every time through the inner loop consists of reading in and testing a token, i.e.

reading in a single column element from a row and sending the information in the column element

to the appropriate global variable. Execution of the outer loop corresponds to changing to a new

row.

- 29 -

Chapter 3 MIT Breadboard Facility

.7

1nput Load Ccle File

all rows

Lii---~ .:1.3 . itj

1 Read From S readsheet File. vi

0 0 ~ I

ueuej

error in (no error)

Get Date/Time In Seconds

Output Array

Index Ara

S it Strin

S lit Stun

wf~z~

S lit Strin

secondtimer2 vi[ecn
IT inm -- - - - -

Li

Ar Ar t~ Ar

"IN WR iTE 6[

CAN Stuing Indicator

- s Q EGe

I1nsert Q ueue E lement. vi1

50 S.

secondtimervi

Timer

Figure 3.7: LabView 'G' code that parses breadboard input files

3.3.1.2 CAN Bus I/O

Unfortunately, there is no known CAN interface to LabView. In order to use a PC card that

will allow the system to connect directly to the CAN bus, LabView would have to call a Windows

dynamic linked library function. LabView is implemented so that when it calls a Windows dll,
LabView stops all threads from executing until that dll function call is complete. This means that

every time the system wants to watch activity on the CAN bus, or receive a piece of information

from the CAN bus, LabView would have to stop all threads of execution and wait. If the CAN bus

were accessed more than a few times a second, the system could quickly get bogged down. LabView

does, however, have native serial port accessing methods, and it has serial port support though

- 30 -

MWOMaMMMOMM mmamammMMmmemmaa

..........

Chapter 3

its native VISA 5 support. It was decided then, that the PC would be connected to the CAN bus

through a serial router. Presently, this serial router only operates at 9600 baud; however, the serial

router can be operated at baud rates up to 625KBaud. The operation of the router is described in

Section 3.3.5.

3.3.1.3 Electromechanical Valve I/O

The electromechanical valve I/O subprogram was also implemented in VISA, and it's software is

almost identical to that of the CAN I/O subprogram except for the fact that it only transmits data

and never requests feedback from the programmable load. The programmable load has 3 different

600 Watt channels that can be controlled togther to give up to 1800 Watts. The electromechanical

valve I/O subprogram divides the demand between the three channels evenly. Each channel never

demands more than 15 amps individually.

3.3.1.4 Alternator Speed Control I/O

The alternator speed was controlled through communications port 1 (COM1) on the PC. It's

interface program was written using LabView's VISA modules so it should run on Windows NT as

well as Windows 95. It operates by sending a string through the serial port to the servocontroller

that was controlling the speed of the alternator. For example, if it was desired to have the alternator

spin at 900 rpm, then the string "00900" (plus a carriage return) was written to COM port 1. There

are always 2 leading zeros because LabView uses one and the servocontroller uses the second one

to create an interrupt to which it will respond. Therefore, the third value 9 is the first value read

in by the servocontroller. The string "00900" will cause the servomotor to spin at 900 rpm. This

means that the alternator is spinning at 2700 rpm.

3.3.1.5 User Interface Related Activities

The user interface is the lowest priority subprogram in LabView. Under heavy loading situations

LabView will often not update the interface right away. This can give the appearance of a delay

in the network; however, this is not the case. It is only LabView trying to make sure that all

I/O subprograms operate properly even at the expense of the user interface. This portion of the

5 VISA is an interface which allows you to access all of the PC's I/O ports in an identical fashion through generic
Read/Write commands. Therefore, it is possible to use almost the same code to access a GPIB port as it is to access
a serial port.

- 31 -

MIT Breadboard Facility

program is also responsible for writing collected data to the hard disk. The data that is written is

battery voltage for each battery, time, and motor rpm.

3.3.1.6 LabView File Output

LabView takes bus voltage, alternator shaft speed and battery current information and writes it

to an output file. By default, the file is named "output.txt" and it located in the root directory of

the "d:" drive of the PC that was used. The output file is a tab delimited file. The columns in

the file represent time, alternator shaft speed, 42V bus voltage, 14V bus voltage, 42V bus current,

14V bus current, state of DC/DC converter.

3.3.2 The CAN bus and the C167CR

One of the features of the next generation of automobile electrical system may very well be some

type of multiplexed data network that will control the state of the loads. The breadboard facility

implements this feature in the form of a CAN network. CAN is a Bosch networking protocol which

was developed in the late 1980's for use in the automotive industry. CAN is an acronym which stands

for Controller Area Network. A complete discussion of the specifics of the CAN network protocol

can be found in the book "CAN System Engineering: From Theory to Practical Applications" [5].

CAN is a standard for transmitting messages, and the exact hardware implementation might vary

between vendors. For the purpose of this thesis it is important to understand the Siemens C167CR

microcontroller, and how Siemens implements the CAN protocol in this controller.

The C167CR microcontroller is a 16-bit microcontroller. The CPU is able to operate at clock

speeds of up to 20 MHz. One of the major applications for microcontrollers is data collection and

real time control of external systems. To better achieve this goal, there is an on chip peripheral

subsystem that operates independent of the CPU core. This peripheral subsystem is connected

with the CPU via a complex system of interrupts. If the peripheral needs the CPU to perform

some task, the peripheral requests the attention of the CPU by generating an interrupt. Ingeneral,

the peripheral will not do anything while it is waiting for its interrupt request to be serviced. The

peripheral subsystem contains 9 different peripherals all of which operate independent of the other

peripherals and the CPU. Four peripherals are used in this thesis. They are the A/D convereter,

the General Purpose Timer Units, the Asynchronous Serial Channel, and the CAN-Module.

The C167CRs that make up the breadboard facilities CAN come in four main varieties.

- 32 -

Chapter 3 MIT Breadboard Facility

1. Load Nodes

2. DC/DC Converter Controller Node

3. Energy Management Node

4. Serial to CAN Router Node

The software that controls each of these nodes is made up of a 'mainXYZ.asm' 6 object file that

is linked to several other object files that control one of the on chip peripherals. A full list of each

node and the software that makes up the node can be found in Appendix B.

The files are assembled togther using a DOS batch file entitled 'compXYZ.bat' where XYZ is a

unique alphanumeric identifier for each node. 'CompXYZ.bat' first assembles all of the necessary

assembly files. It then proceeds to link these files and locate them, and then turn the output of the

locater7 into an Intel hex formatted file. Intel hex is the file format required by the KitCON-167

board. All Intel hex formatted files end in '.hex'. These files can be downloaded to the KitCON-167

boards via the program 'Flasht.exe'. Download of an Intel hex formatted program to one of the

KitCON-167 boards is done by first connecting the KitCON-167 board to the COM1 port of the

PC. Then, 'flasht' must be typed and entered from a DOS command prompt in the directory that

contains the hex file that should be downloaded. The 'Flasht.exe' program will only work properly

if it is in the Windows95 path8 . 'Flasht.exe' does not work under Windows NT.

A microcontroller differs from a PC in that the microcontroller does not come with a prepro-

grammed boot ROM or BIOS. The information in the PC's BIOS tells the PC's microprocessor

how the microprocessor should communcate with the PC's memory and data busses. This code

must be provided by the user to the microcontroller. When the C167CR is first powered on, it

starts program execution from memory address 00'0000h. In order for the user's program to exe-

cute properly, a branch instruction to the start of the program must be located at memory address

00'0000h. 3.3.2

6In 'mainXYZ.asm' the XYZ is a unique alphanumeric identifier. For example, 'mainl14.asm' is the main file for
the main assembly language file for CAN node 1 on the 14V bus.

7The locator calls the file 'linker.lnv'. This tells the locater where the Flash memory is located and where the
RAM is located. This file is the same for all items on the CAN bus.

8The 'PATH' statement appears in both the 'Autoexec.bat' and Autoexec.dos' files in Windows95.

- 33 -

Chapter 3 MIT Breadboard Facility

Chapter 3 MIT Breadboard Facility

startupsec SECTION CODE

sysreset PROC TASK INTNO=OH

ORG OOOH

JMP start

RETI

sysreset ENDP ; end procedure

startupsec ENDS ; end segment

; codesection that contains reset pointer

; reset interrupt number is zero at Oh
forces next instruction to be located at Oh

installs a pointer to the startup routine

return from interrupt

Figure 3.8: C167CR Startup Code

The first instruction that is executed after the initial branch is typically 'DISWDT'. This istruc-

tion will disable the on chip watch dog timer. The watch dog timer is a timer that, if not serviced

before a specific period of time, will reset the chip. This feature is not needed for the breadboard

facility, so it is disabled.

After placing the appropriate branch instruction at memory address 00'000h and disabling the

watch dog timer, the next thing that needs to be done is to tell the assembler and the linker about

the memory that the C167CR can access. The CAN nodes for this network were made up of Phytec

KitCON-167 boards. These kits are built around a CAN enabled Siemens C167CR microcontroller.

They contained 256kbytes of on board flash memory, and 64kb of RAM. The memory map can be

seen in Figure 3.9.

4:FFFFh

4:0000h 64KByte RAM

256KByte FLASH

0:0000h_

Figure 3.9: Memory Map of Phytec KitCON-167 used in Breadboard Facility

- 34 -

Chapter 3 MIT Breadboard Facility

;;Initialize the External Memory BUS

MOV SYSCON, #OE084h

MOV ADDRSEL1, #0404h

MOV BUSCONO, #004AFh

MOV BUSCON1, #004AFh

;; End of external memory bus initialization

Figure 3.10: Assembly Code that allows External Memory Bus Accesses

meto:
NOP ; just loop here waiting
NOP
JMP meto

Figure 3.11: Loop Code for C167CR

The C167CR uses it's SYSCON, ADDRSEL and BUSCON registers to control access to off chip

memory [6]. Figure 3.3.2 shows the code that would appropriately configure the microcontroller to

access the memory on the KitCON-167 boards.

After the memory has been initialized, the 'EINIT' instruction has to be executed. This instruc-

tion locks in the memory configuration and allows further code to access the external memory.

After this point, the SYSCON, ADDRSEL, and BUSCON registers cannot be changed. Once the

'EINIT' instruction has been executed, the system stack must be configured. After the stack is

appropriately configured, each of the on chip peripherals that are to be used can now be configured.

Configuration of an on chip peripheral is usually done by calling a function that is located in a

different file. This is done as an organizational measure in keep file sizes small and readable. It

also improves the abstraction layer between implementation of the software and the interface to

that software. This allows the same 'main.asm' file to be used, with very little modification, for all

sorts of different programs. Because configuration of most of the on chip peripherals is relatively

simple, only the CAN bus initialization will be discussed in this thesis in Section 3.3.2.1.

Once all of the on chip peripherals have been initialized, the CPU must be set perform some sort

of continuous loop. The code to do this is shown in Figure 3.3.2. Failure to cause the processor to

loop will result in the processor to stop functioning at the end of the function.

- 35 -

Chapter 3 MIT Breadboard Facility

Chapter 3

3.3.2.1 The CAN Bus

Every CAN message contains 4 main user programmable parts. These parts are

1. Data Length Code

2. Message Direction

3. Arbitration Registers

4. Message Control Registers

Figure 3.12 shows how the major portions of a CAN message are arranged in memory. This

grouping of registers in memory is referred to as a Message Object. The C167CR has 15 Message

Objects. CAN is capable of transmitting variable length messages of up to 8 bytes in length. It

is therefore, necessary to specify within the message, the length of the data field. This is done

by setting the Data Length Code value in the Message Configuration Register. Next, each CAN

message can either transmit data or receive data. Therefore it is necessary to specify this value

by setting the Message Direction bit in the Message Configuration Register. Each CAN message

has a unique message ID. This message ID is placed into the Upper Arbitration Register. Message

IDs can either be 11 bits in length or they can be 29 bits long. For the purpose of this thesis, 11

bit message IDs have been used. Finally, every CAN message has a Message Control Register that

specifies the behavior of the message object with respect to interrupts and how the message object

will change when the data fields in the message object change.

3.3.3 Load Nodes

The load nodes were configured to be able to independently turn on and turn off multiple loads.

Most nodes were configured to turn on and turn off 2 different loads, but some were configured to

control as many as 3 loads. The nodes were also configured to collect current information provided

by a node's smart switch's current sense pin. Each load node is able to report the current of each

load and also the state (on or off) of each load when the appropriate command from the CAN

bus is received. Table 3.3 and Table 3.4 show the messages 9 for each load and the node that they

9These are not actually the CAN message numbers, but they are the contents of the Upper Arbitration Register
of a CAN message Object from which the CAN message number is generated. In order to generate the actual CAN
message ID, the first nibble in the Upper Arbitration Register would be moved into the 1st position and then the
entire word would be shifted to the right by one bit.

- 36 -

MIT Breadboard Facility

Chapter 3 MIT Breadboard Facility

Increasing
Memory Message Control Register
Address

Upper Arbitration Register

Lower Arbitration Register

DataO Message Configuration
Register

Data2 Datal

Data4 Data3

Data6 Data5

Reserved Data7

Figure 3.12: CAN Message Object Regsiters and Memory Locations

appear on. All messages marked Receive are configured to receive two different pieces of data. If

the received datum is #000001h then the corresponding smart switch is turned on. If the received

datum is #000800h then the corresponding smart switch is turned off.

3.3.4 Energy Management Node

The energy management node serves the purpose of both collecting the data necessary to make

decisions involved with energy management, and to actually run the energy management algorithm

itself. The algorithm was located on this node because it allowed easy access through memory to

the collected data. It could, in fact, be located on any node on the network and the necessary data

could be simply transmitted to that node across the network. The energy management algorithm is

executed once every second. The last piece of data to be collected is the 42V current and direction

information. After this datum is stored, the energy management algorithm function is called. The

energy management algorithm produces an 8-bit pattern and sends this information across the

network to the DC/DC converter node.

The energy management node is configured to collect voltage, current magnitude, current di-

rection, and temperature for each of the batteries. The hardware necessary to collect battery

temperature information was not implemented, so the software was written to collect, but ignore,

the datum that the A/D collects when it is supposed to collect information about temperature. In

total, this board has 6 A/D channels. Each channel is accessed once a second.

- 37 -

Chapter 3 MIT Breadboard Facility

Breadboard Loads
14v Bus Node 1

CAN Message CAN Message Direction CAN Message Number
Power Door Locks Receive #0001h

Seat & Door Module Receive #2001h
Power Door Locks Current Transmit #6001h

Seat & Door Current Transmit #4001h
Power Door State Transmit #0010h
Seat & Door State Transmit #0011h

14v Bus Node 2
Turn Lights Receive #8001h

Turn Lights Current Transmit #4007h
Turn Lights State Transmit #0012h

14v Bus Node 3
ABS Receive #COO1h

Brake Loads Receive #E001h
ABS Current Transmit #E002h

Brake Loads Current Transmit #0002h
ABS State Transmit #0013h

Brake State Transmit #0014h
Bus Bridge Receive #0022h

Bus Bridge Current Transmit #0023h
Bus Bridge State Transmit #0024h

Table 3.3: 14v Bus CAN Messages

The data is collected as the lower 10-bits of a word of memory. These 10-bits, however, represent

a voltage from 0V to 5V not a current of up to 100 amps or a voltage of up to 60 volts. In order

to properly use the information, it must be scaled. In the case of the voltage, it is not scaled on

the microcontroller, instead, it is scaled and displayed in LabView. This is done because LabView

takes care of much of the difficulty of using floating point numbers. In the case of the current,
however, because the state of charge of each battery is calculated by integrating the total charge

that has entered and exited each battery, it must be scaled on chip. The problem with scaling the

measured number is that it could result in a loss of accuracy. This is undesirable, so instead of

scaling the measured reading, the initial charge on each battery was scaled before assembling the

code, and that scaled number is added to and subtrated from to compute the state of charge for

each battery.

- 38 -

Chapter 3 MIT Breadboard Facility

The scaling for the initial state of charge for each battery was done as follows. First, the reserve

capactiy of the battery is multiplied by 1511 in order to compute the number of seconds that the

battery can be discharged at 100 amps. Then, it must be realized that when the A/D converter

produces the 10-bit pattern #03FFh it is actually reading 100 amps of current. If the current is

measured every second, then the 10-bit pattern produced by the A/D converter is not only the

current, but, by definition, it is also the total charge for one second. Multiplying #03FFh by the

number of seconds that the battery can be discharged at 100 amps, returns the state of charge of

the battery in a format that the output of the A/D can now be simply added and subtracted from

with out any sort of conversion or loss of precision.

The initial value for the 36V battery was #01063E6h and the value for the 12V battery was

#02576A0h. These two numbers are both larger than would be allowed by the 16-bit registers of

the C167CR, so they are broken into two different words (a high word and a low word) and stored

in two different variables in memory. The 10-bit output of the A/D converter is then added to

the low word of the battery's state of charge, and, immediately afterward, zero and the carry bit

is added to the upper word by using the add-carry instruction. These instructions are executed

consecutively as atomic instructions so that they may not be interrupted inbetween and the carry

bit be corrupted.

3.3.5 Serial to CAN Router Node

One of the goals of the breadboard facility was to try to explore possible useful functions of

having an in-car automobile network. One possible benefit of the network would be in the area

of self diagnostics. In the automobile of the future, because loads will be controlled by a digital

network and connected off of a power bus, it will be much more difficult to tell where the fault in the

network has occurred unless there were some catastrophic failure which left smoke, soot or other

physical indicators that clearly indicate the culprit. In the absence of such physical indicators, it

might be impossible to track down the fault unless the network has some intelligence and can tell

the operator where the fault occurred. It is, therefore, necessary to be able to quickly and easily

connect to the in-car network. If it were possible to interface to the in-car CAN network through

a serial port, almost any device with a serial port 12 could be programmed to act as diagnostic

"The multiple 15 is obtained because the reserve capacity of a battery is the number of minutes that a battery
can be discharged at 25 amps. Multiply reserve capacity by 60 and the total number of seconds that the battery can
be discharged at 25 amps is known. Divide this new number by 4 and the number of seconds that the battery can
be discharged at 100 amps is known.

1
2 Serial port in this case means an RS232 port

- 39 -

Chapter 3 MIT Breadboard Facility

equipment for the automobile. Therefore, a serial to CAN router was written. This router employs

time out error checking and checksum error checking.

In order to be able to translate between CAN and serial, it is necessary to develop rules that will

convert a CAN message to a serial message. It is, therefore, necessary to understand the different

parts of a CAN message that would come into play in such a translation. Section 3.3.2.1 discusses

these parts in detail, but quickly below are the major user programmable parts.

1. Data Length Code

2. Message Direction

3. Arbitration Registers

4. Message Control Registers

The data necessary for each of these parts must be transmitted in the messages going from the

PC to the Serial to CAN Router Node. They must then be moved into a CAN message object and

transmitted onto the CAN bus. If the serial message sent is simply a command to turn something

on the CAN bus on or off, the serial message is put into message object 1. If the message sent from

the PC is a request for data, then message object 2 is used. The format of the serial message can

be seen in Figure 3.13.

A003000005000000000000000000080A
Li L L i Li LL_ Li LL LWY L_

Group # 1 2 3 4 5 6 7 8 9 11 13 14

10 12

Figure 3.13: Format of Serial Message

All numbers and characters in Figure 3.13 are written in hexidecimal notation. Each character in

the message represents a nibble13 of information. These bytes can be grouped into words or double

words. Groups 1 and 14 represent the message delimiters. These are used to prevent LabView

- 40 -

1 3A nibble is defined here as 4 bits.

Chapter 3 MIT Breadboard Facility

from removing any leading edge zeros and thereby change the message length. These are not used

in computing the checksum of the message. Group 2 represents the data length code. It has a data

range of Oh to 8h. Group 3 represents the direction of transmission. It can have the value of either

8h for a transmit message or Oh for a receive message. Group 4 represents the the value that will

be placed into the Upper Arbitration Register of the message object. From this value the actual

message id of the CAN message can be obtained. Groups 5 through 12 represent the data bytes,
but because of how the CAN router is written, only data in groups 6 and 7 will be transmitted, and

they will be transmitted as one word with group 6 being the upper byte of the word. The value of

#0800h in the 6/7 combination word indicates the the receiving node is to turn off a device, and

the value #0001h in the 6/7 combination word indications that the receiving node is to turn on a

device. Finally, group 13 represents the checksum of the message. The checksum is computed by

simply adding up the values in groups 2, 3, 4, 6, and 7 on a byte by byte basis.

3.3.6 Data Collection Module

The data collection node was designed to prepare the batteries' voltages and currents so that the

information could be converted from analog to digital and then used by the energy management

algorithm. The information was converted from analog to digital via the Siemen's C167CR on

chip 10-bit analog to digital converter. [7] The module was configured to measure voltage, current,
and temperature for each battery; however, temperature was not used for this thesis. Because the

A/D on the C167CR only has an input range of zero to five volts, all measured signals had to be

preprocessed in get them within that range. The 36V battery voltage was measured by dividing the

36V battery's voltage by 11 and then reading that value. The 12V battery's voltage was measured

by dividing its voltage by 5 and then reading that value. The current on each battery was measured

by passing half the current for each bus through different hall effect current sensors. These sensors

returned a current that was 1 times the sensed current. This current was sent through a 50Q

resistor. This voltage, however, could be either positive or negative, so its absolute value was taken

by the circuit in Figure 3.14. This circuit returned both the absolute value of the input, and it

returned whether the current was into or out of the battery. If there was 5V on the "Current

Direction" terminal, then the current was leaving the battery and if there was OV on the "Current

Direction" terminal then the current was entering the battery. A value of zero at the output of the

current direction means that the battery is charging and a value of one at the output of the current

direction means that the battery is discharging.

- 41 -

Chapter 3 MIT Breadboard Facility

MIT Breadboard Facility

-T
10 K2 10 Q

Current
3904 Direction

Input From
Current Sensor

50n

IMagn i rude

Figure 3.14: Precision Absolute Value Circuit with Direction SubCircuit

3.3.7 PC Input Files

One goal of the breadboard facility was to be able to allow tests that were run on Saber to be

confirmed on the breadboard. The Saber simulations study "the effects of varying vehicle driving

speeds and load events on power flow and energy usage [in order] to provide insite into the sizing

of key power supply components such as the alternator, batteries, and DC/DC converter" [8]. In

order to allow this, a program was written that would take in Saber formatted drive cycles and

Saber formatted load cycles and convert them into a tab delimited format that could be read in

by the breadboard facility. A copy of the first few lines of a breadboard input file can be seen in

Figure 3.3.1.1. The program also takes in a list of the loads that are available on the breadboard

facility and those loads' respective CAN Message ID's 14

1 4 CAN Message ID here refers to the value that is loaded into the Upper Arbitration Register of a CAN message
object on a Siemens C167CR microcontroller. The actual Message ID can be derived from this value.

- 42 -

Chapter 3

MIT Breadboard Facility

Breadboard Loads

CAN Message CAN Message Direction CAN Message Number1

42V Bus Node 1

Brake by Wire Receive #0003h
Heated Rear Windows Receive #4003h

Brake by Wire Current Transmit #6003h

Heated Rear Windows Current Transmit #2003h
Brake by Wire State Transmit #0015h

Heated Rear Window State Transmit #0016h
42v Bus Node 2

Heater Receive #8003h

Rear Seat Heater Receive #AO03h
Heater Current Transmit #CO03h

Rear Seat Heater Current Transmit #0019h
Heater State Transmit #0017h

Rear Seat Heater State Transmit #0018h
42v Bus Node 3

Emissions Air Pump Receive #0004h

Heated Windshield Receive #4004h
Emissions Air Pump Current Transmit #2004h

Heated Windshield Current Transmit #6004h

Emmissions Air Pump State Transmit #0020h

Heated Windshield State Transmit #OOlAh
DC/DC Converter Node

DC/DC Converter Digital Input Receive #OOOEh

DC/DC Converter Input State Transmit #OOOFh

DC/DC Converter ON/OFF Receive #0021h

Data Collection Node

42v Voltage Transmit #0005h

42v Current & Direction Transmit #0006h

42v Temperature Transmit #0007h

42v State of Charge Transmit #0008h

14v Voltage Transmit #0009h

14v Current & Direction Transmit #OOBAh

14v Temperature Transmit #00OBh

14v State of Charge Transmit #00OCh

Table 3.4: 42v Bus CAN Messages

- 43 -

Chapter 3

Chapter 3

Figure 3.15: The LabView Breadboard Interface

- 44 -

MIT Breadboard Facility

MIT Breadboard Facility

SERIAL CAN

CAN Tranmit Queuel ISA SESSION

CAN
-4e NE T

er in (no error) I

Figure 3.16: The major communicating subsystems

- 45 -

MI True

Inu Load Cycle FIIe

fEiln uest2.vi
iinu
Input

i

Chapter 3

Chapter 4

Test Procedure

This chapter presents the test procedure which was used to measure the effectiveness of the

battery voltage regulation energy management algorithm. Testing an energy management algorithm

is a 6 stage process. These stages are listed below.

1. Design an energy management algorithm

2. Select a drivecycle to use with it

3. Design an appropriate electrical loadcycle for the selected drivecycle

4. Convert the drivecycle and loadcycle into a breadboard input file

5. Run the breadboard input file on the breadboard test facility

6. Analyze collected data

4.1 Design an Energy Management Algorithm

Energy management algorithm design and implementation is discussed in detail in Chapter 2 of

this thesis.

4.1.1 Selecting a Drivecycles

A drivecycle is a data file which contains time, car velocity, and car gear in three columns. The

drivecycle's information can be converted to alternator shaft speed using the Eqution 4.1 [8], or

engine shaft speed by using Equation 4.2.

10 60
Alternator Shaft Speed = v * - * -- * d * 9d * 9t * ge,a36 7r

(4.1)

- 46 -

Test Procedure

Alternator Shaft Speed = v * -- * - * d * 9d * 9t36 7r
(4.2)

The program that generates the breadboard input files actually calculates the engine shaft speed

because it actaully controls the speed of the motor that drives the alternator, and that is connected

to the alternator at a gearing of 3 to 1.

Variables Used in Car Velocity to Alternator Conversion

Variable Description Ratio

v Vehicle Driving Speed [km/hr]

d Diameter of Vehicle's Tires [m] 0.594

gd Differential Gear Ratio 4.0

9t Transmission Gear Ratio
- Neutral 0
- 1" Gear 3.071

- 2 nd Gear 1.773
- 3rd Gear 1.194
- 4 th Gear 0.868
- 5 th Gear 0.700

ge,a Engine-Alternator Gear Ratio 3.0

Table 4.1: Variables Used in Car Velocity to Alternator Conversion

4.1.2 Loadcycles

An electrical loadcycle is a Saber *.scs input file that lists items by name, and lists those item's

on and off times. The electrical loadcycle that was used with drivecycle "ece15.dat" was "winter

worst ecel5". The set of loads that was used for the test can be found in "breadboardloads.txt".

Both "winter worst ecel5" and "breadboardloads.txt" can be found in Appendix B.12

Drivecycle ece15.dat was selected because it has been tested and shown to work with SABER. As

more drivecycles are proven to work with SABER, more will be used. It is the hope that algorithms

can be tested on SABER and then verified using the breadboard system. Drivecycle ece15.dat will

be matched with a slightly modified version of the electrical loadcycle "winter worst ecel5". This

electrical loadcycle was used by research unit number six and can be found at the end of this paper.

- 47 -

Chapter 4

Test Procedure

The goal of this test procedure is to allow the energy management algorithms to be tested on

both a computer running Saber and on the MIT breadboard facility. Because the breadboard runs

in real time, the hope is that the computer will help eliminate algorithms which don't make any

sense and thus save time.

The tests will concentrate on the first two levels of sophistication. The third level will be inves-

tigated as part of future research. There will be two rounds of tests. The first series of tests will

run using the 14-Volt Bus Regulation algorithm. This is the simplest algorithm and the easiest and

cheapest to implement. The results of tests run using this algorithm will be used as a reference to

measure the relative performance of the more sophisticated algorithms. The second series of tests

will run using the Battery Model level algorithm. The results of these tests will be compared to

the results from the 14-Volt Bus Regulation tests.

4.2 Test Procedure

1. Obtain LabView loadcycle.

This can be obtained by writing one from scratch or by

translating a SABER drivecycle and loadcycle.

2. Determine number of times to run LabView loadcycle and enter value into LabView.

3. Power on breadboard facility.

4. Start Simulation.

5. Wait until all test runs have been completed.

6. Collect and analyze data.

7. Wait 24 hours and collect battery SOC data.

The data to be collected is

" Open circuit battery voltage before test

" Battery Voltages during test

" Open circuit Battery voltages after test

- 48 -

Chapter 4

Chapter 5

Results and Conclusion

Tests were run and data was collected. The open circuit battery voltages before the tests were

36.51 volts and 13.82 volts. The final voltages for each battery (after 10 minutes of rest) were 36.19

volts and 13.22 volts. A plot of battery voltage against time during the test is shown below.

351

30

25

- 20

15

10

5

0 500 1000 1500
Time in Seconds

2000 2500

Figure 5.1: Battery Voltages vs Time

It is apparent from Figure 5.1 that the 36V battery's voltage vaired widely while the 12V battery

was regulated to a very smooth voltage. This seems to indicate that the 36V battery was supplying

- 49 -

K

Results and Conclusion

the 12V battery a considerable amount of power. This is one of the major flaws of the voltage

regulation method of energy management. A more intelligent algorithm would be able to reduce

the amount of current demanded by the DC/DC converter. That would have the effect of reducing

the 14V bus, but it would also have the effect of reducing some of the ripple in the 42V bus.

Although an advanced algorithm was designed and implemented for this thesis, there was not

enough time to actually test it, so its results have not been included with the thesis.

The above data shows that the present system of simply regulating the voltage on each battery

will probably no longer be adequate in the the 42V/14V dual voltage environment. It will, therefore,

be helpful to further invesitgate energy management algorithms.

- 50 -

Chapter 5

Appendix A

Complete Sophisticated Energy Management

Algorithm

This algorithm was designed and implemented in software in the file ema.asm; however, because

of time constraints, it was impossible to fully test it. The table can be read as follows. (12V SOC

Region, 36V SOC Region). Negative battery current means that the batteries are draining.

SOC Region 12v Battery Current Sign 36v Battery Current Sign DC/DC Converter Output
(1,1) NONE
(1,1) + FULL
(1,1) + OFF
(1,1) + + OFF
(1,2) NONE
(1,2) + UP
(1,2) + OFF
(1,2) + + OFF
(1,3) OFF
(1,3) + NONE
(1,3) + OFF
(1,3) + + OFF
(1,4) OFF
(1,4) ± OFF
(1,4) + OFF
(1,4) + + OFF
(1,5) OFF
(1,5) + OFF
(1,5) + OFF
(1,5) + + OFF

Figure A. 1: Decisions made when 12v Battery is in the "Dangerous Overcharge" Region

- 51 -

Complete Sophisticated Energy Management Algorithm

SOC Region 12v Battery Current Sign 36v Battery Current Sign DC/DC Converter Output
(2,1) UP
(2,1) + FULL
(2,1) + NONE
(2,1) + + FULL
(2,2) -_NONE
(2,2) - UP
(2,2) + DOWN
(2,2) + ± OFF
(2,3) NONE
(2,3) + NONE
(2,3) + DOWN
(2,3) + + DOWN
(2,4) OFF
(2,4) + OFF
(2,4) + OFF
(2,4) + + OFF
(2,5) OFF
(2,5) + OFF
(2,5) + OFF
(2,5) + + OFF

Figure A.2: Decisions made when 12v Battery is in the "Acceptable Overcharge" Region

- 52 -

Chapter A

Complete Sophisticated Energy Management Algorithm

SOC Region 12v Battery Current Sign 36v Battery Current Sign DC/DC Converter Output

(3,1) FULL
(3,1) + FULL
(3,1) + FULL
(3,1) + ± FULL
(3,2) FULL
(3,2) ± FULL
(3,2) + FULL
(3,2) + + FULL
(3,3) NONE
(3,3) - NONE
(3,3) + NONE
(3,3) + + NONE
(3,4) DOWN
(3,4) + DOWN

(3,4) + DOWN
(3,4) + ± DOWN
(3,5) OFF
(3,5) ± OFF
(3,5) + OFF
(3,5) + + OFF

Figure A.3: Decisions made when 12v Battery is in the "Ideal Operation" Region

- 53 -

Chapter A

Complete Sophisticated Energy Management Algorithm

SOC Region 12v Battery Current Sign 36v Battery Current Sign DC/DC Converter Output
(4,1) FULL
(4,1) ± FULL
(4,1) + - FULL
(4,1) + + FULL
(4,2) FULL
(4,2) ± FULL
(4,2) + FULL
(4,2) + + FULL
(4,3) -_ -_UP
(4,3) - UP
(4,3) + UP
(4,3) + + UP
(4,4) DOWN
(4,4) + UP
(4,4) + DOWN
(4,4) + + NONE
(4,5) OFF

(4,5) + UP
(4,5) + OFF

(4,5) + + OFF

Figure A.4: Decisions made when 12v Battery is in the "Acceptable Undercharge" Region

- 54 -

Chapter A

Chapter A Complete Sophisticated Energy Management Algorithm

SOC Region 12v Battery Current Sign 36v Battery Current Sign DC/DC Converter Output

(5,1) UP
(5,1) - UP
(5,1) + UP
(5,1) + + UP
(5,2) UP
(5,2) + UP
(5,2) + UP
(5,2) + ± UP
(5,3) UP
(5,3) + UP
(5,3) + UP
(5,3) + + UP
(5,4) DOWN

(5,4) + NONE
(5,4) + DOWN
(5,4) + + NONE
(5,5) OFF

(5,5) + OFF
(5,5) + OFF
(5,5) + ± OFF

Figure A.5: Decisions made when 12v Battery is in the "Dire Undercharge" Region

- 55 -

Chapter A Complete Sophisticated Energy Management Algorithm

Appendix B

Breadboard Code

B.1 Organization

This appendix contains the complete code for all items used in the bread board facility.

1. 14V Bus CAN Node 1 B.2

2. 14V Bus CAN Node 2 B.3

3. 14V Bus CAN Node 3 B.4

4. 42V Bus CAN Node 1 B.5

5. 42V Bus CAN Node 2 B.6

6. 42V Bus CAN Node 3 B.7

7. CAN Router B.8

8. Data Acquisition Node B.8

9. DC/DC Converter Node B.10

10. Saber to Breadboard Converter Code B.11

11. Breadboard Loads B.12

B.2 14V Bus CAN Node 1

On the next page starts the code for the 14V bus CAN node 1. The files for the node are as

follows.

1. comp112.bat

- 56 -

Chapter B Breadboard Code

2. main112.asm

3. cnmod112.asm

4. canmol12.asm

5. cnint112.asm

6. atod112.asm

7. tmrs112.asm

8. linker.lnv

9. Reg167b.def

- 57 -

Chapter B Breadboard Code

compi 12.bat
a166 mainll2.asm
a166 cnmodll2.asm
a166 canmoll2.asm
a166 cnintll2.asm
a166 atodll2.asm
a166 tmrsll2.asm
1166 LINK mainl2.obj cnmodll2.obj canmoll2.obj cnintll2.obj atodll2.obj tmrsll2.obj TO
locatein.lno
1166 @linker.lnv
ihexl66 -i16 locate.out -o mainll2.hex

main 112.asm
$SEGMENTED
$EXTEND

$EXTSFR
$EXTSSK
$EXTMEM

$NOMOD166
$STDNAMES(reg167b.def)
$SYMBOLS

NAME main

RBANK1 COMREG RO-R15

SSKDEF 4

ASSUME DPP3:SYSTEM

EXTERN canin:FAR

EXTERN atod_initialize:FAR

EXTERN atodtimer-initialize:FAR

CAN USE ALL internal RAM for Stack

define a common register area of 16 register

default stack size of 256 Words

Can function
; external atod initialization

mainseg SECTION CODE
main PROC FAR

start: DISWDT di

BSET IEN Gl

Initialize the External M
MOV SYSCON, #OE084h
MOV ADDRSEL1, #0404h
MOV BUSCONO, #004AFh
MOV BUSCON1, #004AFh

sable the watchdog timer
obally Enable Interrupts both global

emory BUS

EINIT ; end initialization
End of external memory bus initialization

Initialize the Data Page pointers for this section
MOV DPP3, #03h ; make DPP3 point to system

End of Data Page Pointer Initialization

Make the direction of Port 2 to output
MOV DP2, ONES

Make sure Port 2 is in push/pull mode
MOV ODP2, ONES

Initialize The Stack
The Stack pointers are all word pointers so even though the
highest byte in the stack is located at #OFBFFh the highest
byte that the stack pointers can point to is #OFBFEh

MOV STKUN, #OFBFEh; Set Stack Underflow Pointer

MOV STKOV, #OF800h; Set STack Overflow Pointer
MOV SP, #OFBFEh ; Set the Stack Pointer

End of Stack Initialization

Initialize the Analog to Digital Converter
CALL atod_initialize; atod

End of A/D initialization

Initialize A/D timer
CALL atodtimer_initialize; timers

End of A/D timer initialization

Initialize CAN Bus
CALL canin Call the CAN initialization function

End of CAN Bus Initialization

meto:

main ENDP
mainseg ENDS

NOP
NOP
JMP meto
RET

startupsec SECTION CODE
sysreset PROC TASK INTNO=OH

ORG OOOH
JMP start

RETI
sysreset ENDP

startupsec ENDS
END

; just loop here waiting

return

codesegment that contains reset int pointer
reset interrupt number is zero at Oh
forces next instruction to be located at Oh

installs a pointer to the startup routine

return from interrupt

enmod 112.asm

$SEGMENTED

$EXTEND

$EXTSFR

$EXTMEM
$NOMOD166
$STDNAMES(reg167b.def)

$SYMBOLS

NAME canmod

RBANK1 COMREG RO-R15

GLOBAL canin

EXTERN canmocfg:FAR configures specific Message objects

ASSUME DPP3:SYSTEM

canfunc SECTION CODE codesegment that contains reset int point

canin PROC FAR

PUSH RO
PUSH R1

;; set all of the CAN control registers
AND C1CSR, ZEROS set control register to zero

MOV R1, #0043h ; Set IE and INIT bits

OR ClCSR,Rl set control register to Rl's value

AND C1BTR, ZEROS ; set Bit timing register to zero

MOV R1, #03447h ; set for 125k operation

OR C1BTR, R1 set Bit timing register parameters

AND C1GMS, ZEROS ; set Global Mask short register to zero

MOV R1, #OFFFFh ; EOFF is what DAVE initialize
OR C1GMS, R1 set GMS

AND C1UGML, ZEROS set Upper global mask long to zero

MOV R1, #OFFFFh

OR C1UGML, R1

MOV R1, #OF8FFh
AND C1LGML, ZEROS

OR C1LGML, R1 lower global mask

AND C1UMLM, ZEROS

OR C1UMLM, R1 upper mask of last register

AND C1LMLM, ZEROS

OR C1LMLM, R1 lower mask of last register

CALL setall sets all of the CAN registers to off

CALL canmocfg Configures specific Message Objects

;; Setup CAN interrupt and Initialize CAN module

EXTR #4

AND XPOIC, ZEROS ; configure CAN interrupt control Register

AND RO, ZEROS
OR RO,#0073h enable interrupt, level is 10 group is 2

OR XPOIC,RO ; Configure CAN interrupt Control Register

AND Ri, ZEROS

OR Ri, #00041h ; crashes if I clear the CPU access to the BTR

XOR C1CSR, R1 ; end initialize CAN interrupt

POP RI
POP RO

ter

RET
canin ENDP

setall PROC FAR This Procedure sets all of the Mess objs invalid

by using a counter it counts up to 15 and initializes all of the message

objects along the way.
PUSH R2
PUSH R4

PUSH R5

AND R5,ZEROS
OR R5, #01h Set counter to 1 for first MO
AND R2,ZEROS

OR R2,#OEF10h Set pointer to MO1
AND R4, ZEROS

OR R4, #5555h Set R4 to make MObs invalid

nextreg:MOV [R2],R4 make all message objects invalid

ADD R2,#10h

CMPI1 R5,#OFh
JMPA CC.NZ,nextreg

POP R5
POP R4
POP R2
RET

setall ENDP

canfunc ENDS

END

define a common register area of 16 registers

The function must be declared Global at the

beginning of the module

canmol 12.asm

$SEGMENTED
$EXTEND

$EXTSFR
$EXTMEM

$NOMOD166
$STDNAMES(regl67b.def)

$SYMBOLS

NAME canmo
RBANK1 COMREG RO-R15

GLOBAL canmocfg

canmodule SECTION CODE

ASSUME DPP3:SYSTEM

canmocfg PROC FAR

PUSH R1
PUSH R2

PUSH R3
Now set specific CAN control Registers
initialize message object 1
initializing this object to be invalid does or removing the code until
the comment "Setup CAN interrupt and Initialize does

nothing to prevent the occurrance of the interrupt for the CAN system

MOV R2, #MCR_Ml start of Message Object 1

AND R1, ZEROS

OR Rl, #5599h Generate a Receive Interrupt if this message object ac

tivates
MOV [R2],R1 set M01's Control register

ta

tivates

ADD R2,#2h

AND R3, ZEROS
OR R3, #00001h

MOV [R2],R3

ADD R2, #2h

MOV (R2], ZEROS
AND Rl, ZEROS

OR Ri, #0030h
MOV MCDMl,R1

MOV DATA-M1, ZEROS

;; Initialize Message
MOV R2, #MCRM2

AND R1, ZEROS

OR R1, #5599h
MOV [R2],R1 set

ADD R2,#2h

AND R3, ZEROS

OR R3, #02001h
MOV [R2],R3

ADD R2, #2h

MOV [R2], ZEROS
AND R1, ZEROS

OR Ri, #0030h
MOV MCDM2,R1

MOV DATAM2, ZEROS

;; Initialize Message
MOV R2, #MCRM3

AND Rl, ZEROS
OR R1, #5595h

point to Upper Arbitration register

set R3 to
message id for message object 1
message id = #0003h
Point to the Lower Arbitration Register
standard Message object so lowerarb = Oh

put OAAh into first data byte and set to receive
Databyte(O) = 0 and Set to receive and 3 bytes of data

fill the Data of the MO with Zeros

Object 2
start of Message Object 2

RECEIVE INTERRUPT enabled

M02's Control register
point to Upper Arbitration register

; set R6 to zero

The number is the Message ID for Message Object 2

message id = 0
Point to the Lower Arbitration Register
standard Message object so lowerarb = Oh

put 000h into first data byte and set to receive
; Databyte(O) = 0 and Set to receive and 3 bytes of da

Fill the Data of the MO with Zeros

Object 3
start of Message Object 3

Generate a receive interrupt if this message object ac

f data

f data

f data

f data

MOV [R2],R1;
ADD R2,#2h

AND R3, ZEROS

OR R3, #06001h
MOV [R2],R3

ADD R2, #2h

MOV [R2], ZEROS
AND Ri, ZEROS

OR R1, #0038h
MOV MCDM3,R1

MOV DATAM3, ZEROS

;; Initialize Message

MOV R2, #MCRM4

AND R1, ZEROS

OR R1, #5595h

MOV (R2],R1 set

ADD R2,#2h
AND R3, ZEROS
OR R3, #04001h
MOV [R2],R3

ADD R2, #2h

MOV [R2], ZEROS

set M03's Control register

; point to Upper Arbitration register

; set R6 to zero
The number is the Message ID for Message Object 3

message id = 0
Point to the Lower Arbitration Register
standard Message object so lowerarb = Oh

put 000h into first data byte and set to receive

; Databyte(O) = 0 and Set to receive and 3 bytes o

Fill the Data of the MO with Zeros

Object 4
start of Message Object 4

M04's Control register

point to Upper Arbitration register

; set R6 to zero
The number is the Message ID for Message Object 4
message id = 0
Poin
stan

AND R1, ZEROS
OR Rl, #0038h put
MOV MCDM4,R1 ; Da

MOV DATAM4, ZEROS fill

;; Initialize Message Object 5

MOV R2, #MCRM5 star

AND R1, ZEROS

OR Rl, #5595h

MOV (R2],R1 set M04's Co
ADD R2,#2h poin

AND R3, ZEROS ; se
OR R3, #00010h The
MOV [R2],R3 mess
ADD R2, #2h Poin

MOV [R2], ZEROS stan

AND Rl, ZEROS

OR Rl, #0038h put
MOV MCDM5,R1 ; Da

MOV DATAM5, ZEROS fill

;; Initialize Message Object 6
MOV R2, #MCRM6 star

AND R1, ZEROS

OR Rl, #5595h

MOV [R2],Rl set M04's Co

ADD R2,#2h poin

AND R3, ZEROS ; se

OR R3, #00011h The
MOV [R2],R3 mess
ADD R2, #2h Poin
MOV [R2J, ZEROS stan

AND Rl, ZEROS

OR Rl, #0038h put
MOV MCDM6,R1 ; Da

t to the Lower Arbitration Register

dard Message object so lowerarb = Oh

OAAh into first data byte and set to

tabyte(O) = 0 and Set to receive and

the data of the MO with ZEROS

t of Message Object 5

receive
3 bytes o

ntrol register
t to Upper Arbitration register

t R6 to zero
number is the Message ID for Message Object 5
age id = 0
t to the Lower Arbitration Register

dard Message object so lowerarb = Oh

OAAh into first data byte and set to receive

tabyte(O) = 0 and Set to receive and 3 bytes o

the data of the MO with ZEROS

t of Message Object 6

ntrol register
t to Upper Arbitration register

t R6 to zero

number is the Message ID for Message Object 6
age id = 0
t to the Lower Arbitration Register
dard Message object so lowerarb = Oh

OAAh into first data byte and set to receive

tabyte(O) = 0 and Set to receive and 3 bytes o

; declare bank of 16 global registers

canmol 12.asm
MOV DATAM6, ZEROS

POP R3

POP R2

POP R1

RET
canmocfg ENDP
canmodule ENDS

END

; fill the data of the MO with ZEROS

enint I12.asm

$SEGMENTED

$EXTEND

$EXTSFR
$EXTMEM
$NOMOD166
$STDNAMES (reg167b . def)
$SYMBOLS

NAME canint

RBANK1 COMREG RO-R15

ASSUME DPP3:SYSTEM

can_interrupts SECTION CODE

canreceive-interrupt PROC TASK INTNO=040h
ORG 0100h
CALL canreceive_interrupt-handler
RETI

can-receive-interrupt ENDP

canreceive_interrupt-handler PROC FAR

PUSH RO
PUSH RI

PUSH R2

MOVB RLO, INTID Read the CAN interrupt ID buffer

CMPB RLO, #03h See if the interrupt came from M01

JMP ccZ, message-one_interrupt; if interrupt from M01 handle

MOV R1, #05555h
MOV R2, #05599h

MOV MCRM2, Rl
MOV RO, DATAM2
MOV MCRM2, R2

Now setup M5 so it can respond to queries about

the state of the switch

MOV R2,MCRM6
MOV MCRM6, R1

MOV DATAM6, RO
MOV MCRM6, R2

CMP RO, #01h
JMP ccNZ, turnoffheated-rearwindow
BSET P2.1

JMP exit-function

turnof f heated_rearwindow:
CMP RO, #0800h
JMP ccNZ, exit_function

BCLR P2.1

JMP exit-function

message_oneinterrupt:
MOV R1, #05555h
MOV R2, #05599h
MOV MCRM1, R1
MOV RO, DATAM1
MOV MCRM1, R2

Now setup M5 so it can respond to queries about

the state of the switch

MOV R2, MCRM5

MOV MCRM5, R1

MOV DATAM5, RO

MOV MCRM5, R2
CMP RO, #01h
JMP ccNZ, turnheater_off
BSET P2.0

JMP exit-function

turnheater-off:
CMP RO, #0800h
JMP ccNZ, exit.
BCLR P2.0

exit-function:
MOV R2,

.function

#OEFFFh

AND C1CSR, R2

POP R2
POP R1
POP RO
RET

can-receive-interruptjhandler ENDP

can_interrupts ENDS

END

; declare bank of 16 global registers

atod 112.asm

$SEGMENTED
$EXTEND
$EXTSFR

$EXTSSK CAN USE ALL internal RAM for Stack

$EXTMEM
$NOMOD166
$STDNAMES(regl67b.def)
$SYMBOLS

name atod

ASSUME DPP3:SYSTEM

RBANK1 COMREG RO-R15

GLOBAL atodinitialize

This A/D is set up to measure the current in two different

loads. Because this software is to be used as part of
42volt bus node 1, it uses the names of the loads that

that node is supposed to control.

The analog to digital converter uses Port 5

atod~setup SECTION CODE

atod_initialize PROC FAR

Initialize variables

This below line of code setups up the A/D converter
for 2 channels and single conversion.
It is also set for "Wait for read mode"'
so the converter will wait for the user program to read

the buffer before processing the next channel.

MOV ADCON, #0A221h ; setup A/D control register

Set the channel to which the data should be written

when the first "A/D is done" interrupt occurs

The below code sets up the A/D's Interrupt control register

The A/D is setup to have a group of 2 and a level of 10

MOV ADCIC, #006Fh
RET

atod-initialize ENDP

atodsetup ENDS

atod-handlers SECTION CODE

atod_handler PROC TASK INTNO=028h

ORG OAOH
CALL atodjfunction
RETI

atod-handler ENDP

atod.function PROC FAR
this function works by seeing if the converter is converting

for the heatermeasurement. If the bit is set, then

the bit gets cleared and the IP jumps to where the

value in the converter is moved into the heater-current

variable.
otherwise the bit gets set and the value is moved into

the heatedrearwindow-current variable
PUSH RO
PUSH Rl

PUSH R2

PUSH R3
PUSH R4
PUSH MDH
PUSH MDL

MOV R2, ADDAT

MOV RO, R2
ch the data is coming

MOV R3, R2

ale it by

This is so we can isolate the A/D channel from whi

This is so we can isolate the A/D data and then sc

;; This code scales the data from the A/D by 21 to get the actual current fl

owing through the BTS550P
AND R3, #003FFh This isolates the lower ten bits of the A/D's output

MOV R4, #01h There is no scaling done on the controller

D

AND RO, #DFOOh
CMP RO, #01000h

The channel information is located in the upper nibble
See if the information is coming from Channel 1 of the A/

JMP cc_Z, RearSeatHeater-current

MOV RO, #05555h
MOV R1, MCRM3

MOV MCRM3, RO

; This bit pattern deactives MCRs

SAVE the Configuration of the MCR

; Kill the Message Control Register

;; This gets the actual current value

MUL R3, R4 The output goes entirely into MDL

NOP

MOV DATAM3, MDL Move the actual current value from the MDL registe

r into the CAN message object
MOV MCRM3, Rl

BSET T3R

JMP exit-routine

RearSeatHeater-current:

MOV RO, #05555h This bit pattern deactives MCRs

MOV R1, MCRM4 SAVE the Configuration of the MCR

MOV MCRM4, RO Kill the Message Control Register

This code tells me when I have completed a conversion on both channels

If the leds on port 2 are not counting then You know that the system isn'

t performing conversionsS

MOV RO, #04h ;test code
ADD P2, RO ;test code

;; This generates the acutal current value
MUL R3, R4 The output goes entirely into MDL

NOP

MOV DATAM4, MDL for testing purposes

MOV MCR_M4, Rl

exit-routine:
POP MDL
POP MDH
POP R4
POP R3
POP R2
POP R1
POP RO
RET

atodfunction ENDP

atod-handlers ENDS

--4

tmrs 112.asm

$SEGMENTED
$EXTEND

$EXTSFR

$EXTMEM
$EXTINSTR

$NOMODl66
$STDNAMES(regl67b.def)
$SYMBOLS

NAME timer-functions
ASSUME DPP3:SYSTEM

RBANK1 COMREG RO-R15

GLOBAL atod_timer-initialize

atod-timer SECTION CODE
atodtimerinitialize PROC FAR

MOV T3CON, #0004h
MOV T3IC, #002Bh
MOV T3, #0000h
BSET T3IE

BSET T3R

RET

atod_timerinitialize ENDP

These are assembler controls

Assembler controls end here

setup Core Timer T3

Make the value in the counter equal to zero

enable the timer interrupt
start the timer

atod-interrupt PROC TASK INTNO=023h

ORG 08Ch
CALL atodtimer-handler
RETI

atodjinterrupt ENDP

atod~timer-handler PROC FAR
BCLR T3R

BSET ADST

RET

atodtimer_handler ENDP
atodtimer ENDS

END

stop the timer

start an A/D conversion

m@mmm linker.lnv
LOCATE
locatein. no

(GENERAL)

IRAMSIZE (2048)

RESERVE MEMORY(OF200h TO OF5FFh)

MEMORY(ROM (0000h to OEFFFh),

RAM (040000h to 4EFFFh), IRAM(OF000h))

CLASSES('RAM' (040000h to 04FFFFh)
SYMBOLS LISTSYMBOLS

TO locate.out

reg1 67b.def
***8 EF

;*@(#)regl67b.def 1.10 12/18/97 DP7 DEFR OFFD2h

***P7 DEFR OFFDOh

Register definitions for the SAB C167 DP6 DEFR OFFCEh

This file contains all SFR names and BIT names P6 DEFR OFFCCh

**This file can he supplied to rn166 and a166 (STDNAMES control) DP4 DEFR OFFCAh

***P4 DEFR OFFC8h

TRUE DEFB OFF2Oh.0, RW DP3 DEFR OFFC6h

NODE142 DEFB OFF2Oh.l, RW P3 DEFR OFFC4h

DP2 DEFR OFFC2h

C1CSR DEFA OEFOOh P2 DEFR OFFCOh

INTID DEFA OEFO2h SSCCON DEFR OFFB2h

C1BTR DEFA OEFO4h SOCON DEFR OFFBOh

C1GMS DEFA OEFO6h WDTCON DEFR OFFAEh

ClUGML DEFA OEFO8h TFR DEFR OFFACh

CILGML DEFA OEFOAh P5 DEFR OFFA2h

C1UMLM DEFA OEFOCh ADCON DEFR OFFAOh

ClLMLM DEFA OEFOEh TIIC DEFR OFF9Eh

MCR-Ml DEFA OEFl0h TOIC DEFR OFF9Ch

MCRM2 DEFA OEF20h ADEIC DEFR OFF9Ah

MCRJ43 DEFA OEF3Qh ADCIC DEFR OFF98h

MCR.M4 DEFA OEF4Oh CC151C DEFR OFF96h

MCR.M5 DEFA OEF5Oh CC141C DEFR OFF94h

MCRM6 DEFA OEF60h CC131C DEFR OFF92h

MCR_M7 DEFA OEF70h CC121C DEFR OFF9Oh

MCRM8 DEFA OEF8Oh CCllIC DEFR OFF8Eh

MCRJ49 DEFA OEF9Oh CClOIC DEFR OFF8Ch

MCRMA DEFA OEFAOh CC9IC DEFR OFF8Ah

MCRMB DEFA OEFBOh CC8IC DEFR OFF88h

MCRMC DEFA OEFCOh CC71C DEFR OFF86h

MCRMD, DEFA OEFDOh CC61C DEFR OFF84h

MCRME DEFA OEFEOh CC51C DEFR OFF82h

MCRMF DEFA OEFFOh CC41C DEFR OFF80h

MCD_Ml DEFA OEFl6h CC31C DEFR OFF7Eh

MCDJ42 DEFA OEF26h CC21C DEFR OFF7Ch

MCD-M3 DEFA OEF36h CClIC DEFR OFF7Ah

MCD_M4 DEFA OEF46h CCOIC DEFR OFF78h

MCDM5 DEFA OEF56h SSCEIC DEFR OFF76h

MCDJ4M6 DEFA OEF66h SSCRIC DEFR OFF74h

MCDM7 DEFA OEF76h SSCTIC DEFR OFF72h

MCD-M8 DEFA OEF86h SOEIC DEFR OFF7Oh

MCDM9 DEFA OEF96h SORIC DEFR OFF6Eh

MCD-MA DEFA OEFA6h SOTIC DEFR OFF6Ch

MCD-MB DEFA OEFB6h CRIC DEFR OFF6Ah

MCD-MC DEFA OEFC6h T61C DEFR OFF68h

MCD.MD DEFA OEFD6h T51C DEFR OFF66h

MCD ME DEFA OEFE6h T41C DEFR OFF64h

DATA.M1 DEFA OEFl8h T31C DEFR OFF62h

DATA.M2 DEFA OEF28h T21C DEFR OFF6Oh

DATA.M3 DEFA OEF38h CCM3 DEFR OFF58h

DATAJA4 DEFA OEF48h CCM2 DEFR OFF56h

DATA M5 DEFA OEF58h CCM1 DEFR OFF54h

DATA.M6 DEFA OEF68h CCMO DEFR OFF52h

DATAM7 DEFA QEF78h T01CON DEFR OFF5Qh

DATA-M8 DEFA OEF88h T6CON DEFR OFF48h

DATA.M9 DEFA OEF98h T5CON DEFR OFF46h

DATA-MA DEFA QEFA8h T4CON DEFR OFF44h

DATA.MB DEFA OEFB8h T3CON DEFR OFF42h

DATAMC DEFA OEFC8h T2CON DEFR OFF4Oh

DATAMD DEFA OEFD8h PWMCON1 DEFR OFF32h

DATA-ME DEFA OEFE8h PWMCONO DEFR OFF3Oh

CCM7 DEFR OFF28h

CCM6 DEFR OFF26h

CCM5 DEFR OFF24h

DP8 DEFR OFFD6h CCM4 DEFR QFF22h

mommmreg 1 67b.def
T78CON DEFR OFF2Oh CC16 DEFR OFE6Oh

P1H DEFR OFFO6h TlREL DEFR OFE56h

PiL DEFR OFFO4h TOREL DEFR OFE54h

POH DEFR OFFO2h Ti DEFR OFE52h

POL DEFR OFFOOh TO DEFR OFE5Oh

PECC7 DEFR OFECEh CAPREL DEFR OFE4Ah

PECC6 DEFR OFECCh T6 DEFR OFE48h

PECC5 DEFR OFECAh T5 DEFR OFE46h

PECC4 DEFR OFEC8h T4 DEFR OFE44h

PECC3 DEFR OFEC6h T3 DEFR OFE42h

PECC2 DEFR OFEC4h T2 DEFR OFE4Oh

PECCi DEFR OFEC2h PW3 DEFR OFE36h

PECCO DEFR OFECOh PW2 DEFR OFE34h

SRCPO DEFA OFCEOh PWi DEFR OFE32h

DSTPO DEFA OFCE2h PWO DEFR OFE3Oh

SRCP1 DEFA OFCE4h

DSTP1 DEFA OFCE6hExeddsraa

SRCP2 DEFA OFCE8hExeddsraa

DSTP2 DEFA OFCEAh ODP8 DEFR OFiD6h

SRCP3 DEFA OFCECh ODP7 DEFR OF1D2h

DSTP3 DEFA OFCEEh ODP6 DEFR OFlCEh

SRCP4 DEFA OFCFOh ODP3 DEFR OFIC6h

DSTP4 DEFA OFCF2h PICON DEFR OFlC4h

SRCP5 DEFA OFCF4h ODP2 DEFR OFiC2h

DSTP5 DEFA OFCF6h EXICON DEFR OF1COh

SRCP6 DEFA OFCF8h SOTBIC DEFR OFi9Ch

DSTP6 DEFA OFCFAh XP31C DEFR OF19Eh

SRCP7 DEFA OFCFCh XP21C DEFR OFi96h

DSTP7 DEFA OFCFEh Xplic DEFR OF18Eh

SOBG DEFR OFEB4h XPOIC DEFR OF186h

SORBUF DEFR OFEB2h, r PWMIC DEFR OF17Eh

SOTBUF DEFR OFEBOh, w T81C DEFR OF17Ch

WDT DEFR OFEAEh, r TVIC DEFR OF17Ah

ADDAT DEFR OFEAOh CC31IC DEFR OF194h

CC15 DEFR OFE9Eh CC30IC DEFR OF18Ch

CC14 DEFR OFE9Ch CC291C DEFR OF184h

CC13 DEFR OFE9Ah CC281C DEFR OF178h

CC12 DEFR OFE98h CC271C DEFR OF176h

CCl DEFR OFE96h CC261C DEFR OFi74h

CC1o DEFR OFE94h CC251C DEFR OFi72h

CC9 DEFR OFE92h CC241C DEFR OFi7Oh

CC8 DEFR OFE9Oh CC231C DEFR OF16Eh

CC7 DEFR OFE8Eh CC221C DEFR OF16Ch

CC6 DEFR OFE8Ch CC21IC DEFR OF16Ah

CC5 DEFR OFE8Ah CC20IC DEFR OF168h

CC4 DEFR OFE88h CCiC DEFR OF166h

CC3 DEFR OFE86h CCliC DEFR OF164h

CC2 DEFR OFE84h CC171C DEFR OFi62h

ci DEFR OFE82h CC161C DEFR OFl6Oh

CCO DEFR OFE8Oh RPOH DEFR OFiO8h

CC31 DEFR OFE7Eh DP1H DEFR OFiO6h

CC30 DEFR OFE7Ch DPiL DEFR OFlO4h

CC29 DEFR OFE7Ah DPOH DEFR OFiO2h

CC28 DEFR OFE78h DPOL DEFR OFiO0h

CC27 DEFR OFE76h SSCBR DEFR OFOB4h

CC26 DEFR OFE74h SSCRB DEFR OFOB2h

CC25 DEFR OFE72h SSCTB DEFR OFOBOh

CC24 DEFR OFE7Oh ADDAT2 DEFR OFOAOh

CC23 DEFR OFE6Eh T8REL DEFR OFO56h

CC22 DEFR OFE6Ch T7REL DEFR OFO54h

CC21 DEFR OFE6Ah T8 DEFR OFO52h

CC20 DEFR OFE68h T7 DEFR OFO5Oh

CC19 DEFR OFE66h PP3 DEFR OFO3Eh

CC18 DEFR OFE64h PP2 DEFR OFO3Ch

CC17 DEFR OFE62h PP1 DEFR OFO3Ah

INEI'mregl167b.def

PPO DEFR 0F038h AN13 DEFB P5.13

PT3 DEFR 0F036h AN14 DEFB P5.14

PT2 DEFR 0FO34h AN15 DEFB P5.15

PT1 DEFR OFO32h T6EUD LIT 'AN1O'

PTO DEFR OFO30h T5EUD LIT 'ANli'

T61N LIT 'AN12'

Bit names T51N LIT 'AN13'

CCOIO DEFB P2.0 T4EUD LIT 'AN14'

CC1io DEFB P2.1 T2EUD LIT 'AN15'

CC21O DEFB P2.2

CC310 DEFB P2.3 POUTO DEFB P7.0

CC410 DEFB P2.4 POUT1 DEFB P7.1

CC510 DEFB P2.5 P0UT2 DEFB P7.2

CC610 DEFB P2.6 P0UT3 DEFB P7.3

CC71O DEFB P2.7 CC28I0 DEFB P7.4

CC810 DEFB P2.8 CC2910 DEFB P7.5

Cc9Io DEFB P2.9 CC30I0 DEFB P7.6

CC10IO DEFB P2.10 CC31I0 DEFB P7.7

CC11io DEFB P2.11

CC1210 DEFB P2.12 CC16io DEFB P8.0

CC131O DEFB P2.13 CC1710 DEFB P8.1

CC141O DEFB P2.14 CC181O DEFB P8.2

CC1510 DEFB P2.15 CC19Io DEFB P8.3

EXOIN LIT 'CCOIO' CC20IO DEFB P8.4

EX1IN LIT 'CC1IO' CC21IO DEFB P8.5

EX21N LIT 'CC21O' CC2210 DEFB P8.6

EX31N LIT 'CC31O' CC2310 DEFB P8.7

TOIN DEFB P3.0

T60UT DEFB P3.1 TOM DEFB TO1CON.3

CAPIN DEFB P3.2 TOR DEFB TO1CON.6

T30UT DEFB P3.3 TiM DEFB T0lCONli1

T3EUD DEFB P3.4 TiR DEFB T01CON.14

T21N DEFB P3.7 T7M DEFB T78CON.3

T31N DEFB P3.6 T7R DEFB T78CON.6

T41N DEFB P3.5 T8M DEFB T78CON.11

SSDI DEFB P3.8 T8R DEFB T78CON.14

SSDO DEFB P3.9

TXDO DEFB P3.10 ACCO DEFE CCMO.3

RXDO DEFB P3.11 ACC1 DEFB CCM0.7

SSCLK DEFB P3.13 ACC2 DEFB CCMO.11

CLKOUT DEFB P3.15 ACC3 DEFB CCMO.15

A16 DEFB P4.0 ACC4 DEFB CCM1.3

A17 DEFB P4.1 ACC5 DEFB CCM1.7

A18 DEFB P4.2 ACC6 DEFB CCM1.11

A19 DEFB P4.3 ACC7 DEFB CCM1.15

A20 DEFB P4.4

A21 DEFB P4.5 ACC8 DEFB CCM2.3

A22 DEFB P4.6 ACC9 DEFB CCM2.7

A23 DEFB P4.7 ACC10 DEFB CCM2.11

ACC11 DEFB CCM2.15

ANO DEFB P5.0

ANi DEFB P5.1 ACC12 DEFB CCM3.3

AN2 DEFB P5.2 ACC13 DEFB CCM3.7

AN3 DEFB P5.3 ACC14 DEFB CCM3.11

AN4 DEFB P5.4 ACC15 DEFB CCM3.15

AN5 DEFB P5.5

AN6 DEFB P5.6 ACC16 DEFB CCM4.3

AN7 DEFB P5.7 ACC17 DEFB CCM4.7

AN8 DEFE P5.8 ACC18 DEFB CCM4.11

AN9 DEFB P5.9 ACC19 DEFB CCM4.15

AN10 DEFB P5.10

ANIl DEFB P5.11 ACC20 DEFB CCM5.3

AN12 DEFB P5.12 ACC21 DEFB CCM5.7

ACC22
ACC23

ACC24
ACC2 5
ACC26
ACC27

ACC28
ACC29
ACC30
ACC31

T2R
T2UD

T2UDE

T3R
T3UD
T3UDE
T30E

T30TL

T4R
T4UD

T4UDE

T5R
T5UD
T5UDE
T5CLR
T5SC

T6R
T6UD
T6UDE
T60E
T60TL
T6SR

DEFB
DEFB
DEFB
DEFB
DEFB

T3CON. 6
T3CON.7
T3CON. 8
T3CON.9

T3CON. 10

DEFB T4CON.6

DEFB T4CON.7

DEFB T4CON.8

DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

T5CON.6
T5CON.7
T5CON.8
T5CON. 14
T5CON. 15

T6CON. 6
T6CON.7
T6CON. 8
T6CON.9
T6CON. 10
T6CON. 15

T2IC.6

T2IC. 7

T3IC. 6

T3IC. 7

T4IC.6

T4IC.7
T5IC.6
T5IC.7
T6IC.6
T6IC.7

DEFB CRIC.6

DEFB CRIC.7

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

SOTIC. 6
SOTIC .7

SORIC. 6
SORIC.7
SOEIC. 6
SOEIC.7

SOTBIC.6
SOTBIC.7

DEFB SSCTIC.6

DEFB SSCTIC.7

DEFB CCM5.11

DEFB CCM5.15

DEFB CCM6.3

DEFB CCM6.7

DEFB CCM6.11

DEFB CCM6.15

DEFB CCM7.3

DEFB CCM7.7

DEFB CCM7.11

DEFB CCM7.15

DEFB T2CON.6

DEFB T2CON.7

DEFB T2CON.8

reg167b.def
SSCRIE
SSCRIR
SSCEIE
SSCEIR

SSCTE
SSCRE
SSCPE
SSCBE

CCOIE
CCOIR
CC1IE
CC1IR
CC2IE

CC2IR

CC3IE
CC3IR

CC4IE
CC4IR
CC5IE

CC5IR
CC6IE

CC6IR
CC7IE
CC7IR

CC8IE

CC8IR
CC9IE

CC9IR

CC10IE
CC10IR

CC11IE
CC11IR
CC121E
CC12IR
CC13IE
CC13IR
CC14IE

CC14IR

CC15IE
CC15IR
CC161E
CC161R

CC171E
CC17IR
CC18IE

CC18IR
CC19IE
CC19IR
CC20IE
CC20IR

CC21IE
CC21IR
CC22IE
CC22IR

CC23IE

CC23IR

CC24IE

CC24IR
CC25IE

CC25IR

CC26IE

CC26IR
CC27IE

T2IE

T2IR

T3IE

T3IR

T4IE

T4 IR
T5IE
T5IR
T6IE
T6IR

DEFB
DEFB
DEFB
DEFB
LIT
LIT
LIT
LIT

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

SSCRIC. 6
SSCRIC.7
SSCEIC.6
SSCEIC.7

'SSCTEN'

'SSCREN'

'SSCPEN'

'SSCBEN'

CCOIC.6
CCOIC.7
CC1IC.6
CC1IC.7

CC2 IC. 6
CC2IC.7

CC3IC. 6

CC3IC .7

CC4IC.6
CC4IC .7
CC5IC.6

CC5IC.7
CC6IC.6

CC6IC.7
CC7IC. 6

CC7 IC. 7
CC8IC. 6
CC8IC.7
CC9IC.6

CC9IC.7
CC1OIC.6
CC1OIC.7

CC11IC.6
CC11IC.7
CC12IC.6

CC12IC.7
CC13IC.6
CC13IC.7
CC14IC.6

CC14IC.7
CC15IC.6

CC15IC.7

CC16IC.6

CC16IC.7
CC17IC.6

CC17IC.7
CC18IC.6
CC18IC.7
CC19IC.6
CC19IC .7
CC20IC.6
CC20IC.7
CC21IC.6
CC21IC.7
CC22IC.6
CC22IC.7

CC23IC.6

CC23IC.7
CC24IC.6

CC241C.7

CC25IC.6
CC25IC.7

CC26IC.6

CC26IC.7
CC27IC.6

CRIE
CRIR

SOTIE
SOTIR
SORIE
SORIR
SOEIE
SOEIR
SOTBIE

SOTBIR

SSCTIE

SSCTIR

reg 167b.def
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

CC27IC.7
CC28IC.6

CC28IC.7

CC29IC.6
CC29IC.7

CC30IC.6

CC30IC.7
CC31IC. 6
CC31IC.7

CC27IR
CC28IE
CC28IR

CC29IE
CC29IR

CC30IE

CC30IR
CC31IE
CC31IR

ADCIE
ADCIR
ADEIE
ADEIR

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

TOIC.6
TOIC .7
T1IC.6

T1IC.7
T7IC.6

T7IC.7
T8IC. 6

T8IC.7

ADCON. 7
ADCON. 8
ADCON. 9

ADCON.10
ADCON. 11

TFR. 0
TFR. 1
TFR.2
TFR. 3
TFR. 7

TFR. 13
TFR. 14
TFR. 15

DEFB WDTCON.O

DEFB WDTCON.1

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

SOCON.3

SOCON.4

SOCON. 5
SOCON.6

SOCON.7

SOCON. 8

SOCON. 9

SOCON. 10

SOCON. 12

SOCON. 13
SOCON. 14

SOCON. 15

SSCCON.4

SSCCON.5

SSCCON.6

SSCCON.8

SSCCON. 9

SSCCON.10

SSCCON.11

SSCCON.12

SSCCON.14

SSCCON.15

DEFB ADCIC.6

DEFB ADCIC.7

DEFB ADEIC.6

DEFB ADEIC.7

PTRO
PTR1
PTR2
PTR3
PTIO
PTI 1
PTI2

PT13
PIEO
PIE1
PI E2
PIE3
PIRO
PIR1
PIR2
PIR3

PENO
PEN1
PEN2
PEN3
PMO
PM1
PM2
PM3
PBO1
PS2
PS3

PWMIE
PWMIR

XP3IE
XP3IR
XP2IE

XP2IR

XP1IE

XP1IR

XPOIE
XPOIR

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

PWMCONO.0
PWMCONO.1

PWMCONO.2
PWMCONO.3

PWMCONO.4

PWMCONO.5
PWMCONO . 6

PWMCONO.7

PWMCONO . 8

PWMCONO.9

PWMCONO. 10

PWMCONO.11
PWMCONO.12

PWMCONO . 13

PWMCONO.14
PWMCONO.15

PWMCON1.0
PWMCON1.1

PWMCON1.2

PWMCON1.3
PWMCON1.4

PWMCON1 .5

PWMCON1 . 6

PWMCON1 .7

PWMCON1.12
PWMCON1.14
PWMCON1.15

PWMIC.6
PWMIC.7

XP3IC.6
XP3IC.7

XP2IC.6
XP2IC.7

XP1IC.6

XP1IC.7

XPOIC.6
XPOIC.7

TOIE
TOIR
T1IE

T1IR
T7IE
T7IR

T8IE
T8IR

ADST
ADBSY
ADWR
ADCIN
ADCRQ

ILLBUS
ILLINA

ILLOPA

PRTFLT
UNDOPC

STKUF
STKOF

NMI

WDTIN
WDTR

SOSTP

SOREN
SOPEN

SOFEN
SOOEN

SOPE

SOFE
SODE

SOODD

SOBRS

SOLB
SOR

SSCHB
SSCPH
SSCPO
SSCTEN

SSCREN

SSCPEN

SSCBEN

SSCBSY

SSCMS

SSCEN

Chapter B Breadboard Code

B.3 14V Bus CAN Node 2

On the next page starts the code for the 14V bus CAN node 2. The files for the node are as

follows.

1. comp212.bat

2. main212.asm

3. cnmod2l2.asm

4. canmo212.asm

5. cnint212.asm

6. atod212.asm

7. tmrs212.asm

8. linker.lnv

9. Reg167b.def

- 58 -

comp212.bat
a166 main212.asm
a166 crnmod212.asm
a166 canmo212.asm
a166 cnint212.asm
a166 atod2l2.asm
a166 tmrs2l2.asm
1166 LINK main2l2.obj cnmod2l2.obj canmo2l2.obj cnint2l2.obj atod2l2.obj tmrs2l2.obj TO

locatein.lno
1166 @linker.lnv
ihexl66 -i16 locate.out -o main2l2.hex

main212.asm
$SEGMENTED
$EXTEND

$EXTSFR

$EXTSSK

$EXTMEM

$NOMOD166
$STDNAMES(regl67b.def)
$SYMBOLS

NAME main
RBANK1 COMREG RO-R15

SSKDEF 4

ASSUME DPP3:SYSTEM

EXTERN canin:FAR

EXTERN atodinitialize:FAR
EXTERN atodtimer_initialize:FAR

; CAN USE ALL internal RAM for Stack

define a common register area of 16 register

default stack size of 256 Words

Can function
; external atod initialization

mainseg SECTION CODE

main PROC FAR

start: DISWDT
BSET IEN

disable the watchdog timer
Globally Enable Interrupts both global

Initialize the External Memory BUS
MOV SYSCON, #OE084h
MOV ADDRSEL1, #0404h
MOV BUSCONO, #004AFh
MOV BUSCON1, #004AFh
EINIT ; end initialization

End of external memory bus initialization

Initialize the Data Page pointers for this section
MOV DPP3, #03h ; make DPP3 point to system

End of Data Page Pointer Initialization

Make the direction of Port 2 to output
MOV DP2, ONES

Make sure Port 2 is in push/pull mode
MOV ODP2, ONES

Initialize The Stack
The Stack pointers are all word pointers so even though the

highest byte in the stack is located at #DFBFFh the highest

byte that the stack pointers can point to is #OFBFEh
MOV STRUN, #OFBFEh; Set Stack Underflow Pointer

MOV STKOV, #OF800h; Set STack Overflow Pointer

MOV SP, #OFBFEh ; Set the Stack Pointer

End of Stack Initialization

Initialize the Analog to Digital Converter
CALL atodinitialize; atod

End of A/D initialization

Initialize A/D timer
CALL atodtimer_initialize; timers

End of A/D timer initialization

Initialize CAN Bus

CALL canin ; Call the CAN initialization function

End of CAN Bus Initialization

meto:

main ENDP
mainseg ENDS

NOP
NOP
JMP meto
RET

startupsec SECTION CODE
sysreset PROC TASK INTNO

ORG 000H
JMP start
RETI

sysreset ENDP
startupsec ENDS
END

; just loop here waiting

return

; codesegment that contains reset int pointer

=0H ; reset interrupt number is zero at Oh

forces next instruction to be located at Oh
installs a pointer to the startup routine

return from interrupt

cnmod212.asm

$SEGMENTED
$EXTEND

$EXTSFR
$EXTMEM
$NOMOD166
$STDNAMES(regl67b.def)
$SYMBOLS

NAME canmod

RBANK1 COMREG RO-R15

GLOBAL canin

EXTERN canmocfg:FAR

ASSUME DPP3:SYSTEM

canfunc SECTION CODE

define a common register area of 16 registers
The function must be declared Global at the
beginning of the module

configures specific Message objects

codesegment that contains reset int pointer

canin PROC FAR
PUSH RO
PUSH RI

;; set all of the
AND C1CSR, ZEROS
MOV R1, #0043h
OR ClCSR,R1

CAN control registers
set control register to zero

; Set IE and INIT bits

set control register to Rl's value

AND C1BTR, ZEROS ; set Bit timing register to zero

MOV R1, #03447h ; set for 125k operation
OR C1BTR, R1 ; set Bit timing register parameters

AND C1GMS, ZEROS ; set Global Mask short register to zero

MOV R1, #OFFFFh ; EOFF is what DAVE initialize

OR C1GMS, RI ; set GMS

AND C1UGML, ZEROS set Upper global mask long to zero

MOV R1, #OFFFFh
OR C1UGML, R1

MOV R1, #OF8FFh

AND C1LGML, ZEROS

OR C1LGML, R1 lower global mask

AND C1UMLM, ZEROS
OR C1UMLM, R1 upper mask of last register

AND C1LMLM, ZEROS
OR C1LMLM, Rl lower mask of last register

CALL setall sets all of the CAN registers to off

CALL canmocfg Configures specific Message Objects

;; Setup CAN interrupt and Initialize CAN module

EXTR #4

AND XPOIC, ZEROS ; configure CAN interrupt control Register

AND RO,ZEROS
OR RO,#0073h enable interrupt, level is 10 group is 2

OR XPOIC,RO Configure CAN interrupt Control Register

AND R1, ZEROS
OR R1, #00041h crashes if I clear the CPU access to the BTR

XOR C1CSR, R1 end initialize CAN interrupt

POP RI
POP RO

RET
canin ENDP

setall PROC FAR This Procedure sets all of the Mess objs invalid

by using a counter it counts up to 15 and initializes all of the message

objects along the way.

PUSH R2

PUSH R4

PUSH R5
AND R5,ZEROS
OR R5, #01h Set counter to 1 for first MO

AND R2, ZEROS

OR R2,#OEF10h Set pointer to MOl
AND R4, ZEROS
OR R4, #5555h Set R4 to make MObs invalid

nextreg:MOV [R2],R4
ADD R2,#10h
CMPIl R5,#OFh
JMPA CCNZ,nextreg

POP R5
POP R4
POP R2
RET

setall ENDP

canfunc ENDS
END

; make all message objects invalid

canmo212.asm
$SEGMENTED

$EXTEND

$EXTSFR

$EXTMEM
$NOMOD166
$STDNAMES(regl67b.def)
$SYMBOLS

NAME canmo
RBANK1 COMREG RO-R15 declare bank of 16 global registers
GLOBAL canmocfg

canmodule SECTION CODE

ASSUME DPP3:SYSTEM

canmocfg PROC FAR

PUSH R1
PUSH R2
PUSH R3

Now set specific CAN control Registers
initialize message object 1
initializing this object to be invalid does or removing the code until
the comment "Setup CAN interrupt and Initialize " does

nothing to prevent the occurrance of the interrupt for the CAN system

MOV R2, #MCRM1 start of Message Object 1

AND Rl, ZEROS
OR Ri, #5599h Generate a Receive Interrupt if this message object ac

tivates
MOV [R2],Rl set M01's Control register

ADD R2,#2h

AND R3, ZEROS

OR R3, #08001h
MOV [R2J,R3

ADD R2, #2h

MOV [R2], ZEROS

AND R1, ZEROS

OR R1, #0030h
MOV MCDM1,Rl
MOV DATAM1, ZEROS

MOV R2, #MCRM3

AND Ri, ZEROS

OR Ri, #5595h

MOV [R2],Rl

ADD R2,#2h

AND R3, ZEROS

OR R3, #04077h
MOV [R2],R3
ADD R2, #2h

MOV [R2], ZEROS
AND Rl, ZEROS

OR Ri, #0038h
MOV MCDM3,R1

MOV DATAM3, ZER

point to Upper Arbitration register
set R3 to

message id for message object 1
message id = #0003h
Point to the Lower Arbitration Register

standard Message object so lowerarb = Oh

put OAAh into first data byte and set to receive
Databyte(O) = 0 and Set to receive and 3 bytes of data
fill the Data of the MO with Zeros

start of Message Object 3

Generate a receive interrupt if this message object ac

set M03's Control register
; point to Upper Arbitration register

; set R6 to zero
; The number is the Message ID for Message Object 3
; message id = 0
Point to the Lower Arbitration Register
standard Message object so lowerarb = Oh

put 000h into first data byte and set to receive
; Databyte(O) = 0 and Set to receive and 3 bytes of da

OS Fill the Data of the MO with Zeros

;; Initialize Message Object 5
MOV R2, #MCRM5 ; start of Message Object 5

f data

AND Ri, ZEROS
OR R1, #5595h

MOV [R2J,R1 set M04's Control register

ADD R2,#2h point to Upper Arbitration register

AND R3, ZEROS ; set R6 to zero

OR R3, #00012h The number is the Message ID for Message Object 5
MOV (R2],R3 message id = 0

ADD R2, #2h Point to the Lower Arbitration Register
MOV [R2], ZEROS standard Message object so lowerarb = Oh
AND R1, ZEROS
OR Ri, #0038h put OAAh into first data byte and set to receive
MOV MCDM5,R1 ; Databyte(O) = 0 and Set to receive and 3 bytes o

MOV DATAM5, ZEROS fill the data of the MO with ZEROS

POP R3
POP R2
POP R1
RET

canmocfg ENDP
can-module ENDS
END

tivates

cnint212.asm
$SEGMENTED

$EXTEND

$EXTSFR
$EXTMEM
$NOMOD166
$STDNAMES(regl67b.def)
$SYMBOLS

NAME canint

RBANK1 COMREG RO-R15

ASSUME DPP3:SYSTEM

can_interrupts SECTION CODE

canreceive-interrupt PROC TASK INTNO=040h
ORG 0100h
CALL can-receiveinterrupthandler
RETI

can-receive-interrupt ENDP

can-receive-interrupt-handler PROC FAR
PUSH RO
PUSH R1
PUSH R2

MOVB RLO, INTID Read the CAN interrupt ID buffer

CMPB RLO, #03h See if the interrupt came from M01
JMP ccZ, messageone_interrupt; if interrupt from M01 handle

MOV R1, #05555h

MOV R2, #05599h
MOV MCRM2, R1
MOV RO, DATAM2

MOV MCRM2, R2

Now setup M5 so it can respond to queries about
the state of the switch

MOV R2,MCRM6

MOV MCRM6, R1

MOV DATAM6, RO
MOV MCRM6, R2

CMP RO, #01h
JMP ccNZ, turn-offfheated_rearwindow
BSET P2.1
JMP exit-function

turnoff_heated~rearwindow:
CMP RO, #0800h
JMP ccNZ, exit-function
BCLR P2.1

JMP exit-function

message-one-interrupt:
MOV R1, #05555h

MOV R2, #05599h
MOV MCRM1, R1

MOV RO, DATA_Ml
MOV MCRM1, R2

Now setup M5 so it can respond to queries about
the state of the switch

MOV R2, MCRM5

MOV MCRM5, R1

MOV DATAM5, RO

MOV MCRM5, R2

CMP RO, #01h
JMP ccNZ, turnheater_off
BSET P2.0
JMP exit-function

turn-heater-off:
CMP RO, #0800h
JMP ccNZ, exitfunction

BCLR P2.0

exit-function:
MOV R2, #DEFFFh

AND C1CSR, R2

POP R2
POP RI
POP RO
RET

canreceive_interrupt-handler ENDP

can_interrupts ENDS

END

; declare bank of 16 global registers

atod212.asm
$SEGMENTED
$EXTEND

$EXTSFR
$EXTSSK CAN USE ALL internal RAM for Stack

$EXTMEM
$NOMOD166
$STDNAMES(reg167b.def)
$SYMBOLS

name atod

ASSUME DPP3:SYSTEM

RBANK1 COMREG RO-R15

GLOBAL atodinitialize

This A/D is set up to measure the current in two different
loads. Because this software is to be used as part of
42volt bus node 1, it uses the names of the loads that

that node is supposed to control.
The analog to digital converter uses Port 5

atodsetup SECTION CODE

atod_initialize PROC FAR
Initialize variables

This below line of code setups up the A/D converter
for 2 channels and single conversion.
It is also set for "Wait for read mode"
so the converter will wait for the user program to read

the buffer before processing the next channel.
MOV ADCON, #OA221h setup A/D control register

Set the channel to which the data should be written
when the first "A/D is done" interrupt occurs

The below code sets up the A/D's Interrupt control register

The A/D is setup to have a group of 2 and a level of 10

MOV ADCIC, #006Fh
RET

atodinitialize ENDP
atodsetup ENDS

atod-handlers SECTION CODE
atodhandler PROC TASK INTNO=028h

ORG OADH
CALL atod_function
RETI

atodhandler ENDP

atod_function PROC FAR

this function works by seeing if the converter is converting

for the heater measurement. If the bit is set, then

the bit gets cleared and the IP jumps to where the

value in the converter is moved into the heater-current

variable.
otherwise the bit gets set and the value is moved into

the heatedrearwindowcurrent variable
PUSH RO
PUSH RI

PUSH R2

PUSH R3
PUSH R4

MOV R2, ADDAT

MOV RO, R2
ch the data is coming

MOV R3, R2

lue

This is so we can isolate the A/D channel from whi

This is so we can isolate the A/D voltage sense va

;; This code scales the data from the A/D by 21 to get the actual current fl

owing through the BTS550P
AND R3, #003FFh This isolates the lower ten bits of the A/D's output

MOV R4, #01h No Scaling on the microcontroller

D

AND RO, #DFOOh
CMP RO, #01000h

The channel information is located in the upper nibble
See if the information is coming from Channel 1 of the A/

JMP ccZ, RearSeatHeater-current

MOV RO, #05555h

MOV Rl, MCRM3

MOV MCRM3, RO

MUL R3, R4

NOP

MOV DATAM3, MDL

MOV MCRM3, R1
BSET T3R

JMP exit-routine

; This bit pattern deactives MCRs
SAVE the Configuration of the MCR

Kill the Message Control Register

This generates the acutal current value

for real

RearSeatHeater-current:

MOV

MOV

MOV

MOV

ADD

RO, #05555h
Rl, MCRM4

MCRM4, RO

RO, #04h ;test
P2, RO

MUL R3,R4
NOP

MOV DATAM4, MDL

MOV MCRM4, R1

This bit pattern deactives MCRs
SAVE the Configuration of the MCR

Kill the Message Control Register
code

;test code

This generates the actual current value

for testing purposes

exit-routine:
POP R4

POP R3
POP R2

POP R1

POP RO
RET

atodjfunction ENDP

atodhandlers ENDS

END

tmrs2l2.asm

$SEGMENTED

$EXTEND

$EXTSFR

$EXTMEM
$EXTINSTR

$NOMOD166

$STDNAMES(reg167b.def)

$SYMBOLS

NAME timer-functions

ASSUME DPP3:SYSTEM

RBANK1 COMREG RO-R15

GLOBAL atodtimer-initialize

atod~timer SECTION CODE

atod~timer-initialize PROC FAR

MOV T3CON, #0004h

MOV T3IC, #002Bh

MOV T3, #0000h

BSET T3IE

BSET T3R

RET

atod_timer-initialize ENDP

These are assembler controls

Assembler controls end here

; setup Core Timer T3

; Make the value in the counter equal to zero

; enable the timer interrupt

; start the timer

atod_interrupt PROC TASK INTNO=023h

ORG 08Ch
CALL atodtimerhandler

RETI

atodinterrupt ENDP

atod-timer handler PROC FAR

BCLR T3R

BSET ADST

RET

atodtimer-handler ENDP
atod~timer ENDS

END

stop the timer

start an A/D conversion

linker.lnv
LOCATE
locatein. no
(GENERAL)

IRAMSIZE (2048)
RESERVE MEMORY(OF200h TO OF5FFh)

MEMORY(ROM (0000h to OEFFFh),
RAM (040000h to 4EFFFh), IRAM(OF000h))
CLASSES('RAM' (040000h to 04FFFFh)
SYMBOLS LISTSYMBOLS

TO locate.out

** @(#)regl67b.def 1.10 12/18/97

Register definitions for the SAB C167
;** This file contains all SFR names and BIT names

This file can be supplied to rm166 and a166 (STDNAMES control)

TRUE DEFB OFF20h.0, RW
NODE142 DEFB OFF20h.1, RW

C1CSR
INTID
C1BTR
ClGMS

ClUGML

C1LGML
C1UMLM
ClLMLM
MCRM1
MCRM2

MCRM3
MCRM4
MCRM5
MCRM6
MCRM7
MCRM8
MCRM9
MCRMA
MCR.MB
MCRMC
MCRMD
MCRME

MCRMF
MCD-Ml
MCDM2
MCDM3
MCDM4
MCDM5
MCDM6

MCDM7
MCDM8
MCDM9
MCDMA
MCDMB

MCDMC
MCDMD
MCDME
DATA_Ml

DATAM2

DATAM3
DATAM4
DATAM5
DATAM6

DATAM7
DATAM8
DATAM9
DATAMA
DATAMB
DATAMC
DATAMD
DATAME

DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA

DP8

OEFQOh

OEF02h

OEF04h
OEF06h

OEF08h

OEFOAh

QEFOCh

QEFOEh

OEF10h

OEF20h

OEF30h

OEF40h

OEF50h

OEF60h

OEF70h

OEF80h

OEF90h

OEFAOh

OEFBOh
OEFCOh

QEFDOh

OEFEOh

OEFFOh

OEF16h

OEF26h

OEF36h

OEF46h
OEF56h

OEF66h

OEF76h

OEF86h

OEF96h

OEFA6h
OEFB6h

OEFC6h

OEFD6h

OEFE6h

OEF18h

OEF28h

OEF38h

OEF48h

OEF58h

OEF68h

OEF78h

OEF88h

OEF98h

OEFA8h

OEFB8h
OEFC8h

OEFD8h

0EFE8h

DEFR OFFD6h

reg 167b.def
P8
DP7
P7

DP6
P6

DP4
P4

DP3
P3

DP2
P2

SSCCON

SOCON
WDTCON

TFR
P5

ADCON
TlIC

TOIC
ADEIC
ADCIC
CC15IC
CCl4IC

CC3IC

CC12IC

CCllIC

CClOIC

CC9IC

CC8IC
CC7IC

CC6IC

CCsIC
CC4IC

CC3IC

CC2IC

CC1IC

CCOIC
SSCEIC

SSCRIC

SSCTIC

SOEIC
SORIC
SOTIC
CRIC
T6IC

T5IC
T4IC

T3IC

T2IC
CCM3
CCM2
CCM1
CCMO

T01CON
T6CON
T5CON
T4CON
T3CON
T2CON
PWMCON1

PWMCONO
CCM7

CCM6

CCM5
CCM4

DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR

OFFD4h
OFFD2h

OFFDOh
OFFCEh

OFFCCh

OFFCAh

OFFC8h

OFFC6h

OFFC4h

OFFC2h

OFFCOh

OFFB2h

OFFBh
OFFAEh

OFFACh

OFFA2h

OFFAOh

OFF9Eh

OFF9Ch

OFF9Ah

OFF98h

OFF96h

OFF94h
OFF92h
OFF90h

OFF8Eh

OFF8Ch

OFF8Ah

OFF88h

OFF86h

OFF84h
OFF82h

OFF80h

OFF7Eh
OFF7Ch

OFF7Ah

OFF78h
OFF76h

OFF74h
OFF72h

OFF70h

OFF6Eh

OFF6Ch
OFF6Ah

OFF68h

OFF66h

OFF64h

OFF62h

OFF60h

OFF58h

OFF56h

OFF54h
OFF52h

OFF50h

OFF48h

OFF46h

OFF44h
OFF42h
OFF40h

OFF32h

OFF30h

OFF28h

OFF26h

OFF24h
OFF22h

Mumma| reg 1 67b.def
T78CON DEFR OFF20h CC16 DEFR OFE60h
PiH DEFR OFF06h TlREL DEFR OFE56h
PiL DEFR OFF04h TOREL DEFR OFE54h
POH DEFR OFF02h Ti DEFR OFE52h
POL DEFR OFFOOh TO DEFR OFE50h
PECC7 DEFR OFECEh CAPREL DEFR OFE4Ah
PECC6 DEFR OFECCh T6 DEFR OFE48h
PECC5 DEFR OFECAh T5 DEFR OFE46h
PECC4 DEFR OFEC8h T4 DEFR OFE44h
PECC3 DEFR OFEC6h T3 DEFR OFE42h
PECC2 DEFR OFEC4h T2 DEFR OFE40h
PECC1 DEFR OFEC2h PW3 DEFR OFE36h
PECCO DEFR OFECOh PW2 DEFR OFE34h
SRCPO DEFA OFCEOh PW1 DEFR OFE32h
DSTPO DEFA OFCE2h PWO DEFR OFE30h
SRCP1 DEFA OFCE4h
DSTP1 DEFA OFCE6h Extended sfr area
SRCP2 DEFA OFCE8h
DSTP2 DEFA OFCEAh ODP8 DEFR OFiD6h
SRCP3 DEFA OFCECh ODP7 DEFR OF1D2h
DSTP3 DEFA OFCEEh ODP6 DEFR OF1CEh
SRCP4 DEFA OFCFOh ODP3 DEFR OF1C6h
DSTP4 DEFA OFCF2h PICON DEFR OFiC4h
SRCP5 DEFA OFCF4h ODP2 DEFR OFIC2h
DSTP5 DEFA OFCF6h EXICON DEFR OF1COh
SRCP6 DEFA OFCF8h SOTBIC DEFR OF19Ch
DSTP6 DEFA OFCFAh XP3IC DEFR OF19Eh
SRCP7 DEFA OFCFCh XP2IC DEFR OF196h
DSTP7 DEFA OFCFEh XP1IC DEFR OF18Eh
SOBG DEFR OFEB4h XPOIC DEFR OF186h
SORBUF DEFR OFEB2h, r PWMIC DEFR OF17Eh
SOTBUF DEFR OFEBOh, w T8IC DEFR OF17Ch
WDT DEFR OFEAEh, r T7IC DEFR OF17Ah
ADDAT DEFR OFEAOh CC31IC DEFR OF194h
CC15 DEFR OFE9Eh CC30IC DEFR OF18Ch
CC14 DEFR OFE9Ch CC29IC DEFR OF184h
CC13 DEFR OFE9Ah CC28IC DEFR OF178h
CC12 DEFR OFE98h CC27IC DEFR OF176h
CCil DEFR OFE96h CC26IC DEFR OF174h
CC10 DEFR OFE94h CC25IC DEFR OF172h
CC9 DEFR OFE92h CC241C DEFR OF170h
CC8 DEFR OFE90h CC231C DEFR OF16Eh
CC7 DEFR OFE8Eh CC221C DEFR OF16Ch
CC6 DEFR OFE8Ch CC21IC DEFR OF16Ah
CC5 DEFR OFE8Ah CC20IC DEFR OF168h
CC4 DEFR OFE88h CCi9IC DEFR OF166h
CC3 DEFR OFE86h CC181C DEFR OF164h
CC2 DEFR OFE84h CC17IC DEFR OF162h
CCl DEFR OFE82h CC161C DEFR OF160h
CCO DEFR OFE8Oh RPOH DEFR OF108h
CC31 DEFR OFE7Eh DPiH DEFR OF106h
CC30 DEFR OFE7Ch DPiL DEFR OF104h
CC29 DEFR OFE7Ah DPOH DEFR OF102h
CC28 DEFR OFE78h DPOL DEFR OF100h
CC27 DEFR OFE76h SSCBR DEFR OFOB4h
CC26 DEFR OFE74h SSCRB DEFR OFOB2h
CC25 DEFR OFE72h SSCTB DEFR OFOBOh
CC24 DEFR OFE70h ADDAT2 DEFR OFOAOh
CC23 DEFR OFE6Eh T8REL DEFR OFO56h
CC22 DEFR OFE6Ch T7REL DEFR OFO54h
CC21 DEFR OFE6Ah T8 DEFR OF052h
CC20 DEFR OFE68h T7 DEFR OF050h
CC19 DEFR OFE66h PP3 DEFR OF03Eh
CC18 DEFR OFE64h PP2 DEFR OF03Ch
CC17 DEFR OFE62h PPi DEFR OF03Ah

MEN=reg 1 67b.def
PPO DEFR 0FO38h AN13 DEFB P5.13
PT3 DEFR 0FO36h AN14 DEFB P5.14
PT2 DEFR 0F034h AN15 DEFB P5.15
PT1 DEFR OFO32h T6EUD LIT 'ANlO'
PTO DEFR OFO3Oh T5EUD LIT 'ANil'

T61N LIT 'AN12'
Bit names T51N LIT 'AN13'

CCOI0 DEFB P2.0 T4EUD LIT 'AN14'
CC1i0 DEFB P2.1 T2EUD LIT 'ANiS'
CC210 DEFB P2.2
CC310 DEFB P2.3 POUTO DEFB P7.0
CC410 DEFB P2.4 POUTI DEFB P7.1
CC510 DEFB P2.5 POUT2 DEFB P7.2
CC610 DEFB P2.6 P0UT3 DEFE P7.3
CC710 DEFB P2.7 CC2810 DEFB P7.4
CC8I0 DEFB P2.8 CC2910 DEFB P7.5
Cc910 DEFB P2.9 CC30IO DEFB P7.6
CC1oio DEFB P2.10 CC31I0 DEFB P7.7
CC11IO DEFB P2.11
CC1210 DEFB P2.12 CC1610 DEFB P8.0
CC1310 DEFB P2.13 CC1710 DEFB P8.1
CC141O DEFB P2.14 CC1810 DEFB P8.2
CC151O DEFB P2.15 CC19Io DEFB P8.3
EXOIN LIT ICCOIO' CC20I0 DEFB P8.4
EX1IN LIT 'CC1I0' CC21IO DEFB P8.5
EX21N LIT 'CC2IO' CC2210 DEFB P8.6
EX31N LIT 'CC3IO' CC2310 DEFB P8.7

TOIN DEFB P3.0
T60UT DEFB P3.1 TOM DEFB TO1C0N.3
CAPIN DEFB P3.2 TOR DEFB TO1CON.6
T30UT DEFB P3.3 TiM DEFB TO1CON.11
T3EUD DEFB P3.4 TiR DEFB TO1CON.14
T21N DEFB P3.7 T7M DEFB T78CON.3
T31N DEFB P3.6 T7R DEFB T78CON.6
T41N DEFB P3.5 T8M DEFB T78CON.11
SSDI DEFB P3.8 T8R DEFB T78CON.14
SSD0 DEFB P3.9
TXDO DEFB P3.10 ACCO DEFB CCMO.3
RXDO DEFB P3.11 ACCi DEFB CCMO.7
SSCLK DEFB P3.13 ACC2 DEFB CCMO.11
CLKOUT DEFB P3.15 ACC3 DEFB CCMO.15

A16 DEFB P4.0 ACC4 DEFB CCM1.3
A17 DEFB P4.1 ACC5 DEFB CCM1.7
A18 DEFB P4.2 ACC6 DEFB CCM1.l1
A19 DEFB P4.3 ACC7 DEFB CCM1.15
A20 DEFB P4.4
A21 DEFB P4.5 ACC8 DEFB CCM2.3
A22 DEFB P4.6 ACC9 DEFB CCM2.7
A23 DEFB P4.7 ACC10 DEFB CCM2.11

ACC11 DEFE CCM2.15
ANO DEFB P5.0
AN1 DEFB P5.1 ACC12 DEFB CCM3.3
AN2 DEFB P5.2 ACC13 DEFB CCM3.7
AN3 DEFB P5.3 ACC14 DEFB CCM3.11
AN4 DEFB P5.4 ACC15 DEFB CCM3.15
AN5 DEFB P5.5
AN6 DEFB P5.6 ACC16 DEFB CCM4.3
AN7 DEFB P5.7 ACC17 DEFB CCM4.7
AN8 DEFB P5.8 ACC18 DEFB CCM4.11
AN9 DEFB P5.9 ACC19 DEFB CCM4.15
AN10 DEFB P5.10
AN11 DEFB P5.11 ACC20 DEFB CCM5.3
AN12 DEFB P5.12 ACC21 DEFB CCM5.7

ACC22
ACC23

ACC24
ACC25
ACC26
ACC27

ACC28
ACC29
ACC30
ACC31

T2R
T2UD
T2UDE

T3R

T3UD
T3UDE
T30E

T30TL

T4R
T4UD
T4UDE

T5R

T5UD
T5UDE
T5CLR
T5SC

T6R
T6UD
T6UDE
T60E
T60TL

T6SR

T2IE

T2IR

T3IE
T3IR

T4IE
T4IR
T5IE
T5IR

T6IE
T6IR

CRIE
CRIR

SOTIE
SOTIR
SORIE
SORIR
SOEIE
SOEIR
SOTBIE
SOTBIR

SSCTIE
SSCTIR

DEFB
DEFB
DEFB
DEFB
DEFB

T3CON.6
T3CON.7

T3CON.8

T3CON. 9
T3CON. 10

DEFB T4CON.6

DEFB T4CON.7
DEFB T4CON.8

DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

T5CON. 6
T5CON.7
T5CON. 8
T5CON. 14
T5CON. 15

T6CON. 6
T6CON.7
T6CON. 8
T6CON.9
T6CON.10
T6CON. 15

T2IC. 6
T2IC.7

T3IC. 6
T3IC.7

T4IC. 6
T4IC.7
T5IC.6
T5IC.7

T6IC.6

T6IC.7

DEFB CRIC.6
DEFB CRIC.7

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

SOTIC. 6
SOTIC. 7
SORIC. 6
SORIC .7
SOEIC. 6
SOEIC.7
SOTBIC.6
SOTBIC.7

DEFB SSCTIC.6

DEFB SSCTIC.7

DEFB CCM5.11

DEFB CCM5.15

DEFB CCM6.3

DEFB CCM6.7

DEFB CCM6.11

DEFB CCM6.15

DEFB CCM7.3
DEFB CCM7.7

DEFB CCM7.11
DEFB CCM7.15

DEFB T2CON.6

DEFB T2CON.7

DEFB T2CON.8

regl67b.def
SSCRIE

SSCRIR

SSCEIE
SSCEIR

SSCTE
SSCRE
SSCPE

SSCBE

CCOIE
CCOIR
CC1IE

CClIR

CC2IE
CC2IR
CC3IE

CC3IR

CC4IE
CC4IR

CC5IE

CC5IR
CC6IE

CC6IR

CC7IE
CC7IR

CC8IE

CC8IR

CC9IE

CC9IR

CC10IE

CC10IR
CC1liE

CC11IR
CC12IE
CC12IR
CC13IE
CC13IR
CC14IE

CC14IR
CC15IE

CC15IR
CC16IE
CC16IR
CC17IE
CC17IR
CC181E
CC18IR

CC19IE
CC19IR
CC20IE
CC20IR
CC21IE
CC21IR
CC22IE
CC22IR

CC23IE
CC23IR

CC24IE
CC24IR

CC25IE
CC25IR

CC26IE

CC26IR

CC27IE

DEFB
DEFB
DEFB
DEFB
LIT
LIT
LIT
LIT

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

SSCRIC.6
SSCRIC.7

SSCEIC.6

SSCEIC.7

'SSCTEN'

'SSCREN'

'SSCPEN'

'SSCBEN'

CCOIC.6

CCOIC.7
CC1IC.6
CClIC.7

CC2IC. 6
CC2IC .7
CC3 IC. 6
CC3 IC. 7
CC4IC.6
CC4IC. 7

CC5IC. 6

CC5IC.7
CC6IC.6

CC6IC.7
CC7IC. 6

CC7IC.7

CCBIC.6

CC8IC.7
CC9IC. 6

CC9IC.7

CC1OIC. 6
CC1OIC.7

CC1IC. 6

CC11IC.7
CC2 IC. 6
CC12 IC. 7
CC13IC. 6
CC13IC. 7
CC14IC. 6
CC14IC.7

CC15IC.6

CC15IC.7
CC161C.6
CC16IC. 7
CC17IC.6
CC17IC.7

CC18IC. 6

CC18IC.7
CC19IC.6
CC19IC.7
CC20IC.6
CC20IC.7
CC21IC.6
CC21IC .7
CC22IC.6
CC22IC.7

CC23IC.6

CC23IC.7
CC24IC.6
CC24IC. 7
CC25IC.6
CC25IC.7

CC26IC.6

CC26IC.7
CC27IC.6

CC271R
CC28IE

CC28IR

CC29IE
CC29IR

CC30IE

CC30IR
CC31IE
CC31IR

ADCIE

ADCIR
ADEIE
ADEIR

TOIE
TOIR
TIE

T1IR
T7IE

T7IR

T8IE
T8IR

ADST
ADBSY
ADWR
ADCIN
ADCRQ

ILLBUS
ILLINA
ILLOPA

PRTFLT
UNDOPC

STKUF
STKOF
NMI

WDTIN
WDTR

SOSTP
SOREN
SOPEN

SOFEN
SOOEN

SOPE

SOFE
SOOE

SOODD

SOBRS
SOLB
SOR

SSCHB
SSCPH
SSCPO

SSCTEN

SSCREN

SSCPEN

SSCBEN

SSCBSY

SSCMS

SSCEN

DEFB CC27IC.7

DEFB CC281C.6

DEFB CC28IC.7

DEFB CC291C.6

DEFB CC29IC.7

DEFB CC30IC.6

DEFB CC301C.7

DEFB CC31IC.6

DEFB CC31IC.7

DEFB ADCIC.6

DEFB ADCIC.7

DEFB ADEIC.6
DEFB ADEIC.7

DEFB TOIC.6
DEFB TOIC.7

DEFB T1IC.6
DEFB T1IC.7

DEFB T7IC.6

DEFB T7IC.7

DEFB T8IC.6
DEFB T8IC.7

DEFB ADCON.7

DEFB ADCON.8

DEFB ADCON.9

DEFB ADCON.10

DEFB ADCON.11

DEFB TFR.O

DEFB TFR.1
DEFB TFR.2

DEFB TFR.3
DEFB TFR.7

DEFB TFR.13
DEFB TFR.14

DEFB TFR.15

DEFB WDTCON.O

DEFB WDTCON.1

DEFB SOCON.3
DEFB SOCON.4

DEFB SOCON.5

DEFB SOCON.6

DEFB SOCON.7

DEFB SOCON.8

DEFB SOCON.9
DEFB SOCON.10

DEFB SOCON.12

DEFB SOCON.13

DEFB SOCON.14

DEFB SOCON.15

DEFB SSCCON.4
DEFB SSCCON.5

DEFB SSCCON.6

DEFB SSCCON.8

DEFB SSCCON.9

DEFB SSCCON.10

DEFB SSCCON.11

DEFB SSCCON.12

DEFB SSCCON.14

DEFB SSCCON.15

reg167b.def

PTRO
PTR1
PTR2
PTR3
PTIO
PTI 1
PTI2

PTI3
PIEO
PIE1
PIE2
PIE3
PIRO
PIR1
PIR2
PIR3

PENO
PEN1
PEN2
PEN3
PMO
PM1
PM2
PM3
PBO 1
PS2
PS3

PWMIE
PWMIR

XP3IE

XP3IR
XP2IE

XP2IR
XP1IE

XP1IR
XPOIE
XPOIR

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

PWMCONO.0

PWMCONO.1

PWMCONO.2

PWMCONO.3

PWMCONO.4
PWMCONO.5
PWMCONO.6

PWMCONO.7

PWMCONO.8

PWMCONO.9

PWMCONO.10

PWMCONO.11
PWMCONO.12
PWMCONO.13
PWMCONO.14
PWMCONO.15

PWMCON1.0
PWMCON1.1

PWMCON1.2
PWMCON1.3
PWMCON1.4
PWMCON1.5

PWMCON1.6
PWMCON1.7
PWMCON1.12

PWMCON1.14
PWMCON1.15

PWMIC.6
PWMIC.7

XP3IC.6
XP3IC.7
XP2IC.6
XP2IC.7
XP1IC.6
XP1IC.7
XPOIC.6
XPOIC.7

B.4 14V Bus CAN Node 3

On the next page starts the code for the 14V bus CAN node 3. The files for the node are as
follows.

1. comp312.bat

2. main312.asm

3. cnmod312.asm

4. canmo312.asm

5. cnint312.asm

6. atod312.asm

7. tmrs312.asm

8. linker.lnv

9. Reg167b.def

-59 -

Chapter B Breadboard Code

comp312.bat
a166 main3l2.asm
a166 cnmod312.asm
a166 canmo312.asm
a166 cnint3l2.asm
a166 atod3l2.asm
a166 tmrs3l2.asm
1166 LINK main3l2.obj cnmod3l2.obj canmo3l2.obj cnint3l2.obj atod312.obj tmrs3l2.obj TO

locatein. no
1166 @linker.lnv
ihexl66 -i16 locate.out -o main3l2.hex

main3 12.asm

$SEGMENTED
$EXTEND

$EXTSFR

$EXTSSK
$EXTMEM

$NOMOD166
$STDNAMES(regl67b.def)
$SYMBOLS

NAME main

RBANK1 COMREG RO-R15

SSKDEF 4

ASSUME DPP3:SYSTEM

EXTERN canin:FAR

EXTERN atod_initialize:FAR

EXTERN atodtimerinitialize:FAR

CAN USE ALL internal RAM for Stack

define a common register area of 16 register

default stack size of 256 Words

Can function
; external atod initialization

mainseg SECTION CODE

main PROC FAR

start: DISWDT

BSET IEN

; disable the watchdog timer
; Globally Enable Interrupts both global

Initialize the External Memory BUS
MOV SYSCON, #0E084h
MOV ADDRSEL1, #0404h
MOV BUSCONO, #004AFh
MOV BUSCON1, #004AFh
EINIT ; end initialization

End of external memory bus initialization

Initialize the Data Page pointers for this section

MOV DPP3, #03h ; make DPP3 point to system

End of Data Page Pointer Initialization

Make the direction of Port 2 to output

MOV DP2, ONES

Make sure Port 2 is in push/pull mode

MOV ODP2, ONES

Initialize The Stack
The Stack pointers are all word pointers so even though the

highest byte in the stack is located at #OFBFFh the highest

byte that the stack pointers can point to is #OFBFEh

MOV STKUN, #QFBFEh; Set Stack Underflow Pointer

MOV STKOV, #OF800h; Set STack Overflow Pointer

MOV SP, #OFBFEh ; Set the Stack Pointer

End of Stack Initialization

Initialize the Analog to Digital Converter

CALL atod_initialize; atod

End of A/D initialization

Initialize A/D timer
CALL atodtimerinitialize; timers

End of A/D timer initialization

Initialize CAN Bus
CALL canin Call the CAN initialization function

End of CAN Bus Initialization

meto:
NOP
NOP
JMP meto

; just loop here waiting

RET ; return

main ENDP

mainseg ENDS

startupsec SECTION CODE
sysreset PROC TASK INTNO=OH

ORG 000H
JMP start
RETI

sysreset ENDP
startupsec ENDS
END

codesegment that contains reset int pointer
reset interrupt number is zero at Oh

forces next instruction to be located at Oh

installs a pointer to the startup routine

return from interrupt

cnmod312.asm

$SEGMENTED

$EXTEND

$EXTSFR
$EXTMEM

$NOMOD166
$STDNAMES(reg167b.def)

$SYMBOLS

NAME canmod

RBANK1 COMREG RO-R15

GLOBAL canin

EXTERN canmocfg:FAR configures specific Message objects

ASSUME DPP3:SYSTEM

canfunc SECTION CODE codesegment that contains reset int poin

canin PROC FAR
PUSH RO
PUSH Rl

;; set all of the CAN control registers
AND C1CSR, ZEROS set control register to zero

MOV R1, #0043h ; Set IE and INIT bits

OR C1CSR,R1 set control register to Rl's value

AND C1BTR, ZEROS ; set Bit timing register to zero

MOV Rl, #03447h ; set for 125k operation

OR C1BTR, R1 set Bit timing register parameters

AND ClGMS, ZEROS ; set Global Mask short register to zero

MOV Rl, #OFFFFh ; EOFF is what DAVE initialize

OR ClGMS, R1 set GMS

AND C1UGML, ZEROS ; set Upper global mask long to zero

MOV R1, #OFFFFh
OR C1UGML, R1

MOV Rl, #OF8FFh
AND C1LGML, ZEROS

OR C1LGML, Rl lower global mask

AND C1UMLM, ZEROS

OR C1UMLM, R1 upper mask of last register

AND C1LMLM, ZEROS
OR C1LMLM, Rl lower mask of last register

CALL setall sets all of the CAN registers to off

CALL canmocfg Configures specific Message Objects

;; Setup CAN interrupt and Initialize CAN module

EXTR #4

AND XPOIC, ZEROS ; configure CAN interrupt control Register

AND RO,ZEROS
OR RO,#0073h enable interrupt, level is 10 group is 2

OR XPOIC,RO ; Configure CAN interrupt Control Register

AND R1, ZEROS

OR R1, #00041h ; crashes if I clear the CPU access to the BTR

XOR C1CSR, R1 ; end initialize CAN interrupt

POP R1
POP RO

ter

RET
canin ENDP

setall PROC FAR This Procedure sets all of the Mess objs invalid

by using a counter it counts up to 15 and initializes all of the message

objects along the way.
PUSH R2

PUSH R4
PUSH R5

AND R5,ZEROS

OR R5, #01h Set counter to 1 for first MO

AND R2,ZEROS
OR R2,#OEF10h Set pointer to MO1

AND R4, ZEROS

OR R4, #5555h Set R4 to make MObs invalid

nextreg:MOV [R2],R4 make all message objects invalid

ADD R2,#10h

CMPI1 R5,#OFh
JMPA CCNZ,nextreg

POP R5
POP R4
POP R2

RET

setall ENDP

canfunc ENDS

END

define a common register area of 16 registers

The function must be declared Global at the

beginning of the module

canmo312.asm

$SEGMENTED

$EXTEND

$EXTSFR
$EXTMEM
$NOMOD166

$STDNAMES(reg167b.def)

$SYMBOLS

NAME canmo

RBANK1 COMREG RO-R15

GLOBAL canmocfg

can-module SECTION CODE

ASSUME DPP3:SYSTEM

canmocfg PROC FAR

PUSH Ri
PUSH R2

PUSH R3

; declare bank of 16 global registers

Now set specific CAN control Registers

initialize message object 1

initializing this object to be invalid does or removing the code until

the comment "Setup

nothing to prevent

MOV R2, #MCR_M1

AND R1, ZEROS

OR R1, #5599h

tivates

CAN interrupt and Initialize . does

the occurrance of the interrupt for the CAN system

start of Message Object 1

Generate a Receive Interrupt if this message object ac

MOV [R2],R1 ; set MO1's Control register

ADD R2,#2h

AND R3, ZEROS

OR R3, #0C001h

MOV [R2],R3

ADD R2, #2h

MOV (R2], ZEROS

AND R1, ZEROS

OR R1, #0030h

MOV MCDOM1,Rl

MOV DATA.Ml, ZEROS

ta

tivates

;; Initialize Message Object 2

MOV R2, #MCR_M2 star

AND Rl, ZEROS

OR R1, #5599h RECE

MOV [R2],R1 set M02's Co

ADD R2,#2h poin

AND R3, ZEROS ; se

OR R3, #OE001h The

MOV [R2],R3 mess

ADD R2, #2h Poin

MOV (R2], ZEROS stan

AND Rl, ZEROS

OR R1, #0030h put

MOV MCDM2,R1 ; Da

MOV DATAM2, ZEROS Fill

;; Initialize Message Object 3

MOV R2, #MCRM3 star

AND Rl, ZEROS

OR Rl, #5595h Gene

point to Upper Arbitration register

set R3 to

message id for message object 1

message id = #0003h

Point to the Lower Arbitration Register

standard Message object so lowerarb = Oh

put OAAh into first data byte and set to

Databyte(D) = 0 and Set to receive and 3

fill the Data of the MO with Zeros

receive
bytes of data

t of Message Object 2

IVE INTERRUPT enabled

ntrol register

t to Upper Arbitration register

t R6 to zero

number is the Message ID for Message Object 2

age id = 0

t to the Lower Arbitration Register

dard Message object so lowerarb = Oh

000h into first data byte and set to receive
tabyte(0) = 0 and Set to receive and 3 bytes of da

the Data of the MO with Zeros

t of Message Object 3

rate a receive interrupt if this message object ac

f data

f data

f data

MOV [R2],R1
ADD R2,#2h

AND R3, ZEROS

OR R3, #OE002h
MOV [R2],R3

ADD R2, #2h

MOV (R2], ZEROS

AND R1, ZEROS

OR R1, #0038h

MOV MCD M3,R1

MOV DATAM3, ZEROS

;; Initialize Message

MOV R2, #MCRM4

AND Rl, ZEROS

OR Rl, #5595h

MOV [R2],Rl set

ADD R2,#2h
AND R3, ZEROS

OR R3, #0002h

MOV [R2],R3
ADD R2, #2h

MOV [R2], ZEROS

AND R1, ZEROS

OR R1, #0038h

MOV MCDM4,R1

MOV DATAM4, ZEROS

;; Initialize Message

MOV R2, #MCR-M5

AND R1, ZEROS

OR R1, #5595h

MOV (R2],Rl set

ADD R2,#2h

AND R3, ZEROS

OR R3, #00013h

MOV [R2],R3

ADD R2, #2h

MOV [R2], ZEROS

AND R1, ZEROS

OR R1, #0038h

MOV MCDM5,Rl

MOV DATAM5, ZEROS

;; Initialize Message

MOV R2, #MCRM6

AND R1, ZEROS

OR R1, #5595h

MOV [R2],R1 set

ADD R2,#2h

AND R3, ZEROS

OR R3, #00014h

MOV [R2J,R3

ADD R2, #2h

MOV [R21, ZEROS

AND R1, ZEROS

OR Rl, #0038h

MOV MCDM6,Rl

set M03's Control register

point to Upper Arbitration register

; set R6 to zero

The number is the Message ID for Message Object 3

message id = 0

Point to the Lower Arbitration Register

standard Message object so lowerarb = Oh

put 000h into first data byte and set to receive

; Databyte(O) = 0 and Set to receive and 3 bytes o

Fill the Data of the MO with Zeros

Object 4
start of Message Object 4

M04's Control register

point to Upper Arbitration register

; set R6 to zero

The number is the Message ID for Message Object 4

message id = 0

Point to the Lower Arbitration Register

standard Message object so lowerarb = Oh

put OAAh into first data byte and set to receive

; Databyte(0) = 0 and Set to receive and 3 bytes o

fill the data of the MO with ZEROS

Object 5

start of Message Object 5

M04's Control register

point to Upper Arbitration register

; set R6 to zero

The number is the Message ID for Message Object 5

message id = 0

Point to the Lower Arbitration Register

standard Message object so lowerarb = Oh

put OAAh into first data byte and set to receive

; Databyte(O) = 0 and Set to receive and 3 bytes o

fill the data of the MO with ZEROS

Object 6

start of Message Object 6

M04's Control register

point to Upper Arbitration register

; set R6 to zero

The number is the Message ID for Message Object 6

message id = 0
Point to the Lower Arbitration Register

standard Message object so lowerarb = Oh

put OAAh into first data byte and set to receive

; Databyte(O) = 0 and Set to receive and 3 bytes o

f data

canmo312.asm

MOV DATAM6, ZEROS

;; Initialize Message
MOV R2, #MCRM7

AND R1, ZEROS

OR R1, #5599h

MOV [R2],R1 set

ADD R2,#2h

AND R3, ZEROS

OR R3, #00022h
MOV [R2],R3
ADD R2, #2h

MOV [R2], ZEROS
AND R1, ZEROS

OR R1, #0030h
MOV MCDM7,R1

MOV DATAM7, ZEROS

;; Initialize Message
MOV R2, #MCRM8

AND Ri, ZEROS

OR Ri, #5595h
MOV [R2,R1 ; set

ADD R2,#2h

AND R3, ZEROS

OR R3, #00023h
MOV [R2],R3

ADD R2, #2h

MOV [R2], ZEROS
AND R1, ZEROS

OR R1, #0038h
MOV MCDM8,R1

MOV DATAM8, ZEROS

;; Initialize Message
MOV R2, #MCRM9

AND Ri, ZEROS

OR Rl, #5595h
MOV [R21,Rl set
ADD R2,#2h

AND R3, ZEROS

OR R3, #00024h
MOV [R21,R3
ADD R2, #2h

MOV [R2], ZEROS
AND Ri, ZEROS

OR Ri, #0038h
MOV MCD-M9,R1

ta
MOV DATAM9, ZEROS

POP R3
POP R2
POP Ri
RET

canmocfg ENDP
canmodule ENDS
END

; fill the data of the MO with ZEROS

Object 7
start of Message Object 7

M07's Control register
; point to Upper Arbitration register

; set R6 to zero
; The number is the Message ID for Message Object 7

; message id = 0
; Point to the Lower Arbitration Register

; standard Message object so lowerarb = Oh

; put OAAh into first data byte and set to receive
; Databyte(O) = 0 and Set to receive and 3 bytes of da

fill the data of the MO with ZEROS

Object 8
start of Message Object 8

M08's Control register
; point to Upper Arbitration register

; set R6 to zero
; The number is the Message ID for Message Object 8

; message id = 0
; Point to the Lower Arbitration Register

; standard Message object so lowerarb = Oh

; put OAAh into first data byte and set to receive
; Databyte(O) = 0 and Set to receive and 3 bytes of da

fill the data of the MO with ZEROS

Object 9
start of Message Object 9

M09's Control register
; point to Upper Arbitration register

; set R6 to zero
; The number is the Message ID for Message Object 9

; message id = 0
; Point to the Lower Arbitration Register

; standard Message object so lowerarb = Oh

; put OAAh into first data byte and set to receive

; Databyte(O) = 0 and Set to receive and 3 bytes of da

fill the data of the MO with ZEROS

cnint312.asm

$SEGMENTED

$EXTEND

$EXTSFR

$EXTMEM
$NOMOD166
$STDNAMES(regl67b.def)

$SYMBOLS

NAME canint

RBANK1 COMREG RO-R15 ; declare bank of 16 global registers

ASSUME DPP3:SYSTEM

can-interrupts SECTION CODE

can-receivejinterrupt PROC TASK INTNO=040h

ORG 0100h
CALL can-receive-interrupt-handler
RETI

can-receive-interrupt ENDP

can.receive-interrupt-handler PROC FAR

PUSH RO
PUSH Ri

PUSH R2

MOVB RLO,
CMPB RLO,
JMP ccZ,
CMPB RLO,
JMP ccZ,

INTID Read the CAN interrupt ID buffer

#03h See if the interrupt came from M01

message-one-interrupt; if interrupt from M01 handle

#09h ; See if the interrupt came from M07

message-seveninterrupt

MOV Rl, #05555h

MOV R2, #05599h
MOV MCRM2, R1

MOV RO, DATAM2
MOV MCRM2, R2

Now setup M5 so it can respond to queries about

the state of the switch

MOV R2,MCRM6

MOV MCRM6, RI

MOV DATAM6, RO
MOV MCRM6, R2
CMP RO, #01h
JMP ccNZ, turn off heated rearwindow

BSET P2.1

JMP exit-function

turn off heated rearwindow:
CMP RO, #0800h
JMP ccNZ, exitfunction
BCLR P2.1

JMP exit-function

message-one-interrupt:
MOV Rl, #05555h
MOV R2, #05599h

MOV MCRM1, R1
MOV RO, DATA_M1

MOV MCRM1, R2

Now setup M5 so it can respond to queries about

the state of the switch

MOV R2, MCRM5

MOV MCRM5, R1

MOV DATAM5, RO

MOV MCRM5, R2

CMP RO, #01h
JMP ccNZ, turnheater-off
BSET P2.0
JMP exit-function

turnheateroff:
CMP RO, #0800h
JMP ccNZ, exit-function

BCLR P2.0
JMP exit-function

message_seven.interrupt:
MOV R1, #05555h
MOV R2, #05599h
MOV MCR_M7, Ri

MOV RO, DATAM7
MOV MCRNM7, R2

Now setup M5 so it can respond to queries about

the state of the switch

MOV R2, MCR_M9
MOV MCRM9, Ri

MOV DATANM9, RO

MOV MCRM9, R2

CMP RO, #01h
JMP ccNZ, turn.offbridge
BSET P2.2

JMP exit-function

turnoffbridge:
CMP RO, #0800h
JMP cc_.NZ, exitfunction

BCLR P2.2

JMP exit-function

exit-function:
MOV R2, #OEFFFh

AND ClCSR, R2

POP R2
POP R1
POP RO
RET

can-receive-interrupt-handler ENDP

can-interrupts ENDS

END

atod312.asm

$SEGMENTED

$EXTEND

$EXTSFR
$EXTSSK CAN USE ALL internal RAM for Stack

$EXTMEM

$NOMOD166
$STDNAMES(reg167b.def)

$SYMBOLS

name atod

ASSUME DPP3:SYSTEM

RBANK1 COMREG RO-R15

GLOBAL atod-initialize

This A/D is set up to measure the current in two different

loads. Because this software is to be used as part of

42volt bus node 1, it uses the names of the loads that

that node is supposed to control.
The analog to digital converter uses Port 5

atod.setup SECTION CODE

atodinitialize PROC FAR

Initialize variables

This below line of code setups up the A/D converter

for 2 channels and single conversion.
It is also set for "Wait for read mode'

so the converter will wait for the user program to read

the buffer before processing the next channel.

MOV ADCON, #OA222h ; setup A/D control register

Set the channel to which the data should be written

when the first "A/D is done" interrupt occurs

The below code sets up the A/D's Interrupt control register

The A/D is setup to have a group of 2 and a level of 10

MOV ADCIC, #006Fh
RET

atodjinitialize ENDP
atod-setup ENDS

atodhandlers SECTION CODE

atod~handler PROC TASK INTNO=028h

ORG OAOH
CALL atod function
RETI

atodhandler ENDP

atod_function PROC FAR

this function works by seeing if the converter is converting

for the heatermeasurement. If the bit is set, then

the bit gets cleared and the IP jumps to where the

value in the converter is moved into the heatercurrent

variable.
otherwise the bit gets set and the value is moved into

the heatedrear-window-current variable

PUSH RO
PUSH Rl

PUSH R2

PUSH R3
PUSH R4

PUSH MI

PUSH MI

MOV R2,
MOV RO,

ch the data is
MOV R3,

MOV R4,

AND RO,
CMP RO,

D

H
L

ADDAT
R2 This is so we can iso

coming
R2
#01h No Scaling on Microcontroller
#DFDD0h The channel information is l

#01000h See if the information is co

late the A/D channel from whi

ocated in the upper nibble
ming from Channel 1 of the A/

JMP ccZ, breakloadscurrent
CMP RO, #02000h ; See if the information is coming from Channel 2 of the A/D

JMP ccZ, VoltageBridge-current

MOV RO, #05555h
MOV Rl, MCRM3

MOV MCRM3, RO

MUL R3, R4
NOP
MOV DATAM3, MDL

MOV P2, R2

MOV MCRM3, R1

BSET T3R
JMP exit-routine

; This bit pattern deactives MCRs

SAVE the Configuration of the MCR

Kill the Message Control Register

for real
for testing purposes

Break-loads-current:

MOV

MOV
MOV

MOV

ADD

RO, #05555h ; This bit

Rl, MCRM4 ; SAVE the

MCRM4, RO ; Kill the

RO, #08h ;test code
P2, RO ;test code

MUL R3,R4

NOP

MOV DATAM4, MDL

MOV MCRM4, Rl

JMP exit-routine

VoltageBridge-current:
MOV RO, #05555h
MOV Rl, MCRM8

MOV MCRM8, RO

MUL R3,R4
NOP

MOV DATAM4, MDL

MOV MCRNM4, Rl

JMP exit-routine

pattern deactives MCRs

Configuration of the MCR

Message Control Register

for testing purposes

This bit pattern deactives MCRs

SAVE the Configuration of the MCR

Kill the Message Control Register

for testing purposes

exit-routine:
POP MDL
POP MDH
POP R4
POP R3

POP R2
POP Rl
POP RO
RET

atod312.asm

atodfunction ENDP
atod-handlers ENDS

END

tmrs312.asm

$SEGMENTED
$EXTEND

$EXTSFR

$EXTMEM
$EXTINSTR

$NOMOD166

$STDNAMES(regl67b.def)
$SYMBOLS

NAME timer-functions
ASSUME DPP3:SYSTEM

RBANK1 COMREG RO-R15

GLOBAL atodtimerinitialize

atodtimer SECTION CODE
atod timer initialize PROC FAR

MOV T3CON, #0004h S
MOV T3IC, #002Bh
MOV T3, #0000h M
BSET T3IE e

BSET T3R s

RET

atod timer-initialize ENDP

atod-interrupt PROC TASK INTNO=023h

ORG 08Ch
CALL atodtimerhandler
RETI

atod interrupt ENDP

atod timer handler PROC FAR

BCLR T3R

BSET ADST
RET

atod-timer-handler ENDP
atod-timer ENDS

END

These are assembler controls

Assembler controls end here

etup Core Timer T3

ake the value in the counter equal to zero

nable the timer interrupt
tart the timer

stop the timer
start an A/D conversion

linker.lnv

LOCATE
locatein. no

(GENERAL)

IRAMSIZE (2048)

RESERVE MEMORY(OF200h TO OF5FFh)

MEMORY(ROM (0000h to OEFFFh),

RAM (040000h to 4EFFFh), IRAM(OF000h))

CLASSES('RAM' (040000h to 04FFFFh)
SYMBOLS LISTSYMBOLS

TO locate.out

,MEN=reg 1 6b.def
**P

;* (#)regl67b.def 1.10 12/18/97 DP7 DEFR OFFD2h

P7 DEFR OFFDOh

;*Register definitions for the SAB C167 DP6 DEFR OFFCEh

;*This file contains all SFR names and BIT names P6 DEFR OFFCCh

;*This file can be supplied to rm166 and a166 (STDNAMES control) DP4 DEFR OFFCAh

***P4 DEFR OFFC8h

TRUE DEFB OFF20h.0, RW DP3 DEFR OFFC6h

NODE142 DEFB OFF2Oh.l, RW P3DEFR OFFC4h

DP2 DEFR OFFC2h

C1CSR DEFA OEFO~h P2 DEFR OFFCOh

INTID DEFA QEF02h SSCCON DEFR OFFB2h

C1BTR DEFA OEF04h SOCON DEFR OFFBOh

C1GMS DEFA OEFO6h WDTCON DEFR OFFAEh

ClUGML DEFA OEF08h TFR DEFR OFFACh

CILGML DEFA OEFOAh P5 DEFR OFFA2h

CIUMLM DEFA QEFOCh ADCON DEFR OFFAOh

C1LMLM DEFA OEFOEh TlIC DEFR OFF9Eh

MCR-Ml DEFA OEFl0h TOIC DEFR OFF9Ch

MCRM2 DEFA OEF2Oh ADEIC DEFR OFF9Ah

MCRM3 DEFA OEF30h ADCIC DEFR OFF98h

MCRM4 DEFA OEF4Oh CC151C DEFR OFF96h

MCR-M5 DEFA OEF5Oh CC141C DEFR OFF94h

MCRM6 DEFA OEF60h CC131C DEFR OFF92h

MCR.M7 DEFA OEF7Oh CC121C DEFR OFF90h

MCRM8 DEFA OEF8Oh CCllIC DEFR OFF8Eh

MCRM9 DEFA OEF90h CClOIC DEFR OFF8Ch

MCRMA DEFA OEFAOh CC9IC DEFR OFF8Ah

MCRMB DEFA OEFBOh CC8IC DEFR OFF88h

MCRMC DEFA OEFCOh CC71C DEFR OFF86h

MCR-MD DEFA OEFDOh CC61C DEFR OFF84h

MCRME DEFA OEFEOh CC51C DEFR OFF82h

MCR_MF DEFA OEFFOh CC41C DEFR OFF8Oh

MCDMl DEFA OEFl6h CCIC DEFR OFF7Eh

MCD-M2 DEFA OEF26h CC21C DEFR OFF7Ch

MCD-M3 DEFA OEF36h CClIC DEFR OFF7Ah

MCDM4 DEFA OEF46h CCOIC DEFR OFF78h

MCDM5 DEFA OEF56h SSCEIC DEFR OFF76h

MCDM6 DEFA OEF66h SSCRIC DEFR OFF74h

MCDM7 DEFA OEF76h SSCTIC DEFR OFF72h

MCDM8 DEFA OEF86h SOEIC DEFR OFF7Oh

MCD-M9 DEFA OEF96h SORIC DEFR OFF6Eh

MCD_MA DEFA OEFA6h SOTIC DEFR OFF6Ch

MCDMB DEFA OEFB6h CRIC DEFR OFF6Ah

MCDMC DEFA OEFC6h T61C DEFR OFF68h

MCDMD DEFA OEFD6h T51C DEFR OFF66h

MCD_ME DEFA OEFE6h T41C DEFR OFF64h

DATA.M1 DEFA OEFl8h T31C DEFR OFF62h

DATAM2 DEFA OEF28h T21C DEFR OFF6Oh

DATA-M3 DEFA OEF38h CCM3 DEFR OFF58h

DATAM4 DEFA OEF48h CCM2 DEFR OFF56h

DATA-M5 DEFA OEF58h CCM1 DEFR OFF54h

DATA-M6 DEFA OEF68h CCMO DEFR OFF52h

DATAM7 DEFA OEF78h T01CON DEFR OFF5Oh

DATAM8 DEFA OEF88h T6CON DEFR OFF48h

DATA.M9 DEFA OEF98h T5CON DEFR OFF46h

DATA.MA DEFA OEFA8h T4CON DEFR OFF44h

DATA.MB DEFA OEFB8h T3CON DEFR OFF42h

DATA.MC DEFA OEFC8h T2CON DEFR OFF4Oh

DATA.MD DEFA OEFD8h PWMCON1 DEFR OFF32h

DATA.ME DEFA OEFE8h PWMCONO DEFR OFF3Oh

CCM7 DEFR OFF28h

CCM6 DEFR OFF26h

CCM5 DEFR OFF24h

DP8 DEFR OFFD6h CCM4 DEFR OFF22h

reg167b.def

T78CON DEFR OFF20h
CC16 DEFR OFE60h

P1H DEFR OFF06h
TiREL DEFR OFE56h

PlL DEFR OFF04h
TOREL DEFR OFE54h

POH DEFR OFF02h
Ti DEFR OFE52h

POL DEFR OFFOOh
TO DEFR OFE50h

PECC7 DEFR OFECEh
CAPREL DEFR OFE4Ah

PECC6 DEFR OFECCh
T6 DEFR OFE48h

PECC5 DEFR OFECAh
T5 DEFR OFE46h

PECC4 DEFR OFEC8h
T4 DEFR OFE44h

PECC3 DEFR OFEC6h
T3 DEFR OFE42h

PECC2 DEFR OFEC4h
T2 DEFR OFE40h

PECC1 DEFR OFEC2h
PW3 DEFR OFE36h

PECCO DEFR OFECOh
PW2 DEFR OFE34h

SRCPO DEFA OFCEOh
PWl DEFR OFE32h

DSTPO DEFA OFCE2h
PWO DEFR OFE30h

SRCP1 DEFA OFCE4h

DSTP1 DEFA OFCE6h
Extended sfr area

SRCP2 DEFA OFCE8h

DSTP2 DEFA OFCEAh
ODP8 DEFR OFlD6h

SRCP3 DEFA OFCECh ODP7 DEFR OFlD2h

DSTP3 DEFA OFCEEh
ODP6 DEFR OF1CEh

SRCP4 DEFA OFCFOh
ODP3 DEFR OFlC6h

DSTP4 DEFA OFCF2h
PICON DEFR OFlC4h

SRCP5 DEFA OFCF4h
ODP2 DEFR OF1C2h

DSTP5 DEFA OFCF6h
EXICON DEFR OFlCOh

SRCP6 DEFA OFCF8h
SOTBIC DEFR OF19Ch

DSTP6 DEFA OFCFAh
XP3IC DEFR OF19Eh

SRCP7 DEFA OFCFCh XP2IC DEFR OF196h

DSTP7 DEFA OFCFEh
XPlIC DEFR OF18Eh

SOBG DEFR OFEB4h
XPOIC DEFR OF186h

SORBUF DEFR OFEB2h, r PWMIC DEFR OF17Eh

SOTBUF DEFR OFEBOh, w
T8IC DEFR OF17Ch

WDT DEFR OFEAEh, r T7IC DEFR OF17Ah

ADDAT DEFR OFEAOh
CC31IC DEFR OF194h

CC15 DEFR OFE9Eh
CC30IC DEFR OF18Ch

CC14 DEFR OFE9Ch
CC29IC DEFR OF184h

CC13 DEFR OFE9Ah
CC28IC DEFR OF178h

CC12 DEFR OFE98h
CC27IC DEFR OF176h

Ccl DEFR OFE96h
CC26IC DEFR OF174h

CCiO DEFR OFE94h
CC25IC DEFR OF172h

CC9 DEFR OFE92h
CC24IC DEFR OF170h

CC8 DEFR OFE90h
CC23IC DEFR OF16Eh

CC7 DEFR OFE8Eh
CC22IC DEFR OF16Ch

CC6 DEFR OFE8Ch
CC21IC DEFR OF16Ah

CC5 DEFR OFE8Ah
CC20IC DEFR OF168h

CC4 DEFR OFE88h
CC19IC DEFR OF166h

CC3 DEFR OFE86h
CCi8IC DEFR OF164h

CC2 DEFR OFE84h
CC17IC DEFR OF162h

Cci DEFR OFE82h
CC16IC DEFR OF160h

CCO DEFR OFE8Oh
RPOH DEFR OF108h

CC31 DEFR OFE7Eh
DP1H DEFR OF106h

CC30 DEFR OFE7Ch
DPiL DEFR OF104h

CC29 DEFR OFE7Ah
DPOH DEFR OF102h

CC28 DEFR OFE78h
DPOL DEFR OF100h

CC27 DEFR OFE76h
SSCBR DEFR OFOB4h

CC26 DEFR OFE74h
SSCRB DEFR OFOB2h

CC25 DEFR OFE72h
SSCTB DEFR OFOBOh

CC24 DEFR OFE70h
ADDAT2 DEFR OFOAOh

CC23 DEFR OFE6Eh
T8REL DEFR OFO56h

CC22 DEFR OFE6Ch
T7REL DEFR OF054h

CC21 DEFR OFE6Ah
T8 DEFR OF052h

CC20 DEFR OFE68h
T7 DEFR OF050h

CC19 DEFR OFE66h
PP3 DEFR OFO3Eh

CC18 DEFR OFE64h
PP2 DEFR OF03Ch

CC17 DEFR OFE62h
PP1 DEFR OF03Ah

PPO
PT3
PT2
PT1
PTO

; Bit names

CCOIO
CC1Io

CC2IO

CC3IO

CC410
CC510
CC610

CC7IO

CC8IO
CC91o

CC1 0IO
CCl11IO
CC12IO
CC13IO
CC14IO
CC15IO
EXOIN

EX1IN
EX2IN

EX3IN

DEFR
DEFR
DEFR
DEFR
DEFR

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
LIT
LIT
LIT
LIT

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

OF038h
OF036h
OF034h
OF032h
OF030h

P2 . 0
P2. 1
P2 .2
P2 .3
P2 .4
P2 .5
P2. 6
P2. 7
P2 . 8
P2 .9
P2. 10

P2.11
P2 .12
P2 .13

P2.14
P2.15

'CCOI0'

'CC1Io'

'CC2I0'
'CC3I0'

P3. 0
P3.1
P3.2
P3. 3
P3 .4
P3 .7
P3. 6
P3. 5
P3.8

P3. 9
P3 . 10
P3. 11

P3 .13
P3 .15

reg167b.def
AN13

AN14

AN15
T6EUD
T5EUD
T6IN

T5IN
T4EUD
T2EUD

POUTO
POUT1
POUT2
POUT3
CC2810
CC2910

CC30IO
CC31IO

CC1610
CC1710
CC1810
CC191o
CC20IO

CC21IO
CC2210
CC2310

TOM
TOR
TlM

TlR

T7M
T7R
T8M
T8R

ACCO
ACC1
ACC2
ACC3

ACC4
ACC5
ACC6
ACC7

ACC 8
ACC9
ACC10
ACC11

ACC12
ACC13

ACC14
ACC15

ACC16
ACC17
ACC18
ACC19

ACC20
ACC21

DEFB
DEFB
DEFB
LIT
LIT
LIT
LIT
LIT
LIT

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB T01CON.3

DEFB T01CON.6

DEFB T01CON.11

DEFB T01CON.14

DEFB T78CON.3

DEFB T78CON.6

DEFB T78CON.11

DEFB T78CON.14

DEFB CCMO.3

DEFB CCMO.7

DEFB CCMO.11

DEFB CCMO.15

DEFB CCM1.3

DEFB CCM1.7

DEFB CCM1.11

DEFB CCM1.15

DEFB CCM2.3

DEFB CCM2.7

DEFB CCM2.11

DEFB CCM2.15

DEFB CCM3.3

DEFB CCM3.7

DEFB CCM3.11

DEFB CCM3.15

DEFB CCM4.3

DEFB CCM4.7

DEFB CCM4.11

DEFB CCM4.15

DEFB CCM5.3

DEFB CCM5.7

P5. 13

P5. 14
P5.15
'AN10'
'AN11'
'AN12'
'AN13'
'AN14'
'AN15'

P7 . 0
P7. 1
P7.2
P7 .3
P7. 4
P7 .5
P7 .6
P7. 7

P8. 0
P8. 1
P8. 2
P8.3

P8. 4
P8. 5
P8. 6
P8.7

TOIN

T60UT

CAPIN
T30UT

T3EUD
T2IN
T3IN

T4IN
SSDI
SSDO
TXDO
RXDO
SSCLK
CLKOUT

A16

A17

A18

A19

A20
A21

A22

A23

ANO
AN1
AN2
AN3
AN4
AN5
AN6
AN7
AN8
AN9
AN10

AN1 1

AN12

DEFB P4.0

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

P4 . 1
P4. 2
P4.3

P4.4

P4. 5
P4. 6
P4.7

P5. 0

P5. 1
P5.2
P5. 3
P5.4

P5 . 5
P5. 6
P5.7
P5. 8
P5 . 9
P5. 10
P5. 11

P5.12

ACC22
ACC23

ACC24
ACC25
ACC26
ACC27

ACC28
ACC29
ACC30
ACC31

T2R
T2UD
T2UDE

T3R
T3UD
T3UDE
T30E

T30TL

T4R
T4UD
T4UDE

T5R
T5UD
T5UDE
T5CLR
T5SC

T6R
T6UD
T6UDE
T60E
T60TL
T6SR

T2IE
T2IR

T3IE
T3IR

T4IE

T4IR
T5IE

T5IR
T6IE
T6IR

CRIE
CRIR

SOTIE
SOTIR
SORIE
SORIR
SOEIE
SOEIR
SOTBIE
SOTBIR

SSCTIE

SSCTIR

DEFB
DEFB
DEFB
DEFB
DEFB

T3CON. 6

T3CON.7
T3CON. 8
T3CON. 9

T3CON. 10

DEFB T4CON.6

DEFB T4CON.7

DEFB T4CON.8

DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

T5CON. 6
T5CON .7
T5CON. 8
T5CON.14
T5CON.15

T6CON.6
T6CON. 7
T6CON. 8
T6CON. 9
T6CON. 10
T6CON. 15

T2IC. 6

T2IC.7

T3IC. 6

T3IC.7

T4IC.6
T4IC.7
T5IC.6
T5IC.7

T6IC.6

T6IC.7

DEFB CRIC.6

DEFB CRIC.7

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

SOTIC.6
SOTIC. 7
SORIC. 6
SORIC .7
SOEIC. 6
SOEIC .7

SOTBIC.6
SOTBIC.7

DEFB SSCTIC.6

DEFB SSCTIC.7

DEFB CCM5.11

DEFB CCM5.15

DEFB CCM6.3

DEFB CCM6.7

DEFB CCM6.11

DEFB CCM6.15

DEFB CCM7.3

DEFB CCM7.7

DEFB CCM7.11

DEFB CCM7.15

DEFB T2CON.6

DEFB T2CON.7

DEFB T2CON.8

reg167b.def
SSCRIE
SSCRIR
SSCEIE
SSCEIR
SSCTE
SSCRE
SSCPE
SSCBE

CCOIE
CCOIR
CC1IE
CC1IR
CC2IE

CC2IR
CC3IE
CC3IR

CC4IE
CC4IR
CC5IE
CC5IR
CC6IE

CC6IR
CC7IE

CC7IR

CC8IE

CC8IR

CC9IE

CC9IR
CC10IE
CC10IR
CC11IE

CC11IR
CC12IE
CC12IR
CC13IE
CC13IR
CC14IE
CC14IR
CC151E

CC15IR
CC16IE

CC16IR

CC171E

CC17IR
CC18IE
CC18IR
CC19IE
CC19IR
CC20IE
CC20IR
CC21IE
CC21IR

CC22IE
CC22IR
CC23IE

CC23IR
CC24IE

CC24IR
CC25IE

CC25IR
CC26IE

CC26IR

CC27IE

DEFB
DEFB
DEFB
DEFB
LIT
LIT
LIT
LIT

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

SSCRIC.6
SSCRIC.7
SSCEIC.6
SSCEIC.7
'SSCTEN'
'SSCREN'

'SSCPEN'

'SSCBEN'

CCOIC.6
CCOIC .7
CC1IC.6

CC1IC.7

CC2IC.6
CC2 IC. 7
CC3IC.6
CC3IC. 7

CC4IC.6
CC4IC.7
CC5IC.6
CC5IC.7

CC6IC.6

CC6IC.7
CC7IC.6
CC7IC .7

CC8IC.6

CC8IC.7
CC9IC.6

CC9IC.7

CC10IC.6
CC1OIC.7

CC11IC.6
CC11IC.7
CC12 IC. 6
CC12IC .7
CC13IC. 6

CC13IC.7
CC14IC. 6

CC14IC .7
CC15IC. 6

CC15IC .7

CC16IC. 6

CC16IC .7

CC17IC.6
CC17IC.7

CC18IC.6
CC18IC.7

CC19IC.6
CC19IC.7

CC20IC.6

CC20IC.7
CC21IC.6
CC21IC. 7
CC22IC.6
CC22IC.7

CC23IC.6

CC23IC.7
CC24IC.6
CC24IC.7

CC25IC.6
CC25IC.7
CC26IC.6

CC26IC.7

CC27IC.6

reg 167b.def
CC271R

CC28IE

CC28IR

CC29IE
CC29IR

CC30IE

CC30IR
CC31IE
CC3 1 IR

ADCIE
ADCIR
ADEIE
ADEIR

TOIE
TOIR
TIE
T1IR
T7IE
T7IR

T8IE
T8IR

ADST
ADBSY
ADWR
ADCIN
ADCRQ

ILLBUS
ILLINA

ILLOPA

PRTFLT

UNDOPC

STKUF
STKOF
NMI

WDTIN
WDTR

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

TOIC.6
TOIC.7
TiIC.6

TiIC.7
T7IC. 6
T7IC.7

T8IC.6

T8IC.7

ADCON. 7
ADCON. 8
ADCON. 9
ADCON.10
ADCON. 11

TFR. 0
TFR. 1
TFR. 2
TFR. 3
TFR. 7
TFR. 13
TFR. 14
TFR. 15

DEFB WDTCON.0

DEFB WDTCON.1

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

SOCON.3
SOCON.4
SOCON. 5
SOCON.6
SOCON.7
SOCON. 8
SOCON. 9
SOCON. 10

SOCON.12
SOCON. 13

SOCON.14
SOCON.15

SSCCON.4

SSCCON.5

SSCCON.6
SSCCON.8

SSCCON.9

SSCCON.10

SSCCON.11

SSCCON.12

SSCCON.14

SSCCON.15

DEFB CC27IC.7

DEFB CC28IC.6

DEFB CC28IC.7

DEFB CC29IC.6

DEFB CC29IC.7

DEFB CC30IC.6

DEFB CC30IC.7

DEFB CC31IC.6

DEFB CC31IC.7

DEFB ADCIC.6

DEFB ADCIC.7

DEFB ADEIC.6

DEFB ADEIC.7

PTRO
PTR1
PTR2
PTR3
PTIO
PTI1
PTI2

PTI3

PIEO
PIE1
PIE2

PIE3
PIRO
PIR1
PIR2
PIR3

PENO
PEN1
PEN2
PEN3
PMO

PM1
PM2
PM3

PBO1
PS2
PS3

PWMIE
PWMIR

XP3IE
XP3IR

XP2IE

XP2IR

XPlIE

XP1IR

XPOIE
XPOIR

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

PWMCONO.0

PWMCONO.1
PWMCONO.2
PWMCONO.3

PWMCONO.4

PWMCONO.5
PWMCONO.6

PWMCONO.7

PWMCONO . 8

PWMCONO . 9

PWMCONO.10
PWMCONO.11

PWMCONO.12

PWMCONO . 13

PWMCONO.14
PWMCONO.15

PWMCON1.0
PWMCON1.1
PWMCON1.2

PWMCON1.3
PWMCON1.4

PWMCON1 .5

PWMCON1 . 6

PWMCON1 .7

PWMCON1 .12

PWMCON1.14
PWMCON1.15

PWMIC.6

PWMIC.7

XP3IC.6
XP3IC.7

XP2IC.6
XP2IC.7

XPiIC.6

XPiIC.7

XPOIC.6
XPOIC.7

SOSTP

SOREN
SOPEN

SOFEN
SOOEN

SOPE

SOFE
SOOE

SOODD
SOBRS
SOLB
SOR

SSCHB
SSCPH

SSCPO
SSCTEN

SSCREN

SSCPEN

SSCBEN

SSCBSY

SSCMS

SSCEN

Breadboard Code

B.5 42V Bus CAN Node 1

On the next page starts the code for the 42V bus CAN node 1. The files for the node are as

follows.

1. comp142.bat

2. main142.asm

3. cnmod142.asm

4. canmol42.asm

5. cnint142.asm

6. atod142.asm

7. tmrs142.asm

8. linker.lnv

9. Reg167b.def

- 60 -

Chapter B

compl42.bat
a166 mainl42.asm
a166 cnmodl42.asm
a166 carimol42.asm
a166 cnintl42.asm
a166 atodl42.asm
a166 tmrsl42.asm
1166 LINK mainl42.obj cnmodl42.obj canmol42.obj cnintl42.obj atodl42.obj tmrsl42.obj TO

locatein.lno
1166 @linker.lnv
ihexl66 -i16 locate.out -o mainl42.hex

main142.asm
$SEGMENTED

$EXTEND

$EXTSFR
$EXTSSK
$EXTMEM

$NOMOD166
$STDNAMES(regl67b.def)
$SYMBOLS

NAME main

RBANK1 COMREG RO-R15

SSKDEF 4

ASSUME DPP3:SYSTEM

EXTERN canin:FAR

EXTERN atodjinitialize:FAR

EXTERN atod timerinitialize:FAR

CAN USE ALL internal RAM for Stack

define a common register area of 16 register

default stack size of 256 Words

Can function
; external atod initialization

mainseg SECTION CODE
main PROC FAR

start: DISWDT

BSET IEN
; disable the watchdog timer
; Globally Enable Interrupts both global

Initialize the External Memory BUS
MOV SYSCON, #OE084h
MOV ADDRSEL1, #0404h
MOV BUSCONO, #004AFh
MOV BUSCON1, #004AFh
EINIT ; end initialization

End of external memory bus initialization

Initialize the Data Page pointers for this section
MOV DPP3, #03h ; make DPP3 point to system

End of Data Page Pointer Initialization

Make the direction of Port 2 to output
MOV DP2, ONES

Make sure Port 2 is in push/pull mode
MOV ODP2, ONES

Initialize The Stack
The Stack pointers are all word pointers so even though the

highest byte in the stack is located at #OFBFFh the highest

byte that the stack pointers can point to is #OFBFEh

MOV STKUN, #OFBFEh; Set Stack Underflow Pointer

MOV STKOV, #OF800h; Set STack Overflow Pointer

MOV SP, #OFBFEh ; Set the Stack Pointer

End of Stack Initialization

Initialize the Analog to Digital Converter
CALL atodinitialize; atod

End of A/D initialization

Initialize A/D timer
CALL atodtimer_initialize; timers

End of A/D timer initialization

Initialize CAN Bus
CALL canin Call the CAN initialization function

End of CAN Bus Initialization

meto:
NOP
NOP
JMP meto

; just loop here waiting

RET ; return
main ENDP

mainseg ENDS

startupsec SECTION CODE
sysreset PROC TASK INTNO=OH

ORG OOH
JMP start
RETI

sysreset ENDP

startupsec ENDS
END

codesegment that contains reset int pointer

reset interrupt number is zero at Oh

forces next instruction to be located at Oh

installs a pointer to the startup routine

return from interrupt

cnmodl42.asm
$SEGMENTED

$EXTEND

$EXTSFR
$EXTMEM

$NOMOD166
$STDNAMES(regl67b.def)
$SYMBOLS

NAME canmod

RBANK1 COMREG RO-R15
GLOBAL canin

EXTERN canmocfg:FAR configures specific Message objects

ASSUME DPP3:SYSTEM

canfunc SECTION CODE codesegment that contains reset int poin

canin PROC FAR

PUSH RO
PUSH Rl

;; set all of the CAN control registers
AND C1CSR,ZEROS set control register to zero

MOV Rl, #0043h ; Set IE and INIT bits

OR ClCSR,Rl ; set control register to Rl's value

AND C1BTR, ZEROS ; set Bit timing register to zero

MOV R1, #03447h ; set for 125k operation

OR C1BTR, R1 ; set Bit timing register parameters

AND C1GMS, ZEROS ; set Global Mask short register to zero

MOV Rl, #OFFFFh ; EOFF is what DAVE initialize

OR C1GMS, RI ; set GMS

AND C1UGML, ZEROS set Upper global mask long to zero

MOV Rl, #OFFFFh
OR C1UGML, Rl

MOV Rl, #OF8FFh

AND C1LGML, ZEROS

OR C1LGML, Rl lower global mask

AND C1UMLM, ZEROS

OR C1UMLM, Rl upper mask of last register

AND C1LMLM, ZEROS
OR C1LMLM, R1 lower mask of last register

CALL setall sets all of the CAN registers to off

CALL canmocfg Configures specific Message Objects

;; Setup CAN interrupt and Initialize CAN module

EXTR #4

AND XPOIC, ZEROS ; configure CAN interrupt control Register

AND RO,ZEROS
OR RO,#0073h enable interrupt, level is 10 group is 2

OR XPOIC,RO Configure CAN interrupt Control Register

AND Rl, ZEROS
OR Rl, #00041h crashes if I clear the CPU access to the BTR

XOR C1CSR, R1 end initialize CAN interrupt

POP R1
POP RO

ter

RET
canin ENDP

setall PROC FAR This Procedure sets all of the Mess objs invalid

by using a counter it counts up to 15 and initializes all of the message

objects along the way.

PUSH R2

PUSH R4

PUSH R5
AND R5,ZEROS

OR R5, #01h Set counter to 1 for first MO

AND R2,ZEROS

OR R2,#OEF10h Set pointer to MO1
AND R4, ZEROS

OR R4, #5555h Set R4 to make MObs invalid

nextreg:MOV [R2),R4 make all message objects invalid

ADD R2,#10h

CMPIl R5,#OFh
JMPA CCNZ,nextreg
POP R5
POP R4

POP R2

RET

setall ENDP

canfunc ENDS
END

define a common register area of 16 registers
The function must be declared Global at the
beginning of the module

canmol42.asm

$SEGMENTED
$EXTEND

$EXTSFR

$EXTMEM
$NOMOD166
$STDNAMES(regl67b.def)

$SYMBOLS

NAME canmo
RBANK1 COMREG RO-R15

GLOBAL canmocfg
; declare bank of 16 global registers

canmodule SECTION CODE

ASSUME DPP3:SYSTEM

canmocfg PROC FAR
PUSH RI
PUSH R2

PUSH R3

Now set specific CAN control Registers
initialize message object 1
initializing this object to be invalid does or removing the code until

the comment "Setup CAN interrupt and Initialize " does

nothing to prevent the occurrance of the interrupt for the CAN system

MOV R2, #MCR_M1 ; start of Message Object 1

AND Rl, ZEROS

OR R1, #5599h

tivates

; Generate a Receive Interrupt if this message object ac

MOV [R2],Rl ; set MOl's Control register

ADD R2,#2h ; poin

AND R3, ZEROS ; set

OR R3, #00003h messa
MOV [R2],R3 ; mess
ADD R2, #2h ; Poin

MOV [R2], ZEROS ; stan

AND R1, ZEROS

OR R1, #0030h ; put
MOV MCDM1,R1 ; Data

MOV DATAM1, ZEROS ; fill

;; Initialize Message Object 2
MOV R2, #MCRM2 ; star

AND Rl, ZEROS

OR R1, #5599h ; RECE

MOV [R2],R1 set M02's Co

ADD R2,#2h ; poin

AND R3, ZEROS ; se

OR R3, #04003h ; The
MOV [R2],R3 ; mess
ADD R2, #2h ; Poin

MOV (R2], ZEROS ; stan

AND Ri, ZEROS

OR Ri, #0030h ; put
MOV MCDM2,R1 Da

ta
MOV DATAM2, ZEROS ; Fill

;; Initialize Message Object 3

MOV R2, #MCRM3 star

AND Ri, ZEROS

OR R1, #5595h Gene

tivates

t to Upper Arbitration register
R3 to

ge id for message object 1
age id = #0003h
t to the Lower Arbitration Register
dard Message object so lowerarb = Oh

OAAh into first data byte and set to receive
byte(O) = 0 and Set to receive and 3 bytes of data

the Data of the MO with Zeros

t of Message Object 2

IVE INTERRUPT enabled

ntrol register
t to Upper Arbitration register
t R6 to zero

number is the Message ID for Message Object 2

age id = 0

t to the Lower Arbitration Register

dard Message object so lowerarb = Oh

000h into first data byte and set to receive
tabyte(O) = 0 and Set to receive and 3 bytes of da

the Data of the MO with Zeros

t of Message Object 3

rate a receive interrupt if this message object ac

f data

f data

f data

MOV [R21,R1
ADD R2,#2h

AND R3, ZEROS

OR R3, #06003h
MOV [R2],R3
ADD R2, #2h

MOV [R2], ZEROS
AND R1, ZEROS

OR R1, #0038h
MOV MCDM3,R1

MOV DATAM3, ZEROS

;; Initialize Mess
MOV R2, #MCRM4

AND R1, ZEROS

OR Rl, #5595h

MOV (R2],R1

ADD R2,#2h
AND R3, ZEROS
OR R3, #02003h
MOV [R2],R3
ADD R2, #2h

MOV [R2], ZEROS

AND Rl, ZEROS

OR R1, #0038h
MOV MCDM4,R1

MOV DATA.M4, ZEROS

;; Initialize Mess
MOV R2, #MCRM5

AND Rl, ZEROS

OR Rl, #5595h

MOV [R2],Rl
ADD R2,#2h

AND R3, ZEROS

OR R3, #00015h

MOV [R2],R3

ADD R2, #2h

MOV [R2], ZEROS

AND R1, ZEROS

OR R1, #0038h

MOV MCDM5,R1

MOV DATAM5, ZEROS

;; Initialize Message
MOV R2, #MCRM6

AND Ri, ZEROS

OR Ri, #5595h

MOV [R2],R1 set

ADD R2,#2h

AND R3, ZEROS

OR R3, #00016h

MOV [R2],R3
ADD R2, #2h

MOV [R2], ZEROS

AND R1, ZEROS

OR R1, #0038h

MOV MCDM6,R1

set M03's Control register
point to Upper Arbitration register

; set R6 to zero
The number is the Message ID for Message Object 3

age

set

message id = 0

Point to the Lower Arbitration Register

standard Message object so lowerarb = Oh

put 000h into first data byte and set to
; Databyte(O) = 0 and Set to receive and

Fill the Data of the MO with Zeros

Object 4
start of Message Object 4

M04's Control register

receive
3 bytes o

point to Upper Arbitration register

; set R6 to zero
The number is the Message ID for Message Object 4

message id = 0

Point to the Lower Arbitration Register

standard Message object so lowerarb = Oh

put OAAh into first data byte and set to receive

; Databyte(O) = 0 and Set to receive and 3 bytes o

; fill the data of the MO with ZEROS

age Object 5
start of Message Object 5

set M04's Control register
point to Upper Arbitration register

; set R6 to zero

The number is the Message ID for Message Object 5

message id = 0

Point to the Lower Arbitration Register

standard Message object so lowerarb = Oh

put OAAh into first data byte and set to receive

; Databyte(O) = 0 and Set to receive and 3 bytes o

fill the data of the MO with ZEROS

Object 6

start of Message Object 6

M04's Control register

; point to Upper Arbitration register

; set R6 to zero
The number is the Message ID for Message Object 6

message id = 0

Point to the Lower Arbitration Register

standard Message object so lowerarb = Oh

put OAAh into first data byte and set to receive

; Databyte(O) = 0 and Set to receive and 3 bytes o
f data

canmol42.asm
MOV DATAM6, ZEROS fill the data of the MO with ZEROS

POP R3

POP R2

POP Ri

RET

cannmocfg ENDP
can_module ENDS

END

cnintl42.asm

$SEGMENTED
$EXTEND

$EXTSFR
$EXTMEM

$NOMOD166
$STDNAMES(regl67b.def)

$SYMBOLS

NAME canint

RBANK1 COMREG RO-R15

ASSUME DPP3:SYSTEM

caninterrupts SECTION CODE

canreceive-interrupt PROC TASK INTNO=040h

ORG 0100h
CALL canreceiveinterrupt-handler
RETI

canreceive_interrupt ENDP

canreceive_interrupt-handler PROC FAR
PUSH RO
PUSH R1

PUSH R2

MOVB RLO, INTID ; Read the CAN interrupt ID buffer

CMPB RLO, #03h ; See if the interrupt came from M01

JMP ccZ, message-one-interrupt; if interrupt from M01 handle

MOV R1, #05555h
MOV R2, #05599h
MOV MCRM2, Rl

MOV RO, DATAM2
MOV MCR_M2, R2

Now setup M5 so it can respond to queries about
the state of the switch

MOV R2,MCRM6

MOV MCRM6, Rl
MOV DATA-M6, RO
MOV MCRNM6, R2

CMP RO, #01h
JMP ccNZ, turn-off-heatedrearwindow
BSET P2.1

JMP exit-function

turn-offfheated.rearwindow:
CMP RO, #0800h
JMP ccNZ, exit-function
BCLR P2.1

JMP exit-function

messageone-interrupt:
MOV R1, #05555h
MOV R2, #05599h
MOV MCRM1, R1
MOV RO, DATAM1

MOV MCRM1, R2

Now setup M5
the state of

so it can respond to queries about
the switch

MOV R2, MCRM5

MOV MCRM5, Rl

MOV DATAM5, RO

MOV MCRM5, R2
CMP RO, #01h
JMP ccNZ, turnheateroff
BSET P2.0
JMP exit-function

turnheater-off:
CMP RO, #0800h
JMP ccNZ, exit-function

BCLR P2.0

exit-function:
MOV R2, #OEFFFh

AND C1CSR, R2
POP R2
POP R1

POP RO
RET

can.receive-interrupthandler ENDP

caninterrupts ENDS
END

; declare bank of 16 global registers

atod142.asm

$SEGMENTED

$EXTEND

$EXTSFR
$EXTSSK CAN USE ALL internal RAM for Stack

$EXTMEM
$NOMOD166
$STDNAMES(regl67b.def)

$SYMBOLS

name atod

ASSUME DPP3:SYSTEM

RBANK1 COMREG RO-R15

GLOBAL atodinitialize

This A/D is set up to measure the current in two different

loads. Because this software is to be used as part of

42volt bus node 1, it uses the names of the loads that

that node is supposed to control.
The analog to digital converter uses Port 5

atodsetup SECTION CODE

atod-initialize PROC FAR
Initialize variables

This below line of code setups up the A/D converter

for 2 channels and single conversion.
It is also set for "Wait for read mode"

so the converter will wait for the user program to read

the buffer before processing the next channel.

MOV ADCON, #DA221h ; setup A/D control register

Set the channel to which the data should be written

when the first "A/D is done" interrupt occurs

The below code sets up the A/D's Interrupt control register

The A/D is setup to have a group of 2 and a level of 10

MOV ADCIC, #006Fh
RET

atod-initialize ENDP
atodsetup ENDS

atod~handlers SECTION CODE
atod~handler PROC TASK INTNO=028h

ORG OADH
CALL atod_function
RETI

atodhandler ENDP

atodjfunction PROC FAR
this function works by seeing if the converter is converting

for the heater-measurement. If the bit is set, then

the bit gets cleared and the IP jumps to where the

value in the converter is moved into the heater-current

variable.
otherwise the bit gets set and the value is moved into

the heatedrearwindowcurrent variable

PUSH RO
PUSH Rl
PUSH R2

PUSH R3
PUSH R4

PUSH MDH

PUSH MDL

MOV R2, ADDAT

MOV RO, R2

ch the data is coming
MOV R3, R2

AND R3, #03FFh

MOV R4, #01h
AND RO, #DFD0Oh

CMP RO, #01000h
D

This is so we can isolate the A/D channel from whi

This is so we can isolate the A/D data

This isolates the A/D data
No Scaling to be done on Microcontroller

The channel information is located in the upper nibble

See if the information is coming from Channel 1 of the A/

JMP ccZ, RearSeatHeatercurrent

MOV RO, #05555h ; This bit pattern deactives MCRs

MOV R1, MCRM3 ; SAVE the Configuration of the MCR

MOV MCRM3, RO ; Kill the Message Control Register

; This multiplication returns the actual value of the current flowing throu

gh the transistor
MUL R3, R4

NOP

MOV DATAM3, MDL for real

MOV MCRM3, Rl

BSET T3R

JMP exit-routine

RearSeatHeater_current:

MOV RO, #05555h This bit pattern deactives MCRs

MOV Rl, MCRM4 SAVE the Configuration of the MCR

MOV MCRM4, RO Kill the Message Control Register

This test code counts out on Port 2 and if it doesn't
Then that means that the A/D and timer aren't working

MOV RO, #04h ;test code

ADD P2, RO ;test code

MUL R3, R4
NOP
MOV DATAM4, MDL

MOV MCRM4, Rl
; for testing purposes

exit-routine:
POP MDL
POP MDH

POP R4
POP R3
POP R2
POP R1
POP RO

RET

atodjfunction ENDP

atodhandlers ENDS

END

tmrs 142.asm

$SEGMENTED
$EXTEND

$EXTSFR
$EXTMEM
$EXTINSTR
$NOMOD166
$STDNAMES (regl67b .def)

$SYMBOLS

NAME timer-functions
ASSUME DPP3:SYSTEM

RBANK1 COMREG RO-R15

GLOBAL atodtimer_initialize

atodtimer SECTION CODE
atodtimer-initialize PROC FAR

MOV T3CON, #0004h
MOV T3IC, #002Bh
MOV T3, #0000h
BSET T3IE

BSET T3R
RET

atodtimerinitialize ENDP

These are assembler controls

Assembler controls end here

setup Core Timer T3

Make the value in the counter equal to zero

enable the timer interrupt
start the timer

atod~interrupt PROC TASK INTNO=023h

ORG 08Ch
CALL atodtimerhandler
RETI

atod~interrupt ENDP

atod~timer handler PROC FAR
BCLR T3R

BSET ADST
RET

atodtimer handler ENDP
atod-timer ENDS

END

stop the timer
start an A/D conversion

linker.lnv

LOCATE

locatein. lno
{GENERAL}

IRAMSIZE (2048)

RESERVE MEMORY(OF200h TO OF5FFh)

MEMORY(ROM (0000h to OEFFFh),

RAM (040000h to 4EFFFh), IRAM(OF000h))

CLASSES('RAM' (040000h to 04FFFFh)
SYMBOLS LISTSYMBOLS

TO locate.out

reg 1 67b.def
***8 EF

c@(#)reg167b.def 1.10 12/18/97 DP7 DEFR OFFD2h

P7 DEFR OFFDOh

;*Register definitions for the SAB C167 DP6 DEFR OFFCEh

;*This file contains all SFR names and BIT names P6 DEFR OFFCCh

;*This file can he supplied to rm166 and a166 (STDNAMES control) DP4 DEFR OFFCAh

***P4
DEFR OFFC8h

TRUE DEFB OFF2Oh.0, RW DP3 DEFR QFFC~h

NODE142 DEFB OFF2Oh.l, RW P3 DEFR OFFC4h

DP2 DEFR OFFC2h

C1CSR DEFA QEFOOh P2 DEFR OFFCOh

INTID DEFA OEFO2h SSCCON DEFR OFFB2h

C1BTR DEFA QEFQ4h SOCON DEFR OFFBOh

C1GMS DEFA OEFO6h WDTCON DEFR OFFAEh

C1UGML DEFA QEF08h TFR DEFR OFFACh

C1LGML DEFA OEFOAh P5 DEFR OFFA2h

C1UMLM DEFA OEFOCh ADCON DEFR OFFAOh

CILMLM DEFA OEFOEh TlIC DEFR OFF9Eh

MCRMl DEFA OEFl0h TOIC DEFR OFF9Ch

MCRM2 DEFA OEF20h ADEIC DEFR OFF9Ah

MCR-M3 DEFA OEF30h ADCIC DEFR OFF98h

MCRM4 DEFA OEF4Oh CC151C DEFR OFF96h

MCR-M5 DEFA OEF50h CC141C DEFR OFF94h

MCR.M6 DEFA OEF6Oh CC131C DEFR OFF92h

MCR.M7 DEFA OEF7Oh CC121C DEFR OFF9Oh

MCRM8 DEFA OEF8Oh CCllIC DEFR OFF8Eh

MCRM9 DEFA OEF9Oh CClOIC DEFR OFF8Ch

MCRMA DEFA OEFAOh CC9IC DEFR OFF8Ah

MCRMa DEFA OEFBOh CC81C DEFR OFF88h

MCR-MC DEFA OEFCOh CC71C DEFR OFF86h

MCR-MD DEFA OEFDOh CC61C DEFR OFF84h

MCR ME DEFA OEFEOh CC51C DEFR OFF82h

MCR.MF DEFA OEFFOh CC41C DEFR QFF80h

MCDMl DEFA OEFl6h CC31C DEFR OFF7Eh

MCDM2 DEFA OEF26h CC21C DEFR OFF7Ch

MCD-M3 DEFA OEF36h CClIC DEFR OFF7Ah

MCDM4 DEFA OEF46h CCOIC DEFR OFF78h

MCD-JM5 DEFA OEF56h SSCEIC DEFR OFF76h

MCDM6 DEFA OEF66h SSCRIC DEFR OFF74h

MCDM7 DEFA OEF76h SSCTIC DEFR OFF72h

MCD-M8 DEFA QEF86h SOEIC DEFR OFF7Oh

MCDM9 DEFA OEF96h SORIC DEFR OFF6Eh

MCDMA DEFA OEFA6h SOTIC DEFR OFF6Ch

MCDMB DEFA OEFB6h CRIC DEFR OFF6Ah

MCD-MC DEFA OEFC6h T61C DEFR OFF68h

MCDMD DEFA OEFD6h T51C DEFR OFF66h

MCDME DEFA OEFE6h T41C DEFR OFF64h

DATAMl DEFA OEFl8h T31C DEFR OFF62h

DATAM2 DEFA OEF28h T21C DEFR OFF6Oh

DATA.M3 DEFA OEF38h CCM3 DEFR OFF58h

DATAM4 DEFA OEF48h CCM2 DEFR OFF56h

DATAM5 DEFA OEF58h CCM1 DEFR OFF54h

DATAM6 DEFA QEF68h CCMO DEFR OFF52h

DATAM7 DEFA OEF78h TOlCON DEFR OFF5Oh

DATA.M8 DEFA OEF88h T6CON DEFR OFF48h

DATA.M9 DEFA OEF98h T5CON DEFR OFF46h

DATA.MA DEFA OEFA8h T4CON DEFR OFF44h

DATA.MB DEFA OEFB8h T3CON DEFR OFF42h

DATAMC DEFA OEFC8h T2CON DEFR OFF40h

DATAMD DEFA OEFD8h PWMCON1 DEFR OFF32h

DATA-ME DEFA OEFE8h PWMCONO DEFR OFF30h

CCM7 DEFR OFF28h

CCM6 DEFR OFF26h

CCM5 DEFR OFF24h

DP8 DEFR OFFD6h CCM4 DEFR OFF22h

OMAN=regl167b.def

T78CON DEFR OFF2Oh CC16 DEFR OFE6Oh

PlH DEFR QFFO6h TiREL DEFR OFE56h

PiL DEFR OFFO4h TOREL DEFR OFE54h

POH DEFR OFFO2h Ti DEFR OFE52h

POL DEFR OFFOOh TO DEFR OFE5Oh

PECC7 DEFR OFECEh CAPREL DEFR OFE4Ah

PECC6 DEFR OFECCh T6 DEFR OFE48h

PECC5 DEFR OFECAh T5 DEFR OFE46h

PECC4 DEFR OFEC8h T4 DEFR OFE44h

PECC3 DEFR OFEC6h T3 DEFR OFE42h

PECC2 DEFR OFEC4h T2 DEFR OFE4Oh

PECCi DEFR OFEC2h PW3 DEFR OFE36h

PECCO DEFR OFECOh PW2 DEFR OFE34h

SRCPO DEFA OFCEOh Pwi DEFR OFE32h

DSTPO DEFA OFCE2h PWO DEFR OFE3Oh

SRCP1 DEFA OFCE4h

DSTP1 DEFA OFCE~h Extended sfr area

SRCP2 DEFA OFCE8h

DSTP2 DEFA OFCEAh ODP8 DEFR OF1D6h

SRCP3 DEFA OFCECh ODP7 DEFR OFiD2h

DSTP3 DEFA OFCEEh ODP6 DEFR OFiCEb

SRCP4 DEFA OFCF~h ODP3 DEFR OFiC~h

DSTP4 DEFA OFCF2h PICON DEFR OFiC4h

SRCP5 DEFA OFCF4h ODP2 DEFR OF1C2h

DSTP5 DEFA OFCF6h EXICON DEFR OFiCOh

SRCP6 DEFA OFCF8h SOTBIC DEFR OF19Ch

DSTP6 DEFA OFCFAh XP31C DEFR OFi9Eh

SRCP7 DEFA OFCFCh XP21C DEFR OF196h

DSTP7 DEFA OFCFEh XP1IC DEFR QF18Eh

SOBG DEFR OFEB4h XPOIC DEFR OFi86h

SORBUF DEFR OFEB2h, r PWMIC DEFR OFi7Eh

SOTBUF DEFR OFEBOh, w T81C DEFR QF17Ch

WDT DEFR OFEAEh, r T71C DEFR OFi7Ah

ADDAT DEFR OFEAOh CC31IC DEFR OF194h

CC15 DEFR OFE9Eh CC30IC DEFR OFi8Ch

CC14 DEFR OFE9Ch CC291C DEFR OFi84h

CC13 DEFR OFE9Ah CC281C DEFR OF178h

CC12 DEFR OFE98h CC271C DEFR QFi76h

cl DEFR OFE96h CC261C DEFR OFi74h

CCio DEFR OFE94h
CC251C DEFR OFi72h

CC9 DEFR OFE92h CC241C DEFR OFi7Oh

CC8 DEFR OFE9Oh CC231C DEFR OFi6Eh

CC7 DEFR OFE8Eh CC221C DEFR OFi6Ch

CC6 DEFR OFE8Ch CC21IC DEFR OFi6Ah

CC5 DEFR OFE8Ah CC20IC DEFR OFi68h

CC4 DEFR OFE88h CCiC DEFR OFiE6h

CC3 DEFR OFE86h CCi8IC DEFR OFi64h

CC2 DEFR OFE84h CC171C DEFR OFi62h

ci DEFR OFE82h CC161C DEFR OFi6Oh

CCO DEFR OFE8Oh RPOH DEFR OFiO8h

CC31 DEFR OFE7Eh DPlH DEFR OFiO6h

CC30 DEFR OFE7Ch DPlL DEFR OFiO4h

CC29 DEFR OFE7Ah DPOH DEFR OFiO2h

CC28 DEFR OFE78h DPOL DEFR OFiO0h

CC27 DEFR OFE76h SSCBR DEFR OFOB4h

CC26 DEFR OFE74h SSCRB DEFR OFOB2h

CC25 DEFR OFE72h SSCTB DEFR OFOBOh

CC24 DEFR OFE7Qh ADDAT2 DEFR OFOAOh

CC23 DEFR OFE6Eh
T8REL DEFR OFO56h

CC22 DEFR OFE6Ch T7REL DEFR OFO54h

CC21 DEFR OFE6Ah T8 DEFR OFO52h

CC20 DEFR OFE68h T7 DEFR OFO5Oh

CC19 DEFR OFE66h PP3 DEFR OFO3Eh

CC18 DEFR OFE64h PP2 DEFR OFO3Ch

CC17 DEFR OFE62h PPi DEFR OFO3Ah

regl167b.def
PPO DEFR OF038h AN13 DEFB P5.13

PT3 DEFR OF036h AN14 DEFB P5.14

PT2 DEFR OFO34h AN15 DEFB P5.15

PT1 DEFR OFO32h T6EUD LIT 'AN10'

PTO DEFR 03Oh T5EUD LIT 'ANil'

;BtnmsT61N
LIT 'AN12'

BCit names2.
T51N LIT 'AN13'

CCOIO DEFB P2.0
T4EUD LIT 'AN14'

CC21 DEFB P2.1
T2EUD LIT 'ANiS'

CC310 DEFB P2.2 OT EB P.

CC41O DEFB P2.4 POUTO DEFB P7.0

CC510 DEFB P2.4 POUTi DEFB P7.1

CC61O DEFB P2.5 POUT2 DEFB P7.2

CC71O DEFB P2.7 CC28I0 DEFB P7.4

CC8I0 DEFB P2.8 CC29I0 DEFB P7.5

CC9I0 DEFB P2.9 CC30IO DEFB P7.6

CC10io DEFB P2.10 CC31I0 DEFB P7.7

CC11IO DEFB P2.11

CC12IQ DEFB P2.12 CC161o I3EFB P8.0

CC131O DEFB P2.13 CC17IO DEFB P8.1

CC141O DEFB P2.14 CC1810 DEFB P8.2

CC151O DEFB P2.15 CC1910 DEFB P8.3

EXOIN LIT 'CCOIO' CC20I0 DEFB P8.4

EX1IN LIT 'CC1I0' CC21IO DEFB P8.5

MXIN LIT 'CC21o, CC2210 DEFB P8.6

MXIN LIT 'CC310' CC2310 DEFB P8.7

TOIN DEFB P3.0

T60UT DEFB P3.1 TOM DEFB TOJ.C0N.3

CAPIN DEFB P3.2 TOR DEFB TO1C0N.6

T30UT DEFB P3.3 TiM DEFB T0lCONli1

T3EUD DEFB P3.4 TlR DEFB TO1CON.14

T21N DEFB P3.7 T7M DEFB T78C0N.3

T31N DEFB P3.6 T7R DEFB T78CON.6

T41N DEFB P3.5 T8M DEFB T78CON.11

SSDI DEFB P3.8 T8R DEFB T78C0N.14

SSDO DEFB P3.9

TXDO DEFB P3.10 ACCO DEFB CCM0.3

RXD0 DEFB P3.11 ACCi DEFB CCM0.7

SSCLK DEFB P3.13 ACC2 DEFB CCM0.11

CLKOUT DEFB P3.15 ACC3 DEFB CCMO.15

A16 DEFB P4.0 ACC4 DEFB CCM1.3

A17 DEFB P4.1 ACC5 DEFB CCM1.7

A18 DEFB P4.2 ACC6 DEFB CCM1.11

A19 DEFB P4.3 ACC7 DEFB CCM1.15

A20 DEFB P4.4

A21 DEFB P4.5 ACC8 DEFB CCM2.3

A22 DEFB P4.6 ACC9 DEFB CCM2.7

A23 DEFB P4.7 ACC10 DEFB CCM2.11

AODF P50ACC11
DEFB CCM2.15

ANO DEFB P5.0 C1 EB CM.

ANi DEFB P5.1 ACC13 DEFB CCM3.3

AN2 DEFB P5.2 ACC14 DEFB CCM3.71

AN3 DEFB P5.3 ACC15 DEFB CCM3.11

AN5 DEFB P5.5

AN6 DEFB P5.6 ACC16 DEFB CCM4.3

AN7 DEFB P5.7 ACC17 DEFB CCM4.7

AN8 DEFB P5.8 ACC18 DEFB CCM4.11

AN9 DEFB P5.9 ACC19 DEFB CCM4.15

AN10 DEFB P5.10

AN11 DEFB P5.11 ACC20 DEFB CCM5.3

AN12 DEFB P5.12 ACC21 DEFB CCM5.7

ACC22
ACC23

ACC24
ACC25
ACC26
ACC27

ACC2 8
ACC29
ACC30
ACC31

T2R
T2UD
T2UDE

T3R
T3UD
T3UDE
T30E

T30TL

T4R
T4UD
T4UDE

T5R
T5UD
T5UDE

T5CLR
T5SC

T6R
T6UD
T6UDE
T60E

T60TL

T6SR

T2IE

T2IR

T3IE
T3IR

T4IE

T4IR

T5IE
T5IR
T6IE
T6IR

CRIE
CRIR

SOTIE
SOTIR
SORIE
SORIR
SOEIE
SOEIR
SOTBIE
SOTBIR

SSCTIE

SSCTIR

DEFB
DEFB
DEFB
DEFB
DEFB

T3CON. 6
T3CON. 7
T3CON.8
T3CON.9

T3CON. 10

DEFB T4CON.6

DEFB T4CON.7

DEFB T4CON.8

DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

T5CON. 6
T5CON.7
T5CON. 8
T5CON.14
T5CON.15

T6CON. 6
T6CON.7
T6CON. 8
T6CON. 9
T6CON.10
T6CON. 15

T2IC. 6

T2IC.7
T3IC.6
T3IC.7

T4IC.6

T4IC.7
T5IC.6
T5IC.7
T6IC.6
T6IC.7

DEFB CRIC.6

DEFB CRIC.7

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

SOTIC. 6
SOTIC.7
SORIC. 6
SORIC.7
SOEIC.6
SOEIC .7
SOTBIC.6
SOTBIC.7

DEFB SSCTIC.6

DEFB SSCTIC.7

DEFB CCM5.11

DEFB CCM5.15

DEFB CCM6.3

DEFB CCM6.7

DEFB CCM6.11

DEFB CCM6.15

DEFB CCM7.3

DEFB CCM7.7

DEFB CCM7.11

DEFB CCM7.15

DEFB T2CON.6

DEFB T2CON.7

DEFB T2CON.8

reg 167b.def
SSCRIE
SSCRIR
SSCEIE
SSCEIR
SSCTE
SSCRE
SSCPE
SSCBE

CCOIE
CCOIR
CC1IE
CC1IR

CC2IE

CC2IR
CC3IE

CC3IR
CC4IE

CC4IR
CC5IE
CC5IR
CC6IE

CC6IR
CC7IE

CC7IR

CC8IE
CC8IR
CC9IE

CC9IR
CC10IE

CC10IR

CC11IE
CC11IR
CC12IE
CC12IR
CC13IE
CC13IR
CC14IE
CC14IR
CC15IE
CC15IR

CC16IE
CC16IR
CC17IE
CC17IR
CC18IE
CC18IR
CC191E
CC19IR

CC20IE

CC20IR

CC21IE
CC21IR

CC22IE
CC22IR

CC23IE

CC23IR
CC24IE
CC24IR

CC25IE
CC25IR

CC26IE

CC261R
CC27IE

DEFB
DEFB
DEFB
DEFB
LIT
LIT
LIT
LIT

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

SSCRIC.6
SSCRIC.7
SSCEIC.6
SSCEIC.7

'SSCTEN'
'SSCREN'

'SSCPEN'

'SSCBEN'

CCOIC. 6
CCOIC .7
CC1IC.6

CC1IC.7

CC2IC.6

CC2IC.7
CC3IC. 6

CC3IC.7
CC4IC. 6

CC4IC.7
CC5IC.6

CC5IC.7
CC6IC.6
CC6IC.7

CC7IC. 6

CC7IC.7
CC8IC.6

CC8IC.7
CC9IC.6
CC9IC.7

CC10IC.6
CC10IC.7

CC11IC. 6

CC11IC.7
CC12IC.6

CC12IC. 7
CC13IC. 6
CC13IC.7
CC14IC. 6
CC14IC.7
CC15IC.6

CC15 IC. 7
CC16IC.6

CC16IC.7
CC17IC.6

CC17IC .7
CC18IC.6
CC18IC.7
CC19IC.6
CC19IC.7

CC20IC.6

CC20IC.7
CC21IC. 6
CC21IC.7
CC22IC.6
CC22IC.7

CC23IC.6

CC23IC.7
CC24IC.6
CC24IC.7
CC25IC.6

CC25IC.7

CC26IC.6

CC26IC.7
CC27IC.6

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

CC27IC.7
CC28IC.6

CC28IC.7
CC29 IC. 6

CC29IC.7
CC30IC.6

CC30IC.7
CC31IC.6
CC31IC.7

CC27IR
CC28IE

CC28IR

CC2 9 IE

CC29IR

CC30IE
CC30IR
CC31IE
CC31IR

ADCIE
ADCIR
ADEIE
ADEIR

TOIE
TOIR
TIIE

T1IR
T7IE

T7IR

T8IE

T8IR

ADST
ADBSY
ADWR
ADCIN
ADCRQ

ILLBUS

ILLINA

ILLOPA
PRTFLT
UNDOPC

STKUF
STKOF
NMI

WDTIN
WDTR

SOSTP
SOREN
SOPEN

SOFEN
SOOEN

SOPE

SOFE

SOOE

SOODD
SOBRS
SOLB
SOR

SSCHB
SSCPH
SSCPO

SSCTEN

SSCREN

SSCPEN

SSCBEN

SSCBSY

SSCMS

SSCEN

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

TOIC.6
TOIC.7
T1IC.6

T1IC.7
T7IC.6

T7IC.7

T8IC.6
T8IC.7

ADCON. 7
ADCON. 8
ADCON. 9

ADCON.10
ADCON. 11

TFR. 0
TFR. 1

TFR. 2

TFR. 3
TFR. 7

TFR. 13

TFR.14
TFR. 15

DEFB WDTCON.0

DEFB WDTCON.1

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

SOCON.3
SOCON.4
SOCON. 5
SOCON. 6

SOCON. 7
SOCON. 8
SOCON. 9
SOCON. 10

SOCON.12
SOCON.13
SOCON.14
SOCON.15

SSCCON.4

SSCCON.5

SSCCON.6
SSCCON. 8

SSCCON.9

SSCCON.10

SSCCON.11

SSCCON.12

SSCCON.14

SSCCON.15

reg 167b.def

PTRO
PTR1
PTR2
PTR3
PTIO
PTI1
PTI2

PTI3
PIEO
PIEl

PIE2
PIE3
PIRO
PIRI
PIR2
PIR3

PENO
PEN1
PEN2
PEN3
PMO
PM1
PM2
PM3
PBO1
PS2
PS3

PWMIE
PWMIR

XP3IE
XP3IR
XP2IE

XP2IR
XP1IE

XP1IR

XPOIE
XPOIR

DEFB ADCIC.6

DEFB ADCIC.7

DEFB ADEIC.6
DEFB ADEIC.7

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

PWMCONO.0
PWMCONO.1

PWMCONO . 2

PWMCONO.3

PWMCONO.4

PWMCONO.5
PWMCONO.6

PWMCONO.7

PWMCONO.8

PWMCONO.9
PWMCONO.10

PWMCONO.11
PWMCONO.12
PWMCONO . 13

PWMCONO.14
PWMCONO.15

PWMCON1.0
PWMCON1.1
PWMCON1.2

PWMCON1.3
PWMCON1.4

PWMCON1 . 5

PWMCON1 . 6

PWMCON1 .7

PWMCON1.12
PWMCON1.14

PWMCON1 .15

PWMIC.6
PWMIC.7

XP3IC.6
XP3IC.7

XP2IC.6

XP2IC.7

XP1IC.6

XP1IC.7
XPOIC.6
XPOIC.7

Breadboard Code

B.6 42V Bus CAN Node 2

On the next page starts the code for the 42V bus CAN node 2. The files for the node are as

follows.

1. comp242.bat

2. main242.asm

3. cnmod242.asm

4. canmo242.asm

5. cnint242.asm

6. atod242.asm

7. tmrs242.asm

8. linker.lnv

9. Reg167b.def

- 61 -

Chapter B

:56l comp242.bat

a166 main242.asm
a166 cnmod242.asm
a166 canmo242.asm
a166 cnint242.asm
a166 atod242.asm
a166 tmrs242.asm
1166 LINK main242.obj crmod242.obj canmo242.obj cnint242.obj atod242.obj tmrs242.obj TO

locatein. lno
1166 @linker.lnv
ihexl66 -i16 locate.out -o main242.hex

main242.asm
$SEGMENTED

$EXTEND

$EXTSFR
$EXTSSK
$EXTMEM

$NOMOD166
$STDNAMES(reg167b.def)

$SYMBOLS

NAME main
RBANK1 COMREG RO-R15

SSKDEF 4

ASSUME DPP3:SYSTEM

EXTERN canin:FAR

EXTERN atodinitialize:FAR
EXTERN atodtimer_initialize:FAR

CAN USE ALL internal RAM for Stack

define a common register area of 16 register

default stack size of 256 Words

Can function
; external atod initialization

mainseg SECTION CODE
main PROC FAR

start: DISWDT

BSET IEN
; disable the watchdog timer
; Globally Enable Interrupts both global

Initialize the External Memory BUS
MOV SYSCON, #OE084h
MOV ADDRSEL1, #0404h
MOV BUSCONO, #004AFh
MOV BUSCON1, #004AFh
EINIT ; end initialization

End of external memory bus initialization

Initialize the Data Page pointers for this section
MOV DPP3, #03h ; make DPP3 point to system

End of Data Page Pointer Initialization

Make the direction of Port 2 to output
MOV DP2, ONES

Make sure Port 2 is in push/pull mode
MOV ODP2, ONES

Initialize The Stack
The Stack pointers are all word pointers so even though the
highest byte in the stack is located at #OFBFFh the highest
byte that the stack pointers can point to is #OFBFEh

MOV STKUN, #OFBFEh; Set Stack Underflow Pointer
MOV STKOV, #OF800h; Set STack Overflow Pointer
MOV SP, #OFBFEh ; Set the Stack Pointer

End of Stack Initialization

Initialize the Analog to Digital Converter
CALL atodinitialize; atod

End of A/D initialization

Initialize A/D timer
CALL atodtimer-initialize; timers

End of A/D timer initialization

Initialize CAN Bus
CALL canin Call the CAN initialization function

End of CAN Bus Initialization

meto:

main ENDP
mainseg ENDS

NOP
NOP
JMP meto
RET

startupsec SECTION CODE
sysreset PROC TASK INTNO

ORG OOOH
JMP start
RETI

sysreset ENDP
startupsec ENDS
END

; just loop here waiting

return

codesegment that contains reset int pointer

=0H reset interrupt number is zero at Oh
forces next instruction to be located at Oh
installs a pointer to the startup routine
return from interrupt

cnmod242.asm
$SEGMENTED
$EXTEND

$EXTSFR
$EXTMEM
$NOMOD166
$STDNAMES(regl67b.def)

$SYMBOLS

NAME canmod

RBANK1 COMREG RO-R15
GLOBAL canin

EXTERN canmocfg:FAR configures specific Message objects

ASSUME DPP3:SYSTEM

canfunc SECTION CODE codesegment that contains reset int poin

canin PROC FAR
PUSH RO
PUSH RI

;; set all of the CAN control registers
AND C1CSR,ZEROS set control register to zero
MOV Rl, #0043h ; Set IE and INIT bits
OR C1CSR,Rl set control register to Rl's value

AND C1BTR, ZEROS ; set Bit timing register to zero
MOV Rl, #03447h ; set for 125k operation
OR C1BTR, R ; set Bit timing register parameters

AND C1GMS, ZEROS ; set Global Mask short register to zero
MOV R1, #OFFFFh ; EOFF is what DAVE initialize

OR C1GMS, Rl set GMS

AND C1UGML, ZEROS ; set Upper global mask long to zero

MOV Rl, #OFFFFh

OR C1UGML, Rl

MOV R1, #OF8FFh
AND C1LGML, ZEROS
OR ClLGML, R1 lower global mask

AND C1UMLM, ZEROS

OR C1UMLM, R; upper mask of last register
AND C1LMLM, ZEROS

OR C1LMLM, Rl lower mask of last register

CALL setall sets all of the CAN registers to off

CALL canmocfg Configures specific Message Objects

;; Setup CAN interrupt and Initialize CAN module
EXTR #4

AND XPOIC, ZEROS ; configure CAN interrupt control Register
AND RO,ZEROS
OR RO,#0073h enable interrupt, level is 10 group is 2
OR XPOIC,RO Configure CAN interrupt Control Register
AND R1, ZEROS
OR R1, #00041h crashes if I clear the CPU access to the BTR
XOR C1CSR, RI end initialize CAN interrupt

POP RI
POP RO

ter

RET
canin ENDP

setall PROC FAR This Procedure sets all of the Mess objs invalid

by using a counter it counts up to 15 and initializes all of the message

objects along the way.
PUSH R2
PUSH R4
PUSH R5
AND R5,ZEROS

OR R5, #01h ; Set counter to 1 for first MO
AND R2,ZEROS

OR R2,#OEF10h ; Set pointer to Mo1
AND R4, ZEROS

OR R4, #5555h ; Set R4 to make MObs invalid

nextreg:MOV [R2],R4 ; make all message objects invalid
ADD R2,#10h

CMPIl R5,#OFh
JMPA CC.NZ,nextreg
POP R5
POP R4
POP R2
RET

setall ENDP

canfunc ENDS
END

define a common register area of 16 registers
The function must be declared Global at the
beginning of the module

canmo242.asm
$SEGMENTED
$EXTEND

$EXTSFR
$EXTMEM
$NOMOD166

$STDNAMES(reg167b.def)

$SYMBOLS

NAME canmo

RBANK1 COMREG RO-R15
GLOBAL canmocfg

canmodule SECTION CODE

ASSUME DPP3:SYSTEM

canmocfg PROC FAR
PUSH Rl
PUSH R2
PUSH R3

Now set specific CAN control Registers
initialize message object 1
initializing this object to be invalid does or removing the code until
the comment "Setup CAN interrupt and Initialize does
nothing to prevent the occurrance of the interrupt for the CAN system

MOV R2, #MCRM1 start of Message Object 1
AND Ri, ZEROS
OR R1, #5599h Generate a Receive Interrupt if this message object ac

tivates
MOV [R2],Rl set MOl's Control register

ADD R2,#2h

AND R3, ZEROS
OR R3, #08003h
MOV [R2],R3

ADD R2, #2h
MOV [R2], ZEROS

AND R1, ZEROS
OR Ri, #0030h

MOV MCDM1,R1

MOV DATAM1, ZEROS

;; Initialize Message
MOV R2, #MCRM2
AND R1, ZEROS
OR Ri, #5599h

MOV [R2],Rl set
ADD R2,#2h
AND R3, ZEROS

OR R3, #OA003h
MOV [R2],R3
ADD R2, #2h

MOV [R2], ZEROS
AND R1, ZEROS
OR R1, #0030h
MOV MCDM2,R1

ta
MOV DATAM2, ZEROS

;; Initialize Message
MOV R2, #MCRM3

AND R1, ZEROS
OR R1, #5595h

tivates

point to Upper Arbitration register
set R3 to

message id for message object 1
message id = #0003h
Point to the Lower Arbitration Register
standard Message object so lowerarb = Oh

put OAAh into first data byte and set to receive
Databyte(O) = 0 and Set to receive and 3 bytes of data
fill the Data of the MO with Zeros

Object 2
start of Message Object 2

RECEIVE INTERRUPT enabled
M02's Control register

point to Upper Arbitration register
; set R6 to zero
The number is the Message ID for Message Object 2
message id = 0
Point to the Lower Arbitration Register
standard Message object so lowerarb = Oh

put 000h into first data byte and set to receive
; Databyte(O) = 0 and Set to receive and 3 bytes of da

Fill the Data of the MO with Zeros

Object 3
start of Message Object 3

Generate a receive interrupt if this message object ac

f data

f data

f data

f data

; declare bank of 16 global registers

MOV [R2],R1

ADD R2,#2h
AND R3, ZEROS
OR R3, #OC003h
MOV [R2],R3
ADD R2, #2h
MOV [R21, ZEROS

AND R1, ZEROS

OR Ri, #0038h

MOV MCDM3,R1

MOV DATAM3, ZER

;; Initialize Me

MOV R2, #MCR_M4

AND R1, ZEROS
OR R1, #5595h

MOV [R2],R1

ADD R2,#2h
AND R3, ZEROS
OR R3, #00019h

MOV [R2],R3

ADD R2, #2h
MOV [R2], ZEROS

AND Ri, ZEROS
OR Ri, #0038h

MOV MCDM4,R1

MOV DATAM4, ZER

;; Initialize Me
MOV R2, #MCR-M5
AND R1, ZEROS

OR Ri, #5595h
MOV [R2],Rl

ADD R2,#2h

AND R3, ZEROS
OR R3, #00017h
MOV [R21,R3

ADD R2, #2h
MOV (R2], ZEROS

AND Ri, ZEROS

OR R1, #0038h
MOV MCDM5,R1

MOV DATAM5, ZER

;; Initialize Me
MOV R2, #MCRM6
AND Ri, ZEROS

OR R1, #5595h

MOV [R2],R1

ADD R2,#2h

AND R3, ZEROS

OR R3, #00018h
MOV [R2],R3

ADD R2, #2h
MOV [R2], ZEROS

AND R1, ZEROS

OR Ri, #0038h

MOV MCDM6,R1

set M03's Control register
point to Upper Arbitration register
; set R6 to zero

The number is the Message ID for Message Object 3
message id = 0

Point to the Lower Arbitration Register

standard Message object so lowerarb = Oh

put 000h into first data byte and set to receive

; Databyte(O) = 0 and Set to receive and 3 bytes o

OS Fill the Data of the MO with Zeros

ssage Object 4

start of Message Object 4

set M04's Control register
point to Upper Arbitration register
; set R6 to zero

The number is the Message ID for Message Object 4
message id = 0

Point to the Lower Arbitration Register
standard Message object so lowerarb = Oh

put OAAh into first data byte and set to receive
; Databyte(O) = 0 and Set to receive and 3 bytes o

OS fill the data of the MO with ZEROS

ssage Object 5

start of Message Object 5

set M04's Control register
point to Upper Arbitration register
; set R6 to zero

The number is the Message ID for Message Object 5
message id = 0
Point to the Lower Arbitration Register

standard Message object so lowerarb = Oh

put OAAh into first data byte and set to receive
; Databyte(O) = 0 and Set to receive and 3 bytes o

OS fill the data of the MO with ZEROS

ssage Object 6

start of Message Object 6

set M04's Control register
point to Upper Arbitration register
; set R6 to zero

The number is the Message ID for Message Object 6
message id = 0
Point to the Lower Arbitration Register
standard Message object so lowerarb = Oh

put OAAh into first data byte and set to receive
; Databyte(O) = 0 and Set to receive and 3 bytes o

canmo242.asm
MOV DATAM6, ZEROS

POP R3

POP R2

POP RI

RET

canmocfg ENDP
canmodule ENDS

END

; fill the data of the MO with ZEROS

cnint242.asm
$SEGMENTED
$EXTEND

$EXTSFR

$EXTMEM
$NOMOD166
$STDNAMES(regl67b.def)

$SYMBOLS

NAME canint

RBANK1 COMREG RO-R15

ASSUME DPP3:SYSTEM

caninterrupts SECTION CODE

can receive-interrupt PROC TASK INTNO=040h

ORG 0100h
CALL can-receivejinterrupt-handler
RETI

canreceive-interrupt ENDP

canreceivejinterrupt-handler PROC FAR
PUSH RO
PUSH Rl

PUSH R2

MOVB RLO, INTID ; Read the CAN interrupt ID buffer

CMPB RLO, #03h ; See if the interrupt came from M01

JMP cc_Z, messageone_interrupt; if interrupt from M01 handle

MOV R1, #05555h
MOV R2, #05599h
MOV MCRM2, Rl

MOV RO, DATAM2

MOV MCRM2, R2

Now setup M5 so it can respond to queries about
the state of the switch

MOV R2,MCRM6
MOV MCRM6, Rl

MOV DATAM6, RO

MOV MCRM6, R2
CMP RO, #01h
JMP ccNZ, turnoff-heatedrearwindow
BSET P2.1
JMP exit-function

turn of fheated-rear-window:
CMP RO, #0800h
JMP ccNZ, exitfunction
BCLR P2.1

JMP exit-function

message-onejinterrupt:
MOV R1, #05555h
MOV R2, #05599h
MOV MCRM1, Rl

MOV RO, DATA_Ml
MOV MCRM1, R2

Now setup M5 so it can respond to queries about
the state of the switch

MOV R2, MCRM5
MOV MCRM5, RI

MOV DATAM5, RO

MOV MCRM5, R2
CMP RO, #01h
JMP ccNZ, turnheater-off

BSET P2.0
JMP exit-function

turn-heater-off:
CMP RO, #0800h
JMP ccNZ, exit_function

BCLR P2.0

exit-function:
MOV R2, #OEFFFh

AND C1CSR, R2
POP R2
POP R1
POP RO
RET

canreceiveinterrupthandler ENDP

can_interrupts ENDS
END

; declare bank of 16 global registers

atod242.asm
$SEGMENTED
$EXTEND

$EXTSFR

$EXTSSK CAN USE ALL internal RAM for Stack
$EXTMEM
$NOMOD166
$STDNAMES(regl67b.def)
$SYMBOLS

name atod

ASSUME DPP3:SYSTEM

RBANK1 COMREG RO-R15

GLOBAL atodinitialize

This A/D is set up to measure the current in two different
loads. Because this software is to be used as part of
42volt bus node 1, it uses the names of the loads that
that node is supposed to control.
The analog to digital converter uses Port 5

atodsetup SECTION CODE

atodinitialize PROC FAR
Initialize variables

This below line of code setups up the A/D converter
for 2 channels and single conversion.
It is also set for "Wait for read mode"
so the converter will wait for the user program to read
the buffer before processing the next channel.

MOV ADCON, #OA221h ; setup A/D control register

Set the channel to which the data should be written
when the first "A/D is done" interrupt occurs

The below code sets up the A/D's Interrupt control register
The A/D is setup to have a group of 2 and a level of 10

MOV ADCIC, #006Fh
RET

atod initialize ENDP
atodsetup ENDS

atod.handlers SECTION CODE
atod handler PROC TASK INTNO=028h

ORG OAOH
CALL atodfunction

RETI
atodhandler ENDP

atodfunction PROC FAR
this function works by seeing if the converter is converting
for the heatermeasurement. If the bit is set, then
the bit gets cleared and the IP jumps to where the
value in the converter is moved into the heater-current
variable.
otherwise the bit gets set and the value is moved into
the heatedrearwindow_current variable

PUSH RO
PUSH RI
PUSH R2

PUSH R3

PUSH R4

PUSH MDH

PUSH MDL

MOV
MOV

ch the data
MOV
AND
MOV
AND
CMP

D

R2, ADDAT

RO, R2
is coming
R3, R2
R3, #03FFh
R4, #Olh
RO, #OFOOOh
RO, #01000h

This is so we can isolate the A/D channel from whi

This is so we can isolate the DATA on the A/D
this isolates the A/D data
No scaling on microcontroller
The channel information is located in the upper nibble
See if the information is coming from Channel 1 of the A/

JMP ccZ, RearSeatHeatercurrent

MOV RO, #05555h ; This bit pattern deactives MCRs
MOV Rl, MCRM3 ; SAVE the Configuration of the MCR
MOV MCRM3, RO ; Kill the Message Control Register

MULU R3, R4

NOP
MOV DATA.M3, MDL ; for real
MOV P2, R2 ; for testing purposes
MOV MCRM3, R1
BSET T3R
JMP exit-routine

RearSeatHeater-current:

MOV RO, #05555h
MOV R1, MCRM4
MOV MCRM4, RO
MOV RO, #04h
ADD P2, RO

MULU R3, R4
NOP

MOV DATAM4, MDL

MOV MCRM4, Rl

This bit pattern deactives MCRs
SAVE the Configuration of the MCR
Kill the Message Control Register

;test code
;test code

; for real

exit-routine:
POP MDL
POP MDH
POP R4
POP R3
POP R2
POP Rl
POP RO
RET

atod.function ENDP

atodhandlers ENDS

END

tmrs242.asm
$SEGMENTED
$EXTEND

$EXTSFR

$EXTMEM
$EXTINSTR

$NOMOD166

$STDNAMES(regl67b.def)

$SYMBOLS

NAME timer-functions

ASSUME DPP3:SYSTEM

RBANK1 COMREG RO-R15

GLOBAL atodtimer_initialize

atod~timer SECTION CODE

atod~timer_initialize PROC FAR

MOV T3CON, #0004h

MOV T3IC, #002Bh
MOV T3, #0000h
BSET T3IE

BSET T3R
RET

These are assembler controls

Assembler controls end here

; setup Core Timer T3

; Make the value in the counter equal to zero

; enable the timer interrupt
; start the timer

atodtimerinitialize ENDP

atodjinterrupt PROC TASK INTNO=023h

ORG 08Ch
CALL atodtimerhandler
RETI

atodinterrupt ENDP

atodctimer-handler PROC FAR

BCLR T3R
BSET ADST

RET

atod-timer-handler ENDP

atod~timer ENDS

END

stop the timer

start an A/D conversion

linker.lnv
LOCATE
main. 1no
{GENERAL)

IRAMSIZE (2048)

RESERVE MEMORY(OF200h TO OF5FFh)

MEMORY(ROM (0000h to OEFFFh),

RAM (040000h to 4EFFFh), IRAM(OF000h))

CLASSES('RAM' (040000h to 04FFFFh)
SYMBOLS LISTSYMBOLS

TO main.out

** @(#)regl67b.def 1.10 12/18/97

;** Register definitions for the SAB C167

** This file contains all SFR names and BIT names

;** This file can be supplied to rm166 and a166 (STDNAMES control)
**

TRUE DEFB OFF20h.0, RW

NODE142 DEFB OFF20h.1, RW

C1CSR
INTID
C1BTR
C1GMS

C1UGML
C1LGML
C1UMLM
ClLMLM
MCRM1
MCRM2
MCR-M3
MCRM4
MCRM5
MCRM6
MCRM7
MCRM8
MCRM9
MCRMA
MCRMB
MCRMC
MCRMD
MCR_ME

MCRMF

MCD_Ml
MCDM2
MCDM3
MCDM4

MCDM5
MCDM6
MCDM7
MCDM8

MCDM9
MCDMA
MCDMB
MCDMC
MCDMD
MCDME
DATAM1
DATAM2
DATAM3
DATAM4
DATAM5
DATAM6
DATAM7

DATA-M8
DATAM9
DATAMA
DATA.MB
DATAMC

DATAMD

DATAME

DP8

DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA

DEFA

OEF00h
OEF02h
OEF04h
OEF06h
OEF08h
OEFOAh

OEFOCh

OEFOEh

OEF10h
OEF20h

OEF30h

OEF40h
OEF50h

OEF60h

OEF70h

OEF80h

OEF90h

OEFAOh

OEFBOh
OEFCOh

OEFDOh

OEFEOh

OEFFOh

OEF16h

OEF26h

OEF36h

OEF46h
OEF56h

OEF66h

OEF76h

OEF86h

OEF96h

OEFA6h
OEFB6h

OEFC6h

OEFD6h

OEFE6h

OEF18h

OEF28h

OEF38h

OEF48h

OEF58h

OEF68h

OEF78h

OEF88h

OEF98h

OEFA8h
OEFB8h

OEFC8h
OEFD8h

OEFE8h

DEFR OFFD6h

reg167b.def
P8

DP7
P7
DP6
P6
DP4
P4

DP3
P3
DP2
P2

SSCCON
SOCON
WDTCON

TFR
P5
ADCON
TlIC
TOIC
ADEIC
ADCIC
CC15IC
CC14IC
CC13IC

CC12IC
CC11IC

CC10IC

CC9IC
CC8IC
CC7IC

CC6IC

CC5IC

CC4IC

CC3IC
CC2IC

CC1IC

CCOIC
SSCEIC
SSCRIC

SSCTIC
SOEIC
SORIC
SOTIC
CRIC

T6IC

T5IC
T4IC
T3IC

T2IC
CCM3
CCM2
CCM1
CCMO

T01CON
T6CON
T5CON

T4CON

T3CON

T2CON

PWMCON1

PWMCONO
CCM7

CCM6

CCM5
CCM4

DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR

OFFD4h
OFFD2h

OFFDOh
OFFCEh

OFFCCh
OFFCAh

OFFC8h
OFFC6h

OFFC4h
OFFC2h

OFFCOh

OFFB2h

OFFBOh

OFFAEh

OFFACh

OFFA2h

OFFAOh

OFF9Eh
OFF9Ch
OFF9Ah

OFF98h

OFF96h

OFF94h

OFF92h

OFF90h

OFF8Eh

OFF8Ch

OFF8Ah

OFF88h

OFF86h

OFF84h

OFF82h

OFF80h

OFF7Eh

OFF7Ch

OFF7Ah

OFF78h

OFF76h

OFF74h

OFF72h

OFF70h

OFF6Eh

OFF6Ch

OFF6Ah

OFF68h

OFF66h
OFF64h
OFF62h

OFF60h

OFF58h

OFF56h

OFF54h
OFF52h

OFF50h

OFF48h
OFF46h

OFF44h

OFF42h

OFF40h

OFF32h

OFF30h

OFF28h

OFF26h

OFF24h

OFF22h

sm regl167b.def
T78CON DEFR OFF2Oh CC16 DEFR OFE6Oh

PlH DEFR OFFQ6h TlREL DEFR OFE56h

PiL DEFR OFF04h TOREL DEFR OFE54h

POH DEFR OFFO2h Ti DEFR OFE52h

POL DEFR OFFOOh TO DEFR OFE5Oh

PECC7 DEFR OFECEh CAPREL DEFR OFE4Ah

PECC6 DEFR OFECCh T6 DEFR OFE48h

PECC5 DEFR OFECAh T5 DEFR OFE46h

PECC4 DEFR QFEC8h T4 DEFR OFE44h

PECC3 DEFR OFEC6h T3 DEFR OFE42h

PECC2 DEFR OFEC4h T2 DEFR OFE4Oh

PECC1 DEFR OFEC2h PW3 DEFR OFE36h

PECCO DEFR OFECOh PW2 DEFR OFE34h

SRCPO DEFA OFCEOh PWi DEFR OFE32h

DSTPO DEFA OFCE2h PWO DEFR OFE3Oh

SRCP1 DEFA OFCE4h

DSTP1 DEFA OFCE6h Extended sfr area

SRCP2 DEFA OFCE8h

DSTP2 DEFA OFCEAh ODP8 DEFR OFlD6h

SRCP3 DEFA OFCECh ODP7 DEFR OF1D2h

DSTP3 DEFA OFCEEh ODP6 DEFR OFiCEh

SRCP4 DEFA OFCFOh ODP3 DEFR OF1C6h

DSTP4 DEFA OFCF2h PICON DEFR OFiC4h

SRCP5 DEFA OFCF4h ODP2 DEFR OFiC2h

DSTP5 DEFA OFCF6h EXICON DEFR 0F2.COh

SRCP6 DEFA OFCF8h SOTBIC DEFR OF19Ch

DSTP6 DEFA OFCFAh XP31C DEFR OFi9Eh

SRCP7 DEFA OFCFCh XP21C DEFR OF196h

DSTP7 DEFA OFCFEh XP1IC DEFR OF18Eh

SOBG DEFR OFEB4h XPOIC DEFR OF186h

SORBUF DEFR OFEB2h, r PWMIC DEFR OFi7Eh

SOTBUF DEFR OFEBOh, w T81C DEFR OF17Ch

WDT DEFR OFEAEh, r T71C DEFR OF17Ah

ADDAT DEFR OFEAOh CC31IC DEFR OF194h

CC15 DEFR OFE9Eh CC30IC DEFR OF18Ch

CC14 DEFR OFE9Ch CC291C DEFR OF184h

CC13 DEFR OFE9Ah CC281C DEFR OF178h

CC12 DEFR OFE98h CC271C DEFR OFi76h

Ccii DEFR OFE96h CC261C DEFR OFi74h

CCio DEFR OFE94h CC251C DEFR OF172h

CC9 DEFR OFE92h CC241C DEFR OFi7Oh

CC8 DEFR OFE9Oh CC231C DEFR OF16Eh

CC7 DEFR OFE8Eh CC221C DEFR OFi6Ch

CC6 DEFR OFE8Ch CC21IC DEFR OF16Ah

CC5 DEFR OFE8Ah CC20IC DEFR OF168h

CC4 DEFR OFE88h cciC DEFR OFl6h

CC3 DEFR OFE86h CC181C DEFR OF164h

CC2 DEFR OFE84h CC171C DEFR OF162h

CCl DEFR OFE82h CC161C DEFR OFi6Oh

CCO DEFR OFE8Oh RPOH DEFR OFlO8h

CC31 DEFR OFE7Eh DPiH DEFR OFlO6h

CC30 DEFR OFE7Ch DPiL DEFR OFlO4h

CC29 DEFR OFE7Ah DPOH DEFR OFiO2h

CC28 DEFR OFE78h DPOL DEFR OFlO0h

CC27 DEFR OFE76h SSCBR DEFR OFOB4h

CC26 DEFR OFE74h SSCRB DEFR OFOB2h

CC25 DEFR OFE72h SSCTB DEFR OFOBOh

CC24 DEFR OFE7Oh ADDAT2 DEFR OFOAOh

CC23 DEFR OFE6Eh T8REL DEFR OFO56h

CC22 DEFR OFE6Ch T7REL DEFR OFO54h

CC21 DEFR OFE6Ah T8 DEFR OFO52h

CC20 DEFR OFE68h T7 DEFR OFO5Oh

CC19 DEFR OFE66h PP3 DEFR OFO3Eh

CC18 DEFR OFE64h PP2 DEFR OFO3Ch

CC17 DEFR OFE62h PPi DEFR OFO3Ah

regl167b.def

PP0 DEFR OFO38h 13DF P53

PT3 DEFR OFO36h
AN13 DEFB P5.14

PT2 DEFR 0FO34h
AN14 DEFB P5.15

PT1 DEFR 0FO32h
AN15D LITB P5.15

PTO DEFR OFO3Oh
T5EUD LIT 'ANil'
T6IND LIT 'AN12'

Bit names
T61N LIT 'AN13'

CCOI0 DEFB P2.0
T51ND LIT 'AN14'

CC110 DEFB P2.1
T2EUD LIT 'ANiS'

CC210 DEFB P2.2
TEDLT 'N5

CC310 DEFB P2.3PUTDEB
7.

CC410 DEFB P2.4
POUTi DEFB P7.1

CC510 DEFB P2.5
P0UT2 DEFB P7.2

CC61O DEFB P2.6
P0UT3 DEFB P7.3

CC710 DEFB P2.7
CC2810 DEFB P7.4

CC810 DEFB P2.8
CC28I0 DEFB P7.5

Cc910 DEFB P2.9
CC2910 DEFB P7.6

CC1010 DEFB P2.10
CC30IO DEFB P7.7

CC11io DEFB P2.11
C3I EB P.

CC121O DEFB P2.12 C11 EB P.

CC1310 DEFB P2.13
CC1610 DEFB P8.1

CC1410 DEFB P2.14
CC1710 DEFB P8.2

CC1510 DEFB P2.15
CC1810 DEFB P8.3

EXOIN LIT 'CCOIO'
CC29oI DEFB P8.4

MXIN LIT 'CC1IO'
CC20IO DEFB P8.5

MXIN LIT 'CC210'
CC21I DEFB P8.6

EX31N LIT 'CC31O'
CC2210 DEFB P8.7

TOIN DEFB P3.0

T60UT DEFB P3.1TODEB
T1N.

CAPIN DEFB P3.2
TOM DEFB TO1CON.3

T30UT DEFB P3.3
TOM DEFB T0lCONil

T3EUD DEFB P3.4
TiR DEFB TO1CON.14

T21N DEFB P3.7
T7M DEFB T78CON.34

T31N DEFB P3.6
T7R DEFB T78CON.6

T41N DEFB P3.5
T8M DEFB T78CON.11

SSDI DEFB P3.8
T8R DEFB T78CON.14

SSD0 DEFB P3.9
TRDF 7CN1

TXDO DEFB P3.10 AC EB CM.

RXDO DEFB P3.11
ACCi DEFB CCMO.7

SSCLK DEFB P3.13
ACC2 DEFB CCMO.11

CLKOUT DEFB P3.15
ACC3 DEFB CCMO.15

A16 DEFB P4.0 AC EB CM.

A17 DEFB P4.1
ACC4 DEFB CCM1.7

A18 DEFB P4.2
ACC6 DEFB CCM1.11

A19 DEFB P4.3
ACC7 DEFB CCM1.15

A20 DEFB P4.4
C7DF CM1 5

A21 DEFB P4.5 AC EB CM.

A22 DEFB P4.6
ACC9 DEFB CCM2.7

A23 DEFB P4.7
ACC1O DEFB CCM2.11

ACC10 DEFB CCM2.15

ANO DEFB P5.0
AC1DF C21

ANI DEFB P5.1AC1DEB
C33

AN2 DEFB P5.2
ACC12 DEFB CCM3.7

AN3 DEFB P5.3
ACC13 DEFB CCM3.11

AN4 DEFB P5.4
ACC14 DEFB CCM3.15

AN5 DEFB P5.5
AC5DF C31

AN6 DEFB P5.6AC1DEB
C43

AN7 DEFB P5.7
ACC16 DEFB CCM4.7

AN8 DEFB P5.8
ACC17 DEFB CCM4.11

AN9 DEFB P5.9
ACC18 DEFB CCM4.15

AN11 DEFB P5.10

AN12 DEFB P5.11
ACC20 DEFB CCM5.3

AN1 DFB P512ACC21 DEFB CCM5.7

reg167b.def
SSCRIE
SSCRIR

SSCEIE

SSCEIR
SSCTE
SSCRE
SSCPE
SSCBE

ACC22
ACC23

ACC24
ACC25
ACC26
ACC27

ACC28
ACC29
ACC30
ACC31

T2R
T2UD

T2UDE

T3R
T3UD
T3UDE
T30E

T30TL

T4R
T4UD
T4UDE

T5R
T5UD
T5UDE
T5CLR
T5SC

T6R
T6UD
T6UDE
T60E

T60TL

T6SR

DEFB T4CON.6

DEFB T4CON.7
DEFB T4CON.8

DEFB CRIC.6
DEFB CRIC.7

DEFB SSCTIC.6
DEFB SSCTIC.7

DEFB CCM5.11

DEFB CCM5.15

DEFB CCM6.3

DEFB CCM6.7

DEFB CCM6.11

DEFB CCM6.15

DEFB CCM7.3

DEFB CCM7.7

DEFB CCM7.11

DEFB CCM7.15

DEFB T2CON.6

DEFB T2CON.7

DEFB T2CON.8

DEFB
DEFB
DEFB
DEFB
DEFB

T3CON.6

T3CON.7

T3CON. 8
T3CON.9

T3CON. 10

DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

T5CON. 6
T5CON. 7
T5CON. 8
T5CON. 14
T5CON. 15

T6CON. 6
T6CON.7
T6CON.8

T6CON.9
T6CON. 10
T6CON. 15

T2IC. 6

T2IC.7

T3IC.6

T3IC.7

T4IC.6

T4IC.7

T5IC.6

T5IC.7

T6IC.6
T6IC.7

T2IE

T2IR

T3IE

T3IR

T4IE
T4IR
T5IE

T5IR

T6IE

T6IR

CRIE
CRIR

CCOIE
CCOIR
CC1IE
CC1IR
CC2IE

CC2IR
CC3IE

CC3IR
CC4IE

CC4IR
CC5IE

CC5IR
CC6IE
CC6IR
CC7IE
CC7IR

CC8IE
CC8IR

CC9IE

CC9IR

CC10IE
CC10IR
CC11IE
CC11IR
CC12IE
CC12IR

CC13IE
CC13IR
CC14IE

CC14IR

CC15IE
CC15IR
CC16IE
CC16IR
CC17IE
CC17IR
CC18IE
CC18IR
CC19IE
CC19IR
CC20IE
CC20IR
CC21IE
CC21IR
CC22IE
CC22IR

CC23IE
CC23IR
CC24IE

CC24IR
CC25IE

CC25IR

CC26IE
CC26IR
CC27IE

DEFB
DEFB
DEFB
DEFB
LIT
LIT
LIT
LIT

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

SSCRIC.6
SSCRIC.7

SSCEIC.6
SSCEIC.7

'SSCTEN'

'SSCREN'

'SSCPEN'

'SSCBEN'

CCOIC.6

CCOIC.7
CC1IC. 6
CC1IC. 7
CC2IC. 6
CC2IC.7

CC3IC. 6
CC3IC.7
CC4IC.6
CC4IC.7
CC5IC.6

CC5IC.7
CC6IC. 6

CC6IC.7
CC7IC. 6
CC7 IC. 7
CC8IC.6

CC8IC.7
CC9IC. 6

CC9IC.7
CC10IC.6
CC10IC .7
CC11IC.6
CC11IC.7
CC12IC. 6
CC12IC.7

CC13IC. 6
CC13IC.7

CC14IC.6

CC14IC.7

CC15IC.6

CC15IC .7

CC16IC. 6
CC16IC.7
CC17IC.6

CC17IC.7

CC18IC.6
CC18IC.7

CC19IC.6
CC19IC.7
CC20IC.6
CC20IC.7
CC21IC .6
CC21IC.7
CC22IC.6
CC22IC.7
CC23IC.6

CC23IC.7
CC24IC.6
CC24IC.7

CC25IC.6

CC25IC.7
CC26IC.6

CC26IC.7
CC27IC.6

SOTIE
SOTIR
SORIE
SORIR
SOEIE
SOEIR
SOTBIE

SOTBIR

SSCTIE
SSCTIR

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

SOTIC. 6
SOTIC.7
SORIC. 6
SORIC.7
SOEIC. 6
SOEIC.7
SOTBIC.6

SOTBIC.7

regi67b.def
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

CC27IC.7
CC28IC.6
CC28IC.7

CC29IC.6
CC29IC.7

CC30IC.6
CC30IC.7

CC31IC. 6
CC31IC .7

CC27IR

CC28IE
CC28IR

CC29IE
CC29IR

CC30IE
CC30IR

CC31IE
CC31IR

ADC IE
ADCIR
ADEIE
ADEIR

TOIE
TOIR

TIE
TiIR
T7IE
T7IR

T8IE
T8IR

ADST
ADBSY
ADWR
ADCIN
ADCRQ

ILLBUS
ILLINA
ILLOPA

PRTFLT
UNDOPC

STKUF
STKOF
NMI

WDTIN
WDTR

SOSTP
SOREN
SOPEN

SOFEN
SOOEN

SOPE
SOFE
SOOE
SOODD

SOBRS
SOLB
SOR

SSCHB
SSCPH
SSCPO

SSCTEN

SSCREN

SSCPEN

SSCBEN

SSCBSY

SSCMS
SSCEN

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

TOIC.6
TOIC.7

TiIC.6

TiIC.7
T7IC.6

T7IC.7
T8IC. 6

T8IC.7

ADCON. 7
ADCON. 8
ADCON. 9

ADCON. 10

ADCON. 11

TFR. 0
TFR. 1
TFR. 2
TFR. 3
TFR. 7
TFR.13
TFR. 14
TFR. 15

DEFB WDTCON.0

DEFB WDTCON.1

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

SOCON.3
SOCON. 4

SOCON. 5
SOCON. 6
SOCON.7
SOCON.8
SOCON. 9
SOCON.10
SOCON.12
SOCON.13
SOCON. 14

SOCON. 15

SSCCON.4

SSCCON.5

SSCCON.6

SSCCON.8

SSCCON.9

SSCCON.10

SSCCON.11

SSCCON.12

SSCCON.14

SSCCON.15

DEFB ADCIC.6

DEFB ADCIC.7

DEFB ADEIC.6

DEFB ADEIC.7

PTRO
PTR1
PTR2
PTR3
PTIO
PTI1
PTI2
PTI3
PIEO
PIE1
PIE2
PIE3
PIRO
PIR1
PIR2
PIR3

PENO
PEN1
PEN2
PEN3
PMO
PM1
PM2
PM3
PBO1
PS2
PS3

PWMIE
PWMIR

XP3IE
XP3IR
XP2IE

XP2IR
XP1IE

XP1IR

XPOIE
XPOIR

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFE
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

PWMCONO.0

PWMCONO.1
PWMCONO.2
PWMCONO.3

PWMCONO.4

PWMCONO.5
PWMCONO.6

PWMCONO.7

PWMCONO . 8

PWMCONO . 9

PWMCONO .10
PWMCONO .11

PWMCONO.12

PWMCONO . 13

PWMCONO.14
PWMCONO.15

PWMCON1.0
PWMCON1.1
PWMCON1.2

PWMCON1.3

PWMCON1.4
PWMCON1.5

PWMCON1 . 6

PWMCON1 . 7

PWMCON1.12
PWMCON1.14
PWMCON1.15

PWMIC.6
PWMIC.7

XP3IC.6

XP3IC.7
XP2IC.6
XP2IC.7

XP1IC.6
XP1IC.7

XPOIC.6
XPOIC.7

Breadboard Code

B.7 42V Bus CAN Node 3

On the next page starts the code for the 42V bus CAN node 3. The files for the node are as

follows.

1. comp342.bat

2. main342.asm

3. cnmod342.asm

4. canmo342.asm

5. cnint342.asm

6. atod342.asm

7. tmrs342.asm

8. linker.lnv

9. Reg167b.def

- 62 -

Chapter B

||Hilw | comp342.bat
a166 main342.asm
a166 cnmod342.asm
a166 canmo342.asm
a166 cnint342.asm
a166 atod342.asm
a166 tmrs342.asm
1166 LINK main342.obj cnmod342.obj caruno342.obj cnint342.obj atod342.obj tmrs342.obj TO

locatein. no
1166 @linker.lnv
ihexl66 -il6 locate.out -o main.hex

main342.asm
$SEGMENTED

$EXTEND

$EXTSFR

$EXTSSK

$EXTMEM

$NOMOD166
$STDNAMES(regl67b.def)
$SYMBOLS

NAME main
RBANK1 COMREG RO-R15

SSKDEF 4

ASSUME DPP3:SYSTEM

EXTERN canin:FAR

EXTERN atodinitialize:FAR

EXTERN atod-timer-initialize:FAR

CAN USE ALL internal RAM for Stack

define a common register area of 16 register

default stack size of 256 Words

Can function
; external atod initialization

mainseg SECTION CODE

main PROC FAR

start: DISWDT
BSET IEN

disable the watchdog timer
Globally Enable Interrupts both global

Initialize the External Memory BUS
MOV SYSCON, #OE084h
MOV ADDRSEL1, #0404h
MOV BUSCONO, #004AFh
MOV BUSCON1, #004AFh
EINIT ; end initialization

End of external memory bus initialization

Initialize the Data Page pointers for this section
MOV DPP3, #03h ; make DPP3 point to system

End of Data Page Pointer Initialization

Make the direction of Port 2 to output
MOV DP2, ONES

Make sure Port 2 is in push/pull mode
MOV ODP2, ONES

Initialize The Stack
The Stack pointers are all word pointers so even though the
highest byte in the stack is located at #OFBFFh the highest

byte that the stack pointers can point to is #OFBFEh

MOV STKUN, #OFBFEh; Set Stack Underflow Pointer

MOV STKOV, #OF800h; Set STack Overflow Pointer

MOV SP, #OFBFEh ; Set the Stack Pointer

End of Stack Initialization

Initialize the Analog to Digital Converter
CALL atodinitialize; atod

End of A/D initialization

Initialize A/D timer
CALL atodtimer_initialize; timers

End of A/D timer initialization

Initialize CAN Bus
CALL canin ; Call the CAN initialization function

End of CAN Bus Initialization

meto:

main ENDP

mainseg ENDS

NOP
NOP
JMP meto
RET

startupsec SECTION CODE

sysreset PROC TASK INTNO=OH

ORG OOH
JMP start
RETI

sysreset ENDP
startupsec ENDS
END

; just loop here waiting

; return

; codesegment that contains reset int pointer
; reset interrupt number is zero at Oh

forces next instruction to be located at Oh

installs a pointer to the startup routine
return from interrupt

cnmod342.asm
$SEGMENTED

$EXTEND

$EXTSFR

$EXTMEM
$NOMOD166
$STDNAMES(regl67b.def)
$SYMBOLS

NAME canmod

RBANK1 COMREG RO-R15

GLOBAL canin

EXTERN canmocfg:FAR configures specific Message objects

ASSUME DPP3:SYSTEM

canfunc SECTION CODE codesegment that contains reset int poin

canin PROC FAR

PUSH RO
PUSH R1

;; set all of the CAN control registers
AND C1CSR, ZEROS set control register to zero

MOV Rl, #0043h ; Set IE and INIT bits
OR ClCSR,Rl ; set control register to Rl's value

AND C1BTR, ZEROS ; set Bit timing register to zero

MOV R1, #03447h ; set for 125k operation

OR C1BTR, Rl ; set Bit timing register parameters

AND C1GMS, ZEROS ; set Global Mask short register to zero

MOV Rl, #OFFFFh ; EOFF is what DAVE initialize

OR C1GMS, R1 ; set GMS

AND C1UGML, ZEROS set Upper global mask long to zero

MOV Rl, #OFFFFh
OR C1UGML, Rl

MOV R1, #OF8FFh
AND C1LGML, ZEROS

OR C1LGML, R1 lower global mask

AND C1UMLM, ZEROS

OR C1UMLM, R1 upper mask of last register

AND C1LMLM, ZEROS

OR C1LMLM, Rl lower mask of last register

CALL setall sets all of the CAN registers to off

CALL canmocfg Configures specific Message Objects

;; Setup CAN interrupt and Initialize CAN module

EXTR #4

AND XPOIC, ZEROS ; configure CAN interrupt control Register

AND RO,ZEROS
OR RO,#0073h enable interrupt, level is 10 group is 2

OR XPOIC,RO ; Configure CAN interrupt Control Register

AND Rl, ZEROS

OR Ri, #00041h ; crashes if I clear the CPU access to the BTR

XOR C1CSR, Rl ; end initialize CAN interrupt

POP R1
POP RO

ter

RET
canin ENDP

setall PROC FAR This Procedure sets all of the Mess objs invalid

by using a counter it counts up to 15 and initializes all of the message

objects along the way.
PUSH R2

PUSH R4

PUSH R5

AND R5,ZEROS
OR R5, #01h Set counter to 1 for first MO

AND R2,ZEROS

OR R2,#OEF10h Set pointer to MOl
AND R4, ZEROS

OR R4, #5555h Set R4 to make MObs invalid

nextreg:MOV [R2],R4 make all message objects invalid

ADD R2,#10h

CMPI1 R5,#OFh
JMPA CCNZ,nextreg
POP R5
POP R4

POP R2
RET

setall ENDP

canfunc ENDS

END

define a common register area of 16 registers
The function must be declared Global at the
beginning of the module

canmo342.asm
$SEGMENTED

$EXTEND
$EXTSFR
$EXTMEM
$NOMOD166
$STDNAMES(regl67b.def)

$SYMBOLS

NAME canmo
RBANK1 COMREG RO-R15 declare bank of 16 global registers

GLOBAL canmocfg

canmodule SECTION CODE

ASSUME DPP3:SYSTEM

canmocfg PROC FAR
PUSH R1

PUSH R2

PUSH R3

Now set specific CAN control Registers

initialize message object 1
initializing this object to be invalid does or removing the code until
the comment "Setup CAN interrupt and Initialize does
nothing to prevent the occurrance of the interrupt for the CAN system

MOV R2, #MCR_M1 ; start of Message Object 1

AND Rl, ZEROS

OR Rl, #5599h ; Generate a Receive Interrupt if this message object ac

tivates
MOV [R2],Rl set MO1's Control register

ADD R2,#2h

AND R3, ZEROS
OR R3, #00004h
MOV [R21,R3
ADD R2, #2h

MOV [R2], ZEROS
AND R1, ZEROS

OR Rl, #0030h
MOV MCDMl,R1

MOV DATAMl, ZEROS

;; Initialize Message
MOV R2, #MCR_M2

AND Ri, ZEROS

OR Ri, #5599h

MOV [R2],R1 set
ADD R2,#2h

AND R3, ZEROS

OR R3, #04004h
MOV [R2],R3

ADD R2, #2h

MOV [R2], ZEROS

AND Ri, ZEROS

OR Ri, #0030h
MOV MCDM2,R1

ta
MOV DATAM2, ZEROS

;; Initialize Message
MOV R2, #MCR-M3

AND Ri, ZEROS
OR Ri, #5595h

tivates

point to Upper Arbitration register

set R3 to
message id for message object 1

message id = #0003h
Point to the Lower Arbitration Register
standard Message object so lowerarb = Oh

put OAAh into first data byte and set to
Databyte(O) = 0 and Set to receive and 3
fill the Data of the MO with Zeros

receive
bytes of data

Object 2
start of Message Object 2

RECEIVE INTERRUPT enabled

M02's Control register
point to Upper Arbitration register

; set R6 to zero
The number is the Message ID for Message Object 2
message id = 0
Point to the Lower Arbitration Register
standard Message object so lowerarb = Oh

put 000h into first data byte and set to receive
; Databyte(O) = 0 and Set to receive and 3 bytes of da

Fill the Data of the MO with Zeros

Object 3
start of Message Object 3

Generate a receive interrupt if this message object ac

f data

f data

f data

f data

MOV [R2],R1

ADD R2,#2h
AND R3, ZEROS

OR R3, #02004h
MOV [R2),R3

ADD R2, #2h

MOV [R2], ZEROS
AND Rl, ZEROS

OR Ri, #0038h
MOV MCDM3,R1

MOV DATAM3, ZER

;; Initialize Me

MOV R2, #MCRM4

AND Rl, ZEROS
OR Ri, #5595h

MOV [R2],R1
ADD R2,#2h
AND R3, ZEROS

OR R3, #06004h
MOV [R2],R3
ADD R2, #2h

MOV [R2], ZEROS
AND Ri, ZEROS

OR Rl, #0038h
MOV MCDM4,R1

MOV DATAM4, ZER

;; Initialize Me

MOV R2, #MCRM5

AND R1, ZEROS

OR Rl, #5595h

MOV [R2],Rl
ADD R2,#2h

AND R3, ZEROS
OR R3, #00020h
MOV [R2],R3

ADD R2, #2h

MOV [R2], ZEROS
AND Rl, ZEROS

OR Ri, #0038h
MOV MCDM5,R.1

MOV DATAM5, ZER

;; Initialize Me
MOV R2, #MCRM6

AND Rl, ZEROS

OR Rl, #5595h

MOV [R2],Rl
ADD R2,#2h

AND R3, ZEROS

OR R3, #0OlAh
MOV (R2],R3

ADD R2, #2h

MOV [R2], ZEROS

AND Rl, ZEROS

OR Ri, #0038h
MOV MCDM6,R1

set M03's Control register
point to Upper Arbitration register

; set R6 to zero

The number is the Message ID for Message Object 3

message id = 0
Point to the Lower Arbitration Register

standard Message object so lowerarb = Oh

put 000h into first data byte and set to receive

; Databyte(O) = 0 and Set to receive and 3 bytes o

OS Fill the Data of the MO with Zeros

ssage Object 4

start of Message Object 4

set MD4's Control register
point to Upper Arbitration register

; set R6 to zero
The number is the Message ID for Message Object 4

message id = 0
Point to the Lower Arbitration Register
standard Message object so lowerarb = Oh

put OAAh into first data byte and set to receive

; Databyte(D) = 0 and Set to receive and 3 bytes o

OS fill the data of the MO with ZEROS

ssage Object 5
start of Message Object 5

set M04's Control register
point to Upper Arbitration register

; set R6 to zero
The number is the Message ID for Message Object 5

message id = 0
Point to the Lower Arbitration Register

standard Message object so lowerarb = Oh

put OAAh into first data byte and set to receive

; Databyte(O) = 0 and Set to receive and 3 bytes o

OS fill the data of the MO with ZEROS

ssage Object 6
start of Message Object 6

set M04's Control register

point to Upper Arbitration register

; set R6 to zero

The number is the Message ID for Message Object 6
message id = 0
Point to the Lower Arbitration Register

standard Message object so lowerarb = Oh

put OAAh into first data byte and set to receive

; Databyte(O) = 0 and Set to receive and 3 bytes o

canmo342.asm
MOV DATAM6, ZEROS

POP R3

POP R2

POP R1

RET

canmocfg ENDP
canr_module ENDS
END

; fill the data of the MO with ZEROS

cnint342.asm

$SEGMENTED
$EXTEND

$EXTSFR
$EXTMEM

$NOMOD166

$STDNAMES(reg167b.def)

$SYMBOLS

NAME canint

RBANK1 COMREG RO-R15

ASSUME DPP3:SYSTEM

caninterrupts SECTION CODE

canreceive-interrupt PROC TASK INTNO=040h

ORG 0100h
CALL canreceive_interrupthandler

RETI

can-receive-interrupt ENDP

can-receive-interrupt-handler PROC FAR

PUSH RO

PUSH R1

PUSH R2

MOVB RLO, INTID ; Read the CAN interrupt ID buffer

CMPB RLO, #03h ; See if the interrupt came from M01

JMP ccZ, message-one_interrupt; if interrupt from M01 handle

MOV R1, #05555h

MOV R2, #05599h

MOV MCRM2, R1

MOV RO, DATAM2

MOV MCRM2, R2

Now setup M5 so it can respond to queries about
the state of the switch

MOV R2,MCRM6

MOV MCRM6, RI

MOV DATAM6, RO

MOV MCRM6, R2

CMP RO, #01h

JMP ccNZ, turnoff-heatedrear-window

BSET P2.1

JMP exit-function

turn.offheatedrearwindow:
CMP RO, #0800h
JMP ccNZ, exit_function

BCLR P2.1

JMP exit-function

message-one-interrupt:
MOV Ri, #05555h

MOV R2, #05599h

MOV MCRM1, R1

MOV RO, DATAM

MOV MCRM1, R2
Now setup M5 so it can respond to queries about

the state of the switch

MOV R2, MCRM5

MOV MCRM5, RI

MOV DATAM5, RO

MOV MCRM5, R2

CMP RO, #01h

JMP ccNZ, turn heater-off

BSET P2.0

JMP exit-function

turnheateroff:
CMP RO, #0800h

JMP cc_.NZ, exit_function

BCLR P2.0

exit-function:
MOV R2, #OEFFFh

AND ClCSR, R2

POP R2
POP R1
POP RO

RET

can-receive-interrupthandler ENDP

can_interrupts ENDS

END

; declare bank of 16 global registers

atod342.asm

; CAN USE ALL internal RAM for Stack

name atod

ASSUME DPP3:SYSTEM
RBANK1 COMREG RO-R15

GLOBAL atod_initialize

This A/D is set up to measure the current in two different
loads. Because this software is to be used as part of
42volt bus node 1, it uses the names of the loads that
that node is supposed to control.
The analog to digital converter uses Port 5

atod-setup SECTION CODE

atodinitialize PROC FAR
Initialize variables

This below line of code setups up the A/D converter
for 2 channels and single conversion.
It is also set for "Wait for read mode"
so the converter will wait for the user program to read
the buffer before processing the next channel.

MOV ADCON, #OA221h ; setup A/D control register

Set the channel to which the data should be written
when the first "A/D is done" interrupt occurs

The below code sets up the A/D's Interrupt control register
The A/D is setup to have a group of 2 and a level of 10

MOV ADCIC, #006Fh
RET

atod.initialize ENDP
atod~setup ENDS

atodhandlers SECTION CODE
atod-handler PROC TASK INTNO=028h

ORG OAOH
CALL atod_function
RETI

atodhandler ENDP

atod function PROC FAR
this function works by seeing if the converter is converting
for the heater Imeasurement. If the bit is set, then

the bit gets cleared and the IP jumps to where the

value in the converter is moved into the heatercurrent

variable.
otherwise the bit gets set and the value is moved into

the heatedrear_windowcurrent variable
PUSH RO
PUSH Rl
PUSH R2

PUSH R3
PUSH R4

PUSH MDH

PUSH MDL

$SEGMENTED

$EXTEND

$EXTSFR
$EXTSSK
$EXTMEM

$NOMOD166
$STDNAMES(regl67b.def)
$SYMBOLS

R2, ADDAT

RO, R2
is coming
R3, R2
R3, #03FFh

R4, #01h
RO, #OFODOh
RO, #01000h

This is so we can isolate the A/D channel from whi

This is so we can isolate the A/D data

This isolates the A/D data

No scaling on microcontroller
The channel information is located in the upper nibble

See if the information is coming from Channel 1 of the A/

JMP ccZ, HeatedWindshieldcurrent

MOV RO, #05555h ; This bit pattern deactives MCRs
MOV R1, MCRM3 ; SAVE the Configuration of the MCR

MOV MCRM3, RO Kill the Message Control Register

MUL R3, R4

NOP

MOV DATA M3, MDL for real

MOV P2, R2 for testing purposes

MOV MCRM3, Rl

BSET T3R
JMP exit routine

HeatedWindshield-current:

MOV
MOV

MOV

MOV
ADD

RO, #05555h
Rl, MCRM4

MCRM4, RO

RO, #04h ;test
P2, RO

MUL R3, R4

NOP
MOV DATAM4, MDL

MOV MCRM4, RI

This bit
SAVE the

Kill the
code

pattern deactives MCRs
Configuration of the MCR
Message Control Register

;test code

; for testing purposes

exit-routine:
POP MDL
POP MDH
POP R4
POP R3
POP R2
POP R1
POP RO
RET

atodjfunction ENDP

atod-handlers ENDS

END

MOV
MOV

ch the data
MOV
AND
MOV
AND
CMP

D

tmrs342.asm

$SEGMENTED
$EXTEND

$EXTSFR
$EXTMEM
$EXTINSTR
$NOMOD166
$STDNAMES(regl67b.def)
$SYMBOLS

NAME timer-functions
ASSUME DPP3:SYSTEM

RBANK1 COMREG RO-R15

GLOBAL atod timer-initialize

atod-timer SECTION CODE

atodtimerinitialize PROC FAR
MOV T3CON, #0004h ;s

MOV T3IC, #002Bh
MOV T3, #0000h M
BSET T3IE e

BSET T3R ;S
RET

atodtimerinitialize ENDP

atodinterrupt PROC TASK INTNO=023h
ORG 08Ch
CALL atodtimer-handler

RETI

atodinterrupt ENDP

atod-timer handler PROC FAR
BCLR T3R

BSET ADST

RET

atod-timerhandler ENDP
atodtimer ENDS

END

These are assembler controls

Assembler controls end here

etup Core Timer T3

ake the value in the counter equal to zero

nable the timer interrupt
tart the timer

stop the timer
start an A/D conversion

linker.lnv
LOCATE

locatein. no
(GENERAL)

IRAMSIZE (2048)

RESERVE MEMORY(OF200h TO OF5FFh)

MEMORY(ROM (0000h to OEFFFh),

RAM (040000h to 4EFFFh), IRAM(OF000h))

CLASSES('RAM' (040000h to 04FFFFh)
SYMBOLS LISTSYMBOLS
TO locate.out

reg167b.def
************** **P8 DEFR OFFD4h

@(#)regl67b.def 1.10 12/18/97 DP7 DEFR OFFD2h
P7 DEFR OFFDOh

Register definitions for the SAB C167 DP6 DEFR OFFCEh

;** This file contains all SFR names and BIT names P6 DEFR OFFCCh
This file can be supplied to rm166 and a166 (STDNAMES control) DP4 DEFR OFFCAh

**P4 DEFR OFFC8h

TRUE DEFB OFF20h.0, RW DP3 DEFR OFFC6h

NODE142 DEFB OFF20h.1, RW P3 DEFR OFFC4h
DP2 DEFR OFFC2h

C1CSR DEFA OEFOOh P2 DEFR OFFCOh

INTID DEFA OEF02h SSCCON DEFR OFFB2h

C1BTR DEFA OEF04h SOCON DEFR OFFBOh

C1GMS DEFA QEF06h WDTCON DEFR OFFAEh

C1UGML DEFA OEF08h TFR DEFR OFFACh

C1LGML DEFA OEFOAh P5 DEFR OFFA2h

C1UMLM DEFA OEFOCh ADCON DEFR OFFAOh

C1LMLM DEFA OEFOEh TlIC DEFR OFF9Eh

MCRM1 DEFA OEF10h TOIC DEFR OFF9Ch

MCR_M2 DEFA OEF20h ADEIC DEFR OFF9Ah

MCRM3 DEFA OEF30h ADCIC DEFR OFF98h

MCR_M4 DEFA OEF40h CC15IC DEFR OFF96h

MCRM5 DEFA OEF50h CC14IC DEFR OFF94h

MCRM6 DEFA OEF60h CC13IC DEFR OFF92h

MCRM7 DEFA OEF70h CC12IC DEFR OFF90h

MCRM8 DEFA OEF80h CC11IC DEFR OFF8Eh

MCR-M9 DEFA OEF90h CC1OIC DEFR OFF8Ch

MCRMA DEFA OEFAOh CC9IC DEFR OFF8Ah

MCR.MB DEFA OEFBOh CC8IC DEFR OFF88h

MCR_MC DEFA OEFCOh CC7IC DEFR OFF86h

MCRMD DEFA OEFDOh CC6IC DEFR OFF84h

MCRME DEFA OEFEOh CC5IC DEFR OFF82h

MCR_MF DEFA QEFFOh CC4IC DEFR OFF80h

MCDM1 DEFA QEF16h CC3IC DEFR OFF7Eh

MCDM2 DEFA OEF26h CC2IC DEFR OFF7Ch

MCDM3 DEFA OEF36h CClIC DEFR OFF7Ah

MCD_M4 DEFA OEF46h CCOIC DEFR OFF78h

MCDM5 DEFA OEF56h SSCEIC DEFR OFF76h

MCDM6 DEFA OEF66h SSCRIC DEFR OFF74h

MCDM7 DEFA OEF76h SSCTIC DEFR OFF72h

MCDM8 DEFA OEF86h SOEIC DEFR OFF70h

MCDM9 DEFA OEF96h SORIC DEFR OFF6Eh

MCDMA DEFA OEFA6h SOTIC DEFR OFF6Ch

MCDMB DEFA OEFB6h CRIC DEFR OFF6Ah

MCDMC DEFA OEFC6h T6IC DEFR OFF68h

MCDMD DEFA OEFD6h T5IC DEFR OFF66h

MCDME DEFA OEFE6h T4IC DEFR OFF64h

DATAM1 DEFA OEF18h T3IC DEFR OFF62h

DATA.M2 DEFA OEF28h T2IC DEFR OFF60h

DATAM3 DEFA OEF38h CCM3 DEFR OFF58h

DATAM4 DEFA OEF48h CCM2 DEFR OFF56h

DATAM5 DEFA OEF58h CCM1 DEFR OFF54h

DATAM6 DEFA OEF68h CCMO DEFR OFF52h

DATAM7 DEFA QEF78h T01CON DEFR OFF50h

DATAM8 DEFA OEF88h T6CON DEFR OFF48h

DATAM9 DEFA OEF98h T5CON DEFR OFF46h

DATAMA DEFA OEFA8h T4CON DEFR OFF44h

DATAMB DEFA OEFB8h T3CON DEFR OFF42h

DATAMC DEFA OEFC8h T2CON DEFR OFF40h

DATAMD DEFA OEFD8h PWMCON1 DEFR OFF32h

DATANME DEFA OEFE8h PWMCONO DEFR OFF30h
CCM7 DEFR OFF28h

CCM6 DEFR OFF26h

CCM5 DEFR OFF24h

DP8 DEFR OFFD6h CCM4 DEFR OFF22h

lommmreg 1 67b.def
T78CON DEFR OFF2Oh CC16 DEFR OFE6Oh

FiR DEFR OFFO6h TiREL DEFR OFE56h

Fit DEFR OFFO4h TOREL DEFR OFE54h

FOR DEFR OFFO2h Ti DEFR OFE52h

FOL DEFR OFFOOh TO DEFR OFE5Oh

FECC7 DEFR OFECEh CAFREL DEFR OFE4A-

FECC6 DEFE OFECCh T6 OEFR OFE48h

FECC5 DEFR OFECAh T5 OEFR OFE46h

FECC4 DEFR OFEC8h T4 OEFR OFE44h

FECC3 DEFR OFEC6h T3 OEFR OFE42h

FECC2 DEFR OFEC4h T2 OEFR OFE4Oh

FECCi DEFR OFEC2h FW3 DEFR OFE36h

FECCO DEFR OFECOh FW2 DEFR OFE34h

SRCFO DEFA OFCEOh FWi DEFR OFE32h

OSTPO DEFA OFCE2h FWO DEFR OFE3Oh

SRCF1 DEFA OFCE4h
DSTF1 DEFA OFCE6h Extended sfr area

SRCF2 DEFA OFCE~h
OSTF2 DEFA OFCEAh 00FF OEFR OFiO6h

SRCF3 DEFA OFOECh 00F7 OEFR OFiO2h

DSTF3 DEFA OFCEEh 00F6 DEFR OF1CEh

SRCF4 DEFA OFCFOh 00F3 DEFR OFiC6h

OSTF4 DEFA OFCF2h FICON DEFR OFiC4h

SRCFS DEFA OFCF4h ODF2 DEFR OFiC2h

OSTF5 DEFA OFCF6h EXICON OEFR OFiCOh

SRCFE DEFA OFCF8h SOTBIC OEFR OFi9Ch

DSTF6 DEFA OFCFAh XP31C OEFR OF19Eh

SRCF7 DEFA OFCFCh XP21C DEFR OFi9Eh

OSTF7 DEFA OFCFEh XpiC DEFR OFiSEh

SOBG DEFR OFEB4h XFOIC DEFR OFiS6h

SORBUF DEFR OFEB2h, r FWMIC OEFR OFi7Eh

SOTBUF DEFR OFEBOh, w T81C DEFR OFi7Ch

RUT DEFR OFEAEh, r T71C DEFR OFi7Ah

ADDAT DEFR OFEAOh CC3iIC OEFR OFi94h

CCi5 DEFR OFE9Eh CC30IC OEFR OFi8Ch

CCi4 DEFR OFE9Ch CC291C OEFR OFiS4h

CCi3 DEFR OFE9Ah CC281C DEFR OFi78h

CCi2 DEFR OFE98h CC271C DEFR OFi7Gh

Ccii DEFR OFE96h CC261C DEFR OFi74h

OClo DEFR OFE94h CC251C DEFR OFi72h

CC9 DEFR OFE92h CC241C DEFR OFl7Oh

CCB DEFR OFE9Oh CC231C DEFR OF16Eh

CC7 DEFR OFE8Eh CC221C OEFR OFiOCh

CC6 DEFR OFE8Ch CC2iIC OEFR OF1GAh

CC5 DEFR OFEBAi CC20IC OEFR OFiG8h

CC4 DEFR OFEB8h CCiIC DEFR OFi66h

CC3 DEFR OFE86h CCi8IC DEFR OFiG4h

CC2 DEFR OFE84h CC171C DEFR OFiG2h

CCi DEFR OFE82h CC161C DEFR OFl6Oh

CCO DEFR OFE8Oh RFOR DEFR OFiO8h

CC3i DEFR OFE7Eh DF1R OEFR OFi06h

CC30 DEFR OFE7Ch DPiL DEFR OFiO4h

CC29 DEFR OFE7A- DFOR DEFR OFlO2h

CC28 DEFR OFE7Bh OFOL OEFR OFlO0h

CC27 DEFR OFE76h SSCBR DEFR OFOB4h

CC26 DEFR OFE74h SSCRB DEFR OFOB2h

CC25 DEFR OFE72h SSCTB DEFR OFOBOh

CC24 DEFR OFE7Oh ADOAT2 DEFR OFOAOh

CC23 DEFR OFEEEh T8REL DEFR OFO56h

CC22 DEFR OFE6Ch T7REL DEFR OFO54h

CC2i DEFR OFE6AL T8 OEFR OFO52h

CC20 DEFR OFE68h T7 DEFR OFO5Oh

CCi9 DEFR OFE6Eh FF3 DEFR OFO3Eh

CCiB DEFR OFE64h FF2 DEFR OFO3Ch

CC17 DEFR OFE62h FF1 DEFR OFO3Ah

Sw regl167b.def
PPO DEFR 0FO38h AN13 DEFB P5.13

PT3 DEFR OF036h AN14 DEFB P5.14

PT2 DEFR 0F034h AN15 DEFB P5.15

PT1 DEFR 0FO32h T6EUD LIT 'AN1O'

PTO DEFR OFO3Oh T5EUD LIT 'ANli'

T61N LIT 'AN12'

Bit names TSIN LIT 'AN13'

CCOIO DEFB P2.0 T4EUD LIT 'AN14'

CC1i0 DEFB P2.1 T2EUD LIT 'AN15'

CC210 DEFB P2.2

CC31O DEFB P2.3 P0UT0 DEFB P7.0

CC41O DEFB P2.4 P0UT1 DEFB P7.1

CC51O DEFB P2.5 POUT2 DEFB P7.2

CC61O DEFB P2.6 POUT3 DEFB P7.3

CC71O DEFB P2.7 CC2810 DEFB P7.4

CC81O DEFB P2.8 CC2910 DEFB P7.5

CC9Io DEFB P2.9 CC30O DEFB P7.6

CC1oi0 DEFB P2.10 CC31IO DEFB P7.7

CC1i0i DEFB P2.11
CC121O DEFB P2.12 CC1610 DEFB P8.0

CC1310 DEFB P2.13 CC1710 DEFB P8.1

CC1410 DEFB P2.14 CC1810 DEFB P8.2

CC1510 DEFB P2.15 CC19Io DEFB P8.3

EXOIN LIT 'CCOIO' CC20IO DEFB P8.4

EX1IN LIT 'CC1IO' CC21IO DEFB P8.5

EX21N LIT 'CC21O' CC2210 DEFB P8.6

EX31N LIT 'CC31O' CC2310 DEFB P8.7

TOIN DEFB P3.0

T60UT DEFB P3.1 TOM DEFB TO1CON.3

CAPIN DEFB P3.2 TOR DEFB TO1CON.6

T30UT DEFB P3.3 TiM DEFB TO1CON.11

T3EUD DEFB P3.4 TiR DEFB TO1CON.14

T21N DEFB P3.7 T7M DEFB T78CON.3

T31N DEFB P3.6 T7R DEFB T78CON.6

T41N DEFB P3.5 T8M DEFB T78CON.11

SSDI DEFB P3.8 T8R DEFB T78CON.14

SSDO DEFB P3.9

TXDO DEFB P3.10 ACCO DEFB CCMO.3

RXDO DEFB P3.11 ACCi DEFB CCMO.7

SSCLK DEFB P3.13 ACC2 DEFB CCMO.11

CLKOUT DEFB P3.15 ACC3 DEFB CCMO.15

A16 DEFB P4.0 ACC4 DEFB CCM1.3

A17 DEFB P4.1 ACC5 DEFB CCM1.7

A18 DEFB P4.2 ACC6 DEFB CCM1.11

A19 DEFB P4.3 ACC7 DEFB CCM1.15

A20 DEFB P4.4
A21 DEFB P4.5 ACC8 DEFB CCM2.3

A22 DEFB P4.6 ACC9 DEFB CCM2.7

A23 DEFB P4.7 ACC10 DEFB CCM2.11

ACC11 DEFB CCM2.15

ANO DEFB P5.0

AN1 DEFB P5.1 ACC12 DEFB CCM3.3

AN2 DEFB P5.2 ACC13 DEFB CCM3.7

AN3 DEFB P5.3 ACC14 DEFB CCM3.11

AN4 DEFB P5.4 ACC15 DEFB CCM3.15

AN5 DEFB P5.5
AN6 DEFB P5.6 ACC16 DEFB CCM4.3

AN7 DEFB P5.7 ACC17 DEFB CCM4.7

AN8 DEFB P5.8 ACC18 DEFB CCM4.11

AN9 DEFB P5.9 ACC19 DEFB CCM4.15

AN10 DEFB P5.10

AN11 DEFB P5.11 ACC20 DEFB CCM5.3

AN12 DEFB P5.12 ACC21 DEFB CCM5.7

reg 1 67b.def
SSCRIE
SSCRIR

SSCEIE
SSCEIR
SSCTE
SSCRE
SSCPE
SSCBE

ACC22
ACC23

ACC24
ACC25
ACC26
ACC27

ACC28
ACC29
ACC30
ACC31

T2R
T2UD
T2UDE

T3R
T3UD
T3UDE
T30E

T30TL

T4R
T4UD
T4UDE

T5R
T5UD
T5UDE
T5CLR

T5SC

T6R
T6UD
T6UDE
T60E
T60TL
T6SR

DEFB T4CON.6

DEFB T4CON.7

DEFB T4CON.8

DEFB CRIC.6

DEFB CRIC.7

DEFB SSCTIC.6

DEFB SSCTIC.7

DEFB CCM5.11

DEFB CCM5.15

DEFB CCM6.3

DEFB CCM6.7

DEFB CCM6.11

DEFB CCM6.15

DEFB CCM7.3

DEFB CCM7.7

DEFB CCM7.11

DEFB CCM7.15

DEFB T2CON.6

DEFB T2CON.7

DEFB T2CON.8

DEFB
DEFB
DEFB
DEFB
DEFB

T3CON. 6
T3CON. 7
T3 CON. 8
T3CON. 9
T3CON.10

DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

T5CON. 6
T5CON.7

T5CON. 8
T5CON. 14
T5CON.15

T6CON. 6
T6CON .7
T6CON. 8
T6CON. 9
T6CON. 10
T6CON. 15

T2IC.6

T2IC.7
T3IC.6

T3IC. 7

T4IC.6

T4IC.7
T5IC.6

T5IC .7

T6IC.6
T6IC.7

T2IE

T2 IR

T3IE
T3IR

T4IE
T4IR
T5IE

T5IR

T6IE

T6IR

CRIE
CRIR

CCOIE

CCOIR
CC1IE

CC1IR

CC2IE
CC2IR

CC3IE

CC3IR
CC4IE
CC4IR

CC5IE
CC5IR

CC6IE
CC6IR

CC7IE
CC7IR

CC8IE

CC8IR
CC9IE
CC9IR

CC10 IE
CC10IR

CC11IE

CC11IR
CC12IE
CC12IR
CC13IE
CC13IR

CC14IE
CC14IR

CC15IE
CC15IR
CC16IE
CC16IR

CC17IE
CC17IR
CC18IE

CC18IR
CC19IE
CC19IR
CC20IE

CC20IR
CC21IE
CC21IR
CC22IE
CC22IR
CC23IE

CC23IR
CC24IE

CC24IR
CC25IE

CC25IR

CC26IE
CC26IR
CC27IE

DEFB
DEFB
DEFB
DEFB
LIT
LIT
LIT
LIT

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

SSCRIC.6
SSCRIC.7
SSCEIC.6

SSCEIC.7
'SSCTEN'

'SSCREN'

'SSCPEN'
'SSCBEN'

CCOIC.6

CCOIC.7

CC1IC. 6
CC1IC.7

CC2 IC. 6
CC2IC.7

CC3 IC. 6
CC3 IC.7
CC4IC.6
CC4IC.7
CC5IC.6
CC5IC.7
CC6IC.6

CC6IC.7

CC7IC. 6
CC7IC .7

CC8IC.6
CC8IC.7
CC9IC. 6
CC9IC.7
CC10IC.6
CC10IC.7

CC11IC.6
CC11IC.7
CC12IC. 6

CC12IC .7
CC13 IC. 6
CC13IC. 7

CC14IC.6
CC14IC.7

CC15IC.6

CC15IC.7
CC16IC. 6

CC16IC.7
CC17IC.6

CC17IC.7
CC18IC.6
CC18IC.7
CC19IC.6

CC19 IC. 7
CC20IC.6

CC20IC.7
CC21IC. 6
CC21IC. 7
CC22IC.6
CC22IC.7

CC23IC.6
CC23IC.7

CC24IC.6

CC24IC.7
CC2 5IC. 6
CC25IC.7
CC26IC.6

CC26IC.7
CC27IC.6

SOTIE
SOTIR
SORIE
SORIR
SOEIE
SOEIR
SOTBIE
SOTBIR

SSCTIE
SSCTIR

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

SOTIC.6
SOTIC.7
SORIC. 6

SORIC .7

SOEIC. 6
SOEIC.7
SOTBIC.6
SOTBIC.7

reg 1 67b.def
DEFB CC27IC.7

DEFB CC28IC.6

DEFB CC28IC.7

DEFB CC29IC.6

DEFB CC29IC.7

DEFB CC30IC.6

DEFB CC301C.7

DEFB CC31IC.6

DEFB CC31IC.7

DEFB ADCIC.6

DEFB ADCIC.7

DEFB ADEIC.6

DEFB ADEIC.7

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

TOIC.6
TOIC.7
T1IC.6

T1IC.7
T7IC.6

T7IC.7

T8IC.6

T8IC.7

ADCON. 7
ADCON. 8
ADCON. 9
ADCON. 10

ADCON. 11

TFR. 0
TFR. 1
TFR. 2
TFR. 3
TFR. 7
TFR. 13
TFR. 14
TFR. 15

DEFB WDTCON.0

DEFB WDTCON.1

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

SOCON.3
SOCON. 4
SOCON.5
SOCON.6
SOCON.7
SOCON. 8

SOCON. 9
SOCON. 10

SOCON. 12

SOCON. 13
SOCON.14
SOCON.15

SSCCON.4

SSCCON.5

SSCCON.6
SSCCON.8

SSCCON.9

SSCCON.10

SSCCON.11

SSCCON.12

SSCCON.14

SSCCON.15

CC27IR
CC28IE

CC28IR
CC29IE
CC29IR
CC30IE
CC30IR
CC31IE
CC31IR

ADCIE
ADCIR
ADEIE
ADEIR

TOIE
TOIR

TIIE

T1IR
T7IE

T7IR
T8IE
T8IR

PTRO
PTR1
PTR2
PTR3
PTIO
PTI1
PTI2

PT13
PIEO
PIE1
PIE2
PIE3
PIRO
PIR1
PIR2
PIR3

PENO
PEN1
PEN2
PEN3
PMO
PM1
PM2
PM3
PBO .

PS2
PS3

PWMIE
PWMIR

XP3IE
XP3IR
XP2IE

XP2IR

XP1IE

XP1IR

XPOIE
XPOIR

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

PWMCONO.0
PWMCONO.1

PWMCONO.2
PWMCONO.3
PWMCONO.4

PWMCONO.5
PWMCONO.6
PWMCONO.7

PWMCONO.8
PWMCONO.9

PWMCONO.10
PWMCONO.11
PWMCONO.12

PWMCONO .13

PWMCONO.14
PWMCONO.15

PWMCON1.0
PWMCON1.1

PWMCON1.2
PWMCON1.3
PWMCON1.4

PWMCON1 . 5

PWMCON1 . 6

PWMCON1.7

PWMCON1 .12

PWMCON1.14

PWMCON1.15

PWMIC.6
PWMIC.7

XP3IC.6

XP3IC.7
XP2IC.6

XP2IC.7
XP1IC.6

XP1IC.7

XPOIC.6
XPOIC.7

ADST
ADBSY
ADWR
ADCIN
ADCRQ

ILLBUS
ILLINA
ILLOPA

PRTFLT
UNDOPC

STKUF
STKOF
NMI

WDTIN
WDTR

SOSTP
SOREN
SOPEN

SOFEN
SOOEN

SOPE

SOFE
SOOE

SOODD
SOBRS
SOLB
SOR

SSCHB
SSCPH
SSCPO
SSCTEN

SSCREN

SSCPEN

SSCBEN

SSCBSY

SSCMS

SSCEN

Chapter B Breadboard Code

B.8 CAN Router

On the next page starts the code for the CAN Router. The files for the node are as follows.

1. comp.bat

2. main.asm

3. serialApril.asm

4. cnmod.asm

5. canmo.asm

6. canint.asm

7. timers.asm

8. linker.lnv

9. Reg167b.def

- 63 -

comp.bat
a166 main.asm
a166 serialApril.asm
a166 timers.asm
a166 canmod.asm
a166 canmo.asm
a166 canint.asm
1166 LINK main.obj timers.obj serialApril.obj canint.obj canmod.obj canmo.obj TO main.ln
0

1166 @linker.lnv
ihexl66 -i16 main.out -o main.hex

main.asm
$SEGMENTED

$EXTEND

$EXTSFR

$EXTSSK
$EXTMEM

$NOMOD166
$STDNAMES(regl67b.def)
$SYMBOLS

NAME main

RBANK1 COMREG RO-R15

SSKDEF 4

CAN USE ALL internal RAM for Stack

define a common register area of 16 register

default stack size of 512 Words

ASSUME DPP3:SYSTEM

EXTERN serial-init:FAR

EXTERN canin:FAR Can function
EXTERN serial-timer-initialize:FAR; serial

mainseg SECTION CODE
main PROC FAR

start: DISWDT

BSET IEN

; disable the watchdog timer
; Globally Enable Interrupts both global

Initialize the External Memory BUS
MOV SYSCON, #OE084h
MOV ADDRSEL1, #0404h
MOV BUSCONO, #004AFh
MOV BUSCON1, #004AFh
EINIT ; end initialization

End of external memory bus initialization

Initialize the Data Page pointers for this section

MOV DPP3, #03h ; make DPP3 point to system

End of Data Page Pointer Initialization

Initialize The Stack
The Stack pointers are all word pointers so even though the

highest byte in the stack is located at #OFBFFh the highest

byte that the stack pointers can point to is #OFBFEh
MOV STKUN, #OFBFEh; Set Stack Underflow Pointer

MOV STKOV, #OF800h; Set STack Overflow Pointer
MOV SP, #OFBFEh ; Set the Stack Pointer

End of Stack Initialization

MOV DP2, ONES
NOP
MOV P2, ZEROS

Initialize the Serial Port

CALL serial-init
End of Serial Port Initialization
Initialize the serial port timer

CALL serial-timer-initialize; pain in the ass

Initialize CAN Bus
CALL canin ; Call the CAN initialization function

End of CAN Bus Initialization

meto:
NOP ; just loop here waiting

NOP

main ENDP

mainseg ENDS

JMP meto
RET ; return

startupsec SECTION CODE
sysreset PROC TASK INTNO=OH

ORG OOOH
JMP start
RETI

sysreset ENDP

startupsec ENDS
END

; codesegment that contains reset int pointer
; reset interrupt number is zero at Oh

forces next instruction to be located at Oh
installs a pointer to the startup routine
return from interrupt

serial-3.asm
$SEGMENTED These are assembler controls

$EXTEND

$EXTSFR

$EXTMEM
$EXTINSTR

$NOMOD166

$STDNAMES(regl67b.def)
$SYMBOLS ; Assembler controls end here

NAME serial-functions Every File needs one of these

Declare a common register bank

This register bank is common to all files

which declare that they are going to use it.

RBANK1 COMREG RO-R15
;;Declare 'serialinit' global so other files can call it.

GLOBAL serial-init

GLOBAL byte-counter

GLOBAL confirm.message

GLOBAL message-transmitting
GLOBAL message-to.transmit

EXTERN CANMmessageBYTES:BYTE

GLOBAL serial transmitinuse

GLOBAL seriali-transmitrequested

Assign the DPPs with the assume directive

this really doesn't do anything worth mentioning

nothing that I understand anyhow.

ASSUME DPPO: incomingmessage, DPP1:transmit structure, DPP3:SYSTEM

Declare the Data sections to be used by the

serial port.

incomingmessage SECTION DATA BYTE GLOBAL 'RAM'

start-of-receivedmessage label BYTE For Looping later

start-ofjframe DSB 1

number-of-bytes DSB 1 length of CAN message

directionoftransmission DSB 1

message.id DSB 2

message-data DSB 8

check-sum DSB 2

end ofjframe DSB 1 j311

byte-counter DSW 1
incoming-message ENDS

transmit-structure SECTION DATA BYTE GLOBAL 'RAM'

transmit-data DSB 16

receive-buffer DSB 16

transmitcounter DSW 1

message-ttotransmit DSW 1

message-transmitting DSW 1

transmit-structure ENDS

serial-constants SECTION DATA BYTE GLOBAL 'ROM'

resend.message DB '&!!Send Over!!&'

time out message DB '&!!Time Out!!&'

message-length DB 16

data structure size DB 12

serial-constants ENDS

Start of the serial section code. There are X functions in

3 different sections this file.

In the 'serialstart' section there is

;; 'rechandler', 'receivemessage'

serial-start SECTION CODE
serialinit PROC FAR

PUSH DPPO
PUSH DPP1
PUSH DPP2

Initialize the Serial Port

MOV DPPO, #PAG incomingmessage

MOV DPP1, #PAG transmit-structure

AND DPPO:byte-counter, ZEROS ; hjhjh

AND DPP1:transmitcounter, ZEROS; jasdf

AND DPPl:message-to-transmit, ZEROS; Clear the message to transmit

AND DPPl:message-transmitting, ZEROS; CLEAR MESSAGETRANSMITTING

MOV SOCON, #0
MOV SOBG, #00

MOVB SORIC, #

MOV SOTBUF, Z

EXTR #1
MOVB SOTBIC,
BSET SORIC.6

EXTR #1

BCLR SOTBIC.6
MOV DP3, ONES
MOV P3, ONES

8011h

40h
030h

EROS

#0

BCLR DP3.11

BCLR P3.11

End of serial port
POP DPP2

POP DPP1
POP DPPO

RET
serial-init ENDP

serial-start ENDS

;Sets the serial port

;Sets the baud rate to 9600

;Sets the interrupt for the receive side

; enables access to ESFR for 1 command only

20h ;Sets the interrupt handler for send buffer

;enable the receive interrupt handler

; Enables access to ESFR

;enable the send buffer interrupt handler

;set the port direction to output

;set the outputs to 1

;Set the pin direction to input
;Not a clue

initialization

serial-receive SECTION CODE

receive-handler PROC TASK INTNO=02BH

ORG DACh

CALL rechandler

RETI
receivehandler ENDP

rechandler PROC FAR

The first part of this procedure makes sure that

the bytecounter which is the offset from the start

of the data array which is used to hold the data message is

set to the correct value

PUSH RO

PUSH R1
PUSH R2

PUSH DPPO

PUSH DPP1

MOV DPPO, #PAG start.ofreceived message

MOV DPP1, #PAG message-length

MOV RO, #DPPO:start of-received message; me

BCLR T5CON.6
MOV T5, #0001h
MOV R2, DPPO:byte-countE

ADD RO, R2 ; me i
MOVB [RO} , SORBUF

start the timer
set the timer to 1

ADDB RL2, #01h
MOV DPPO:byte-counter, R2

serial-3.asm
The structure is 14 bytes long so the comparison is
done against #OCh.

CMPB RL2, DPP1:message-length ;know when to call the handling function
JMPA ccZ, handle-message ; need to decode the message
BSET T5CON.6 ; jkj

JMP receiveend ; exit function

handle-message:
BCLR T5CON.6 TURN OFF THE TIMER

MOV T5, #001h
MOV DPPO:byte-counter, ZEROS

CALL receive-message;j

receive-end:
POP DPP1
POP DPPO
POP R2
POP RI
POP RO
RET

rechandler ENDP

receivejmessage PROC FAR
PUSH DPPO
MOV DPPO, #PAG transmit-structure

CALL test-checksum ; necessary
CALL dotheCANJAZZ ; setup and execute the CAN Message Object

CALL removefromreceivebuffer; jkj
CMP ZEROS, DPPO:message-transmitting; jkj

JMP ccNZ, exitreceivemessage; jkj
CALL confirmmessage Necessary

exit receive_message:

POP DPPO
RET

receivemessage ENDP

remove from receive buffer PROC FAR
PUSH RO
PUSH R1

PUSH R2

PUSH DPPO
PUSH DPP1

PUSH DPP2

MOV DPPO, #PAG start of received message
MOV DPP1, #PAG transmit-structure

MOV DPP2, #PAG serial-constants
AND R2, ZEROS

MOV RO, #DPPO:start ofreceivedmessage
MOV R1, #DPP1:receive-buffer

movereceiveddata:
MOVB [R1, [R0]
ADD R2, #01h
ADD RO, #01h
ADD R1, #01h
CMPB RL2, DPP2:messagelength

JMP ccNZ, move-received-data
POP DPP2
POP DPP1
POP DPPO

POP R2
POP R1
POP RO
RET

removefromreceive-buffer ENDP
serial-receive ENDS

checksum-testjfunctions SECTION CODE

test-checksum PROC FAR

PUSH RO To be used as a pointer to the message

PUSH R1 To be used as an accumulator

PUSH R2 To be used to contain data structure size

PUSH R3 To be used as a counter

PUSH R4 To be used for byte to word conversions

PUSH R5

PUSH DPPO
PUSH DPP1
PUSH DPP2

MOV DPPO, #PAG startofreceived-message; DPPO= messageid's page

MOV DPP1, #PAG datastructuresize

MOV DPP2, #PAG transmitstructure

AND Rl, ZEROS Make the accumulator value = Zero

AND R3, ZEROS Set the loop counter to zero

AND R4, ZEROS Make R4 all zeros

MOV RO, #DPPO:number-of-bytes; beginning of important data

calculate-total: Loop through the entire data structure

MOVB RL4, [RD+]
ADD R1, R4 Byte to word conversion done here

ADDB RL3, #01h increment the loop count

CMPB RL3, DPP1:datastructuresize ; Cmp R3 to the size of the loop

JMP ccNZ, calculatetotal; If not equal then add again

MOVB RH2, DPPO:check-sum
MOVB RL2, DPPO:check_sum + 1
CMP R1, R2 ;computed vs received checksums
JMP ccNZ, checksumerror
MOV R5, #01h
ADD DPP2:messageto-transmit, R5; Indicates good reply
JMP exit checksum

checksum-error:
MOV RO, #02h indicates checksum error
ADD DPP2:message-to-transmit, RO

exitchecksum:
POP DPP2
POP DPP1

POP DPPO
POP R5
POP R4

POP R3
POP R2
POP R1
POP RO
RET

test-checksum ENDP

checksum-test-functions ENDS

serial-transmit SECTION CODE
confirmmessage PROC FAR

PUSH RO
PUSH R1

PUSH R2

PUSH R3
PUSH R4

PUSH R5
PUSH DPPO
PUSH DPP1

PUSH DPP2

First thing to do is copy all data into the transmit

data data-structure

load DPPO and DPP1 with the data pages of the two data structures

MOV DPPO, #PAG startofreceivedmessage; old version

MOV DPP1, #PAG transmitstructure

MOV DPP2, #PAG serialconstants

MOV R3, #01h
NOP Random NOP

MOV DPP1:message-transmitting, R3

;; determine which message to transmit

NOP ; Another RANDOM NOP

MOV R3, DPPl:messageto_transmit ; Move into R3 the message to transmit

MOV R4, R3 Copy for fast recovery

JMP setup-pointers Test code

move the start addresses of the two data structures

into registers which are to be used as pointers to

the data structures

AND R3, #01h Isolate possible good message

CMP R3, #01h See if good message

JMP ccNZ, nextpossibilityl

MOV RO, #DPPl:receivebuffer

SUB R3, #01h
MOV DPP1:messagetotransmit, R3

JMP setup-pointers

next-possibilityl:
MOV R3, R4 Refresh R3 buffer

AND R3, #02h Isolate Possible Send Over

CMP R3, #02h See if Send Over exists

JMP ccNZ, nextpossibility2

JMP exit-quickly ; test only

MOV RO, #DPPl:receive buffer; test code

MOV RO, #DPP2:resendmessage; jkj

SUB R3, #02h
MOV DPPl:message_to_transmit, R3

JMP setup-pointers

next-possibility2:
MOV R3, R4
AND R3, #04h

CMP R3, #04h

JMP ccNZ, next-possibility3

JMP exitquickly ; test only

MOV RO, #DPP2:timeout -message; actual possibility

MOV RO, #DPP1:receivebuffer; test code

SUB R3, #04h

MOV DPP1:messagetotransmit, R3

JMP setup-pointers

next-possibility3:
MOV R3, R4

AND R3, #08h

CMP R3, #08h

JMP ccNZ, next-possibility4

MOV RO, #DPP1:receivebuffer; Test Code

MOV DPP2, #PAG CAN_messageBYTES; actual possibility

NOP

serial-3.asm
MOV RO, #DPP2:CANmessageBYTES; set RO to point to address of CAN return me

ssage
SUB R3, #08h

MOV DPPl:messagetotransmit, R3

JMP setup-pointers

next-possibility4:
MOV DPP1:message-to-transmit, ZEROS

;MOV RO, #DPPl:receive_buffer; jkj

MOV DPP2, #PAG CANmessageBYTES; actual possibility

NOP

MOV RO, #DPP2:CAN-messageBYTES; set RO to point to address of CAN return me

ssage

setup-pointe
MOV

MOV

MOV

NOP
MOV

MOV

AND

MOV

rs:
RO, #DPPO:start-ofreceivedmessage; test pur

RO, #DPPl:receivebuffer; test code

DPP2, #PAG CANjmessageBYTES; test code

; test code

RO, #DPP2:CAN-messageBYTES; test code

R1, #DPPl:transmitdata

R2, ZEROS ; set the counter to zero

DPP1:message-totransmit, ZEROS

Doses

move-data:

MOVB [R1], [RO] ; move data from message buffer to transmit buffer

ADD R2, #01h Increment everyone by #01h

ADD RO, #01h
ADD R1, #01h
CMPB RL2, DPP2:messagelength ;Check all data has been transfered

JMP cc NZ, move data ; if more data to transfer then loop

The EXTR #1 instruction allows the BSET instruction

to access the Extended Special Function Register area.

without the EXTR #1 instruction, there is no way you can

access the SOTBIC register. You also need the $EXTSFR and

the $EXTINSTR assembler controls (located at the top of

the file) for this to work.

EXTR #1
BSET SOTBIC.6

MOV DPPl:transmit counter, ZEROS

Calling a TRAP is a software way of creating an interrupt

in this case we are causing the interrupt handler for the

serial transmit buffer to occur. The difference between

calling a trap and having the interrupt be generated from

a hardware event is that when calling a trap, the CPU

does not change priority level

TRAP #047h ; asdf

CALL transmitbufferjfunction; Test Code

exitPOquickly:
POP DPP2

POP DPP1

POP DPPO
POP R5

POP R4
POP R3
POP R2
POP R1
POP RO
RET

confirm-message ENDP

transmit-handler PROC TASK INTNO=047h

serial-3.asm
This is the interrupt handler for the Serial Transmit Buffer
Interrupt. It is activated when data is transmitted from

the transmit buffer to the transmit shift register.
ORG 01lCh
CALL transmit-buffer.function

RETI

transmithandler ENDP

transmit-bufferjfunction PROC FAR

PUSH RO
PUSH Rl

PUSH R2

PUSH R3

PUSH DPP1
PUSH DPP2
;; make data page on have the

MOV DPP1, #PAG transmitdata

MOV DPP2, #PAG message-length

the following is curious.

into RO, but RO is 16 bits
actually 24 bits.. .must be

background
MOV RO, #DPP1:transmitdata

NOP

page number for transmit-data

It moves the address of transmit-data

and the address of transmit-data is
some assembler magic going on in the

MOV R1, DPP1:transmitcounter; move the transmit-counter into Rl

MOVB RL2, DPP2:message-length ; Go through the loop 12 times

The below add makes the value in RO point to what ever it was

pointing to plus an offset which is in R1

ADD RO, Rl; increment the data pointer

NOP
The problem that I encountered was that I was trying to

do a MOV from memory but the data type that was in memory
was a BYTE so the computer screwed up.

MOVB SOTBUF, [RO]

NOP
ADDB RL1, #01h ; Increment the transmit counter register

MOVB DPPl:transmitcounter, RL1; move the value into the transmit counter

CMPB RL1, DPP2:message-length ; comp current count with final count

JMP ccNZ, exitroutine ; if they are equal then stop sending data

end-handler:
EXTR #1 ; necessary to access an Extended SFR

BCLR SOTBIC.6 ; for some reason this register is an E-SFR

BSET SORIC.6 ; asfd

BSET T5IE ; asfdasd

EXTR #1 ; kjkj

BSET XPOIC.6 ; asdfasd

MOV DPP1:transmit-counter, ZEROS; reset the counter register

AND DPP1:messagetransmitting, ZEROS; Wait until all queued messages have transm

itted to clear

CMP ZEROS, DPP1:message-totransmit; see if any more messages are waiting to tra

JMP ccZ, exitroutine

CALL confirm_message

exit-routine:

POP DPP2
POP DPP1
POP R3

jkj
jkj

; Pop all data off the stack

POP R2
POP Rl
POP RO
RET

transmit.buffer-function ENDP

do-theCANJAZZ PROC FAR
PUSH RO
PUSH R5
PUSH R6
PUSH DPPO
NOP

MOV DPPO, #PAG directionooftransmission

NOP
MOV RLO, DPPO:directionof.transmission
CMPB RLO, #08h ; See if it is a

JMP ccZ, transmitinformation; jump

CMPB RLO, #Oh ; See if it is a

JMP ccUC, receiveinformation
JMP exitCANjfunction

receive-information:
MOV R5, #05555h
MOV MCRM2, R5

d on

nabled

transmit frame

remote frame

This code makes a message object valid

Now Message-object 2 is invalid and can be operate

;; Set the message mask

MOVB RH5, DPPO:message_id; jkjk

MOVB RL5, DPPO:messageid + 1; jadsf

MOV R6, #OEF22h
NOP

MOV [R6],R5

;; Generate the Message Configuration Register

AND R6, ZEROS
AND R5, ZEROS

MOVB RL5, DPPO:direction of transmission

MOVB RL6, DPPO:numberof.bytes
SHL R6, #04h

ADD R5, R6

MOV MCDM2, R5

;; put data into data register
MOV R5, #DPPO:message-data

ADD R5, #01h
MOV RH6, [R5]

ADD R5, #01h
MOV RL6, [R5]

MOV DATAM2, R6

;; Now reactivate the Message Control Object

MOV R5, #06599h ; Valid, requested transmission, receive interrupt e

MOV MCRM2, R5

;MOV P2, #05555h
JMP exit CAN-function

; test pattern

transmit-information:
Valid Messages get Sent to the CAN BUS
First The Message OBJECT Must be setup.
Message Object 1 is always used right now
First make the message invalid

MOV R5, #05955h
MOV MCRM1, R5

nsmit

serial-3.asm

;; Set the message mask

MOVB RH5, DPPO:message-id

MOVB RL5, DPPO:message-id + 1

MOV R6, #OEF12h

NOP

MOV [R6],R5

;; Generate the Message Configuration Register
AND R6, ZEROS

AND R5, ZEROS
MOVB RL5, DPPO:directionof_transmission

MOVB RL6, DPPO:number-of-bytes

SHL R6, #04h

ADD R5, R6
MOV P2, R5 Test code

MOV MCDM1, R5

;; put data into data register
MOV R5, #DPPO:message-data

ADD R5, #01h
MOV RH6, [R5]

ADD R5, #01h
MOV RL6, [R5]
MOV DATAM1, R6

;; Now reactivate the Message Control Object

MOV R5, #06595h
MOV MCRM1, R5

exitCAN-function:

POP DPPO

POP R6
POP R5

POP RO
RET

do-theCANJAZZ ENDP
serial-transmit ENDS
END

$SEGMENTED
$EXTEND

$EXTSFR
$EXTMEM
$NOMOD166
$STDNAMES (regl67b.def)

$SYMBOLS

NAME canmod

RBANK1 COMREG RO-R15

GLOBAL canin

EXTERN canmocfg:FAR configures specific Message objects

ASSUME DPP3:SYSTEM

canfunc SECTION CODE codesegment that contains reset int point

canin PROC FAR

PUSH RO

PUSH R1

;; set all of the CAN control registers

AND C1CSR,ZEROS set control register to zero

MOV R1, #0043h ; Set IE and INIT bits

OR C1CSR,Rl ; set control register to Rl's value

AND C1BTR, ZEROS ; set Bit timing register to zero

MOV R1, #03447h ; set for 125k operation

OR C1BTR, R1 ; set Bit timing register parameters

AND C1GMS, ZEROS ; set Global Mask short register to zero

MOV Rl, #OFFFFh ; EOFF is what DAVE initialize

OR C1GMS, R1 ; set GMS

AND C1UGML, ZEROS ; set Upper global mask long to zero

MOV Rl, #OFFFFh

OR C1UGML, R1

MOV Rl, #OF8FFh

AND C1LGML, ZEROS

OR C1LGML, R1 ; lower global mask

AND C1UMLM, ZEROS

OR C1UMLM, R1 ; upper mask of last register

AND C1LMLM, ZEROS

OR C1LMLM, R1 ; lower mask of last register

CALL setall ; sets all of the CAN registers to off

CALL canmocfg ; Configures specific Message Objects

;; Setup CAN interrupt and Initialize CAN module

AND XPOIC, ZEROS ; configure CAN interrupt control Register

AND RO,ZEROS

OR RO,#0071h enable interrupt, level is 10 group is 2

OR XPOIC,RO ; Configure CAN interrupt Control Register

AND Rl, ZEROS

OR R1, #00041h ; crashes if I clear the CPU access to the BTR

XOR C1CSR, R1 ; end initialize CAN interrupt

POP Rl

POP RO

RET

ter

canmod.asm
canin ENDP

setall PROC FAR This Procedure sets all of the Mess objs invalid

by using a counter it counts up to 15 and initializes all of the message

objects along the way.
PUSH R2
PUSH R4
PUSH R5
AND R5,ZEROS
OR R5, #01h Set counter to 1 for first MO

AND R2,ZEROS
OR R2,#OEF10h Set pointer to MO1
AND R4, ZEROS
OR R4, #5555h Set R4 to make MObs invalid

nextreg:MOV [R2],R4 make all message objects invalid
ADD R2,#10h
CMPI1 R5,#DFh
JMPA CCNZ,nextreg
POP R5
POP R4
POP R2
RET

setall ENDP

canfunc ENDS
END

define a common register area of 16 registers
The function must be declared Global at the
beginning of the module

canmo.asm
$SEGMENTED
$EXTEND
$EXTSFR
$EXTMEM
$NOMOD166
$STDNAMES(reg167b.def)

$SYMBOLS

NAME canmo
RBANK1 COMREG RO-R15
GLOBAL canmocfg

; declare bank of 16 global registers

canmodule SECTION CODE

ASSUME DPP3:SYSTEM

canmocfg PROC FAR

PUSH R1
PUSH R2

PUSH R3

Now set specific CAN control Registers
initialize message object 1
initializing this object to be invalid does or removing the code until

the comment "Setup CAN interrupt and Initialize " does
nothing to prevent the occurrance of the interrupt for the CAN system

MOV R2, #MCRM1 ; start of Message Object 1

ta

tivates

AND R1, ZEROS

OR R1, #5555h

MOV [R2],R1 set

ADD R2,#2h

AND R3, ZEROS

OR R3, #0003h
MOV [R2],R3

ADD R2, #2h

MOV [R2], ZEROS
AND R1, ZEROS

OR R1, #0038h
MOV MCDM1,R1

MOV DATA_Ml, ZEROS

; This MO is inactive and will be controlled from the PC

MOl's Control register

point to Upper Arbitration register
; set R3 to
message id for message object 1
message id = #0003h
Point to the Lower Arbitration Register
standard Message object so lowerarb = Oh

put OAAh into first data byte and set to transmit
; Databyte(O) = 0 and Set to receive and 3 bytes of da

fill the Data of the MO with Zeros

;; set up second message object to be used with receive objects
MOV R2, #MCRM2 start of Message Object 2
AND R1, ZEROS
OR R1, #05555h Generate a Receive Interrupt if this message object ac

MOV [R21,Rl set M02's Control register

ADD R2,#2h

AND R3, ZEROS

OR R3, #0003h
MOV [R2],R3

ADD R2, #2h

MOV [R2], ZEROS

AND R1, ZEROS

OR R1, #0030h
MOV MCDM2,R1

MOV DATAM2, ZEROS

POP R3
POP R2

POP R1

point to Upper Arbitration register
; set R3 to

message id for message object 2
message id = #0003h
Point to the Lower Arbitration Register
standard Message object so lowerarb = Oh

This guy is a receive object
; Databyte(D) = 0 and Set to receive and 3 bytes of da

fill the Data of the MO with Zeros

RET
canmocfg ENDP
canmodule ENDS
END

canint.asm

$SEGMENTED

$EXTEND

$EXTSFR

$EXTMEM
$NOMOD166

$STDNAMES(regl67b.def)
$SYMBOLS

NAME canint

RBANK1 COMREG RO-R15

ASSUME DPP3:SYSTEM

EXTERN message-transmitting:WORD; from serialFebruary

EXTERN message-to-transmit:WORD

EXTERN confirm-message:FAR

GLOBAL CAN messageBYTES

can-interrupt-data SECTION DATA WORD GLOBAL 'RAM'

CANmessageBYTES LABEL BYTE

CANmessage word_1 DSW 1

CANmessageword_2 DSW 1

CAN_messageword_3 DSW 1

CAN-message-word_4 DSW 1

CANmessageword.5 DSW 1

CANmessage_word_6 DSW 1

CANmessageword_7 DSW 1

CAN message word_8 DSW 1

can-interrupt-data ENDS

caninterrupts SECTION CODE

can-receiveinterrupt PROC TASK INTNO=040h

ORG 0100h
CALL caninterruptjhandler

RETI

can-receive-interrupt ENDP

can-interrupt-handler PROC FAR

PUSH RO

PUSH R1

PUSH R2

PUSH R3

PUSH R4

PUSH R5

PUSH R6

PUSH R7

PUSH R8

PUSH R9

PUSH R10

PUSH R11

PUSH R12

PUSH R13

PUSH DPPO

PUSH DPP1

PUSH DPP2

MOV DPPO, #PAG CAN-interrupt-data

upper

o RH2

MOV RO, #05555h

MOV MCRM2, RO

AND R7, ZEROS

MOV R11, MCDM2

byte
MOV R12, DATA.M2

deactive code
Deactive the Second Message Object

Moves DLC and DIR into Lower Byte and DATA byte 0 into

; Moves DATA byte 1 into RL2 and DATA byte 2 int

MOV R13, MIDM2 ; Moves the Message ID into Register 8

MOV P2, R12 ; jkasdjfjfkdls

;; Start building the message for serial transmission

MOV Ri, R11

AND Rl, #OFOh Isolate Data Length Code

SHL Ri, #04h Position it in RH1

MOVB RL1, #OAOh Move message start bit into place

;; Isolate into the top part of the word the Direction of transmission

MOV R2, R11 Copy into R1

AND R2, #08h Isolate the Direction of the data

MOV R3, R13
MOVB RH2, RH3

;MOVB RH3, RL3

MOVB RH3, #00h

S into RH3

MOV R4, R12

;; Words 5 and
PUSH R3

MOVB RH3, RH4

MOVB RH4, RL4

MOVB RL4, RH3

POP R3

um

um

um

Start breaking down the message ID

Finish Word 2

Start Word 3

The First Byte of Data is Always ZERO so Move ZERO

; Start Word 4

6 are just ZERO therefore don't use a register

;; Now compute the Checksum
AND RO, ZEROS

AND R9, ZEROS

;; Don't user

MOVB RLO, RH1

ADD R9, RO

AND RO, ZEROS

MOVB RLO, RH2

ADD R9, RO

AND RO, ZEROS

MOVB RLO, RL2

ADD R9, RO

AND RO, ZEROS

MOVB RLO, RH3

ADD R9, RO

AND RO, ZEROS

MOVB RLO, RL3

ADD R9, RO

AND RO, ZEROS

MOVB RLO, RH4

ADD R9, RO

AND RO, ZEROS

MOVB RLO, RL4

ADD R9, RO

AND RO, ZEROS

MOV R6, R9

AND R5, ZEROS

MOV RH5, RH6

RH1 in the computation of the Checksum

BYTe to word conversion

add the Data Length Code to the Checksum

Reset the byte to word conversion buffer

add the Direction of transmission to Checksum

add the upper byte of the message id to the checks

add the lower byte of the message id to the checks

add the lower byte of the message id to the checks

;jk
; add the upper byte of the message data to checksum

add lower byte of the data to checksum

Move the checksum into a byte addressable register

Move the upper byte of the checksum into R5

; declare bank of 16 global registers

canint.asm
MOV RL6 test

MOV RH6, #DAh
THE CHECKSUM IS NOW COMPUTED

THE CAN MESSAGE IS NOW COMPLETED IN REGISTERS Ri THROUGH R8

Now put the CAN message into memory

MOV

MOV

MOV

MOV
MOV
MOV
MOV

MoV

DPPO:CANmessage-word.1,
DPPO:CANmessage-word_2,
DPPO:CANmessageword_3,

DPPO:CAN-messageword_4,
DPPO:CANmessageword_5,
DPPO:CANmessageword_6,
DPPO:CAN_message-word_7,
DPPO:CANmessageword_8,

MOV RO, #05599h
MOV MCRM2, RO

MOV
MOV
MOV
ADD
CMP
JMP

JMP

R1 ; put data into memory

R2 ; put data into memory
R3 ; put data into memory

R4 ; put data into memory
ZEROS ; put data into memory
ZEROS ; put data into memory

R5 put data into memory
R6 put data into memory

active second Message Object

DPP1, #PAG messagetransmitting

DPP2, #PAG message-to-transmit
RO, #08h
DPP2:message-totransmit, RO
ZEROS, DPPl:message-transmitting; test

ccZ, CAN-to-transmit; test
ccUC, exitcan ; test

CAN-to-transmit:
MOV RO, DPP2:message-to-transmit

PUSH RO
MOV Ri, #08h
MOV DPP2:message_to_transmit, R1

CALL confirmmessage test
POP RO
MOV DPP2:messagetotransmit, RO

exit-can:
POP DPP2
POP DPP1
POP DPPO
POP R13
POP R12

POP R11
POP R10
POP R9
POP R8
POP R7
POP R6
POP R5
POP R4
POP R3
POP R2
POP Ri
POP RO
RET

can-interrupt-handler ENDP

can_interrupts ENDS

END

timers.asm

$SEGMENTED These are assembler controls

$EXTEND

$EXTSFR
$EXTMEM

$EXTINSTR
$NOMOD166
$STDNAMES(regl67b.def)

$SYMBOLS Assembler controls end here

NAME timer-functions

ASSUME DPP3:SYSTEM
RBANK1 COMREG RO-R15

GLOBAL serial-timer-initialize

EXTERN confirmmessage:FAR create pointer to timeouterror

EXTERN byte-counter:WORD; Get Reference to bytecounter

EXTERN message-transmitting:WORD; messagetransmitting is a global variable

EXTERN message-to-transmit:WORD

serial-timer SECTION CODE

serial-timer-initialize PROC FAR

MOV T5CON, #0000h setup GPT2 Auxiliary Timer T5

had a problem with the level of the timer interrupt

with respect to that of the serial receive interrupt

needed to make the timer interrupt higher than that of

the serial receive interrupt.
MOV T5IC, #002Bh
MOV T5, #0001h
BSET T5IE
RET

serial-timer-initialize ENDP

serial-timer-interrupt PROC TASK INTNO=025H

ORG 094H
CALL serial-timer-handler; the timer handler

RETI

serial-timer-interrupt ENDP

serial-timer-handler PROC FAR
PUSH DPPO
PUSH DPP1

PUSH RO
BCLR T5CON.6

MOV T5, #000lh
turn off the timer
Reset the timer

MOV DPPO, #PAG bytecounter

MOV DPP1, #PAG message-transmitting

MOV DPPO:byte-counter,ZEROS; Reset the receive buffer

error-reply:

ADD RO, #04h jaskjdf;

MOV DPP1:messageto-transmit, RO; jkjkjk

CMP ZEROS, DPP1:message-transmitting

JMP ccNZ, timerreturn

CALL confirmmessage

timer-return:

POP RO

POP DPP1
POP DPPO
RET

serial-timer-handler ENDP
serial-timer ENDS

END

MOV RO,#01h
MOV DPP1:messagewaitingto-transmit, RO

MOV RO, #02h
MOV DPP1:waiting_message, RO

linker.Inv
LOCATE
main. lno
(GENERAL}

IRAMSIZE (2048)

RESERVE MEMORY(OF200h TO OF5FFh)

MEMORY(ROM (0000h to OEFFFh),

RAM (040000h to 4EFFFh), IRAM(OF000h))

CLASSES('RAM' (040000h to 04FFFFh)
SYMBOLS LISTSYMBOLS

TO main.out

reg 167b.def
**MIDM8 DEFA OEF82h

;** @(#)regl67b.def 1.10 12/18/97 MIDM9 DEFA OEF92h

MIDMA DEFA OEFA2h

;** Register definitions for the SAB C167 MID MB DEFA OEFB2h

This file contains all SFR names and BIT names MIDMC DEFA OEFC2h

This file can be supplied to rm166 and a166 (STDNAMES control) MID MD DEFA OEFD2h

***MIDME DEFA OEFE2h

C1CSR DEFA OEFOOh

INTID DEFA OEF02h

C1BTR DEFA OEF04h DP8 DEFR OFFD6h

C1GMS DEFA OEF06h P8 DEFR OFFD4h

C1UGML DEFA OEF08h DP7 DEFR OFFD2h

C1LGML DEFA OEFOAh P7 DEFR OFFDOh

C1UMLM DEFA OEFOCh DP6 DEFR OFFCEh

C1LMLM DEFA OEFOEh P6 DEFR OFFCCh

MCRMl DEFA OEF10h DP4 DEFR OFFCAh

MCRM2 DEFA OEF20h P4 DEFR OFFC8h

MCRM3 DEFA OEF30h DP3 DEFR OFFC6h

MCRM4 DEFA OEF40h P3 DEFR OFFC4h

MCRM5 DEFA OEF50h DP2 DEFR OFFC2h

MCRM6 DEFA OEF60h P2 DEFR OFFCOh

MCRM7 DEFA OEF70h SSCCON DEFR OFFB2h

MCRM8 DEFA OEF80h SOCON DEFR OFFBOh

MCRM9 DEFA OEF90h WDTCON DEFR OFFAEh

MCRMA DEFA OEFA~h TFR DEFR OFFACh

MCR.MB DEFA OEFBOh P5 DEFR OFFA2h

MCRMC DEFA OEFCOh ADCON DEFR OFFAOh

MCRMD DEFA OEFDOh TlIC DEFR OFF9Eh

MCRME DEFA OEFEOh TOIC DEFR OFF9Ch

MCRMF DEFA QEFFOh ADEIC DEFR OFF9Ah

MCDM1 DEFA OEF16h ADCIC DEFR OFF98h

MCDM2 DEFA OEF26h CC15IC DEFR OFF96h

MCDM3 DEFA OEF36h CC14IC DEFR OFF94h

MCDM4 DEFA OEF46h CC13IC DEFR OFF92h

MCDM5 DEFA OEF56h CC12IC DEFR OFF90h

MCDM6 DEFA OEF66h CC11IC DEFR OFF8Eh

MCDM7 DEFA OEF76h CC1OIC DEFR OFF8Ch

MCDM8 DEFA OEF86h CC9IC DEFR OFF8Ah

MCDM9 DEFA OEF96h CC8IC DEFR OFF88h

MCDMA DEFA OEFA6h CC7IC DEFR OFF86h

MCDMB DEFA OEFB6h CC6IC DEFR OFF84h

MCDMC DEFA OEFC6h CC5IC DEFR OFF82h

MCDMD DEFA OEFD6h CC4IC DEFR OFF80h

MCDME DEFA OEFE6h CC3IC DEFR OFF7Eh

DATAM1 DEFA OEF18h CC2IC DEFR OFF7Ch

DATAM2 DEFA OEF28h CC1IC DEFR OFF7Ah

DATAM3 DEFA OEF38h CCOIC DEFR OFF78h

DATAM4 DEFA OEF48h SSCEIC DEFR OFF76h

DATA.M5 DEFA OEF58h SSCRIC DEFR OFF74h

DATAM6 DEFA OEF68h SSCTIC DEFR OFF72h

DATAM7 DEFA OEF78h SOEIC DEFR OFF70h

DATAM8 DEFA OEF88h SORIC DEFR OFF6Eh

DATAM9 DEFA OEF98h SOTIC DEFR OFF6Ch

DATAMA DEFA OEFA8h CRIC DEFR OFF6Ah

DATAMB DEFA OEFB8h T6IC DEFR OFF68h

DATAMC DEFA QEFC8h T5IC DEFR OFF66h

DATAMD DEFA OEFD8h T4IC DEFR OFF64h

DATAME DEFA OEFE8h T3IC DEFR OFF62h

MIDMl DEFA QEF12h T2IC DEFR OFF60h

MIDM2 DEFA OEF22h CCM3 DEFR OFF58h

MIDM3 DEFA OEF32h CCM2 DEFR OFF56h

MIDM4 DEFA OEF42h CCM1 DEFR OFF54h

MIDM5 DEFA OEF52h CCMO DEFR OFF52h

MIDM6 DEFA OEF62h T01CON DEFR OFF50h

MIDM7 DEFA OEF72h T6CON DEFR OFF48h

reg167b.def
T5CON DEFR OFF46h CC26 DEFR OFE74h

T4CON DEFR OFF44h CC25 DEFR OFE72h

T3CON DEFR OFF42h CC24 DEFR OFE70h

T2CON DEFR OFF40h CC23 DEFR OFE6Eh

PWMCON1 DEFR OFF32h CC22 DEFR OFE6Ch
PWMCONO DEFR OFF30h CC21 DEFR OFE6Ah

CCM7 DEFR OFF28h CC20 DEFR OFE68h

CCM6 DEFR OFF26h CC19 DEFR OFE66h

CCM5 DEFR OFF24h CC18 DEFR OFE64h

CCM4 DEFR OFF22h CC17 DEFR OFE62h

T78CON DEFR OFF20h CC16 DEFR OFE60h

PlH DEFR OFF06h TiREL DEFR OFE56h

PiL DEFR OFF04h TOREL DEFR OFE54h

POH DEFR OFF02h Ti DEFR OFE52h

POL DEFR OFFOOh TO DEFR OFE50h

PECC7 DEFR OFECEh CAPREL DEFR OFE4Ah

PECC6 DEFR OFECCh T6 DEFR OFE48h

PECC5 DEFR OFECAh T5 DEFR OFE46h

PECC4 DEFR OFEC8h T4 DEFR OFE44h

PECC3 DEFR OFEC6h T3 DEFR OFE42h

PECC2 DEFR OFEC4h T2 DEFR OFE40h

PECCi DEFR OFEC2h PW3 DEFR OFE36h

PECCO DEFR OFECOh PW2 DEFR OFE34h

SRCPO DEFA OFCEOh PWi DEFR OFE32h

DSTPO DEFA OFCE2h PWO DEFR OFE30h

SRCP1 DEFA OFCE4h

DSTP1 DEFA OFCE6h Extended sfr area

SRCP2 DEFA OFCE8h

DSTP2 DEFA OFCEAh ODP8 DEFR OF1D6h

SRCP3 DEFA OFCECh ODP7 DEFR OF1D2h

DSTP3 DEFA OFCEEh ODP6 DEFR OF1CEh

SRCP4 DEFA OFCFOh ODP3 DEFR OF1C6h

DSTP4 DEFA OFCF2h PICON DEFR OFiC4h

SRCP5 DEFA OFCF4h ODP2 DEFR OFiC2h

DSTP5 DEFA OFCF6h EXICON DEFR OFiCOh

SRCP6 DEFA OFCF8h SOTBIC DEFR OF19Ch

DSTP6 DEFA OFCFAh XP3IC DEFR OF19Eh

SRCP7 DEFA OFCFCh XP2IC DEFR OF196h

DSTP7 DEFA OFCFEh XP1IC DEFR OF18Eh

SOBG DEFR OFEB4h XPOIC DEFR OF186h

SORBUF DEFR OFEB2h, r PWMIC DEFR OF17Eh

SOTBUF DEFR OFEBOh, w T8IC DEFR OF17Ch

WDT DEFR OFEAEh, r T7IC DEFR OF17Ah

ADDAT DEFR OFEAOh CC31IC DEFR OF194h

CC15 DEFR OFE9Eh CC30IC DEFR OF18Ch

CC14 DEFR OFE9Ch CC29IC DEFR OF184h

CC13 DEFR OFE9Ah CC28IC DEFR OF178h

CC12 DEFR OFE98h CC27IC DEFR OF176h

Ccii DEFR OFE96h CC26IC DEFR OF174h

CCiO DEFR OFE94h CC25IC DEFR OF172h

CC9 DEFR OFE92h CC24IC DEFR OF170h

CC8 DEFR OFE90h CC23IC DEFR OF16Eh

CC7 DEFR OFE8Eh CC22IC DEFR OF16Ch

CC6 DEFR OFE8Ch CC21IC DEFR OF16Ah

CC5 DEFR OFE8Ah CC20IC DEFR OF168h

CC4 DEFR OFE88h CC19IC DEFR OF166h

CC3 DEFR OFE86h CCi8IC DEFR OF164h

CC2 DEFR OFE84h CC17IC DEFR OF162h

Ccl DEFR OFE82h CC16IC DEFR OF160h

CCO DEFR OFE80h RPOH DEFR OF108h

CC31 DEFR OFE7Eh DP1H DEFR OF106h

CC30 DEFR OFE7Ch DPiL DEFR OF104h

CC29 DEFR OFE7Ah DPOH DEFR OF102h

CC28 DEFR OFE78h DPOL DEFR OF100h

CC27 DEFR OFE76h SSCBR DEFR OFOB4h

SSCRB
SSCTB
ADDAT2

T8REL
T7REL
T8

T7
PP3
PP2
PP1
PPO

PT3
PT2
PT1
PTO

; Bit names

CCOIO

Cc1IO
CC2 10
CC3 10

CC410
CC510

CC610
CC710

CC810

CC9Io

CC10IO
CC11IO
CC1210
CC1310
CC1410

CC1510
EXOIN

EX1 IN

EX2IN

EX3IN

TOIN

T60UT

CAPIN
T30UT
T3EUD

T2IN

T3IN

T4IN
SSDI
SSDO
TXDO
RXDO
SSCLK
CLKOUT

A16
A17

A18

A19

A20
A21

A22

A23

DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
LIT
LIT
LIT
LIT

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

OFOB2h
OFOBOh
OFOAOh

OFO56h

OFO54h

OF052h

OF050h
OF03Eh

OF03Ch

OF03Ah

OFO38h

OFO36h

OFO34h
OFO32h

OF030h

P2 . 0
P2. 1
P2.2
P2 .3
P2. 4
P2. 5
P2 .6
P2. 7
P2. 8
P2 .9
P2. 10

P2.11

P2 .12

P2. 13

P2.14
P2 .15
'CCOI0'

'CC1Io'

'CC210'

'CC3 10'

P3 . 0
P3. 1
P3. 2
P3 .3
P3 .4
P3 .7
P3 .6
P3 .5
P3. 8
P3. 9
P3 .10
P3. 11

P3.13

P3 .15

P4 . 0
P4. 1
P4. 2
P4. 3
P4. 4
P4. 5
P4. 6
P4.7

reg 167b.def
AN3
AN4
AN5

AN6
AN7
AN8
AN9
AN10

AN11
AN12

AN13

AN14

AN15

T6EUD

T5EUD

T6IN
T5IN

T4EUD
T2EUD

POUTO
POUT1
POUT2
POUT3
CC2810
CC2910

CC30IO
CC31IO

CC16IO
CC17IO
CC18IO
CC191o

CC20IO
CC21IO
CC2210

CC2310

TOM
TOR
TlM

TlR
T7M
T7R
T8M
T8R

ACCO
ACC1

ACC2

ACC3

ACC4

ACC5
ACC6

ACC7

ACC8
ACC9

ACC10

ACC11

ACC12

ACC13

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
LIT
LIT
LIT
LIT
LIT
LIT

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

P5. 3
P5. 4
P5. 5
P5. 6
P5. 7

P5. 8
P5. 9
P5. 10
P5. 11

P5. 12

P5. 13

P5. 14

P5.15
'AN10'
'AN11'
'AN12'
'AN13'
'AN14'
'AN15'

P7 . 0
P7. 1
P7. 2
P7. 3
P7. 4
P7 .5
P7 .6
P7 .7

P8. 0
P8. 1
P8.2
P8. 3
P8.4
P8.5

P8. 6
P8.7

T01CON.3
T01CON. 6
TO1CON. 11
TO1CON. 14
T78CON.3

T78CON.6

T78CON.11

T78CON.14

CCMO. 3
CCMO. 7
CCMO.11
CCMO.15

CCM1. 3
CCM1 .7
CCM1.11
CCM1.15

CCM2. 3
CCM2 .7
CCM2.11

CCM2.15

CCM3. 3
CCM3 .7

ANO
AN1
AN2

DEFB P5.0
DEFB P5.1
DEFB P5.2

ACC14
ACC15

ACC16
ACC17
ACC18
ACC19

ACC20
ACC21
ACC22
ACC23

ACC24
ACC25
ACC26
ACC27

ACC28
ACC29
ACC30
ACC31

T2R
T2UD
T2UDE

T3R
T3UD

T3UDE
T30E

T30TL

T4R
T4UD
T4UDE

T5R
T5UD
T5UDE
T5CLR
T5SC

T6R
T6UD
T6UDE
T60E
T60TL
T6SR

T2IE

T2IR
T3IE
T3IR

T4IE
T4IR

T5IE

T5IR
T6IE

T6IR

CRIE
CRIR

SOTIE

DEFB
DEFB
DEFB
DEFB
DEFB

T3CON. 6
T3CON.7

T3CON. 8
T3CON.9

T3CON.10

DEFB T4CON.6

DEFB T4CON.7

DEFB T4CON.8

DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

T5CON. 6
T5CON.7
T5CON.8
T5CON.14
T5CON.15

T6CON. 6
T6CON.7
T6CON. 8
T6CON. 9
T6CON. 10
T6CON. 15

T2IC.6

T2IC.7
T3IC. 6

T3IC .7

T4IC.6

T4IC.7

T5IC. 6

T5IC.7
T6IC.6
T6IC.7

DEFB CRIC.6

DEFB CRIC.7

DEFB SOTIC.6

DEFB CCM3.11

DEFB CCM3.15

DEFB CCM4.3

DEFB CCM4.7

DEFB CCM4.11

DEFB CCM4.15

DEFB CCM5.3

DEFB CCM5.7

DEFB CCM5.11

DEFB CCM5.15

DEFB CCM6.3

DEFB CCM6.7

DEFB CCM6.11

DEFB CCM6.15

DEFB CCM7.3

DEFE CCM7.7

DEFB CCM7.11

DEFB CCM7.15

DEFB T2CON.6

DEFB T2CON.7

DEFB T2CON.8

reg 1 67b.def
SOTIR
SORIE
SORIR
SOEIE
SOEIR
SOTBIE

SOTBIR

SSCTIE

SSCTIR
SSCRIE
SSCRIR

SSCEIE

SSCEIR
SSCTE
SSCRE
SSCPE
SSCBE

CCOIE
CCOIR
CC1IE

CC1IR
CC2IE
CC2IR

CC3IE

CC3IR
CC4IE

CC4IR

CC5IE
CC5IR
CC6IE

CC6IR

CC7IE
CC7IR

CC8IE

CC8IR
CC9IE

CC9IR

CC1IE

CC10IR
CC11IE
CC11IR
CC12IE
CC12IR
CC13IE
CC13IR
CC14IE
CC14IR

CC15IE
CC15IR
CC16IE
CC16IR
CC17IE
CC17IR
CC18IE
CC18IR

CC191E
CC19IR
CC20IE
CC20IR
CC21IE
CC21IR
CC22IE

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
LIT
LIT
LIT
LIT

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

SOTIC.7
SORIC. 6
SORIC .7

SOEIC. 6
SOEIC.7

SOTBIC.6
SOTBIC.7

SSCTIC.6

SSCTIC.7
SSCRIC.6

SSCRIC.7
SSCEIC. 6
SSCEIC.7

'SSCTEN'

'SSCREN'

'SSCPEN'

'SSCBEN'

CCOIC.6
CCOIC .7
CC1IC.6

CC1IC.7
CC2IC.6
CC2IC.7

CC3IC.6

CC3IC.7
CC4IC.6
CC4IC.7

CC5IC.6
CC5IC.7

CC6IC .6

CC6IC.7

CC7IC.6
CC7IC.7

CC8IC.6
CC8IC.7
CC9IC.6
CC9IC .7

CC1OIC.6
CC1OIC.7

CC11IC.6
CC11IC.7
CC121C.6
CC12IC .7
CC13IC. 6

CC13IC.7

CC14IC.6
CC14IC.7

CC15IC.6

CC15IC.7
CC16IC.6
CC16IC .7

CC17IC. 6

CC17IC.7
CC18IC.6
CC18IC.7
CC19IC.6
CC19IC.7

CC20IC.6
CC20IC.7
CC21IC.6
CC21IC.7
CC22IC.6

CC22IR
CC23IE
CC23IR
CC24IE

CC24IR

CC25IE
CC25IR
CC26IE
CC26IR
CC27IE

CC27IR

CC28IE
CC28IR
CC29IE

CC29IR
CC30IE
CC30IR

CC31IE
CC31IR

ADCIE
ADCIR
ADEIE
ADEIR

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB ADCIC.6

DEFB ADCIC.7
DEFB ADEIC.6

DEFB ADEIC.7

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

TOIC. 6
TOIC.7
T1IC.6
T1IC.7
T7IC. 6
T7IC.7
T8IC.6

T8IC.7

ADCON. 7
ADCON. 8
ADCON. 9
ADCON.10
ADCON. 11

TFR. 0
TFR. 1
TFR. 2
TFR. 3
TFR. 7
TFR.13
TFR. 14
TFR. 15

WDTCON.0

WDTCON.1

SOCON.3
SOCON. 4

SOCON. 5
SOCON. 6

SOCON.7
SOCON. 8
SOCON. 9

SOCON.10
SOCON. 12
SOCON. 13

SOCON.14
SOCON. 15

CC22IC.7
CC23IC.6
CC23IC.7
CC24IC.6

CC24IC.7

CC25IC.6

CC25IC.7
CC26IC.6
CC26IC.7
CC27IC.6
CC27IC.7

CC28IC.6
CC28IC.7

CC29IC.6
CC29IC.7

CC30IC.6
CC30IC.7

CC31IC. 6
CC31IC.7

reg167b.def
SSCHB
SSCPH
SSCPO

SSCTEN

SSCREN

SSCPEN

SSCBEN

SSCBSY
SSCMS

SSCEN

PTRO
PTR1.
PTR2
PTR3
PTIO
PTI1
PTI2

PTI3
PIE0
PIE1
PIE2
PIE3
PIRO
PIR1
PIR2
PIR3

PENO
PEN1
PEN2
PEN3
PMO

PM1
PM2
PM3
PBO1
PS2
PS3

PWMIE
PWMIR

XP3IE

XP3IR

XP2IE
XP2IR
XP1IE

XP1IR
XPOIE
XPOIR

TOIE
TOIR

TlIE
T1IR
T7IE

T7IR
T8IE

T8IR

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

SSCCON.4

SSCCON.5

SSCCON.6

SSCCON.8

SSCCON.9

SSCCON.10

SSCCON.11

SSCCON.12

SSCCON.14

SSCCON.15

PWMCONO.0
PWMCONO.1
PWMCONO.2

PWMCONO.3

PWMCONO.4
PWMCON0.5

PWMCONO.6
PWMCONO.7
PWMCONO. 8

PWMCONO.9

PWMCONO.10
PWMCONO.11

PWMCONO.12
PWMCONO.13
PWMCONO.14

PWMCONO.15

PWMCON1.0

PWMCON1.1
PWMCON1.2
PWMCON1.3
PWMCON1.4

PWMCON1 . 5

PWMCON1 . 6

PWMCON1.7

PWMCON1 . 12

PWMCON1.14

PWMCON1. 15

PWMIC. 6

PWMIC.7

XP3IC.6

XP3IC.7

XP2IC.6
XP2IC.7

XP1IC.6

XP1IC.7
XPOIC.6

XPOIC.7

ADST
ADBSY
ADWR
ADCIN
ADCRQ

ILLBUS

ILLINA

ILLOPA
PRTFLT

UNDOPC

STKUF
STKOF
NMI

WDTIN
WDTR

SOSTP
SOREN
SOPEN
SOFEN
SOOEN
SOPE

SOFE
SOOE

SOODD

SOBRS
SOLB
SOR

Chapter B Breadboard Code

B.9 Data Acquisition Node

On the next page starts the code for the Data Acquisiton Node. The files for the node are as

follows.

1. comp.bat

2. main.asm

3. cnmod.asm

4. canmo.asm

5. canint.asm

6. timers.asm

7. atod.asm

8. ema.asm

9. linker.lnv

10. Reg167b.def

B.10 DC/DC Converter Node

On the next page starts the code for the CAN Router. The files for the node are as follows.

1. comp.bat

2. main.asm

3. cnmod.asm

4. canmo.asm

5. canint.asm

6. linker.lnv

7. Reg167b.def

-64 -

ON:E , comp.bat

del *.obj
del *lno
del *out
del *.hex
a166 main.asm
a166 timers.asm
a166 atod.asm
a166 canmod.asm
a166 canmo.asm
a166 ema.asm
1166 LINK main.obi timers.obj atod.obj canmod.obj canmo.obj ema.obj TO main.lno

1166 @linker.lnv
ihex166 -i16 main.out -o main.hex

main.asm

$SEGMENTED

$EXTEND

$EXTSFR

$EXTSSK
$EXTMEM
$NOMOD166
$STDNAMES(regl67b.def)
$SYMBOLS

NAME main

RBANK1 COMREG RO-R15

SSKDEF 4

ASSUME DPP3:SYSTEM

EXTERN canin:FAR

EXTERN atod_initialize:FAR

EXTERN atod-timerinitialize:FAR

CAN USE ALL internal RAM for Stack

define a common register area of 16 register

default stack size of 256 Words

Can function
; external atod initialization

mainseg SECTION CODE
main PROC FAR

start: DISWDT
BSET IEN

; disable the watchdog timer
; Globally Enable Interrupts both global

Initialize the External Memory BUS
MOV SYSCON, #OE084h
MOV ADDRSEL1, #0404h
MOV BUSCONO, #004AFh
MOV BUSCONI, #004AFh
EINIT ; end initialization

End of external memory bus initialization

Use Hysteresis for Special Input Thresholds
EXTR #1
BSET PICON.1

End of Setting Hysteresis for Special Input Thresholds

Initialize the Data Page pointers for this section

MOV DPP3, #03h ; make DPP3 point to system

End of Data Page Pointer Initialization

Make the direction of Port 2 to output
MOV DP2, ONES
BCLR DP2.0 Pins zero and on are used to capture the direction of

the current flow.
BCLR DP2.1

Initialize The Stack
The Stack pointers are all word pointers so even though the

highest byte in the stack is located at #OFBFFh the highest

byte that the stack pointers can point to is #OFBFEh

MOV STKUN, #OFBFEh; Set Stack Underflow Pointer

MOV STKOV, #OF800h; Set STack Overflow Pointer

MOV SP, #OFBFEh ; Set the Stack Pointer

End of Stack Initialization

Initialize the Analog to Digital Converter
CALL atodinitialize; atod

End of A/D initialization

Initialize the timer for that controls A/D interval times

CALL atodtimer_initialize

End of initialization for the timer that controls the A/D interval times

Initialize CAN Bus
CALL canin Call the CAN initialization function

End of CAN Bus Initialization

meto:

main ENDP
mainseg ENDS

NOP
NOP

JMP meto
RET

startupsec SECTION CODE
sysreset PROC TASK INTNO

ORG OOOH
JMP start
RETI

sysreset ENDP
startupsec ENDS

END

; just loop here waiting

return

codesegment that contains reset int pointer

=0H reset interrupt number is zero at Oh
forces next instruction to be located at Oh

installs a pointer to the startup routine

return from interrupt

$SEGMENTED
$EXTEND
$EXTSFR

$EXTMEM

$NOMOD166
$STDNAMES(regl67b.def)
$SYMBOLS

NAME canmod

RBANK1 COMREG RO-R15

GLOBAL canin

EXTERN canmocfg:FAR configures specific Message objects

ASSUME DPP3:SYSTEM

canfunc SECTION CODE codesegment that contains reset int poin

canin PROC FAR

PUSH RO
PUSH Rl

;; set all of the CAN control registers
AND C1CSR, ZEROS set control register to zero

MOV Rl, #0043h ; Set IE and INIT bits

OR ClCSR,Rl set control register to Rl's value

AND C1BTR, ZEROS ; set Bit timing register to zero

MOV Rl, #03447h ; set for 125k operation
OR C1BTR, Rl set Bit timing register parameters

AND C1GMS, ZEROS ; set Global Mask short register to zero

MOV Rl, #OFFFFh ; EOFF is what DAVE initialize

OR C1GMS, Rl set GMS

AND C1UGML, ZEROS set Upper global mask long to zero

MOV Rl, #OFFFFh

OR C1UGML, Rl

MOV Rl, #OF8FFh
AND C1LGML, ZEROS

OR C1LGML, R1 ; lower global mask

AND C1UMLM, ZEROS
OR C1UMLM, R1 ; upper mask of last register

AND C1LMLM, ZEROS

OR C1LMLM, Rl ; lower mask of last register

CALL setall ; sets all of the CAN registers to off

CALL canmocfg ; Configures specific Message Objects

;; Setup CAN interrupt and Initialize CAN module
AND XPOIC, ZEROS ; configure CAN interrupt control Register

AND RO,ZEROS
OR RO,#0073h enable interrupt, level is 10 group is 2

EXTR #2

OR XPOIC,RO ; Configure CAN interrupt Control Register

BCLR XPOIC.6 ; Turn off interrupts

AND R1, ZEROS

OR R1, #00041h ; crashes if I clear the CPU access to the BTR

XOR C1CSR, R1 ; end initialize CAN interrupt

POP R1

ter

canmod.asm
POP RO
RET

canin ENDP

setall PROC FAR This Procedure sets all of the Mess objs invalid

by using a counter it counts up to 15 and initializes all of the message

objects along the way.
PUSH R2
PUSH R4
PUSH R5

AND R5,ZEROS

OR R5, #01h Set counter to 1 for first MO

AND R2,ZEROS

OR R2,#OEF10h Set pointer to MO1

AND R4, ZEROS

OR R4, #5555h Set R4 to make MObs invalid

nextreg:MOV [R2],R4 make all message objects invalid

ADD R2,#10h
CMPIl R5,#OFh
JMPA CCNZ,nextreg

POP R5
POP R4
POP R2
RET

setall ENDP

canfunc ENDS
END

define a common register area of 16 registers

The function must be declared Global at the
beginning of the module

canmo.asm

$SEGMENTED

$EXTEND

$EXTSFR

$EXTMEM
$NOMOD166

$STDNAMES(regl67b.def)
$SYMBOLS

NAME canmo

RBANK1 COMREG RO-R15 declare bank of 16 global registers

GLOBAL canmocfg

can-module SECTION CODE

ASSUME DPP3:SYSTEM

canmocfg PROC FAR
PUSH RO

PUSH RI
PUSH R2

PUSH R3

Now set specific CAN control Registers

initialize message object 1

initializing this object to be invalid does or removing the code until

the comment "Setup CAN interrupt and Initialize does

nothing to prevent the occurrance of the interrupt for the CAN system

This message object is the 36v battery voltage and should send the informatio

n if
it is requested by another node

MOV R2, #MCR_M1 ; start of Message Object 1

AND Rl, ZEROS

OR R1, #5555h ; Make sure that this message object is invalid before o

perating on it

MOV [R2],R1 set M01's Control register

ADD R2,#2h point to Upper Arbitration register

AND R3, ZEROS set R3 to

OR R3, #0005h message id for message object 1

MOV [R2],R3 message id = #0005h

ADD R2, #2h Point to the Lower Arbitration Register

MOV [R21, ZEROS standard Message object so lowerarb = Oh

AND R1, ZEROS

OR R1, #0038h put OAAh into first data byte and set to transmit
MOV MCDM1,R1 Databyte(D) = 0 and Set to receive and 3 bytes of data

MOV DATAMl, ZEROS fill the Data of the MO with Zeros

MOV RO, #05595 This makes a message object valid, but with no interru

pts
MOV MCRM1, RO Message control Register 1 is now valid

This message object is the 36v battery current and direction information

it is set up to transmit the information if it is requested by another node

MOV R2, #MCRM2 start of Message Object 2

AND R1, ZEROS

OR Rl, #05555h

MOV [R2],R1 set M02's Control register

ADD R2,#2h point to Upper Arbitration register

AND R3, ZEROS ; set R3 to

OR R3, #0006h message id for message object 2

MOV [R2],R3 message id = #0006h

ADD R2, #2h Point to the Lower Arbitration Register

MOV [R2], ZEROS standard Message object so lowerarb = Oh

AND Rl, ZEROS

OR Rl, #0038h

MOV MCDM2,R1

f data
MOV DATA M2, ZEROS
MOV RO, #05595

errupts
MOV MCRM2, RO

This message object is

MOV R2, #MCRM3

AND Rl, ZEROS

OR R1, #05555h

MOV [R2],R1

ADD R2,#2h

AND R3, ZEROS

OR R3, #0007h

MOV [R2],R3

ADD R2, #2h
MOV [R2], ZEROS

AND Rl, ZEROS

OR R1, #0038h
MOV MCDM3,R1

f data
MOV DATA-M3, ZEROS

MOV RO, #05595

errupts
MOV MCRM3, RO

the 36

This is a transmit object

; Databyte(0) = 0 and Set to receive and 3 bytes o

fill the Data of the MO with Zeros

This makes a message object valid, but with no int

Message control Register 2 is now valid

v battery temperature message object

start of Message Object 3

; set M03's Control register to inactive

point to Upper Arbitration register

set R3 to zero

message id for message object 3

message id = #0007h

Point to the Lower Arbitration Register

standard Message object so lowerarb = Oh

This guy is a transmit object

; Databyte(O) = 0 and Set to receive and 3 bytes o

fill the Data of the MO with Zeros

This makes a message object valid, but with no int

Message control Register 3 is now valid

This is the 36v battery state of charge message object

it is set up to transmit the state of charge at the request of another message ob

ject
;; it is different than the other message objects because it has a data length of 5

MOV R2, #MCRM4

AND Rl, ZEROS

; start of Message Object 4

OR R1, #05555h
MOV [R2],R1 set M02's Control register

ADD R2,#2h point to Upper Arbitration register

AND R3, ZEROS ; set R3 to

OR R3, #0008h message id for message object 4

MOV [R2],R3 message id = #0009h

ADD R2, #2h Point to the Lower Arbitration Register

MOV [R2], ZEROS standard Message object so lowerarb = Oh

AND R1, ZEROS

OR Rl, #0058h This guy is a transmit object

MOV MCDM4,R1 Databyte(0) = 0 and Set to receive and 3 bytes of

data

MOV DATA M41, ZEROS fill the Data of the MO with Zeros

MOV DATA.M42, ZEROS Clear this part of the message object too

MOV RO, #05595 This makes a message object valid, but with no int

errupts
MOV MCRM4, RO Message control Register 4 is now valid

This is the 12v battery voltage message object

It is a transmit message object with data length of 3

MOV R2, #MCRM5 start of Message Object 5

AND R1, ZEROS

OR R1, #05555h

MOV [R2],Rl set MOS's Control register

ADD R2,#2h point to Upper Arbitration register

AND R3, ZEROS set R3 to

OR R3, #0009h message id for message object 5

MOV [R2],R3 message id = #0009h

canmo.asm
ADD R2, #2h

MOV (R2], ZEROS

AND Rl, ZEROS

OR R1, #0038h

MOV MCDM5,R1

MOV DATAM5, ZERO

MOV RO, #05595

pts
MOV MCRM5, RO

This is the 12v battE

it will transmit this

MOV R2, #MCRM6

AND R1, ZEROS

OR R1, #05555h

tivates
MOV [R2],Rl

ADD R2,#2h
AND R3, ZEROS

OR R3, #DDDBAh

MOV [R2),R3

ADD R2, #2h

MOV [R2], ZEROS

AND Rl, ZEROS

OR Rl, #0038h

MOV MCDM6,R1

MOV DATAM6, ZER

MOV RO, #05595

pts
MOV MCRM6, RO

This is the 12v batt

It is setup to trans

received
MOV R2, #MCRM7

Point to the Lower Arbitration Register

standard Message object so lowerarb = Oh

; This guy is a transmit object
; Databyte(D) = 0 and Set to receive and 3 bytes of data

S fill the Data of the MO with Zeros

This makes a message object valid, but with no interru

Message control Register 5 is now valid

ry current and direction message object

information at the request of a remote from

start of Message Object 6

Generate a Receive Interrupt if this message object ac

set MO6's Control register

point to Upper Arbitration register

set R3 to

message id for message object 6

message id = #00OAh
Point to the Lower Arbitration Register

standard Message object so lowerarb = Oh

This guy is a transmit object

Databyte(D) = 0 and Set to receive and 3 bytes of data

)S ;fill the Data of the MO with Zeros

This makes a message object valid, but with no interru

Message control Register 6 is now valid

ery temperature message object

mit the temperature information if an appropriate remote from is

; start of Message Object 7

AND Rl, ZEROS

OR Rl, #05555h

MOV [R2],R1 set M07's Control register

ADD R2,#2h point to Upper Arbitration register

AND R3, ZEROS ; set R3 to

OR R3, #00OBh message id for message object 7

MOV [R2),R3 message id = #00Bh

ADD R2, #2h Point to the Lower Arbitration Register

MOV [R2], ZEROS standard Message object so lowerarb = Oh

AND R1, ZEROS

OR R1, #0038h This is a transmit object with 3 data bytes

MOV MCDM7,R1 Databyte(O) = 0 and Set to receive and 3 bytes of data

MOV DATAM7, ZEROS fill the Data of the MO with Zeros

MOV RO, #05595 This makes a message object valid, but with no interru

pts
MOV MCRM7, RO Message control Register 7 is now valid

This message object contains the 12v battery state of charge.

It is similar to message object 4 in that it is setup to transmit 5 data bytes

MOV R2, #MCRM8 start of Message Object 8

AND R1, ZEROS

OR Rl, #05555h

MOV [R2],Rl set M08's Control register

ADD R2,#2h point to Upper Arbitration register

AND R3, ZEROS set R3 to

OR R3, #000OCh message id for message object 8

MOV [R2],R3 message id = #00OCh

ADD R2, #2h
MOV [R2], ZEROS

AND R1, ZEROS

OR R1, #0038h

MOV MCDM8,R1

data

MOV DATA M81, ZERO

MOV DATA-M82, ZERO

MOV RO, #05595

errupts

MOV MCRM8, RO

This message object is

The state of the DC/DC

MOV R2, #MCRM9

AND Rl, ZEROS

OR R1, #05555h

MOV [R2],Rl

ADD R2,#2h

AND R3, ZEROS

OR R3, #00OEh

MOV [R2],R3

ADD R2, #2h

MOV [R2], ZEROS
AND Rl, ZEROS

OR Rl, #0038h

MOV MCDM9,R1

data
MOV DATAM9, ZEROS

MOV RO, #05595

errupts

MOV MCRM9, RO

POP R3

POP R2

POP R1
POP RO

RET

canmocfg ENDP

can-module ENDS

END

Point to the Lower Arbitration Register

standard Message object so lowerarb = Oh

This guy is a transmit object

Databyte(O) = 0 and Set to receive and 3 bytes of

S fill the Data of the MO with Zeros

S fill the Data of the MO with Zeros
This makes a message object valid, but with no int

Message control Register 8 is now valid

set up to transmit the state of the DC/DC converter

converter is the output of the Energy Management algorithm

start of Message Object 9

set M02's Control register

point to Upper Arbitration register

set R3 to

message id for message object 8

message id = #00OCh
Point to the Lower Arbitration Register

standard Message object so lowerarb = Oh

This guy is a transmit object

Databyte(O) = 0 and Set to receive and 3 bytes of

fill the Data of the MO with Zeros

This makes a message object valid, but with no int

Message control Register 9 is now valid

timers.asm

$SEGMENTED

$EXTEND
$EXTSFR
$EXTMEM
$EXTINSTR

$NOMOD166
$STDNAMES (regl67b.def)

$SYMBOLS

NAME timer-functions
ASSUME DPP3:SYSTEM

RBANK1 COMREG RO-R15

GLOBAL timerperiod

GLOBAL atod-timer-initialize
atodtimer-data SECTION DATA WORD

timer-period DW 04990h
is about 1 second

atod-timer-data ENDS

These are assembler controls

Assembler controls end here

GLOBAL 'ROM'
This value plus the time necessary for all conversions

atodtimer SECTION CODE

atodtimer-initialize PROC FAR

PUSH DPPO
MOV DPPO, #PAG atod-timerdata
MOV T3CON, #0086h setup Core Timer T3 for

MOV T3IC, #002Bh Interrupt stuff

BSET T3IE ; enable the interrupt

MOV T3, DPPO:timerperiod This value plus

s 1 second
BSET T3CON.6

POP DPPO
RET

atodtimer-initialize ENDP

count down mode

the time for all conversions i

atodinterrupt PROC TASK INTNO=023h

ORG 08Ch
CALL atodtimer-handler

RETI

atodinterrupt ENDP

atodtimer-handler PROC FAR
PUSH DPPO
PUSH RO
MOV DPPO, #PAG atod-timer-data

BCLR T3R ; stop the timer

MOV T3, DPPO:timerperiod ; Reset the count down register

BSET ADST start an A/D conversion

POP RO
POP DPPO
RET

atod-timer-handler ENDP

atod-timer ENDS
END

; CAN USE ALL internal RAM for Stack

name atod

ASSUME
RBANK1
EXTERN
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL

GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL

GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL

DPP3:SYSTEM

COMREG RO-R15

energymanagement-algorithm:FAR
atod_initialize
voltage_36v
current-36v
current-direction_36v
temperature_36v
soc_36vhigh word
soc_36vlowword
voltage_12v
current_12v
current-direction_12v
temperature_12v
soc_12v-highword
soc_12v-lowword
soc-region_36v
soc-region_12v
rl-soc_36v-high
risoc_36vlow
r2_soc_36vhigh
r2_soc_36vjlow
r3_soc_36v_high
r3_soc_36vlow
r4_soc_36vhigh
r4_soc_36vlow

rlsoc_12vhigh
rlsoc_12vlow
r2_soc_12vhigh
r2_soc_12vjlow
r3_soc_12v_high
r3_soc_12v_low
r4_soc_12vhigh
r4_soc_12vlow

This A/D is set up to measure the current in two different
loads. Because this software is to be used as part of

42volt bus node 1, it uses the names of the loads that

that node is supposed to control.
The analog to digital converter uses Port 5

atod-data-section SECTION DATA WORD GLOBAL 'RAM'

voltage_36v DSW 1

current_36v DSW 1
current-direction_36v DSW 1
temperature_36v DSW 1 Collec

ooked up
soc_36v highword DSW 1

ted, but not used because no sensor is h

; The 36v Battery STATE of charg

soc_36vlowword DSW 1
soc-region_36v DSW 1 This is the SOC Region (1->5) in which the Battery is

atod.as mi

operating

voltage_12v DSW 1
current_12v DSW 1
current direction_12v DSW 1

temperature_12v DSW 1

is hooked up 5/5/99
soc_12vhigh-word DSW 1

harge
soc_12vjlowword DSW 1
socregion_12v DSW 1 This is the SOC Region (1->5) in which the Battery

is operating

;; These variables help with the computation

total-period DSW 1

atoddatasection ENDS

batterymodel-parameters SECTION DATA

starting-charge_36v_low DW
startingcharge_36vhigh DW
starting-charge_12vlow DW

startingcharge_12v-high DW

r1_soc_36v-high DW 012h
rlsoc_36v_low DW 07AOh
r2_soc_36vhigh DW 011h
r2_soc_36v_low DW 035DCh
r3_soc_36vhigh DW ODh
r3_soc_36v_low DW OEE86h
r4_soc_36vhigh DW 09h
r4-soc_36vlow DW OD58Ah

WORD GLOBAL 'ROM'
063E6h
010h
076AOh
025h

rlsoc_12v-high DW 029h
r1_soc_12vjlow DW 0359Ch
r2_soc_12v-high DW 027h

r2_soc_12vjlow DW 05650h
r3_soc_12vhigh DW 01Fh
r3_soc_12vjlow DW OD7F4h
r4_soc_12v-high DW 016h
r4_soc_12v-low DW 07A4Ch

batterymodelparameters ENDS

atod-setup SECTION CODE
atod initialize PROC FAR

;; Initialize variables
PUSH DPPO
PUSH DPP1

PUSH DPP2

PUSH RO
PUSH RI

PUSH R2

PUSH R3

;; This section of code simply clears all of the variables which are to be u

sed during
data collection.
It also initializes the amphours of each of the batteries

The idea is that the system will boot up thinking that both of the batter

ies are okay
;; Then it will take and measure the voltages and determine from a graph whi

ch is figure xxx
in the master's thesis of James Geraci, what the actual state of charge i

s.
MOV DPPO, #PAG atoddata-section
MOV DPP1, #PAG batterymodelparameters

AND DPPO:voltage_36v, ZEROS
MOV RO, DPP1:starting-charge_36vjlow

$SEGMENTED
$EXTEND

$EXTSFR

$EXTSSK
$EXTMEM

$NOMOD166
$STDNAMES(regl67b.def)
$SYMBOLS

collected, but not used because no sensor

; The 12v Battery STATE of c

atod.asm

AND DPPO:current_36v, ZEROS
MOV Rl, DPP1:starting-charge_36v-high

AND DPPO:current_direction_36v, ZEROS
AND DPPO:temperature_36v, ZEROS

AND DPPO:soc_36v highword, R1
AND DPPO:soc_36vlowword, RO

AND DPPO:voltage-12v, ZEROS
AND DPPO:current-direction_12v, ZEROS

MOV RO, DPP1:startingcharge_12vlow

AND DPPO:temperature_12v, ZEROS

MOV Ri, DPP1:startingcharge_12vjhigh

AND DPPO:soc_12v high word, R1

AND DPPO:soc12vlowword, RO

;; Calculate the total conversion time
harge collected

;; Having a hard time understanding flc

g to make the total

;; period equal to 1

to be used in calculating the amount of c

ating points in assembly so I'm just goin

This below line of code setups up the A/D converter

for 6 channels and single conversion.

The idea is that the converter is on a timer

After each successful round of data collection, it will tell the

DC/DC converter that the data is ready, and the DC/DC converter

will then request transmission of each piece of information

It is also set for "Wait for read mode"

so the converter will wait for the user program to read

the buffer before processing the next channel.

MOV ADCON, #DA225h ; setup A/D control register

The below code sets up the A/D's Interrupt control register

The A/D is setup to have a group of 2 and a level of 10

MOV ADCIC, #007Ah

POP R3

POP R2

POP Ri

POP RO

POP DPP2

POP DPP1

POP DPPO

RET

atod.initialize ENDP

atod setup ENDS

atod-handlers SECTION CODE

atod-handler PROC TASK INTNO=028h

ORG OADH
CALL atodjfunction

RETI

atodhandler ENDP

atod_function PROC FAR

this function works by seeing if the converter is converting

for the heater.Imeasurement. If the bit is set, then

the bit gets cleared and the IP jumps to where the

value in the converter is moved into the heatercurrent

variable.

otherwise the bit gets set and the value is moved into

the heated rear window current variable

The Order of Conversion is:
1) 36v temperature

2) 12v temperature
3) 36v voltage
4) 12v voltage
5) 12v current
6) 36v current

The channels of the A/D are

0) 36v current
1) 12v current
2) 12v voltage

3) 36v voltage

4) 12v temperature

5) 36v temperature

PUSH DPPO
PUSH DPP1

PUSH DPP2

PUSH RO

PUSH R1

PUSH R2

PUSH R3

PUSH R4

PUSH R5

PUSH R6
PUSH R7

PUSH R8

PUSH R9

MOV DPPO, #PAG atod.datasection

MOV DPP1, #PAG battery-model-parameters

MOV RO, ADDAT Get the information from the A/D converter

AND R1, ZEROS Clear R1

MOVB RL1, RHO ; The upper nibble of the upper byte of the A/D info

rmation gives channel information

SHR R1, #04h ; Shift Rl right one nibble, this puts the converter number

into the lower nibble of R1

MOV R7, RO ; Make a copy of the current information

;; This piece of code isolates the DATA that has just been collected

AND RO, #03FFh ; This makes the upper 6 bytes zero

This code decides which piece of information has just been collected

and goes to the appropriate handler routine

CMPB RL1, #05h ; This tests to see if the conversion that just finished was

made by converter number 5

JMP ccZ, temperature_36v routine Converter number 5 should take in

the temperature for the 36v battery

NOP

CMPB RL1, #04h ; This tests to see if the conversion that just finished was

made by converter number 4

JMP ccz, temperature_12v-routine Converter number 4 should take in

the temperature for the 12v battery

NOP

CMPB RL1, #03h ; This tests to see if the conversion that just finished was

made by converter number 3
JMP ccz, voltage_36vroutine Converter number 3 should take in the volt

age for the 36v battery

atod.asm

NOP

CMPB RL1, #02h ; This tests to

e by converter number 2
JMP ccz, voltage_12v-routine

for the 12v battery

NOP

CMPB RL1, #01h ; This tests to
e by converter number 1

JMP cc z, current-12v routine

for the 12v battery

NOP

CMPB RL1, #00h ; This tests to

e by converter number 0

JMP ccz, current_36v routine
for the 36v battery

NOP

temperature_36v-routine:

;; The information for the temp,
MOV R2, #05555h This

MOV Ri, #05595h SAVE

MOV MCRM3, R2 Turn

see if the conversion that just finished was mad

; Converter number 2 should take in the voltage

see if the conversion that just finished was mad

; Converter number 1 should take in the current

see if the conversion that just finished was mad

; Converter number 0 should take in the current

of 36v battery goes into CAN MO 3
bit pattern deactives MCRs

the Configuration of the MCR

Off the Message Control Register

MOV DATAM3, RO ; Put the Data that has just been collected into Message Object

MOV DPPO:temperature_36v, RO ;put the data into memory

MOV MCRM3, R1

JMP exit-routine

temperature_12v-routine:
;; The information
MOV R2, #05555h
MOV Rl, #05595h
MOV MCRM7, R2

for the temp of 12v battery goes into CAN MO 7

This bit pattern deactives MCRs

SAVE the Configuration of the MCR

Turn Off the Message Control Register

MOV DATAM7, RO ; Put the Data that has just been collected into Message Object
7

MOV DPPO:temperature_12v, RO Put the 12v temperature into memory

MOV MCR M7, Rl

JMP exit-routine

voltage36v routine:

;; The information for the voltage of 36v battery goes into CAN MO 1

MOV R2, #05555h This bit pattern deactives MCRs

MOV Rl, #05595h SAVE the Configuration of the MCR

MOV MCR.M1, R2 Turn Off the Message Control Regis

MOV DATAM1, RO ; Put the Data that has just been collected into Message object

MOV MCRM1, R1
JMP exit-routine

voltage_12v-routine:
;; The information for
MOV R2, #05555h
MOV R1, #05595h

MOV MCRM5, R2

MOV DATAM5, RO ; Put

5

MOV MCRM5, Ri
JMP exit-routine

current_12v-routine:

the voltage of 12v battery goes into CAN MO 5

This bit pattern deactives MCRs
SAVE the Configuration of the MCR

Turn Off the Message Control Register
the Data that has just been collected into Message Object

;; The information for
MOV R2, #05555h
MOV Ri, #05595h
MOV MCR_M6, R2

MOV R8, #05595h
OC message object

MOV MCRM8, R2

the current of the 12v battery goes into CAN MO 6

This bit pattern deactives MCRs

SAVE the Configuration of the MCR

Turn Off the Message Control Register

SAVE the configuration for MCR8 which is the 12v S

Turn off MC8

The State of Charge of the Battery is also generated Here

;; The current measurement must be converted back into the actual cu

rrent value
MOV R3, DPPO:soc_12v_low-word The Low byte of the 12v battery so

c
MOV R4, DPPO:soc12vhigh-word The upper byte of the 12v battery

soc

Now we must check to see if the charge is positive or negative

This can be done for the 12v battery by checking to see if pin P2

.1 is a one or a zero
MOV R2, P2
AND R2, #0002h ; This isolates the pin P2.1

ion flag
CMP R2, #0002h ; This performs the comparison and sets the Z condit

JMP ccNZ, perform-addition ;The Pin is brought Low when the Battery

is charging
perform-subtraction: Th(

SUB R3, RO
SUBC R4, ZEROS

JMP continue-data collection
performaddition:

ADD R3, RO
ADDC R4, ZEROS

battery is discharging

; The battery is charging

;; When this point is reached the SOC should be in registers R3 and

R4. The total charge for this period

;; should be in RO, the current direction should be in R2, and the c

urrent magnitude should be in R7
continue-data-collection:

memory

MOV
MOV
MOV
MOV

DPPO:current_12v, RO
DPPO:current-directionj12v

DPPO:soc_12v-high-word, R4
DPPO:soc_12vlowword, R3

MOVB RH2, RL2

AND R2, #00FD0h
SHL R2, #04h

ADD R2, RO

MOV DATAM6, R2

; Put the current into memory

R2 ; Put the current direction into memory

Put the upper part of the SOC into memory
; Put the lower part of the SOC into

Move the current direction into the upper byte of R2
; Get rid of all but the 3rd nibble

Move the direction information into the upper nibble

; Move the magnitude of the current into R2

Put the Data that has just been collected into Message Obi
ect 6

These lines put the SOC into the CAN message object number 8
MOV DATAM81, R4 Put the high data byte into data registers 2 and 1

MOV DATAM82, R3 Put the low data byte into data registers 4 and 3

MOV MCRM8, R8 Restore the SOC Message Object
MOV MCRM6, R1 Restore the CAN message object to operational status

JMP exitroutine

current_36v-routine:
;; The information for the current of the 12v battery goes into CAN MO 6
MOV R2, #05555h This bit pattern deactives MCRs
MOV R1, #05595h SAVE the Configuration of the MCR
MOV MCRM2, R2 Turn Off the Message Control Register for message

atod.asm

object 2
MOV MCRM4, R2 Turn off MCR4

The State of Charge of the Battery is also generated Here

The current measurement must be converted back into the actual curren

t value

s a one or a zer

flag

MOV R3, DPPO:soc_36vlowword
MOV R4, DPPO:soc_36v-high-word

; The Low byte of the 36v battery soc

; The upper byte of the 36v battery soc

Now we must check to see if the charge is positive or negative

This can be done for the 36v battery by checking to see if pin P2.0 i

0
MOV R2, P2
AND R2, #000lh ; This isolates the pin P2.0

CMP R2, #0001h ; This performs the comparison and sets the Z condition

JMP ccNZ, perform-addition_36v ;The battery is charging when the pin is

logic level low

perform-subtraction_36v: ;The battery is discharging

SUB R3, RO
SUBC R4, ZEROS
JMP continue-datacollection_36v

perform-addition 36v: the battery is charging

ADD R3, RO
ADDC R4, ZEROS

;; When this point is reached the SOC should be in registers R3 and R4.

The total charge for this period
;; should be in RO, the current direction should be in R2, and the curre

nt magnitude should be in R7
continuedatacollection_36v:

MOV DPPO:current_36v, RO
MOV DPPO:current-direction_36v, R2

MOV DPPO:soc_36v-high-word, R4

MOV DPPO:soc_36vlowword, R3

MOVB RH2, RL2 Move the current direction into the upper byte of R2

AND R2, #00FOOh ; Get rid of all but the 3rd nibble

SHL R2, #04h Move the direction information into the upper nibble

ADD R2, RO ; Move the magnitude of the current into R2

MOV DATAM2, R2 Magnitude and direction information is now put into Message Ob

ject 2

Move the SOC into the Message Object 4

MOV DATAM41, R4 Put the high data byte into data registers 2 and 1

MOV DATAM42, R3 Put the low data byte into data registers 4 and 3

MOV MCRM4, Rl Restore the SOC Message Object

MOV MCRM2, R1 Restore the CAN message object to operational status

CALL energymanagement-algorithm

MOV R9, #04h

ADD P2, R9

BSET T3R ; Start the Conversion Again

JMP exit-routine

exit-routine:
POP R9
POP R8
POP R7

POP R6
POP R5
POP R4
POP R3

POP R2

POP R1
POP RO
POP DPP2
POP DPP1
POP DPPO
RET

atodjfunction ENDP

atod-handlers ENDS

END

ema.asm

$SEGMENTED
$EXTEND

$EXTSFR
$EXTSSK
$EXTMEM

$NOMOD166

$STDNAMES(reg167b.def)
$SYMBOLS

name ema2

; CAN USE ALL internal RAM for Stack

; THIS IS THE ENERGY MANAGEMENT ALGORITHM ASSEMBLY FILE

ASSUME DPP3:SYSTEM

RBANK1 COMREG RO-R15

GLOBAL energy-management-algorithm

GLOBAL dcdcinitialize

EXTERN
EXTERN
EXTERN

EXTERN

EXTERN
EXTERN
EXTERN
EXTERN
EXTERN

EXTERN
EXTERN

EXTERN
EXTERN

EXTERN

EXTERN

EXTERN
EXTERN

EXTERN
EXTERN
EXTERN

EXTERN
EXTERN

EXTERN
EXTERN
EXTERN
EXTERN
EXTERN

EXTERN
EXTERN
EXTERN

voltage_36v:WORD

current_36v:WORD
current-direction_36v:WORD

temperature_36v:WORD
soc_36vhigh-word:WORD
soc_36vlow word:WORD

voltage_12v:WORD

current_12v:WORD
current-direction_12v:WORD
temperature_12v:WORD

soc_12v-highword:WORD
soc_12v_lowword:WORD

soc-region_36v:WORD

soc-region_12v:WORD

rlsoc_36vhigh:WORD

rlsoc_36vjlow:WORD
r2_soc_36vhigh:WORD

r2_soc_36v_low:WORD
r3_soc_36vhigh:WORD
r3_soc_36v_low:WORD

r4_soc_36vhigh:WORD

r4_soc-36vAlow:WORD

rlsoc_12vhigh:WORD
rlsoc_12v-low:WORD

r2_soc_12v_high:WORD
r2_soc_12v_low:WORD
r3_soc_12vhigh:WORD
r3_soc_12v_low:WORD
r4_soc_12vhigh:WORD
r4_soc_12vlow:WORD

dcdc-dataesection SECTION DATA

dcdc-state DSW 1

dcdc-data-section ENDS

WORD GLOBAL 'RAM'

dcdc-decisions SECTION DATA WORD GLOBAL 'ROM'

There are 5 decisions to be made
0 = NONE
1 = Full
2 = ZERO
3 = UP

4 = DOWN
The hex symbol next to some of the values is unnecessary but was put

in for test purposes
decision11 mm DW 0
decision_11jmp DW 1

decisionlpm DW

decisionl1_pp DW

decision_12_mm DW

decision_12_mp DW

decision_12_pm DW

decision_12_pp DW

decision_13_mm DW

decision_13_mp DW

decision_13_pm DW

decision_13_pp DW

decision_14_mm DW

decision_14_mp DW

decision_14pm DW

decision_14_pp DW

decision_15_mm DW

decision_15_mp DW

decision_15_pm DW

decision_15_pp DW

decision_21_mm DW

decision_21_mp DW

decision_21_pm DW

decision_21_pp DW

decision_22_mm DW

decision_22_mp DW

decision_22_pm DW

decision_22_pp DW

decision_23_mm DW

decision_23_mp DW

decision_23_pm DW

decision_23_pp DW

decision_24_mm DW

decision_24_mp DW

decision_24_pm DW

decision_24-pp DW

decision_25_mm DW

decision_25_mp DW

decision_25_pm DW

decision_25_pp DW

decision_31_mm DW

decision_31_mp DW

decision_31-pm DW

decision_31_pp DW

decision_32_mm DW

decision_32_mp DW

decision_32_pm DW

decision_32_pp DW

decision_33_mm DW

decision_33_mp DW

decision_33_pm DW

decision_33_pp DW

decision_34_mm DW

decision_34_mp DW

;modified for test purposes real value is 2

ema.asm
decision_34_pm
decision_34_pp

decision_35_mm
decision_35_mp
decision_35_pm
decision_35_pp

decision_41_mm
decision_41_mp
decision_41_pm
decision_41_pp

decision_42_mm

decision_42_mp
decision_42_pm
decision_42_pp

decision_43_mm
decision_43_mp
decision_43_pm
decision_43_pp

decision-44_mm
decision_44_mp
decision_44_pm

decision_44_pp

decision_45_mm

decision_45_mp
decision_45_pm
decision_45-pp

decision_51_mm
decision_51_mp
decision_51_pm
decision_51_pp

decision_52_mm.
decision_52_mp
decision_52pm
decision_52_pp

decision_53_mm
decision_53_mp
decision_53_pm
decision_53_pp

decision_54_-mm
decision_54_mp
decision_54_pm

decision_54_pp

decision_55_mm
decision_55_mp
decision_55_pm
decision_55-pp

dcdc-decisions ENDS

DW 4
DW 4

dcdcstart SECTION CODE
dcdcinitialize PROC FAR

;; This function simply initializes the DC/DC converter to ZERO output

PUSH DPPO
MOV DPPO, #PAG dcdc-data-section

NOP

MOV DPPO:dcdc-state, ZEROS
POP DPPO
RET

dcdcinitialize ENDP
dcdcstart ENDS
energy-management SECTION CODE

energy-managementalgorithm PROC FAR

PUSH RO
PUSH DPPO
CALL determine-soc_36v
CALL determine-soc-12v

CALL ema-decision
MOV DPPO, #PAG dcdcdatasection

NOP

MOV RO, DPPO:dcdc state
MOV DATAM9, RO

MOV RO, #06595h ; transmit the data in DATAM9 which happens to be the wante

d DC/DC converter state

MOV MCRM9, RO
POP DPPO
POP RO
RET

energy-management-algorithm ENDP

energy-management ENDS

energy-management-options SECTION CODE

ema-decision PROC FAR

;; This function takes and makes a decision as to what to do about the state of the

DC/DC converter
Based on the Region of state of charge of both batteries and their currents

It does this by using a giant WORD lookup table. This WORD is put into the varia

ble
dcdcstatel, and from there it is decided what to do with it.

PUSH RO
PUSH R1

PUSH R2

PUSH R3

PUSH R4

PUSH R5

PUSH R6
PUSH R7

PUSH R8

PUSH R9

PUSH R10
PUSH R11

PUSH MDH

PUSH MDL

PUSH DPPO
PUSH DPP1

PUSH DPP2

MOV DPPO, #PAG current-direction-36v
AND R6, ZEROS ; This is to be used in looking up the array index.

AND R7, ZEROS ; This is to be used as a pointer to our array.

These are the variables needed to make a decision about the
State of the DC/DC converter

MOV RO, DPPO:currentdirection_36v
MOV R1, DPPO:current-direction_12v
MOV R2, DPPO:socregion_36v
MOV R3, DPPO:socregion_12v

The function for computing the memory location to look in is

The socregion_12v - 1 = the number of 20s in the offset
The socregion_36v -1 = the number of 4s in the offset
and the current signs gives one of 4 different offsets
(12,36) => (-,-) = 1 ; (-, +) = 2 ; (+,-) = 3; (+,+) = 4

Adding them all togther gives you up to 100 different choices

ema.asm

Subtracting by one gives the appropriate array index

First determine the number of 20s

SUB R3, #01h ; R3 now contains the number of 20s that are in offset index

;; Now determine the number of 4s in the index
SUB R2, #01h ; R2, now contains the number of 4s that are in the index.

;; Now Compute the Major index by unsigned multiplication
MOV R4, #14h

MULU R3, R4 14h is 20 in hex

NOP
MOV R3, MDL Now R3 contains a number between zero and 80

MOV R4, #4h

MULU R2, R4 4h is 4 in hex

NOP
MOV R2, MDL Now R2 contains a number between zero and 16

NOP
ADD R3, R2 Now R3 has the index less the offset of 4 created by t

he current signs.

;; Now Determine the offset due to the current direction.
CMP R1, ZEROS ; Test the 12v current direction

JMP ccZ, plus_12v

minus_12v:
CMP
JMP
MOV
JMP

plus-12v:
CMP
JMP
MOV
JMP

RO, ZEROS ; Test the 36v current direction

ccZ, plusone_36v
R5, #01h ; Negative 36v current direction
finalizeindex

RO, ZEROS ; test
ccZ, plustwo_36v
R5, #03h
finalize-index

the 36v current direction

plus-one_36v:
MOV R5, #02h
JMP finalize-index

plus-two_36v:
MOV R5, #04h

finalize-index:
MOV RO, #02h
ADD R3, R5

MULU R3, RO

NOP
MOV R3, MDL

SUB R3, #02h ;; Now R3 has the final index.

ked up in our lookup table.

MOV DPP2, #PAG dcdcdecisions

NOP

MOV R8, #DPP2:dcdcdecisions move the

y into register 8

ADD R8, R3

Now the appropriate word can be loo

address of the first item in the arra

get-data:
MOV R9, [R8] ; This puts the decision of the DC/DC converter into R9

MOV DPP1, #PAG dcdcdata-section

NOP

MOV DPP1:dcdc-state, R9

Finally test the 12v battery's voltage
;; if it is less than 13v Go to full on

MOV
NOP
MOV
MoV
CMP

JMP

CMP
JMP

CMP
JMP
CMP
JMP
CMP

JMP
CMP
JMP

full-on:
M
N
M

rter
J

full_off:

rter

up-one:

downonE

OV

OP
OV

DPPO, #PAG voltagej12v

R10, DPPO:voltage_12v
R11, #03FFh

R11, R10
ccNC, full-on

R9, ZEROS ; In this case don't do anything

ccZ, exitdcdc_index
R9, #01h ; full on
ccZ, full-on
R9, #02h ; Full off
ccZ, full-off
R9, #03h ; Up one
ccZ, upone
R9, #04h ; Down one
ccZ, downone

JMP exit-dcdc-index

DPP1, #PAG dcdc-data-section

DPP1:dcdc-state, ZEROS ZEROS produces full on for the DC/DC conve

MP exit-dcdc-index

MOV
NOP
MOV

J

DPP1, #PAG dcdc-datasection

DPP1:dcdcstate, ONES ; ONES produces full off for the DC/DC conve

MP exit dcdcindex

MOV DPP1, #PAG dcdc_datasection

NOP
MOV RO, DPP1:dcdc-state
CMPB RLO, #000h ; see if already at max

JMP ccZ, exit_dcdc_index
SUB RO, #01h
MOV DPP1:dcdc-state, RO New v

JMP exitdcdcindex

MOV DPP1, #PAG dcdcdatasection

NOP
MOV RO, DPP1:dcdc-state
CMPB RLO, #OFFh ; see if already at min

JMP cc_Z, exitdcdc_index
ADD RO, #01h
MOV DPP1:dcdcstate, RO new v
JMP exit-dcdcjindex

alue for the DC/DC converter

alue for DCDC converter

exitdcdcindex:
POP DPP2
POP DPP1
POP DPPO
POP
POP
POP
POP
POP
POP
POP

MDL
MDH
R11
R10
R9
R8
R7

ema.asn
POP R6
POP R5
POP R4
POP R3
POP R2
POP R2
POP RD
RET

ema-decision ENDP

energy-management-options ENDS

determine-soc-region SECTION CODE

This procedure trys to determine which of 5 possible different regions of

State of Charge that a battery is operating in.

determine-soc_36v PROC FAR
PUSH RO
PUSH R1
PUSH DPPO
PUSH DPP1

MOV DPPO, #PAG soc_36v highIword

MOV DPP1, #PAG rlsoc_36v-high

MOV RO, DPPO:soc_36vhigh-word

MOV Ri, DPPl:rl-soc_36vhigh
CMP R1, RO ; This subtracts soc_36v-high-word from rlsoc_36v-high so then test

flags

; If there is a carry then soc_36v-high word was larger

; than rlsoc_36v-high so a carry was generated

; soc_36v highword > rlsoc_36vhigh => Very Dangerous Over Charge => Region 1

JMP ccC, Regionl_36v

If no Carry must test to see if soc_36v-high-word = rl-soc-36v-high

If they DON'T equal then soc_36v-highword < rlsoc_36v-high

This means Test for Different Region

JMP ccNZ, TestRegion_2_36v

Since soc-36v high word = ri soc-36v-high must now test lower word

Inorder to determine if battery is in region 1 or region 2

MOV RO, DPPO:soc_36v-lowword
MOV Ri, DPP1:rlsoc_36vlow
CMP Ri, RO ; This subtracts soc_36vjlow word from rlsoc_36vjlow

; If soc_36v_lowword > rlsoc_36vjlow
; then operating in region 1
JMP ccC, Regionl_36v

If no Carry must test to see if soc_36vjlowword = rl_soc_36vjlow

If they DON'T equal then soc_36vjlow-word < risoc_36vlow
This means region 2

JMP cc_NZ, Region2_36v

Getting here means that the soc_36vhigh word = rlsoc_36v high

This point is defined to be in Region 1

JMP Regionl_36v

TestRegion_2_36v:
MOV Ri, DPP:r2_soc-36v-high
NOP
CMP Ri, RO ; This subtracts soc-36v-high-word from r2_soc_36vhigh so then test

flags

If there is a carry then soc_36v-highword was larger

than r2-soc-36v high so a carry was generated

soc_36v-high-word > r2_soc_36v-high => Very Dangerous Over Charge => Regio

ni
JMP ccC, Region2_36v

If no Carry must test to see if soc_36v-high-word = r2 soc_36v-high

If they DON'T equal then soc_36v-high-word < r2_soc_36v-high

This means Test for Different Region

JMP ccNZ, TestRegion_3_36v

Since soc_36v high-word = r2_soc_36vhigh must now test lower word

Inorder to determine if battery is in region 2 or region 3

MOV RO, DPPO:soc_36vlowword
MOV R1, DPP1:r2_soc_36vjlow
CMP R1, RO ; This subtracts soc_36v-low-word from r2_soc_36vjlow

If soc_36v_low-word > r2 soc.36v low
then operating in region 2

JMP ccC, Region2_36v

If no Carry must test to see if soc_36vjlow word = r2 soc_36v-low

If they DON'T equal then soc_36vlowword < r2_soc_36v-low
This means region 3

JMP ccNZ, Region3_36v

Getting here means that the soc_36v highword = r2 soc_36v-high

This point is defined to be in Region 2

JMP Region2_36v

TestRegion_3_36v:
MOV Ri, DPPl:r3-soc36v-high
NOP
CMP Ri, RO ; This subtracts soc_36v-highword from r3_soc_36v-high so then

test flags

If there is a carry then soc_36v-high-word was larger

than r3_soc_36vhigh so a carry was generated

soc_36v-high-word > r3_soc_36v high => Ideal Operation => Region 3

JMP ccC, Region3_36v

If no Carry must test to see if soc 36v high-word = r3-soc-36v-high

If they DON'T equal then soc 36v high-word < r3 soc_36vhigh

This means Test for Different Region

JMP ccNZ, TestRegion_4-36v

Since soc_36vhighword = r3_soc_36vhigh must now test lower word
Inorder to determine if battery is in region 2 or region 3

MOV RO, DPPO:soc_36v_low word
MOV Ri, DPP1:r3_soc_36vjlow
CMP Ri, RO ; This subtracts soc 36v low word from r3_soc_36v low

If soc_36vjlow-word > r3_soc_36v-low

then operating in region 2

JMP ccC, Region2_36v

If no Carry must test to see if soc_36vjlow word = r3_soc_36vlow
If they DON'T equal then soc_36vjlow-word < r3_soc 36v low

This means region 4

JMP ccNZ, Region4_36v

Getting here means that the soc_36v-high-word = r3_soc_36v-high
This point is defined to be in Region 3

JMP Region3_36v

TestRegion_4_36v:

ema.asm
MOV Ri, DPP1:r4_soc_36vjhigh

NOP

CMP R1, RO ; This subtracts soc_36v-high-word from r4_soc_36v-high so then test

flags

If there is a carry then soc_36v high word was larger

than r4_soc_36v-high so a carry was generated

soc_36vhigh word > r4_soc_36vhigh => Moderate Undercharge => Region 4

JMP cc_C, Region4-36v

If no Carry must test to see if soc_36v-highword = r4_soc_36v-high

If they DON'T equal then soc_36v highword < r4_soc_36v high
This means Test for Different Region

JMP ccNZ, TestRegion_5-36v

Since soc_36vhighword = r4_soc_36v-high must now test lower word

Inorder to determine if battery is in region 2 or region 3

MOV RO, DPPO:soc_36v low-word

MOV Rl, DPP1:r4_soc_36v_low
CMP R1, RO ; This subtracts soc_36v_low-word from r4_soc_36vlow

If soc_36vlowword > r4_soc_36v_low

then operating in region 2

JMP ccC, Region4_36v

If no Carry must test to see if soc_36vlowword = r4_soc_36vjlow

If they DON'T equal then soc_36v_lowword < r4_soc_36v_low

This means region 2

JMP ccNZ, Region5_36v

Getting here means that the soc_36v highword = r4_soc_36v-high
This point is defined to be in Region 2

JMP Region4_36v

Test-Region_5-36v:
JMP Region5_36v

Regionl_36v:
MOV RO, #01h ; Move the

MOV DPPO:soc-region_36v,
JMP exit-soc_36v

Region2_36v:
MOV RO, #02h ; Move the

MOV DPPO:soc-region_36v,

JMP exit soc-36v

Region3-36v:
MOV RO, #03h ; Move the
MOV DPPO:soc-region_36v,

JMP exit-soc-36v

Region4_36v:
MOV RO, #04h ; Move the

MOV DPPO:soc-region_36v,

JMP exit soc 36v

Region5_36v:

region number into RO
RO ; Put that number into memory

region number into RO

RO ; Put that number into memory

region number into RO

RO ; Put that number into memory

region number into RO

RO ; Put that number into memory

MOV RO, #05h ; Move the region number into RO

MOV DPPO:socregion 36v, RO

JMP exit-soc_36v

exitsoc_36v:

POP DPP1

POP DPPO

POP Rl
POP RO

RET
determinesoc_36v ENDP

; Put that number into memory

determine soc 12v PROC FAR

PUSH RO
PUSH Rl
PUSH DPPO

PUSH DPP1

MOV DPPO, #PAG soc_12v-high-word

MOV DPP1, #PAG rlsoc_12v-high

MOV RO, DPPO:soc_12v-high-word
MOV R1, DPPl:rl-soc_12v high

CMP R1, RO ; This subtracts soc_12v-high word from rlsoc_12v high so then

test flags

If there is a carry then soc12vhigh-word was larger

than rl-soc_12vhigh so a carry was generated

soc_12v high word > rlsoc_12v high => Very Dangerous Over Charge => Regio

n 1
JMP ccC, Regionl_12v

If no Carry must test to see if soc_12v-high-word = rlsoc_12v-high

If they DON'T equal then soc_12v-high-word < r1isoc_12vhigh

This means Test for Different Region

JMP ccNZ, TestRegion_2_12v

Since soc 12vhigh word = rl-soc_12v-high must now test lower word

Inorder to determine if battery is in region 1 or region 2

MOV RO, DPPO:socl12vlow word

MOV Ri, DPPl:rlsoc_12vjlow

CMP Rl, RO ; This subtracts soc_12vjlow-word from rlsoc_12vlow

If soc_12vlowword > rl soc_12v low

then operating in region 1

JMP ccC, Regioni12v

If no Carry must test to see if soc_12vjlow-word =
If they DON'T equal then soc_12vlowword < rlsoc.
This means region 2

JMP ccNZ, Region2_12v

rl-soc_12v-low

12v low

Getting here means that the soc_12vhighword = rlsoc12v-high

This point is defined to be in Region 1

JMP Regionl_12v

TestRegion_2_12v:
MOV R1, DPPl:r2_soc_12v-high

NOP

CMP R, RO ; This subtracts socl12v high-word from r2_soc_12vhigh so then

test flags

If there is a carry then soc_12vhigh-word was larger

than r2_soc_12v-high so a carry was generated

soc_12v-high-word > r2_soc_12v-high => Very Dangerous Over Charge => Regio

n 1
JMP ccC, Region2_12v

ema.asm
If no Carry must test to see if soc_12v-highword = r2_soc_12v-high
If they DON'T equal then soc_12v highword < r2_soc_12v-high

This means Test for Different Region

JMP ccNZ, TestRegion_3_12v

Since soc_12v-high-word = r2_soc_12v-high must now test lower word
Inorder to determine if battery is in region 2 or region 3

MOV RO, DPPO:soc_12vIlowIword

MOV Rl, DPPl:r2_soc_12vlow

CMP Rl, RO ; This subtracts soc_12vjlow-word from r2_soc_12vjlow

; If soc_12vlowword > r2_soc_12vjlow

; then operating in region 2

JMP ccC, Region2_12v

If no Carry must test to see if soc_12vjlow word = r2_soc_12v-low

If they DON'T equal then soc_12vlowword < r2_soc_12vjlow
This means region 3

JMP ccNZ, Region3_12v

Getting here means that the soc_12v high word = r2_soc_12v-high

This point is defined to be in Region 2

JMP Region2_12v

TestRegion_3_12v:
MOV Rl, DPPl:r3_soc_12v-high

NOP

CMP Rl, RO ; This subtracts soc_12v-high-word from r3-soc_12v-high so then test

flags

If there is a carry then soc_12v high word was larger

than r3_soc_12v-high so a carry was generated

soc_12v-high-word > r3_soc_12v-high => Ideal Operation => Region 3
JMP ccC, Region3_12v

If no Carry must test to see if soc_12vhighword = r3_soc_12v-high

If they DON'T equal then soc_12v high-word < r3-soc_12v-high

This means Test for Different Region

JMP ccNZ, TestRegion_4_12v

Since soc_12vhigh word = r3_soc_12v-high must now test lower word

Inorder to determine if battery is in region 2 or region 3

MOV RO, DPPO:soc_12v lowIword

MOV Rl, DPP1:r3_socl2vlow

CMP Rl, RO ; This subtracts soc-12v-low-word from r3_socl12vjlow

If soc_12vlowword > r3_soc_12vjlow

then operating in region 2

JMP ccC, Region2_12v

If no Carry must test to see if soc_12vjlow_word = r3_soc_12v-low
If they DON'T equal then soc_12v_lowword < r3_soc_12vjlow

This means region 4

JMP ccNZ, Region4_12v

Getting here means that the soc_12v-high-word = r3_soc_12v-high

This point is defined to be in Region 3

JMP Region3_12v

TestRegion_4_12v:
MOV Rl, DPP1:r4_soc_12v high

NOP
CMP Rl, RO ; This subtracts soc_12vhigh-word from r4_soc_12v-high so then test

flags

If there is a carry then soc_12v-highword was larger

than r4_soc_12vhigh so a carry was generated

soc_12v highword > r4_soc_12v-high => Moderate Undercharge => Region 4

JMP ccC, Region4_12v

If no Carry must test to see if soc_12v-high-word = r4_socj12v-high

If they DON'T equal then soc_12v high-word < r4_soc_12vhigh

This means Test for Different Region

JMP ccNZ, TestRegion_5 12v

Since soc_12v-highword = r4-soc_12v-high must now test lower word

Inorder to determine if battery is in region 2 or region 3

MOV RO, DPPO:soc_12v-low-word
MOV Rl, DPPl:r4_soc_12v-low

CMP Rl, RO ; This subtracts soc12vjlow-word from r4_soc-12v low

If soc_12vjlow-word > r4_soc_12vlow

then operating in region 2

JMP ccC, Region4_12v

If no Carry must test to see if soc_12vlow word = r4_soc_12vlow

If they DON'T equal then soc_12v low-word < r4_soc_12vjlow

This means region 2

JMP ccNZ, Region5_12v

Getting here means that the soc_12v-high-word = r4-soc-12v-high

This point is defined to be in Region 2

JMP Region4_12v

TestRegion_5_12v:

JMP Region5_12v

Regionl_12v:

MOV RO, #01h ; Move the

MOV DPPO:soc-region_12v,
JMP exit soc_12v

Region2_12v:

MOV RO, #02h ; Move the

MOV DPPO:socregion_12v,

JMP exit-soc_12v

Region3-12v:

MOV RO, #03h ; Move the

MOV DPPO:soc-region_12v,

JMP exit-soc_12v

Region4_12v:

MOV RO, #04h ; Move the

MOV DPPO:soc-region_12v,

JMP exit-soc_12v

Region5_12v:
MOV RO, #05h ; Move the

MOV DPPO:soc-region_12v,
JMP exit-soc_12v

region number into RO
RO ; Put that number into memory

region number into RO
RO ; Put that number into memory

region number into RO
RO ; Put that number into memory

region number into RO
RO ; Put that number into memory

region number into RO
RO ; Put that number into memory

exit-soc_12v:
POP DPP1

POP DPPO
POP Rl
POP RO

RET
determinesoc_12v ENDP
determine-soc-region ENDS

C)

linker.lnv
LOCATE

main. lno
(GENERAL)
IRAMSIZE (2048)

RESERVE MEMORY(OF200h TO OF5FFh)

MEMORY(ROM (0000h to OEFFFh),

RAM (040000h to 4EFFFh), IRAM(OF000h))

CLASSES('RAM' (040000h to 04FFFFh)
SYMBOLS LISTSYMBOLS

TO main.out

reg 167b.def
**
** @(#)regl67b.def 1.10 12/18/97 DP8 DEFR OFFD6h

** P8 DEFR OFFD4h

Register definitions for the SAB C167 DP7 DEFR OFFD2h

This file contains all SFR names and BIT names P7 DEFR OFFDOh

;** This file can be supplied to rm166 and a166 (STDNAMES control) DP6 DEFR OFFCEh

P6 DEFR OFFCCh

TRUE DEFB OFF20h.0, RW DP4 DEFR OFFCAh

NODE142 DEFB OFF20h.1, RW P4 DEFR OFFC8h

DP3 DEFR OFFC6h

C1CSR DEFA OEFOOh P3 DEFR OFFC4h

INTID DEFA OEF02h DP2 DEFR OFFC2h

C1BTR DEFA OEF04h P2 DEFR OFFCOh

C1GMS DEFA OEF06h SSCCON DEFR OFFB2h

C1UGML DEFA OEF08h SOCON DEFR OFFBOh

C1LGML DEFA OEFOAh WDTCON DEFR OFFAEh

C1UMLM DEFA OEFOCh TFR DEFR OFFACh

C1LMLM DEFA OEFOEh P5 DEFR OFFA2h

MCR_Ml DEFA OEF10h ADCON DEFR OFFAOh

MCRM2 DEFA OEF20h TlIC DEFR OFF9Eh

MCRM3 DEFA OEF30h TOIC DEFR OFF9Ch

MCRM4 DEFA OEF40h ADEIC DEFR OFF9Ah

MCRM5 DEFA OEF50h ADCIC DEFR OFF98h

MCRM6 DEFA OEF60h CC15IC DEFR OFF96h

MCRM7 DEFA OEF70h CC14IC DEFR OFF94h

MCRM8 DEFA QEF80h CC13IC DEFR OFF92h

MCRM9 DEFA QEF90h CC12IC DEFR OFF90h

MCRMA DEFA OEFAOh CC11IC DEFR OFF8Eh

MCRMB DEFA OEFBOh CC1OIC DEFR OFF8Ch

MCRMC DEFA OEFCOh CC9IC DEFR OFF8Ah

MCRMD DEFA OEFDOh CC8IC DEFR OFF88h

MCRME DEFA OEFEOh CC7IC DEFR OFF86h

MCRMF DEFA OEFFOh CC6IC DEFR OFF84h

MCD_Ml DEFA OEF16h CC5IC DEFR OFF82h

MCDM2 DEFA OEF26h CC4IC DEFR OFF80h

MCDJM3 DEFA OEF36h CC3IC DEFR OFF7Eh

MCD_M4 DEFA OEF46h CC2IC DEFR OFF7Ch

MCD M5 DEFA OEF56h CClIC DEFR OFF7Ah

MCDM6 DEFA OEF66h CCOIC DEFR OFF78h

MCDM7 DEFA OEF76h SSCEIC DEFR OFF76h

MCDM8 DEFA OEF86h SSCRIC DEFR OFF74h

MCDM9 DEFA OEF96h SSCTIC DEFR OFF72h

MCD_MA DEFA OEFA6h SOEIC DEFR OFF70h

MCDMB DEFA OEFB6h SORIC DEFR OFF6Eh

MCDMC DEFA OEFC6h SOTIC DEFR OFF6Ch

MCDMD DEFA OEFD6h CRIC DEFR OFF6Ah

MCDME DEFA OEFE6h T6IC DEFR OFF68h

DATAMl DEFA OEF18h T5IC DEFR OFF66h

DATAM2 DEFA OEF28h T4IC DEFR OFF64h

DATAM3 DEFA OEF38h T3IC DEFR OFF62h

DATAM41 DEFA OEF48h T2IC DEFR OFF60h

DATAM42 DEFA OEF4Ah CCM3 DEFR OFF58h

DATAM5 DEFA OEF58h CCM2 DEFR OFF56h

DATAM6 DEFA OEF68h CCM1 DEFR OFF54h

DATAM7 DEFA OEF78h CCMO DEFR OFF52h

DATAM81 DEFA OEF88h T01CON DEFR OFF50h

DATAM82 DEFA OEF8Ah T6CON DEFR OFF48h

DATAM9 DEFA OEF98h T5CON DEFR OFF46h

DATAMA DEFA OEFA8h T4CON DEFR OFF44h

DATAMB DEFA OEFB8h T3CON DEFR OFF42h

DATAMC DEFA OEFC8h T2CON DEFR OFF40h

DATAMD DEFA OEFD8h PWMCON1 DEFR OFF32h

DATA.ME DEFA QEFE8h PWMCONO DEFR OFF30h

CCM7 DEFR OFF28h

CCM6 DEFR OFF26h

=I regl167b.def
CCM5 DEFR OFF24h CC18 DEFR OFE64h

CCM4 DEFR OFF22h CC17 DEFR OFE62h

T78CON DEFR OFF2Oh CC16 DEFR OFE6Oh

P1H DEFR OFFO6h TiREL DEFR OFE56h

PiL DEFR OFFO4h TOREL DEFR OFE54h

POH DEFR OFFO2h Ti DEFR OFE52h

POL DEFR OFFOOh TO DEFR OFE5Oh

PECC7 DEFR OFECEh CAPREL DEFR OFE4Ah

PECC6 DEFR OFECCh T6 DEFR OFE48h

PECC5 DEFR OFECAh T5 DEFR OFE46h

PECC4 DEFR OFEC8h T4 DEFR OFE44h

PECC3 DEFR OFEC6h T3 DEFR OFE42h

PECC2 DEFR OFEC4h T2 DEFR OFE4Oh

PECC1 DEFR OFEC2h PW3 DEFR OFE36h

PECCO DEFR OFECOh PW2 DEFR OFE34h

SRCPO DEFA OFCEOh Pw1 DEFR OFE32h

DSTPO DEFA OFCE2h Pwo DEFR OFE3Oh

SRCP1 DEFA OFCE4h
DSTP1 DEFA OFCE6h Extended sfr area

SRCP2 DEFA OFCE8h

DSTP2 DEFA OFCEAh ODP8 DEFR OFiD6h

SRCP3 DEFA OFCECh ODP7 DEFR OFlD2h

DSTP3 DEFA OFCEEh ODP6 DEFR OFiCEh

SRCP4 DEFA OFCFOh ODP3 DEFR OF1C6h

DSTP4 DEFA OFCF2h PICON DEFR OF1C4h

SRCP5 DEFA OFCF4h ODP2 DEFR OFiC2h

DSTP5 DEFA OFCF6h EXICON DEFR OFiCOh

SRCP6 DEFA OFCF8h SOTBIC DEFR OFi9Ch

DSTP6 DEFA OFCFAh XP31C DEFR OFi9Eh

SRCP7 DEFA OFCFCh XP21C DEFR OFi96h

DSTP7 DEFA OFCFEh XPiC DEFR OFi8Eh

SOBG DEFR OFEB4h XPOIC DEFR OFi86h

SORBUF DEFR OFEB2h, r PWMIC DEFR OFi7Eh

SOTBUF DEFR OFEBOh, w T8IC DEFR OFi7Ch

WDT DEFR OFEAEh, r T71C DEFR OF17Ah

ADDAT DEFR OFEAOh CC31IC DEFR OF194h

CC15 DEFR OFE9Eh CC30IC DEFR OF18Ch

CC14 DEFR OFE9Ch CC291C DEFR OFi84h

CC13 DEFR OFE9Ah CC281C DEFR OFi78h

CC12 DEFR OFE98h CC271C DEFR OFi76h

Ccii DEFR OFE96h CC261C DEFR OF174h

CCio DEFR OFE94h CC251C DEFR OFi72h

CC9 DEFR OFE92h CC241C DEFR OF17Oh

CC8 DEFR OFE9Oh CC231C DEFR OFi6Eh

CC7 DEFR OFE8Eh CC221C DEFR OFi6Ch

CC6 DEFR OFE8Ch CC21IC DEFR OFi6Ah

CC5 DEFR OFE8Ah CC20IC DEFR OFi68h

CC4 DEFR OFE88h CCiC DEFR OFi66h

CC3 DEFR OFE86h CC181C DEFR OFi64h

CC2 DEFR OFE84h CC171C DEFR OFi62h

Ccl DEFR OFE82h CC161C DEFR OFi6Oh

CCO DEFR OFE8Oh RPOH DEFR OFiO8h

CC31 DEFR OFE7Eh DP1H DEFR OFiO6h

CC30 DEFR OFE7Ch DPiL DEFR OFiO4h

CC29 DEFR OFE7Ah DPOH DEFR OFiO2h

CC28 DEFR OFE78h DPOL DEFR OF1O0b

CC27 DEFR OFE76h SSCBR DEFR OFOB4h

CC26 DEFR OFE74h SSCRB DEFR OFOB2h

CC25 DEFR OFE72h SSCTB DEFR OFOBOh

CC24 DEFR OFE7Oh ADDAT2 DEFR QFQAOh

CC23 DEFR OFE6Eh T8REL DEFR OFO56h

CC22 DEFR OFE6Ch T7REL DEFR OFO54h

CC21 DEFR OFE6Ah T8 DEFR OFO52h

CC20 DEFR OFE68h T7 DEFR OFO5Oh

CC19 DEFR OFE66h PP3 DEFR OFO3Eh

-Mt ,regl167b.def
PP2 DEFR OF03Ch AN11 DEFB P5.11

pp1 DEFR OF03Ah AN12 DEFB P5.12

PPO DEFR 0F038h AN13 DEFB P5.13

PT3 DEFR 0F036h AN14 DEFB P5.14

PT2 DEFR OF034h AN15 DEFB P5.15

PT1 DEFR 0F032h T6EUD LIT 'ANlO'

PTO DEFR 0F030h T5EUD LIT 'AN11'

T61N LIT 'AN12'

Bit names T51N LIT 'AN13'

CCO0O DEFB P2.0 T4EUD LIT 'AN14'

CC1io DEFB P2.1 T2EUD LIT 'ANiS'

CC21o DEFB P2.2

CC31O DEFB P2.3 POUTO DEFB P7.0

CC410 DEFB P2.4 POUTi DEFB P7.1

CC51Q DEFB P2.5 POUT2 DEFB P7.2

CC610 DEFB P2.6 P0UT3 DEFB P7.3

CC71O DEFB P2.7 CC2810 DEFB P7.4

CC8io DEFB P2.8 CC2910 DEFB P7.5

CC910 DEFB P2.9 CC30I0 DEFB P7.6

CC1oio DEFB P2.10 CC31IO DEFB P7.7

CC1i0i DEFB P2.11

CC121O DEFB P2.12 CC1610 DEFB P8.0

CC131O DEFB P2.13 CC1710 DEFB P8.1

CC141O DEFB P2.14 CC1810 DEFB P8.2

CC151O DEFB P2.15 CC1910 DEFB P8.3

EXOIN LIT 'CCOIO' CC20I0 DEFB P8.4

EX1IN LIT 'CC1I0' CC21IO DEFB P8.5

MXIN LIT lCC210' CC2210 DEFB P8.6

MXIN LIT 'CC31O' CC2310 DEFB P8.7

TOIN DEFB P3.0

T60UT DEFB P3.1 TOM DEFB TO1CON.3

CAPIN DEFB P3.2 TOR DEFB T01CON.6

T30UT DEFB P3.3 TiM DEFB T0lCONil1

T3EUD DEFB P3.4 TIR DEFB TO1CON.14

T21N DEFB P3.7 T7M DEFB T78CON.3

T31N DEFB P3.6 T7R DEFB T78CON.6

T41N DEFB P3.5 T8M DEFB T78CON.11

SSDI DEFB P3.8 T8R DEFB T78CON.14

SSDO DEFB P3.9

TXDO DEFB P3.10 ACCO DEFB CCMO.3

RXDO DEFB P3.11 ACCi DEFB CCMO.7

SSCLK DEFB P3.13 ACC2 DEFB CCMO.11

CLKOUT DEFB P3.15 ACC3 DEFB CCMO.15

A16 DEFB P4.0 ACC4 DEFB CCM1.3

A17 DEFB P4.1 ACC5 DEFB CCM1.7

A18 DEFB P4.2 ACC6 DEFB CCM1.11

A19 DEFB P4.3 ACC7 DEFB CCM1.15

A20 DEFB P4.4

A21 DEFB P4.5 ACC8 DEFB CCM2.3

A22 DEFB P4.6 ACC9 DEFB CCM2.7

A23 DEFB P4.7 ACC10 DEFB CCM2.11

ACC11 DEFB CCM2.15

ANO DEFB P5.0

AN1 DEFB P5.1 ACC12 DEFB CCM3.3

AN2 DEFB P5.2 ACC13 DEFB CCM3.7

AN3 DEFB P5.3 ACC14 DEFB CCM3.11

AN4 DEFB P5.4 ACC15 DEFB CCM3.15

AN5 DEFB P5.5

AN6 DEFB P5.6 ACC16 DEFB CCM4.3

AN7 DEFB P5.7 ACC17 DEFB CCM4.7

AN8 DEFB P5.8 ACC18 DEFB CCM4.11

AN9 DEFB P5.9 ACC19 DEFB CCM4.15

AN410 DEFB P5.10

ACC20
ACC21
ACC22
ACC23

ACC24
ACC25
ACC26
ACC2 7

ACC28
ACC29
ACC30
ACC31

T2R
T2UD

T2UDE

T3R
T3UD
T3UDE
T30E

T30TL

T4R
T4UD
T4UDE

T5R

T5UD

T5UDE
T5CLR
T5SC

T6R
T6UD
T6UDE
T60E
T60TL

T6SR

DEFB
DEFB
DEFB
DEFB
DEFB

T3CON. 6
T3CON.7
T3CON. 8
T3CON.9

T3CON. 10

DEFB T4CON.6

DEFB T4CON.7

DEFB T4CON.8

DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

T5CON. 6
T5CON.7
T5CON. 8
T5CON.14
T5CON.15

T6CON. 6
T6CON.7
T6CON. 8
T6CON. 9
T6CON.10
T6CON.15

T2IC. 6

T2IC.7

T3IC.6

T3IC .7

T4IC.6

T4IC.7
T5IC. 6
T5IC.7

T6IC. 6

T6IC.7

DEFB CRIC.6

DEFB CRIC.7

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

SOTIC. 6
SOTIC .7
SORIC. 6
SORIC .7
SOEIC. 6
SOEIC .7

SOTBIC.6

SOTBIC.7

reg 167b.def
SSCTIE
SSCTIR
SSCRIE

SSCRIR

SSCEIE

SSCEIR

SSCTE
SSCRE
SSCPE
SSCBE

DEFB CCM5.3

DEFB CCM5.7

DEFB CCM5.11

DEFB CCM5.15

DEFB CCM6.3

DEFB CCM6.7

DEFB CCM6.11

DEFB CCM6.15

DEFB CCM7.3

DEFB CCM7.7

DEFB CCM7.11.

DEFB CCM7.15

DEFB T2CON.6

DEFB T2CON.7

DEFB T2CON.8

CCOIE
CCOIR
CC1IE

CClIR
CC2IE

CC2IR

CC3IE
CC3 IR
CC4IE
CC4IR

CC5IE

CC5IR
CC6IE
CC6IR
CC7IE

CC7IR
CC8IE

CC8IR

CC9IE
CC9IR

CClOIE

CC10IR
CC11IE
CC11IR
CC12IE

CC12IR

CC13IE
CC13IR
CC141E

CC14IR
CC151E
CC15IR
CC16IE
CC16IR
CC17IE
CC17IR
CC18IE
CC18IR
CC19IE
CC19IR
CC20IE
CC20IR

CC21IE
CC21IR

CC22IE

CC22IR
CC23IE
CC23IR

CC24IE
CC24IR

CC25IE

CC25IR
CC261E

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
LIT
LIT
LIT
LIT

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

SSCTIC.6

SSCTIC.7
SSCRIC.6

SSCRIC.7
SSCEIC.6
SSCEIC.7

'SSCTEN'

'SSCREN'

'SSCPEN'

'SSCBEN'

CCOIC.6
CCOIC.7
CC1IC. 6

CClIC .7
CC2IC. 6

CC2IC .7

CC3IC.6
CC3IC .7
CC4IC.6
CC4IC .7
CC5IC.6

CC5IC .7

CC6IC.6

CC61C.7
CC7IC. 6

CC7IC.7
CC8IC.6
CC8IC .7
CC9IC.6
CC9IC .7

CC1OIC.6

CC1OIC.7

CC11IC.6
CC11IC.7
CC12IC. 6

CC12IC.7
CC13IC. 6
CC13 IC. 7
CC14IC. 6

CC14IC.7
CC15IC. 6

CC15IC.7

CC16IC. 6

CC16IC.7
CC17IC.6
CC17IC.7

CC18IC. 6
CC18IC. 7
CC19IC. 6
CC19IC. 7

CC20IC.6

CC20IC.7

CC21IC. 6
CC21IC.7
CC22IC.6

CC22IC.7
CC23IC.6
CC23IC.7
CC24IC.6
CC24IC.7

CC25IC.6
CC25IC.7

CC261C.6

T2IE

T2IR

T3IE
T3IR

T4IE

T4IR
T5IE

T5IR
T6IE

T6IR

CRIE
CRIR

SOTIE
SOTIR
SORIE
SORIR
SOEIE
SOEIR
SOTBIE

SOTBIR

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

CC26IC.7
CC271C.6
CC27IC.7

CC28IC.6
CC28IC.7

CC29IC.6
CC29IC.7

CC30IC.6

CC30IC.7

CC31IC. 6
CC31IC. 7

CC26IR
CC27IE
CC27IR

CC28IE
CC28IR

CC29IE

CC29IR

CC30IE

CC30IR

CC31IE

CC31IR

ADCIE
ADCIR
ADEIE
ADEIR

TOIE
TOIR
T1IE
TiIR
T7IE
T7IR

T8IE
T8IR

ADST
ADBSY
ADWR
ADCIN

ADCRQ

ILLBUS

ILLINA
ILLOPA

PRTFLT

UNDOPC

STKUF

STKOF
NMI

WDTIN
WDTR

SOSTP
SOREN
SOPEN

SOFEN
SOOEN

SOPE

SOFE
SOOE

SOODD
SOBRS
SOLB
SOR

SSCHB
SSCPH
SSCPO
SSCTEN

SSCREN

SSCPEN

SSCBEN

SSCBSY

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

TOIC.6
TOIC.7
T1IC. 6

TiIC.7
T7IC.6
T7IC .7

T8IC.6

T8IC.7

ADCON. 7
ADCON. 8
ADCON. 9

ADCON. 10

ADCON. 11

TFR.0
TFR. 1
TFR. 2

TFR. 3

TFR. 7

TFR. 13
TFR.14
TFR. 15

DEFB WDTCON.0

DEFB WDTCON.1

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

SOCON.3
SOCON.4
SOCON. 5

SOCON. 6
SOCON.7
SOCON.8
SOCON.9
SOCON. 10

SOCON. 12
SOCON. 13
SOCON.14
SOCON. 15

SSCCON.4

SSCCON.5

SSCCON.6

SSCCON.8
SSCCON. 9

SSCCON.10

SSCCON.11
SSCCON.12

reg167b.def
SSCMS
SSCEN

PTRO
PTR1
PTR2
PTR3
PTIO
PTI1
PTI2
PTI3

PIEO

PIEl

PIE2
PIE3
PIRO
PIR1
PIR2
PIR3

PENO
PEN1
PEN2
PEN3
PMO
PM1
PM2
PM3
PBO1

PS2

PS3

PWMIE
PWMIR

XP3IE

XP3IR

XP2IE
XP2IR

XP1IE
XP1IR

XPOIE
XPOIR

DEFB ADCIC.6

DEFB ADCIC.7

DEFB ADEIC.6

DEFB ADEIC.7

DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

SSCCON.14
SSCCON.15

PWMCONO.0
PWMCONO.1

PWMCONO.2

PWMCONO.3
PWMCONO.4

PWMCONO.5

PWMCONO.6

PWMCONO.7

PWMCONO . 8

PWMCONO . 9

PWMCONO.10
PWMCONO .11

PWMCONO.12
PWMCONO.13

PWMCONO.14

PWMCONO.15

PWMCON1.0

PWMCON1.1

PWMCON1.2

PWMCON1.3
PWMCON1.4
PWMCON1 . 5

PWMCON1 . 6

PWMCON1 . 7

PWMCON1.12

PWMCON1.14

PWMCON1.15

PWMIC.6

PWMIC.7

XP3IC.6

XP3IC.7
XP2IC.6

XP2IC.7
XP1IC.6
XP1IC.7

XPOIC.6

XPOIC.7

BE3=42comp.bat

a166 main.asm
a166 canmod.asm
a166 carimo.asm
a166 canint.asm
1166 LINK main.obj canmod.obj canmo.obj canint.obj TO main.lno
1166 @linker.lnv
ihexl66 -il6 main.out -o main.hex

main.asm
$SEGMENTED

$EXTEND

$EXTSFR
$EXTSSK
$EXTMEM

$NOMOD166
$STDNAMES(reg167b.def)
$SYMBOLS

NAME main

RBANK1 COMREG RO-R15

SSKDEF 4

ASSUME DPP3:SYSTEM

EXTERN canin:FAR

mainseg SECTION CODE

main PROC FAR

start: DISWDT

BSET IEN

CAN USE ALL internal RAM for Stack

define a common register area of 16 register

default stack size of 256 Words

; Can function

; disable the watchdog timer
; Globally Enable Interrupts both global

Initialize the External Memory BUS

MOV SYSCON, #OE084h
MOV ADDRSEL1, #0404h
MOV BUSCONO, #004AFh
MOV BUSCON1, #004AFh

EINIT ; end initialization

End of external memory bus initialization

Initialize the Data Page pointers for this section

MOV DPP3, #03h ; make DPP3 point to system

End of Data Page Pointer Initialization

Make

Make

Make

sure Port 2 is in Open Drain mode

MOV ODP2, ONES
the direction of Port 2 to output
MOV DP2, ONES

sure all of the ports are off

MOV P2, ONES
BCLR P2.8

Initialize The Stack

The Stack pointers are all word pointers so even though the

highest byte in the stack is located at #OFBFFh the highest
byte that the stack pointers can point to is #OFBFEh

MOV STKUN, #OFBFEh; Set Stack Underflow Pointer

MOV STKOV, #OF800h; Set STack Overflow Pointer
MOV SP, #OFBFEh ; Set the Stack Pointer

End of Stack Initialization

Initialize CAN Bus

CALL canin Call the CAN initialization function

End of CAN Bus Initialization

meto:
NOP
NOP
JMP meto

; just loop here waiting

main ENDP

mainseg ENDS

RET ; return

startupsec SECTION CODE

sysreset PROC TASK INTNO=OH
ORG OOH
JMP start

RETI
sysreset ENDP
startupsec ENDS

END

codesegment that contains reset int pointer

reset interrupt number is zero at Oh

forces next instruction to be located at Oh
installs a pointer to the startup routine

return from interrupt

canmod.asm

$SEGMENTED
$EXTEND

$EXTSFR
$EXTMEM

$NOMOD166
$STDNAMES(regl67b.def)
$SYMBOLS

NAME canmod

RBANK1 COMREG RO-R15

GLOBAL canin

EXTERN canmocfg:FAR configures specific Message objects

ASSUME DPP3:SYSTEM

canfunc SECTION CODE codesegment that contains reset int poin

canin PROC FAR

PUSH RO
PUSH Rl

;; set all of the CAN control registers

AND C1CSR, ZEROS set control register to zero

MOV Rl, #0043h ; Set IE and INIT bits

OR ClCSR,Rl set control register to Rl's value

AND C1BTR, ZEROS ; set Bit timing register to zero

MOV Rl, #03447h ; set for 125k operation

OR C1BTR, R1 set Bit timing register parameters

AND C1GMS, ZEROS ; set Global Mask short register to zero

MOV Rl, #OFFFFh ; EOFF is what DAVE initialize

OR C1GMS, R ; set GMS

AND C1UGML, ZEROS set Upper global mask long to zero

MOV Rl, #OFFFFh

OR C1UGML, Rl

MOV Rl, #OF8FFh

AND C1LGML, ZEROS

OR C1LGML, Rl lower global mask

AND C1UMLM, ZEROS

OR C1UMLM, Rl upper mask of last register

AND C1LMLM, ZEROS

OR C1LMLM, Rl lower mask of last register

CALL setall sets all of the CAN registers to off

CALL canmocfg Configures specific Message Objects

;; Setup CAN interrupt and Initialize CAN module

EXTR #4

AND XPOIC, ZEROS ; configure CAN interrupt control Register

AND RO,ZEROS

OR RO,#0073h enable interrupt, level is 10 group is 2

OR XPOIC,RO ; Configure CAN interrupt Control Register

AND Rl, ZEROS

OR Rl, #00041h ; crashes if I clear the CPU access to the BTR

XOR C1CSR, Rl ; end initialize CAN interrupt

POP Rl

POP RO

ter

RET
canin ENDP

setall PROC FAR This Procedure sets all of the Mess objs invalid

by using a counter it counts up to 15 and initializes all of the message

objects along the way.

PUSH R2

PUSH R4

PUSH R5

AND R5,ZEROS
OR R5, #01h Set counter to 1 for first MO

AND R2,ZEROS

OR R2,#OEF10h Set pointer to MOl

AND R4, ZEROS
OR R4, #5555h Set R4 to make MObs invalid

nextreg:MOV [R2I,R4 make all message objects invalid

ADD R2,#10h

CMPIl R5,#OFh
JMPA CCNZ,nextreg

POP R5
POP R4
POP R2

RET

setall ENDP

canfunc ENDS

END

define a common register area of 16 registers

The function must be declared Global at the

beginning of the module

canmo.asm
$SEGMENTED

$EXTEND

$EXTSFR

$EXTMEM
$NOMOD166
$STDNAMES(regl67b.def)
$SYMBOLS

NAME canmo
RBANK1 COMREG RO-R15

GLOBAL canmocfg

canmodule SECTION CODE

ASSUME DPP3:SYSTEM

canmocfg PROC FAR
PUSH R1
PUSH R2
PUSH R3

Now set specific CAN control Registers
initialize message object 1
initializing this object to be invalid does or removing the code until

the comment "Setup CAN interrupt and Initialize does

nothing to prevent the occurrance of the interrupt for the CAN system

MOV R2, #MCR_M1 start of Message Object 1

AND Rl, ZEROS
OR Rl, #5599h Generate a Receive Interrupt if this message object ac

tivates
MOV [R2],Rl set M01's Control register

ADD R2,#2h

AND R3, ZEROS

OR R3, #OOOEh
MOV [R2],R3

ADD R2, #2h

MOV [R2], ZEROS

AND R1, ZEROS

OR R1, #003Dh
MOV MCDM1,R1

MOV DATAM1, ZEROS

point to Upper Arbitration register

set R3 to
message id for message object 1
; message id = #OOOEh
; Point to the Lower Arbitration Register
; standard Message object so lowerarb = Oh

; put 00h into first data byte and set to receive
Databyte(O) = 0 and Set to receive and 3 bytes of data
fill the Data of the MO with Zeros

Initialize Message Object 2
This message object receives information about turning the DC/DC converter on

and off

ata

;; For the purpose of
MOV R2, #MCRM2

AND R1, ZEROS

OR R1, #5599h
MOV [R2],Rl set

ADD R2,#2h

AND R3, ZEROS

OR R3, #0021h
MOV [R2],R3

ADD R2, #2h

MOV (R2], ZEROS
AND R1, ZEROS

OR Rl, #0030h
MOV MCDM2,R1

MOV DATAM2, ZEROS

the thesis the DC/DC was just left on all the time.
start of Message Object 2

RECEIVE INTERRUPT NOT enabled

M03's Control register

; point to Upper Arbitration register
; set R6 to zero

The number is the Message ID for Message Object 3
; message id = 00021h
Point to the Lower Arbitration Register
standard Message object so lowerarb = Oh

put 00030h into first data byte and set to receive

; Databyte(O) = 0 and Set to transmit and 3 bytes of d

Fill the Data of the MO with Zeros

;; Initialize Message Object 3

;; This message object transmits the present state of the DC/DC converter

t

of data

MOV R2, #MCRM3

AND R1, ZEROS

OR R1, #5595h
MOV [R2],R1

ADD R2,#2h

AND R3, ZEROS

OR R3, #OOOFh
MOV [R2],R3

ADD R2, #2h

MOV [R2], ZEROS
AND R1, ZEROS

OR R1, #0038h

MOV MCDM3,R1

MOV DATA.M3, ZER

start of Message Object 3

RECEIVE INTERRUPT NOT enabled

set M02's Control register
point to Upper Arbitration register

; set R6 to zero

The number is the Message ID for Message Object 2

message id = DOOF
Point to the Lower Arbitration Register

standard Message object so lowerarb = Oh

put 00038h into first data byte and set to transmi

; Databyte(O) = 0 and Set to transmit and 3 bytes

OS Fill the Data of the MO with Zeros

POP R3
POP R2
POP R1
RET

canmocfg ENDP
canmodule ENDS
END

; declare bank of 16 global registers

canint.asm
$SEGMENTED
$EXTEND

$EXTSFR

$EXTMEM
$NOMOD166

$STDNAMES(regl67b.def)

$SYMBOLS

NAME canint

RBANK1 COMREG RO-R15 ; declare bank of 16 global registers

ASSUME DPP3:SYSTEM

can-interrupts SECTION CODE

canreceivejinterrupt PROC TASK INTNO=040h
ORG 0100h
CALL can receive_interrupt-handler
RETI

can-receive-interrupt ENDP

can-receivejinterrupt-handler PROC FAR
PUSH RO
PUSH R1
PUSH R2

PUSH R3

PUSH R4

MOVB RLO, INTID Read the CAN interrupt ID buffer
CMPB RLO, #03h See if the interrupt came from M01
JMP ccZ, messageoneinterrupt; if interrupt from M01 handle

MOV

MOV

MOV

MOV

MOV

MOV

R1, #05555h

R2, #05599h

MCRM2, R1
RO, DATAM2

R3, RO
MCRM2, R2

; Put the Data in R3 for future use

CMP RO, #01h
JMP ccNZ, turnoffconverter

;; This is where the converter is turned on
MOV R4, P2

BSET R4.8

MOV P2, R4

JMP exit-function

turn off-converter:

CMP RO, #0800h
JMP ccNZ, exitfunction

MOV R4, P2

BCLR R4.8

MOV P2, R4

JMP exit-function

message-onejinterrupt:

;; Message Object one deals with
MOV R1, #05555h
MOV R2, #05599h
MOV MCRMl, R1

MOV RO, DATAMl

MOV MCR1, R2

the state of the DC/DC converter

Now setup M3 so it can respond to queries about
the state of the converter

MOV R2, MCRM3
MOV MCRM3, RI
MOV DATAM3, RO
MOV MCRM3, R2
MOV R3, DATAM3
MOV R4, P2
MOVB RL4, RL3
MOV P2, R4 ; This is where the DC/DC converter is actually set.

exit-function:
POP R4

POP R3

POP R2

POP R1

POP RO
RET

canrreceivejinterrupt-handler ENDP

caninterrupts ENDS
END

linker.lnv

LOCATE
main. lno
(GENERAL}
IRAMSIZE (2048)

RESERVE MEMORY(OF200h TO OF5FFh)

MEMORY(ROM (0000h to OEFFFh),

RAM (040000h to 4EFFFh), IRAM(OF000h))

CLASSES('RAM' (040000h to 04FFFFh)
SYMBOLS LISTSYMBOLS

TO main.out

1.10 12/18/97

Register definitions for the SAB C167

** This file contains all SFR names and BIT names

This file can be supplied to rm166 and a166 (STDNAMES control)
**

TRUE DEFB OFF20h.0, RW

NODE142 DEFB OFF20h.l, RW

C1CSR

INTID
C1BTR

C1GMS

C1UGML
C1LGML
C1UMLM
ClLMLM
MCRMl
MCRM2
MCRM3

MCRM4
MCR.M5
MCRM6
MCRM7
MCRM8
MCRM9
MCRMA
MCRMB
MCRMC
MCRMD
MCRME
MCRMF
MCDM1
MCDM2
MCDM3
MCDM4
MCDM5
MCDM6
MCDM7

MCDM8
MCDM9
MCDMA
MCDMB
MCDMC
MCDMD
MCDME

DATAM1
DATAM2
DATAM3
DATAM4
DATA.M5
DATA.M6
DATAM7
DATAM8
DATAM9
DATAMA
DATAMB
DATAMC
DATAMD
DATAME

DP8

DEFA OEFOOh

DEFA OEF02h

DEFA OEF04h

DEFA OEF06h

DEFA OEF08h

DEFA OEFOAh

DEFA OEFOCh

DEFA OEFOEh

DEFA OEF10h
DEFA OEF20h

DEFA OEF30h

DEFA OEF40h

DEFA OEF50h

DEFA OEF60h

DEFA OEF70h

DEFA OEF80h

DEFA OEF90h

DEFA OEFAOh

DEFA OEFBOh
DEFA OEFCOh

DEFA OEFDOh

DEFA OEFEOh

DEFA OEFFOh

DEFA OEF16h

DEFA OEF26h

DEFA OEF36h

DEFA OEF46h

DEFA OEF56h

DEFA OEF66h

DEFA OEF76h

DEFA OEF86h

DEFA OEF96h

DEFA OEFA6h

DEFA OEFB6h

DEFA OEFC6h

DEFA OEFD6h

DEFA OEFE6h

DEFA OEF18h

DEFA OEF28h

DEFA OEF38h

DEFA OEF48h

DEFA OEF58h

DEFA OEF68h

DEFA OEF78h

DEFA OEF88h

DEFA OEF98h

DEFA OEFA8h

DEFA OEFB8h

DEFA OEFC8h

DEFA OEFD8h

DEFA OEFE8h

DEFR OFFD6h

@(#)regl67b.def

reg167b.def
P8
DP7
P7

DP6
P6
DP4
P4

DP3
P3

DP2
P2

SSCCON

SOCON

WDTCON

TFR
P5

ADCON
TlIC
TOIC
ADEIC
ADCIC
CC15IC
CC141C

CC13IC

CC12IC
CCl1IC

CClOIC

CC9IC

CC8IC

CC7IC
CC6IC
CC5IC
CC4IC
CC3IC

CC2IC
CC1IC

CCOIC
SSCEIC

SSCRIC

SSCTIC
SOEIC
SORIC
SOTIC
CRIC

T6IC
T5IC
T4IC

T3IC

T2IC
CCM3
CCM2
CCM1
CCMO
T01CON
T6CON
T5CON
T4CON
T3CON
T2CON

PWMCON1

PWMCONO
CCM7

CCM6

CCM5

CCM4

DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR

OFFD4h
OFFD2h

OFFDOh
OFFCEh

OFFCCh
OFFCAh

OFFC8h

OFFC6h

OFFC4h

OFFC2h

OFFCOh

OFFB2h
OFFBOh

OFFAEh

OFFACh

OFFA2h

OFFAOh

OFF9Eh

OFF9Ch
OFF9Ah

OFF98h

OFF96h

OFF94h

OFF92h

OFF90h

OFF8Eh

OFF8Ch

OFF8Ah

OFF88h

OFF86h

OFF84h
OFF82h

OFF80h

OFF7Eh

OFF7Ch
OFF7Ah

OFF78h

OFF76h

OFF74h

OFF72h

OFF70h

OFF6Eh

OFF6Ch
OFF6Ah

OFF68h

OFF66h

OFF64h

OFF62h

OFF60h

OFF58h

OFF56h

OFF54h
OFF52h

OFF50h

OFF48h
OFF46h

OFF44h
OFF42h

OFF40h

OFF32h

OFF30h

OFF28h

OFF26h

OFF24h
OFF22h

reg167b.def

T78CON DEFR OFF20h CC16 DEFR OFE60h

PlH DEFR OFF06h TlREL DEFR OFE56h

PiL DEFR OFF04h TOREL DEFR OFE54h

POH DEFR OFF02h Ti DEFR OFE52h

POL DEFR OFF00h TO DEFR OFE50h

PECC7 DEFR OFECEh CAPREL DEFR OFE4Ah

PECC6 DEFR OFECCh T6 DEFR OFE48h

PECC5 DEFR OFECAh T5 DEFR OFE46h

PECC4 DEFR OFEC8h T4 DEFR OFE44h

PECC3 DEFR OFEC6h T3 DEFR OFE42h

PECC2 DEFR OFEC4h T2 DEFR OFE40h

PECCI DEFR OFEC2h PW3 DEFR OFE36h

PECCO DEFR OFECOh PW2 DEFR OFE34h

SRCPO DEFA OFCEOh PW1 DEFR OFE32h

DSTPO DEFA OFCE2h PWO DEFR OFE30h

SRCP1 DEFA OFCE4h

DSTP1 DEFA OFCE6h Extended sfr area

SRCP2 DEFA OFCE8h

DSTP2 DEFA OFCEAh ODP8 DEFR OF1D6h

SRCP3 DEFA OFCECh ODP7 DEFR OF1D2h

DSTP3 DEFA OFCEEh ODP6 DEFR OF1CEh

SRCP4 DEFA OFCFOh ODP3 DEFR OF1C6h

DSTP4 DEFA OFCF2h PICON DEFR OF1C4h

SRCP5 DEFA OFCF4h ODP2 DEFR OF1C2h

DSTP5 DEFA OFCF6h EXICON DEFR OF1COh

SRCP6 DEFA OFCF8h SOTBIC DEFR OF19Ch

DSTP6 DEFA OFCFAh XP3IC DEFR OF19Eh

SRCP7 DEFA OFCFCh XP2IC DEFR OF196h

DSTP7 DEFA OFCFEh XP1IC DEFR OF18Eh

SOBG DEFR OFEB4h XPOIC DEFR OF186h

SORBUF DEFR OFEB2h, r PWMIC DEFR OF17Eh

SOTBUF DEFR OFEBOh, w T8IC DEFR OF17Ch

WDT DEFR OFEAEh, r T7IC DEFR OF17Ah

ADDAT DEFR OFEAOh CC31IC DEFR OF194h

CC15 DEFR OFE9Eh CC30IC DEFR OF18Ch

CC14 DEFR OFE9Ch CC291C DEFR OF184h

CC13 DEFR OFE9Ah CC281C DEFR OF178h

CC12 DEFR OFE98h CC271C DEFR OF176h

Cc1l DEFR OFE96h CC261C DEFR OF174h

CC10 DEFR OFE94h CC251C DEFR OF172h

CC9 DEFR OFE92h CC24IC DEFR OF170h

CC8 DEFR OFE90h CC23IC DEFR OF16Eh

CC7 DEFR OFE8Eh CC221C DEFR OF16Ch

CC6 DEFR OFE8Ch CC21IC DEFR OF16Ah

CC5 DEFR OFE8Ah CC20IC DEFR OF168h

CC4 DEFR OFE88h CC19IC DEFR OF166h

CC3 DEFR OFE86h CC181C DEFR OF164h

CC2 DEFR OFE84h CC17IC DEFR OF162h

CCl DEFR OFE82h CC16IC DEFR OF160h

cCO DEFR OFE80h RPOH DEFR OF108h

CC31 DEFR OFE7Eh DP1H DEFR OF106h

CC30 DEFR OFE7Ch DP1L DEFR OF104h

CC29 DEFR OFE7Ah DPOH DEFR OF102h

CC28 DEFR OFE78h DPOL DEFR OF100h

CC27 DEFR OFE76h SSCBR DEFR OFOB4h

CC26 DEFR OFE74h SSCRB DEFR OFOB2h

CC25 DEFR OFE72h SSCTB DEFR OFOBOh

CC24 DEFR OFE70h ADDAT2 DEFR OFOAOh

CC23 DEFR OFE6Eh T8REL DEFR OFO56h

CC22 DEFR OFE6Ch T7REL DEFR OFO54h

CC21 DEFR OFE6Ah T8 DEFR OF052h

CC20 DEFR OFE68h T7 DEFR OF050h

CC19 DEFR OFE66h PP3 DEFR OF03Eh

CC18 DEFR OFE64h PP2 DEFR OF03Ch

CC17 DEFR OFE62h PP1 DEFR OF03Ah

DEFR OFO38h

DEFR OFO36h

DEFR OFO34h

DEFR OF032h

DEFR OFO30h

; Bit names

CCIO

CClIO

CC2IO
CC3IO

CC410

CC5IO
CC6IO

CC710
CC8IO
CC9IO

CC1OIO

CC11IO
CC1210

CC13 10
CC14I0

CC15I0
EXOIN
EXlIN
EX2IN

EX3IN

PPO
PT3
PT2

PT1
PTO

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
LIT
LIT
LIT
LIT

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB P4.0

DEFB P4.1

DEFB P4.2

DEFB P4.3

DEFB P4.4

DEFB P4.5

DEFB P4. 6
DEFB P4.7

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

P5. 0

P5. 1
P5 . 2
P5. 3

P5. 4
P5 . 5
P5. 6
P5.7

P . 8
P5 . 9
P5. 10
P5.11
P5. 12

P2. 0

P2. 1
P2 . 2
P2 .3
P2 .4
P2 .5
P2 .6
P2. 7
P2 .8
P2 .9
P2.10

P2. 11
P2 .12

P2 .13
P2.14
P2 .15
'CCOIO'

'CClIO'

'CC2IO'

'CC3IO'

P3 . 0
P3. 1
P3.2
P3 .3
P3. 4
P3 .7
P3 .6
P3 .5
P3. 8
P3 .9
P3. 10
P3. 11

P3 .13
P3 .15

reg 1 67b.def
AN13
AN14

AN15

T6EUD
T5EUD
T6IN

T5IN
T4EUD

T2EUD

POUTO
POUT1
POUT2
POUT3
CC28IO
CC2910
CC30IO

CC31IO

Cc16IO

CC17IO

CC18IO
CC19IO
CC20IO

CC21IO
CC2210

CC2310

TOM
TOR
TiM

TiR

T7M
T7R
T8M
T8R

ACCO
ACC1
ACC2
ACC3

ACC4
ACC5

ACC6
ACC7

ACC8
ACC9
ACC10
ACC11

ACC12

ACC13

ACC14
ACC15

ACC16
ACC17
ACC18
ACC19

ACC20
ACC21

TOIN
T60UT

CAPIN
T30UT
T3EUD
T2 IN
T3IN

T4IN

SSDI
SSDO
TXDO
RXDO
SSCLK
CLKOUT

A16

A17

A18

A19

A20

A21
A22

A23

ANO
AN1

AN2
AN3
AN4
AN5
AN6
AN7
AN8
AN9
AN10

AN11
AN12

DEFB
DEFB
DEFB
LIT
LIT
LIT
LIT
LIT
LIT

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

P5. 13

P5. 14

P5.15

'AN10'
'AN11'
'AN12'
'AN13'
'AN14'
'AN15'

P7 . 0
P7. 1
P7.2
P7 .3
P7 .4
P7. 5
P7 .6
P7.7

P8 . 0
P8. 1
P8.2
P8.3
P8.4

P8.5

P8 .6
P8.7

TO1CON. 3
TO1CON. 6
TO1CON. 11
TO1CON. 14
T78CON.3

T78CON.6

T78CON.11

T78CON.14

CCMO . 3
CCMO. 7
CCMO.11

CCMO.15

CCM1. 3
CCM1. 7
CCM1 .11

CCM1. 15

CCM2. 3
CCM2 . 7
CCM2.11

CCM2.15

CCM3. 3
CCM3 . 7
CCM3.11

CCM3.15

CCM4. 3
CCM4 .7

CCM4. 11
CCM4 .15

CCM5. 3

CCM5. 7

ACC22
ACC23

ACC24
ACC25
ACC26
ACC27

ACC28
ACC29
ACC30
ACC31

T2R
T2UD
T2UDE

T3R
T3UD
T3UDE
T30E

T30TL

T4R
T4UD
T4UDE

T5R
T5UD
T5UDE
T5CLR
T5SC

T6R
T6UD
T6UDE
T60E
T60TL
T6SR

DEFB
DEFB
DEFB
DEFB
DEFB

T3CON.6

T3CON.7
T3CON.8

T3CON.9
T3CON.10

DEFB T4CON.6

DEFB T4CON.7

DEFB T4CON.8

DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

T5CON.6
T5CON.7

T5CON. 8
T5CON. 14
T5CON. 15

T6CON. 6
T6CON .7
T6CON. 8
T6CON.9
T6CON. 10
T6CON.15

T2IC.6

T2IC.7

T3IC. 6

T3IC .7

T4IC.6
T4IC.7

T5IC.6

T5IC.7

T6IC.6
T6IC.7

DEFB CRIC.6

DEFB CRIC.7

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

SOTIC. 6
SOTIC .7

SORIC.6
SORIC.7
SOEIC.6
SOEIC .7

SOTBIC.6
SOTBIC.7

DEFB SSCTIC.6

DEFB SSCTIC.7

DEFB CCM5.11

DEFB CCM5.15

DEFB CCM6.3

DEFB CCM6.7

DEFB CCM6.11

DEFB CCM6.15

DEFB CCM7.3

DEFB CCM7.7

DEFB CCM7.11

DEFB CCM7.15

DEFB T2CON.6

DEFB T2CON.7

DEFB T2CON.8

reg 167b.def
SSCRIE
SSCRIR
SSCEIE

SSCEIR
SSCTE
SSCRE
SSCPE

SSCBE

CCOIE
CCOIR
CC1IE
CC1IR

CC2IE

CC2IR

CC3IE
CC3IR

CC4IE
CC4IR
CC5IE

CC5IR
CC6IE
CC6IR

CC7IE
CC7IR

CC8IE

CC8IR
CC9IE

CC9IR

CC10IE
CC10IR

CC11IE
CC11IR
CC12IE
CC12IR
CC13IE
CC13IR
CC141E

CC14IR
CC15IE
CC15IR
CC16IE
CC16IR
CC17IE
CC17IR
CC18IE

CC18IR

CC19IE

CC19IR
CC20IE
CC20IR
CC21IE
CC21IR
CC22IE

CC22IR

CC23IE
CC23IR
CC24IE

CC24IR
CC25IE
CC25IR

CC26IE

CC26IR

CC27IE

T2IE
T2IR

T3IE
T3IR
T4IE
T4IR
T5IE
T5IR

T6IE
T6IR

DEFB
DEFB
DEFB
DEFB
LIT
LIT
LIT
LIT

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

SSCRIC.6
SSCRIC.7

SSCEIC.6

SSCEIC.7
'SSCTEN'

'SSCREN'

'SSCPEN'

'SSCBEN'

CCOIC. 6

CCOIC. 7
CC1IC. 6
CClIC.7

CC2 IC. 6
CC2IC.7
CC3 IC. 6
CC3 IC. 7
CC4IC.6
CC41C.7
CC5IC.6
CC5IC .7
CC6IC.6

CC6IC.7

CC7IC.6
CC7IC .7

CC8IC.6
CC8IC.7
CC9IC. 6

CC9IC.7
CClOIC.6

CC1OIC.7

CC11IC.6
CC11IC.7
CC12IC. 6

CC12IC.7

CC13IC. 6
CC13IC.7

CC1J4IC.6

CC14IC.7
CC15IC. 6

CC15IC.7
CC16IC.6
CC6IC.7
CC17IC. 6

CC17IC.7
CC18IC.6

CC18IC.7

CC191C.6
CC19IC.7
CC20IC. 6

CC20IC.7
CC21IC. 6
CC21IC.7
CC22IC.6

CC22IC.7
CC23IC.6

CC23IC.7
CC24IC.6

CC24IC.7

CC25IC.6
CC25IC.7

CC26IC.6

CC26IC.7
CC27IC.6

CRIE
CRIR

SOTIE
SOTIR
SORIE
SORIR
SOEIE
SOEIR
SOTBIE

SOTBIR

SSCTIE

SSCTIR

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

CC27IC.7

CC28IC.6
CC28IC.7

CC29IC.6
CC29IC.7
CC30IC.6

CC30IC.7

CC31IC. 6
CC31IC.7

CC27IR
CC28IE

CC28IR

CC29IE
CC29IR

CC30IE
CC30IR
CC31IE
CC31IR

ADCIE
ADCIR
ADEIE
ADEIR

TOIE
TOIR
TIE
T1IR
T7IE

T7IR

T8IE
T8IR

ADST
ADBSY
ADWR
ADCIN
ADCRQ

ILLBUS
ILLINA

ILLOPA

PRTFLT
UNDOPC

STKUF
STKOF
NMI

WDTIN
WDTR

SOSTP

SOREN
SOPEN

SOFEN
SOOEN

SOPE

SOFE
SOOE

SOODD

SOBRS
SOLB

SOR

SSCHB
SSCPH

SSCPO
SSCTEN

SSCREN

SSCPEN

SSCBEN

SSCBSY

SSCMS

SSCEN

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

TOIC. 6
TOIC.7
T1IC. 6

T1IC.7
T7IC.6
T7IC.7

T8IC. 6
T8IC.7

ADCON. 7
ADCON. 8
ADCON. 9
ADCON. 10
ADCON. 11

TFR. 0
TFR. 1
TFR. 2
TFR. 3
TFR. 7

TFR. 13
TFR.14
TFR. 15

DEFB WDTCON.0

DEFB WDTCON.1

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

SOCON.3
SOCON.4
SOCON. 5

SOCON. 6
SOCON.7
SOCON. 8

SOCON.9
SOCON. 10

SOCON. 12
SOCON. 13

SOCON. 14
SOCON.15

SSCCON.4

SSCCON.5

SSCCON.6

SSCCON.8

SSCCON.9

SSCCON.10

SSCCON.11

SSCCON.12

SSCCON.14

SSCCON.15

reg167b.def

PTRO
PTR1
PTR2
PTR3
PTIO

PTI1
PTI2

PTI3

PIE0
PIEl

PIE2
PIE3
PIRO
PIR1
PIR2
PIR3

PENO
PEN1
PEN2
PEN3
PmO
PM1
PM2
PM3
PBO1
PS2
PS3

PWMIE
PWMIR

XP3IE

XP3IR
XP2IE

XP2IR
XP1IE

XP1IR

XPOIE
XPOIR

DEFB ADCIC.6

DEFB ADCIC.7

DEFB ADEIC.6
DEFB ADEIC.7

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

PWMC0NO.0
PWMCONO.1
PWMCONO.2
PWMCONO.3

PWMCONO.4

PWMCONO.5
PWMCONO.6

PWMCONO.7

PWMCONO.8

PWMCONO.9

PWMCONO.10
PWMCONO.11

PWMCON0.12
PWMCONO.13

PWMCONO.14
PWMCONO.15

PWMCON1.0
PWMCON1.1

PWMCON1.2
PWMCON1.3
PWMCON1.4
PWMCON1 . 5

PWMCON1 . 6

PWMCON1 .7

PWMCON1.12
PWMCON1.14
PWMCON1.15

PWMIC.6
PWMIC.7

XP3IC.6
XP3IC.7

XP2IC.6
XP2IC.7

XP1IC.6

XP1IC.7

XPOIC.6
XPOIC.7

B.11 Saber to Breadboard Converter Code

On the next page starts the code for the Java Saber to Breadboard Converter tool. The files for

the node are as follows.

1. SaberConverter.java

2. SaberFrame.java

3. SaberFrameAboutBox.java

B.12 Breadboard Loads

On the next page is the file BreadBoardLoads.txt

- 65 -

Chapter B Breadboard Code

saberc-1.-ja

//Title: Saber to Bread Board Converter
//Version:
//Copyright: Copyright (c) 1998

//Author: James Geraci
//Company: MIT LEES Lab

//Description:Saber to Bread Board Converter
package Thesis;

import com.sun.java.swing.UIManager;
import java.awt.*;
import java.io.*;
import java.util.*;
import java.text.*;
import borland.jbcl.util.*;

public class SaberConverter {

boolean packFrame = false;

//Construct the application

public SaberConverter() {
SaberFrame frame = new SaberFrame();
//Validate frames that have preset sizes

//Pack frames that have useful preferred size info, e.g. from their layout

if (packFrame)
frame.pack();

else
frame.validate();

//Center the window
Dimension screenSize = Toolkit.getDefaultToolkit() .getScreenSize(;

Dimension frameSize = frame.getSize(;
if (frameSize.height > screenSize.height)

frameSize.height = screenSize.height;
if (frameSize.width > screenSize.width)

frameSize.width = screenSize.width;
frame.setLocation((screenSize.width - frameSize.width) / 2, (screenSize.height - frameSize.height) / 2);

frame.setVisible(true);
}

//Main method

public static void main(String[] args) {

try {
// UIManager.setLookAndFeel(new com.sun.java.swing.plaf.windows.WindowsLookAndFeel());

//UIManager.setLookAndFeel(new com.sun.java.swing.plaf.motif.MotifLookAndFeel());

UIManager. setLookAndFeel (new com. sun. java. swing.plaf.metal.MetalLookAndFeel ());

saberc-1.-ja

}
catch (Exception e) {
}
new SaberConverter();

}

class AlternatorRPMObject

{
public AlternatorRPMObject(TextField WheelDiameter, TextField DiffGearR,

TextField EngAltGearR, String s)

VehicleDrivingSpeed = 0;
TireDiameter = new Double (WheelDiameter.getText() trim() .doubleValue(;

DifferentialGearRatio = new Double(DiffGearR.getText().trim().doubleValue(;

TransmissionGearRatio = 0;

EngineAlternatorGearRatio = new Double(EngAltGearR.getText().trim)).doubleValue();
AlternatorShaftSpeed = 0;

TimeOfEvent = 0;
try

GenerateAlternatorShaftSpeed(s);

catch(IOException rt)

{
System.exit(1);

}
}

public void GenerateAlternatorShaftSpeed(String s) throws IOException

{
String Time;

String Speed;
String Gear;

StringTokenizer token = new StringTokenizer(s, \t\n\r");

if(token.hasMoreTokens()

{
Time = token.nextToken(;
Speed = token.nextToken(;
Gear = token.nextToken();

int TimeLength = Time.length(;
int SpeedLength = Speed.length(;

int GearLength = Gear.length(;

saberc-1.-ja

double TimeDataDouble = new Double(Time.substring(0, TimeLength)).doubleValue();

double SpeedDataDouble = new Double(Speed.substring(0, SpeedLength)).doubleValue();

double GearDataDouble = new Double(Gear.substring(0, GearLength)).doubleValue();

VehicleDrivingSpeed = SpeedDataDouble;
int TimeDataInteger = (int) (TimeDataDouble);

int SpeedDataInteger = (int) (SpeedDataDouble);

int GearDataInteger = (int) (GearDataDouble);

if(GearDataInteger == 0 && SpeedDataInteger -1)

{
TransmissionGearRatio = 0

}
else if(GearDataInteger == 1 && SpeedDataInteger -1)

{
TransmissionGearRatio = 3.071;

}
else if(GearDataInteger == 2 && SpeedDataInteger -1)

TransmissionGearRatio = 1.773;

}
else if(GearDataInteger == 3 && SpeedDataInteger -1)

{
TransmissionGearRatio = 1.194;

else if(GearDataInteger == 4 && SpeedDataInteger -1)

{
TransmissionGearRatio = 0.868;

}
else if(GearDataInteger == 5 && SpeedDataInteger != -1)

{
TransmissionGearRatio = 0.700;

}
else

{
TransmissionGearRatio = 0;

}

if (GearDataInteger == 0 && SpeedDataInteger -1)

{
AlternatorShaftSpeed = 600;

}
else if (SpeedDataInteger == -1)

AlternatorShaftSpeed = 0;

}

saberc-1.-ja

else
{
AlternatorShaftSpeed = (TransmissionGearRatio*((10.0/36.0)*(60.0)/ (TireDiameter*(Math.PI)))*DifferentialGearRatio*V

ehicleDrivingSpeed);
if((AlternatorShaftSpeed == 0) (AlternatorShaftSpeed < 600))

{
AlternatorShaftSpeed = 600;

}

Time = Integer.toString(TimeDataInteger);

Speed = Integer.toString(SpeedDataInteger);
Gear = Integer.toString(GearDataInteger);

AlternatorSpeed = Integer.toString((int) AlternatorShaftSpeed);

i

public String getAlternatorShaftSPeed ()

//return VehicleDrivingSpeed;

return AlternatorSpeed;

public double getAlternatorShaftSpeed2()

//return VehicleDrivingSpeed;
return AlternatorShaftSpeed;

private
private
private
private
private
private
private
private

String
double
double
double
double
double
double
double

AlternatorSpeed;
VehicleDrivingSpeed;
TireDiameter;
DifferentialGearRatio;
TransmissionGearRatio;
EngineAlternatorGearRatio;
AlternatorShaftSpeed;
TimeOfEvent;

class CANEventobject

{

}

}

{

}

saberc-1.-ja

public void CANEventObjectFileHandler(String s, int xx)

{
// System.out.println(xx);
xx++;

try{
BufferedReader SCSFileIn = new BufferedReader(new FileReader(s), 20000);

String s2;
while((s2 = SCSFileIn.readLine())!= null)

{
// s2.trim(;

workwithCANString(s2);

}
trimVectors();
SCSFileIn.close(;

/* This Section of Code Deals with Extension Files */

int x = CANEventGenerators.size() - 1;

int y = 0;
while (y < x)

{
if(((CANObjectClass)(CANEventGenerators.elementAt(y))).returnDoExtensionFilesExist()

{

String s3 = ((CANObjectClass) (CANEventGenerators.elementAt(y))).returnNameOfExtensionFile();

((CANObjectClass) (CANEventGenerators.elementAt(y))).setDoExtensionFilesExist(false);
CANEventObjectFileHandler(s3, xx);

}
y++;

}
}

catch(IOException ex)

{
System.exit(l);

}

public void workwithCANString(String inputstring)

{
StringTokenizer s2 = new StringTokenizer(inputstring, "\n\r");

if(s2.hasMoreElements()

{
String s = s2.nextToken();

saberc-1.-ja

int indexofdecimalpoint = 0;

int indexoflastfrontslash = 0;

int indexofopenbrace = 0;

int indexofclosebrace = 0;

String NameOfCANEvent;
String OnandOffTimes;
int CANEventVectorSize = 0;

int CANCounterSize = 0;

int counter = 0;
int counter2 = 0;

boolean AlreadyExists = false;

String AppendFileName;
s.trim();
if(!(s.startsWith("#")))

{
if(s.startsWith("alter"))
{
indexofdecimalpoint = s.index0f(".");
indexoflastfrontslash = s. lastIndexOf("/");

indexofopenbrace = s.indexOf("[");

indexofclosebrace = s.indexOf("]");
NameOfCANEvent = s.substring((indexofdecimalpoint + 1), indexoflastfrontslash);

CANCounterSize = CANEventGenerators.size();

while(counter2 < CANCounterSize)
{

if (NameOfCANEvent.equals(((CANObjectClass) (CANEventGenerators.elementAt(counter2))).returnCANEventName()))

{
CANEventVectorSize = counter2;

counter2 = CANCounterSize + 1;
AlreadyExists = true;

counter2++;
}

if(!AlreadyExists)
{
CANEventGenerators.addElement(new CANObjectClass(NameOfCANEvent));

if(CANEventGenerators.size() != 0)

CANEventVectorSize = CANEventGenerators.size() - 1;

}

if(indexofclosebrace -1)

{
((CANObjectClass) (CANEventGenerators.elementAt(CANEventVectorSize))).setOnandOffTimes(s.substring(indexofopen

brace + 1, indexofclosebrace));

saberc-1.-ja

else
{
((CANObjectClass) (CANEventGenerators .elementAt (CANEventVectorSize))) .setOnandOffTimes (s.substring(indexofopen

brace + 1))

penbrace + 1,

penbrace + 1));

}

}
}
if(s.startsWith("(") s.startsWith(","))

{
if(indexofclosebrace !=-1)
{
((CANObjectClass) (CANEventGenerators.elementAt

indexofclosebrace));
}

else

{

(CANEventVectorSize))).setOnandOffTimes(s.substring(indexofo

((CANObjectClass) (CANEventGenerators.elementAt(CANEventVectorSize))).setOnandOffTimes(s.substring(indexofo

}

}
else if(s.startsWith("#") && s.endsWith(".scs"))

{
StringTokenizer token = new StringTokenizer(s, \t\n\r");

int TokenCount = token.countTokens();
int x = 1;

while(x < TokenCount)
{
if(token.hasMoreElements()

(
token .nextToken();

}

((CANObjectClass) (CANEventGenerators.elementAt(CANEventVectorSize))).setNameOfExtensionFile (token.nextToken());

((CANObjectClass) (CANEventGenerators.elementAt (CANEventVectorSize))) .setDoExtensionFilesExist (true);

}
}

public void trimVectors()
{
CANEventGenerators.trimToSize();

}
public int returnCANEventListSize()

{
// return CANEventGenerators.siZe();

saberc-1.-ja

// // return BreadBoardCANLoads.size();

/I return ValidCANEventGenerators.size();
return ProgrammableLoadPowerDemanded.size();
return FinalCANList.size();

}

public String returnProgrammableLoad(int x)

{
return ((String) ProgrammableLoadPowerDemanded. elementAt (x));

public String returnCANString(int x)

{
// return ((CANObjectClass)(CANEventGenerators.elementAt(x))).returnOnandOffTimes();

// return ((String) (BreadBoardCANLoads.elementAt (x)));

return (((CANMessageClass) (FinalCANList.elementAt(x))) .returnCANMessage());

// return ((CANObjectClass)(ValidCANEventGenerators.elementAt(x))).returnCANEventName();

public int returnCANEventTime(int x)

{
return (((CANMessageClass) (FinalCANList.elementAt (x))) .returntime());

}

public void ReadinBreadBoardCANLoads(String inputfile)

{

try{

BufferedReader filein = new BufferedReader(new FileReader(inputfile.trim()));

String s;

// Here is where the actual load list is read in.

while((s = filein.readLine() null)

{
handleCANString(s);

}
filein.close();

}
catch(IOException ex)

{
Systemn.exit(l);

saberc-1.-ja

private void handleCANString(String x)

{
StringTokenizer token = new StringTokenizer(x, " \t\n\r")

if(token.hasMoreElements()

{
String CanNamel = (String) token.nextElement();

String MessageID = (String) token.nextElemnent();

// Here is where the load is actually added to the list

BreadBoardCANLoads. addElement (new CANObjectClass (CanNamel, MessageID));

}

I
public void ConfirmBreadBoardCompatability()

{
while(CANEventGenerators.size() > 0)

// System.out.println(CANEventGenerators.size () + "\t" + ValidCANEventGenerators.size() + "\t" + NotValidCANEventGener

ators.size());
boolean istrue = false;

int BreadBoardLoads = BreadBoardCANLoads.size() - 1;

int count = 0;

int holder = 0;
while(count < BreadBoardLoads)

{
if((((CANObjectClass) (BreadBoardCANLoads.elementAt (count))) .returnCANEventName() .equals(((CANObjectClass) (CANEv

entGenerators.elementAt(0))).returnCANEventName())
{

istrue = true;

holder = count;
}

count++;

}
if(istrue)

{
ValidCANEventGenerators.addElement((CANObjectClass) (CANEventGenerators.elementAt(0)));

((CANObjectClass) ValidCANEventGenerators. lastElement)).setMessageID(((CANbjectClass) (BreadBoardCANLoads.elemen

tAt(holder))).returnMessageID());
CANEventGenerators.removeElementAt(0);

else
{
NotValidCANEventGenerators.addElement((CANObjectClass) (CANEventGenerators.elementAt(0)));

CANEventGenerators.removeElementAt(0);

}

saberc-1.-ja

}
ValidCANEventGenerators.trimToSize();

}

public void GenerateEMValvePowerDemand(TextField HigherVoltage, TextField LowerVoltage,
TextField PowerAvailable, Vector Al

ternatorSpeedVector)
{

double HigherBusVoltage = new Double(HigherVoltage.getText().trim().doubleValue(;
double LowerBusVoltage = new Double (LowerVoltage. getText () .trim()) .doubleValue();

double ProgrammablePowerAvailable = 1800; //new Double(PowerAvailable.getText().trim().doubleValue(;

double IdleRPMSpeed = 600; // From Irene Quo's Master Thesis page 85 of motor not alternator

double HighSpeedRPMSpeed = 2000; // From Irene Quo's Master Thesis page 85

double MaxCurrent = ProgrammablePowerAvailable / HigherBusVoltage;
double MinCurrent = MaxCurrent / 5;
double SizeofAlternatorSpeedVector = AlternatorSpeedVector.size(;
double Slope = (MaxCurrent - MinCurrent)/(HighSpeedRPMSpeed - IdleRPMSpeed);

// System.out.println("This is Computing the EMValve Power Demanded");

System.out.println("Slope = " + Slope);

int counter = 0;

while(counter < SizeofAlternatorSpeedVector)

if((Double.valueOf((((AlternatorRPMObject) (AlternatorSpeedVector.elementAt(counter))).getAlternatorShaftSpeed())).

doubleValue() < IdleRPMSpeed)
{
ProgrammableLoadPowerDemanded.addElement(Double.toString(0));
}

else if((Double.valueOf ((((AlternatorRPMObject) (AlternatorSpeedVector.elementAt (counter))) .getAlternatorShaftSpeed

())).doubleValue()) >= HighSpeedRPMSpeed)

{
ProgrammableLoadPowerDemanded.addElement(Double.toString(MaxCurrent));

}
else

{
int Current = (int) (Slope*((Double.valueOf((((AlternatorRPMObject) (AlternatorSpeedVector.elementAt(counter)))

.getAlternatorShaftSpeed())).doubleValue()) - 6.425);

if (Current <= MaxCurrent)

{
ProgrammableLoadPowerDemanded.addElement(Double.toString(Current));

else
{
ProgrammableLoadPowerDemanded.addElement(Double.toString(MaxCurrent));

}e
counter++;

saberc-1.~ja

}
/ System. out. print ln("EMValve stuff computed");

ProgrammableLoadPowerDemanded. trimToSize (;

}

public void CreateCANMessages()

{
int y = 0;
while(y < ValidCANEventGenerators.size())

(
parseCANString(((CANObjectClass) (ValidCANEventGenerators. elementAt (y))) .returnOnandOf fTimes (, ((CANObjectClass) Val

idCANEventGenerators .elementAt (y)));

/I / System.out.println(((CANObjectClass) (ValidCANEventGenerators .elementAt (y))) .returnOnandoffTimes);

y++;

}

private void parseCANString(String s, CANObjectClass sClass)

{
StringTokenizer token = new StringTokenizer(s, "(");

// Test to see if Tokens exist

while(token.hasMoreElements()

String snext = token.nextToken);
SemiFinalCANList.addElement (new CANMessageClass (snext, sClass));

}
}

public void removeCANString(int x)

{
FinalCANList .removeElementAt (x);

}

public void removeTOoffMessages()

{
while(SemiFinalCANList.size() 0)

{
if(((((CANMessageClass) SemiFinalCANList.elementAt(0)) .returntime()) == 0)

i f (! (((CANMes sageClass) (SemiFinalCANLis t. elementAt (0))) .returnTurnOn ()))

{
SemiFinalCANList .removeElementAt (0);

else

saberc-1.-ja

{
FinalCANList.addElement((CANMessageClass) (SemiFinalCANList.elementAt(0)));

SemiFinalCANList.removeElementAt(0);

}
}

}

private String CANString;

private Vector FinalCANList = new Vector(100, 20);

private Vector SemiFinalCANList = new Vector(100, 20);

private Vector BreadBoardCANLoads = new Vector(11);

private Vector CANEventGenerators = new Vector(100, 20);

private Vector ValidCANEventGenerators = new Vector(11);

private Vector NotValidCANEventGenerators = new Vector(11);

private Vector ProgrammableLoadPowerDemanded = new Vector(30000, 500);

// private Vector ProgrammableLoadLoads = new Vector(11);

}

class CANMessageClass

CANMessageClass(String s, CANObjectClass CANObject)

StringTokenizer token = new StringTokenizer(s, ",");

if(token.hasMoreElements()
{
time = (int) Integer.parseInt(token.nextToken());

String e = token.nextToken(;
StringTokenizer token2 = new StringTokenizer(e, ")");

// Compute most of the checksum

byte[] buffer = new byte[41;
buffer = (CANObject.returnMessageID()).getBytes();
int idvalue = ConvertFromText(buffer);

int checksum = 0;

checksum = 3 + 8 + idvalue; // not done with the checksum just yet

// Determine if you are turning the switch on or off

e = (token2.nextToken().trim(;

if(e.equals("2") || e.equals("3") |e. equals("4"))

checksum = checksum + 1;

String HexString = ConvertToHex(checksum);
CANMessage = "A00308"+ (CANObject.returnMessageID)) + "0000010000000000" + HexString + "OA"; // Turn the 42V

olt Heater On
TurnOn = true;

saberc-1.-ja

}
else if (e.equals("1"))
{
checksum = checksum + 8;

String HexString = ConvertToHex(checksum);
CANMessage = "A00308" + (CANObject.returnMessageID()) + "0008000000000000" + HexString + "OA"; // Turn the 42

Volt Heater Off
TurnOn = false;

}
}

}

private int ConvertFromText(byte[] byter)

{
int sum = 0;
int intO = (int) byter[O];

int int2 = (int) byter[2];

int int3 = (int) byter[3];

if(int0 >= 48 && intO <= 57)

intO = intO - 48;

}
else if(intO >= 65 && intO <= 70)

{
intO = intO - 55;

if(int2 >= 48 && int2 <= 57)

{
int2 = int2 - 48;

}
else if(int2 >= 65 && int2 <= 70)

{
int2 = int2 - 55;

}
if(int3 >= 48 && int3 <= 57)

{
int3 = int3 - 48;

}
else if(int3 >= 65 && int3 <= 70)

{
int3 = int3 - 55;

i

intO = intO * 16;

int2 = int2 * 16;
sum = intO + int2 + int3;

saberc--1.ja

return sum;

}

private String ConvertToHex(int checksum)

{
char[] chararray = new char[4];
int lowestnibble = checksum & 15;
int secondnibble = checksum & 240;
int thirdnibble = checksum & 3840;

int topnibble = checksum & 61440;
secondnibble = secondnibble >>> 4;

thirdnibble = thirdnibble >>> 8;

topnibble = topnibble >>> 12;

chararray[0] = FindLetter(topnibble);
chararray [1] = FindLetter (thirdnibble);
chararray [2] = FindLetter (secondnibble);
chararray[3] = FindLetter(lowestnibble);

String sammy = new String(chararray);
return sammy;
}

private char FindLetter(int x)

{
char y = '0';
if(x >= 10)

{
y = (char) (x + 55);
}

else if(x <= 9)

{
y = (char) (x + 48);

}
return y;
}

public boolean returnTurnOn()

{
return TurnOn;

}

public int returntime()
{
return time;

saberc-1.-ja

public String returnCANMessage()

{
return CANMessage;

I
private int time;

private boolean TurnOn;

private String CANMessage;

}

class CANObjectClass

{
CANObjectClass(String CName, String MID)

CANEventName = CName;
Message_ID = MID;

I

CANObjectClass(String s)

{
CANEventName = s;

public void setOnandOffTimes(String s)

{
String s2 = s.trim(;
if(!append)
{
OnandoffTimes = s;

append = true;

}
else

{
OnandoffTimes = OnandOffTimes + s;

}
}

public void appendOnandOffTimes(String s)

{
OnandOffTimes = OnandOffTimes + s;

I

public void setNameOfExtensionFile(String s)

{
NameOfExtensionFile = s;

saberc-1.~ja

}

public String returnNameOfExtensionFile()
{
return NameOfExtensionFile;

public String returnOnandOffTimes()

{
return OnandOffTimes;

}

public String returnCANEventName()

{
return CANEventName;

}

public boolean returnDoExtensionFilesExist()
{
return DoExtensionFilesExist;

}

public void setDoExtensionFilesExist(boolean t)

{
DoExtensionFilesExist = t;

public void setMessageID(String s)

MessageID = s;

}

public String returnMessageID()

return Message_ID;

}

private
private
private
private
private
private
private

boolean append = false;
String CANEventName;
String OnandOffTimes;
String NameOfExtensionFile = "No Extension Files";

String MessageID;
boolean DoExtensionFilesExist = false;

Vector OffTimes = new Vector(20);

saberf-1.jav

//Title: Saber to Bread Board Converter

//Version:
//Copyright: Copyright (c) 1998

//Author: James Geraci

//Company: MIT LEES Lab

//Description:Saber to Bread Board Converter

package Thesis;

import java.awt.*;
import java.awt.event.*;
import com.sun.java.swing.*;

import borland.jbcl.control.BevelPanel;
import borland.jbcl.control.ImageControl;

public class SaberFrameAboutBox extends Dialog implements
ActionListener {

BevelPanel panell = new BevelPanel();
BevelPanel panel2 = new BevelPanel();
BevelPanel insetsPanell = new BevelPanel();
BevelPanel insetsPanel2 = new BevelPanel();

BevelPanel insetsPanel3 = new BevelPanel();
JButton buttonl = new JButton(;
ImageControl imageControll = new ImageControl();

JLabel labell = new JLabel();
JLabel label2 = new JLabel();
JLabel label3 = new JLabel();
JLabel label4 = new JLabel();
BorderLayout borderLayoutl = new BorderLayout();

BorderLayout borderLayout2 = new BorderLayout();

FlowLayout flowLayoutl = new FlowLayout);
FlowLayout flowLayout2 = new FlowLayout);

GridLayout gridLayoutl = new GridLayout();

String product = "Saber to Bread Board Converter";

String version = "";

String copyright = "Copyright (c) 1998";

String comments = "Saber to Bread Board Converter";

public SaberFrameAboutBox(Frame parent) {

super(parent);
enableEvents(AWTEvent.WINDOWEVENTMASK);
try {

jbInit(;

catch (Exception e) {
e.printStackTrace();

saberf-1.jav

}
pack();

}

private void jbInit() throws Exception {
this.setTitle("About");
setResizable(false);
panell.setLayout(borderLayoutl);
panel2.setLayout(borderLayout2);
insetsPanell.setLayout(flowLayoutl);
insetsPanell.setBevelInner(BevelPanel.FLAT);
insetsPanel2.setLayout(flowLayoutl);
insetsPanel2.setMargins(new Insets(10, 10, 10, 10));

insetsPanel2.setBevelInner(BevelPanel.FLAT);
gridLayoutl.setRows(4);
gridLayoutl.setColumns(1);
labell.setText(product);
label2.setText(version);
label3.setText(copyright);
label4.setText(comments);
insetsPanel3.setLayout(gridLayoutl);
insetsPanel3.setMargins(new Insets(10, 60, 10, 10));

insetsPanel3.setBevelInner(BevelPanel.FLAT);
buttonl.setText("OK");
buttonl.addActionListener(this);
imageControll.setImageName("");
insetsPanel2.add(imageControll, null);

panel2.add(insetsPanel2, BorderLayout.WEST);

this.add(panell, null);

insetsPanel3.add(labell, null);

insetsPanel3.add(label2, null);

insetsPanel3.add(label3, null);

insetsPanel3.add(label4, null);

panel2.add(insetsPanel3, BorderLayout.CENTER);

insetsPanell.add(buttonl, null);

panell.add(insetsPanell, BorderLayout.SOUTH);

panell.add(panel2, BorderLayout.NORTH);
}

protected void processWindowEvent(WindowEvent e) {
if (e.getID() == WindowEvent.WINDOWCLOSING) {

cancel();

}
super.processWindowEvent (e);

}

saberf- 1.jav

void cancel() (
dispose (;

}

public void actionPerformed(ActionEvent e) {
if (e.getSource() == buttoni) {

cancel ();

}

saberf-2.jav

//Title: Saber to Bread Board Converter

//Version:

//Copyright: Copyright (c) 1998

//Author: James Geraci

//Company: MIT LEES Lab

//Description:Saber to Bread Board Converter
package Thesis;

import java.awt.*;
import java.awt.event.*;
import borland.jbcl.control.*;

import borland.jbcl.layout.*;

import java.io.*;
import java.util.*;
import java.text.*;

public class SaberFrame extends DecoratedFrame {

//Construct the frame

BorderLayout borderLayoutl = new BorderLayout();
XYLayout xYLayout2 = new XYLayout();

BevelPanel bevelPanell = new BevelPanel();
MenuBar menuBari = new MenuBar();
Menu menuFile = new Menu();

MenuItem menuFileExit = new MenuItem(;

Menu menuHelp = new Menu();

MenuItem menuHelpAbout = new MenuItem(;

ButtonBar toolBar = new ButtonBar(;

StatusBar statusBar = new StatusBar(;

TextField textFieldl = new TextField(;
Button buttonl = new Button(;
TextField textField2 = new TextField(;
TextField textField3 = new TextField(;

Label labell = new Label();
Label label2 = new Label();
TextField textField4 = new TextField(;
Label label3 = new Label();
TextField textField5 = new TextField(;
TextField textField6 = new TextField(;
TextField textField7 = new TextField(;
TextField textField8 = new TextField);
TextField textField9 = new TextField);

Label label4 = new Label();
Label label5 = new Label();
TextField textFieldlO = new TextField);

Label label6 = new Label();

saberf-2.jav

TextField textField1l = new TextField();
Label label8 = new Label();
Label label9 = new Label();

public SaberFrame() {
try {

jbInit();

}
catch (Exception e) {
e.printStackTrace();

//Component initialization

private void jbInit() throws Exception {
this.setLayout(borderLayoutl);
this.setSize(new Dimension(466, 358));

this. setTitle("Saber to BreadBoard Converter Program");

menuFile.setLabel("File");
menuFileExit.setLabel("Exit");
menuFileExit.addActionListener (new ActionListener() {

public void actionPerformed(ActionEvent e) {
fileExitactionPerformed(e);

}
});
menuHelp.setLabel("Help");
menuHelpAbout.setLabel("About");
menuHelpAbout.addActionListener (new ActionListener() {

public void actionPerformed(ActionEvent e) {
helpAboutactionPerformed(e);

}
});
toolBar.setButtonType(ButtonBar.IMAGE_ONLY);
toolBar.setLabels (new String[] {"File", "Close", "Help"});

textFieldl.setText("ecel5_city.dat");
buttonl.setLabel("GenerateFile");
textField2.setText("0.594");
textField3.setText("4.0");
labell.setText("Tire Diameter :");

label2.setText ("Differential Gear Ratio

textField4.setText("3.0");

label3.setText ("Engine-Alternator Gear Ratio

textField5.setText("winterworstecel5.scs");
textField6.setText("textField6");
textField7.setText("BreadBoardCANLoads.txt");

saberf-2.jav

textField8.setText("40");

textField9.setText("14");

label4.setText("Higher Voltage Bus Voltage :");

label5.setText("Lower Voltage Bus Voltage :");

textFieldl0.setText("1800");

label6. setText ("Programmable Load Wattage :");

textFieldll.setText("BBInputFile.txt");

label8.setText("e :");
label9.setText("Output FileName :");

buttonl.addActionListener(new java.awt.event.ActionListener()

public void actionPerformed(ActionEvent e) {

buttoniactionPerformed(e);
}

{

toolBar.setImageBase("image");

toolBar.setImageNames (new String[] ("openFile.gif", "closeFile.gif", "help.gif"});

bevelPanell.setLayout(xYLayout2);

menuFile.add(menuFileExit);

menuHelp.add(menuHelpAbout);

menuBarl.add(menuFile);
menuBarl.add(menuHelp);

this.setMenuBar(menuBarl);

this.add(toolBar, BorderLayout.NORTH);

this.add(statusBar, BorderLayout.SOUTH);

this.add(bevelPanell, BorderLayout.WEST);

bevelPanell.add(textFieldl, new XYConstraints(7, 20, 201, -1));

bevelPanell.add(buttonl, new

bevelPanell.add(textField2,
bevelPanell.add(textField3,
bevelPanell.add(labell, new

bevelPanell.add(label2, new

bevelPanell.add(textField4,
bevelPanell.add(label3, new

bevelPanell.add(textField5,
bevelPanell.add(textField6,
bevelPanell.add(textField7,
bevelPanell.add(textField8,
bevelPanell.add(textField9,
bevelPanell.add(label4, new

bevelPanell.add(label5, new

bevelPanell.add(textFieldl0,
bevelPanell.add(label6, new

XYConstraints(349, 12, 99, 35));

new XYConstraints(388, 52, 60, 21));

new XYConstraints(388, 79, 60, 21));

XYConstraints(292, 52, -1, -1));
XYConstraints(249, 79, -1, -1));
new XYConstraints(388, 104, 60, 21));

XYConstraints(211, 102, -1, -1));
new XYConstraints(7, 52, 201, -1));

new XYConstraints(l, 244, 172, 34));

new XYConstraints(7, 79, 201, -1));

new XYConstraints(388, 129, 60, 21));

new XYConstraints(388, 157, 60, 21));

XYConstraints(220, 129, -1, -1));
XYConstraints(224, 156, -1, -1));
new XYConstraints(388, 185, 60, 21));

XYConstraints(208, 183, 155, 25));

bevelPanell.add(textFieldll, new XYConstraints(7, 200, 161, -1));

bevelPanell.add(label8, new XYConstraints(364, 183, 23, -1));

bevelPanell.add(label9, new XYConstraints(7, 176, -1, -1));

saberf-2.jav

}
//File I Exit action performed

public void fileExitactionPerformed(ActionEvent e) {

System.exit(0);

}
//Help I About action performed

public void helpAboutactionPerformed(ActionEvent e) {

SaberFrameAboutBox dlg = new SaberFrameAboutBox(this);
Dimension dlgSize = dlg.getPreferredSize(;

Dimension frmSize = getSize();

Point loc = getLocation);

dlg.setLocation((frmSize.width - dlgSize.width) / 2 + loc.x, (frmSize.height - dlgSize.height) / 2 + loc.y);

dlg.setModal(true);

dlg.show);
}

void buttoniactionPerformed(ActionEvent e)

{
textField6 . setText ("I have Started");

Vector AlternatorInfoVector = new Vector(50000, 500);

CANEventObject CANCollectorObject = new CANEventObject();

/* Generate the Alternator RPM by reading in a *.dat file and then putting all of

the data into a vecotr that contains AlternatorRPMObjects
*/

try{

BufferedReader filein = new BufferedReader(new FileReader(textFieldl.getText()), 2000000);

String s;
while((s = filein.readLine() != null)

{
s.trim);

AlternatorInfoVector.addElement(new AlternatorRPMObject(textField2,
textField3, textField4, s));

}
AlternatorInfoVector.trimToSize();

filein.close();

catch(IOException ex)

{
System.exit(l);

/* Now Read in the SCS File and put the data into a Vector
which contains

objects of type CANEventObject*/

saberf-2.jav

System. out.println ("You are Starting the CANEventObjectFileHandler");

CANCollectorObject.CANEventObjectFileHandler(textField5.getText (), 0);

System.out.println("You have completed the CANEventObjectFileHandler");

System. out.println ("You are now starting the ReadinBreadBoardCANLoads");

/* The following function reads in a list of all known BreadBoardCANLoads*/

CANCollectorObject.ReadinBreadBoardCANLoads(textField7.getText));

/* The following function checks to see if the loads used in the Saber
Simulation are

Available on the CAN bus */
System. out.println ("You are now starting the ConfirmBreadBoardCompatability");

CANCollectorObject.ConfirmBreadBoardCompatability();

/* The following function generates the serial messages which are to be used

to activate the events on the CAN BUS it also puts them togther with their

appropriate Alternator RPM Object*/

System. out.println ("You are now starting the CreateCANMessages");

CANCollectorObject.CreateCANMessages();
/* The following function removes all the the Turn off Commands at t=0 */

System.out.println("You are now removing the excess turn off commands");

CANCollectorObject.removeTOoffMessages();

/* The following function generates the appropriate ElectroMechanical Valve
Power Demand

For a given Alternator Speed*/

System.out.println("You are now starting the GenerateEMValvePowerDemand");

CANCollectorObject.GenerateEMValvePowerDemand(textField
8 , textField9, textField10, AlternatorInfoVector);

// Generate the Output File

System.out.println("Now Writing the output file");

/ int RunCounter = 0;

// double NumberOfRunsDouble = new Double(textField13.getText()).doubleValue(;
/ int NumberOfRuns = (int) NumberOfRunsDouble;

try{

PrintWriter out = new PrintWriter(new FileOutputStream((textFieldll.getText() .trim()));

// while(RunCounter < NumberOfRuns)

// (
int startupbuffer = 0;

while(startupbuffer < 60)

{
out.println("//");

startupbuffer++;

}

saberf-2.jav

int x = 0;
//int CANEventListSize = CANCollectorObject.returnCANEventListSize();
int z = AlternatorInfoVector.size() - 1;

int peter = 0;
double previousProgrammableLoad = 0;
int previousRPM = -1;

int fourthpoint = 1;
int testRPM = 0;
while(x < (z - 1))

{
// System.out.println(x);

out.print("!" + x);
// out.print(x);

if(previousRPM != ((int) Integer.parseInt(((AlternatorRPMObject) (AlternatorInfoVector.elementAt(x))).getAlternatorShaft

Speedo))))
{

// testRPM = ((int) Integer.parseInt(((AlternatorRPMObject) (AlternatorInfoVector.elementAt(x))) .getAlternatorSha

ftSpeed());
// testRPM = testRPM + 1;

// out.print("\t" + "?" + previousRPM);

// System.out.println(previousRPM + + ((int) Integer.parseInt (((AlternatorRPMObject) (AlternatorInfoVector.eleme

ntAt(x))).getAlternatorShaftSpeed())));
out.print("\t" + "?" + ((AlternatorRPMObject) (AlternatorInfoVector.elementAt(x))).getAlternatorShaftSpeed();

previousRPM = ((int) Integer.parseInt(((AlternatorRPMObject) (AlternatorInfoVector.elementAt(x))).getAlternato

rShaftSpeed()));

}
//out.print("\t");
peter = 0;

while(peter < (CANCollectorObject.returnCANEventListSize()))
{
if((CANCollectorObject.returnCANEventTime(peter)) == x)

{
out.print("\t" + "#" + CANCollectorObject.returnCANString(peter));

// CANCollectorObject.removeCANString(peter);
}
peter++;

if(previousProgrammableLoad != Double.valueOf(CANCollectorObject.returnProgrammableLoad(x)).doubleValue()

out.print("\t" + "^42+");

out.print(CANCollectorObject.returnProgrammableLoad(x));

saberf-2.jav

previousProgrammableLoad = Double.valueOf(CANCollectorObject.returnProgrammableLoad(x)).doubleValue();
if(fourthpoint == 1)

{

// These are the data collection CAN Calls.

out.print("\t" + "#A003000005000000000000000000080A");

}
else if(fourthpoint ==2)

{

out.print("\t" + "#AO030000BAOOOOOOOOOOOOOOOOOOBDOA");

}

/* out.print("\t" + "#AO030000070000000000000000000AOA")
out.print("\t" + "#AO030000080000000000000000000BOA");

}*/
else if(fourthpoint == 3)

{
out.print("\t" + "#A0O300000FOOOOOOOOOOO0000000120A")
}

else if(fourthpoint ==4)

{
out.print("\t" + "#AO030000090000000000000000000COA")
}
else if(fourthpoint ==5)

{
out.print("\t" + "#A003000006000000000000000000090A")
fourthpoint = 0;
}

// out.print("\t" + "?" +

out.println("\t" + "/");

fourthpoint++;

((AlternatorRPMObject) (AlternatorInfoVector.elementAt(x))).getAlternatorShaftSpeed();

}
// RunCounter++;

// }
out. close();

}

catch(IOException ex)

{
System.exit(l);

}
textField6.setText("I'm Done");

saberf-2.jav

System.out.println ("I'm Done");

breadb-1.txt
sdr-locks 0001
sdr driver 2001
sdr-turn 8001
sdr-brakes C001
sdr-abs-tc E002
sdr-defog 0016
sdr-heater 8003
sdr-rear-seat-htrs 0019
sdremissions 0004
sdrwindshield 4004
sdr-seat-htrs 0003

Bibliography

[1] Richard A. Perez, The Complete Battery Book, p. 134, Tab Books Inc, Blue Ridge Summit,

PA 17214, first edition, 1985c1985, ISBN 0-83-6-0757-9.

[2] E.E. Morton Arendt, Storage Batteries Theory, Manufacture, Care, and Application, p. 22, D.

Van Nostrand Company, Inc., Eight Warren Street, New York, 1928c1928.

[3] ACDelco 1999 Batteries Catalog 7A-100.

[4] John Kassakian, "Automotive electrical systems circa 2005," IEEE Spectrum, 1997,
http://auto.mit.edu/Consortia.nsf/ArticleViews.

[5] Wolfhard Lawrenz, CAN System Engineering: From Theory to Practical Applications, Springer

Verlag, 1997c1997, ISBN 0387949399.

[6] Siemens AG, C167 Derivatives, 16-Bit CMOS Single-Chip Microcontroller, 2.0 edition, Apr.-

May 1996, Section 8.

[7] Siemens AG, C167 Derivatives, 16-Bit CMOS Single-Chip Microcontroller, 2.0 edition, Apr.-

May 1996, Section 16.

[8] Irene Kuo, "A methodology for sizing components in a dual-voltage automotive electrical

system," Tech. Rep., Massachusetts Institute of Technology, 1999.

[9] James K. Roberge, Operational Amplifiers, Theory and Practice, p. 458, John Wiley & Sons,

Inc., New York, 1975c1975, ISBN 0-471-72585-4.

- 66 -

