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Abstract

Under a multidisciplinary university research initiative (MURI) program, researchers at the
Massachusetts Institute of Technology (MIT) and Northwestern University (NU) are devel-

oping a long-distance, high-fidelity quantum teleportation system. This system uses a novel
ultrabright source of entangled photon pairs and trapped-atom quantum memories. This
thesis will investigate the potential teleportation errors involved in the MIT/NU system.
A single-photon, Bell-diagonal error model is developed that allows us to restrict possible
errors to just four distinct events. The effects of these errors on teleportation, as well as

their probabilities of occurrence, are determined. Techniques drawn from quantum error
correcting codes and entanglement purification protocols are investigated as means for re-
ducing teleportation errors in the MIT/NU architecture. Finally we apply existing bounds
on the achievable rate of reliable quantum communication to the MIT/NU system.

Thesis Supervisor: Jeffrey H. Shapiro
Title: Julius A. Stratton Professor of Electrical Engineering
Director, Research Laboratory for Electronics
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Chapter 1

Introduction

In 1993, Bennett et al [1] described a method for using a pair of particles entangled in

a singlet state to transmit an unknown quantum state from a sender to a receiver. This

unknown state is destroyed at the sender and recreated at the receiver. The procedure

was dubbed "quantum teleportation". In 1997, a team led by Dr. Anton Zeilinger at

the University of Innsbruck achieved the first experimental success in teleportation using a

polarized single photon for the arbitrary quantum state. The Innsbruck experiment only

teleported states over short distances and was unable to store them as it lacked a quantum

memory element.

A team of researchers from the Massachusetts Institute of Technology (MIT) and North-

western University (NU), led by Prof. Jeffrey Shapiro, is now developing a quantum com-

munication system capable of long-distance, high-fidelity teleportation. This system, whose

architecture is described in [2], uses a novel ultrabright source of polarization-entangled

photon pairs [3] and trapped-atom quantum memories [4]. Preliminary analysis, limited

only by loss, suggests it may be capable of throughputs as high as 500 pairs/sec over 50

km end-to-end paths at 95% fidelity. Even without generalizing this analysis to include a

variety of phase-error mechanisms, there are significant performance issues to be addressed.

Addressing such issues will be the focus of the proposed thesis.

The success of the Bennett et al. teleportation scheme requires that the transmitter and

receiver share a singlet state. In the MIT/NU architecture, however, the transmitter and

receiver are in a mixed state [2]. Thus, although this mixed state contains a strong singlet

component, there is a finite probability that an error will occur when teleporting a photon
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state using this system. The objective of the proposed thesis is to develop a quantum

channel model for the noisy teleportation process and to seek methods for reducing the

occurrence and/or correcting the effects of the resulting teleportation errors. In particular,

we present and compare two methods of reducing teleportation errors: 1. Quantum Error

Correcting Codes (QECC) [5], [6], 2. Entanglement Purification Protocols (EPP) [7], [8].

The importance of QECC and EPP techniques for mitigating quantum errors extends

to the wider context of quantum computing. Attempts to realize quantum computers have

run up against fundamental problems in maintaining the coherence of quantum systems.

Whereas classical systems are stable due to the large relative size of the system as com-

pared to environmental perturbations, quantum systems that use single atoms, photons,

or electrons are much more sensitive to fluctuations in the physical environment. Indeed,

practical implementations of quantum gates have not achieved accuracies greater than 90%

[9], whereas quantum factoring of numbers large enough to be difficult for classical com-

puters requires accuracies of one part in a billion [9]. Quantum error correcting codes and

entanglement purification protocols may be ways of getting closer to the required limits.

Successful removal of quantum errors would lead the way to some remarkable applica-

tions of quantum computers and information systems such as:

Searching: Algorithmic searching. Grover's quantum search algorithm allows us to find

an item in an unstructured search space of size N in VNY operations [10] (Classical

algorithms require N operations).

Factoring: Prime factorization of large numbers in polynomial time. Shor's algorithm

allows large numbers to be factored efficiently on a quantum computer [11] (Classical

algorithms have an exponential growth rate for such factoring problems).

Simulation: Simulating quantum systems efficiently. In analogy to Turing's suggestion

that any algorithmic process can be simulated efficiently using a classical computer,

perhaps quantum computers can naturally simulate quantum systems efficiently [11].

Interest in these applications has inspired considerable work on quantum error correcting

codes and entanglement purification protocols. The proposed thesis will apply these efforts

in the specific context of the MIT/NU teleportation architecture.

We will begin in Chapter 2 by reviewing the basic concepts in quantum information

theory required to read this thesis. This includes quantum states and transformations,

10



entanglement, teleportation and mixed states. In Chapter 3, we will describe the MIT/NU

teleportation architecture. In Chapter 4, we will develop an error model for our system. We

show that the removal of multiphoton errors allow us to model the teleportation of a qubit

as the transmission of a qubit through a depolarizing channel. Finally, in Chapter 5, we

review existing entanglement purification protocols and error correcting codes, we analyze

their application to the MIT/NU system and apply existing limits on the rate of reliable

quantum communication to the depolarizing channel model for the MIT/NU system.

11
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Chapter 2

Background Information

For analysis of the MIT/NU teleportation system and the application of error correcting

techniques to it, we will require a background knowledge of quantum information theory.

In this chapter we will summarize the basic concepts required to understand the remainder

of this thesis.

2.1 Qubits and Quantum Transformations

Since we will be interested in quantum communication, we will first introduce the basic unit

of quantum information - the qubit. The qubit is the quantum mechanical analog of the

classical bit. Whereas classical bits can take on state values of either 0 or 1, a qubit can

take on the states 11), 10) or a linear combination state; i.e., the general state of qubit is

1P) = aO) + 031), (2.1)

where a and 6 are complex numbers satisfying ja12 + 1112 = 1. When we make a quantum

measurement on the state of the qubit, we get the result 0 with probability 1a12 and 1 with

probability 1,812.

Geometrically, a qubit can be represented as a unit vector in a two-dimensional complex

vector space in the following manner:

13



(2.2)

with 10) and 1) as the basis states.

If we are interested in the state of multiple qubits, more basis states are needed. A

system of n qubits requires 2' basis states. For example, the state of a system of two qubits

can be represented in terms of four basis states: 100), 101), 110), 111). Such a two qubit

system generally exists in a superposition of these four states:

1)= aoo 00) + ao 101) + ai1l10) + a1lll1), (2.3)

where |aool 2 + Iao1 2 + I012 + Ia11 2 = 1. Again, the geometric picture is a unit vector,

this time in four-dimensional complex vector space.

The evolution of the state vector describing an isolated quantum system occurs in a

linear and inner-product conserving manner. Mathematically, it is said to undergo a unitary

transformation.

Now, in analogy to classical computation, where any operation can be described by

a combination of one and two-bit logic gates (NOT, AND), quantum operations can be

expressed as a sequence of one and two-qubit quantum logic gates [12].

In general, a quantum logic gate U= [ acts on a qubit 01) = a10) +#11 1 ) =
c d

as follows:

a

thus mapping |0) to a10) + c11) and I1)

(it = I, where

b

d I[, = [ac+ Jb]01 a~ cc +/3dJ

to b|0) + dl1). Here, U is a unitary matrix satisfying

14
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t a* c* ,(2.5)
b* d*

[i=]. (2.6)
0 1

The standard one-qubit gates are represented by 2 x 2 unitary matrices. Three important

operations are described by the Pauli matrices:

0 1 ^Y 0 -1 1 0
z 0 ;G;z =(2.7)

1 0 0 0 -1

&x acts as a bit-flip on a qubit, &z acts as a phase-flip and &Y acts by applying both a bit-flip

and a phase-flip.

The standard two-qubit gate is the quantum exclusive or (XOR), otherwise known as

the CNOT (controlled NOT):

1 0 0 0

0 1 0 0
(2.8)

0 0 0 1

0 0 1 0

Writing (2.3) in vector form

caoo

= 
(2.9)

a1 1

where the first index represents the source qubit and the second index represents the target

qubit we see that X flips the target qubit if the source qubit is 1) and does nothing if the

source qubit is 10).

15



The set of one-qubit gates and the CNOT gate form a basic set of operations from which

any quantum operation can be built [12].

2.1.1 No-Cloning theorem

Now that we have introduced qubits and quantum operations, we will state an important

property of quantum information that is captured in the No-Cloning theorem [13]. This

theorem has an important impact on quantum communication because it implies that when

the transmitter sends a qubit to the receiver, a copy of the qubit cannot be left with the

sender.

The No-Cloning theorem states that there is no quantum operation that takes a general

quantum state 17) to l)|0).

This is fact is a simple consequence of the linearity of quantum mechanics. To illustrate

this, consider a quantum operation U that copies a source state Is) into a target state It)

as follows:

Ujs) 0 t) = Is) 0 Is). (2.10)

This operation would copy two distinct states 1') and 1$) as follows:

UIO) it) = 4') ® IV), (2.11)

Ukb) ® it) = 1#) o 1#). (2.12)

Taking the inner product of (2.11) and (2.12) gives

(01#) = ((?pIO))2. (2.13)

This equation only has two solutions. Either 14) = 1#) or the two states are orthogonal.

This shows that there is no quantum operation that can clone a general quantum state.
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2.2 Entanglement and Bell States

Entanglement is the crucial property of bipartite quantum systems that makes teleporta-

tion possible. The notion of entanglement was brought into focus in a paper by Einstein,

Podolsky and Rosen [14 that described the non-local nature of quantum mechanics.

A pure state Ib)AB is said to be entangled if it cannot be written as a tensor product

of its parts |)A 0 I)B. The entanglement of a pure state L0)AB is quantitatively

E($) = S(pA) = S(pM), (2.14)

where S() = -Tr (01og2/) is called the von Neumann entropy and PA = TrB (kb)ABAB(b)D

is the reduced density matrix obtained by taking the partial trace of the density matrix of

|'O)AB over B.

In many ways, entanglement can be regarded as a natural resource in the same way as

energy or information. Entangled particles cannot be created out of non-entangled particles

and in general, you cannot increase the entanglement of a bipartite quantum system with

local operations on the subparts [7].

There are other properties of entanglement worth noting:

" The entanglement E of a two particle system ranges from zero for a product state to

E = 1 for the singlet state. The standard unit of entanglement is the ebit, defined as

the amount of entanglement in a singlet.

" Entanglement is additive, meaning a system of n singlets will have n ebits of entan-

glement.

An important class of entangled two-qubit states are the Bell states. These states can

be obtained by the rotation of the computational two-qubit basis l00), 101), 110), 111). The

result is another set of four orthonormal basis states, known as the Bell basis:

17



I
IT-) = 2(101) - 110)), (2.15)

-+) = 1(101) + 110)), (2.16)

1(D-) = (100) - 111)), (2.17)

='D-'-) 1 (100) + 111)). (2.18)

The first state 4'~) is called the singlet state and the other three are known as the triplet

states. These names for the states derive from the number of ways spins can couple in a

two-particle quantum system.

Bell states map onto one another under 3 sets of operations defined in Tables 2.1, 2.2 and

2.3. Each of the unilateral rotations are performed by applying one of the Pauli matrices to

either (but only one) half of the pair. Bilateral ir/2 rotations are defined by the following

matrices:

[ij®[ 1, (2.19)
0 1 0 1

b, = (2.20)

-1 1 -1 1

Vz (2.22)
0 e i"r/ 0 e"inr

where we have explicitly written the bilateral rotations as tensor products of their actions

on the separate halves of the pair. Finally, the bilateral XOR is performed by applying two

instances of the unilateral XOR cf. (2.8), one on each qubit.

2.3 Singlet-Based Teleportation

Quantum teleportation uses entanglement between a transmitter and a receiver to transmit

an unknown quantum state - the message, 1'V)M between the two. Assuming that the

18



Source

y

Table 2.1: Unilateral 7r rotations

Source

B T- T- 4+ 41+

Table 2.2: Bilateral 7r/2 rotations

Source
Target F- 4)- <)+ T+

T1+ 4b+ 4P- T- (source)
41 <T 4~ 4- 4P- (target)

1+ 4+ (D- 4- (source)
4D- 4P 4D- 4)- T- (target)

4- 4)- D)+ T1+ (source)
4+ T1+ <P+ <D+ T+ (target)

4- 4D- <D+ 41+ (source)
41+ <D+ T1+ T+ <D+ (target)

Table 2.3: Bilateral XOR
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transmitter and the receiver share an entangled state ITR), teleportation proceeds as follows:

1. The transmitter makes a joint measurement on the transmitter and If)M, collapsing

the joint state of the entire transmitter, receiver and message system.

2. The transmitter sends a classical message to the receiver relaying the result of this

measurement.

3. The receiver makes a transformation on the receiver to regenerate IV)).

There are several points to take note of here:

* Step 2 of the process ensures that the procedure cannot be used to transmit informa-

tion faster than the speed of light.

" No quantum information is cloned, as the state on the transmitter's side is destroyed

in the measurement process.

" Neither the transmitter, nor the receiver ever finds out the state kl)M.

To make the above procedure more explicit, consider the Bennett protocol, in which the

transmitter and the receiver share a singlet state IT-) = (O01)TR - 10)TR). Suppose the

transmitter wants to teleport the quantum message Ib)M = aO)M + b l)M. The joint state

of the entire system is:

N12IiP)TR ~M i(I )TR - I1)TR)(aIO)M + b l)M)

a
- (IO)TI1)RIO)M - I1)TIO)RIO)M)

b
+ (IO)TI1)RI1)M - I1)TIO)RI1)M) (2.23)

- (| )TIO)M + |O)TI1)M)(aIO)R + bI1)R)

1

1
+ (11)TI1)M - I)TI)M)(-al1)R + bIO)R)

1
+ (I1)TI1)M + IO)TIO)M)(all)R - bIO)R), (2.24)

20



where in the last step we have factored out the Bell-states between the transmitter and the

state to be teleported. Thus we can write:

1|V))TRM IT TM(alft + bll )R)

+ +II'F)TM(-aI0)R + b I)R)2
1

+ ±- )TM(±adl)R + btO)R)2

+ I4+)TM(a1)R - b10)R). (2.25)

The transmitter now makes a measurement on I#)TM, the joint state of the transmitter

and the message, using the Bell state basis. The result of this measurement is one of

the Bell states, collapsing the joint state of the entire system into one of the terms in

(2.25). The transmitter then relays this result to the receiver via a two-bit classical message:

I'')TM = 00, IT+)TM = 01, I)TM = 10, LV+)TM = 11. Upon receipt of the transmitter's

message, the receiver knows what transformation must be done to its half of the original

singlet in order to regenerate the quantum message. The four transformations can be

achieved using the Pauli matrices (2.7), I, &., &Y and &,:

00 -+ II)R = aIO)R + b l)R, (2.26)

01 -4 -&zl))R = aIO)R + b I)R, (2.27)

10 -4 &xIb)R = aIO)R + bll)R, (2.28)

11 -+ &x&Z.z'z)R IO)R + b l)R- (2.29)

After performing the appropriate operation, the receiver is left with a replica of the

message in the receiver, M?)R = aIO)R ± bl)R, whereas the transmitter is left with the two

other particles in one of the states I4T)TM or GT-)TM. Note that neither the transmitter,

nor the receiver have learned anything about the message state II)M in accordance with

the no-cloning theorem of quantum mechanics [13].
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2.4 Mixed States and Werner States

A mixed state is defined by its density operator

=) (2.30)

where Ej pt = 1 and pi is the classical probability that the state is 4I').
For a two-qubit system, the density operator for one of its sub-parts can be obtained by

evaluating a partial trace over the other component. The partial trace of #AB Iabi)(abiI

over B is defined as

trB(Ialbl)(albl) =a1)(a2 ((bilb 2))- (2.31)

Werner states are a class of mixed states that we will encounter in the analysis of our

teleportation system and in the analysis of error correcting techniques. These are classical

mixtures of the four Bell states that have the following density operator

1w, -| F (I--k+)(+ + )(~+ I+)(D+I) . (2.32)
3

This state is a T~ Werner state. It can be prepared by drawing from a collection of states

that is x = (4F - 1)/3 parts pure singlet and 1 - x completely mixed, for 4 F < 1. It is

also possible to swap the T- component with any of the three triplets to give us Q+, 4-

or 4+ Werner states.
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Chapter 3

A Long-Distance, High-Fidelity

Teleportation System Architecture

The MIT/NU architecture for long-distance, high-fidelity teleportation uses polarization

entangled photons and long-duration quantum storage in trapped-atom quantum memories

[2], as sketched in Figure 3-1.

M L L

Figure 3-1: Schematic of long-distance quantum communication system: Pzultrabright

narrowband source of polarization-entangled photon pairs; L = L km of standard telecom-

munication fiber; M=trapped-atom quantum memory.

The two memories, M at either end in Figure 3-1, act as the transmitter and receiver

end points for teleportation.

The ultrabright source [3], P, consists of two coherently pumped optical parametric

amplifiers (OPAs). It produces pairs of polarization entangled photons - single pairs are

produced in singlet states. The individual members of a pair are sent down optical fiber'

towards the memories.

The quantum state of the pair is transferred to atomic level coherence in trapped 8 7Rb

atom quantum memory [4]. Schematics of the source and memory are shown in Figure

'Using quantum frequency conversion and time-division multiplexing polarization restoration permits the

use of standard telecommunication fiber in this architecture.
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(a) Output (b) B

P 1 2

sit ____ SignalC
S20 Output

PBS G\ a

S2- 12 D

A

Figure 3-2: The source and memory for the quantum communication system. The source
consists of two type-II phase matched optical parametric amplifiers. The polarizations of
the beams in i and directions are indicated by arrows and bullets. The trapped rubidium
atom quantum memory has the energy levels shown. A-to-B transitions occurs when a
photon is absorbed. B-to-D transitions are coherently driven to enable storage in the long
lived D levels. The A-to-C cycling transition is used for non-destructive verification of a
loading event.

3-2. The loading of a memory can be verified non-destructively with A-to-C cycling tran-

sition depicted in Figure 3-2. Once both memories are loaded, Bell measurements and the

transformations required for teleportation can be made in the memories.

3.1 Memory Loading Protocol

The memories are loaded via the following protocol. Signal and idler photons travel every

400 ns down optical fibres to the quantum memories. The atoms start optically detuned

or physically displaced so that no A-to-B absorptions occur but after a loading interval of

400 ns, the atoms are tuned or moved into the absorbing positions and the B-to-D coherent

pumping is initiated. After 100 ns we stop coherent pumping and repeatedly drive the A-to-

C cycling transition. We monitor the memory cavities for fluorescence from this transition

to determine whether or not a photon was absorbed by the cavities. If either atom failed to

absorb a photon, we cycle both atoms back to their A states and start the protocol again.

This protocol has been predicted to run at rates as high as 500 kHz; i.e. we can

run 500,000 independent loading attempts each second. For every attempt at loading the

memories, there are three possible outcomes. If at least one of the memories fails to absorb

a photon we have an erasure. If both memories absorb a photon from the same entangled

pair, we have a success. If both memories absorb a photon but not from the same entangled
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pair, we have an error. We will denote the probabilities of these events by Perasure, Psuccess

and Perror with

Perasure >> Psuccess >> Perror, (3.1)

under typical operating conditions.

3.2 Lossless Operation

Successful teleportation of a qubit requires that the transmitter and receiver are entangled

in the singlet state. Shapiro [2] has shown that, under ideal lossless conditions, the signal

photon field at frequency ws + Aw and the idler photon field at frequency WI - Aw that are

produced by the dual OPA source are in the entangled Bose-Einstein state2

) = (+1)n+1n)szn)iZ(-1)" (- ± 1)n+1In)s, Ln)i. (3.2)
n=O n=O

where N = 4G 2 /[(1 - G 2 AW2 / 2 )2 + 4Aw 2/17 2] is the average photon number per mode

at detuning Aw, G is the normalized OPA gain (G2 = 1 at oscillation threshold), and IF is

the OPA cavity linewidth.

For the teleportation system shown in Figure 3-1, we assume degenerate OPA operation

with ws = WI matching the 795nm line of the trapped-Rb quantum memory. Also, the

OPAs are run at low gain, for which N << 1 implies that,

1
kb)sI = - 0 t)s.I0)I,|O)sUI0)i.

+ -N |)21I|),0I - IO)sIO)iI I)sy Il)i2), (3.3)
(N + 1)

to lowest non-vacuum order. Equation (3.3) shows that I'i)si is mostly vacuum and some

singlet state3 in this low-flux limit.

2We are using a number-ket representation where In)s, denotes n signal photons in the x-polarized mode
of the signal field, etc.

3 1f we let I0)T = 1)sj10)s,, 11)T E 0)sj1)s,, I0)R = |1)IJO)I,, 11)R 10),,1),Y, then

1)si1)" IO)sIO)I. - I0)s.10)1' 1)s1)I. = IO)I1)R - 1)TIO)R, which is the singlet state.
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The non-destructive loading verification described in [4] permits the vacuum part to be

identified and treated as an erasure in the loading protocol and hence near perfect singlet

capture occurs when there is no loss and N << 1. However, loss is present in any real

teleportation system, and it is desirable to increase N to compensate for it and maximize

throughput. It then follows that higher order terms in (3.2) can no longer be completely

neglected, and fidelity-reducing errors can occur. In [2] the simple model that all errors

lead to storage of independent random polarizations was used to compute throughput and

fidelity. In the next section we will develop a more accurate error model.
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Chapter 4

An Error Model for Quantum

Communication

A quantum communication system between two parties, allows one party to transmit qubits

to the other. There are various ways of achieving this. For instance, a transmitter could

send a qubit to a spatially separated receiver by storing the qubit in atomic memory, placing

the atom in ultra cold storage and sending the atom in a package by mail to the receiver. In

this crude example, we can imagine the possibility of the decoherence of the qubit enroute to

the receiver, due to the quantum noise that is a result of interaction with the environment.

The MIT/NU architecture achieves quantum communication by using singlet-state tele-

portation between a transmitter and receiver. Again, as with all quantum communication

systems, we must handle the possibility of the decoherence of the message qubits due to

quantum noise. In this chapter we will develop a noisy channel model for our system that

will handle such quantum errors.

Two figures of merit that we will be interested in are fidelity (a measure of the accuracy

of the communication) and the throughput (the number of qubits we can transmit per

second) of the system. We will see that in the MIT/NU architecture there is a tradeoff

between these two parameters and we can raise one only at the expense of lowering the

other.
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4.1 A Bell-diagonal Error Model

In this section we use a cold-cavity approximation to analyze the loading of the memories.

We remove the 8 7Rb from the cavity, making the analysis simpler by avoiding a complex

full quantum analysis of the atom-field system.

For the cold-cavity analysis, we need the joint state of four electromagnetic field modes:

two in each cavity, one for each polarization. Although each mode can have an arbitrary

number of photons in it, the atoms, however, can only absorb one photon. Thus single

photon events are accurately treated by this approach. At low enough flux values, higher-

order terms can be neglected. Alternatively, as described in Section 4.6, multiple memories

can be used to detect multiphoton events allowing them to be treated as erasures.

When we ignore erasures and multiphoton errors, we can deal with a density matrix in

the form:

P00 Po1 P02 P03

k P1o P11 P12 P13 (4.1)
P20 P21 P22 P23

L P30 P31 P32 P33 _

where 0,1,2,3 denote the Bell-basis states 9-,<,--9. We shall show in Appendix A

that this Bell-basis density matrix for the joint state of the transmitter and receiver is

diagonal, i.e. pij = 0 for i -$ j. The diagonal elements of is.s,,I.I, are the probabilities

that the two memories are loaded with the Bell states:

Poo = Pr[I--] (4.2)

p11 = Pr[4+] (4.3)

P22 = Pr[4-] (4.4)

P33 = Pr[4+] (4.5)

Note that tr(,s sY IIY) < 1 here, because we have suppressed the erasure and multiphoton

events.
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Using the cold-cavity approach, Shapiro [2] has shown that the joint density operator

for the signal and idler photon as they reach the cavities takes on the factored form, Pgy =

pS.Ops,,I, where the two-mode density operators on the right-hand side are given by the

following anti-normally ordered complex-variable characteristic functions:

tr[isI e YY e+saY+CaIY

S e-(1+f)( IS. 2+C1 1)+2iRe((S,(1)

Y I e tS Ix

= tr [ I (' 1 1S- - e+ sii Re Sa +a:

= e(+) I 2+KlC P)-2iiRe(Csy 'i, )

(4.6)

(4.7)

where h = I_ - I+ and = I_ +I+, with IT =7LYKcG/Fe(l - G)[(l - G)F + Ic]. Here: ?7L

is the propagation loss, -y is the OPA output coupling rate, y, is the memory cavity coupling

rate, and F is the memory cavity linewidth. The inverse relation associated with (4.6) is:

ISxi/ f ir-I ((. eIYI X I (4.8)

a similar inverse relation exists for (4.7).

The probability that the x-polarized signal and y-polarized idler photons are in a joint

state |#)sXI, can be most easily found in the transform domain:

SeIV S.Iy S.+IY

- IJd 2 s f d2  X A ((s, , ()
s-,#eeG ast(; +(* &SXI +

(4.9)
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4.2 Effect of Errors on Teleporting a Qubit

In our single-photon error model, errors occur when the transmitter and the receiver end

up in a Bell state that is not I F). To see what effect these errors have on the teleported

state, we write out the joint state of the three particle system corresponding to each Bell

state in factored form. For the desired singlet state, we have

4')MITI)TR 1 I'Ir)TM(a0)R + bfl)R)2

+ II'+)TM(-a0)R + b l)R)
2

+ 1D)TM(+a1)R + bIO)R)

+ I"+)TM(a1)R - bIO)R), (4.10)

as previously shown. Note that the receiver will perform transformations of its state accord-

ing to the classical information [-)TM = 00, W+)TM = 01, 4-)TM = 10, I+)TM = 11,

using the rules specified in Eqs. (2.26)-(2.29). However, if the memories had been loaded

with I4+)TR then we would have that

)MI+)TR 1 )TM(-aO)R + bjl)R)

+ 1II+)TM(alO)R + bI1)R)

1
+-14D)TM(+aJ1)R - bIO)R)2

+ 1JD)TM(a 1)R + bIO)R)- (4.11)2

If we compare (4.10) to (4.11), we see that there is a phase-flip (a phase-difference of 7r)

between corresponding terms. Thus when we attempt to teleport a qubit in this case,

the resulting state on the receiver side will contain a phase-flip error, represented by the

Pauli-operator &,.
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Now suppose that the memories have stored kI(-)TR. We find that

1
I4))MIdI)TR 1 -!I)TM(a 1)R + bIO)R)

2
1

+-1I'+)TM(-all)R + bIO)R)2
1

+1I4~)TM(+a0)R + bl)R)2
1

+I I+)TM(a0)R - b11)R), (4.12)
2

so that comparing (4.10) to (4.12) we see that there is a bit-flip between corresponding

terms. Teleporting a qubit will now result in a bit-flip error, represented by the Pauli-

operator &,.

Finally, if the memories have stored I@+)TM we get

1
IV))MI(D+)TR I jT)TM(-aI1)R + bIO)R)

1
+ I I+)TM(-a1)R + bIO)R)

2
1

+ II )TM(+a0)R - bl)R)
2
1

+ I4+)TM(aO)R + bl)R)- (4.13)
2

Now, comparing (4.10) to (4.13) we see that the each term in (4.13) can be obtained by

applying the Pauli-operator &Y to the corresponding term in (4.10). So teleporting a qubit

will result in both a bit-flip and a phase-flip.

To summarize the results of this section, here are single-photon errors, and their results

in terms of the Pauli matrices:

Pr[AV+] &ZI'| ) P r[ (D- ] & X

Pr[P+ & ), (4.14)

where, for convenience, we have ignored physically unimportant absolute phase factors. In
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the next section, we will calculate the probabilities of these error events.

4.3 Error Probabilities

In this section we will derive closed-form expressions for the error probabilities in our error

model. We are interested in the probability of a successful teleportation and the probabilities

of the various types of errors. To do this, it is necessary to first find the probabilities for

the different loading events: Pr[erasure], Pr[,I--, Pr[I+], Pr[<b~] and Pr[b+ ].

An erasure occurs when either the signal cavity or the idler cavity has zero photons

reaching it. This occurs with the following probability:

Perasure = s,(0|S.(01#S. S,0) S.0)S, + 1,(0|1 (0|1, 10)1.|0 ) , -

Sy (01S. (O|iy (0I. (00S.1'I.I, 1O)S, 1)S, 0)i. 0)I, (4.15)

Because the So, Iy polarizations are independent of the Sy, I, polarizations, the above

expression can be simplified to:

Perasure =S, (01 S. 0) S, (01#Sy|0)S, + 1, (0 0)1. IY (0N1|0) ,

-I, (01S. (01 S.I, 0) S,0) I 1 (01S, (01 sy . 0) S,0) 1 (4.16)

= 2 p2o, (4.17)

where po = sx(OO#s IO)s., Poo = I,(O|sx(OI3sxi, O)sjI0)j, and we have used the symmetry

of characteristic functions (4.7) and (4.6).

Teleportation is successful if the transmitter and receiver end up in the singlet state,

I'F~) = 4(1)s.10)Sj0)jxj1)j, -IO)sxI1)sI1)IO|)jY)). Thisoccurs withthe followingprob-

ability:
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Pr[4rj] (I #s.s,II|

= IV (01sx (0 1 Sx IY10) S, 10), 1, l S( lS' I. 1S,|1

+ 1 , (11 S. 1k (|sIY 11) S.11) IY 1. (0|S, (0 Sy 1. 0) SY0) 1.

1

2I I ( 0 S ." (0 S I Y 1 ) s S . ) I I 1 ( 1 S , ( I S y 1 . 0 ) S , 0 ) 1 .

1

2 I " "S:" (4.18)

POOP1i + Pcross, (4.19)

where pii = I P(1cS (1WS.IYl)S|1)IY, pross = 1 , (0lS. (0|#S.I )S,|I)I,|2, and again the

symmetries in (4.6) and (4.7) have been used.

Single-photon errors occur if the transmitter and receiver end up in one of the triplet

states. The expression for 'T+ is similar to the expression above for T- with the exception

of a negative sign:

Pr [T+] ( F+|#s,sYI,IY|T+)

= POOP11 - Pcross. (4.20)

The expression for <D- is:

Pr[<- = S I. I.,

= Y I, ls, (O|ps',I,|)sz ~ll, I(Olsy (ll|#s,"l|)sylo),

+ 1, i(o|s2 (Il|s.i,|1)s,|0), .:(Ils, (o|#s,i.0)sy ll)i.1

2 I,(lls, (Ol|s.i,|1)s.10)i, i.(Ols, (l|#syi,|0)Sy ll).1

21 I(Ols. (Il| s iylo)sz ll)i, i(l|s, (O|#s yi,|1)s,|0)i . (4.21)

= 2 (4.22)PIO,

where pio = ,(1IS. ( If. )S,|1)1,12, symmetry has been exploited again, and the last

equality follows from the fact that 1. (0| (1 S. I,0) Sy1)1, = IY 0 1S. (01 s.I, 11)S.|0)1, = 0.
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The expression for ++ turns out to be identical to the D- case:

2 (4.23)

These four Bell states probabilities are the diagonal terms in the 4 x 4 joint density

matrix (4.1) of the transmitter and the receiver. There are also off-diagonal terms, but we

will now show that these are all zero.

4.3.1 Off-diagonal Terms of the Joint Density Operator

Because density operatators are Hermitian, there are only 6 off-diagonal terms we need

to consider: ('~' I, s ,II 1T+), (4~| si,sY1,1, ), (P Is.s'I.I 1±+), (1+ S.SI IV),

(1+s(SIIJ+), - ssI D+). In showing that these are all zero, we will use some

results that will be proved later in Appendix A:

I (1|S.(|S.IY11)S.10)I, = 0

I,(01S.(0Ws.I,|1)s.10)I, = 0 (4.24)

I,(01S.(1|S.IO)S.)i, = 0

The corresponding terms for sIy are also zero. It is now easy to calculate the off-diagonal

terms. We have that

1= I,(1S' S (|sI, 11) s'11)I I '(0 1Sy (0|1 sy 0) s,10) 1'

1

+ I,(1S. (11|#s. ,|0) S.10) 1, 1. (0|1Sy (0|1 S I.|1)S,|11) 1.
221"(01S. (01 s.11)S. 1)1, 1.(11S, (11 S I. 0)S,10) (4.25)

1 1 1 1

= Pii POo - gPiPoO + 1 Pcross - I Pcross (4.26)

= 0, (4.27)
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= IY (11S. (1 WS.IV WlS. IO)IY I. (OlSY (0|0SYI. 0)s, I1)I.

-F 1, Y(l1s (11 S-Iy O)s' 1l),I' (01sy (0|#sy,-11)SY 10),
2 (0 Is. (10sI I)S. 0)I, I. (11SY (10S I.)1O )I

1

= 0,

(4.28)

(4.29)

where the last equality follows from the fact that all the terms in (4.28) are equal to zero.

Similarly, we find that

1
= 1 (11s:' (11 S-I' 11)s' 1O)IY, I(01sy

-F 2 (lls ':(1l S-Iv 1)s' 11)"I' .(01sy(0|#S'Ix 1)SY |0)Ix

+ 21 (0s(0|#sxs (1)S 'O)IYIx(1|s (11 syx 1)Sy1)Ix

-* 2,Y(Ols, (01 sxy,|0)sx ')IIx (Ils,(11 s'Ix 1)S, 10),

= 0.

Finally, we have that

(4.30)

(4.31)
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1

1

12 Is(llsx, ll)slo)I,(1|sy(I' s," )S )
1

2 1 (Olsx (ll~sx, ll)sxl0),,(lls,(01 s'Ixlo)sy ll),

=PIO

=0.

1 2
- Pio

(4.32)

(4.33)

(4.34)

In Appendix A we show that the terms in (4.24) are zero, and we also calculate poo,

plo, p11, and Pcross.

4.3.2 Summary of Teleportation Errors

Now we shall summarize the error probabilities in terms of poo, plo, p11, and Pcross:

Pr[T--]

Pr[F+']

Pr[D-]

= POP11 + Pcross

SPOOP1 - Pcross

2
pio

= p2

p 2Pio,

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

Where in going from (4.36) to (4.37) we have used the results from Appendix A to show

that poop,, - Pcross = plo. We obtain the following reduced density operator:

PooP11 + Pcross

0

0

0

0 0 0

p2o 0 0

0 PIO 0

0 0 P 2
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Now, since loading protocol described in Section 3.1 allows us to detect and ignore

erasures and the method that will be described in Section 4.6 allows us to detect and ignore

multiphoton errors, we can eliminate both these events. This means that the only events

to consider are the loading of the four Bell states. This gives us the following conditional

density operator

POOP11 + Pcross 0 0 0

1 0 p o 0 0
POOP11 + Pcross + 3p 0 p (4.41)

0 0 0 P o

Note that the trace of this density operator is 1 and that it is the density operator of a '-

Werner state with fidelity, F = POOP" +Pc"r 2 -PoopII +Pcross+3p1O

In terms of teleportation, this means that we have a quantum channel that will transmit

a qubit perfectly with probability F and will apply 6r, &Y and &, each with probability

1-F. This is called a depolarizing channel whose operation on a quantum state p can be

represented by:

(E1 = F + 3 (&X a&x + &y 4&Y + &Z &z) (4.42)

4.4 Teleportation Fidelity and Throughput

The two important figures of merit for our quantum teleportation system are teleporta-

tion fidelity (a measure of the faithfulness of communication) and the throughput (the

achievable rate of communication) of the system. The teleportation fidelity is defined as

FT = in("'Ioutni)h, where Oin is the input state and piout is the density operator that de-

scribes the output state after completing the teleportation protocol. By linearity, we can

express this as

FT = Psuccessino erasure Fsuccess + Perrorino erasureFerror

Psuccess 1 Perror

Psuccess + Perror 3 Psuccess + Perror

1 - 2 Perror (4.43)
3 Psuccess + Perror
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In (4.43), Esuccess and Ferror are the teleportation fidelities for success and error events:

Fsuccess = 1, Ferror = 1/3, as shown in Appendix B. Also, Psuccess = PooP11 + Pcross, and

Perror = 3pj 0 , are the success and error probabilities.

For a depolarizing channel we can express the teleportation fidelity FT in terms of F as

1
FT F + I( - F) (4.44)

3
2 1

= -F + -. (4.45)
3 3

We see that that FT ranges from 1 when F = 0 to 1 when F = 1.

The throughput of a quantum communication system using the MIT/NU architecture

is limited by the rate at which the memories are loaded with singlet states. Suppose we

used a large lattice of atomic memories and ran the loading protocol at 500 kHz. Once a

memory is loaded with a singlet state, we can use it for teleportation. This means that if

we can load memories at a maximum rate of R pairs s-1 then the maximum rate of qubit

transmission with our system is R qubits s-1. Thus we can define the throughput Nuccess

of a quantum communication system using the MIT/NU architecture, as the rate at which

memories are loaded successfully:

Nsuccess = psuccessR. (4.46)

Here R is the memory cycling rate of 500 kHz.

In Figure 4-1 we have plotted the throughput and fidelity of the quantum communication

system under the following conditions: OPAs operating at 1% of their oscillation threshold

(G 2 = .01), 5 dB of excess loss in each path from the source to the memories, 0.2 dB km- 1

loss in each fiber, .' = 0.5 ratio of memory-cavity linewidth to source-cavity linewidth and

R = 500 kHz. We see from this figure that a throughput of over 200 pair s- 1 is achievable

at an end-to-end path length (2L) of 50 km with a fidelity in excess of 97%. The behavior

of the achievable throughput with path length is identical to that calculated by Shapiro in

[2] but a higher fidelity for a given path length is achieved by our single photon error model

as we have reduced the probability of error by converting multiphoton errors into erasures.
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Figure 4-2: Behavior of fidelity and throughput with increasing gain.

4.5 Gain Optimization

To optimize the system for quantum communication, we want to maximize the throughput

while maintaining a high fidelity. We can can achieve this by optimizing the gain G2 .

More precisely, at any given path length, we would like to find the gain that achieves the

maximum throughput - subject to the constraint that fidelity is at least 95%. To do this,

we look at plots (Figure 4-2) of fidelity and throughput at a path length of 50 km, against

gain values from .01 to .2. As we raise the gain we increase the likelihood of loading events

other than the singlet and as a result the fidelity decreases monotonically with gain. On the

other hand, the throughput is a monotonically increasing function of gain as raising the gain

will reduce the erasure probability. These trends show that we can achieve the maximum

throughput subject to our fidelity constraint by adjusting the gain to make fidelity exactly

95%. At 50 km, the optimum gain is 0.024 yielding a throughput of 400 pairs/sec.

In Figure 4-3 we exhibit the achievable throughput after gain optimization. We see that
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Figure 4-3: Maximum throughput achievable by gain optimization, subject to fidelity being

greater than 95%.

at a path length of 50 km we can double the throughput by raising G 2 from 0.01 to 0.024.

The cost is a decrease in fidelity from 97.8% to 95%.

4.6 Eliminating Multiphoton Error Events

As the experimental architecture currently stands, restricting our error-model to only single-

photon errors is not a good approximation at short path lengths. In fact, as shown in Figure

4-4, at G2 = 0.01, multiphoton errors can only be neglected at long path lengths for which

the throughput is very low.

However, we will show in this section that it is possible to reduce the probability of

multiphoton error to some value arbitrarily close to zero and improve the single-photon

approximation. To do this, we use an array of trapped atoms at either end of the telepor-

tation link for a single memory. Unlike the bank of atomic memories discussed in Section

4.4 where each pair of atoms acted as a memory, this array of atoms will act as a single

memory, dedicated to storing the state of a single pair.

In the cold cavity approach, we say that a multiphoton error occurs, when both memories

in figure 3-1 load photons, but at least one of the memory cavities loaded two or more

photons. The pair of trapped 8 7Rb atoms in the memories however will each absorb only

one photon. In the event of a multi photon error there is a chance that the pair of atoms will

absorb photons that are not entangled with one another leading to a teleportation error.

The proposed solution is to use beam splitters, and arrays of trapped atoms to detect such

events, allowing us to treat them as erasures. Consider the architecture in Figure 4-5, where
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Figure 4-4: A plot of Pr[single-photon errorino erasure]/Pr[total errorino erasure] vs.
path-length, L with r/L 10- .02L, 1_ = 0.5, ' = 10-0.5 and G2 = .01. AtpahlntLwt q FF,

long path lengths, the likelihood of photons from different pairs reaching the mem-
ory cavities is reduced and the single photon model becomes a good approximation.
Here, Pr[single-photon errorino erasure] Perrr and Pr[total errorjno erasure]1 Perasure
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Figure 4-5: Multiphoton error events can be detected using multiple memories. Here we
have diagramed 1 level of beam splitter using 2 memories on each side.
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instead of having each fiber-optic cable connected directly to a single quantum memory, the

optical fibers are connected to lossless 50:50 beam splitters, whose outputs connect to two

quantum memories (We will later consider the case when there is loss in the memories).

If n > 1 photons arrive at one of the beam splitters, the probability that all of them leave

through the same output of the beam-splitter is, (1)"1. We can use the non-destructive

load verification procedure described in Section 3.1 to count the number of memories that

absorb photons. If just one of the photons is split into a different direction and is absorbed

into another memory, we will see that more than one memory on either side has been loaded,

indicating a multiphoton error. Thus, neglecting any losses in the beam splitters or in the

coupling to the memories, the probability of detecting such an event is 1 - ()n1 .

If we used k levels of beam splitters and 2 k memories, the probability of detecting a

n > 1 photon event in a beam becomes 1 - (1)k(n1~) in the ideal, lossless case. Note that

this value approaches 1 as k increases, showing that it is theoretically possible to eliminate

all multiphoton errors with this scheme. In Figure 4-6 we have plotted the number of

beam splitters required to reduce the probability of multiphoton error to a small (0.1%)

percentage of the probability of single photon error. We see that at longer path lengths

our single photon error model becomes a better approximation and fewer beam splitters are

required. At an end-to-end path length of 50 km we need 3 beam splitters and 8 atoms per

memory.

The analysis in this section assumes the availability of lossless beam splitters. Lossy

beam splitters can be treated in the same manner. In fact as shown in Appendix C, for

the purposes of this analysis, a photon passing through a series of lossy beam splitters can

be modelled as a photon first passing through some fixed loss and then through a series of

lossless beam splitters.
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Figure 4-6: The number of levels of beam splitters required to reduce the probability of
multiphoton error to 0.1% of the probability of a single photon error at G2 = .02.
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Chapter 5

Quantum Error Correcting Codes

and Entanglement Purification

Protocols

Up to this point, we have developed a model for our quantum communication system as a

noisy quantum channel. We see that the entangled pairs are in a Werner state and that

attempting to teleport a qubit IV) using one of these pairs is equivalent to transmitting |V)

through a depolarizing channel. We look at the action of this depolarizing channel on 14)

as the decoherence of IV) due to quantum noise. The resulting received state p is described

by the following density operator:

S= F4)(4|+ (1 F)(&xI4')(0|&x + &Y|14)(Op& y + a&z14)(|& I) (5.1)

where we interpret F as a measure of the severity of the quantum noise. The lower the

value of F, he lower the fidelity of quantum communication.

Quantum error correcting codes and entanglement purification protocols are techniques

to increase the fidelity of a quantum communication system. We will review examples of

such techniques, analyze their application to our communication system and investigate the

maximum achievable rate of reliable quantum communication.
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5.1 Quantum Error Correcting Codes

An [[n, k, tfl quantum error correcting code is a mapping from k logical qubits to n physical

qubits, k < n, such that if t or fewer single-qubit errors occur on the physical qubits then we

can recover the original logical qubits perfectly. Such a scheme will reduce the probability

of error in quantum communication provided that quantum noise is low enough. We will

see what this limit for the uncoded fidelity is for the 5-qubit code.

The rate of a quantum error correcting code is defined as Q = k/n. This is the number

of qubits transmitted per use of the quantum channel.

Quantum error correcting codes can be classified as degenerate or nondegenerate. A

nondegenerate code is one for which any two orthogonal errors on a codeword lead to

orthogonal states. This allows us to determine the error that has occurred and apply

the appropriate transformation to recover the correct state. A degenerate code allows

orthogonal errors to map to the same state.

Nondegenerate codes obey a result known as the quantum Hamming bound. For a single

qubit system, the Pauli matrices &,, &Y and &, are three linearly independent transforma-

tions that can result from interaction with the environment. For a system of n qubits,

the total number of linearly independent transformations on a maximum of t qubits is

i=0 ( )33.

For a nondegenerate [[n, k, t]] code there are 2k codewords, so there are 2k E=0 (n) 3i

possible orthogonal states that can result from an interaction with the environment. This

gives us a lower bound on the length of the codewords of a nondegenerate quantum code:

2k 3 < 2". (5.2)
=OI

This is known as the quantum Hamming bound.

A quantum error correcting code need not be nondegenerate. We just require that it

allows us to recover the initial state. Degenerate codes can also increase the fidelity of

communication. It is suspected, but has yet to be shown, that such codes may be able to

pack quantum information more efficiently.

Another bound on quantum codes was derived by Cerf [19]. It is known as the quantum
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Singleton bound:

n - k > 4t (5.3)

This is a useful bound because it applies for both degenerate and nondegenerate codes.

It also gives us a lower limit on the fidelity of a depolarizing channel below which it is

impossible to achieve error-free quantum communication with only quantum error correcting

codes.

In the limit of large n, a depolarizing channel of fidelity F will introduce errors to

a fraction, 1 - F, of transmitted qubits. This tells us that a quantum code must correct

t > (1-F)n errors. Using the quantum singleton bound, this implies n-k > 4t > 4(1-F)n.

or,

n-k > 4n -4Fn

3 k
F > 3-+k

4 4n

F > 3 (5.4)
4

We see that, for a depolarizing channel, when F < there exists no quantum error correcting

code that enables error-free quantum communication. In later sections we will describe

techniques for achieving error free communication in the limit of large n for depolarizing

channels with F > .

Finally we see that for k = 1, t = 1 the choice of n = 5 satisfies both the quantum

Hamming bound and the quantum Singleton bound with equality. In the next section, we

will analyze the performance of such a quantum error correcting code.

5.1.1 A 5-Qubit Quantum Error Correcting Code

A [[n = 5, k = 1, t = 1]] quantum error correcting code saturates both the quantum Ham-

ming bound and the quantum Singleton bound. In this sense, such codes achieve the best

possible performance for k = 1.

The first example of a 5-qubit quantum code, discovered by Laflamme [6], used the
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following codewords,

|0)4 = -100000) + 01111) - 110011) + 11100)

+100110) + 101001) + 110101) + 111010) (5.5)

l1)L -111111) + 10000) + 01100) - 00011)

+111001) + 110110) - 101010) - 100101), (5.6)

where we have ignored the normalization factors. This code uses a relatively simple quantum

circuit for the encoding, and the same circuit run backwards for the decoding.

If we try to transmit a qubit IV) through a depolarizing channel S with fidelity F, the

fidelity of the received state E(Q0)(V)|) is

(I('lP)(qpI)|) = FI(JO)|2 + 1 - F 2 + I(Opy 10)12 + I($O&z 10)12)
2F+1 (57)

3

For the MIT/NU architecture, the single-photon error channel model is a depolarizing

channel with fidelity F = Psuccess/(Perror + Psuccess), and (4IS(|4) (bI1) 1?) is the teleportation

fidelity FT, as can be seen by verifying that (2F + 1)/3 = 1 - 2 Perror/ 3 (perror + Psuccess), cf.

(4.43).

Application of the 5 qubit code on a depolarizing channel of fidelity F leaves us in a

depolarizing channel of fidelity F':

5

F' = ( Pr[j errors]F
j=0

(5(1 - FF)jF5- j (5.8)
j=0

__1

- (5 + 20F - 70F 2 + 40F 3 + 160F 4 - 128F 5), (5.9)
27

where F is the fidelity achieved by the 5 qubit code given that j errors occur on a codeword1 .

'In Appendix D, we explain the derivation of F's and show that the application of the 5-qubit code
leaves us in a depolarizing channel of fidelity F'.
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Figure 5-1: Performance of the 5 qubit quantum error correcting code.

The teleportation fidelity after error correction is therefore

2F' + 1
F = 3 (5.10)

In Figure 5-1, we compare the teleportation fidelity of uncoded transmission and 5 qubit

code transmission. We see that for a depolarizing channel with F > 0.8625, the 5 qubit

code provides a fidelity improvement.

We can achieve further improvement in fidelity by encoding the 5 qubit codewords with

25 qubits, i.e., by coding each qubit of the 5 qubit code using a codeword from the same 5

qubit code. The result is a [[n = 25, k = 1, t = 3]] code. However, each time we apply the

5 qubit code we reduce our rate by a factor of 5. In fact, even just 2 applications of the 5

qubit code will require 25 channel uses to transmit a single qubit corresponding to a rate

of 0.04. From the point of view of our quantum communication system, if we have a large

enough number of entangled pairs, we would like to use quantum codes with larger block

lengths that have better distance properties. Several people have discovered such families

of good codes [5] [21] that give a positive rate with arbitrarily low probability of error.

Alternatively we can use methods known as entanglement purification protocols.
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5.2 Entanglement Purification Protocols

An entanglement purification protocol is a series of local operations on n entangled pairs

designed to sacrifice n - k of these pairs in order to increase the fidelity of the k remaining

pairs. These protocols require classical communication between locations sharing these pairs

to coordinate the local operations, i.e. communication between the transmitter and receiver

of our teleportation architecture. Protocols that require only one-way communication from

the transmitter to the receiver are called one-way protocols and those that require two-way

communication are called two-way protocols. In the limit of large n, some protocols can

produce a finite number m < n of near-perfect singlets. The yield of an entanglement

purification protocol is defined as D = m/n in the limit of large n. Given a large number

of entangled pairs and protocol of yield D, we can use the resulting highly pure singlets for

teleportation with near zero probability of error. This gives us a method for nearly error

free communication at a rate of D qubits per entangled pair.

5.2.1 The One-Way Hashing Protocol

This one-way entanglement purification protocol was introduced by Bennett in [7]. It

achieves a finite yield of perfect singlets in the limit of. large n. In describing the pro-

tocol, we'll assume that n is large and we'll make use of the following two bit notation to

represent the Bell states: ip-) = 11, lp+) = 01, 4-) = 10, 1++) = 00.

With this notation, we can describe n independent entangled pairs in a Werner state

PF as an unknown 2n bit string. The hashing protocol is a method that will enable us to

determine exactly the values of 2m bits in this string and force us to discard 2(n - m) bits.

Once we know the values of these bits, we can apply unitary transformations to convert

the m known Bell states into singlets. Thus the hashing protocol applied to n pairs in a

Werner state will yield m perfect singlets. It involves n - m rounds and discards one pair

after each round.

In the k + ith round, k = 0, 1, 2, ...n - m - 1 the transmitter and receiver have n - k

impure pairs in a Werner state. This can be thought of as an unknown 2(n - k) bit string

Xk. The transmitter picks and tells the receiver a random 2(n - k) bit string sk called the

subset index. The subset index, in turn, determines a random subset of Xk, i.e. the bits of

Xk for which corresponding bits in sk are equal to one. The transmitter and receiver now
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Figure 5-2: We determine the parity of the subset of Xk specified by the index string sk.

perform a series of unitary operations that collect the parity of this random subset of Xk

into a single pair. This procedure, diagrammed in Figure 5-2 is done as follows:

1. The first non-zero bit in Sk is used to select a destination pair in Xk. For instance if

we had the following bit sequences:

Sk 00 11 01 10

Xk - 11 11 10 10

we would select the second pair of xk as the target. Our goal is to collect the parity

of the 3rd, 4th, 6th and 6th bits of Xk (the parity of this subset of bits is 1) into the

3rd bit of Xk.

2. In this step we want to collect the subset parity of each pair of bits in Xk into the right

bit of that pair. Because pairs in Xk corresponding to 00 pair of bits in Sk don't affect

the parity, we will ignore these. For the remaining pairs, look at the corresponding

pair of bits in Sk. If a pair of bits in sk is 01, the corresponding pair of bits in Xk

already has the correct parity in the right bit. If a pair of bits in sk is 10, we swap

the left and right bits of the corresponding pair in Xk by applying a by (Table 2.2).

If a pair of bits in sk is 11, we want to put the parity of the corresponding pair of bits

in Xk into the right bit of that pair. This is achieved by applying Exd'. Below, we

show how this step affects the bit strings in our example.

Before step 2:
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Sk 00 11 01 10

Xk 11 11 10 10

After step 2:

Sk 00 11 01 10

Xk 11 10 10 01

We see that the first pair of bits in Xk is unaffected because the corresponding pair

in Sk is 00. We apply B.d, to the second pair in Xk because the corresponding pair

in Sk is 11 (Note that the effect of Bd' is to replace the second bit of the pair with

the parity of the pair while leaving the first bit affected). The third pair of bits in Xk

is unaffected because the corresponding pair in Sk is 01. We swap the fourth pair of

bits in Xk because the corresponding pair in Sk is 10.

3. Now we BXOR all the pairs except the ones corresponding to 00 into the target

destination. This will achieve the desired result of collecting the parity of the pairs

into the destination. For our example, the resulting Xk is:

Sk 00 11 01 10

Xk 11 11 00 11

We see that the desired subset parity, 1, has been collected into the right bit of the

target (second) pair.

Once the parity of this random subset of Xk has been collected in the target pair, the

transmitter and receiver measure &, to determine the subset parity and discard this pair.

The remaining unmeasured pairs are in Bell-states characterized by a 2(n - k) - 2 bit string

fS(xk) that is determined by Xk and sk.

Bennett shows that under this procedure, in the limit of large n, we will be able to

determine the Bell states of m pairs with high probability. His proof is based on the fact

that the initial sequence, xo consists of n independent and identically distributed random

variables and that the typical set for x0 , L n), contains approximately 2 ns(sw)[1 5j likely

strings, where S(,w) is the von Neumann entropy of the Werner state. These strings are

the initial candidates for the true xo. After every round of the protocol, the determined

random subset parity is used to eliminate approximately half of the strings in L n). He
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Figure 5-3: Maximum throughput achievable after gain optimization with near perfect

fidelity using the hashing protocol.

shows that if we choose m/n = 1 - S(#w), then after n - m rounds, we determine true Bell

states of the m remaining pairs with high probability.

In the limit of large n this gives us a yield DH = m/n of

DH - 1 ~- S(,W ). (5.11)
n

For a Werner state, this is

DH = 1 + Flog2F + (1 - F)log2 [(1 - F)/3]. (5.12)

This means that the hashing protocol gives a positive yield of pure singlets for Werner states

with F > 0.811.

In Section 4.5 we showed that the MIT/NU architecture is capable of achieving a

throughput of 500 qubits s 1 with a fidelity of 95% at an end-to-end path length of 50

km. If we apply the hashing protocol on large blocks of entangled pairs we can distill out

a yield DH = 0.634 of near perfect singlets allowing us to teleport qubits with near perfect

fidelity. Our throughput is reduced to DHNsuccess which is approximately 300 qubits s-.

We can now optimize the gain of our system to achieve the maximum throughput with

near perfect fidelity after applying the hashing protocol. In Figure 5-3 we have plotted

the gain-optimized achievable throughput of the MIT/NU teleportation architecture. If we

compare Figures 5-3 and 4-3 we immediately see the benefit of employing an entanglement

purification protocol. We are able to achieve near perfect fidelity while maintaining our

throughput at 50 km after gain optimization at approximately 500 pairs s- 1 . This is because
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the hashing method allows us to use a higher gain at a given path length which increases

the success probability for memory loading.

5.2.2 The Recurrence Protocol

The hashing protocol only works on Werner states with F > 0.811 and in fact no known

one-way protocol works unless F > 0.809 [20]. To purify Werner states with lower fidelities

we must use two-way entanglement purification protocols. The recurrence method, first

presented by Bennett in [16], is an example of such a two-way protocol. We will review

the protocol and describe how it can be used to increase the fidelity of Werner states with

F > 0.5.

We'll make use of the same two-bit notation for the Bell states as we did in the descrip-

tion of the hashing protocol. The transmitter and receiver share n pairs in a Werner state

with F > 0.5. One iteration of the protocol proceeds as follows:

1. Apply a dy rotation to convert the T- Werner state to a <P+ Werner state:

WF = FI(D+)(<D+| + 13 F(IT-)(IF~|+ |W+)(,F+l + b~)(<b~) . (5.13)

The result is a classical mixture of Bell states with probabilities: qoo = F, goi = 10 =

q11 = (I - F)/3.

2. Divide the n pairs into groups of two, and perform CNOT operations on each of these

n/2 groups, i.e. the transmitter applies a CNOT and the receiver performs a CNOT

as diagramed in Figure 5-4.

3. Measure the d, operator on the target pairs from the n/2 groups.

4. We keep the source pairs whose target pair d, measurements agree. We discard the

source pairs for which the target pair d, measurements disagree. We also discard all

the target pairs because we have collapsed their states by measurement.

If we consider all the possible combinations of source and target states before we

perform the CNOTs that will yield agreeing target pair dz measurements after the

CNOTs we find that

2 2 2 2
qagree -q 00 + q01 ± q10 + qj+ 2qooqlo ± qoiqij (5.14)
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Figure 5-4: A step of the recurrence protocol. We have diagramed six entangled pairs. The

transmitter and receiver each perform three CNOTs as shown, then they measure the d,

operator on the targets.
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where qagree is the probability that the target d, measurements agree.

5. Apply a dy rotation to the remaining pairs swap back the IF- and ++ Werner states.

6. Apply a random bilateral rotation (Table 2.2), equalizing the T+, 4- and 4+ states.

We are now left with a T- Werner state of fidelity F' with fewer than half the initial

number of pairs.

The fidelity after each iteration F' is greater than the fidelity at the start of the iteration

F provided that F > 0.5 [16]. Thus the recurrence method is able to increase the fidelity

of Werner states that the hashing method cannot. However, half the pairs are measured

every round, and some more pairs are discarded at step 4 of the protocol. So although this

protocol can be repeated until fidelity is close to 1 (provided we have enough pairs), we see

that the the yield in the limit of high fidelity is zero.

A more efficient way to purify Werner states is to use the hashing protocol in combination

with this recurrence protocol. We know that the hashing protocol only gives a positive yield

for Werner states with F > 0.811 and the recurrence method can increase the fidelity of

Werner states with F > 0.5. This means that we can get a positive yield for Werner states

with F > 0.5 by using the recurrence method to raise the fidelity of the Werner state until

it is beneficial to switch over to the hashing protocol, i.e. we switch over as soon as applying

the hashing protocol will give a higher yield than will another round of recurrence.

It turns out that for quantum communication over path lengths below 100 km using

the MIT/NU teleportation architecture, the use of a combined hashing/recurrence method

does not give any advantage over the hashing protocol. This is because using the recurrence

protocol in combination with the hashing protocol gives an advantage over the hashing

protocol alone only when the initial fidelity is less than about 0.83. At this fidelity, the

yield of the combined purification protocol is only 0.1 which means we can do better by

raising the gain to increase the fidelity before purification.

However recurrence may be needed if other error effects and imperfections not modelled

in this thesis preclude getting an initial fidelity greater than 0.811. In such a situation, we

can still achieve reliable quantum communication by using the recurrence protocol to raise

the fidelity to the necessary level for the application of the hashing protocol.
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5.3 Limits on Quantum Communication

We have shown that by using the hashing entanglement purification protocol, we can achieve

reliable quantum communication with the MIT/NU architecture with a throughput of ap-

proximately 500 qubits s 1 at an end-to-end path length of 50 km. We now need to ask

whether we can do better. In this section we'll address the question, "What is the best rate

of reliable quantum communication we can achieve with the MIT/NU architecture?"

The answer to this question is the quantum capacity C of the MIT/NU quantum channel,

defined to be the maximum number of qubits that can be reliably transmitted with one use

of the channel. We can also define two augmented quantum capacities, C1 and C2 which

correspond to the maximum rates of reliable transmission through this channel if we allow

unlimited one and two-way classical communication, respectively. Bennett has shown that

[7]

C = C1, (5.15)

that is to say that unlimited one-way classical communication does not increase the quantum

capacity of a quantum channel. It is also clear that

C1 < C2 (5.16)

because we can do no worse by allowing classical communication in the other direction. In

fact, as we will show later, for a depolarizing channel, such as the MIT/NU system, we do

gain capacity by allowing two-way classical communication.

The maximum rate of reliable qubit transmission with our quantum communication

system is given by the quantum capacity of a depolarizing channel. Unfortunately, at the

time of writing, the computation of quantum capacity for a general input is one of the

fundamental unsolved problems in quantum information theory. We will instead, attempt

to provide weaker bounds on achievable rates of quantum communication for our system.

In this section, we will make use of an important result shown by Bennett in [7]. He

showed that given a one-way entanglement purification protocol of yield D on a Werner

state, you can derive a family of quantum error correcting codes that allow reliable qubit

transmission through the equivalent depolarizing channel with rate Q = D in the limit of
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large block length. Similarly, given a family of quantum error correcting codes that allow

reliable qubit transmission through a depolarizing channel at a rate of Q in the limit of large

block length, you can derive a one-way entanglement purification protocol of yield D = Q

on the equivalent Werner state. Because of this result, any bounds on the performance of

quantum error correcting codes apply directly to one-way entanglement purification pro-

tocols. Bennett also showed that there is a one-to-one correspondence between bipartite

mixed states and noisy quantum channels. We have already seen this in the case of Werner

states and depolarizing channels. This means that we can try finding C1 and C 2 for a quan-

tum channel by looking at the corresponding entanglement purification yields for mixed

bipartite states. We will begin by examining three measures for the entanglement of mixed

states that will give us guidelines on the ultimate rate of reliable communication achievable

with the MIT/NU architecture.

5.3.1 Measures of Mixed State Entanglement

In section 2.2 we gave a quantitative definition of entanglement for pure states. In [7],

Bennett has proposed three different measures of entanglement for mixed states that give

us bounds on the best yield that entanglement purification protocols can achieve. The first

of these is the entanglement of formation of a mixed state, E(). This is the minimum

number of singlet states necessary to create ,. We do not know how to compute E(p) for

a general mixed state, but Bennett has shown that in the case of a Werner state, 3 = IwF3
,

H[1 + VF(1 - F)] for F > 1
E(fiwF) 2- 2 (5.17)

0 for F<

where H(x) = -Xlog2x - (1 - X)log2(1 - X) is the binary entropy function.

The two other measures of entanglement, D1 (p) and D2 (3), are the maximum asymptotic

yields of pure singlets that can be prepared from p with one-way and two-way entanglement

purification protocols, respectively. It turns out that these two measures of entanglement,

for a given mixed state, are equivalent to the one and two-way augmented capacities of the
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corresponding quantum channel [7]:

C = D1 () (5.18)

C 2 =D2(). (5.19)

This is because using the singlets distilled from the mixed state for perfect teleportation is

equivalent to using the corresponding noisy quantum channel for reliable qubit transmission

at a rate equal to the fraction of singlets distilled from the mixed state.

Unfortunately we do not know how to compute D 1 and D 2 , even in the case of Bell

diagonal states. However it is clear that,

E() > D2 () D1 (), (5.20)

where E(3) > D2 (,) because the entanglement of a mixed state cannot be increased by

local operations and D 2 (p) > D1 (,) because a one-way protocol is just a special case of a

two-way protocol. At the moment, there are no explicit results or methods for calculating

D1 and D 2 but we will present upper bounds and lower bounds.

An immediate upper bound on both D1 and D 2 is given by E. This indicates that

the quantum capacity of a depolarizing channel is zero if its fidelity is less that 0.5. An

immediate lower bound on D1 and D 2 is given by the yield of the Hashing protocol, 1 -

S(wF), v'z

D 2 > D1 > 1 - S(wF ) =1 + Flog2F + (1 - F)log2 [(1 - F)/3] (5.21)

It turns out that for Werner states, we can find an upper bound on D 1 (pwF) that is

tighter than E(pwF). From the quantum Singleton bound, presented in section 5.1, we

know that C1 for a depolarizing channel is zero if F < 0.75. This tells us that D1 is

zero for a Werner state if F < 0.75. Now consider a depolarizing channel with 0.75 <

F < 1. This channel is equivalent to randomly picking between a perfect channel and a

F = 0.75 depolarizing channel with the probability that we pick the perfect channel equal

to (F-0.75)/(1-0.75). D1 for the Werner state is equal to the capacity C of this composite

channel, and the capacity of the composite channel is no greater than (F - 0.75)/(1 -0.75).

So we have.
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Figure 5-5: Bounds on D1 and D 2 for Werner states and depolarizing channels. E, the
entanglement of formation is an upper bound on D 2 . B is the upper bound on D 1 implied
by the quantum Singleton bound. R, the yield achieved by an optimal combination of the
recurrence protocol and the hashing protocol, is a lower bound for D 2 . H, the yield achieved
by the hashing protocol alone is a lower bound for D1 .

F - 0.75 = 4F -3.
1 -0.75

(5.22)

This gives us a straight line upper bound on D 1 .

In Figure 5-5, we summarize the following upper and lower bounds on C1 = D1 and

C 2 = D2:

H C1 iB

E < C2 R

(5.23)

(5.24)

where H is the yield achieved by the hashing protocol, B is the upper bound given in (5.22),

E is the entanglement of formation and R is the yield achieved by the optimum combination

of recurrence and hashing.

Finally we turn back to the MIT/NU architecture to examine the implications of these

bounds on the achievable throughput with near perfect fidelity. Again we plot gain opti-
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Figure 5-6: Bounds on the achievable throughput with near perfect fidelity. T2 is an

upper bound on throughput when we allow two-way classical communication. T1 is an

upper bound on throughput when we only allow one-way classical communication. H is the

throughput we achieve using the hashing protocol.

mized upper bounds in Figure 5-6. To get an upper bound on the throughput with perfect

when we allow two way communication, we assume we have an entanglement purification

protocol that achieves a yield D2(pwF) = E(pwF), we then optimize the gain to achieve the

highest throughput with perfect fidelity. Similarly, to obtain an upper bound when we only

allow one way communication we assume we have an entanglement purification protocol

whose the yield is given by the bound D1(pwF) = 4F - 3, for F > 0.75. We see that if we

only allow one-way classical communication in our error correcting techniques then at an

end-to-end path length of 50 km we can at most increase our throughput from 500 to 1200

pairs s- 1 . If we allow two-way classical communication, at 50 km, we can at most increase

our throughput to 7100 pairs s-.
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Chapter 6

Conclusions and Future Work

Driven by advances in the fields of quantum computing and quantum information theory

we have developed a model for the MIT/NU long distance quantum teleportation system

that allows us to apply techniques from these fields to that system.

We have shown that by using multiple memories to eliminate multiphoton errors, we

can model the teleportation of a qubit with the MIT/NU architecture as the transmission

of a qubit through a depolarizing channel. This model predicts that we achieve throughputs

up to 500 qubits s- 1 with a fidelity of 95% at an end-to-end path length of 50 km. The

model also allowed us to analyze the application of various quantum error correcting codes

and entanglement purification protocols to enable communication with near perfect fidelity.

In particular, we showed that using the hashing entanglement purification protocol, we can

achieve a throughput of of 500 qubits s-1 with near-perfect fidelity at 50 km.

We then employed the -equivalence of quantum error correcting codes and one-way en-

tanglement purification protocols, and the one-to-one correspondence between depolarizing

channels and Werner states to obtain bounds on the best rates of reliable quantum commu-

nication achievable with our system. An upper bound for the one-way augmented quantum

capacity C1 of the MIT/NU architecture shows that no more than 1200 pairs s-1 can be

reliably transmitted at an end-to-end path length of 50 km. Unfortunately the best upper

bound for the two-way augmented quantum capacity C2 of a depolarizing channel that we

could find was the entanglement of formation E for the equivalent Werner state. This told

us that the achievable rate of reliable quantum communication augmented with two-way

classical communication for the MIT/NU architecture is no higher than 7100 pairs s-1 at
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an end-to-end path length of 50 km. We suspect that this is a very loose bound and the

problem of finding a tighter bound on C2 should be addressed in future work.

Our analysis of the performance of the MIT/NU architecture assumes lossless beam-

splitters. However, the actual experimental beam-splitters are imperfect. Although we

have described an approach to modelling beam splitter loss (we increase the fixed loss as

we increase the number of beam-splitters), in future work, we need to assess the impact of

this loss on the performance of the MIT/NU system.

In analyzing the application of entanglement purification protocols to our system we

have assumed the availability of arbitrarily large blocks of memories (large n). In reality

however, we will only have a finite number of pairs memories in Werner states on which we

can run entanglement purification protocols. The consequence is that although we can get

very high fidelity by loading a large number of pairs of memories before we run entanglement

purification protocols, we cannot achieve perfect fidelity. Thus another issue that needs to

be addressed in future work is the performance of finite block entanglement purification on

the system in terms of fidelity and throughput tradeoffs.

Finally, we note that the communication model presented in this thesis is a first-order

approximation to the MIT/NU teleportation system. There are several areas in which the

approximation can be improved. We have not modelled possible channel errors such as

phase errors due to imperfect polarization compensation in the fiber. There may also be

errors resulting from fluctuations in the relative phase and amplitude of the pumps that

drive the two OPAs. In addition, errors and imperfections in applying the qubit logic used

in teleportation or entanglement purification will reduce the performance of the system.

These are only a few of possibly many physical experimental imperfections that should be

incorporated into future models.
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Appendix A

Moments of X and X A

To calculate the probabilities of erasure, success and the three single-photon errors, we need

PSX IY and To
the moments of the anti-normally ordered characteristic functions XA and XA . TO

find these moments, we will follow the derivations sketched by Shapiro in [2]. We see that,

psX 2 
2f( 62

XA (1+h2-A (A.1)

where f(() is the classical probability density for a zero-mean, complex-valued Gaussian

random vector (T = [(S, (I] whose covariance matrices are

((t)
1+ I

0

0

+

and

(((T) =
1

(1 +h)2 -ji2 [0

Ih 0 1*
(A.2)

(A.3)

(A.4)

Similarly,

psX - _ + h)2 ?r f12

XA ( ) 2 (A.5)

where g(() is the classical probability density for a zero-mean, complex-valued Gaussian
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random vector (T = [(s, (I] whose covariance matrices are

(a(t) = A, (A.6)

(((T) = -A. (A.7)

With these expressions, we can easily find poo, pio, p11 and Pcross. In particular, poo

follows from the area under XA

Poo = I(01S,(0 S.IY 10) S.0) I

IS I2s S I2 ax( C ,)

I,(Ols,(O e - -44 y e+*k as,+C;ai IO)s.|O)Iy (A.8)

7d2 (sf d 27 XA Ys(, $I'y)

(1, (0Is (01) -(I0)s|0)I )
d24sf d2 (s.,Cs,) (A.9)

f d2 7rs f d2( S (2 f()

2 Ii (1+ )2 - 2  (A .10)

( I )2-5 (A. 11)

We can obtain pio from the second moments of X 7zl!, as follows:

P10 IY (O S,(1 S1I, 1 S 0IY

d2 csr J d2 r [X ((s., I)

I, (01s. (1leS'sz iY e+Cs asYi Ya1)sXj0)Iy] (A.12)

= d sx f 2 sIYI()[ 1 1 - 1 2] (A.13)

1

(1 + -)2 - (I (s 2 )] (A.14)

-(1 + h) - (A.15)

[(1 + )2 -h 2 ]2

(

We can write p11 in terms of poo, plo and a fourth moment of 'X Y, obtained from theXA
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moment factoring theorem of complex-valued Gaussian random variables:

p11 1I s (1s xi I SX I I

f d2 Cs, J d2
7 

,I

(1 - Is 12 _ I 2 + (sx12 1I |2)

S 2 p1o - poo +

2 pio - poo -

I d2 (SJ d2 y s Iy

(1 + 1)2 - i2( I2 I2)

2 Pio - poo

1 [(I( .712 ~ 2I (|Cs | 12 ) + I|(S. 1I}2 + I|((S.C, |
(I + i)2 h2 I

[(1 + ii) - i2]2 + ji2

[(1 + h)2 - f2]3

We can calculate pcross directly from one of the second moments of X APsXI

Pcross =I |, (1|Sx qj|[S.I/ |0)S 10)1, 12

X2 Iyrj sxIy ,,

((sX (I') 2

(1 + h)2 - i2

[(1 + f) 2 - i2]4

Finally, we show here that the terms in (4.24) are zero. We have that

2Y 21S (1sIy sXI)Y

f J d2  f J rj [xA4j , ((SX7 (I)

Seriesxp(1|i( sao,- h es easx+onential)tems)

Series expansions of the exponential terms yields
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(A.16)

(A. 17)

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

(( : I ( 2 1('12]

(IY I(S (_'] 2



e cS, as' +(*y a YII)S.0)IY

0((* &s + Q d&r )"e Sx Sx)s)0E~s + M!A' ) X IiIO)IY
m=O

1)Sx|0)Iy + (s*XIO)sxlo)iy,

(A.25)

(A.26)

I,(*Xesx (* s a - aal

= (e~sx - lYIl)SIO)IY)t

= (I1)SJ 1)i, - (*x 0)s 1)I, - (,|1)s l0)I, + (*x*|O)s, 0)IY). (A.27)

Taking the inner-product of (A.25) and (A.27) and substituting the result into (A.24) now

gives:

d2C x 'Ys, ( sx,7___ XAs C(I)K(IC Isxl 2 - (1,]

where the last equality follows from taking the odd-moments of a zero-mean joint Gaussian

distribution.

Via an analogous approach, we obtain:
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and

d2 s f=1
=01

(A.28)

(A.29)

(A.30)

I, (11 s (1|0s.IY I ) s, 0) 1,



1,_( __(0 1, 11) S 10)1,
d2 fs f XAXY A

t at (Xs *&
IY(O|s(OIe&CS.aS -y sye s+ Il |)SJIO)Iy

J 2r I d2 X Y (Sx ,I I

(I, (0|s, (O) - ( 1)sx 0)IY +(*,|0)sxl0)iy)

-J d2 %

(1 + h) 2 - i2

= 0.

Finally, we have that

f Jd 2 sx J

where the final

IY (0sx (Ijex (sxa ye cx asY+e*x ,IO)sxIl)Iy

7r d~s f 72(i XA

(I (ISi -(sxI (OIsx(O) (I0)s ll)iy +(j,|0)sxio)iy)
d2(S y SxiyfA Id2XA(Cs (

f 7jr PS Ir ' 4xs I

(1 + ii)2 - i2

=0,

equality can be found from the second moments of X -
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2 x s CXA Y Kx I S

(A.31)

(A.32)

(A.33)

(A.34)

(A.35)

(A.36)

(A. 37)

(A.38)

(A.39)

1, (0|1Sx (11# S y10)s Sx11 IY
d2x
7r XA ((s ,CIY)
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Appendix B

The Average Fidelity of Pauli

Errors

To define the notion of an average fidelity of quantum communication we write a qubit as

10) = aO) + MIl) (B.1)

= cos ( 10) + e sin(o) I'). (B.2)

This can be done because 1a12 + 112 = 1. The numbers # and 0 define a point on the

three-dimensional unit sphere known as the Bloch sphere. We can think of a random qubit

as being uniformly distributed over this sphere. Keeping this idea in mind, we turn to the

issue of finding the average fidelity of quantum communication.

If we send a qubit 14) through a quantum channel that applies the identity operator I

to 4') we have an output fidelity of

F 1 = I(4'Il4)12 (B.3)

= |1a2 + 1012j2 (B.4)

- 1. (B.5)
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If the channel applies the Pauli operator &_ to [1,), the fidelity of the system is

= I(V)I &x1) 12

= Ia*3 + a* 12

= 4Re2 (a*#).

(B.6)

(B.7)

(B.8)

This is the fidelity for a given qubit. To find the average fidelity for a random qubit, we

can use our picture of the qubit uniformly distributed over the Bloch sphere:

&x = +--w |(V)I&xI V)2 sin d~d#

I fir f 2 4Re 2(oa*/) sin Od~d$

1 x2-- sin30COS2gd~d#
470 0

(B.9)

(B.10)

(B.11)

(B.12)

Using a similar approach we find the average fidelity of &y and &, obtaining the following

results:

3'

-&, 
1jir

3

Jo 27r (10& Ip) 2 dOd#

|(V) I&z 1)|2 ddo
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(B.13)

(B.14)

(B.15)

(B.16)



Appendix C

Modelling Lossy Beam Splitters

In section 4.6 we assumed the availability of lossless beam splitters. We'll now show that a

photon passing through a lossy symmetric beam splitter can be modelled as a photon first

passing through some fixed loss and then through a lossless beam splitter. We will not treat

the case of asymmetric loss at the output ports.

First note that a lossless 50:50 beam splitter diagrammed in Figure C-1 has the following

input/output annihilation operator relationship for one mode of the electromagnetic field:

b

V

Figure C-1: Lossless 50:50 beam splitter.

- 1 1
ba - -v (C. 1)

1 1
± = _e + v (C.2)
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For our purposes the & mode will be excited and the i mode will be in the vacuum state.

Quantum loss on the & mode at the input to the 50:50 beam splitter can then be modelled

by placing a lossless E-beam splitter in front of the & input port of a lossless beam splitter as

shown in Figure C-2. In this case we have the following annihilation operator input/output

relationship:

bo b
50: 50

""" 0

VO V1

Figure C-2: Model for a 50:50 beam splitter with input loss on the & mode: a lossless C-beam

splitter followed by a lossless 50:50 beam splitter.

eto = v Ed + V/-1 - Ebo (C.3)

= +-c 1 (C.4)
21 V 2 v

= .± +o +-v 1 , (C.5)
2 2 f2

and bo, bl are both in vacuum states. The antinormally ordered characteristic function of

the joint density operator at the output ports in Figure C-2 is,

X ,= tr e (C.6)

- XP( ( ((b +c))

e 2 2

Now let us consider the case of symmetric loss at the output ports of a 50:50 beam splitter

shown in Figure C-1. This situation can be modelled by placing a lossless E-beam split-
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ter at each output port, as diagramed in Figure C-3, giving the following input/output

relationships:

bo

b

150:50

/1 /A

C C 0

V0  V2

Figure C-3: Model for a 50:50 beam splitter with symmetric output loss: a lossless 50:50
beam splitter with lossless c-beam splitters in each output port.

b= Qjo (C.8)

a+co 
(C.9)

b0 = fib+ V1-cO (C.10)

= - o + V1 -Eb 1  (C.11)

aO= VI + 1V- 2 (C.12)

= f + + vo± 1-_E 2, (C.13)

where Oo, O1 and 02 are in vacuum states. This gives us the antinormally ordered charac-

teristic function of the joint density operator at the output ports of a beam splitter with
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symmetric output loss:

XA c((bCc,(**) = tr kosoe (ob-(*cOe b'+c (C.14)

= XP( (+c), ((b+ (c))

e- 2 e e (C.15)

= Pa (o + c*, ((b + (c))

e-( 2 )Kb+<c 2 e_ c 2  (C.16)

which is identical to (C.7). Thus we see that applying a non-vacuum state to one input of a

beam splitter with e-loss at each of the output ports and zero loss at the input is equivalent

to applying that same non-vacuum state to one input of a beam splitter with E-loss at the

input port and zero loss at the output ports. This means that we can examine the impact

of beam-splitter loss on our scheme for eliminating multiphoton errors by assuming lossless

beam splitters and appropriately increasing the fixed loss that is encountered before the

beam splitter array.
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Appendix D

Fidelity of the 5-qubit Quantum

Error Correcting Code

The analysis of the 5-qubit Quantum Error Correcting Code presented in Section 5.1.1 was

done by simulation of Laflamme's 5-qubit code [6]. The system of 5 qubits is represented

as a 25 = 32 column vector whose elements are the projections of the state onto the com-

putational basis vectors 100000), 100001) 100010), etc. The encoding O and decoding -1

circuits are represented by 32 by 32 unitary matrices. The noise is represented by 1024

possible different unitary matrices, EO, E1 , . 1023 , placed after the encoder and before the

decoder. [Because there are 4 operations (I, co, dy and dz) that can occur on each of the

5 qubits, there are 1024 different errors.]

We measured the error syndrome on 0-1E 2 iO) for i = 0, 1, ... 1023 and performed the

appropriate transformation to determine the output state. We found that all the errors

correspond to one of I, o2, dy and d,. And these errors are distributed as in Table D.1.

We see two things from Table D.1. The first is that the number of correct decodings

# Qubits affected # Different errors I & &y z

0 1 1 0 0 0
1 15 15 0 0 0
2 90 0 30 30 30
3 270 60 70 70 70
4 405 135 90 90 90
5 243 45 66 66 66

Table D.1: Distribution of errors suffered by a qubit coded with the 5 qubit code.
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and Pauli errors add up exactly to the total number of different errors. This means that

correct decodings and Pauli errors are the only possible decoding outcomes. This is because

measuring the error syndrome collapses the state of the decoded qubit into either )

&x#)in, &y|))in or &zI4)in. We also see that for each row in the table, all three Pauli

errors occur with equal likelihood. This means that application of the 5 qubit code to a

depolarizing channel of fidelity F will leave us in another depolarizing channel of fidelity F'

(where F' is found in Section 5.1.1).

For the purposes of Section 5.1.1 the fidelity given j errors occur Fj can be found from

Table D.1.

FO= 1 (D.1)

F1= 1 (D.2)

F2 = 0 (D.3)

2
F3 - (D.4)

9
1

F4 =(D.5)
3
5

F5 = . (D.6)
27
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