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Abstract—Today’s wireless sensor nodes can be easily 
attached to mobile platforms such as robots, cars and cell 
phones enabling pervasive sensing of physical fields (say of 
temperature, vibrations, air quality and chemicals). We 
address the sensor arrangement problem, i.e. when and where 
sensors should take samples to obtain a good estimate of a field 
using mobile sensors. In particular, we focus on incidentally 
mobile sensors that move passively under the influence of the 
environment (e.g. sensors attached to floating buoys, cars and 
smartphones carried by humans). We model the field as a 
linear combination of known basis functions. Given the 
samples, we use a linear estimator to find unknown coefficients 
of the basis functions. We formulate the sensor arrangement 
problem as one of finding suitably characterized classes of 
sensor arrangements that lead to a stable reconstruction of the 
field. We consider a family of multidimensional 

€ 

δ -dense sensor 
arrangements, where any square disc of size 

€ 

δ  contains at least 
one sample, and derive sufficiency conditions for the 
arrangement to be stable. 

€ 

δ -dense sensor arrangements are 
geometrically intuitive and are easily compatible with the 
incidental mobility of sensors in many situations. We present 
simulation results on the stability of such arrangements for 
two-dimensional basis functions. We also present an example 
for constructing basis functions through proper orthogonal 
decompositions for a one-dimensional chemical diffusion field 
in a heterogeneous medium, which are later used for field 
estimation through 

€ 

δ -dense sampling. 

I. INTRODUCTION 
ireless sensor networks (WSN’s) have the potential to 
transform the way we monitor our built and natural 

environments by providing measurements at spatial and 
temporal scales that was not possible a few years ago. 
Today’s sensor nodes such as Motes, Sun SPOTS and even 
smartphones are capable of sensing location, acceleration, 
light intensity, temperature, pressure, relative humidity, air 
quality and chemical concentrations using in-built and/or 
add-on sensors [1], [2]. Thanks to their compact form 
factors, these nodes can be easily attached to mobile 
platforms such as robots, cars, buoys, humans and animals to 
achieve wide-area coverage [3]. For example, air quality 
sensors attached to taxicabs can map emissions data in urban 
areas. With such large-scale deployments, sensors could 
provide unprecedented amounts of data about the 
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environment. 
Sensors collect samples of some physical quantity that 

forms a space-time field over a region of interest.  In many 
cases, we want to reconstruct such a field and use it to 
predict how it will evolve or know the locations of its hot 
spots. For example, in the case of chemical spills in a river 
or an ocean, we want to know the concentration maps and/or 
the origins of the spill. A fundamental question in this regard 
is when and where sensors should take samples to obtain a 
good estimate of the field. We call a geometric configuration 
of sampling locations (and times) a sensor arrangement and 
refer to this problem as a sensor arrangement problem. At a 
high level, a standard approach in the literature to address 
this problem is to assume some underlying model for the 
field and find a sensor arrangement that helps to best 
estimate unknown parameters of the model. Any approach 
needs to address three issues: sensor noise, modeling error 
and sensor mobility. Sensor noise stems from errors in 
measurements whereas modeling error corresponds to the 
difference between the actual field and the (unknown) 
model. Previous work has extensively addressed the two 
issues by developing robust estimation methods to address 
sensor noise and modeling error. Examples of models 
studied so far include band-limited functions [4], shift-
invariant functions [4], [5], models based on proper 
orthogonal decomposition [6], [7], Markov random fields 
and Gaussian processes [8], [9]. Methods for finding best 
sensor arrangements search for locations that minimize some 
error metric associated with the field estimation. Example 
error metrics include mean squared error [10], weighted least 
square error [5], variance [11], entropy [8] and mutual 
information [9]. 

The third issue in sampling concerns sensor mobility and 
has become very relevant with recent work in WSN. We 
view sensor mobility as of two kinds, intentional and 
incidental [11], [12]. In intentional mobility, a sensor is 
mounted on a mobile platform that moves to a specified 
location under its control (e.g. sensors attached to robots and 
UAVs). In incidental mobility, a sensor is mounted on a 
platform that moves of its own accord (e.g. sensors attached 
to cars and smartphones carried by humans). In recent years, 
researchers have routinely addressed the case of 
intentionally mobile sensors [13], [14], [15], [16], [17], [18]. 
However, sampling with incidentally mobile sensors is an 
emerging issue [11], [12]. In this paper, we address the 
sensor arrangement problem with a particular focus on 
incidentally mobile sensors. Unlike intentionally mobile 
sensors, specifying a particular sensor arrangement for 
incidentally mobile sensors is of no use, as we do not have 
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control over where sensors move. Instead, we take the 
approach of finding a class of sensor arrangements that are 
compatible with the mobility of incidentally mobile sensors 
and lead to a stable reconstruction of the field. 
 We consider a field that is modeled as a linear 
combination of known basis functions.  In a typical forward 
parameter estimation problem, a linear estimator finds the 
estimates of unknown coefficients of the basis functions that 
minimize the weighted least square error. In the presence of 
sensor noise and local variations, depending on the sampling 
locations the linear estimator may be ill-conditioned. We 
formulate the sensor arrangement problem as one of finding 
a class of sensor arrangements that lead to well-conditioned 
linear estimators and guarantee a stable reconstruction of the 
field. Motivated by the ideas in signal processing literature 
[5], [19] and [20], we consider a family of 

€ 

δ -dense sensor 
arrangements in which there is no square hole in the 
sampling domain of size bigger than 2δ. We derive 
theoretical conditions under which a function can be 
reconstructed from δ-dense sampling. Further our results are 
multidimensional and are thus applicable to a wide range of 
signals. We find an explicit bound on the condition number 
of the sampling operator in terms of 

€ 

δ , which only improves 
with assumptions on the sparsity of the field. 

€ 

δ -dense sensor 
arrangements are geometrically intuitive and allow for easy 
encoding of simple sampling rules in incidentally as well as 
intentionally mobile sensors [11], [12]. We present 
simulation results on the condition number of direct linear 
estimators of the field and show that 

€ 

δ -dense sensor 
arrangements are not only flexible but also robust estimators 
with small condition numbers. We also derive basis 
functions for a one-dimensional chemical diffusion field in a 
heterogeneous medium using proper orthogonal 
decompositions and present simulation results on the mean 
squared estimation error in the presence of additive Gaussian 
noise through 

€ 

δ -dense sensor arrangements. 

II. RELATED WORK 
As discussed earlier, a common approach to addressing 

the sensor arrangement problem is to assume a model for the 
underlying field and find a sensor arrangement that yields 
the best estimate of the field. The sensor arrangement 
problem is addressed by researchers from different domains 
including signal processing, computational mechanics, and 
statistics. In signal processing, one of the classic results in 
field reconstruction is the Shannon sampling theorem, which 
states that a band-limited field can be reconstructed using 
uniformly placed samples at or above the Nyquist rate, i.e. 
twice the highest frequency of the field [4], [21]. 
Furthermore uniform arrangements of sensors not only 
enable faster reconstructions via Fast Fourier Transforms, 
but are also robust to sensor noise in that they lead to the 
minimum mean-squared error of reconstruction [22]. In [10], 
the authors show that there exists a general class of non-
uniform sensor arrangements that yield these exact same 
properties as uniform arrangements. Since Shannon’s 
original result, several researchers have addressed uniform 

and non-uniform sampling of band-limited and shift-
invariant signal spaces. The non-uniformity of samples does 
not increase the number of samples but makes the 
reconstruction problem hard and more sensitive to noise [5], 
[23], [24]. [5], [19], [20], [23] and [24] consider 

€ 

δ -dense 
sampling schemes and their stability in the context of 
trigonometric polynomial fields and shift-invariant fields 
with applications in image processing and geo-physics. They 
obtain explicit bounds on 

€ 

δ  for the case of trigonometric 
polynomials [19], [20]. However they consider only implicit 
bounds for shift-invariant functions [5]. In this paper, we 
obtain explicit bounds for general basis functions including 
proper orthogonal decompositions. In the computational 
mechanics domain, researchers have considered the optimal 
sensor placement problem for the reconstruction of 
convective-diffusive fields modeled using proper orthogonal 
decompositions [6], [25] and [26]. In statistics, the sensor 
arrangement problem is the same as the optimal design of 
experiments [27] and researchers have used the Bayesian 
inference framework. In most cases, the emphasis has been 
on finding a particular optimal or near-optimal sensor 
arrangement for the problem at hand. With recent research in 
WSN that has enabled pervasive sensing using mobile 
sensors, non-uniform sampling has become inevitable [28]. 
Most papers in this domain have addressed the sensor 
arrangement problem for intentionally mobile sensors (e.g. 
[13], [14], [15], [16], [17] and [18]) with the exception of 
[11] and [12]. In [11] and [12] the authors propose a variety 
of error tolerant sensor arrangements for sampling 
trigonometric polynomial fields that guarantee that the 
mean-squared error of reconstruction is less than some error 
tolerance. 

III. PROBLEM FORMULATION 
In this section, we discuss the formulation of the sensor 

arrangement problem. We first discuss the parametric 
modeling of the field in terms of known basis functions and 
then discuss the linear estimation of the field. For the sake of 
completeness, we also briefly discuss how to derive basis 
functions for physical fields using proper orthogonal 
decompositions. 

A. Linear Estimator of the parametric scalar field 
We consider the following parametric model of the 

unknown scalar field in the D dimensional domain 

  

€ 

 x = (x1,......,xD ) 

€ 

∈ 

€ 

[0,1]D ≡Q : 

  

€ 

f (  x ) = akφk
k =1

M

∑ ( x ),                      (1) 

where  

€ 

φk (
 x ) ’s form a set of known M orthonormal basis 

functions. Orthonormality is defined through the following 
inner product that we will use in the rest of the paper:  

  

€ 

φi,φ j = φi(
 x )φ j (

 x )d x = δ ij
Q
∫ ,                   (2) 

where δij is the Kronecker delta. ai’s form the set of M 
unknown coefficients to be estimated. Note that Gram-
Schmidt orthogonalization can be used to create an 
orthonormal set of basis functions from any initial general 



  

set of basis functions [29]. 
Suppose we take samples 

€ 

yi’s of the field at 

€ 

N ≥M  
distinct sampling locations or sensor locations   

€ 

 x i 

€ 

∈ 

€ 

[0,1]D, 
as shown for a 2D case in Fig. 1. We define   

€ 

X = { x i}i=1
N  as a 

set of sampling locations (and times) and refer to it as a 
sensor arrangement. Under the aforementioned setting the 
field estimation problem boils down to estimating the 
unknown coefficients 

€ 

ai ’s from the data set   

€ 

( x i,yi). We use 
the following vector and matrix notation: 

  

€ 

 y =

y1
y2
.
.

yN

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

N×1

, 

  

€ 

 a =

a1
a2
.
.

aM

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

M ×1

,               

  

€ 

Φ =

φ1(
 x 1) φ2(

 x 1) . . φM (
 x 1)

φ1(
 x 2) φ2(

 x 2) . . φM (
 x 2)

. . . . .

. . . . .
φ1(
 x N ) . . . φM (

 x N )

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

N×M

.              (3) 

We refer to   

€ 

 y  as an observation vector, 

€ 

Φ as an 
observation matrix and   

€ 

 a  as the unknown coefficient vector. 
In the above setting we have the following observation 
model: 
  

€ 

 y =Φ a +  η ,                   (4) 
where   

€ 

 
η  models additive noise whose origins can be 

attributed to either sensor noise and/or modeling error. 
We use the following weighted least square estimator of   

€ 

 a  
which minimizes the weighted residual 

  

€ 

wi f (  x i) − yi( )2
i=1

N

∑ : 

  

€ 

ˆ 
 
a M ×1 = ΦTWΦ( )M ×M

−1
ΦM ×N

T WN×N
 y N×1 = B−1ΦTW y ,    (5) 

where 

€ 

B =ΦTWΦ  and wi’s form the main diagonal of the 
weight matrix W [30]. Typically, weights can be chosen in 
proportion to the separation between points, for example half 
the nearest neighbor distance of a sampling point [31]. 
Through the rest of the paper we use this as a choice for our 
weight matrix. Note that with wi = 1 we get the regular least 
square estimator as:  

  

€ 

ˆ 
 
a = B2

−1ΦT  y ,                   (6)  
where 

€ 

B2 =ΦTΦ . The field can now be reconstructed 
using: 

  

€ 

ˆ f (  x ) = ˆ a kφk
k =1

M

∑ ( x ).                 (7) 

B. Sensor Arrangement Problems 
The estimators defined in Eqn. 5 and Eqn. 6 are functions 

of the sensor arrangement X. As discussed before the 
measurements yi’s can be noisy because of sensor noise and 
modeling error. An arrangement X is stable if the condition 
number of the matrix B (or B2), κ(B) (or κ(B2))  is close to 1. 
This mitigates the effect of noise on the estimate of   

€ 

 a  and 
leads to higher numerical stability of the estimator defined in 

Eqn. 5 (or Eqn. 6). Formally we define the sensor 
arrangement problem as finding the stable arrangements of 
X. 
 

 
Fig. 1: A sensor arrangement in 2D with the sampling locations at   

€ 

 x i. Each 
square partition Si of size δ×δ has at least one sampling location. 

C. Obtaining basis functions and POD’s 
Several choices of basis functions such as trigonometric 

polynomials, band limited functions, shift-invaraint 
functions have been explored in the literature. As discussed 
in [6], [7], [25] and [26] the proper orthogonal 
decomposition (POD) has emerged as a powerful 
methodology to obtain reduced order models of complex 
phenomena and have shown success in the domain of fluid 
modeling, nonlinear dynamics and computational science. In 
scenarios where the signal is generated by a physical 
phenomenon governed by a set of differential equations, 
POD is a promising technique for parametric signal 
representation through appropriate selection of basis 
functions. Further, these basis functions need not be 
bandlimited in the Fourier sense and hence open up new 
challenges in stable sampling and reconstruction of fields 
with generalized basis functions. 

For the sake of completeness we present a mechanism to 
derive POD’s. Suppose   

€ 

f (  x ,µ) is a parametric scalar field 
that is obtained as a result of the solution of a parametric 
governing differential equation such as chemical diffusion 
described in section V. The parameter µ has physical 
relevance, for example, the position of release of pollutants 
affecting the diffusion field. As described in [32], we can 
write the M-term approximation as:  

  

€ 

f (  x ,µ) ≈ φk (
 x )ak (µ)

k =1

M

∑ .                 (8) 

The main question is how to optimally choose   

€ 

φk (
 x ) . 

Although POD’s are used for continuous fields, here we 



  

present its discrete version on a fine resolution grid allowing 
the use of matrix operations. The function can now be 
represented as a matrix 

€ 

AP×Q  where each column 

€ 

aq  
represents   

€ 

f (  x ,µ) on a fine resolution grid with P points 
for a particular choice of 

€ 

µ . We can now write the singular 
value decomposition of  as 

€ 

AP×Q =UP×PΛP×QVQ×Q
T = SV T = skvk

T

k=1

Q

∑ ,           (9) 

where U comprises of left singular vectors of A, V 
comprises of right singular vectors of A, Λ is the matrix of 
singular values, S = UΛ, sk’s form the columns of S and vk’s 
the columns of V. 

Eqn. 9 is the discrete version of Eqn. 8. Since the singular 
values are arranged in decreasing order, we can choose the 
first M POD’s (sk’s) which are the first M most significant 
modes as a choice for   

€ 

φk (
 x ) ’s on the discrete grid. From the 

perspective of a real world deployment of sensor network, a 
prior simulation with a large number of different parameters 
would help in choosing the most significant basis functions. 

IV. 

€ 

δ -DENSE SENSOR ARRANGEMENTS AND STABILITY 
In this section we define the geometry of 

€ 

δ -dense sensor 
arrangements and derive sufficient conditions for such an 
arrangement to lead to a stable sampling operator of the 
generalized basis functions described in section III. For a 2D 
domain we consider partition of the domain Q into squares 
Si’s of size δ×δ as shown in Fig. 1. This sensor arrangement 
can be generalized to higher dimensions by considering 
partitions of the domain through hypercubes of size δD in D 
dimension. The total number of square partitions NS = 1/ δ2. 
Every square partition Si has at least one sampling location 
(Fig. 1). We call such a sensor arrangement X as 

€ 

δ -dense. 
For a 

€ 

δ -dense sensor arrangement, we define the distance of 
every sampling location to its nearest neighbor as 2zi and 
define the weight matrix W as 

€ 

W =

z1 0 . . 0
0 z2 0 . 0
. . . . .
. . . . .
0 . . . zN

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
N ×N

.              (10) 

We define   

€ 

VΦ = span {φk (
 x )}k =1

M( )  as the normed vector 
space of the orthonormal basis functions   

€ 

φk (
 x ) . Note that 

€ 

VΦ  is a finite dimensional vector space. The gradient of the 

function is defined as 
  

€ 

∇f (  x ) =
∂f ( x )
∂x1

,∂f (  x )
∂x2

,....,∂f (  x )
∂xD

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ . 

We define  as the sampling operator similar to the one 
defined by Gröchenig [19], [20]. The measurements from a 
sensor arrangement X can be thought of as an operation 

€ 

A  
on the function space   

€ 

f (  x ) . We can write  

  

€ 

Af ( x ) = P f (  x i)χi
i=1

N

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ,                     (11) 

where 

€ 

P  is the orthogonal projection into 

€ 

VΦ , i.e., 

  

€ 

P f (  x )( ) = f (  x ),φk (
 x ) φk (

 x )
k =1

M

∑ ,   

€ 

 x i’s represent the sampling 

locations and 

€ 

χi ’s are the characteristic functions with 
mutually disjoint support, i.e.  

€ 

χi  = 1    

€ 

 x  

€ 

∈ 

€ 

Si  
     = 0 o.w. 

and 
  

€ 

χi
i=1

NS

∑
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ d
 x 

Q
∫ =1.                            (12) 

The following theorems are the main result of this section. 

Theorem 1: 

€ 

∀  

€ 

f (  x )  

€ 

∈ 

€ 

VΦ  and D ≥ 2, if 

€ 

δ <1 D ck
2

k=1

M

∑  

where 
  

€ 

ck =max x ∈Q
∇φk (

 x )  and there is at least one sampling 

location in every square (hypercube) partition Si, then 

€ 

X  is 
a stable 

€ 

δ -dense sensor arrangement and Eqn. 5 or Eqn. 6 
provides stable parameter estimation. 
For the special case of one-dimensional signals (Fig. 2) we 
have the following result: 
Theorem 2: For D = 1, 

€ 

∀

€ 

f (x1)  

€ 

∈ 

€ 

VΦ , if 

€ 

δ < π 2 bk
2

k=1

M

∑
⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 
 where 

€ 

bk
2 =

dφk (x1)
dx1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

0

1

∫ dx1 and there 

is at least one sampling location in every partition Si, then 

€ 

X  is a stable 

€ 

δ -dense sensor arrangement and Eqn. 5 or 
Eqn. 6 provides stable parameter estimation. 
 

 
Fig. 2: A sensor arrangement in 1D with the sampling locations at 

€ 

xi and 
partitions of size δ denoted by Si. 
 
In order to prove the theorem, we make use of the following 
lemmas. 
Lemma 1: Described in [19], [20]. 
Let 

€ 

A  be a bounded operator on a Banach space

€ 

B and if 

  

€ 

f ( x ) − Af ( x ) ≤ γ f ( x )  

€ 

∀   

€ 

f (  x )  

€ 

∈ 

€ 

B and 

€ 

0 ≤ γ <1 
then 

€ 

A  is invertible and is a stable sampling operator for 
  

€ 

f (  x ) .  
Lemma 2: Using Cauchy-Schwarz inequality the following 
relationship holds 

€ 

∀ αk, βk 

€ 

∈ R 

€ 

αkβk
k=1

M

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

≤ αk
2

k=1

M

∑ βk
2

k=1

M

∑  .                   (13) 

Lemma 3: Wirtinger’s inequality described in [19], [20]. 

If 

€ 

f (x1) , 

€ 

ʹ′ f (x1) =
df (x1)

dx1
 

€ 

∈ 

€ 

L2(a,b)  and either 

€ 

f (a) = 0 or 

€ 

f (b) = 0 , then 

€ 

f (x1)
2

a

b

∫ dx1 ≤
4
π 2

b − a( )2 ʹ′ f (x1)
2

a

b

∫ dx1 .           (14) 

 



  

Proof of Theorem 1: For a 

€ 

δ -dense sensor arrangement 

€ 

X , 
we have 

  

€ 

f ( x ) − Af ( x ) 2 = f (  x ) − P f ( x i)χi
i=1

N

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

= P f (  x ) − f ( x i)( )
i=1

N

∑ χi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

≤ f (  x ) − f ( x i)( )
i=1

N

∑ χi

2

≤ f (  x ) − f ( x i)( )χi

2

i=1

N

∑

                      

  

€ 

= f ( x ) − f (  x i)
2

Q
∫

i=1

N

∑ χid
 x .                       (15) 

Now, for a convex domain Si and using multivariate mean 
value theorem we can write 
  

€ 

f (  x ) − f ( x i) = ( x −  x i).∇f ( c ) ,                 (16) 

€ 

∀   

€ 

 x  

€ 

∈ 

€ 

Si and for some   

€ 

 c  on the line connecting   

€ 

 x  and   

€ 

 x i. 
Since Si is a convex domain, we further have  

  

€ 

f ( x ) − f (  x i) ≤ (
 x −  x i) ∇f ( c ) , 

€ 

∀   

€ 

 c  

€ 

∈ 

€ 

Si          (17) 

where 
  

€ 

 x = x j
2

j =1

D

∑ .                    (18) 

Taking the maximum of the right hand side gives 

  

€ 

f ( x ) − f (  x i) ≤max x ∈Si

( x −  x i) max x ∈Si

∇f ( x ) .              (19) 

Due to the geometry of 

€ 

δ -dense sensor arrangement the 
maximum distance between 2 points in a D dimensional 
hypercube of size δD is 

€ 

Dδ . Also using Cauchy-Schwarz 
inequality we get: 

  

€ 

∇f ( x ) ≤ ak
2

k =1

M

∑ ∇φk (
 x ) 2

k =1

M

∑ .                       (20) 

Hence we can write, 

€ 

∀   

€ 

 x  

€ 

∈ 

€ 

Si   

  

€ 

f ( x ) − f (  x i) ≤ Dδ ak
2

k =1

M

∑ max x ∈Q
k =1

M

∑ ∇φk (
 x ) 2  

  

€ 

⇒ f ( x ) − f (  x i) ≤ Dδ ak
2

k =1

M

∑ ck
2

k =1

M

∑ .              (21) 

Since  

€ 

f (  x )  

€ 

∈ 

€ 

VΦ , 
  

€ 

f ( x ) 2 = ak
2

k =1

M

∑ . Using Eqn. 15, Eqn. 

21, N = NS, the fact that χi’s have disjoint support and Eqn. 
12 we can write 

  

€ 

f (x) − Af (x) 2 ≤ δ 2D ck
2

k =1

M

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ak

2

k =1

M

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ χi

i=1

N

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

Q
∫ d x ,            

  

€ 

= δ 2D ck
2

k =1

M

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ak

2

k =1

M

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = δ 2D ck

2

k =1

M

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ f ( x ) 2 .                (22) 

Now using Lemma 1, the sampling operator which is 
dependent on the sampling arrangement is stable for 

€ 

δ <1 D ck
2

k=1

M

∑ . Hence 

€ 

δ * =1 D ck
2

k=1

M

∑  is the critical value 

of  below which any 

€ 

δ -dense sensor arrangement is stable. 

Proof of Theorem 2: For a 

€ 

δ -dense sensor arrangement 

€ 

X  
in 1D (Fig. 2), we have 

€ 

f (x1) − Af (x1)
2

= f (x1) − P f (x1i)χi
i=1

N

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

= P f (x1) − f (x1i)( )
i=1

N

∑ χi
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

≤ f (x1) − f (x1i)( )
i=1

N

∑ χi

2

= f (x1) − f (x1i)( )
i=1

N

∑ χi
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

0

1

∫
2

dx

 

€ 

= f (x1) − f (x1i)( )
2
dx

zi

zi+1

∫
i=1

N

∑ .                 (23) 

Now we can write 

€ 

f (x1) − f (x1i)( )
2
dx

zi

zi+1

∫      

€ 

= f (x1) − f (x1i)( )
2
dx

zi

xi

∫ + f (x1) − f (x1i)( )
2
dx

xi

zi+1

∫ .                 (24) 

Using Lemma 3 

€ 

f (x1) − f (x1i)( )
2
dx

zi

xi

∫ + f (x1) − f (x1i)( )
2
dx

xi

zi+1

∫  

€ 

≤
4δ 2

π 2 ʹ′ f (x1)( )2dx
zi

zi+1

∫
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 
.                       (25) 

Using Eqn. 23 and 25 

€ 

f (x1) − Af (x1)
2
≤
4δ 2

π 2 ʹ′ f (x1)( )2dx
0

1

∫
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ .                     (26) 

Now, 

€ 

ʹ′ f (x1) = ak
k =1

M

∑ ʹ′ φ k (x1), 

€ 

bk
2 =

dφk (x1)
dx1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

0

1

∫ dx1 and using 

Cauchy-Schwarz inequality, we have 

€ 

ʹ′ f (x) 2 ≤ akalbk
l =1

M

∑
k =1

M

∑ bl = akbk
k =1

M

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

                             

€ 

⇒ f (x) − Af (x) 2 ≤ 4δ
2

π 2 akbk
k=1

M

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

              (27) 

Now using Lemma 2 we can write 

€ 

f (x1) − Af (x1)
2
≤
4δ 2

π 2 bk
2

k=1

M

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ak

2

k=1

M

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

4δ 2

π 2 bk
2

k=1

M

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ f (x1)

2 . (28) 

Now using Lemma 1, the sampling operator for 1D signals is 

stable for 

€ 

δ < π 2 bk
2

k=1

M

∑ . Hence 

€ 

δ * = π 2 bk
2

k=1

M

∑  is the 

critical value of  below which any 

€ 

δ -dense sensor 
arrangement is stable. 

Note that the bounds in Eqn. 22 and Eqn. 28 present a 
worst-case analysis. In many cases we may have few 
dominating coefficient ak’s and hence the bound will be 
much lower. For example, if the basis function with the 
maximum ck (for 1D: bk) has very low ak or in some cases 
we may have sparse fields or few dominating coefficients ak 
the resulting bound will be lower. Nonetheless the 



  

theoretical bounds provide insights into the factors 
controlling reconstruction of signals through 

€ 

δ -dense 
sampling and a good starting point to select 

€ 

δ .  
Further the operator norm which is defined as 

  

€ 

A op = Af (  x ) f ( x ) , has the following range 

€ 

1−δ D ck
2

k=1

M

∑ ≤ A op ≤1+δ D ck
2

k=1

M

∑ ,                      (29) 

€ 

1−
2δ bk

2

k=1

M

∑

π
≤ A op ≤1+

2δ bk
2

k=1

M

∑

π
 (1D signals).          (30) 

Let κ(A) denote the upper bound on the condition number of 
the operator A. For D ≥ 2 and using Eq. 29 we have: 

€ 

κ(A) = 1+δ D ck
2

k=1

M

∑
⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 1−δ D ck

2

k=1

M

∑
⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 
 .              (31) 

Since we are considering the sensing model as described 
in Eqn. 1 and a finite dimensional vector space of functions 

, estimating the unknown coefficient vector is sufficient 
for reconstructing the scalar field. We claim that the 
conditions derived above are sufficient conditions leading to 
stable sampling and parameter estimation in the presence of 
noise. Obtaining parameters involve inverting the sampling 
operator that can be achieved either directly [11] or an 
iterative approach [19]. Here we consider a direct approach 
using the weighted least square estimator (Eqn. 5) and least 
square estimator (Eqn. 6). The condition numbers 

€ 

κ(B) and 

€ 

κ(B2)  of the matrices 

€ 

B =ΦTWΦ and 

€ 

B2 =ΦTΦ  
respectively controls the stability of the estimators. High 
condition numbers amplify the effect of noise on the 
parameter estimation. 

For a sensor arrangement requiring sampling at specific 
locations mobile sensing platforms would need accurate and 
sophisticated position controllers making it expensive and 
energy inefficient. On the other hand 

€ 

δ -dense arrangements 
open up the possibility of using simpler, energy efficient 
position controllers for mobile sampling. The only constraint 
that the 

€ 

δ -dense arrangements impose is that every square 
partition of size 

€ 

δ  has one sample in it. For instance, in case 
of sampling air quality using sensors mounted on taxicabs, 

€ 

δ -dense sensor arrangement simply means that we need to 
take a sample once at least in a span of 

€ 

δ  distance. Further, 
while dropping sensors from UAV's, we just need to make 
sure that it leads to a 

€ 

δ -dense arrangement. 

V. NUMERICAL SIMULATIONS 
 In this section we present simulation results on the 
stability of linear estimators and field reconstruction error in 
the presence of noise.   

A. Stability of linear estimators in δ-dense arrangements 
We now present the stability (condition number) of the 

linear estimator discussed in section III-A. We consider two 
classes of basis functions in 2D, polynomial and cosine basis 
functions. 

Consider the following set of basis functions: 

€ 

ϕk (x1,x2) = x1
p x2

q ,                  (32) 
where p = q = {0,1,2,3}, leading to 16 basis functions in the 
set. We use the aforementioned set to create 16 orthonormal 
basis functions ϕk’s in two dimensions using Gram-Schmidt 
orthogonalization [29]. We follow the same procedure with 
cosine basis functions: 

€ 

ϕk (x1,x2) = cos(px1)cos(qx2) ,           (33) 
to create another set of orthonormal basis functions. 

For a given δ we simulate 1000 randomly generated δ-
dense arrangements (Section IV) and calculate the mean and 
the standard deviation of κ(B) and κ(B2). Fig. 3 shows the 
variation of the mean condition numbers with δ for the two 
sets of basis functions. The error bars indicate the 
corresponding ½ standard deviations. For polynomial basis 
functions δ* = 0.0036 and for cosine basis functions δ* = 
0.0014. We observe that the theoretical bounds are very 
conservative and numerically we find that δ ≤ 0.025 gives 
the mean condition number ≤ 1.4 with standard deviation ≤ 
0.15 for both polynomial and cosine basis functions. Further 
we observe that κ(B2) ≤ κ(B) implying that in the context of 
δ-dense arrangements generated using our method, the least 
square estimator is more robust to additive noise as 
compared to the weighted least square estimator. Though δ-
dense arrangements are probabilistic in nature, the mean 
condition numbers are small with acceptable variance for 
low values of δ, providing a suitable framework for 
sampling parametric signals. 

  
Fig. 3: Variation of the mean of condition numbers of B and B2 with δ for 
2D a) orthonormal polynomial basis functions; b) orthonormal cosine basis 
functions. For δ ≤ 0.025 we obtain small condition numbers implying 
higher numerical stability and robustness to noise. The error bars indicate ½ 
standard deviations. 

B. Generating POD’s and error in field reconstruction 
We now consider an example of constructing basis 

functions through POD (Section III-C). Consider the 
following one-dimensional model of unsteady chemical 
diffusion in a heterogeneous medium with a source term 
[33]: 



  

€ 

dC(x1,t)
dt

=
d
dx1

D(x1)
dC(x1,t)
dx1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + S(µ)  ,             (34) 

where 

€ 

C(x1,t) is the chemical concentration field, 

€ 

D(x1) is 
the diffusion coefficient and S(µ) is the source term.  

We consider the field at a particular time instant To, when 
it changes very slowly in time and is close to the steady 
state. Such steady chemical fields typically model constant 
release of gas or oil in a quiescent environment, like oil leak 
from underwater pipes in a lake. We further assume that the 
source term is a narrow Gaussian impulse of known 
amplitude and variance but of unknown mean position

€ 

µ  

€ 

∈ 

€ 

[0,1], which acts for all times. The particular choice of the 
source term models the release of chemicals at an unknown 
location in the domain. We first generate the POD’s 
according to the theory described in Section III-C. We carry 
out simulation with different values of 

€ 

µ  between 0 and 1 in 
increments of 0.01 and use the resulting fields to generate 
the POD’s. Fig. 4a shows the variation of 

€ 

D(x1), an example 
source term S(µ) and the resulting concentration field 

€ 

C(x1,To)  for 

€ 

µ  = 0.45. The particular profile of 

€ 

D(x1) was 
chosen to model a domain where certain regions have higher 
diffusion coefficients leading to faster diffusion of chemical 
species. First 10 POD’s were chosen as the model basis 
functions for C(x1). For the sake of illustration, we show the 
first 5 POD’s with the corresponding singular values in Fig. 
4b. 

 
Fig. 4: a) Variation of diffusivity, source term and chemical concentration 
profile in the domain; b) First 5 POD basis functions and the corresponding 
singular values generated for Eqn. 34. 
 

We evaluate the performance of 

€ 

δ -dense sensor 
arrangements in reconstructing 

€ 

C(x1,To)  for a particular 

value of 

€ 

µ = 0.455  different from the ones used for learning 
the POD basis functions. Gaussian noise, 

€ 

η = N(0,α ×max |C(x1,To) |)  was added to the measurement 
vector   

€ 

 y  for each choice of α from the set {0.01,0.03,0.05} 
with max|

€ 

C(x1,To) | = 26.1996 and ||

€ 

C(x1,To) || = 16.3665. 
Using our method described in Section IV we find 

€ 

δ * = 
0.0252 for POD basis functions. We perform simulations 
with different values of 

€ 

δ  and for each 

€ 

δ  we generate 1000 
arrangements to compute the mean and the standard 
deviation of condition numbers and the mean squared 
estimation errors (Fig 5a,b,c). Similar to Fig. 3, we observe 
that for low δ both the mean condition numbers are small 
with reasonable variance. Further the mean squared error in 
the field estimation is ≤ 7.5% even at high levels of noise (α 
= 0.05) for δ ≤ 0.5. 

 
Fig. 5: a) Variation of the mean of condition numbers of B and B2 with δ for 
1D POD’s; b,c) Mean squared estimation error in reconstructing test 
function through δ-dense sampling with different magnitudes of additive 
noise. We report error in direct reconstruction through b) weighted least 
squares (Eqn. 5) and c) least squares (Eqn. 6). The error bars indicate ½ 
standard deviations. 
 



  

VI. CONCLUSION AND FUTURE WORK 
We addressed the sensor arrangement problem – when and 
where sensors should take samples to obtain a stable 
reconstruction of a physical field. We modeled the field as a 
linear combination of known basis functions and used linear 
estimators for the reconstruction of the field. We considered 
a family of 

€ 

δ -dense sensor arrangements and obtained 
sufficient conditions (

€ 

δ < δ *) for 

€ 

δ -dense arrangements to 
lead to a stable estimator. Our results are multidimensional 
making the 

€ 

δ -dense sampling framework suitable for a 
broad class of signals. The bound on 

€ 

δ  only improves with 
the field sparsity assumptions. Using numerical simulations, 
we showed that 

€ 

δ -dense arrangements yield stable 
reconstructions of the field in the presence of sensor noise 
and modeling error. We also noted that 

€ 

δ -dense 
arrangements yield sufficient flexibility in terms of sampling 
using incidentally mobile sensors. In our future work, we 
would like to explore the field sparsity further and improve 
bounds on 

€ 

δ . We would also like to incorporate the effect of 
sample location error in the sampling framework. In 
addition, we would like to consider explicitly time varying 
dynamic fields and explore classes of stable adaptive sensor 
arrangements. 
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