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Abstract

One of the primary problems in constructing risk-stratification models for medical appli-
cations is that the data are often noisy, incomplete, and suffer from high class-imbalance.
This problem becomes more severe when the total amount of data relevant to the task of
interest is small. We address this problem in the context of risk-stratifying patients re-
ceiving isolated surgical aortic valve replacements (isolated AVR) for the adverse outcomes
of operative mortality and stroke. We work with data from two hospitals (Hospital 1 and
Hospital 2) in the Society of Thoracic Surgeons (STS) Adult Cardiac Surgery Database.

Because the data available for our application of interest (target data) are limited, devel-
oping an accurate model using only these data is infeasible. Instead, we investigate transfer
learning approaches to utilize data from other cardiac surgery procedures as well as from
other institutions (source data). We first evaluate the effectiveness of leveraging informa-
tion across procedures within a single hospital. We achieve significant improvements over
baseline: at Hospital 1, the average AUC for operative mortality increased from 0.58 to
0.70. However, not all source examples are equally useful.

Next, we evaluate the effectiveness of leveraging data across hospitals. We show that
leveraging information across hospitals has variable utility; although it can result in worse
performance (average AUC for stroke at Hospital 1 dropped from 0.61 to 0.56), it can
also lead to significant improvements (average AUC for operative mortality at Hospital 1
increased from 0.70 to 0.72).

Finally, we present an automated approach to leveraging the available source data. We
investigate how removing source data based on how far they are from the mean of the
target data affects performance. We propose an instance-weighting scheme based on these
distances. This automated instance-weighting approach can achieve small, but significant
improvements over using all of the data without weights (average AUC for operative mor-
tality at Hospital 1 increased from 0.72 to 0.73). Research on these methods can have an
important impact on the development of clinical risk-stratification tools targeted towards
specific patient populations.
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Chapter 1

Introduction

Risk-stratification models are increasingly important in the clinical decision-making

process. Often, one of the challenges to developing accurate models is the limited

amount of relevant data. Many real-world applications involve small, incomplete,

and noisy data sets with high class-imbalance. On top of this, such models are often

developed for very specific patient populations; many exclusion criteria are applied

to the available data to obtain the relevant data. The combination of these effects

means there may not be enough relevant data to develop and test a model.

In our application of interest, we start off with a dataset consisting of over 20,000

surgeries, from two hospitals (Hospital 1 and Hospital 2). We are interested in devel-

oping models for risk-stratifying patients who receive an isolated aortic valve replace-

ment (i.e., an aortic valve replacement (AVR) without any other procedure) for an

adverse outcome (e.g., operative mortality, stroke) at a given hospital. Already, we

have applied a number of exclusion criteria. If we consider only surgeries at Hospital

1, we reduce our dataset from over 20,000 to approximately 10,000. If we consider

only isolated AVRs at Hospital 1, we reduce that number even further, to 917. These

917 surgeries contain only 19 cases of operative mortality and 21 strokes. If we want

to train and test a model on this small set, we have to divide it even further.

Fortunately, there is useful information from the thousands of other kinds of car-

diac surgeries that can be taken advantage of. Using these data has the potential to

significantly improve the performance of our model. This is an example of transfer

11



learning.

When using traditional machine learning methods, one assumes that the training

and test data lie in the same feature space and are drawn from the same distribution.

In some cases, such as ours, there are not enough training data available for the task of

interest (the target task), but there are related source (auxiliary) data available. The

data pertaining to the target task are said to lie in the target domain, and the source

data to lie in the source domain. Here, the target task is risk-stratifying patients

receiving isolated AVR, and the source data are other cardiac surgeries.

For our application, we consider the subfield of inductive transfer learning, where

labels are available for both the target and source data. There are several meth-

ods of transferring information in the inductive setting: instance-transfer, feature-

representation transfer, and parameter-transfer [1]. Our work focuses on instance-

transfer. We will investigate what subsets of source data, when added to target task

training data, result in the best performance. Although in our application, the target

and source data lie in the same feature space, they are not drawn from the same

distribution. Augmenting our target task training data with source data is therefore

not guaranteed to improve performance on the target task; the source data could have

no effect, or they could even hurt performance. Instance-transfer techniques seek to

make use of the helpful instances in the source data while discounting the harmful

ones.

1.1 Problem Formulation

We have data collected for the STS National Adult Cardiac Surgery Database from

two hospitals in the United States. These data were collected from 2001 to 2011. We

consider the preoperative data from patients who were placed on cardiopulmonary

bypass for the full duration of the cardiac surgery. Our data include patient risk

factors, demographics, the hospital where the patient received the procedure, and

operative variables identifying the procedure(s) a patient received (e.g., an aortic

valve replacement (AVR), a coronary artery bypass grafting (CABG), an AVR and a

12



CABG together, etc.). We represent these data as D = {(x, y)}, where each feature

vector x = [i, x 2 , ... , Vd] lies in the same feature space X with dimensionality d, and

each corresponding outcome y lies in the space Y {-1, +1}. y = +1 if the adverse

outcome of interest (e.g., stroke) occurs and y = -1 otherwise.

In this context, a target task can be defined by specifying the following:

1. a patient population of interest, where the selection criteria are fulfilled if the

value of the characteristic function f : X 0 {, 1} for a patient with feature

vector x E- X is 1, and

2. an adverse outcome y for each patient in this population.

Then the target and source data can be defined as follows:

" T = {(x, y)If (x) = 1}

" S = {(x, y)f (x) = 0}

Although many different patient selection criteria could be of interest, in this work,

we examine characteristic functions based only on which hospital the procedure was

performed at and whether or not the procedure performed was an isolated aortic valve

replacement. We chose to allow for separating the data by hospital because it has

been established in the literature that accounting for hospital-specific characteristics

is important in developing risk-stratification tools [2, 3]. We chose isolated AVR as

a target task because because there has been an increased focus on the development

and validation of risk models for isolated AVR. This was stimulated by the relatively

recent introduction of an alternative intervention for high-risk patients with severe,

symptomatic aortic stenosis who cannot receive surgical AVR [4, 5, 6, 7, 8], called

transcatheter aortic valve replacement (TAVR). Risk models such as the STS risk

score [9, 10] and the logistic EuroSCORE [10, 11] have been used to determine who

is eligible to receive this treatment.

We thus have two target tasks. For task h (h = 1, 2) the target data Th are chosen

according to fh(x). fh(x) is 1 if the patient received a surgery at hospital h and that

13



surgery was an isolated AVR, and 0 otherwise. The example is included in the source

data Sh if fh(x) = 0.

In the following chapters, we will explore how augmenting the target task training

data with source data can improve performance on the target task. We hypothesize

that for each task h, augmenting the target task training data with a subset of source

data similar to the target data will improve performance on the target task more than

augmenting with all of the available source data Sh. More formally,

* Consider choosing s C Sh such that the probability that an example in s is

drawn from the empirical joint distribution of the target data PTh(x') is greater

than the probability that an example in Sh - s is drawn from PTh(x'), where x'

contains a subset of the features in the full feature vector x.

" We hypothesize that augmenting target task training data with s will improve

performance on the target task more so than augmenting it with Sh.

To evaluate how likely it is for an example in s to be drawn from PTh(x'), we

consider the distance of the source data from the target data. The closer examples in

the source data are to the target data, the more similar they are. We compute these

distances using different subsets of the features in X. We map the source and target

data from X - X', where X' includes only the features in the data in the chosen

subset. For all of the following experiments, we will use this subspace X' to evaluate

the distance of each source example from the target data. However, we will then use

the full set of features X to train and evaluate the model.

1.2 Related Work

1.2.1 Transfer Learning

Identifying auxiliary data that are likely to be useful for the target task is an important

question in the area of transfer learning. Although previous work has shown that the

use of source data can result in significantly improved performance on the target task,

how to correctly ascertain which data are useful is still an open question.
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Transfer learning assumes that the joint distribution of the features and outcome

of the source data are related to the joint distribution of the features and outcome

of the target data. When this assumption is not satisfied, it can result in negative

transfer [12]. However, evaluating whether or not this assumption holds is non-

trivial. Most methods that seek to address this problem try to manipulate the source

joint distribution to be closer to the target joint distribution. These methods often

focus on moving either the marginal distribution of the source data, ps(x), closer

to that of the target data, pt(x), or the conditional distribution ps(ylx) towards

Pt(ylx). Some work has been done on shifting both the marginal and conditional

closer to the target distribution [13]. These domain adaptation methods take two

approaches: 1) instance-weighting or instance-selection [14, 15], and 2) changing the

feature space [13, 16, 17, 18]. Instance-weighting approaches focus on minimizing

the distance between the distributions of the source and target data by giving lower

weight or removing instances from the source data which appear to be very different

from the target data. Feature-representation transfer approaches, on the other hand,

focus on finding a feature space in which the distance between the source and target

distributions is minimized. We will focus on the instance-weighting approaches here.

These approaches rely on having a similarity or distance metric that accurately

reflects how far the source distribution is from the target distribution. In [15], the

authors consider a natural language processing task, where there are labeled data

available in the source domain, but little or no labeled data in the target domain.

The authors use a heuristic method to prune instances based on how different Pt(Y x)

and p,(ylx) are. They identify the need for instance adaptation based on the marginal

distributions, but do not explore a solution to this problem in their experiments. The

authors of [14] propose a method called Transfer AdaBoost, which assumes that the

source data, while drawn from a different distribution than the target data, may

still have useful information. They augment target task training data with these

source data and decrease the weights of source instances which are misclassified at

each iteration. Their hypothesis is that the misclassified source data are the most

dissimilar from the target data. These methods require training models in order to
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determine which instances should be pruned or used with lower weight.

In contrast, [19] uses target data to identify similar instances in the auxiliary

data. They use each target task training example to extract similar examples from

the auxiliary data. They explore two approaches to using the auxiliary data. The

authors incorporate a term in the objective function for fitting the auxiliary data,

where a parameter -y controls how important fitting the auxiliary data is. They

explore how the auxiliary data can be incorporated into the framework of kNN and

SVMs. They demonstrate that including the auxiliary examples when learning a

model can significantly improve accuracy on the target task.

1.2.2 Cardiac Surgery Risk Models

In the field of cardiac surgery, many risk-stratification models have been developed

for adverse outcomes such as death and stroke. These risk models range from general

cardiac surgery risk stratification tools, such as the additive and logistic EuroSCOREs

[20, 21], to models developed for specific cardiac surgeries at specific institutions.

Models developed for specific cardiac surgeries at specific institutions have much

less available data than more global models; however, they are able to account for

hospital-specific information. Global models allow for the use of much more data,

either from multiple hospitals or encompassing multiple surgeries, but they do not

account for institution-specific or surgery-specific differences.

The national risk models for adult cardiac surgery developed and published by the

Society for Thoracic Surgeons (STS) are for several distinct categories of surgeries:

1) coronary artery bypass grafting (CABG) [22], 2) isolated valve surgery [23], and

3) valve plus CABG surgery [24]. The EuroSCORE models, on the other hand, were

developed and tested on all patients receiving cardiac surgery while on cardiopul-

monary bypass [20, 21, 25]. In the context of surgical procedures, the STS models

can be viewed as local models, while the EuroSCORE models are global models. Al-

though the framework of the global model incorporates more data, it may perform

poorly when applied to a specific subset of the patients (e.g., patients receiving one

particular surgery).
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The additive and logistic EuroSCOREs have been shown to overestimate the risk

associated with aortic valve replacements [7, 26, 5]. The authors of [7] cite the fact that

the EuroSCORE was developed on a population where most of the patients received

surgery for coronary artery disease, rather than isolated AVR, as one possible reason

for why the additive and logistic EuroSCORE do not perform well on isolated AVR.

On the other hand, while the local models may be able to better learn the specific

characteristics of patients receiving a particular type of surgery, each model has much

less data available for development and testing.

Finally, both the STS and EuroSCORE models are global in the context of insti-

tutions; all of the models were developed on multi-center datasets. Institutions vary

in size, location, patient population, staff, etc. Because of such differences, a general

model learned on all accumulated data may not perform well on each individual hos-

pital. In fact, previous work on risk-stratification for other outcomes has shown that

accounting for variations between hospitals and using hospital-specific features can

improve performance [2, 3]. In the field of cardiac surgery risk models, the authors of

[27] demonstrated that a "ready-made" risk model (one developed and tested on data

external to the institution of interest) did not perform as well on their study popula-

tion as a model that considered the same risk factors as the "ready-made" model but

was recalibrated to their specific institution. This "ready-made" model also did not

perform as well as a new model that incorporated other risk factors. No correction for

institutional differences has been published in the area of cardiac surgery, but models

such as the STS and EuroSCORE models are still used in hospitals to estimate a

patient's preoperative risk of mortality and postoperative complications.

Previous work has been published with validation of these global models on single

institutions [28, 29, 30, 31, 32, 33]. Many of them report good discrimination per-

formance, but less reliable calibration performance. When the additive and logistic

EuroSCOREs were validated on individual institutions, they overestimated the risk

of mortality [32, 34, 28]. The EuroSCORE II, launched in 2011, updated the Eu-

roSCORE risk model on a contemporary cohort of patients; a logistic model was de-

veloped and tested on this population [25]. However, [35] found that the EuroSCORE
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II model did not perform better than other risk models (including the original addi-

tive and logistic EuroSCOREs) on the task of predicting mortality in patients who

received either surgical AVR or transcatheter AVR.

Thus, there is room for improvement in present cardiac surgery risk models. We

believe that by viewing different institutions as separate but related tasks (as in [2, 3])

and different surgical procedures as separate but related tasks, we can build a model

that is able to take advantage of all of the available data while also accounting for

institution-specific and procedure-specific characteristics.

1.3 Contributions

The contributions of this thesis are as follows:

o We demonstrate that using only the target data (isolated AVR at hospital h) to

develop and test a model results in unsatisfactory discrimination performance.

o We show that augmenting target task training data with subsets of source data

from the same hospital improves performance. We demonstrate that the degree

of improvement depends on 1) the size of the subset, and 2) how similar the

subset is to the target data.

o We show that augmenting target task training data with subsets of source data

from both hospitals can result in negative transfer. We demonstrate that using

all of the available data is not always the optimal choice.

o We propose an automated method by which a subset of source data can be

chosen from all of the available source data by considering the distance of each

example from the target task training data. We show that considering only some

portion of the available source data can result in better performance than using

all of the available data in the context of this automatic approach. Previous

work has either pooled many different types of surgeries together [20, 21, 25, 36],

or segmented them based on expert knowledge [22, 23, 24].

18



* Lastly, we show that instead of augmenting the training data with a subset of

source data, using all of the available data in combination with an instance-

weighting scheme can result in the best or close to the best performance out of

all of the approaches. Additionally, this final method requires no user-specified

parameters; it is completely automated.

1.4 Outline

In Chapter 2, we describe the data we use as well as the application we consider in

more detail. We outline our data processing and model development and validation

methods.

In Chapters 3 and 4, we consider subsets of Sh according to how similar they

are to Th based on two criteria: 1) whether or not an AVR was performed, and 2)

whether or not the procedure was performed at hospital h. In Chapter 3, we focus

on the case where for each target task h, we only consider the subset of Sh from the

same hospital. Then the available source data vary only in whether or not an AVR

was performed.

In Chapter 4, we first consider the subset of source data where the procedure is

the same as in the target data (isolated AVR). For a target task h, these data must

come from the other hospital. Lastly, we explore how augmenting the target training

data with subsets of source data from the other hospital affects performance. As in

Chapter 3, we consider subsets of source data that vary in in whether or not an AVR

was performed. This final method transfers information across procedures and across

hospitals.

In Chapter 5, we use the full feature set X to evaluate similarity of source examples

to target examples. We investigate automated methods to choosing the best subset

of source data to augment our target task training data with. We compare choosing

the best subset with instance-weighting, where all source examples are used but are

assigned different weights based on some measure of their estimated utility.

Finally, in Chapter 6, we briefly summarize the contributions of this thesis and
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discuss future work.
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Chapter 2

Data and Background

In this chapter, we first provide some background on the data we use and the applica-

tion of risk-stratifying patients receiving isolated AVR. Next, we discuss preprocessing

of the data. We then compare the demographics, risk factors, operative features, and

post-operative outcomes of patients in the national database and patients from the

two hospitals in our data. Because each STS model is developed for patients receiving

a specific set of procedures, we focus on the data from our application of interest (iso-

lated aortic valve replacements). We show that not only are there differences between

the hospitals and the national database, there are also differences between the two

institutions. Finally, we describe our model development and validation methods.

2.1 Aortic Valve Replacements

We consider the application of developing risk stratification models for adverse out-

comes resulting from an isolated aortic valve replacement. AVR is the standard of

care for treatment of severe, symptomatic aortic stenosis. Aortic stenosis is a con-

dition typically caused by calcification of the aortic valve leaflets [37]. The aortic

valve is the gateway between the left ventricle and the aorta. When the valve leaflets

become calcified, the effective valve opening is restricted. Thus, the valve will not

open fully, and in some cases, it will not close completely either. This change is

shown in Figure 2-1. The left ventricle must work harder to compensate for this re-
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duced valve opening. The changes in the left ventricle occur gradually; patients may

be asymptomatic even as the left ventricle struggles to compensate for the stenotic

valve [37]. The common symptoms that physicians look for are shortness of breath,

dizziness, and angina after exercise. Eventually, untreated aortic stenosis will lead to

heart failure, syncope, angina (chest pain), and death [37].

open dosed

%Steaot6 afwtvl V

Aortic stemosis

Aorta
Main pulmonary artery

Left atrium

Left ventride

Right ventride

Figure 2-1: A comparison of a normal aortic valve and a stenotic valve. 1

After individuals with aortic stenosis begin exhibiting symptoms, they have on

average two to three years to live [37] without treatment. Surgical aortic valve re-

placement, an open-chest surgery that typically requires the use of cardiopulmonary

bypass, often results in increased quality of life and longer life-expectancy [37]. How-

ever, patients who are determined to be too high-risk may not be able to receive this

surgery.

'This image was taken from http://www.childrenshospital.org/health-topics/conditions/aortic-
valve-stenosis.
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An alternative treatment called a transcatheter aortic valve replacement (TAVR),

first successfully performed on a human in 2002 [38], was approved by the FDA

in the United States for use in patients who cannot receive surgical AVR in 2011

[39]. In 2013, the FDA expanded the use of this treatment to allow patients deemed

at high-risk for surgical AVR to receive it [40]. This treatment uses a transcatheter

approach to insert a new valve. It does not require the use of cardiopulmonary bypass

and it is minimally invasive. However, in the Placement of Aortic Transcatheter

Valves (PARTNER) trial, a randomized, multi center clinical trial, more major strokes

were observed in the patients that received TAVR as opposed to standard AVR [9].

Additionally, transcathether AVR was associated with a higher incidence of major

vascular complications within 30 days [9]. Despite these complications, for high-

risk patients, transcatheter AVR presents a possible alternative treatment to surgical

AVR.

Accurately determining a patient's risk of mortality or other severe complications

of surgical AVR has proven difficult using existing clinical risk models [41, 42, 7,

43, 26, 44]. Improvement of these methods is necessary for an accurate cost-benefit

analysis of the possible treatments for each individual patient.

2.2 Data

2.2.1 Society of Thoracic Surgeons National Adult Cardiac

Surgery Database

The Society of Thoracic Surgeons (STS) National Adult Cardiac Surgery Database

was established in 1989. It contains data from over 90% of the institutions in the

United States that perform cardiac surgery [45]. Its primary purpose is to develop

risk models that allow for accurate quality assessment and provider comparison by

controlling for case mix differences between patient populations at different hospitals

[22, 23, 24]. However, these models have also been used to provide estimates of

patients' preoperative risk for adverse outcomes such as mortality and stroke [9].
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2.2.2 Consolidating different data versions

Our data were collected using three different data version guidelines in the STS

database, versions 2.41, 2.52, and 2.61. With each change in the guidelines, there

were changes in the variables in the database, changes in the names of the features,

and changes in definitions of features with the same name. As an example, in version

2.41, the variable "Arrhythmia" encoded whether or not there was an arrhythmia

present within two weeks of the procedure. If there was, the variable "Arrhyth-

mia Type" encoded whether the arrhythmia was "Sustained Ventricular Tachycardia

or Ventricular Fibrillation requiring cardioversion and/or IV amiodarone," "Heart

block," or "Atrial fibrillation/flutter requiring Rx." In version 2.52, the definition of

"Arrhythmia" changed: it encoded "whether there is a history of preoperative ar-

rhythmia," but did not indicate whether or not that arrhythmia was present within

two weeks of the procedure. However, "Arrhythmia Type" still encoded which ar-

rhythmia was present within two weeks of the procedure, with the additional option

of "None." Finally, in 2.61, the categorial variable "Arrhythmia Type" was removed

and was replaced by binary indicator variables for each option (sustained ventricular

tachycardia or fibrillation, heart block, and atrial fibrillation or flutter).

Where it was possible, we created mappings from semantically equivalent features

in each data version to consistent binary indicator features. Most of these mappings

were between version 2.61 and the other versions. Because the national STS model

was developed and tested entirely on data from versions 2.41 and 2.52, it did not have

to deal with the majority of the changes. To avoid removing all data from version 2.61

(approximately a third of the available data), we instead preserved as many features

as possible and discarded features that were unique to a single data version and had

no clear mapping to features in the other data versions.

The specifications for data versions 2.41, 2.52, and 2.61 were retrieved online on

the STS website [46, 47, 48].
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2.3 Comparing the STS National Database to our

data

We compared the proportion of patients in each hospital to the proportion of patients

in the national database who had each risk factor. These risk factors were found in

[23].

To test for statistical significance, we used a z-test to compare the proportions.

The z-test uses the test statistic given in Equation 2.3:

pini + P2n2 (2.1)
n1 +n2
r1 ±12

SE= p(1 - ) - + - (2.2)
nl n2

z P1P2 (2.3)
SE

where pi and P2 are the proportions in populations 1 and 2, respectively, and

ni and n2 are the sizes of those populations. We then compute the two-tailed p-

value by using the standard normal cumulative distribution function to compute the

probability of observing a value less than - zl or greater than jzj.

2.3.1 Demographics

This section details the demographic differences in the populations of the two insti-

tutions and the national study population. We used the information provided in [23]

about the distribution of features in the national study population. The results are

shown in Table 2.1; differences from the national population with p-value < 0.01 are

in bold.

We note that there are significant differences in the demographics of the popu-

lation. In particular, the proportion of patients with age < 55 is much lower in the

two hospitals in our data than in the national study population. Additionally, there

is a greater proportion of older patients (> 75) in the two institutions we consider
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Table 2.1: Demographics

Age < 55
Age 55-64
Age 65-74
Age > 75

Male
Female

Caucasian
Black

Hispanic
Asian

2008 National
Study Population

(n = 67, 292)
19.66
19.39
27.19
33.85
58.27
41.73
87.17
5.28
3.48
1.07

Hospital 1

(n = 917)

14.61
17.12
28.14
40.13
57.91
42.09
94.11
1.09
1.74
0.76

Hospital 2

(n = 1602)

15.98
17.54
25.28
41.20
55.49
44.51
95.51
1.31
2.00
0.50

than in the national study

higher-risk population.

population. This suggests that our study population is a

2.3.2 Postoperative outcomes

In this thesis, we will focus on two post-operative outcomes: operative mortality and

stroke. These are defined in version 2.61 of the STS database as follows:

Operative Mortality: "Includes both (1) all deaths occurring during the hospital-

ization in which the operation was performed, even if after 30 days; and (2) those

deaths occurring after discharge from the hospital, but within 30 days of the procedure

unless the cause of death is clearly unrelated to the operation."

Stroke: "Whether the patient has a postoperative stroke (i.e., any confirmed neu-

rological deficit of abrupt onset caused by a disturbance in cerebral blood supply) that

did not resolve within 24 hours." Complications such as stroke are recorded through

"the entire postoperative period up to discharge, even if over 30 days." [48].

We compared the proportions of adverse outcomes occurring in the national

database (found in [23]) with those in the two hospitals. These results are shown

in Table 2.3.2. Hospital 2 has a significantly different proportion of strokes as com-
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Table 2.2: Percentage of adverse outcomes occurring in the 2008 national study pop-
ulation, Hospital 1, and Hospital 2 (isolated AVR only).

2008 National Hospital 1 Hospital 2
Study Population (n = 917) (n = 1602)

(n = 67, 292)
Operative Mortality 3.21 2.07 2.81

Stroke 1.50 2.29 2.87

pared with the national database (p < 0.001).

2.3.3 Risk Factors

We excluded features that did not have corresponding mappings in version 2.61 and

comparisons between proportions of missing data. To provide a concise picture of

the differences between the national study population and the two hospitals in our

data, for risk factors which had only 3 possible unique values (present, not present,

or missing), we only compared the proportions of patients where the risk factor was

present. Out of 103 comparisons of pre-operative risk factors between the national

database and the two hospitals in our data, over half of the features demonstrated

differences at a significance level of 0.01 with at least one of the hospitals in our data.

The features that demonstrate significant differences (p-value < 0.01) between the

national study population and either of the two hospitals in our data are shown in

Table 2.3. Features that were also significantly different between the two hospitals

(p-value < 0.01) are in bold.
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Table 2.3: Differences between National Database and Hospitals 1 and 2.

2008 National Study Population Hospital 1 Hospital 2
(n = 67. 292) (o = 917) (n = 1602)

Body surface area. 1.50-1.74 in2  20.38 22.25 23.78

Body surface area. > 2.00 in2 38.65 36.97 34.58
Body mass index. < 25 kg/rn

2  27.51 30.97 30.90
Body mass index. kg/rn 2 > 35 14.87 14.72 11.74

No diabetes 77.35 77.64 80.52
Hypertension 66.60 72.74 66.04

Hypercholesterolemia 50.33 69.68 65.11
No chronic lung disease 79.51 83.97 84.14

Mild chronic lung disease 10.39 10.03 14.73
Moderate chronic lung disease 5.98 3.27 0.69

Severe chronic lung disease 3.14 2.73 0.37

No CVA 92.91 93.68 95.88

Remote CVA (> 2 weeks) 6.25 5.67 3.81

No endocarditis 94.00 93.46 95.57
Active endocarditis 3.07 3.16 1.75

Creatinine < 1.00 mg/dL 38.16 30.21 47.82
Creatinine 1-1.49 mg/dL 47.64 53.44 43.26

Creatinine 1.50 - 1.99 mg/dL 7.55 11.12 6.49
Creatinine > 2.50 nig/dL 1.11 2.62 1.37

Dialysis 2.18 1.96 0.62
Inonunosuppressive treatment 3.08 7.20 4.99

Previous valve surgery 6.22 5.56 7.80
No PCI 92.35 90.73 89.89

PCI within 6 hours 0.09 0.00 0.69
PCI not within 6 hours 6.95 9.16 9.36

Elective status 76.88 70.67 83.83
Urgent status 21.80 28.90 15.42

No prior MI 90.43 86.91 90.45
MI 8-21 days 0.71 3.05 0.62

No angina 73.67 63.58 84.33

No arrhythmia 85.38 79.39 90.95
AFib/flutter 11.25 16.58 6.49
Heart block 1.65 5.56 1.12

Sustained VT/VF 0.72 1.09 0.12
NYHA Class I 15.19 0.11 1.50
NYHA Class II 30.16 3.05 11.36

NYHA Class III 37.87 11.23 19.91
NYHA Class IV 12.04 10.91 3.12

Congestive heart failure 37.43 25.30 35.89

No diseased coronary vessels 81.84 75.25 76.15

One diseased coronary vessel 8.01 11.78 10.80
Two diseased coronary vessels 3.24 4.69 5.56

Three diseased coronary vessels 5.60 8.29 7.49
Left mnain disease. > 50%Y 1.67 1.96 3.43

Ejection Fraction, < 25 % 2.64 2.62 0.69

Ejection Fraction. 25-34 %X 5.66 4.91 3.00
Ejection Fraction. 35-44 % 9.19 5.02 5.74
Ejection Fraction, 45-54 %A 18.44 9.05 10.42

Ejection fraction, > 55% 54.37 78.19 76.90
Aortic stenosis 79.83 88.55 82.77

Mitral stenosis 2.08 5.89 3.81

No aortic insufficiency 38.43 24.21 37.33
Trivial aortic insufficiency 8.79 19.74 12.23
Mild aortic insufficiency 14.88 29.88 24.03
Severe aortic insufficiency 23.08 13.20 12.17
No mitral insufficiency 60.12 13.63 21.54

Trivial mitral insufficiency 10.83 27.48 22.53
Mild mitral insufficiency 19.42 39.26 40.01

Moderate mitral insufficiency 6.6 17.23 13.73

No tricuspid insufficiency 74.27 21.92 35.71

Trivial tricuspid insufficiency 8.34 35.01 28.34
Mild tricuspid insufficiency 10.9 29.66 25.66

Moderate tricuspid insufficiency 3.16 9.60 8.55

Severe tricuspid insufficiency 0.44 1.31 0.56
No pulmonic insufficiency 89.85 45.37 73.91

Trivial pulmonic insufficiency 3.52 39.15 17.35
Mild pulmonic insufficiency 1.99 7.74 6.49

Moderate pulnonic insufficiency 0.31 1.09 0.75
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2.4 Model development and validation methods

Although we used data collected for the STS database, we did not utilize any of the

expert-driven features included in the STS risk models. These included modeling some

continuous features using linear splines with specified knots, as well as interaction

terms between features [22, 23, 24].

2.4.1 Feature construction

Binary features were left unchanged. Categorical features were replaced with bi-

nary features for each unique value of that feature. Finally continuous features were

discretized by quintile, according to the training data, and the resulting categorical

features were replaced with binary features. The final feature vectors consisted of 251

binary features.

2.4.2 Model development

We learned all of our models using LIBLINEAR [49]. All models are produced using

L2-regularized logistic regression with an asymmetric cost parameter [50], as given

by Equation 2.4, where C+ and C_ are the costs of misclassifying examples in the

positive class and the negative class, respectively.

min wTw +C+ Y log(1 + e-"" Txi)
w 2

i:yj=+1

+ C_ log(1 + e-'y' TX) (2.4)

i:y2 =-1

Logistic regression outputs a continuous measure that, for our application, rep-

resents the risk of the patient for the adverse outcome of interest. We used L2-

regularization to help prevent overfitting.

We divided the target data into sets of 50% training and 50% test, stratified by

outcome. This was repeated 100 times. All of our methods were applied to these
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same 100 test sets and incorporated the corresponding target training data into the

training set. We used 5-fold cross-validation on each training set to determine the

hyper-parameters of the model. We optimized for the area under the receiver oper-

ating characteristic curve (AUC). We considered two hyperparameters: the cost for

misclassifying an example in the negative class, C_, and the cost of misclassifying

an example in the positive class, C+. These parameters are typically found by per-

forming a grid search over C and the ratio C (the asymmetric cost parameter).

To speed up computation, we set the value of C to a constant equal to the class

imbalance in the training data ( ). We searched the space from 10-7 to

102 in powers of 10 for C+ and used cross-validation to select the best value.

This process is diagrammed in Figure 2-2.

Target Data
Isolated AVIR

50 % Trai 50n Test t

Optionally
augment training
set with source
data.

Source Training Set
Data

Figure 2-2: Model development procedure.

30



2.4.3 Evaluation

We evaluate each of our methods using the area under the receiver operating charac-

teristic curve (AUC), the precision, and the recall. We report each value along with

its 95% confidence interval (CI).

AUC

The ROC curve depicts the tradeoff between the false-positive rate and the true-

positive rate. The AUC is used to summarize the ROC curve. An AUC of 0.5

means a classifier does no better than randomly assigning the outcomes; it has no

discriminative value. A classifier with an AUC of 1 has perfect discrimination; it

is able to perfectly distinguish the adverse events from the non-adverse events. For

most classifiers, the AUC will lie between these two values. Generally, a value of 0.7

is used as a standard for good performance.

Precision and Recall

Precision and recall are evaluated at one point along the ROC curve. We considered

the upper quintile of risk as high-risk; that is, instances where the patient was assigned

a probability above the 80th percentile were considered high-risk (+1), and individuals

below that threshold were considered low-risk (-1). Precision and recall are defined

as follows:

Precision True Positives
True Positives + False Positives'

True Positives
Recall =

True Positives + False Negatives

To give the reader an idea of how our methods perform, we describe the perfor-

mance of a random classifier in terms of precision and recall here. While an AUC

of 0.5 always indicates the classifier does no better than randomly assigning the out-

comes, precision depends on the incidence of the outcome in the population, and recall

depends on the definition of high-risk. We call the incidence probability p. Because

we consider the upper quintile of risk as high-risk, 20% of the test cases, regardless of
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the classifier, will be classified as positive. Thus, the precision of a random classifier

is p, and the recall is 0.20. This provides a baseline against which other classifiers

can be compared.

Comparing Models

To determine whether the difference in performance between two models was sta-

tistically significant, we used a paired t-test [51] and a paired Wilcoxon signed-rank

test [52]. A paired t-test is a parametric test used to measure the statistical signif-

icance of paired differences (e.g., when comparing a group of patients' heart rates

before and after exercise to determine if exercise increases heart rate). The Wilcoxon

signed-rank test is the non-parametric equivalent. The t-test makes assumptions of

normality, whereas the Wilcoxon signed-rank test does not. For completeness, we use

both tests to evaluate significance; we only consider results where both p-values are

less than 0.05 to be significant.

In each test, the null hypothesis is that there is no difference between the perfor-

mance of the two classifiers. This is done by comparing the average difference between

the performance of the two classifiers on the 100 test sets with 0. For all statistical

significance tests, we computed the two-tailed p-value. This two-tailed p-value, when

below a specified threshold (e.g., 0.05, 0.01, etc.), signifies that one classifier performs

significantly better than the other.

2.5 Summary

In this chapter, we showed that the patient populations of the two institutions we

consider demonstrate significant differences from the national study population from

which the 2008 STS risk models were developed and validated. These differences

are evident in the demographics, the risk factors of the patients, and the outcomes.

Inter-institutional differences are also evident in the proportions of risk factors. We

also outlined our methods for processing the data as well as for model development

and validation.
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Chapter 3

Leveraging information across

cardiac procedures at a single

institution

In this chapter, we consider transfer of knowledge within a single institution.

We consider two ways in which subsets of source data can vary: 1) size, and 2)

similarity to the target data. For each target task h = 1, 2, we consider source data

where an AVR was performed to be similar to the target data, and source data where

an AVR was not performed to be dissimilar. We examine how augmenting the target

task training data with different subsets of source data affects performance.

We define these subsets as follows. We denote by the superscript the criteria used

to select each subset of the source data: +AVR denotes the patient received an AVR

in combination with some other surgery, -AVR means the patient did not receive

an AVR, and h or h denotes whether the patient received the surgery at the same

hospital as the target task h or not. The subscript denotes the task of interest (i.e.,

which hospital h the target data are from). The subsets we consider in this chapter

are

* ShAVR,h: the subset of source data available for task h from hospital h where

patients received an AVR in addition to some other procedure(s).

33



" StAVR,h: he subset of source data available for task h from hospital h where

patients received a cardiac surgery, but did not receive an AVR.

" = S+AVRh SAVR,h: all available source data for task h from hospital h.

The relationship of these subsets at a single hospital is shown in Figure 3-1.

Hospital h

Figure 3-1: Diagram of the subsets of source data and target data at hospital h.

We hypothesize that because S+AvR,h is most similar to the target data Th, aug-

menting the target task training data with this set will improve performance on the

target task more than other sets.

We compare against the baseline approach of using only target task training data

to develop a model. We examine the tradeoff between amount of training data and

how similar those data are to the target data.

3.1 Target-only

We first considered the baseline performance, where we trained a model using only the

target training data and tested on the corresponding test set. We call this approach

"target-only." The performance for both hospitals is shown in Table 3.1.

The AUC, precision, and recall for operative mortality for both hospitals were

significantly better than random (p-value < 0.001). On the other hand, the perfor-

mance on stroke for both hospitals was significantly worse than random (p-value <
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Table 3.1: Target-only performance on Hospital 1 and Hospital 2 for Operative Mor-
tality and Stroke. Training data used consists of 50% of the isolated AVRs from the
hospital of interest. The average AUC, precision, and recall over the 100 test sets are
reported, and the 95 % confidence intervals are included in parentheses.

Hospital 1 Hospital 2
AUC 0.5787 (0.46, 0.71) 0.6601 (0.50, 0.75)

Operative Mortality Precision 0.0274 (0.01, 0.05) 0.0603 (0.03, 0.09)
Recall 0.2800 (0.11, 0.56) 0.4291 (0.22, 0.61)
AUC 0.4373 (0.29, 0.55) 0.4876 (0.39, 0.57)

Stroke Precision 0.0183 (0, 0.04) 0.0245 (0.01, 0.04)
Recall 0.1680 (0, 0.40) 0.1704 (0.04, 0.30)

0.05). This result is discouraging, but can be explained by the high-dimensionality

of the problem and the small amount of relevant data.

The target-only model for Hospital 1 used only half of the available target data

for training, i.e., just over 450 examples in each training set, with 9 or 10 adverse

outcomes. This is an extremely small number of events considering that over 200

features were used to train each model. This ratio of training instances to features

makes it extremely likely that the models will overfit to the training data. Thus, when

the model is applied to a validation set, it is likely to demonstrate low performance. To

verify that overfitting was the reason for the low performance on stroke, we compared

the training AUC (where the model was tested on the sample used to develop it) with

the test AUC over the 100 splits. The average difference between training and test

AUC was 0.53 for the outcome of stroke, with 95% confidence interval (0.33, 0.72).

This large discrepancy between the training and test performance demonstrates that

overfitting (and thus, not enough training data) contributed to the poor performance.

Similarly, the performance for the outcome of stroke at Hospital 2 was below

random. However, because there were more available target data from Hospital 2,

the discrepancy between training and test AUCs was smaller than the discrepancy at

Hospital 1 (mean difference in AUC of 0.46 and 95% confidence interval (0.33, 0.60)).
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3.2 Using source data

We considered the following sets of source data: 1) S AvR,h 2 AVRh

S= SAVR,h u AVR,h

We augmented our target task training data with each of these sets and evaluated

performance on the test sets. We consider how variations in the training data affect

performance of the models on the test data. For each outcome and each hospital, we

show that more training data does not always result in better performance.

3.2.1 Outcomes in Hospital 1 and Hospital 2: Comparing

Training and Test Sets

The size and number of adverse outcomes for each hospital in each subset of source

data considered are shown in Table 3.2. The size of these subsets of source data vary,

as well as the proportion of adverse outcomes that occur in them. The statistics for

the target data are also shown for reference. The rates of adverse outcomes differ

between procedure types as well as between hospitals.

Table 3.2: Distribution of outcomes in source data and target data for Hospital 1 and
Hospital 2.

Hospital Data N Operative Mortality Stroke
s5 AVR,1 1602 85 (5.3 %) 55 (3.4 %)

1 AV1  7538 245 (3.3 %) 151 (2.0 %)
SI 9140 330 (3.6 %) 206 (2.3 %)

T1 917 19 (2.1 %) 21 (2.3 %)

SAVR,2 2119 115 (5.4 %) 85 (4.0 %)
2 32 AVR,2

2 A,2 8498 321 (3.8 %) 194 (2.3 %)
S2 10,617 436 (4.1 %) 279 (2.6 %)

T2 1602 45 (2.8 %) 46 (2.9 %)
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3.2.2 Experimental Results

Tables 3.3 and 3.4 show the performance of models trained on augmented target

task training data over the 100 test sets for the outcomes of operative mortality and

stroke, respectively. These results demonstrate significant improvements in average

performance over the target-only method, with p-values < 0.001.

For the outcome of operative mortality, augmenting the target training data with

all of the available source data, Sh, resulted in significantly better AUC, precision, and

recall than using either of the two smaller sets at both hospitals (p-values < 0.05). At

Hospital 2, the subsets with more data outperformed the subsets with less (SW-AVR,h

outperformed SjAVR,h, and Sh outperformed both of the other sets). These effects are

what one might expect; more training data leads to better performance. However,

the difference in performance between SjAVR,h and S-AVR,h was not significantly

different at Hospital 1 for any of the three measures evaluated (p-values > 0.05).

This is somewhat surprising, given that S-AVR,1 is almost 5 times as large as SiAVR,1

and contains approximately 3 times as many adverse events.

The observation that including more source data in training does not always lead

to better performance is also true for the outcome of stroke. At Hospital 1, using

S+AVR,1 resulted in significantly better performance than S-AVR,l in AUC, precision,

and recall (p-value < 0.05). Although using all of the source data still performed

significantly better than using either of these subsets in terms of the AUC (p-value

< 0.001), the precision and recall were not significantly different between using all of

the data and using only SjAVR,1, the smallest of the three sets.

At Hospital 2, the results are similar; for the outcome of stroke, using S2 AVR,2

resulted in significantly worse precision and recall and no significant change in the

AUC compared to using S+AVR,2 . For this task, using all of the available source data

outperformed using either of the subsets in the AUC, but the precision and recall

were significantly better when only S+AVR,2 was used.

In the target-only results (Table 3.1), the precision, recall, and AUC for the out-

come of stroke were significantly worse than random. Augmenting the target training
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data with source data improved performance, and for the outcome of stroke, we were

able to achieve performance significantly better than random in AUC, precision, and

recall when we used S+AVRh or S (p-value < 0.05). Augmenting with the subset

SWAVR,h, however, resulted in performance not significantly different from random at

both hospitals. In this case as well, the set excluding surgeries where an AVR was

performed had less utility.

In Tables 3.3 and 3.4, the maximum average AUC, precision, and recall for each

hospital are in bold. Any values which were not significantly different from these

maximum values are also in bold.

Table 3.3: Operative mortality: Average AUC, precision, and recall with 95% con-
fidence intervals. Target task training data were augmented with different sets of
source data from the target hospital.

Hospital Source AUC Precision Recall
Data (95 % CI) (95 % CI) (95 % CI)

SAVR,l 0.6634 (0.52, 0.78) 0.0443 (0.02, 0.07) 0.4533 (0.22, 0.67)
1 SAVR,1 0.6670 (0.52, 0.78) 0.0447 (0.02, 0.07) 0.4567 (0.22, 0.67)

S 0.7038 (0.57, 0.83) 0.0470 (0.02, 0.07) 0.4800 (0.22, 0.67)

S2AVR, 2  0.7079 (0.62, 0.79) 0.0668 (0.04, 0.09) 0.4750 (0.30, 0.64)
2 AVR,2 0.7274 (0.62, 0.81) 0.0741 (0.05, 0.09) 0.5271 (0.36, 0.68)

S2 0.7409 (0.65, 0.81) 0.0793 (0.05, 0.10) 0.5636 (0.36, 0.70)

Table 3.4: Stroke: Average AUC, precision, and recall with 95% confidence intervals.
Target task training data were augmented with different sets of source data from the
target hospital.

Hospital Source AUC Precision Recall
Data (95 % CI) (95 % CI) (95 % CI)

SjvAR,1 0.5932 (0.48, 0.69) 0.0292 (0.01, 0.04) 0.2690 (0.10, 0.40)
1 S AVR,1 0.5632 (0.47, 0.67) 0.0266 (0.01, 0.04) 0.2450 (0.10, 0.40)

S1 0.6046 (0.49, 0.72) 0.0280 (0.01, 0.05) 0.2580 (0.10, 0.50)

SfAVR,2  0.5407 (0.46, 0.62) 0.0383 (0.02, 0.06) 0.2665 (0.13, 0.43)
2 S2 AVR,2 0.5375 (0.45, 0.61) 0.0312 (0.01, 0.05) 0.2170 (0.09, 0.35)

1 S 0.5521 (0.46, 0.63) 0.0343 (0.01, 0.06) 0.2387 (0.09, 0.39)
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In this section, we showed that although S-AVR and S' were larger than SIAVR

they did not always result in better performance. In the following section, we will

isolate the effects of similarity and size.

3.3 Isolating the effects of similarity and size

We isolated the effects of similarity and size by subsampling each training set to

be the same size as the smallest (SZAVR,h). We used a two-tailed paired t-test and

Wilcoxon signed-rank test to determine whether the performance using S+AVR,h was
AVR, h

significantly different from using the subsampled S-AVR,h and S.

These results are shown in Tables 3.5 and 3.6. For both outcomes in hospital 1

and for stroke in hospital 2, the subsampled sets performed significantly worse than

SAVR,h . For operative mortality in hospital 2, however, the subsampled SjAVR,2 and

the subsampled S2 performed significantly better than S+AVR,2

From the results shown in Tables 3.5 and 3.6, it appears that the extent to which

the joint distributions of SjAVR,h and S-AVR,h are dissimilar differs between hospitals.

Additionally, this dissimilarity affects performance differently at the two hospitals and

for the different outcomes.

Table 3.5: Operative Mortality: Average AUC, precision, and recall with 95% con-

fidence intervals. Training sets were randomly subsampled to be the same size as

S+AVR,hh-

Hospital Source AUC Precision Recall
Data 95 % CI f-test sigied-ranik 95 %( CI t-test signed-rank 95 % CI t-test signed-rank

iAVR.1 0.6634 0.0443 0.4533

(0.52, 0.78) (0.02, 0.07) (0.22, 0.67)
-AVR.1 0.6269 <0.001 <0.001 0.0378 <0.001 <0.001 0.3867 <0.001 <0.001
1 (0.48. 0.76) (0.02. 0.07) (0.22. 0.67)

0.6493 0.0291 0.0364 0.0393 <0.001 <0.001 0.4022 <0.001 <0.001
1 (0.50. 0.77) (0.02, 0.07) ((0.22. 0.67)

<AVR.2 0.7079 0.0668 0.4750
2 (0.62. 0.79) (0.04. 0.09) (0.30. 0.64)
-AVR.2 0.7174 0.0053 0.0104 0.0731 <0.001 <0.001 0.5195 <0.001 <0.001

2 S2 (0.62, 0.79) (0.04, 0.10) (0.32, 0.70)

2 0.7230 <0.001 <0.001 0.0715 <0.001 <0.001 0.5085 <0.001 <0.001
'_2 (0.61, 0.79) (0.04, 0.09) (0.32, 0.68)
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Table 3.6: Stroke: Average AUC, precision, and recall with 95% confidence intervals.
Training sets are randomly subsampled to be the same size as S+AVR,h

Hospital Source AUC Precision Recall
Data 95 % CI t-test signed-rank 95 % CI t-test signed-rank 95 % CI t-test signed-rank

AVR, 0.5932 0.0292 - 0.2690 -
1 (0.48, 0.69) (0.01, 0.04) (0.10, 0.40)

1 SAVR.1 0.5104 <0.001 <0.001 0.0227 <0.001 <0.001 0.2090 <0.001 <0.001
1 (0.38, 0.62) (0, 0.04) (0. 0.40)

1 0.5490 <0.001 <0.001 0.0258 0.0295 0.0285 0.2370 0.0295 0.0285
(0.41. 0.68) (0, 0.05) (0, 0.50)

S4AVR,2 0.5407 - 0.0383 -- 0.2665
'2 (0.46, 0.62) (0.02, 0.06) (0.13, 0.43)
2 -AVR.2 0.5183 0.0010 0.0014 0.0305 <0.001 <0.001 0.2122 <0.001 <0.0012 2 (0.40, 0.63) (0.01. 0.05) (0.09, 0.35)

S2 0.5143 <0.001 <0.001 0.0304 <0.001 <0.001 0.2117 <0.001 <0.001
2 (0.37 0.62) (0.01, 0.06) (0.09, 0.39)

3.4 Summary

We demonstrated that subsets of the source data, selected based on whether or not

the patient received an AVR, can significantly improve performance over the target-

only approach. For operative mortality at Hospital 1, we achieved an AUC of 0.70,

over a baseline of 0.58. Similarly, at hospital 2, the AUC improved from 0.66 to

0.74. On the outcome of stroke, we were able to improve performance from being

significantly worse than random to significantly better than random (though still not

good) at both hospitals. However, the subsets of source data were not equally helpful.

In this chapter, we evaluated similarity between source and target data based on

whether or not an AVR was performed. We demonstrated that the extent to which

examples in the source data are helpful depends on this criteria for similarity. It is

thus important to consider the relationship of the source data to the target data.

By subsampling, we isolated the effects of size and similarity and found that even

when the sizes of the training sets were the same, performance differed significantly

depending on the procedures allowed in the training set.
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Chapter 4

Leveraging information across

hospitals

In Chapter 3, we examined how including source information from other cardiac

procedures at the same hospital could be useful when learning a model for our target

task. We used the criteria of whether or not an AVR was performed to evaluate how

similar source examples were to the target data. We found that incorporating other

cardiac procedures, particularly those more related to the target data, could lead to

significant improvements in performance. However, the data that were determined to

be less related to the target data varied between hospitals and outcomes. For example,

although adding S-AVR,h to the source data detrimentally affected performance on

stroke at Hospital 1, the same subset at Hospital 2 improved performance on operative

mortality.

In this chapter, we investigate how leveraging data across hospitals can be used

to learn a better model for our target task. To isolate the effect of transfer between

institutions from the effect of transfer between procedures, we begin by considering

only the isolated AVRs as available source data. For a target task h, this source data

comes from the other hospital.

Next we again leverage subsets of source data that vary in whether or not patients

received an AVR, as in Chapter 3, but across both institutions. Comparing the effects

of these different methods of transfer allows us to examine the relative utility, in our
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data set, of transferring across institutions and transferring between different surgeries

within an institution.

4.1 Setup

In each of the following sections in this chapter, we consider a subset of the available

source data for each task h. The relationship of the source data Sh (blue) to the

target data Th (orange) is diagrammed in Figure 4-1.

Hospital h Target
Data

Isolated
AVRAV

= S, source da
for ta

= T ,target da
LJ fort

Hpa

Hospital iat

Figure 4-1: Relationship of the available source data Sh with the target data, Th.

4.2 Isolated Aortic Valve Replacements

We began by augmenting our target task training data, from hospital h, with the

isolated AVR data from the other hospital (h), which we denote as SAVR,h. We

illustrate this in Figure 4-2. The blue shaded areas indicate the source data available

which are not leveraged towards the task, while the unshaded area indicates source

data that are used. We compare against the target-only results shown in Table 3.1.
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Hospital h

AVR:
= source data available

for task h

7= T ,target data
for task h

= source data used

Hospital /iIsolated

Figure 4-2: Leveraging data across hospitals for the same procedure.

Table 4.1: Operative Mortality: Average performance across 100 holdout sets. Target
task training data are augmented with all isolated AVRs from other hospital (SAvR h

Hospital Target-only Augmented p-value
t-test sign-rank

N 459 2061 -_
n 10 (2.2 %) 55 (2.7 %) - _

1 AUC (95% CI) 0.5787 (0.46, 0.71) 0.6465 (0.51, 0.77) <0.001 <0.001
Precision (95 % CI) 0.0274 (0.01, 0.05) 0.0395 (0.02, 0.07) <0.001 <0.001
Recall ( 95 % CI) 0.2800 (0.11, 0.56) 0.4033 (0.22, 0.67) <0.001 <0.001

N 801 1718 - -
n 22.5 (2.8 %) 41.5 (2.4 %) - _

2 AUC (95% CI) 0.6601 (0.50, 0.75) 0.6915 (0.57, 0.78) <0.001 <0.001
Precision (95 % CI) 0.0603 (0.03, 0.09) 0.0671 (0.04, 0.09) <0.001 <0.001

Recall ( 95 % CI) 0.4291 (0.22, 0.61) 0.4771 (0.30, 0.64) <0.001 <0.001

For the outcome of operative mortality, all results for both hospitals were sig-

nificantly better than target-only when the training data were augmented with the

isolated AVRs from the other hospital (p-value < 0.001). This was similarly true for

the outcome of stroke at Hospital 2. However, even though adding isolated AVRs

from Hospital 2 to training when the target task was Hospital 1 also improved the

AUC for the outcome of stroke, the performance was still worse than random (AUC
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Table 4.2: Stroke: Average performance across 100 holdout sets. Target task training
data are augmented with all isolated AVRs from other hospital (SAvRh

Hospital Target-only Augmented p-value
t-test sign-rank

N 459 2061 -
n 11 (2.4 %) 57 (2.8 %)

1 AUC (95% CI) 0.4373 (0.29, 0.55) 0.4571 (0.34, 0.63) 0.0131 0.0258
Precision (95 % CI) 0.0183 (0, 0.04) 0.0137 (0, 0.03) 0.0021 0.0026

Recall ( 95 % CI) 0.1680 (0, 0.40) 0.1260 (0, 0.30) 0.0021 0.0026
N 801 1718 -_
n 23 (2.9 %) 44 (2.6 %) - -

2 AUC (95% CI) 0.4876 (0.39, 0.57) 0.5066 (0.42, 0.59) <0.001 <0.001
Precision (95 % CI) 0.0245 (0.01, 0.04) 0.0282 (0.01, 0.05) 0.0048 0.0078

Recall ( 95 % CI) 0.1704 (0.04, 0.30) 0.1961 (0.04, 0.35) 0.0048 0.0078

< 0.5), and the precision and recall were significantly worse.

That adding this source data reduced both precision and recall initially surprised

us. A possible explanation is that when we add the isolated AVRs from Hospital

2 to training for the target task of Hospital 1, 801 surgeries from Hospital 2 are

added to the 459 available for training from Hospital 1. This means Hospital 2 is

overrepresented compared to Hospital 1 in the training set. The model will try to fit

the Hospital 2 data more than the Hospital 1 data because of their relative occurrence.

If the features which contribute to stroke after isolated AVR are different for the two

institutions, this will result in poor performance on Hospital 1.

To test this hypothesis, we subsampled the training data from Hospital 2 so that

the number of examples and the number of adverse outcomes from Hospital 2 equalled

the number from Hospital 1. The average AUC, precision, and recall after subsam-

pling were no longer significantly different from the target-only values. By giving

Hospital 1 and Hospital 2 fair representation in training, the model no longer over-

trained to the examples from Hospital 2. However, even after subsampling, transfer-

ring information from Hospital 2 did not improve performance on Hospital 1.

Figure 4-3 compares the target-only performance against our experimental results

from Chapter 3 (leveraging information from other procedures at the same hospital)

and the results in Tables 4.1 and 4.2 (leveraging information from the same procedure
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at another hospital). Leveraging data from the same hospital but from different car-

diac procedures (Sh) as described in Chapter 3 results in greater gains in performance.

Operative Mortality: AUC Stroke: AUC
0.8 0.8

0.7 0.7

0.6 - 0.6

Q 0.5 u) 0.5

g 0.40.

4? 0.3 0.3

0.2 0.2

0 - 0
1 2
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Operative Mortality: Precision
0.1
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Hospital
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0.6 0.8
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Figure 4-3: Comparing average performance using target-only, transfer across proce-
dures, and transfer across hospitals on Hospitals 1 and 2 for outcomes of operative
mortality (left) and stroke (right). For both outcomes at both hospitals, and for
all performance metrics considered, leveraging other procedures at the same hospital
outperforms the other approaches.
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4.3 Other cardiac procedures

In addition to leveraging the information across hospitals while keeping the procedure

constant, we also looked at how using examples for related procedures from both

hospitals could improve performance. For hospital h, we considered the following

subsets of source data, where S+AVR S+AVR,h U S+AVR,h and S-AVR SAVRh U

S-AVR,h

SSAVR,h U S+AVR: all surgeries in Sh where an AVR was performed. This includes

the isolated AVR data from hospital h as well as any instances from both

hospitals where the patient received AVR and another surgery.

S h AVR: instances from both hospitals where the patient did not receive an AVR.

S Sh=SAVR h USAVR U -AVR: the full set of available source data.

Figure 4-2 diagrams the relationships between these sets. These sets combine the ef-

fects of differences between hospitals and differences between procedures. The number

of examples and adverse outcomes in each subset of the source data are shown in Ta-

ble 3.2. We compare the results of the experiments using subsets of source data from

both hospitals to the corresponding results in Chapter 3, where we used source data

subsets that contained the same types of procedures, but only from the hospital of

interest. We evaluate the difference in performance between these two approaches for

each test set. The average differences in AUC, precision, and recall between these

approaches and the 95% confidence intervals are shown in Tables 4.3 and 4.4. The

full results for the experiments utilizing source data from both hospitals are in the

Appendix (A.1-A.2).

In Chapter 3, we saw that when transferring information across procedures in a

single hospital, different types of source data were not equally helpful (Tables 3.3-

3.4). Similarly, the data from another hospital are not equally helpful and sometimes

are not helpful at all. In the case of stroke, including Hospital 2 source data re-

sulted in worse AUC, precision, and recall on Hospital 1 for all subsets of source data

(Table 4.4). For operative mortality, including source data from another hospital
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Table 4.3: Operative Mortality: Performance for each source data subset is compared
to the corresponding results in Chapter 3, where the same type of source data were
used, but only from the same hospital. A p-value < 0.05 indicates that utilizing
the source data from another hospital (of the procedure subset considered) results in
significantly different performance.

Hospital Source Data AUC Precision Recall
Comparison 95 W CI /-test sign-rank 95 (X CI /-test sign-rank 95 % CI .-test sign-rank

(AV8,2 u AV) - s AVR.1 -0.0059 0.2596 0.1576 -0.0126 <0.001 <0.001 -0.1289 <0.001 <0.001
(-0.1o, 0.(19) (-0.03, 0.01) (-0.33, 0.11)

1 -AVH -AVR1 0.0174 <0.001 <0.001 0.0003 0.7437 0.8265 0.0033 0.7437 0.8265
(-0.06, 0.07) (-0.02. 0.01) (-0.22. 0.11)

0.0141 <0.001 <0.001 -0.0008 0.3197 0.3173 -0.0078 0.3197 0.3173S -S5) (-0.04, 0.08) (-0.01. (1.1) (-(.11, 0.11)
(qAVR.I UsAVR) - 5 iAVR,2 0.0292 <0.001 <0.001 0.0102 <0.001 <0.001 0.0724 <0.001 <0.001

2 (0, 0.06) (-0.01, 0.03) (-0.04, 0.18)

2 -AVR _;2 AVR,2 0.0030 0.1373 0.2058 0.0010 0.1450 0.1892 0.0071 0.1493 0.1864
2 A(-0.04. 0.04) (-0.01. 0.02) (-0.09. 0.13)

(2-0.0004 0.8343 0.6951 -0.0042 <0.001 <0.001 -0.0303 <0.001 <0.001
-2 (-0.03. 0.04) (-0.03, 0.01) (-0.17, 0.09)

Table 4.4: Stroke: Performance for each source data subset is compared to the corre-
sponding results in Chapter 3, where the same type of source data were used, but only
from the same hospital. A p-value < 0.05 indicates that utilizing the source data from
another hospital (of the procedure subset considered) results in significantly different
performance.

Hospital Source Data AUC Precision Recall
Comparison 95 Wt CI /-test sign-rank 95 X CI /-test sign-rank 95 W CI /-test sign-rank

AVR2 yAVR) - +AVR.1 -0.0141 0.0010 0.0017 -0.0104 <0.001 <0.001 -0.0960 <0.001 <0.001

(-0.09, 0.07) (-0.03, 0.01) (-0.30, 0.10)

1 S-AVR -AVR 1 -0.0500 <0.001 <0.001 -0.0118 <0.001 <0.001 -0.1090 <0.001 <0.001
1 (-0.12, 0.02) (-0.03, 0.01) (-0.30, 0.10)

-0.0578 <0.001 <0.001 -0.0125 <0.001 <0.001 -0.1150 <0.001 <0.001
(-0.13, 0.02) (-0.03, 0.01) (-0.30, 0.10)

AVH AVR i AVR,2 0.0070 0.2074 0.3658 -0.0111 <0.001 <0.001 -0.0774 <0.001 <0.001
2 2 2 (-0.09. 0.15) (-0.04, 0.01) (-0.26, 0.09)

2 SAVk -AV5.2 0.0145 <0.001 <0.001 0.0057 <0.001 <0.001 0.04 <0.001 <0.001
2 (-0.02, 0.05) (-0.01, 0.02) (-0.09, 0.13)

0.0091 <0.001 <0.001 -0.0048 <0.001 <0.001 -0.0330 <0.001 <0.001
1 (-0.03, 0.04) (-0.03, 0.01) (-0.17, 0.09)

negatively affected the performance when the subset contained only +AVR (patients

who received AVR in conjunction with some other procedure(s)).

However, including data from another hospital can be helpful. For operative mor-

tality, adding source data from Hospital 2 either improved the AUC significantly on

Hospital 1 or had no significant effect. For the cases where the AUC was significantly

improved, the precision and recall were not significantly different. Although the per-
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formance does not significantly increase for all measures considered, these results

show that the data from another hospital can be useful.

In all cases, adding Hospital 2 to the available source data resulted in larger

magnitude differences on Hospital 1 than adding Hospital 1 data for Hospital 2. In

section 4.2, we showed that when Hospital 2 was overrepresented in the training set

compared to Hospital 1, it resulted in negative transfer. When all of the source data

from Hospital 2 are used, Hospital 2 contributes 1.8 times the number of examples

Hospital 1 contributes to the training data, and twice as many adverse outcomes.

The effect of source data has been shown in previous work to be larger in cases

where less target data is available in other applications [12, 19]. Additionally, this

has been shown to be specifically true for transfer between institutions for clinical

risk-stratification tools [3].

4.4 Summary

In this chapter, we explored transfer of knowledge across institutions. We compared

the results from this type of transfer with our results from intra-institution transfer

in Chapter 3.

We reaffirmed that the effects of adding source data vary across institutions and

across outcomes. We have demonstrated that using all of the data is not always the

best option. In some cases, it can result in significantly worse performance. Including

source information in training that results in a negative effect on performance on the

target task is called "negative transfer" [1]. It is important to account for differences

in similarity between source and target examples when determining what subset of

the available source data to use in training. We have thus far only explored a heuristic

for deciding what the best methods of transfer might be (e.g., procedures "similar"

to isolated AVRs, procedures from the same hospital). Previous work has explored

automated approaches to exploiting the positive effects of utilizing source data while

avoiding the negative ones [12, 19]. We will investigate these methods further in the

next chapter.
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Chapter 5

Automatic identification of relevant

training data: leveraging data

across procedures and hospitals

In the previous chapters, we demonstrated that source data from other hospitals

and procedures can be leveraged in training to improve performance on our target

task. The extent to which the source data help depends on how related they are to

the target task, and in some cases, adding source data resulted in worse performance.

This suggests that better performance could be achieved by removing examples which

cause negative transfer.

To address this problem, we seek to develop an automated method for identifying

relevant training data from the full set of available source data for each task h, Sh.

We first propose a metric for evaluating similarity of source data to target data.

This metric can vary according to 1) what space it is measured in, and 2) how it is

measured (e.g., squared Euclidean distance). We will evaluate the squared Euclidean

distance in all cases and focus on looking at different subspaces X' for computing

the distance. We describe a selection algorithm that removes dissimilar data from

the training set. Finally, we propose an instance-weighting scheme, where no data

are removed from training but each training example is assigned a different weight.

While removing data requires selecting a reasonable cutoff, this final algorithm does
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not rely on any user-selected hyperparameters and is therefore fully automated.

5.1 Feature space: X'

In Chapters 3 and 4, we chose a reduced feature space in which to evaluate similarity of

source and target data. This feature space contained two features: 1) which hospital

the surgery was performed at, and 2) whether or not an AVR was performed. However,

these features are not sufficient to capture all of the relevant differences between source

and target examples. To address this problem, we examine two feature spaces which

encompass more features. We hypothesize that the relevant differences between the

source and target data can be better captured in these spaces.

The feature spaces we consider are as follows:

" Full feature space, X: We first evaluated distance of source data from target

data using the full feature space. To maintain consistency with our previous

methods, we evaluated this distance before discretizing continuous features. In

our past experiments, quintiles for discretization were determined based on the

training data. Because the distance metric is used to determine which data to

include in training, we first computed the distance to determine which data to

remove. We then discretized based on the included training examples.

Missing data for continuous features were replaced with the mean, and features

were normalized to have a range between 0 and 1 by subtracting the minimum

value of the feature and dividing by the range. Useful source data were selected

according to how far each example was from the mean of the target training

data, based on the squared Euclidean distance. This feature space consisted of

223 features.

" Procedural variables, XProcedures: We used all 39 binary features that con-

tained information about which procedures the patient received. This allowed

more variation in distance between source and target data than only considering

the single procedural variable of whether or not an AVR was performed. In this
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space, all target data had the same feature vector as the target mean.

We will describe our algorithms and results using the full feature space, X, in

depth. We compare these results to when the reduced space Xprocedures is used.

5.2 Selection algorithm

For each of the 100 training-test splits, we computed the mean target data instance

using the target task training data. We then computed the squared Euclidean distance

of each example in the training set (target and source) to this mean. The distance

of each example from this target mean gives us a sense of how dissimilar it is to the

target data. Because the source data are not drawn from the same distribution as the

target data, we expect the distribution of source data distances to be shifted right

relative to the distribution of target data distances.

An example of this is shown in Figure 5-1. To select relevant source data, we

considered two criteria: 1) percentile cutoffs of target data distance from the target

mean (i.e., according to the histogram in the top panel in Figure 5-1), and 2) percentile

cutoffs of source data distance from the target mean (i.e., according to the histogram

in the bottom panel in Figure 5-1). Source data further than a specified cutoff (e.g.,

90th percentile of source data distances) were removed from the training set. No

target task training examples were removed. Our hypothesis is that source examples

further away from the target data mean bear less resemblance to the target data. We

expect that at as we increase the cutoff (allow source data further and further from

the target mean), the utility of the data included will decrease. Including these data

may have no effect on performance, or it may hurt performance.

This selection algorithm was unsupervised; we did not utilize the outcomes of any

of the patients to choose relevant data.
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Figure 5-1: Histograms of distances of target (top) and source (bottom) data from
target data mean. Percentile cutoffs of target and source data distance are shown in
the respective histograms. Cutoffs based on source data distance allow for including
source data outside the radius of the furthest target task example, whereas cutoffs
based on the target data do not.

5.3 Instance-weighting

We also considered an instance-weighting scheme based on the distance metric we

used in the selection algorithm. Rather than removing examples, we used the distance

from the target mean to weight examples as more or less important in training. We

used the instance-weighting option in the LIBLINEAR package [49]. The diagram in

Figure 5-2 demonstrates how we constructed weights i for each example i, using the

squared Euclidean distance di as in the previous section.

These weights were calculated for both source and target training instances. We

constructed these weights so that any example at least as close to the target mean

as the furthest target example had a weight greater than 1. Instances outside of
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Figure 5-2: Diagram of distance metric and instance-weighting scheme. Distances (di)
of all source and target examples from the target mean (pT) are computed. Source
examples which are further from the target mean than the furthest target example

(max(dT )) will have a weight less than 1, and any examples inside this radius will
have a weight greater than 1.

this radius had weights less than 1. This weighting scheme reflects our intuition

that source examples that fall within the bounds of the target data (between the

target mean and the the most extreme target example) are more similar to the target

data than examples that fall outside of these bounds. Additionally, it addresses the

scenario where there are outliers in the target data; the distances of these outliers

from the target mean will be further than the distances of non-outliers, and they will

therefore be weighted as less important.

5.4 Experimental Results

In this section, we show experimental results for each of the methods described above.

We compare the instance-weighting scheme to choosing subsets of source data based

on distance cutoffs. We explore two sets of cutoffs, each based on the distribution of
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distances from the target mean. First, we explore cutoffs based on the target data

distribution of distances from the target mean. Second, we explore cutoffs based on

the source data distribution of distances from the target mean. An example of the

difference between these distributions is shown in Figure 5-1. The cutoffs range from

the 10th to the 100th percentiles in increments of 10.

Figures 5-3 and 5-4 compare the average AUC when instance-weighting was used

against the average AUC when selecting subsets of source data according to distance

from the target mean (in the full feature space). The green line shows the average

AUC when the percentile cutoffs are selected according to the target data distances

(top panel in Figure 5-1), and the blue line shows the average AUC when the percentile

cutoffs are selected based on the source data distances (bottom panel in Figure 5-1).

Because the 100th percentile of the target task distances does not encompass the

100th percentile of the source data distances, the green line does not contain the

point where all available source data are used.

As more training data are added, performance generally improves. In some cases,

using all of the available data results in worse performance than using some subset.

This is most obvious in the case of stroke at Hospital 1 (left panel of Figure 5-4),

where using all of the data results in an average AUC of 0.55 but using only a subset

results in a significantly higher average AUC of 0.57, as well as significantly higher

average precision and recall (Table 5.2). Additionally, source examples that lie further

from the target mean than the furthest target example still have utility.

The instance-weighting approach either demonstrated significant improvements

over simply using all of the data without weights, or it demonstrated no significant

differences. For Hospital 1, the average AUC for operative mortality when the data

were weighted was significantly better than when they were not, and the precision

and recall were not significantly different. For Hospital 2, all results for operative

mortality were significantly improved over using all of the data without instance-

weighting. In the case of stroke, instance-weighting provided no significant benefits

over using all of the source data without weights, but it was not significantly worse,

either.
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Figure 5-3: Sh in X, Operative Mortality

As in the results shown in Chapter 4, when the available data from Hospital 2 were

added to training for a task at Hospital 1, there was a large difference in performance

compared to when Hospital 2 data were not used. In the case of operative mortality,

the average AUC for the instance-weighting approach increased from 0.70 to 0.73,

but the average precision and recall stayed approximately the same (Table 5.1). The

performance for stroke dropped significantly, from 0.61 to 0.55 (Table 5.2), as in

Chapter 4. Additionally, the recall for the outcome of stroke dropped from 0.29 to

0.14, which is well below the recall for a random classifier (0.20). Adding source data

from Hospital 1 did not result in a large change in the magnitude of the performance

metrics for either outcome at Hospital 2.

As we showed in Chapter 4, this difference in transfer effect between institutions

is due to the difference in amount of target data available to each task. There are

roughly twice as many target examples from Hospital 2 as there are from Hospital 1. A
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Figure 5-4: Sh in X, Stroke

distance metric that better accounts for hospital-specific differences could help avoid

the negative transfer between institutions. When negative transfer occurred, a subset

of Sh was able to achieve significantly better performance than instance-weighting

(e.g., stroke in Hospital 1). Because selecting a subset is equivalent to applying

a weight of 0 to "remove" examples, modifying the instance-weighting function to

something like an Li-norm could help improve performance.

Finally, in all of our experiments, we have observed that the performance for

operative mortality is much higher than for stroke, despite the comparable number

of events that occur in the training sets. We hypothesize that this difference in

performance is due to the features we use to learn the model. As discussed in Chapter

2, we consider only preoperative features recorded in the STS database, and we do

not consider any nonlinear relationships between features outside of discretizing the

continuous features. It is possible that either risk of stroke is harder to explain
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using only preoperative features than risk of death, or that there are more complex,

nonlinear relationships between the features and the outcome of stroke that we have

not considered in this work.

Table 5.1: Operative Mortality: Instance-weighting and data selection when available
source data are from the both hospitals (Sh) using distance metric in X.

Hospital Performance Weighted Si p-value Best subset p-value
Metric Sh t-test sigied-raiik of Si t-test signle(l-rank

AUC 0.7263 0.7179 <0.001 <0.001 0.7228 0.1045 0.1586
(0.60, 0.84) (0.59. 0.83) (0.62. 0.83)

1 Precision 0.0466 0.0462 0.1583 0.2891 0.0466 1 1
(0.02. 0.07) (0.02, 0.07) (0.02. 0.07)

Recall 0.4767 0.4722 0.1583 0.2891 0.4767 1 1
(0.22. 0.67) (0.22, 0.67) (0.22. 0.67)

AUC 0.7449 0.7405 <0.001 <0.001 0.7432 0.0872 0.0617
(0.66, 0.82) (0.66, 0.81) (0.66. 0.82)

2 Precision 0.0771 0.0750 0.0019 0.0016 0.0772 0.9356 0.8848
(0.06, 0.10) (0.05. 0.10) (0.06. 0.10)

Recall 0.5484 0.5332 0.0018 0.0036 0.5488 0.9368 0.9175

Recl (0.39, 0.70) (0.35. 0.70) (0.39. 0.70)

Table 5.2: Stroke: Instance-weighting and data selection when available source data
are from both hospitals (Sh) using distance metric in X.

Hospital Performance Weighted Si p-value Best subset p-value
Metric Si t-test signle(l-ralnk of S, t-test signed-rank

AUC 0.5454 0.5468 0.3209 0.2281 0.5721 < 0.001 < 0.001
(0.43. 0.64) (0.44. 0.64) (0.46. 0.67)

1 Precision 0.0149 0.0155 0.4997 0.5312 0.0218 < 0.001 < 0.001
(0. 0.04) (0. 0.03) (0, 0.03)

Recall (.1370 0.1430 0.4997 0.5312 0.2010 < 0.001 < 0.001
(0. 0.40) (0. 0.30) (0. 0.30)

AUC 0.5604 0.5612 0.5012 0.5103 0.5654 0.0240 0.0697
(0.48. 0.64) (0.48. 0.63) (0.49, 0.64)

2 Precision 0.0281 0.0296 0.0511 0.0405 0.0277 0.7450 0.5492
(0.01. 0.04) (0.01. 0.05) (0.01. 0.04)

Recall 0.1952 0.2057 0.0511 0.0405 0.1930 0.7450 0.5492
R (0.09. 0.30) (0.09. 0.35) (0.09, 0.30)
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5.5 Comparing Methods in Different Feature Spaces

In this section, we compare the results from using XProcedures with using the full feature

space X.

Table 5.3 shows the average difference in performance between the full space and

the reduced procedural space, the 95% confidence intervals, and the two-tailed t-test

and Wilcoxon signed-rank test p-values when instance-weighting is used and source

data from both hospitals are available.

Table 5.3: Comparing feature spaces to compute distance in when available data
are from Sh. Models were trained using instance-weighting based on the squared
Euclidean distance in Xfull and Xprocedures. The average difference in performance
between the two feature spaces is shown along with the 95% confidence interval.).

Operative Mortality Stroke
Hospital Performance Difference p-value Difference p-value

Metric t-test sigled-rank t-test signed-ranik

AUC 0.0076 <0.001 <0.001 0.0095 <0.001 <0.001
(-0.01, 0.03) (-0.01. 0.04)

1 Precision 0.0002 0.5955 0.7905 0.0004 0.6397 0.6346
(-0.01, 0.01) (-0.01. 0.02)

Recall 0.0022 0.5955 0.7905 0.0040 0.6397 0.6346
(-(0.11. 0.11) (-0.10. 0.20)

AUC -0.0012 0.0031 0.0238 0.0010 0.4527 0.5004
(-0.01, 0.01) (-0.03, 0.03)

2 Precision -0.0009 0.1540 0.1480 0.0019 0.0040 0.0043
(-0.01. 0.01) (-0.01, 0.01)

Recall -0.0062 0.1589 0.4863 0.0135 0.0040 0.0043
(-0.09. 0.09) (-0.09, 0.09)

For the outcome of operative mortality, Xprocedures did not demonstrate consis-

tently significant differences for all performance metrics from the full feature space

for either hospital. Although there were some significant differences in the AUC, none

of the differences in precision or recall were significant. The performance when we

use the procedural feature space to calculate the distance from the target mean is not

very different from when we use the full feature space.

For the outcome of stroke at Hospital 1, the performance metrics also did not

demonstrate consistent differences between the full feature space and the procedural

space. However, at Hospital 2, the full space tends to outperform the procedural

space (Table 5.3).
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5.6 Summary

Instance-weighting is an automated approach that can result in a small, but signifi-

cantly better performance than using all of the source data without weights. We have

explored this approach in two feature spaces and used weights based on the squared

Euclidean distance in these feature spaces.

Instance-weighting did not help counter the negative transfer that occurred when

source data from Hospital 2 were used in training for the target task of stroke at Hos-

pital 1 (Table 5.2). However, in the cases where negative transfer occurred, selecting

a subset of Sh was able to achieve significantly better performance than instance-

weighting. These results suggest that by modifying the instance-weighting function,

we can better avoid negative transfer. Additionally, much smaller feature subspaces,

such as the procedural one we considered, can achieve similar performance to the full

feature space in some cases.

In summary, instance-weighting is a promising method to take better advantage of

the useful instances in the source data. However, it was unable to avoid the negative

transfer that occurred between institutions. Finding a more suitable feature space

in which to evaluate this distance and considering other functions of the distance as

instance-weights will give us more insight into when this method works best.
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Chapter 6

Conclusions and Future Work

6.1 Summary

Clinical risk-stratification tools are often developed for specific patient populations.

After applying a number of exclusion criteria, the data available for developing and

testing these models may be insufficient. In cardiac surgery, models such as the STS

risk models group types of surgeries using expert knowledge of related procedures,

while models such as the EuroSCORE group all surgeries together. Both models

are global in that they do not account for institution-specific differences, and the

EuroSCORE models are additionally global in the sense that they do not account for

procedure-specific differences.

In this thesis, we developed risk-stratification tools for patients at individual hos-

pitals for outcomes of operative mortality and stroke after isolated aortic valve re-

placement. We began with a "target-only" approach, which used only the isolated

AVR data from the hospital of interest. We demonstrated that using only target data

to develop and test a model resulted in unsatisfactory AUC, precision, and recall for

both outcomes at both hospitals.

To address the problem of too little data, we investigated instance-transfer meth-

ods in the field of transfer learning. Transfer learning assumes that the source data

and the target data have related joint distributions of the features and outcome; if

this is not the case, using the source data can negatively affect performance.
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We hypothesized that leveraging available source data from both hospitals could

improve performance on risk-stratifying isolated AVRs, but that instances more sim-

ilar to the target data would be more helpful. To test this hypothesis, we addressed

the question of how to evaluate similarity between source and target examples. In

Chapters 3 and 4, we demonstrated that similarity of source and target data, eval-

uated based on the procedure(s) the patients received and the hospital the surgery

was performed at, affects performance.

In Chapter 3, we augmented target task training data with available source data

from the target hospital. We considered 3 subsets of the available source data that

varied in how similar they were to the target data based on the criteria of whether

or riot ai AVR was performed (SAVR, S-AVR, and Sh). We showed that when these

subsets were subsampled to the same size, augmenting target task training data with

the subset containing examples where patients received an AVR with some other

procedure (+AVR) resulted in the best AUC, precision, and recall for both outcomes

at Hospital 1, and for stroke at Hospital 2. However, using all of the available source

data still resulted in the best AUC for both outcomes at both hospitals. For Hospital

1, we achieved an average AUC of 0.70 for operative mortality, compared to the

target-only performance of 0.58. For Hospital 2, leveraging all of the available source

data resulted in an average AUC of 0.74, compared to the target-only performance

of 0.66. For the outcome of stroke, utilizing source data from the same hospital in

training also led to significantly improved performance over the target-only baseline

for both hospitals.

In Chapter 4, we also considered the available source data from the other hospital.

We showed that adding data from another hospital could result in negative transfer.

These effects were more significant for Hospital 1, because it had less available target

data. However, leveraging the data from the other hospital also had positive effects; at

Hospital 1, using source data from Hospital 2 increased performance from an average

AUC of 0.70 to 0.72 for the outcome of operative mortality.

Finally, in Chapter 5, we investigated automated approaches to leveraging auxil-

iary data. We showed that weighting instances of the available source data can achieve
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comparable or significantly better performance than using the available source data

without weights. For the outcome of mortality at Hospital 1, instance-weighting

the available source data (Si) resulted in an average AUC of 0.73, over an average

AUC of 0.72 when instance-weighting was not used. However, the improvements in

performance we saw were small.

There are several ways we believe performance can be improved. Throughout this

thesis, we have observed that the performance of our models for operative mortality

has been significantly better than the performance of our models for stroke. We

hypothesize that this could be because intraoperative features contribute more to

predicting risk of stroke than preoperative features, or because there are nonlinear

relationships between the features and stroke that we have not considered here.

Another area for further research is how to avoid negative transfer. In Chapters

4 and 5, we saw that utilizing data from the other hospital (h) resulted in negative

transfer at hospital h. Our automated approaches to selecting and weighting training

data were not able to avoid this effect. This effect was stronger for Hospital 1 than

for Hospital 2, because Hospital 1 had much less target data than Hospital 2.

6.2 Future Work

To address the problems noted above, we would like to investigate the following in

our future work:

e Dimensionality Reduction. As we showed in Chapter 5, a reduced feature

space such as Xprocedures was able to achieve performance comparable to the

full feature space X in some cases. We hypothesize that not all features we

consider are important in distinguishing useful source data from harmful source

data. Exploring ways to determine which feature subspace best characterizes

the similarity between source and target examples is important to improving

the instance weights we used in this work.
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" Considering other functions to compute instance weights. The weights

we use currently are developed according to an idea of how the target data

and source data are related; source data that are contained within the "radius"

of target examples are viewed as more similar and should be given a weight

greater than 1. Examples outside of this radius should have a weight less than

1. However, the weights we use are not the only way to achieve this relationship.

Computing instance-weights using other functions of the distance may lead to

better results. For example, we could use a weighting function which also gives

outliers in the target data a weight less than 1.

" Identifying clusters of patients. Although we have quantified distance of

source data from target data using the mean of the target data, this could be

generalized to looking at several clusters of target data. If there exists struc-

ture within the target data, clustering the examples and then determining the

distance of the source data to these cluster centroids could be a more effective

way of deciding which source data to incorporate.

" Considering the utility of incorporating intraoperative features. In this

thesis, we showed that the performance of our models for operative mortality

was much better than the performance for stroke. We hypothesized that one

reason why might be that the preoperative features we consider are not sufficient

to predict stroke. Investigating to what extent intraoperative features predict

stroke versus operative mortality could give us a better sense of what factors

contribute most to these difference adverse outcomes.

" Investigating nonlinear feature construction. We hypothesized that an-

other reason why the performance for stroke was inferior to the performance

for operative mortality is that there may be nonlinear relationships between

features that we have not explored here. Considering nonlinear feature con-

struction may give us more insight into how preoperative features are related

to the risk of stroke.
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6.3 Conclusions

Making use of available auxiliary data when training models for a target task

with little data can lead to significant improvements in performance. Partic-

ularly in applications where there is a high class-imbalance, transfer learning

methods such as the ones discussed in this thesis could make training accurate

models for very specific patient populations more feasible.
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Appendix A

Table A. 1: Operative Mortality: Average performance over 100 test sets of isolated
AVRs for models trained on different training sets with 95% confidence intervals.
These training sets combine source data from the hospital of interest, h, with data
from the other hospital, h. Training subsets which vary in whether or not an AVR
was performed are compared.

Hospital Source AUC Precision Recall
Data 95 % CI 95 % CI 95 % CI

(SAVR1 U S-IAVR) 0.6575 (0.55, 0.78) 0.0317 (0.01,0.05) 0.3244 (0.11,0.56)
1 S-AVR 0.6843 (0.55, 0.79) 0.0450 (0.02,0.07) 0.4600 (0.22, 0.67)

S 0.7179 (0.59, 0.83) 0.0462 (0.02,0.07) 0.4722 (0.22, 0.67)

(S2v' U SjVR) 0.7371 (0.65, 0.81) 0.0770 (0.06, 0.09) 0.5474 (0.39,0.68)
2 S AVR 0.7304 (0.65, 0.81) 0.0751 (0.06, 0.09) 0.5342 (0.39, 0.68)

S2 0.7405 (0.66, 0.81) 0.0750 (0.05, 0.10) 0.5332 (0.35, 0.70)

Table A.2: Stroke: Average performance over 100 test sets of isolated AVRs for
models trained on different training sets with 95% confidence intervals. These training
sets combine source data from the hospital of interest, h, with data from the other
hospital, h. Training subsets which vary in whether or not an AVR was performed
are compared.

Hospital Source AUC Precision Recall
Data 95 % CI 95 % CI 95 % CI

S U SAVR) 0.5790 (0.45,0.68) 0.0188 (0,0.03 0.1730 (0,0.30)
1 S-AVR 0.5131 (0.40,0.62) 0.0148 (0,0.03) 0.1360 (0,0.30)

S 0.5468 (0.44,0.64) 0.0155 (0,0.03) 0.1430 (0,0.030)
(S2 U S2AVR) 0.5477 (0.47,0.65) 0.0272 (0.01,0.04) 0.1891 (0.09,0.30)

2 SIAVR 0.5519 (0.47,0.62) 0.0369 (0.02,0.06) 0.2570 (0.13,0.39)
S2 0.5612 (0.48,0.63) 0.0296 (0.01, 0.05) 0.2057 (0.09, 0.35)
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